mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
d07e2259
DC
54#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55extern const int mmap_rnd_bits_min;
56extern const int mmap_rnd_bits_max;
57extern int mmap_rnd_bits __read_mostly;
58#endif
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60extern const int mmap_rnd_compat_bits_min;
61extern const int mmap_rnd_compat_bits_max;
62extern int mmap_rnd_compat_bits __read_mostly;
63#endif
64
1da177e4
LT
65#include <asm/page.h>
66#include <asm/pgtable.h>
67#include <asm/processor.h>
1da177e4 68
79442ed1
TC
69#ifndef __pa_symbol
70#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71#endif
72
593befa6
DD
73/*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80#ifndef mm_forbids_zeropage
81#define mm_forbids_zeropage(X) (0)
82#endif
83
c9b1d098 84extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 85extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 86
49f0ce5f
JM
87extern int sysctl_overcommit_memory;
88extern int sysctl_overcommit_ratio;
89extern unsigned long sysctl_overcommit_kbytes;
90
91extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
1da177e4
LT
96#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
27ac792c
AR
98/* to align the pointer to the (next) page boundary */
99#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
0fa73b86
AM
101/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
1da177e4
LT
104/*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
c43692e8
CL
113extern struct kmem_cache *vm_area_cachep;
114
1da177e4 115#ifndef CONFIG_MMU
8feae131
DH
116extern struct rb_root nommu_region_tree;
117extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
118
119extern unsigned int kobjsize(const void *objp);
120#endif
121
122/*
605d9288 123 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 124 */
cc2383ec
KK
125#define VM_NONE 0x00000000
126
1da177e4
LT
127#define VM_READ 0x00000001 /* currently active flags */
128#define VM_WRITE 0x00000002
129#define VM_EXEC 0x00000004
130#define VM_SHARED 0x00000008
131
7e2cff42 132/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
133#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134#define VM_MAYWRITE 0x00000020
135#define VM_MAYEXEC 0x00000040
136#define VM_MAYSHARE 0x00000080
137
138#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 139#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 140#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 141#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 142#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 143
1da177e4
LT
144#define VM_LOCKED 0x00002000
145#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 153#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 154#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 155#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 156#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 157#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 158#define VM_ARCH_2 0x02000000
0103bd16 159#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 160
d9104d1c
CG
161#ifdef CONFIG_MEM_SOFT_DIRTY
162# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163#else
164# define VM_SOFTDIRTY 0
165#endif
166
b379d790 167#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
168#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 170#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 171
cc2383ec
KK
172#if defined(CONFIG_X86)
173# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174#elif defined(CONFIG_PPC)
175# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176#elif defined(CONFIG_PARISC)
177# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
178#elif defined(CONFIG_METAG)
179# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
180#elif defined(CONFIG_IA64)
181# define VM_GROWSUP VM_ARCH_1
182#elif !defined(CONFIG_MMU)
183# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184#endif
185
4aae7e43
QR
186#if defined(CONFIG_X86)
187/* MPX specific bounds table or bounds directory */
188# define VM_MPX VM_ARCH_2
189#endif
190
cc2383ec
KK
191#ifndef VM_GROWSUP
192# define VM_GROWSUP VM_NONE
193#endif
194
a8bef8ff
MG
195/* Bits set in the VMA until the stack is in its final location */
196#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
1da177e4
LT
198#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200#endif
201
202#ifdef CONFIG_STACK_GROWSUP
203#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204#else
205#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206#endif
207
b291f000 208/*
78f11a25
AA
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 211 */
9050d7eb 212#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 213
a0715cc2
AT
214/* This mask defines which mm->def_flags a process can inherit its parent */
215#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
de60f5f1
EM
217/* This mask is used to clear all the VMA flags used by mlock */
218#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
1da177e4
LT
220/*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224extern pgprot_t protection_map[16];
225
d0217ac0 226#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
227#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231#define FAULT_FLAG_TRIED 0x20 /* Second try */
232#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 233
54cb8821 234/*
d0217ac0 235 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 238 *
c20cd45e
MH
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
9b4bdd2f 242 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 243 */
d0217ac0
NP
244struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
2e4cdab0 250 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 251 struct page *page; /* ->fault handlers should return a
83c54070 252 * page here, unless VM_FAULT_NOPAGE
d0217ac0 253 * is set (which is also implied by
83c54070 254 * VM_FAULT_ERROR).
d0217ac0 255 */
8c6e50b0
KS
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 260};
1da177e4
LT
261
262/*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
5477e70a 270 int (*mremap)(struct vm_area_struct * area);
d0217ac0 271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
8c6e50b0 274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 279
dd906184
BH
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
28b2ee20
RR
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
78d683e8
AL
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
1da177e4 294#ifdef CONFIG_NUMA
a6020ed7
LS
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
1da177e4 302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
1da177e4
LT
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316#endif
667a0a06
DV
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
1da177e4
LT
324};
325
326struct mmu_gather;
327struct inode;
328
349aef0b
AM
329#define page_private(page) ((page)->private)
330#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 331
5c7fb56e
DW
332#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
333static inline int pmd_devmap(pmd_t pmd)
334{
335 return 0;
336}
337#endif
338
1da177e4
LT
339/*
340 * FIXME: take this include out, include page-flags.h in
341 * files which need it (119 of them)
342 */
343#include <linux/page-flags.h>
71e3aac0 344#include <linux/huge_mm.h>
1da177e4
LT
345
346/*
347 * Methods to modify the page usage count.
348 *
349 * What counts for a page usage:
350 * - cache mapping (page->mapping)
351 * - private data (page->private)
352 * - page mapped in a task's page tables, each mapping
353 * is counted separately
354 *
355 * Also, many kernel routines increase the page count before a critical
356 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
357 */
358
359/*
da6052f7 360 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 361 */
7c8ee9a8
NP
362static inline int put_page_testzero(struct page *page)
363{
309381fe 364 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 365 return atomic_dec_and_test(&page->_count);
7c8ee9a8 366}
1da177e4
LT
367
368/*
7c8ee9a8
NP
369 * Try to grab a ref unless the page has a refcount of zero, return false if
370 * that is the case.
8e0861fa
AK
371 * This can be called when MMU is off so it must not access
372 * any of the virtual mappings.
1da177e4 373 */
7c8ee9a8
NP
374static inline int get_page_unless_zero(struct page *page)
375{
8dc04efb 376 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 377}
1da177e4 378
53df8fdc 379extern int page_is_ram(unsigned long pfn);
124fe20d
DW
380
381enum {
382 REGION_INTERSECTS,
383 REGION_DISJOINT,
384 REGION_MIXED,
385};
386
387int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 388
48667e7a 389/* Support for virtually mapped pages */
b3bdda02
CL
390struct page *vmalloc_to_page(const void *addr);
391unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 392
0738c4bb
PM
393/*
394 * Determine if an address is within the vmalloc range
395 *
396 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
397 * is no special casing required.
398 */
9e2779fa
CL
399static inline int is_vmalloc_addr(const void *x)
400{
0738c4bb 401#ifdef CONFIG_MMU
9e2779fa
CL
402 unsigned long addr = (unsigned long)x;
403
404 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
405#else
406 return 0;
8ca3ed87 407#endif
0738c4bb 408}
81ac3ad9
KH
409#ifdef CONFIG_MMU
410extern int is_vmalloc_or_module_addr(const void *x);
411#else
934831d0 412static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
413{
414 return 0;
415}
416#endif
9e2779fa 417
39f1f78d
AV
418extern void kvfree(const void *addr);
419
53f9263b
KS
420static inline atomic_t *compound_mapcount_ptr(struct page *page)
421{
422 return &page[1].compound_mapcount;
423}
424
425static inline int compound_mapcount(struct page *page)
426{
427 if (!PageCompound(page))
428 return 0;
429 page = compound_head(page);
430 return atomic_read(compound_mapcount_ptr(page)) + 1;
431}
432
70b50f94
AA
433/*
434 * The atomic page->_mapcount, starts from -1: so that transitions
435 * both from it and to it can be tracked, using atomic_inc_and_test
436 * and atomic_add_negative(-1).
