mm, page_alloc: remove unnecessary initialisation from __alloc_pages_nodemask()
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86
AM
128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0
NP
294struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
2e4cdab0 300 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 301 struct page *page; /* ->fault handlers should return a
83c54070 302 * page here, unless VM_FAULT_NOPAGE
d0217ac0 303 * is set (which is also implied by
83c54070 304 * VM_FAULT_ERROR).
d0217ac0 305 */
8c6e50b0
KS
306 /* for ->map_pages() only */
307 pgoff_t max_pgoff; /* map pages for offset from pgoff till
308 * max_pgoff inclusive */
309 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 310};
1da177e4
LT
311
312/*
313 * These are the virtual MM functions - opening of an area, closing and
314 * unmapping it (needed to keep files on disk up-to-date etc), pointer
315 * to the functions called when a no-page or a wp-page exception occurs.
316 */
317struct vm_operations_struct {
318 void (*open)(struct vm_area_struct * area);
319 void (*close)(struct vm_area_struct * area);
5477e70a 320 int (*mremap)(struct vm_area_struct * area);
d0217ac0 321 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
322 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
323 pmd_t *, unsigned int flags);
8c6e50b0 324 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
325
326 /* notification that a previously read-only page is about to become
327 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 328 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 329
dd906184
BH
330 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
331 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
332
28b2ee20
RR
333 /* called by access_process_vm when get_user_pages() fails, typically
334 * for use by special VMAs that can switch between memory and hardware
335 */
336 int (*access)(struct vm_area_struct *vma, unsigned long addr,
337 void *buf, int len, int write);
78d683e8
AL
338
339 /* Called by the /proc/PID/maps code to ask the vma whether it
340 * has a special name. Returning non-NULL will also cause this
341 * vma to be dumped unconditionally. */
342 const char *(*name)(struct vm_area_struct *vma);
343
1da177e4 344#ifdef CONFIG_NUMA
a6020ed7
LS
345 /*
346 * set_policy() op must add a reference to any non-NULL @new mempolicy
347 * to hold the policy upon return. Caller should pass NULL @new to
348 * remove a policy and fall back to surrounding context--i.e. do not
349 * install a MPOL_DEFAULT policy, nor the task or system default
350 * mempolicy.
351 */
1da177e4 352 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
353
354 /*
355 * get_policy() op must add reference [mpol_get()] to any policy at
356 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
357 * in mm/mempolicy.c will do this automatically.
358 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
359 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
360 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
361 * must return NULL--i.e., do not "fallback" to task or system default
362 * policy.
363 */
1da177e4
LT
364 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
365 unsigned long addr);
366#endif
667a0a06
DV
367 /*
368 * Called by vm_normal_page() for special PTEs to find the
369 * page for @addr. This is useful if the default behavior
370 * (using pte_page()) would not find the correct page.
371 */
372 struct page *(*find_special_page)(struct vm_area_struct *vma,
373 unsigned long addr);
1da177e4
LT
374};
375
376struct mmu_gather;
377struct inode;
378
349aef0b
AM
379#define page_private(page) ((page)->private)
380#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 381
5c7fb56e
DW
382#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
383static inline int pmd_devmap(pmd_t pmd)
384{
385 return 0;
386}
387#endif
388
1da177e4
LT
389/*
390 * FIXME: take this include out, include page-flags.h in
391 * files which need it (119 of them)
392 */
393#include <linux/page-flags.h>
71e3aac0 394#include <linux/huge_mm.h>
1da177e4
LT
395
396/*
397 * Methods to modify the page usage count.
398 *
399 * What counts for a page usage:
400 * - cache mapping (page->mapping)
401 * - private data (page->private)
402 * - page mapped in a task's page tables, each mapping
403 * is counted separately
404 *
405 * Also, many kernel routines increase the page count before a critical
406 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
407 */
408
409/*
da6052f7 410 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 411 */
7c8ee9a8
NP
412static inline int put_page_testzero(struct page *page)
413{
fe896d18
JK
414 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
415 return page_ref_dec_and_test(page);
7c8ee9a8 416}
1da177e4
LT
417
418/*
7c8ee9a8
NP
419 * Try to grab a ref unless the page has a refcount of zero, return false if
420 * that is the case.
8e0861fa
AK
421 * This can be called when MMU is off so it must not access
422 * any of the virtual mappings.
1da177e4 423 */
7c8ee9a8
NP
424static inline int get_page_unless_zero(struct page *page)
425{
fe896d18 426 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 427}
1da177e4 428
53df8fdc 429extern int page_is_ram(unsigned long pfn);
124fe20d
DW
430
431enum {
432 REGION_INTERSECTS,
433 REGION_DISJOINT,
434 REGION_MIXED,
435};
436
1c29f25b
TK
437int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
438 unsigned long desc);
53df8fdc 439
48667e7a 440/* Support for virtually mapped pages */
b3bdda02
CL
441struct page *vmalloc_to_page(const void *addr);
442unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 443
0738c4bb
PM
444/*
445 * Determine if an address is within the vmalloc range
446 *
447 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
448 * is no special casing required.
449 */
bb00a789 450static inline bool is_vmalloc_addr(const void *x)
9e2779fa 451{
0738c4bb 452#ifdef CONFIG_MMU
9e2779fa
CL
453 unsigned long addr = (unsigned long)x;
454
455 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 456#else
bb00a789 457 return false;
8ca3ed87 458#endif
0738c4bb 459}
81ac3ad9
KH
460#ifdef CONFIG_MMU
461extern int is_vmalloc_or_module_addr(const void *x);
462#else
934831d0 463static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
464{
465 return 0;
466}
467#endif
9e2779fa 468
39f1f78d
AV
469extern void kvfree(const void *addr);
470
53f9263b
KS
471static inline atomic_t *compound_mapcount_ptr(struct page *page)
472{
473 return &page[1].compound_mapcount;
474}
475
476static inline int compound_mapcount(struct page *page)
477{
478 if (!PageCompound(page))
479 return 0;
480 page = compound_head(page);
481 return atomic_read(compound_mapcount_ptr(page)) + 1;
482}
483
70b50f94
AA
484/*
485 * The atomic page->_mapcount, starts from -1: so that transitions
486 * both from it and to it can be tracked, using atomic_inc_and_test
487 * and atomic_add_negative(-1).
488 */
22b751c3 489static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
490{
491 atomic_set(&(page)->_mapcount, -1);
492}
493
b20ce5e0
KS
494int __page_mapcount(struct page *page);
495
70b50f94
AA
496static inline int page_mapcount(struct page *page)
497{
1d148e21 498 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 499
b20ce5e0
KS
500 if (unlikely(PageCompound(page)))
501 return __page_mapcount(page);
502 return atomic_read(&page->_mapcount) + 1;
503}
504
505#ifdef CONFIG_TRANSPARENT_HUGEPAGE
506int total_mapcount(struct page *page);
6d0a07ed 507int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
508#else
509static inline int total_mapcount(struct page *page)
510{
511 return page_mapcount(page);
70b50f94 512}
6d0a07ed
AA
513static inline int page_trans_huge_mapcount(struct page *page,
514 int *total_mapcount)
515{
516 int mapcount = page_mapcount(page);
517 if (total_mapcount)
518 *total_mapcount = mapcount;
519 return mapcount;
520}
b20ce5e0 521#endif
70b50f94 522
b49af68f
CL
523static inline struct page *virt_to_head_page(const void *x)
524{
525 struct page *page = virt_to_page(x);
ccaafd7f 526
1d798ca3 527 return compound_head(page);
b49af68f
CL
528}
529
ddc58f27
KS
530void __put_page(struct page *page);
531
1d7ea732 532void put_pages_list(struct list_head *pages);
1da177e4 533
8dfcc9ba 534void split_page(struct page *page, unsigned int order);
748446bb 535int split_free_page(struct page *page);
8dfcc9ba 536
33f2ef89
AW
537/*
538 * Compound pages have a destructor function. Provide a
539 * prototype for that function and accessor functions.
f1e61557 540 * These are _only_ valid on the head of a compound page.