437 */
22b751c3 438static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
439{
440 atomic_set(&(page)->_mapcount, -1);
441}
442
b20ce5e0
KS
443int __page_mapcount(struct page *page);
444
70b50f94
AA
445static inline int page_mapcount(struct page *page)
446{
1d148e21 447 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 448
b20ce5e0
KS
449 if (unlikely(PageCompound(page)))
450 return __page_mapcount(page);
451 return atomic_read(&page->_mapcount) + 1;
452}
453
454#ifdef CONFIG_TRANSPARENT_HUGEPAGE
455int total_mapcount(struct page *page);
456#else
457static inline int total_mapcount(struct page *page)
458{
459 return page_mapcount(page);
70b50f94 460}
b20ce5e0 461#endif
70b50f94 462
4c21e2f2 463static inline int page_count(struct page *page)
1da177e4 464{
d85f3385 465 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
466}
467
468static inline void get_page(struct page *page)
469{
ddc58f27 470 page = compound_head(page);
91807063
AA
471 /*
472 * Getting a normal page or the head of a compound page
70b50f94 473 * requires to already have an elevated page->_count.
91807063 474 */
309381fe 475 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
476 atomic_inc(&page->_count);
477}
478
b49af68f
CL
479static inline struct page *virt_to_head_page(const void *x)
480{
481 struct page *page = virt_to_page(x);
ccaafd7f 482
1d798ca3 483 return compound_head(page);
b49af68f
CL
484}
485
7835e98b
NP
486/*
487 * Setup the page count before being freed into the page allocator for
488 * the first time (boot or memory hotplug)
489 */
490static inline void init_page_count(struct page *page)
491{
492 atomic_set(&page->_count, 1);
493}
494
ddc58f27
KS
495void __put_page(struct page *page);
496
497static inline void put_page(struct page *page)
498{
499 page = compound_head(page);
500 if (put_page_testzero(page))
501 __put_page(page);
502}
503
1d7ea732 504void put_pages_list(struct list_head *pages);
1da177e4 505
8dfcc9ba 506void split_page(struct page *page, unsigned int order);
748446bb 507int split_free_page(struct page *page);
8dfcc9ba 508
33f2ef89
AW
509/*
510 * Compound pages have a destructor function. Provide a
511 * prototype for that function and accessor functions.
f1e61557 512 * These are _only_ valid on the head of a compound page.
33f2ef89 513 */
f1e61557
KS
514typedef void compound_page_dtor(struct page *);
515
516/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
517enum compound_dtor_id {
518 NULL_COMPOUND_DTOR,
519 COMPOUND_PAGE_DTOR,
520#ifdef CONFIG_HUGETLB_PAGE
521 HUGETLB_PAGE_DTOR,
9a982250
KS
522#endif
523#ifdef CONFIG_TRANSPARENT_HUGEPAGE
524 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
525#endif
526 NR_COMPOUND_DTORS,
527};
528extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
529
530static inline void set_compound_page_dtor(struct page *page,
f1e61557 531 enum compound_dtor_id compound_dtor)
33f2ef89 532{
f1e61557
KS
533 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
534 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
535}
536
537static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
538{
f1e61557
KS
539 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
540 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
541}
542
d00181b9 543static inline unsigned int compound_order(struct page *page)
d85f3385 544{
6d777953 545 if (!PageHead(page))
d85f3385 546 return 0;
e4b294c2 547 return page[1].compound_order;
d85f3385
CL
548}
549
f1e61557 550static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 551{
e4b294c2 552 page[1].compound_order = order;
d85f3385
CL
553}
554
9a982250
KS
555void free_compound_page(struct page *page);
556
3dece370 557#ifdef CONFIG_MMU
14fd403f
AA
558/*
559 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
560 * servicing faults for write access. In the normal case, do always want
561 * pte_mkwrite. But get_user_pages can cause write faults for mappings
562 * that do not have writing enabled, when used by access_process_vm.
563 */
564static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
565{
566 if (likely(vma->vm_flags & VM_WRITE))
567 pte = pte_mkwrite(pte);
568 return pte;
569}
8c6e50b0
KS
570
571void do_set_pte(struct vm_area_struct *vma, unsigned long address,
572 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 573#endif
14fd403f 574
1da177e4
LT
575/*
576 * Multiple processes may "see" the same page. E.g. for untouched
577 * mappings of /dev/null, all processes see the same page full of
578 * zeroes, and text pages of executables and shared libraries have
579 * only one copy in memory, at most, normally.
580 *
581 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
582 * page_count() == 0 means the page is free. page->lru is then used for
583 * freelist management in the buddy allocator.
da6052f7 584 * page_count() > 0 means the page has been allocated.
1da177e4 585 *
da6052f7
NP
586 * Pages are allocated by the slab allocator in order to provide memory
587 * to kmalloc and kmem_cache_alloc. In this case, the management of the
588 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
589 * unless a particular usage is carefully commented. (the responsibility of
590 * freeing the kmalloc memory is the caller's, of course).
1da177e4 591 *
da6052f7
NP
592 * A page may be used by anyone else who does a __get_free_page().
593 * In this case, page_count still tracks the references, and should only
594 * be used through the normal accessor functions. The top bits of page->flags
595 * and page->virtual store page management information, but all other fields
596 * are unused and could be used privately, carefully. The management of this
597 * page is the responsibility of the one who allocated it, and those who have
598 * subsequently been given references to it.
599 *
600 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
601 * managed by the Linux memory manager: I/O, buffers, swapping etc.
602 * The following discussion applies only to them.
603 *
da6052f7
NP
604 * A pagecache page contains an opaque `private' member, which belongs to the
605 * page's address_space. Usually, this is the address of a circular list of
606 * the page's disk buffers. PG_private must be set to tell the VM to call
607 * into the filesystem to release these pages.
1da177e4 608 *
da6052f7
NP
609 * A page may belong to an inode's memory mapping. In this case, page->mapping
610 * is the pointer to the inode, and page->index is the file offset of the page,
611 * in units of PAGE_CACHE_SIZE.
1da177e4 612 *
da6052f7
NP
613 * If pagecache pages are not associated with an inode, they are said to be
614 * anonymous pages. These may become associated with the swapcache, and in that
615 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 616 *
da6052f7
NP
617 * In either case (swapcache or inode backed), the pagecache itself holds one
618 * reference to the page. Setting PG_private should also increment the
619 * refcount. The each user mapping also has a reference to the page.
1da177e4 620 *
da6052f7
NP
621 * The pagecache pages are stored in a per-mapping radix tree, which is
622 * rooted at mapping->page_tree, and indexed by offset.
623 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
624 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 625 *
da6052f7 626 * All pagecache pages may be subject to I/O:
1da177e4
LT
627 * - inode pages may need to be read from disk,
628 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
629 * to be written back to the inode on disk,
630 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
631 * modified may need to be swapped out to swap space and (later) to be read
632 * back into memory.
1da177e4
LT
633 */
634
635/*
636 * The zone field is never updated after free_area_init_core()
637 * sets it, so none of the operations on it need to be atomic.
1da177e4 638 */
348f8b6c 639
90572890 640/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 641#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
642#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
643#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 644#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 645
348f8b6c 646/*
25985edc 647 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
648 * sections we define the shift as 0; that plus a 0 mask ensures
649 * the compiler will optimise away reference to them.
650 */
d41dee36
AW
651#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
652#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
653#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 654#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 655
bce54bbf
WD
656/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
657#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 658#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
659#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
660 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 661#else
89689ae7 662#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
663#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
664 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
665#endif
666
bd8029b6 667#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 668
9223b419
CL
669#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
670#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
671#endif
672
d41dee36
AW
673#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
674#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
675#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 676#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 677#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 678
33dd4e0e 679static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 680{
348f8b6c 681 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 682}
1da177e4 683
260ae3f7
DW
684#ifdef CONFIG_ZONE_DEVICE
685static inline bool is_zone_device_page(const struct page *page)
686{
687 return page_zonenum(page) == ZONE_DEVICE;
688}
689#else
690static inline bool is_zone_device_page(const struct page *page)
691{
692 return false;
693}
694#endif
695
9127ab4f
CS
696#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
697#define SECTION_IN_PAGE_FLAGS
698#endif
699
89689ae7 700/*
7a8010cd
VB
701 * The identification function is mainly used by the buddy allocator for
702 * determining if two pages could be buddies. We are not really identifying
703 * the zone since we could be using the section number id if we do not have
704 * node id available in page flags.
705 * We only guarantee that it will return the same value for two combinable
706 * pages in a zone.
89689ae7 707 */
cb2b95e1
AW
708static inline int page_zone_id(struct page *page)
709{
89689ae7 710 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
711}
712
25ba77c1 713static inline int zone_to_nid(struct zone *zone)
89fa3024 714{
d5f541ed
CL
715#ifdef CONFIG_NUMA
716 return zone->node;
717#else
718 return 0;
719#endif
89fa3024
CL
720}
721
89689ae7 722#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 723extern int page_to_nid(const struct page *page);
89689ae7 724#else
33dd4e0e 725static inline int page_to_nid(const struct page *page)
d41dee36 726{
89689ae7 727 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 728}
89689ae7
CL
729#endif
730
57e0a030 731#ifdef CONFIG_NUMA_BALANCING
90572890 732static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 733{
90572890 734 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
735}
736
90572890 737static inline int cpupid_to_pid(int cpupid)
57e0a030 738{
90572890 739 return cpupid & LAST__PID_MASK;
57e0a030 740}
b795854b 741
90572890 742static inline int cpupid_to_cpu(int cpupid)
b795854b 743{
90572890 744 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
745}
746
90572890 747static inline int cpupid_to_nid(int cpupid)
b795854b 748{
90572890 749 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
750}
751
90572890 752static inline bool cpupid_pid_unset(int cpupid)
57e0a030 753{
90572890 754 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
755}
756
90572890 757static inline bool cpupid_cpu_unset(int cpupid)
b795854b 758{
90572890 759 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
760}
761
8c8a743c
PZ
762static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
763{
764 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
765}
766
767#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
768#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
769static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 770{
1ae71d03 771 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 772}
90572890
PZ
773
774static inline int page_cpupid_last(struct page *page)
775{
776 return page->_last_cpupid;
777}
778static inline void page_cpupid_reset_last(struct page *page)
b795854b 779{
1ae71d03 780 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
781}
782#else
90572890 783static inline int page_cpupid_last(struct page *page)
75980e97 784{
90572890 785 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
786}
787
90572890 788extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 789
90572890 790static inline void page_cpupid_reset_last(struct page *page)
75980e97 791{
90572890 792 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 793
90572890
PZ
794 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
795 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 796}
90572890
PZ
797#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
798#else /* !CONFIG_NUMA_BALANCING */
799static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 800{
90572890 801 return page_to_nid(page); /* XXX */
57e0a030
MG
802}
803
90572890 804static inline int page_cpupid_last(struct page *page)
57e0a030 805{
90572890 806 return page_to_nid(page); /* XXX */
57e0a030
MG
807}
808
90572890 809static inline int cpupid_to_nid(int cpupid)
b795854b
MG
810{
811 return -1;
812}
813
90572890 814static inline int cpupid_to_pid(int cpupid)
b795854b
MG
815{
816 return -1;
817}
818
90572890 819static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
820{
821 return -1;
822}
823
90572890
PZ
824static inline int cpu_pid_to_cpupid(int nid, int pid)
825{
826 return -1;
827}
828
829static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
830{
831 return 1;
832}
833
90572890 834static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
835{
836}
8c8a743c
PZ
837
838static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
839{
840 return false;
841}
90572890 842#endif /* CONFIG_NUMA_BALANCING */
57e0a030 843
33dd4e0e 844static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
845{
846 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
847}
848
9127ab4f 849#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
850static inline void set_page_section(struct page *page, unsigned long section)
851{
852 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
853 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
854}
855
aa462abe 856static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
857{
858 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
859}
308c05e3 860#endif
d41dee36 861
2f1b6248 862static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
863{
864 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
865 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
866}
2f1b6248 867
348f8b6c
DH
868static inline void set_page_node(struct page *page, unsigned long node)
869{
870 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
871 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 872}
89689ae7 873
2f1b6248 874static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 875 unsigned long node, unsigned long pfn)
1da177e4 876{
348f8b6c
DH
877 set_page_zone(page, zone);
878 set_page_node(page, node);
9127ab4f 879#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 880 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 881#endif
1da177e4
LT
882}
883
0610c25d
GT
884#ifdef CONFIG_MEMCG
885static inline struct mem_cgroup *page_memcg(struct page *page)
886{
887 return page->mem_cgroup;
888}
889
890static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
891{
892 page->mem_cgroup = memcg;
893}
894#else
895static inline struct mem_cgroup *page_memcg(struct page *page)
896{
897 return NULL;
898}
899
900static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
901{
902}
903#endif
904
f6ac2354
CL
905/*
906 * Some inline functions in vmstat.h depend on page_zone()
907 */
908#include <linux/vmstat.h>
909
33dd4e0e 910static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 911{
aa462abe 912 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
913}
914
915#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
916#define HASHED_PAGE_VIRTUAL
917#endif
918
919#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
920static inline void *page_address(const struct page *page)
921{
922 return page->virtual;
923}
924static inline void set_page_address(struct page *page, void *address)
925{
926 page->virtual = address;
927}
1da177e4
LT
928#define page_address_init() do { } while(0)
929#endif
930
931#if defined(HASHED_PAGE_VIRTUAL)
f9918794 932void *page_address(const struct page *page);
1da177e4
LT
933void set_page_address(struct page *page, void *virtual);
934void page_address_init(void);
935#endif
936
937#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
938#define page_address(page) lowmem_page_address(page)
939#define set_page_address(page, address) do { } while(0)
940#define page_address_init() do { } while(0)
941#endif
942
e39155ea
KS
943extern void *page_rmapping(struct page *page);
944extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 945extern struct address_space *page_mapping(struct page *page);
1da177e4 946
f981c595
MG
947extern struct address_space *__page_file_mapping(struct page *);
948
949static inline
950struct address_space *page_file_mapping(struct page *page)
951{
952 if (unlikely(PageSwapCache(page)))
953 return __page_file_mapping(page);
954
955 return page->mapping;
956}
957
1da177e4
LT
958/*
959 * Return the pagecache index of the passed page. Regular pagecache pages
960 * use ->index whereas swapcache pages use ->private
961 */
962static inline pgoff_t page_index(struct page *page)
963{
964 if (unlikely(PageSwapCache(page)))
4c21e2f2 965 return page_private(page);
1da177e4
LT
966 return page->index;
967}
968
f981c595
MG
969extern pgoff_t __page_file_index(struct page *page);
970
971/*
972 * Return the file index of the page. Regular pagecache pages use ->index
973 * whereas swapcache pages use swp_offset(->private)
974 */
975static inline pgoff_t page_file_index(struct page *page)
976{
977 if (unlikely(PageSwapCache(page)))
978 return __page_file_index(page);
979
980 return page->index;
981}
982
1da177e4
LT
983/*
984 * Return true if this page is mapped into pagetables.
e1534ae9 985 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 986 */
e1534ae9 987static inline bool page_mapped(struct page *page)
1da177e4 988{
e1534ae9
KS
989 int i;
990 if (likely(!PageCompound(page)))
991 return atomic_read(&page->_mapcount) >= 0;
992 page = compound_head(page);
993 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
994 return true;
995 for (i = 0; i < hpage_nr_pages(page); i++) {
996 if (atomic_read(&page[i]._mapcount) >= 0)
997 return true;
998 }
999 return false;
1da177e4
LT
1000}
1001
2f064f34
MH
1002/*
1003 * Return true only if the page has been allocated with
1004 * ALLOC_NO_WATERMARKS and the low watermark was not
1005 * met implying that the system is under some pressure.
1006 */
1007static inline bool page_is_pfmemalloc(struct page *page)
1008{
1009 /*
1010 * Page index cannot be this large so this must be
1011 * a pfmemalloc page.
1012 */
1013 return page->index == -1UL;
1014}
1015
1016/*
1017 * Only to be called by the page allocator on a freshly allocated
1018 * page.