33f2ef89 541 */
f1e61557
KS
542typedef void compound_page_dtor(struct page *);
543
544/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
545enum compound_dtor_id {
546 NULL_COMPOUND_DTOR,
547 COMPOUND_PAGE_DTOR,
548#ifdef CONFIG_HUGETLB_PAGE
549 HUGETLB_PAGE_DTOR,
9a982250
KS
550#endif
551#ifdef CONFIG_TRANSPARENT_HUGEPAGE
552 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
553#endif
554 NR_COMPOUND_DTORS,
555};
556extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
557
558static inline void set_compound_page_dtor(struct page *page,
f1e61557 559 enum compound_dtor_id compound_dtor)
33f2ef89 560{
f1e61557
KS
561 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
562 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
563}
564
565static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
566{
f1e61557
KS
567 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
568 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
569}
570
d00181b9 571static inline unsigned int compound_order(struct page *page)
d85f3385 572{
6d777953 573 if (!PageHead(page))
d85f3385 574 return 0;
e4b294c2 575 return page[1].compound_order;
d85f3385
CL
576}
577
f1e61557 578static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 579{
e4b294c2 580 page[1].compound_order = order;
d85f3385
CL
581}
582
9a982250
KS
583void free_compound_page(struct page *page);
584
3dece370 585#ifdef CONFIG_MMU
14fd403f
AA
586/*
587 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
588 * servicing faults for write access. In the normal case, do always want
589 * pte_mkwrite. But get_user_pages can cause write faults for mappings
590 * that do not have writing enabled, when used by access_process_vm.
591 */
592static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
593{
594 if (likely(vma->vm_flags & VM_WRITE))
595 pte = pte_mkwrite(pte);
596 return pte;
597}
8c6e50b0
KS
598
599void do_set_pte(struct vm_area_struct *vma, unsigned long address,
600 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 601#endif
14fd403f 602
1da177e4
LT
603/*
604 * Multiple processes may "see" the same page. E.g. for untouched
605 * mappings of /dev/null, all processes see the same page full of
606 * zeroes, and text pages of executables and shared libraries have
607 * only one copy in memory, at most, normally.
608 *
609 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
610 * page_count() == 0 means the page is free. page->lru is then used for
611 * freelist management in the buddy allocator.
da6052f7 612 * page_count() > 0 means the page has been allocated.
1da177e4 613 *
da6052f7
NP
614 * Pages are allocated by the slab allocator in order to provide memory
615 * to kmalloc and kmem_cache_alloc. In this case, the management of the
616 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
617 * unless a particular usage is carefully commented. (the responsibility of
618 * freeing the kmalloc memory is the caller's, of course).
1da177e4 619 *
da6052f7
NP
620 * A page may be used by anyone else who does a __get_free_page().
621 * In this case, page_count still tracks the references, and should only
622 * be used through the normal accessor functions. The top bits of page->flags
623 * and page->virtual store page management information, but all other fields
624 * are unused and could be used privately, carefully. The management of this
625 * page is the responsibility of the one who allocated it, and those who have
626 * subsequently been given references to it.
627 *
628 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
629 * managed by the Linux memory manager: I/O, buffers, swapping etc.
630 * The following discussion applies only to them.
631 *
da6052f7
NP
632 * A pagecache page contains an opaque `private' member, which belongs to the
633 * page's address_space. Usually, this is the address of a circular list of
634 * the page's disk buffers. PG_private must be set to tell the VM to call
635 * into the filesystem to release these pages.
1da177e4 636 *
da6052f7
NP
637 * A page may belong to an inode's memory mapping. In this case, page->mapping
638 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 639 * in units of PAGE_SIZE.
1da177e4 640 *
da6052f7
NP
641 * If pagecache pages are not associated with an inode, they are said to be
642 * anonymous pages. These may become associated with the swapcache, and in that
643 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 644 *
da6052f7
NP
645 * In either case (swapcache or inode backed), the pagecache itself holds one
646 * reference to the page. Setting PG_private should also increment the
647 * refcount. The each user mapping also has a reference to the page.
1da177e4 648 *
da6052f7
NP
649 * The pagecache pages are stored in a per-mapping radix tree, which is
650 * rooted at mapping->page_tree, and indexed by offset.
651 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
652 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 653 *
da6052f7 654 * All pagecache pages may be subject to I/O:
1da177e4
LT
655 * - inode pages may need to be read from disk,
656 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
657 * to be written back to the inode on disk,
658 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
659 * modified may need to be swapped out to swap space and (later) to be read
660 * back into memory.
1da177e4
LT
661 */
662
663/*
664 * The zone field is never updated after free_area_init_core()
665 * sets it, so none of the operations on it need to be atomic.
1da177e4 666 */
348f8b6c 667
90572890 668/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 669#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
670#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
671#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 672#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 673
348f8b6c 674/*
25985edc 675 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
676 * sections we define the shift as 0; that plus a 0 mask ensures
677 * the compiler will optimise away reference to them.
678 */
d41dee36
AW
679#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
680#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
681#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 682#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 683
bce54bbf
WD
684/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
685#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 686#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
687#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
688 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 689#else
89689ae7 690#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
691#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
692 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
693#endif
694
bd8029b6 695#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 696
9223b419
CL
697#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
699#endif
700
d41dee36
AW
701#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
702#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
703#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 704#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 705#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 706
33dd4e0e 707static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 708{
348f8b6c 709 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 710}
1da177e4 711
260ae3f7 712#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
713void get_zone_device_page(struct page *page);
714void put_zone_device_page(struct page *page);
260ae3f7
DW
715static inline bool is_zone_device_page(const struct page *page)
716{
717 return page_zonenum(page) == ZONE_DEVICE;
718}
719#else
3565fce3
DW
720static inline void get_zone_device_page(struct page *page)
721{
722}
723static inline void put_zone_device_page(struct page *page)
724{
725}
260ae3f7
DW
726static inline bool is_zone_device_page(const struct page *page)
727{
728 return false;
729}
730#endif
731
3565fce3
DW
732static inline void get_page(struct page *page)
733{
734 page = compound_head(page);
735 /*
736 * Getting a normal page or the head of a compound page
0139aa7b 737 * requires to already have an elevated page->_refcount.
3565fce3 738 */
fe896d18
JK
739 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
740 page_ref_inc(page);
3565fce3
DW
741
742 if (unlikely(is_zone_device_page(page)))
743 get_zone_device_page(page);
744}
745
746static inline void put_page(struct page *page)
747{
748 page = compound_head(page);
749
750 if (put_page_testzero(page))
751 __put_page(page);
752
753 if (unlikely(is_zone_device_page(page)))
754 put_zone_device_page(page);
755}
756
9127ab4f
CS
757#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
758#define SECTION_IN_PAGE_FLAGS
759#endif
760
89689ae7 761/*
7a8010cd
VB
762 * The identification function is mainly used by the buddy allocator for
763 * determining if two pages could be buddies. We are not really identifying
764 * the zone since we could be using the section number id if we do not have
765 * node id available in page flags.
766 * We only guarantee that it will return the same value for two combinable
767 * pages in a zone.