1019 */
1020static inline void set_page_pfmemalloc(struct page *page)
1021{
1022 page->index = -1UL;
1023}
1024
1025static inline void clear_page_pfmemalloc(struct page *page)
1026{
1027 page->index = 0;
1028}
1029
1da177e4
LT
1030/*
1031 * Different kinds of faults, as returned by handle_mm_fault().
1032 * Used to decide whether a process gets delivered SIGBUS or
1033 * just gets major/minor fault counters bumped up.
1034 */
d0217ac0 1035
83c54070 1036#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1037
83c54070
NP
1038#define VM_FAULT_OOM 0x0001
1039#define VM_FAULT_SIGBUS 0x0002
1040#define VM_FAULT_MAJOR 0x0004
1041#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1042#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1043#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1044#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1045
83c54070
NP
1046#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1047#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1048#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1049#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1050
aa50d3a7
AK
1051#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1052
33692f27
LT
1053#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1054 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1055 VM_FAULT_FALLBACK)
aa50d3a7
AK
1056
1057/* Encode hstate index for a hwpoisoned large page */
1058#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1059#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1060
1c0fe6e3
NP
1061/*
1062 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1063 */
1064extern void pagefault_out_of_memory(void);
1065
1da177e4
LT
1066#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1067
ddd588b5 1068/*
7bf02ea2 1069 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1070 * various contexts.
1071 */
4b59e6c4 1072#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1073
7bf02ea2
DR
1074extern void show_free_areas(unsigned int flags);
1075extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1076
1da177e4 1077int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1078#ifdef CONFIG_SHMEM
1079bool shmem_mapping(struct address_space *mapping);
1080#else
1081static inline bool shmem_mapping(struct address_space *mapping)
1082{
1083 return false;
1084}
1085#endif
1da177e4 1086
e8edc6e0 1087extern int can_do_mlock(void);
1da177e4
LT
1088extern int user_shm_lock(size_t, struct user_struct *);
1089extern void user_shm_unlock(size_t, struct user_struct *);
1090
1091/*
1092 * Parameter block passed down to zap_pte_range in exceptional cases.
1093 */
1094struct zap_details {
1da177e4
LT
1095 struct address_space *check_mapping; /* Check page->mapping if set */
1096 pgoff_t first_index; /* Lowest page->index to unmap */
1097 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1098};
1099
7e675137
NP
1100struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1101 pte_t pte);
1102
c627f9cc
JS
1103int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1104 unsigned long size);
14f5ff5d 1105void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1106 unsigned long size, struct zap_details *);
4f74d2c8
LT
1107void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1108 unsigned long start, unsigned long end);
e6473092
MM
1109
1110/**
1111 * mm_walk - callbacks for walk_page_range
e6473092 1112 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1113 * this handler is required to be able to handle
1114 * pmd_trans_huge() pmds. They may simply choose to
1115 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1116 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1117 * @pte_hole: if set, called for each hole at all levels
5dc37642 1118 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1119 * @test_walk: caller specific callback function to determine whether
1120 * we walk over the current vma or not. A positive returned
1121 * value means "do page table walk over the current vma,"
1122 * and a negative one means "abort current page table walk
1123 * right now." 0 means "skip the current vma."
1124 * @mm: mm_struct representing the target process of page table walk
1125 * @vma: vma currently walked (NULL if walking outside vmas)
1126 * @private: private data for callbacks' usage
e6473092 1127 *
fafaa426 1128 * (see the comment on walk_page_range() for more details)
e6473092
MM
1129 */
1130struct mm_walk {
0f157a5b
AM
1131 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1132 unsigned long next, struct mm_walk *walk);
1133 int (*pte_entry)(pte_t *pte, unsigned long addr,
1134 unsigned long next, struct mm_walk *walk);
1135 int (*pte_hole)(unsigned long addr, unsigned long next,
1136 struct mm_walk *walk);
1137 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1138 unsigned long addr, unsigned long next,
1139 struct mm_walk *walk);
fafaa426
NH
1140 int (*test_walk)(unsigned long addr, unsigned long next,
1141 struct mm_walk *walk);
2165009b 1142 struct mm_struct *mm;
fafaa426 1143 struct vm_area_struct *vma;
2165009b 1144 void *private;
e6473092
MM
1145};
1146
2165009b
DH
1147int walk_page_range(unsigned long addr, unsigned long end,
1148 struct mm_walk *walk);
900fc5f1 1149int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1150void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1151 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1152int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1153 struct vm_area_struct *vma);
1da177e4
LT
1154void unmap_mapping_range(struct address_space *mapping,
1155 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1156int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1157 unsigned long *pfn);
d87fe660 1158int follow_phys(struct vm_area_struct *vma, unsigned long address,
1159 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1160int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1161 void *buf, int len, int write);
1da177e4
LT
1162
1163static inline void unmap_shared_mapping_range(struct address_space *mapping,
1164 loff_t const holebegin, loff_t const holelen)
1165{
1166 unmap_mapping_range(mapping, holebegin, holelen, 0);
1167}
1168
7caef267 1169extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1170extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1171void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1172void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1173int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1174int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1175int invalidate_inode_page(struct page *page);
1176
7ee1dd3f 1177#ifdef CONFIG_MMU
83c54070 1178extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1179 unsigned long address, unsigned int flags);
5c723ba5
PZ
1180extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1182#else
1183static inline int handle_mm_fault(struct mm_struct *mm,
1184 struct vm_area_struct *vma, unsigned long address,
d06063cc 1185 unsigned int flags)
7ee1dd3f
DH
1186{
1187 /* should never happen if there's no MMU */
1188 BUG();
1189 return VM_FAULT_SIGBUS;
1190}
5c723ba5
PZ
1191static inline int fixup_user_fault(struct task_struct *tsk,
1192 struct mm_struct *mm, unsigned long address,
1193 unsigned int fault_flags)
1194{
1195 /* should never happen if there's no MMU */
1196 BUG();
1197 return -EFAULT;
1198}
7ee1dd3f 1199#endif
f33ea7f4 1200
1da177e4 1201extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1202extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1203 void *buf, int len, int write);
1da177e4 1204
28a35716
ML
1205long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1206 unsigned long start, unsigned long nr_pages,
1207 unsigned int foll_flags, struct page **pages,
1208 struct vm_area_struct **vmas, int *nonblocking);
1209long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1210 unsigned long start, unsigned long nr_pages,
1211 int write, int force, struct page **pages,
1212 struct vm_area_struct **vmas);
f0818f47
AA
1213long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1214 unsigned long start, unsigned long nr_pages,
1215 int write, int force, struct page **pages,
1216 int *locked);
0fd71a56
AA
1217long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1218 unsigned long start, unsigned long nr_pages,
1219 int write, int force, struct page **pages,
1220 unsigned int gup_flags);
f0818f47
AA
1221long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1222 unsigned long start, unsigned long nr_pages,
1223 int write, int force, struct page **pages);
d2bf6be8
NP
1224int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1225 struct page **pages);
8025e5dd
JK
1226
1227/* Container for pinned pfns / pages */
1228struct frame_vector {
1229 unsigned int nr_allocated; /* Number of frames we have space for */
1230 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1231 bool got_ref; /* Did we pin pages by getting page ref? */
1232 bool is_pfns; /* Does array contain pages or pfns? */
1233 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1234 * pfns_vector_pages() or pfns_vector_pfns()
1235 * for access */
1236};
1237
1238struct frame_vector *frame_vector_create(unsigned int nr_frames);
1239void frame_vector_destroy(struct frame_vector *vec);
1240int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1241 bool write, bool force, struct frame_vector *vec);
1242void put_vaddr_frames(struct frame_vector *vec);
1243int frame_vector_to_pages(struct frame_vector *vec);
1244void frame_vector_to_pfns(struct frame_vector *vec);
1245
1246static inline unsigned int frame_vector_count(struct frame_vector *vec)
1247{
1248 return vec->nr_frames;
1249}
1250
1251static inline struct page **frame_vector_pages(struct frame_vector *vec)
1252{
1253 if (vec->is_pfns) {
1254 int err = frame_vector_to_pages(vec);
1255
1256 if (err)
1257 return ERR_PTR(err);
1258 }
1259 return (struct page **)(vec->ptrs);
1260}
1261
1262static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1263{
1264 if (!vec->is_pfns)
1265 frame_vector_to_pfns(vec);
1266 return (unsigned long *)(vec->ptrs);
1267}
1268
18022c5d
MG
1269struct kvec;
1270int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1271 struct page **pages);
1272int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1273struct page *get_dump_page(unsigned long addr);
1da177e4 1274
cf9a2ae8 1275extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1276extern void do_invalidatepage(struct page *page, unsigned int offset,
1277 unsigned int length);
cf9a2ae8 1278
1da177e4 1279int __set_page_dirty_nobuffers(struct page *page);
76719325 1280int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1281int redirty_page_for_writepage(struct writeback_control *wbc,
1282 struct page *page);
c4843a75
GT
1283void account_page_dirtied(struct page *page, struct address_space *mapping,
1284 struct mem_cgroup *memcg);
1285void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1286 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1287int set_page_dirty(struct page *page);
1da177e4 1288int set_page_dirty_lock(struct page *page);
11f81bec 1289void cancel_dirty_page(struct page *page);
1da177e4 1290int clear_page_dirty_for_io(struct page *page);
b9ea2515 1291
a9090253 1292int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1293
39aa3cb3 1294/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1295static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1296{
1297 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1298}
1299
b5330628
ON
1300static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1301{
1302 return !vma->vm_ops;
1303}
1304
a09a79f6
MP
1305static inline int stack_guard_page_start(struct vm_area_struct *vma,
1306 unsigned long addr)
1307{
1308 return (vma->vm_flags & VM_GROWSDOWN) &&
1309 (vma->vm_start == addr) &&
1310 !vma_growsdown(vma->vm_prev, addr);
1311}
1312
1313/* Is the vma a continuation of the stack vma below it? */
1314static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1315{
1316 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1317}
1318
1319static inline int stack_guard_page_end(struct vm_area_struct *vma,
1320 unsigned long addr)
1321{
1322 return (vma->vm_flags & VM_GROWSUP) &&
1323 (vma->vm_end == addr) &&
1324 !vma_growsup(vma->vm_next, addr);
1325}
1326
58cb6548
ON
1327extern struct task_struct *task_of_stack(struct task_struct *task,
1328 struct vm_area_struct *vma, bool in_group);
b7643757 1329
b6a2fea3
OW
1330extern unsigned long move_page_tables(struct vm_area_struct *vma,
1331 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1332 unsigned long new_addr, unsigned long len,
1333 bool need_rmap_locks);
7da4d641
PZ
1334extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1335 unsigned long end, pgprot_t newprot,
4b10e7d5 1336 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1337extern int mprotect_fixup(struct vm_area_struct *vma,
1338 struct vm_area_struct **pprev, unsigned long start,
1339 unsigned long end, unsigned long newflags);
1da177e4 1340
465a454f
PZ
1341/*
1342 * doesn't attempt to fault and will return short.
1343 */
1344int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1345 struct page **pages);
d559db08
KH
1346/*
1347 * per-process(per-mm_struct) statistics.
1348 */
d559db08
KH
1349static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1350{
69c97823
KK
1351 long val = atomic_long_read(&mm->rss_stat.count[member]);
1352
1353#ifdef SPLIT_RSS_COUNTING
1354 /*
1355 * counter is updated in asynchronous manner and may go to minus.
1356 * But it's never be expected number for users.
1357 */
1358 if (val < 0)
1359 val = 0;
172703b0 1360#endif
69c97823
KK
1361 return (unsigned long)val;
1362}
d559db08
KH
1363
1364static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1365{
172703b0 1366 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1367}
1368
1369static inline void inc_mm_counter(struct mm_struct *mm, int member)
1370{
172703b0 1371 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1372}
1373
1374static inline void dec_mm_counter(struct mm_struct *mm, int member)
1375{
172703b0 1376 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1377}
1378
eca56ff9
JM
1379/* Optimized variant when page is already known not to be PageAnon */
1380static inline int mm_counter_file(struct page *page)
1381{
1382 if (PageSwapBacked(page))
1383 return MM_SHMEMPAGES;
1384 return MM_FILEPAGES;
1385}
1386
1387static inline int mm_counter(struct page *page)
1388{
1389 if (PageAnon(page))
1390 return MM_ANONPAGES;
1391 return mm_counter_file(page);
1392}
1393
d559db08
KH
1394static inline unsigned long get_mm_rss(struct mm_struct *mm)
1395{
1396 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1397 get_mm_counter(mm, MM_ANONPAGES) +
1398 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1399}
1400
1401static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1402{
1403 return max(mm->hiwater_rss, get_mm_rss(mm));
1404}
1405
1406static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1407{
1408 return max(mm->hiwater_vm, mm->total_vm);
1409}
1410
1411static inline void update_hiwater_rss(struct mm_struct *mm)
1412{
1413 unsigned long _rss = get_mm_rss(mm);
1414
1415 if ((mm)->hiwater_rss < _rss)
1416 (mm)->hiwater_rss = _rss;
1417}
1418
1419static inline void update_hiwater_vm(struct mm_struct *mm)
1420{
1421 if (mm->hiwater_vm < mm->total_vm)
1422 mm->hiwater_vm = mm->total_vm;
1423}
1424
695f0559
PC
1425static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1426{
1427 mm->hiwater_rss = get_mm_rss(mm);
1428}
1429
d559db08
KH
1430static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1431 struct mm_struct *mm)
1432{
1433 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1434
1435 if (*maxrss < hiwater_rss)
1436 *maxrss = hiwater_rss;
1437}
1438
53bddb4e 1439#if defined(SPLIT_RSS_COUNTING)
05af2e10 1440void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1441#else
05af2e10 1442static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1443{
1444}
1445#endif
465a454f 1446
4e950f6f 1447int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1448
25ca1d6c
NK
1449extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1450 spinlock_t **ptl);
1451static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1452 spinlock_t **ptl)
1453{
1454 pte_t *ptep;
1455 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1456 return ptep;
1457}
c9cfcddf 1458
5f22df00
NP
1459#ifdef __PAGETABLE_PUD_FOLDED
1460static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1461 unsigned long address)
1462{
1463 return 0;
1464}
1465#else
1bb3630e 1466int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1467#endif
1468
2d2f5119 1469#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1470static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1471 unsigned long address)
1472{
1473 return 0;
1474}
dc6c9a35 1475
2d2f5119
KS
1476static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1477
dc6c9a35
KS
1478static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1479{
1480 return 0;
1481}
1482
1483static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1484static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1485
5f22df00 1486#else
1bb3630e 1487int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1488
2d2f5119
KS
1489static inline void mm_nr_pmds_init(struct mm_struct *mm)
1490{
1491 atomic_long_set(&mm->nr_pmds, 0);
1492}
1493
dc6c9a35
KS
1494static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1495{
1496 return atomic_long_read(&mm->nr_pmds);
1497}
1498
1499static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1500{
1501 atomic_long_inc(&mm->nr_pmds);
1502}
1503
1504static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1505{
1506 atomic_long_dec(&mm->nr_pmds);
1507}
5f22df00
NP
1508#endif
1509
8ac1f832
AA
1510int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1511 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1512int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1513
1da177e4
LT
1514/*
1515 * The following ifdef needed to get the 4level-fixup.h header to work.
1516 * Remove it when 4level-fixup.h has been removed.
1517 */
1bb3630e 1518#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1519static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1520{
1bb3630e
HD
1521 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1522 NULL: pud_offset(pgd, address);
1da177e4
LT
1523}
1524
1525static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1526{
1bb3630e
HD
1527 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1528 NULL: pmd_offset(pud, address);
1da177e4 1529}
1bb3630e
HD
1530#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1531
57c1ffce 1532#if USE_SPLIT_PTE_PTLOCKS
597d795a 1533#if ALLOC_SPLIT_PTLOCKS
b35f1819 1534void __init ptlock_cache_init(void);
539edb58
PZ
1535extern bool ptlock_alloc(struct page *page);
1536extern void ptlock_free(struct page *page);
1537
1538static inline spinlock_t *ptlock_ptr(struct page *page)
1539{
1540 return page->ptl;
1541}
597d795a 1542#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1543static inline void ptlock_cache_init(void)
1544{
1545}
1546
49076ec2
KS
1547static inline bool ptlock_alloc(struct page *page)
1548{
49076ec2
KS
1549 return true;
1550}
539edb58 1551
49076ec2
KS
1552static inline void ptlock_free(struct page *page)
1553{
49076ec2
KS
1554}
1555
1556static inline spinlock_t *ptlock_ptr(struct page *page)
1557{
539edb58 1558 return &page->ptl;
49076ec2 1559}
597d795a 1560#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1561
1562static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1563{
1564 return ptlock_ptr(pmd_page(*pmd));
1565}
1566
1567static inline bool ptlock_init(struct page *page)
1568{
1569 /*
1570 * prep_new_page() initialize page->private (and therefore page->ptl)
1571 * with 0. Make sure nobody took it in use in between.