89689ae7 768 */
cb2b95e1
AW
769static inline int page_zone_id(struct page *page)
770{
89689ae7 771 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
772}
773
25ba77c1 774static inline int zone_to_nid(struct zone *zone)
89fa3024 775{
d5f541ed
CL
776#ifdef CONFIG_NUMA
777 return zone->node;
778#else
779 return 0;
780#endif
89fa3024
CL
781}
782
89689ae7 783#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 784extern int page_to_nid(const struct page *page);
89689ae7 785#else
33dd4e0e 786static inline int page_to_nid(const struct page *page)
d41dee36 787{
89689ae7 788 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 789}
89689ae7
CL
790#endif
791
57e0a030 792#ifdef CONFIG_NUMA_BALANCING
90572890 793static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 794{
90572890 795 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
796}
797
90572890 798static inline int cpupid_to_pid(int cpupid)
57e0a030 799{
90572890 800 return cpupid & LAST__PID_MASK;
57e0a030 801}
b795854b 802
90572890 803static inline int cpupid_to_cpu(int cpupid)
b795854b 804{
90572890 805 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
806}
807
90572890 808static inline int cpupid_to_nid(int cpupid)
b795854b 809{
90572890 810 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
811}
812
90572890 813static inline bool cpupid_pid_unset(int cpupid)
57e0a030 814{
90572890 815 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
816}
817
90572890 818static inline bool cpupid_cpu_unset(int cpupid)
b795854b 819{
90572890 820 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
821}
822
8c8a743c
PZ
823static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
824{
825 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
826}
827
828#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
829#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
830static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 831{
1ae71d03 832 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 833}
90572890
PZ
834
835static inline int page_cpupid_last(struct page *page)
836{
837 return page->_last_cpupid;
838}
839static inline void page_cpupid_reset_last(struct page *page)
b795854b 840{
1ae71d03 841 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
842}
843#else
90572890 844static inline int page_cpupid_last(struct page *page)
75980e97 845{
90572890 846 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
847}
848
90572890 849extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 850
90572890 851static inline void page_cpupid_reset_last(struct page *page)
75980e97 852{
90572890 853 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 854
90572890
PZ
855 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
856 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 857}
90572890
PZ
858#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
859#else /* !CONFIG_NUMA_BALANCING */
860static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 861{
90572890 862 return page_to_nid(page); /* XXX */
57e0a030
MG
863}
864
90572890 865static inline int page_cpupid_last(struct page *page)
57e0a030 866{
90572890 867 return page_to_nid(page); /* XXX */
57e0a030
MG
868}
869
90572890 870static inline int cpupid_to_nid(int cpupid)
b795854b
MG
871{
872 return -1;
873}
874
90572890 875static inline int cpupid_to_pid(int cpupid)
b795854b
MG
876{
877 return -1;
878}
879
90572890 880static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
881{
882 return -1;
883}
884
90572890
PZ
885static inline int cpu_pid_to_cpupid(int nid, int pid)
886{
887 return -1;
888}
889
890static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
891{
892 return 1;
893}
894
90572890 895static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
896{
897}
8c8a743c
PZ
898
899static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
900{
901 return false;
902}
90572890 903#endif /* CONFIG_NUMA_BALANCING */
57e0a030 904
33dd4e0e 905static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
906{
907 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
908}
909
9127ab4f 910#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
911static inline void set_page_section(struct page *page, unsigned long section)
912{
913 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
914 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
915}
916
aa462abe 917static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
918{
919 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
920}
308c05e3 921#endif
d41dee36 922
2f1b6248 923static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
924{
925 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
926 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
927}
2f1b6248 928
348f8b6c
DH
929static inline void set_page_node(struct page *page, unsigned long node)
930{
931 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
932 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 933}
89689ae7 934
2f1b6248 935static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 936 unsigned long node, unsigned long pfn)
1da177e4 937{
348f8b6c
DH
938 set_page_zone(page, zone);
939 set_page_node(page, node);
9127ab4f 940#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 941 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 942#endif
1da177e4
LT
943}
944
0610c25d
GT
945#ifdef CONFIG_MEMCG
946static inline struct mem_cgroup *page_memcg(struct page *page)
947{
948 return page->mem_cgroup;
949}
0610c25d
GT
950#else
951static inline struct mem_cgroup *page_memcg(struct page *page)
952{
953 return NULL;
954}
0610c25d
GT
955#endif
956
f6ac2354
CL
957/*
958 * Some inline functions in vmstat.h depend on page_zone()
959 */
960#include <linux/vmstat.h>
961
33dd4e0e 962static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 963{
1dff8083 964 return page_to_virt(page);
1da177e4
LT
965}
966
967#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
968#define HASHED_PAGE_VIRTUAL
969#endif
970
971#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
972static inline void *page_address(const struct page *page)
973{
974 return page->virtual;
975}
976static inline void set_page_address(struct page *page, void *address)
977{
978 page->virtual = address;
979}
1da177e4
LT
980#define page_address_init() do { } while(0)
981#endif
982
983#if defined(HASHED_PAGE_VIRTUAL)
f9918794 984void *page_address(const struct page *page);
1da177e4
LT
985void set_page_address(struct page *page, void *virtual);
986void page_address_init(void);
987#endif
988
989#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
990#define page_address(page) lowmem_page_address(page)
991#define set_page_address(page, address) do { } while(0)
992#define page_address_init() do { } while(0)
993#endif
994
e39155ea
KS
995extern void *page_rmapping(struct page *page);
996extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 997extern struct address_space *page_mapping(struct page *page);
1da177e4 998
f981c595
MG
999extern struct address_space *__page_file_mapping(struct page *);
1000
1001static inline
1002struct address_space *page_file_mapping(struct page *page)
1003{
1004 if (unlikely(PageSwapCache(page)))
1005 return __page_file_mapping(page);
1006
1007 return page->mapping;
1008}
1009
1da177e4
LT
1010/*
1011 * Return the pagecache index of the passed page. Regular pagecache pages
1012 * use ->index whereas swapcache pages use ->private
1013 */
1014static inline pgoff_t page_index(struct page *page)
1015{
1016 if (unlikely(PageSwapCache(page)))
4c21e2f2 1017 return page_private(page);
1da177e4
LT
1018 return page->index;
1019}
1020
f981c595
MG
1021extern pgoff_t __page_file_index(struct page *page);
1022
1023/*
1024 * Return the file index of the page. Regular pagecache pages use ->index
1025 * whereas swapcache pages use swp_offset(->private)
1026 */
1027static inline pgoff_t page_file_index(struct page *page)
1028{
1029 if (unlikely(PageSwapCache(page)))
1030 return __page_file_index(page);
1031
1032 return page->index;
1033}
1034
1aa8aea5 1035bool page_mapped(struct page *page);
1da177e4 1036
2f064f34
MH
1037/*
1038 * Return true only if the page has been allocated with
1039 * ALLOC_NO_WATERMARKS and the low watermark was not
1040 * met implying that the system is under some pressure.
1041 */
1042static inline bool page_is_pfmemalloc(struct page *page)
1043{
1044 /*
1045 * Page index cannot be this large so this must be
1046 * a pfmemalloc page.
1047 */
1048 return page->index == -1UL;
1049}
1050
1051/*
1052 * Only to be called by the page allocator on a freshly allocated
1053 * page.
1054 */
1055static inline void set_page_pfmemalloc(struct page *page)
1056{
1057 page->index = -1UL;
1058}
1059
1060static inline void clear_page_pfmemalloc(struct page *page)
1061{
1062 page->index = 0;
1063}
1064
1da177e4
LT
1065/*
1066 * Different kinds of faults, as returned by handle_mm_fault().
1067 * Used to decide whether a process gets delivered SIGBUS or
1068 * just gets major/minor fault counters bumped up.
1069 */
d0217ac0 1070
83c54070
NP
1071#define VM_FAULT_OOM 0x0001
1072#define VM_FAULT_SIGBUS 0x0002
1073#define VM_FAULT_MAJOR 0x0004
1074#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1075#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1076#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1077#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1078
83c54070
NP
1079#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1080#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1081#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1082#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1083
aa50d3a7
AK
1084#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1085
33692f27
LT
1086#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1087 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1088 VM_FAULT_FALLBACK)
aa50d3a7
AK
1089
1090/* Encode hstate index for a hwpoisoned large page */
1091#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1092#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1093
1c0fe6e3
NP
1094/*
1095 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1096 */
1097extern void pagefault_out_of_memory(void);
1098
1da177e4
LT
1099#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1100
ddd588b5 1101/*
7bf02ea2 1102 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1103 * various contexts.