1572 *
1573 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1574 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1575 */
309381fe 1576 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1577 if (!ptlock_alloc(page))
1578 return false;
1579 spin_lock_init(ptlock_ptr(page));
1580 return true;
1581}
1582
1583/* Reset page->mapping so free_pages_check won't complain. */
1584static inline void pte_lock_deinit(struct page *page)
1585{
1586 page->mapping = NULL;
1587 ptlock_free(page);
1588}
1589
57c1ffce 1590#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1591/*
1592 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1593 */
49076ec2
KS
1594static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1595{
1596 return &mm->page_table_lock;
1597}
b35f1819 1598static inline void ptlock_cache_init(void) {}
49076ec2
KS
1599static inline bool ptlock_init(struct page *page) { return true; }
1600static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1601#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1602
b35f1819
KS
1603static inline void pgtable_init(void)
1604{
1605 ptlock_cache_init();
1606 pgtable_cache_init();
1607}
1608
390f44e2 1609static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1610{
706874e9
VD
1611 if (!ptlock_init(page))
1612 return false;
2f569afd 1613 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1614 return true;
2f569afd
MS
1615}
1616
1617static inline void pgtable_page_dtor(struct page *page)
1618{
1619 pte_lock_deinit(page);
1620 dec_zone_page_state(page, NR_PAGETABLE);
1621}
1622
c74df32c
HD
1623#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1624({ \
4c21e2f2 1625 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1626 pte_t *__pte = pte_offset_map(pmd, address); \
1627 *(ptlp) = __ptl; \
1628 spin_lock(__ptl); \
1629 __pte; \
1630})
1631
1632#define pte_unmap_unlock(pte, ptl) do { \
1633 spin_unlock(ptl); \
1634 pte_unmap(pte); \
1635} while (0)
1636
8ac1f832
AA
1637#define pte_alloc_map(mm, vma, pmd, address) \
1638 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1639 pmd, address))? \
1640 NULL: pte_offset_map(pmd, address))
1bb3630e 1641
c74df32c 1642#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1643 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1644 pmd, address))? \
c74df32c
HD
1645 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1646
1bb3630e 1647#define pte_alloc_kernel(pmd, address) \
8ac1f832 1648 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1649 NULL: pte_offset_kernel(pmd, address))
1da177e4 1650
e009bb30
KS
1651#if USE_SPLIT_PMD_PTLOCKS
1652
634391ac
MS
1653static struct page *pmd_to_page(pmd_t *pmd)
1654{
1655 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1656 return virt_to_page((void *)((unsigned long) pmd & mask));
1657}
1658
e009bb30
KS
1659static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1660{
634391ac 1661 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1662}
1663
1664static inline bool pgtable_pmd_page_ctor(struct page *page)
1665{
e009bb30
KS
1666#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1667 page->pmd_huge_pte = NULL;
1668#endif
49076ec2 1669 return ptlock_init(page);
e009bb30
KS
1670}
1671
1672static inline void pgtable_pmd_page_dtor(struct page *page)
1673{
1674#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1675 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1676#endif
49076ec2 1677 ptlock_free(page);
e009bb30
KS
1678}
1679
634391ac 1680#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1681
1682#else
1683
9a86cb7b
KS
1684static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1685{
1686 return &mm->page_table_lock;
1687}
1688
e009bb30
KS
1689static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1690static inline void pgtable_pmd_page_dtor(struct page *page) {}
1691
c389a250 1692#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1693
e009bb30
KS
1694#endif
1695
9a86cb7b
KS
1696static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1697{
1698 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1699 spin_lock(ptl);
1700 return ptl;
1701}
1702
1da177e4 1703extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1704extern void free_area_init_node(int nid, unsigned long * zones_size,
1705 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1706extern void free_initmem(void);
1707
69afade7
JL
1708/*
1709 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1710 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1711 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1712 * Return pages freed into the buddy system.
1713 */
11199692 1714extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1715 int poison, char *s);
c3d5f5f0 1716
cfa11e08
JL
1717#ifdef CONFIG_HIGHMEM
1718/*
1719 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1720 * and totalram_pages.
1721 */
1722extern void free_highmem_page(struct page *page);
1723#endif
69afade7 1724
c3d5f5f0 1725extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1726extern void mem_init_print_info(const char *str);
69afade7 1727
92923ca3
NZ
1728extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1729
69afade7
JL
1730/* Free the reserved page into the buddy system, so it gets managed. */
1731static inline void __free_reserved_page(struct page *page)
1732{
1733 ClearPageReserved(page);
1734 init_page_count(page);
1735 __free_page(page);
1736}
1737
1738static inline void free_reserved_page(struct page *page)
1739{
1740 __free_reserved_page(page);
1741 adjust_managed_page_count(page, 1);
1742}
1743
1744static inline void mark_page_reserved(struct page *page)
1745{
1746 SetPageReserved(page);
1747 adjust_managed_page_count(page, -1);
1748}
1749
1750/*
1751 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1752 * The freed pages will be poisoned with pattern "poison" if it's within
1753 * range [0, UCHAR_MAX].
1754 * Return pages freed into the buddy system.
69afade7
JL
1755 */
1756static inline unsigned long free_initmem_default(int poison)
1757{
1758 extern char __init_begin[], __init_end[];
1759
11199692 1760 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1761 poison, "unused kernel");
1762}
1763
7ee3d4e8
JL
1764static inline unsigned long get_num_physpages(void)
1765{
1766 int nid;
1767 unsigned long phys_pages = 0;
1768
1769 for_each_online_node(nid)
1770 phys_pages += node_present_pages(nid);
1771
1772 return phys_pages;
1773}
1774
0ee332c1 1775#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1776/*
0ee332c1 1777 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1778 * zones, allocate the backing mem_map and account for memory holes in a more
1779 * architecture independent manner. This is a substitute for creating the
1780 * zone_sizes[] and zholes_size[] arrays and passing them to
1781 * free_area_init_node()
1782 *
1783 * An architecture is expected to register range of page frames backed by
0ee332c1 1784 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1785 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1786 * usage, an architecture is expected to do something like
1787 *
1788 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1789 * max_highmem_pfn};
1790 * for_each_valid_physical_page_range()
0ee332c1 1791 * memblock_add_node(base, size, nid)
c713216d
MG
1792 * free_area_init_nodes(max_zone_pfns);
1793 *
0ee332c1
TH
1794 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1795 * registered physical page range. Similarly
1796 * sparse_memory_present_with_active_regions() calls memory_present() for
1797 * each range when SPARSEMEM is enabled.