1104 */
4b59e6c4 1105#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1106
7bf02ea2
DR
1107extern void show_free_areas(unsigned int flags);
1108extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1109
1da177e4 1110int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1111#ifdef CONFIG_SHMEM
1112bool shmem_mapping(struct address_space *mapping);
1113#else
1114static inline bool shmem_mapping(struct address_space *mapping)
1115{
1116 return false;
1117}
1118#endif
1da177e4 1119
7f43add4 1120extern bool can_do_mlock(void);
1da177e4
LT
1121extern int user_shm_lock(size_t, struct user_struct *);
1122extern void user_shm_unlock(size_t, struct user_struct *);
1123
1124/*
1125 * Parameter block passed down to zap_pte_range in exceptional cases.
1126 */
1127struct zap_details {
1da177e4
LT
1128 struct address_space *check_mapping; /* Check page->mapping if set */
1129 pgoff_t first_index; /* Lowest page->index to unmap */
1130 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1131 bool ignore_dirty; /* Ignore dirty pages */
1132 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1133};
1134
7e675137
NP
1135struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1136 pte_t pte);
28093f9f
GS
1137struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1138 pmd_t pmd);
7e675137 1139
c627f9cc
JS
1140int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1141 unsigned long size);
14f5ff5d 1142void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1143 unsigned long size, struct zap_details *);
4f74d2c8
LT
1144void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1145 unsigned long start, unsigned long end);
e6473092
MM
1146
1147/**
1148 * mm_walk - callbacks for walk_page_range
e6473092 1149 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1150 * this handler is required to be able to handle
1151 * pmd_trans_huge() pmds. They may simply choose to
1152 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1153 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1154 * @pte_hole: if set, called for each hole at all levels
5dc37642 1155 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1156 * @test_walk: caller specific callback function to determine whether
1157 * we walk over the current vma or not. A positive returned
1158 * value means "do page table walk over the current vma,"
1159 * and a negative one means "abort current page table walk
1160 * right now." 0 means "skip the current vma."
1161 * @mm: mm_struct representing the target process of page table walk
1162 * @vma: vma currently walked (NULL if walking outside vmas)
1163 * @private: private data for callbacks' usage
e6473092 1164 *
fafaa426 1165 * (see the comment on walk_page_range() for more details)
e6473092
MM
1166 */
1167struct mm_walk {
0f157a5b
AM
1168 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1169 unsigned long next, struct mm_walk *walk);
1170 int (*pte_entry)(pte_t *pte, unsigned long addr,
1171 unsigned long next, struct mm_walk *walk);
1172 int (*pte_hole)(unsigned long addr, unsigned long next,
1173 struct mm_walk *walk);
1174 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1175 unsigned long addr, unsigned long next,
1176 struct mm_walk *walk);
fafaa426
NH
1177 int (*test_walk)(unsigned long addr, unsigned long next,
1178 struct mm_walk *walk);
2165009b 1179 struct mm_struct *mm;
fafaa426 1180 struct vm_area_struct *vma;
2165009b 1181 void *private;
e6473092
MM
1182};
1183
2165009b
DH
1184int walk_page_range(unsigned long addr, unsigned long end,
1185 struct mm_walk *walk);
900fc5f1 1186int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1187void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1188 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1189int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1190 struct vm_area_struct *vma);
1da177e4
LT
1191void unmap_mapping_range(struct address_space *mapping,
1192 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1193int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1194 unsigned long *pfn);
d87fe660 1195int follow_phys(struct vm_area_struct *vma, unsigned long address,
1196 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1197int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1198 void *buf, int len, int write);
1da177e4
LT
1199
1200static inline void unmap_shared_mapping_range(struct address_space *mapping,
1201 loff_t const holebegin, loff_t const holelen)
1202{
1203 unmap_mapping_range(mapping, holebegin, holelen, 0);
1204}
1205
7caef267 1206extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1207extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1208void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1209void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1210int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1211int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1212int invalidate_inode_page(struct page *page);
1213
7ee1dd3f 1214#ifdef CONFIG_MMU
83c54070 1215extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1216 unsigned long address, unsigned int flags);
5c723ba5 1217extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1218 unsigned long address, unsigned int fault_flags,
1219 bool *unlocked);
7ee1dd3f
DH
1220#else
1221static inline int handle_mm_fault(struct mm_struct *mm,
1222 struct vm_area_struct *vma, unsigned long address,
d06063cc 1223 unsigned int flags)
7ee1dd3f
DH
1224{
1225 /* should never happen if there's no MMU */
1226 BUG();
1227 return VM_FAULT_SIGBUS;
1228}
5c723ba5
PZ
1229static inline int fixup_user_fault(struct task_struct *tsk,
1230 struct mm_struct *mm, unsigned long address,
4a9e1cda 1231 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1232{
1233 /* should never happen if there's no MMU */
1234 BUG();
1235 return -EFAULT;
1236}
7ee1dd3f 1237#endif
f33ea7f4 1238
1da177e4 1239extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1240extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1241 void *buf, int len, int write);
1da177e4 1242
28a35716
ML
1243long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1244 unsigned long start, unsigned long nr_pages,
1245 unsigned int foll_flags, struct page **pages,
1246 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1247long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1248 unsigned long start, unsigned long nr_pages,
1249 int write, int force, struct page **pages,
1250 struct vm_area_struct **vmas);
c12d2da5 1251long get_user_pages(unsigned long start, unsigned long nr_pages,
cde70140
DH
1252 int write, int force, struct page **pages,
1253 struct vm_area_struct **vmas);
c12d2da5 1254long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
cde70140 1255 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1256long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1257 unsigned long start, unsigned long nr_pages,
1258 int write, int force, struct page **pages,
1259 unsigned int gup_flags);
c12d2da5 1260long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
f0818f47 1261 int write, int force, struct page **pages);
d2bf6be8
NP
1262int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1263 struct page **pages);
8025e5dd
JK
1264
1265/* Container for pinned pfns / pages */
1266struct frame_vector {
1267 unsigned int nr_allocated; /* Number of frames we have space for */
1268 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1269 bool got_ref; /* Did we pin pages by getting page ref? */
1270 bool is_pfns; /* Does array contain pages or pfns? */
1271 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1272 * pfns_vector_pages() or pfns_vector_pfns()
1273 * for access */
1274};
1275
1276struct frame_vector *frame_vector_create(unsigned int nr_frames);
1277void frame_vector_destroy(struct frame_vector *vec);
1278int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1279 bool write, bool force, struct frame_vector *vec);
1280void put_vaddr_frames(struct frame_vector *vec);
1281int frame_vector_to_pages(struct frame_vector *vec);
1282void frame_vector_to_pfns(struct frame_vector *vec);
1283
1284static inline unsigned int frame_vector_count(struct frame_vector *vec)
1285{
1286 return vec->nr_frames;
1287}
1288
1289static inline struct page **frame_vector_pages(struct frame_vector *vec)
1290{
1291 if (vec->is_pfns) {
1292 int err = frame_vector_to_pages(vec);
1293
1294 if (err)
1295 return ERR_PTR(err);
1296 }
1297 return (struct page **)(vec->ptrs);
1298}
1299
1300static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1301{
1302 if (!vec->is_pfns)
1303 frame_vector_to_pfns(vec);
1304 return (unsigned long *)(vec->ptrs);
1305}
1306
18022c5d
MG
1307struct kvec;
1308int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1309 struct page **pages);
1310int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1311struct page *get_dump_page(unsigned long addr);
1da177e4 1312
cf9a2ae8 1313extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1314extern void do_invalidatepage(struct page *page, unsigned int offset,
1315 unsigned int length);
cf9a2ae8 1316
1da177e4 1317int __set_page_dirty_nobuffers(struct page *page);
76719325 1318int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1319int redirty_page_for_writepage(struct writeback_control *wbc,
1320 struct page *page);
62cccb8c 1321void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1322void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1323 struct bdi_writeback *wb);
b3c97528 1324int set_page_dirty(struct page *page);
1da177e4 1325int set_page_dirty_lock(struct page *page);
11f81bec 1326void cancel_dirty_page(struct page *page);
1da177e4 1327int clear_page_dirty_for_io(struct page *page);
b9ea2515 1328
a9090253 1329int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1330
39aa3cb3 1331/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1332static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1333{
1334 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1335}
1336
b5330628
ON
1337static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1338{
1339 return !vma->vm_ops;
1340}
1341
a09a79f6
MP
1342static inline int stack_guard_page_start(struct vm_area_struct *vma,
1343 unsigned long addr)
1344{
1345 return (vma->vm_flags & VM_GROWSDOWN) &&
1346 (vma->vm_start == addr) &&
1347 !vma_growsdown(vma->vm_prev, addr);
1348}
1349
1350/* Is the vma a continuation of the stack vma below it? */
1351static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1352{
1353 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1354}
1355
1356static inline int stack_guard_page_end(struct vm_area_struct *vma,
1357 unsigned long addr)
1358{
1359 return (vma->vm_flags & VM_GROWSUP) &&
1360 (vma->vm_end == addr) &&
1361 !vma_growsup(vma->vm_next, addr);
1362}
1363
65376df5 1364int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1365
b6a2fea3
OW
1366extern unsigned long move_page_tables(struct vm_area_struct *vma,
1367 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1368 unsigned long new_addr, unsigned long len,
1369 bool need_rmap_locks);
7da4d641
PZ
1370extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1371 unsigned long end, pgprot_t newprot,
4b10e7d5 1372 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1373extern int mprotect_fixup(struct vm_area_struct *vma,
1374 struct vm_area_struct **pprev, unsigned long start,
1375 unsigned long end, unsigned long newflags);
1da177e4 1376
465a454f
PZ
1377/*
1378 * doesn't attempt to fault and will return short.