c713216d
MG
1798 *
1799 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1800 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1801 */
1802extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1803unsigned long node_map_pfn_alignment(void);
32996250
YL
1804unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1805 unsigned long end_pfn);
c713216d
MG
1806extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1807 unsigned long end_pfn);
1808extern void get_pfn_range_for_nid(unsigned int nid,
1809 unsigned long *start_pfn, unsigned long *end_pfn);
1810extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1811extern void free_bootmem_with_active_regions(int nid,
1812 unsigned long max_low_pfn);
1813extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1814
0ee332c1 1815#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1816
0ee332c1 1817#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1818 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1819static inline int __early_pfn_to_nid(unsigned long pfn,
1820 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1821{
1822 return 0;
1823}
1824#else
1825/* please see mm/page_alloc.c */
1826extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1827/* there is a per-arch backend function. */
8a942fde
MG
1828extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1829 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1830#endif
1831
0e0b864e 1832extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1833extern void memmap_init_zone(unsigned long, int, unsigned long,
1834 unsigned long, enum memmap_context);
bc75d33f 1835extern void setup_per_zone_wmarks(void);
1b79acc9 1836extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1837extern void mem_init(void);
8feae131 1838extern void __init mmap_init(void);
b2b755b5 1839extern void show_mem(unsigned int flags);
1da177e4
LT
1840extern void si_meminfo(struct sysinfo * val);
1841extern void si_meminfo_node(struct sysinfo *val, int nid);
1842
3ee9a4f0 1843extern __printf(3, 4)
d00181b9
KS
1844void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1845 const char *fmt, ...);
a238ab5b 1846
e7c8d5c9 1847extern void setup_per_cpu_pageset(void);
e7c8d5c9 1848
112067f0 1849extern void zone_pcp_update(struct zone *zone);
340175b7 1850extern void zone_pcp_reset(struct zone *zone);
112067f0 1851
75f7ad8e
PS
1852/* page_alloc.c */
1853extern int min_free_kbytes;
1854
8feae131 1855/* nommu.c */
33e5d769 1856extern atomic_long_t mmap_pages_allocated;
7e660872 1857extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1858
6b2dbba8 1859/* interval_tree.c */
6b2dbba8
ML
1860void vma_interval_tree_insert(struct vm_area_struct *node,
1861 struct rb_root *root);
9826a516
ML
1862void vma_interval_tree_insert_after(struct vm_area_struct *node,
1863 struct vm_area_struct *prev,
1864 struct rb_root *root);
6b2dbba8
ML
1865void vma_interval_tree_remove(struct vm_area_struct *node,
1866 struct rb_root *root);
1867struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1868 unsigned long start, unsigned long last);
1869struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1870 unsigned long start, unsigned long last);
1871
1872#define vma_interval_tree_foreach(vma, root, start, last) \
1873 for (vma = vma_interval_tree_iter_first(root, start, last); \
1874 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1875
bf181b9f
ML
1876void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1877 struct rb_root *root);
1878void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1879 struct rb_root *root);
1880struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1881 struct rb_root *root, unsigned long start, unsigned long last);
1882struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1883 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1884#ifdef CONFIG_DEBUG_VM_RB
1885void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1886#endif
bf181b9f
ML
1887
1888#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1889 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1890 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1891
1da177e4 1892/* mmap.c */
34b4e4aa 1893extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1894extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1895 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1896extern struct vm_area_struct *vma_merge(struct mm_struct *,
1897 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1898 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1899 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1900extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1901extern int split_vma(struct mm_struct *,
1902 struct vm_area_struct *, unsigned long addr, int new_below);
1903extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1904extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1905 struct rb_node **, struct rb_node *);
a8fb5618 1906extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1907extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1908 unsigned long addr, unsigned long len, pgoff_t pgoff,
1909 bool *need_rmap_locks);
1da177e4 1910extern void exit_mmap(struct mm_struct *);
925d1c40 1911
9c599024
CG
1912static inline int check_data_rlimit(unsigned long rlim,
1913 unsigned long new,
1914 unsigned long start,
1915 unsigned long end_data,
1916 unsigned long start_data)
1917{
1918 if (rlim < RLIM_INFINITY) {
1919 if (((new - start) + (end_data - start_data)) > rlim)
1920 return -ENOSPC;
1921 }
1922
1923 return 0;
1924}
1925
7906d00c
AA
1926extern int mm_take_all_locks(struct mm_struct *mm);
1927extern void mm_drop_all_locks(struct mm_struct *mm);
1928
38646013
JS
1929extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1930extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1931
84638335
KK
1932extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1933extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1934
3935ed6a
SS
1935extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1936 unsigned long addr, unsigned long len,
a62c34bd
AL
1937 unsigned long flags,
1938 const struct vm_special_mapping *spec);
1939/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1940extern int install_special_mapping(struct mm_struct *mm,
1941 unsigned long addr, unsigned long len,
1942 unsigned long flags, struct page **pages);
1da177e4
LT
1943
1944extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1945
0165ab44 1946extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1947 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1948extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1949 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1950 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1951extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1952
1fcfd8db
ON
1953static inline unsigned long
1954do_mmap_pgoff(struct file *file, unsigned long addr,
1955 unsigned long len, unsigned long prot, unsigned long flags,
1956 unsigned long pgoff, unsigned long *populate)
1957{
1958 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1959}
1960
bebeb3d6
ML
1961#ifdef CONFIG_MMU
1962extern int __mm_populate(unsigned long addr, unsigned long len,
1963 int ignore_errors);
1964static inline void mm_populate(unsigned long addr, unsigned long len)
1965{
1966 /* Ignore errors */
1967 (void) __mm_populate(addr, len, 1);
1968}
1969#else
1970static inline void mm_populate(unsigned long addr, unsigned long len) {}
1971#endif
1972
e4eb1ff6
LT
1973/* These take the mm semaphore themselves */
1974extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1975extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1976extern unsigned long vm_mmap(struct file *, unsigned long,
1977 unsigned long, unsigned long,
1978 unsigned long, unsigned long);
1da177e4 1979
db4fbfb9
ML
1980struct vm_unmapped_area_info {
1981#define VM_UNMAPPED_AREA_TOPDOWN 1
1982 unsigned long flags;
1983 unsigned long length;
1984 unsigned long low_limit;
1985 unsigned long high_limit;
1986 unsigned long align_mask;
1987 unsigned long align_offset;
1988};
1989
1990extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1991extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1992
1993/*
1994 * Search for an unmapped address range.
1995 *
1996 * We are looking for a range that:
1997 * - does not intersect with any VMA;
1998 * - is contained within the [low_limit, high_limit) interval;
1999 * - is at least the desired size.
2000 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2001 */
2002static inline unsigned long
2003vm_unmapped_area(struct vm_unmapped_area_info *info)
2004{
cdd7875e 2005 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2006 return unmapped_area_topdown(info);
cdd7875e
BP
2007 else
2008 return unmapped_area(info);
db4fbfb9
ML
2009}
2010
85821aab 2011/* truncate.c */
1da177e4 2012extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2013extern void truncate_inode_pages_range(struct address_space *,
2014 loff_t lstart, loff_t lend);
91b0abe3 2015extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2016
2017/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2018extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2019extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2020extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2021
2022/* mm/page-writeback.c */
2023int write_one_page(struct page *page, int wait);
1cf6e7d8 2024void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2025
2026/* readahead.c */
2027#define VM_MAX_READAHEAD 128 /* kbytes */
2028#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2029
1da177e4 2030int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2031 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2032
2033void page_cache_sync_readahead(struct address_space *mapping,
2034 struct file_ra_state *ra,
2035 struct file *filp,
2036 pgoff_t offset,
2037 unsigned long size);
2038
2039void page_cache_async_readahead(struct address_space *mapping,
2040 struct file_ra_state *ra,
2041 struct file *filp,
2042 struct page *pg,
2043 pgoff_t offset,
2044 unsigned long size);
2045
d05f3169 2046/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2047extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2048
2049/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2050extern int expand_downwards(struct vm_area_struct *vma,
2051 unsigned long address);
8ca3eb08 2052#if VM_GROWSUP
46dea3d0 2053extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2054#else
fee7e49d 2055 #define expand_upwards(vma, address) (0)
9ab88515 2056#endif
1da177e4
LT
2057
2058/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2059extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2060extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2061 struct vm_area_struct **pprev);
2062
2063/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2064 NULL if none. Assume start_addr < end_addr. */
2065static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2066{
2067 struct vm_area_struct * vma = find_vma(mm,start_addr);
2068
2069 if (vma && end_addr <= vma->vm_start)
2070 vma = NULL;
2071 return vma;
2072}
2073
2074static inline unsigned long vma_pages(struct vm_area_struct *vma)
2075{
2076 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2077}
2078
640708a2
PE
2079/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2080static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2081 unsigned long vm_start, unsigned long vm_end)
2082{
2083 struct vm_area_struct *vma = find_vma(mm, vm_start);
2084
2085 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2086 vma = NULL;
2087
2088 return vma;
2089}
2090
bad849b3 2091#ifdef CONFIG_MMU
804af2cf 2092pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2093void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2094#else
2095static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2096{
2097 return __pgprot(0);
2098}
64e45507
PF
2099static inline void vma_set_page_prot(struct vm_area_struct *vma)
2100{
2101 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2102}
bad849b3
DH
2103#endif
2104
5877231f 2105#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2106unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2107 unsigned long start, unsigned long end);
2108#endif
2109
deceb6cd 2110struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2111int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2112 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2113int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2114int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2115 unsigned long pfn);
423bad60 2116int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2117 pfn_t pfn);
b4cbb197
LT
2118int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2119
deceb6cd 2120
240aadee
ML
2121struct page *follow_page_mask(struct vm_area_struct *vma,
2122 unsigned long address, unsigned int foll_flags,
2123 unsigned int *page_mask);
2124
2125static inline struct page *follow_page(struct vm_area_struct *vma,
2126 unsigned long address, unsigned int foll_flags)
2127{
2128 unsigned int unused_page_mask;
2129 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2130}
2131
deceb6cd
HD
2132#define FOLL_WRITE 0x01 /* check pte is writable */
2133#define FOLL_TOUCH 0x02 /* mark page accessed */
2134#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2135#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2136#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2137#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2138 * and return without waiting upon it */
84d33df2 2139#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2140#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2141#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2142#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2143#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2144#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2145#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2146
2f569afd 2147typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2148 void *data);
2149extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2150 unsigned long size, pte_fn_t fn, void *data);
2151
1da177e4 2152
12d6f21e 2153#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2154extern bool _debug_pagealloc_enabled;
2155extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2156
2157static inline bool debug_pagealloc_enabled(void)
2158{
2159 return _debug_pagealloc_enabled;
2160}
2161
2162static inline void
2163kernel_map_pages(struct page *page, int numpages, int enable)
2164{
2165 if (!debug_pagealloc_enabled())
2166 return;
2167
2168 __kernel_map_pages(page, numpages, enable);
2169}
8a235efa
RW
2170#ifdef CONFIG_HIBERNATION
2171extern bool kernel_page_present(struct page *page);
2172#endif /* CONFIG_HIBERNATION */
12d6f21e 2173#else
1da177e4 2174static inline void
9858db50 2175kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2176#ifdef CONFIG_HIBERNATION
2177static inline bool kernel_page_present(struct page *page) { return true; }
2178#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2179#endif
2180
a6c19dfe 2181#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2182extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2183extern int in_gate_area_no_mm(unsigned long addr);
2184extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2185#else
a6c19dfe
AL
2186static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2187{
2188 return NULL;
2189}
2190static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2191static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2192{
2193 return 0;
2194}
1da177e4
LT
2195#endif /* __HAVE_ARCH_GATE_AREA */
2196
146732ce
JT
2197#ifdef CONFIG_SYSCTL
2198extern int sysctl_drop_caches;
8d65af78 2199int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2200 void __user *, size_t *, loff_t *);
146732ce
JT
2201#endif
2202
cb731d6c
VD
2203void drop_slab(void);
2204void drop_slab_node(int nid);
9d0243bc 2205
7a9166e3
LY
2206#ifndef CONFIG_MMU
2207#define randomize_va_space 0
2208#else
a62eaf15 2209extern int randomize_va_space;
7a9166e3 2210#endif
a62eaf15 2211
045e72ac 2212const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2213void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2214
9bdac914
YL
2215void sparse_mem_maps_populate_node(struct page **map_map,
2216 unsigned long pnum_begin,
2217 unsigned long pnum_end,
2218 unsigned long map_count,
2219 int nodeid);
2220
98f3cfc1 2221struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2222pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2223pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2224pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2225pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2226void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2227struct vmem_altmap;
2228void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2229 struct vmem_altmap *altmap);
2230static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2231{
2232 return __vmemmap_alloc_block_buf(size, node, NULL);
2233}
2234
8f6aac41 2235void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2236int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2237 int node);
2238int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2239void vmemmap_populate_print_last(void);
0197518c 2240#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2241void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2242#endif
46723bfa
YI
2243void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2244 unsigned long size);
6a46079c 2245
82ba011b
AK
2246enum mf_flags {
2247 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2248 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2249 MF_MUST_KILL = 1 << 2,
cf870c70 2250 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2251};
cd42f4a3 2252extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2253extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2254extern int unpoison_memory(unsigned long pfn);
ead07f6a 2255extern int get_hwpoison_page(struct page *page);
4e41a30c 2256#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2257extern int sysctl_memory_failure_early_kill;
2258extern int sysctl_memory_failure_recovery;
facb6011 2259extern void shake_page(struct page *p, int access);
293c07e3 2260extern atomic_long_t num_poisoned_pages;
facb6011 2261extern int soft_offline_page(struct page *page, int flags);
6a46079c 2262
cc637b17
XX
2263
2264/*
2265 * Error handlers for various types of pages.
2266 */
cc3e2af4 2267enum mf_result {
cc637b17
XX
2268 MF_IGNORED, /* Error: cannot be handled */
2269 MF_FAILED, /* Error: handling failed */
2270 MF_DELAYED, /* Will be handled later */
2271 MF_RECOVERED, /* Successfully recovered */
2272};
2273
2274enum mf_action_page_type {
2275 MF_MSG_KERNEL,
2276 MF_MSG_KERNEL_HIGH_ORDER,
2277 MF_MSG_SLAB,
2278 MF_MSG_DIFFERENT_COMPOUND,
2279 MF_MSG_POISONED_HUGE,
2280 MF_MSG_HUGE,
2281 MF_MSG_FREE_HUGE,
2282 MF_MSG_UNMAP_FAILED,
2283 MF_MSG_DIRTY_SWAPCACHE,
2284 MF_MSG_CLEAN_SWAPCACHE,
2285 MF_MSG_DIRTY_MLOCKED_LRU,
2286 MF_MSG_CLEAN_MLOCKED_LRU,
2287 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2288 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2289 MF_MSG_DIRTY_LRU,
2290 MF_MSG_CLEAN_LRU,
2291 MF_MSG_TRUNCATED_LRU,
2292 MF_MSG_BUDDY,
2293 MF_MSG_BUDDY_2ND,
2294 MF_MSG_UNKNOWN,
2295};
2296
47ad8475
AA
2297#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2298extern void clear_huge_page(struct page *page,
2299 unsigned long addr,
2300 unsigned int pages_per_huge_page);
2301extern void copy_user_huge_page(struct page *dst, struct page *src,
2302 unsigned long addr, struct vm_area_struct *vma,
2303 unsigned int pages_per_huge_page);
2304#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2305
e30825f1
JK
2306extern struct page_ext_operations debug_guardpage_ops;
2307extern struct page_ext_operations page_poisoning_ops;
2308
c0a32fc5
SG
2309#ifdef CONFIG_DEBUG_PAGEALLOC
2310extern unsigned int _debug_guardpage_minorder;
e30825f1 2311extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2312
2313static inline unsigned int debug_guardpage_minorder(void)
2314{
2315 return _debug_guardpage_minorder;
2316}
2317
e30825f1
JK
2318static inline bool debug_guardpage_enabled(void)
2319{
2320 return _debug_guardpage_enabled;
2321}
2322
c0a32fc5
SG
2323static inline bool page_is_guard(struct page *page)
2324{
e30825f1
JK
2325 struct page_ext *page_ext;
2326
2327 if (!debug_guardpage_enabled())
2328 return false;
2329
2330 page_ext = lookup_page_ext(page);
2331 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2332}
2333#else
2334static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2335static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2336static inline bool page_is_guard(struct page *page) { return false; }
2337#endif /* CONFIG_DEBUG_PAGEALLOC */
2338
f9872caf
CS
2339#if MAX_NUMNODES > 1
2340void __init setup_nr_node_ids(void);
2341#else
2342static inline void setup_nr_node_ids(void) {}
2343#endif
2344
1da177e4
LT
2345#endif /* __KERNEL__ */
2346#endif /* _LINUX_MM_H */