1379 */
1380int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1381 struct page **pages);
d559db08
KH
1382/*
1383 * per-process(per-mm_struct) statistics.
1384 */
d559db08
KH
1385static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1386{
69c97823
KK
1387 long val = atomic_long_read(&mm->rss_stat.count[member]);
1388
1389#ifdef SPLIT_RSS_COUNTING
1390 /*
1391 * counter is updated in asynchronous manner and may go to minus.
1392 * But it's never be expected number for users.
1393 */
1394 if (val < 0)
1395 val = 0;
172703b0 1396#endif
69c97823
KK
1397 return (unsigned long)val;
1398}
d559db08
KH
1399
1400static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1401{
172703b0 1402 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1403}
1404
1405static inline void inc_mm_counter(struct mm_struct *mm, int member)
1406{
172703b0 1407 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1408}
1409
1410static inline void dec_mm_counter(struct mm_struct *mm, int member)
1411{
172703b0 1412 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1413}
1414
eca56ff9
JM
1415/* Optimized variant when page is already known not to be PageAnon */
1416static inline int mm_counter_file(struct page *page)
1417{
1418 if (PageSwapBacked(page))
1419 return MM_SHMEMPAGES;
1420 return MM_FILEPAGES;
1421}
1422
1423static inline int mm_counter(struct page *page)
1424{
1425 if (PageAnon(page))
1426 return MM_ANONPAGES;
1427 return mm_counter_file(page);
1428}
1429
d559db08
KH
1430static inline unsigned long get_mm_rss(struct mm_struct *mm)
1431{
1432 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1433 get_mm_counter(mm, MM_ANONPAGES) +
1434 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1435}
1436
1437static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1438{
1439 return max(mm->hiwater_rss, get_mm_rss(mm));
1440}
1441
1442static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1443{
1444 return max(mm->hiwater_vm, mm->total_vm);
1445}
1446
1447static inline void update_hiwater_rss(struct mm_struct *mm)
1448{
1449 unsigned long _rss = get_mm_rss(mm);
1450
1451 if ((mm)->hiwater_rss < _rss)
1452 (mm)->hiwater_rss = _rss;
1453}
1454
1455static inline void update_hiwater_vm(struct mm_struct *mm)
1456{
1457 if (mm->hiwater_vm < mm->total_vm)
1458 mm->hiwater_vm = mm->total_vm;
1459}
1460
695f0559
PC
1461static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1462{
1463 mm->hiwater_rss = get_mm_rss(mm);
1464}
1465
d559db08
KH
1466static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1467 struct mm_struct *mm)
1468{
1469 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1470
1471 if (*maxrss < hiwater_rss)
1472 *maxrss = hiwater_rss;
1473}
1474
53bddb4e 1475#if defined(SPLIT_RSS_COUNTING)
05af2e10 1476void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1477#else
05af2e10 1478static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1479{
1480}
1481#endif
465a454f 1482
3565fce3
DW
1483#ifndef __HAVE_ARCH_PTE_DEVMAP
1484static inline int pte_devmap(pte_t pte)
1485{
1486 return 0;
1487}
1488#endif
1489
4e950f6f 1490int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1491
25ca1d6c
NK
1492extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1493 spinlock_t **ptl);
1494static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1495 spinlock_t **ptl)
1496{
1497 pte_t *ptep;
1498 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1499 return ptep;
1500}
c9cfcddf 1501
5f22df00
NP
1502#ifdef __PAGETABLE_PUD_FOLDED
1503static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1504 unsigned long address)
1505{
1506 return 0;
1507}
1508#else
1bb3630e 1509int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1510#endif
1511
2d2f5119 1512#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1513static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1514 unsigned long address)
1515{
1516 return 0;
1517}
dc6c9a35 1518
2d2f5119
KS
1519static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1520
dc6c9a35
KS
1521static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1522{
1523 return 0;
1524}
1525
1526static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1527static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1528
5f22df00 1529#else
1bb3630e 1530int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1531
2d2f5119
KS
1532static inline void mm_nr_pmds_init(struct mm_struct *mm)
1533{
1534 atomic_long_set(&mm->nr_pmds, 0);
1535}
1536
dc6c9a35
KS
1537static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1538{
1539 return atomic_long_read(&mm->nr_pmds);
1540}
1541
1542static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1543{
1544 atomic_long_inc(&mm->nr_pmds);
1545}
1546
1547static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1548{
1549 atomic_long_dec(&mm->nr_pmds);
1550}
5f22df00
NP
1551#endif
1552
3ed3a4f0 1553int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1554int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1555
1da177e4
LT
1556/*
1557 * The following ifdef needed to get the 4level-fixup.h header to work.
1558 * Remove it when 4level-fixup.h has been removed.
1559 */
1bb3630e 1560#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1561static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1562{
1bb3630e
HD
1563 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1564 NULL: pud_offset(pgd, address);
1da177e4
LT
1565}
1566
1567static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1568{
1bb3630e
HD
1569 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1570 NULL: pmd_offset(pud, address);
1da177e4 1571}
1bb3630e
HD
1572#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1573
57c1ffce 1574#if USE_SPLIT_PTE_PTLOCKS
597d795a 1575#if ALLOC_SPLIT_PTLOCKS
b35f1819 1576void __init ptlock_cache_init(void);
539edb58
PZ
1577extern bool ptlock_alloc(struct page *page);
1578extern void ptlock_free(struct page *page);
1579
1580static inline spinlock_t *ptlock_ptr(struct page *page)
1581{
1582 return page->ptl;
1583}
597d795a 1584#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1585static inline void ptlock_cache_init(void)
1586{
1587}
1588
49076ec2
KS
1589static inline bool ptlock_alloc(struct page *page)
1590{
49076ec2
KS
1591 return true;
1592}
539edb58 1593
49076ec2
KS
1594static inline void ptlock_free(struct page *page)
1595{
49076ec2
KS
1596}
1597
1598static inline spinlock_t *ptlock_ptr(struct page *page)
1599{
539edb58 1600 return &page->ptl;
49076ec2 1601}
597d795a 1602#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1603
1604static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1605{
1606 return ptlock_ptr(pmd_page(*pmd));
1607}
1608
1609static inline bool ptlock_init(struct page *page)
1610{
1611 /*
1612 * prep_new_page() initialize page->private (and therefore page->ptl)
1613 * with 0. Make sure nobody took it in use in between.
1614 *
1615 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1616 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1617 */
309381fe 1618 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1619 if (!ptlock_alloc(page))
1620 return false;
1621 spin_lock_init(ptlock_ptr(page));
1622 return true;
1623}
1624
1625/* Reset page->mapping so free_pages_check won't complain. */
1626static inline void pte_lock_deinit(struct page *page)
1627{
1628 page->mapping = NULL;
1629 ptlock_free(page);
1630}
1631
57c1ffce 1632#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1633/*
1634 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1635 */
49076ec2
KS
1636static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1637{
1638 return &mm->page_table_lock;
1639}
b35f1819 1640static inline void ptlock_cache_init(void) {}
49076ec2
KS
1641static inline bool ptlock_init(struct page *page) { return true; }
1642static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1643#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1644
b35f1819
KS
1645static inline void pgtable_init(void)
1646{
1647 ptlock_cache_init();
1648 pgtable_cache_init();
1649}
1650
390f44e2 1651static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1652{
706874e9
VD
1653 if (!ptlock_init(page))
1654 return false;
2f569afd 1655 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1656 return true;
2f569afd
MS
1657}
1658
1659static inline void pgtable_page_dtor(struct page *page)
1660{
1661 pte_lock_deinit(page);
1662 dec_zone_page_state(page, NR_PAGETABLE);
1663}
1664
c74df32c
HD
1665#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1666({ \
4c21e2f2 1667 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1668 pte_t *__pte = pte_offset_map(pmd, address); \
1669 *(ptlp) = __ptl; \
1670 spin_lock(__ptl); \
1671 __pte; \
1672})
1673
1674#define pte_unmap_unlock(pte, ptl) do { \
1675 spin_unlock(ptl); \
1676 pte_unmap(pte); \
1677} while (0)
1678
3ed3a4f0
KS
1679#define pte_alloc(mm, pmd, address) \
1680 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1681
1682#define pte_alloc_map(mm, pmd, address) \
1683 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1684
c74df32c 1685#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1686 (pte_alloc(mm, pmd, address) ? \
1687 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1688
1bb3630e 1689#define pte_alloc_kernel(pmd, address) \
8ac1f832 1690 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1691 NULL: pte_offset_kernel(pmd, address))
1da177e4 1692
e009bb30
KS
1693#if USE_SPLIT_PMD_PTLOCKS
1694
634391ac
MS
1695static struct page *pmd_to_page(pmd_t *pmd)
1696{
1697 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1698 return virt_to_page((void *)((unsigned long) pmd & mask));
1699}
1700
e009bb30
KS
1701static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1702{
634391ac 1703 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1704}
1705
1706static inline bool pgtable_pmd_page_ctor(struct page *page)
1707{
e009bb30
KS
1708#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1709 page->pmd_huge_pte = NULL;
1710#endif
49076ec2 1711 return ptlock_init(page);
e009bb30
KS
1712}
1713
1714static inline void pgtable_pmd_page_dtor(struct page *page)
1715{
1716#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1717 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1718#endif
49076ec2 1719 ptlock_free(page);
e009bb30
KS
1720}
1721
634391ac 1722#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1723
1724#else
1725
9a86cb7b
KS
1726static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1727{
1728 return &mm->page_table_lock;
1729}
1730
e009bb30
KS
1731static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1732static inline void pgtable_pmd_page_dtor(struct page *page) {}
1733
c389a250 1734#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1735
e009bb30
KS
1736#endif
1737
9a86cb7b
KS
1738static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1739{
1740 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1741 spin_lock(ptl);
1742 return ptl;
1743}
1744
1da177e4 1745extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1746extern void free_area_init_node(int nid, unsigned long * zones_size,
1747 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1748extern void free_initmem(void);
1749
69afade7
JL
1750/*
1751 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1752 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1753 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1754 * Return pages freed into the buddy system.
1755 */
11199692 1756extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1757 int poison, char *s);
c3d5f5f0 1758
cfa11e08
JL
1759#ifdef CONFIG_HIGHMEM
1760/*
1761 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1762 * and totalram_pages.
1763 */
1764extern void free_highmem_page(struct page *page);
1765#endif
69afade7 1766
c3d5f5f0 1767extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1768extern void mem_init_print_info(const char *str);
69afade7 1769
92923ca3
NZ
1770extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1771
69afade7
JL
1772/* Free the reserved page into the buddy system, so it gets managed. */
1773static inline void __free_reserved_page(struct page *page)
1774{
1775 ClearPageReserved(page);
1776 init_page_count(page);
1777 __free_page(page);
1778}
1779
1780static inline void free_reserved_page(struct page *page)
1781{
1782 __free_reserved_page(page);
1783 adjust_managed_page_count(page, 1);
1784}
1785
1786static inline void mark_page_reserved(struct page *page)
1787{
1788 SetPageReserved(page);
1789 adjust_managed_page_count(page, -1);
1790}
1791
1792/*
1793 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1794 * The freed pages will be poisoned with pattern "poison" if it's within
1795 * range [0, UCHAR_MAX].
1796 * Return pages freed into the buddy system.
69afade7
JL
1797 */
1798static inline unsigned long free_initmem_default(int poison)
1799{
1800 extern char __init_begin[], __init_end[];
1801
11199692 1802 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1803 poison, "unused kernel");
1804}
1805
7ee3d4e8
JL
1806static inline unsigned long get_num_physpages(void)
1807{
1808 int nid;
1809 unsigned long phys_pages = 0;
1810
1811 for_each_online_node(nid)
1812 phys_pages += node_present_pages(nid);
1813
1814 return phys_pages;
1815}
1816
0ee332c1 1817#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1818/*
0ee332c1 1819 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1820 * zones, allocate the backing mem_map and account for memory holes in a more
1821 * architecture independent manner. This is a substitute for creating the
1822 * zone_sizes[] and zholes_size[] arrays and passing them to
1823 * free_area_init_node()
1824 *
1825 * An architecture is expected to register range of page frames backed by
0ee332c1 1826 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1827 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1828 * usage, an architecture is expected to do something like
1829 *
1830 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1831 * max_highmem_pfn};
1832 * for_each_valid_physical_page_range()
0ee332c1 1833 * memblock_add_node(base, size, nid)
c713216d
MG
1834 * free_area_init_nodes(max_zone_pfns);
1835 *
0ee332c1
TH
1836 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1837 * registered physical page range. Similarly
1838 * sparse_memory_present_with_active_regions() calls memory_present() for
1839 * each range when SPARSEMEM is enabled.
c713216d
MG
1840 *
1841 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1842 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1843 */
1844extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1845unsigned long node_map_pfn_alignment(void);
32996250
YL
1846unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1847 unsigned long end_pfn);
c713216d
MG
1848extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1849 unsigned long end_pfn);
1850extern void get_pfn_range_for_nid(unsigned int nid,
1851 unsigned long *start_pfn, unsigned long *end_pfn);
1852extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1853extern void free_bootmem_with_active_regions(int nid,
1854 unsigned long max_low_pfn);
1855extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1856
0ee332c1 1857#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1858
0ee332c1 1859#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1860 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1861static inline int __early_pfn_to_nid(unsigned long pfn,
1862 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1863{
1864 return 0;
1865}
1866#else
1867/* please see mm/page_alloc.c */
1868extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1869/* there is a per-arch backend function. */
8a942fde
MG
1870extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1871 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1872#endif
1873
0e0b864e 1874extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1875extern void memmap_init_zone(unsigned long, int, unsigned long,
1876 unsigned long, enum memmap_context);
bc75d33f 1877extern void setup_per_zone_wmarks(void);
1b79acc9 1878extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1879extern void mem_init(void);
8feae131 1880extern void __init mmap_init(void);
b2b755b5 1881extern void show_mem(unsigned int flags);
d02bd27b 1882extern long si_mem_available(void);
1da177e4
LT
1883extern void si_meminfo(struct sysinfo * val);
1884extern void si_meminfo_node(struct sysinfo *val, int nid);
1885
3ee9a4f0 1886extern __printf(3, 4)
d00181b9
KS
1887void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1888 const char *fmt, ...);
a238ab5b 1889
e7c8d5c9 1890extern void setup_per_cpu_pageset(void);
e7c8d5c9 1891
112067f0 1892extern void zone_pcp_update(struct zone *zone);
340175b7 1893extern void zone_pcp_reset(struct zone *zone);
112067f0 1894
75f7ad8e
PS
1895/* page_alloc.c */
1896extern int min_free_kbytes;
795ae7a0 1897extern int watermark_scale_factor;
75f7ad8e 1898
8feae131 1899/* nommu.c */
33e5d769 1900extern atomic_long_t mmap_pages_allocated;
7e660872 1901extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1902
6b2dbba8 1903/* interval_tree.c */
6b2dbba8
ML
1904void vma_interval_tree_insert(struct vm_area_struct *node,
1905 struct rb_root *root);
9826a516
ML
1906void vma_interval_tree_insert_after(struct vm_area_struct *node,
1907 struct vm_area_struct *prev,
1908 struct rb_root *root);
6b2dbba8
ML
1909void vma_interval_tree_remove(struct vm_area_struct *node,
1910 struct rb_root *root);
1911struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1912 unsigned long start, unsigned long last);
1913struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1914 unsigned long start, unsigned long last);
1915
1916#define vma_interval_tree_foreach(vma, root, start, last) \
1917 for (vma = vma_interval_tree_iter_first(root, start, last); \
1918 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1919
bf181b9f
ML
1920void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1921 struct rb_root *root);
1922void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1923 struct rb_root *root);
1924struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1925 struct rb_root *root, unsigned long start, unsigned long last);
1926struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1927 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1928#ifdef CONFIG_DEBUG_VM_RB
1929void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1930#endif
bf181b9f
ML
1931
1932#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1933 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1934 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1935
1da177e4 1936/* mmap.c */
34b4e4aa 1937extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1938extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1939 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1940extern struct vm_area_struct *vma_merge(struct mm_struct *,
1941 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1942 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1943 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1944extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1945extern int split_vma(struct mm_struct *,
1946 struct vm_area_struct *, unsigned long addr, int new_below);
1947extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1948extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1949 struct rb_node **, struct rb_node *);
a8fb5618 1950extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1951extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1952 unsigned long addr, unsigned long len, pgoff_t pgoff,
1953 bool *need_rmap_locks);
1da177e4 1954extern void exit_mmap(struct mm_struct *);
925d1c40 1955
9c599024
CG
1956static inline int check_data_rlimit(unsigned long rlim,
1957 unsigned long new,
1958 unsigned long start,
1959 unsigned long end_data,
1960 unsigned long start_data)
1961{
1962 if (rlim < RLIM_INFINITY) {
1963 if (((new - start) + (end_data - start_data)) > rlim)
1964 return -ENOSPC;
1965 }
1966
1967 return 0;
1968}
1969
7906d00c
AA
1970extern int mm_take_all_locks(struct mm_struct *mm);
1971extern void mm_drop_all_locks(struct mm_struct *mm);
1972
38646013
JS
1973extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1974extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1975
84638335
KK
1976extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1977extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1978
3935ed6a
SS
1979extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1980 unsigned long addr, unsigned long len,
a62c34bd
AL
1981 unsigned long flags,
1982 const struct vm_special_mapping *spec);
1983/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1984extern int install_special_mapping(struct mm_struct *mm,
1985 unsigned long addr, unsigned long len,
1986 unsigned long flags, struct page **pages);
1da177e4
LT
1987
1988extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1989
0165ab44 1990extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1991 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1992extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1993 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1994 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1995extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1996
1fcfd8db
ON
1997static inline unsigned long
1998do_mmap_pgoff(struct file *file, unsigned long addr,
1999 unsigned long len, unsigned long prot, unsigned long flags,
2000 unsigned long pgoff, unsigned long *populate)
2001{
2002 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2003}
2004
bebeb3d6
ML
2005#ifdef CONFIG_MMU
2006extern int __mm_populate(unsigned long addr, unsigned long len,
2007 int ignore_errors);
2008static inline void mm_populate(unsigned long addr, unsigned long len)
2009{
2010 /* Ignore errors */
2011 (void) __mm_populate(addr, len, 1);
2012}
2013#else
2014static inline void mm_populate(unsigned long addr, unsigned long len) {}
2015#endif
2016
e4eb1ff6
LT
2017/* These take the mm semaphore themselves */
2018extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 2019extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
2020extern unsigned long vm_mmap(struct file *, unsigned long,
2021 unsigned long, unsigned long,
2022 unsigned long, unsigned long);
1da177e4 2023
db4fbfb9
ML
2024struct vm_unmapped_area_info {
2025#define VM_UNMAPPED_AREA_TOPDOWN 1
2026 unsigned long flags;
2027 unsigned long length;
2028 unsigned long low_limit;
2029 unsigned long high_limit;
2030 unsigned long align_mask;
2031 unsigned long align_offset;
2032};
2033
2034extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2035extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2036
2037/*
2038 * Search for an unmapped address range.
2039 *
2040 * We are looking for a range that:
2041 * - does not intersect with any VMA;
2042 * - is contained within the [low_limit, high_limit) interval;
2043 * - is at least the desired size.
2044 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2045 */
2046static inline unsigned long
2047vm_unmapped_area(struct vm_unmapped_area_info *info)
2048{
cdd7875e 2049 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2050 return unmapped_area_topdown(info);
cdd7875e
BP
2051 else
2052 return unmapped_area(info);
db4fbfb9
ML
2053}
2054
85821aab 2055/* truncate.c */
1da177e4 2056extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2057extern void truncate_inode_pages_range(struct address_space *,
2058 loff_t lstart, loff_t lend);
91b0abe3 2059extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2060
2061/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2062extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2063extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2064extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2065
2066/* mm/page-writeback.c */
2067int write_one_page(struct page *page, int wait);
1cf6e7d8 2068void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2069
2070/* readahead.c */
2071#define VM_MAX_READAHEAD 128 /* kbytes */
2072#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2073
1da177e4 2074int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2075 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2076
2077void page_cache_sync_readahead(struct address_space *mapping,
2078 struct file_ra_state *ra,
2079 struct file *filp,
2080 pgoff_t offset,
2081 unsigned long size);
2082
2083void page_cache_async_readahead(struct address_space *mapping,
2084 struct file_ra_state *ra,
2085 struct file *filp,
2086 struct page *pg,
2087 pgoff_t offset,
2088 unsigned long size);
2089
d05f3169 2090/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2091extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2092
2093/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2094extern int expand_downwards(struct vm_area_struct *vma,
2095 unsigned long address);
8ca3eb08 2096#if VM_GROWSUP
46dea3d0 2097extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2098#else
fee7e49d 2099 #define expand_upwards(vma, address) (0)
9ab88515 2100#endif
1da177e4
LT
2101
2102/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2103extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2104extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2105 struct vm_area_struct **pprev);
2106
2107/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2108 NULL if none. Assume start_addr < end_addr. */
2109static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2110{
2111 struct vm_area_struct * vma = find_vma(mm,start_addr);
2112
2113 if (vma && end_addr <= vma->vm_start)
2114 vma = NULL;
2115 return vma;
2116}
2117
2118static inline unsigned long vma_pages(struct vm_area_struct *vma)
2119{
2120 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2121}
2122
640708a2
PE
2123/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2124static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2125 unsigned long vm_start, unsigned long vm_end)
2126{
2127 struct vm_area_struct *vma = find_vma(mm, vm_start);
2128
2129 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2130 vma = NULL;
2131
2132 return vma;
2133}
2134
bad849b3 2135#ifdef CONFIG_MMU
804af2cf 2136pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2137void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2138#else
2139static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2140{
2141 return __pgprot(0);
2142}
64e45507
PF
2143static inline void vma_set_page_prot(struct vm_area_struct *vma)
2144{
2145 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2146}
bad849b3
DH
2147#endif
2148
5877231f 2149#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2150unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2151 unsigned long start, unsigned long end);
2152#endif
2153
deceb6cd 2154struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2155int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2156 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2157int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2158int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2159 unsigned long pfn);
1745cbc5
AL
2160int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2161 unsigned long pfn, pgprot_t pgprot);
423bad60 2162int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2163 pfn_t pfn);
b4cbb197
LT
2164int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2165
deceb6cd 2166
240aadee
ML
2167struct page *follow_page_mask(struct vm_area_struct *vma,
2168 unsigned long address, unsigned int foll_flags,
2169 unsigned int *page_mask);
2170
2171static inline struct page *follow_page(struct vm_area_struct *vma,
2172 unsigned long address, unsigned int foll_flags)
2173{
2174 unsigned int unused_page_mask;
2175 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2176}
2177
deceb6cd
HD
2178#define FOLL_WRITE 0x01 /* check pte is writable */
2179#define FOLL_TOUCH 0x02 /* mark page accessed */
2180#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2181#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2182#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2183#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2184 * and return without waiting upon it */
84d33df2 2185#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2186#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2187#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2188#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2189#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2190#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2191#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2192#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
1da177e4 2193
2f569afd 2194typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2195 void *data);
2196extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2197 unsigned long size, pte_fn_t fn, void *data);
2198
1da177e4 2199
8823b1db
LA
2200#ifdef CONFIG_PAGE_POISONING
2201extern bool page_poisoning_enabled(void);
2202extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2203extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2204#else
2205static inline bool page_poisoning_enabled(void) { return false; }
2206static inline void kernel_poison_pages(struct page *page, int numpages,
2207 int enable) { }
1414c7f4 2208static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2209#endif
2210
12d6f21e 2211#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2212extern bool _debug_pagealloc_enabled;
2213extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2214
2215static inline bool debug_pagealloc_enabled(void)
2216{
2217 return _debug_pagealloc_enabled;
2218}
2219
2220static inline void
2221kernel_map_pages(struct page *page, int numpages, int enable)
2222{
2223 if (!debug_pagealloc_enabled())
2224 return;
2225
2226 __kernel_map_pages(page, numpages, enable);
2227}
8a235efa
RW
2228#ifdef CONFIG_HIBERNATION
2229extern bool kernel_page_present(struct page *page);
40b44137
JK
2230#endif /* CONFIG_HIBERNATION */
2231#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2232static inline void
9858db50 2233kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2234#ifdef CONFIG_HIBERNATION
2235static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2236#endif /* CONFIG_HIBERNATION */
2237static inline bool debug_pagealloc_enabled(void)
2238{
2239 return false;
2240}
2241#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2242
a6c19dfe 2243#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2244extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2245extern int in_gate_area_no_mm(unsigned long addr);
2246extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2247#else
a6c19dfe
AL
2248static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2249{
2250 return NULL;
2251}
2252static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2253static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2254{
2255 return 0;
2256}
1da177e4
LT
2257#endif /* __HAVE_ARCH_GATE_AREA */
2258
146732ce
JT
2259#ifdef CONFIG_SYSCTL
2260extern int sysctl_drop_caches;
8d65af78 2261int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2262 void __user *, size_t *, loff_t *);
146732ce
JT
2263#endif
2264
cb731d6c
VD
2265void drop_slab(void);
2266void drop_slab_node(int nid);
9d0243bc 2267
7a9166e3
LY
2268#ifndef CONFIG_MMU
2269#define randomize_va_space 0
2270#else
a62eaf15 2271extern int randomize_va_space;
7a9166e3 2272#endif
a62eaf15 2273
045e72ac 2274const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2275void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2276
9bdac914
YL
2277void sparse_mem_maps_populate_node(struct page **map_map,
2278 unsigned long pnum_begin,
2279 unsigned long pnum_end,
2280 unsigned long map_count,
2281 int nodeid);
2282
98f3cfc1 2283struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2284pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2285pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2286pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2287pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2288void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2289struct vmem_altmap;
2290void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2291 struct vmem_altmap *altmap);
2292static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2293{
2294 return __vmemmap_alloc_block_buf(size, node, NULL);
2295}
2296
8f6aac41 2297void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2298int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2299 int node);
2300int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2301void vmemmap_populate_print_last(void);
0197518c 2302#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2303void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2304#endif
46723bfa
YI
2305void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2306 unsigned long size);
6a46079c 2307
82ba011b
AK
2308enum mf_flags {
2309 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2310 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2311 MF_MUST_KILL = 1 << 2,
cf870c70 2312 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2313};
cd42f4a3 2314extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2315extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2316extern int unpoison_memory(unsigned long pfn);
ead07f6a 2317extern int get_hwpoison_page(struct page *page);
4e41a30c 2318#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2319extern int sysctl_memory_failure_early_kill;
2320extern int sysctl_memory_failure_recovery;
facb6011 2321extern void shake_page(struct page *p, int access);
293c07e3 2322extern atomic_long_t num_poisoned_pages;
facb6011 2323extern int soft_offline_page(struct page *page, int flags);
6a46079c 2324
cc637b17
XX
2325
2326/*
2327 * Error handlers for various types of pages.
2328 */
cc3e2af4 2329enum mf_result {
cc637b17
XX
2330 MF_IGNORED, /* Error: cannot be handled */
2331 MF_FAILED, /* Error: handling failed */
2332 MF_DELAYED, /* Will be handled later */
2333 MF_RECOVERED, /* Successfully recovered */
2334};
2335
2336enum mf_action_page_type {
2337 MF_MSG_KERNEL,
2338 MF_MSG_KERNEL_HIGH_ORDER,
2339 MF_MSG_SLAB,
2340 MF_MSG_DIFFERENT_COMPOUND,
2341 MF_MSG_POISONED_HUGE,
2342 MF_MSG_HUGE,
2343 MF_MSG_FREE_HUGE,
2344 MF_MSG_UNMAP_FAILED,
2345 MF_MSG_DIRTY_SWAPCACHE,
2346 MF_MSG_CLEAN_SWAPCACHE,
2347 MF_MSG_DIRTY_MLOCKED_LRU,
2348 MF_MSG_CLEAN_MLOCKED_LRU,
2349 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2350 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2351 MF_MSG_DIRTY_LRU,
2352 MF_MSG_CLEAN_LRU,
2353 MF_MSG_TRUNCATED_LRU,
2354 MF_MSG_BUDDY,
2355 MF_MSG_BUDDY_2ND,
2356 MF_MSG_UNKNOWN,
2357};
2358
47ad8475
AA
2359#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2360extern void clear_huge_page(struct page *page,
2361 unsigned long addr,
2362 unsigned int pages_per_huge_page);
2363extern void copy_user_huge_page(struct page *dst, struct page *src,
2364 unsigned long addr, struct vm_area_struct *vma,
2365 unsigned int pages_per_huge_page);
2366#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2367
e30825f1
JK
2368extern struct page_ext_operations debug_guardpage_ops;
2369extern struct page_ext_operations page_poisoning_ops;
2370
c0a32fc5
SG
2371#ifdef CONFIG_DEBUG_PAGEALLOC
2372extern unsigned int _debug_guardpage_minorder;
e30825f1 2373extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2374
2375static inline unsigned int debug_guardpage_minorder(void)
2376{
2377 return _debug_guardpage_minorder;
2378}
2379
e30825f1
JK
2380static inline bool debug_guardpage_enabled(void)
2381{
2382 return _debug_guardpage_enabled;
2383}
2384
c0a32fc5
SG
2385static inline bool page_is_guard(struct page *page)
2386{
e30825f1
JK
2387 struct page_ext *page_ext;
2388
2389 if (!debug_guardpage_enabled())
2390 return false;
2391
2392 page_ext = lookup_page_ext(page);
2393 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2394}
2395#else
2396static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2397static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2398static inline bool page_is_guard(struct page *page) { return false; }
2399#endif /* CONFIG_DEBUG_PAGEALLOC */
2400
f9872caf
CS
2401#if MAX_NUMNODES > 1
2402void __init setup_nr_node_ids(void);
2403#else
2404static inline void setup_nr_node_ids(void) {}
2405#endif
2406
1da177e4
LT
2407#endif /* __KERNEL__ */
2408#endif /* _LINUX_MM_H */