kasan/arm64: improve comments for KASAN_SHADOW_START/END
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
1da177e4 5#include <linux/errno.h>
309381fe 6#include <linux/mmdebug.h>
1da177e4 7#include <linux/gfp.h>
187f1882 8#include <linux/bug.h>
1da177e4
LT
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
83aeeada 12#include <linux/atomic.h>
9a11b49a 13#include <linux/debug_locks.h>
5b99cd0e 14#include <linux/mm_types.h>
9740ca4e 15#include <linux/mmap_lock.h>
08677214 16#include <linux/range.h>
c6f6b596 17#include <linux/pfn.h>
3565fce3 18#include <linux/percpu-refcount.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
41901567 24#include <linux/page-flags.h>
fe896d18 25#include <linux/page_ref.h>
3b3b1a29 26#include <linux/overflow.h>
b5420237 27#include <linux/sizes.h>
7969f226 28#include <linux/sched.h>
65fddcfc 29#include <linux/pgtable.h>
34303244 30#include <linux/kasan.h>
f25cbb7a 31#include <linux/memremap.h>
ef6a22b7 32#include <linux/slab.h>
1da177e4
LT
33
34struct mempolicy;
35struct anon_vma;
bf181b9f 36struct anon_vma_chain;
e8edc6e0 37struct user_struct;
bce617ed 38struct pt_regs;
1da177e4 39
5ef64cc8
LT
40extern int sysctl_page_lock_unfairness;
41
b7ec1bf3 42void mm_core_init(void);
597b7305
MH
43void init_mm_internals(void);
44
a9ee6cf5 45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
1da177e4 46extern unsigned long max_mapnr;
fccc9987
JL
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
54#endif
55
ca79b0c2
AK
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
1da177e4 77extern void * high_memory;
1da177e4 78extern int page_cluster;
ea0ffd0c 79extern const int page_cluster_max;
1da177e4
LT
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
d07e2259
DC
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
1da177e4 98#include <asm/page.h>
1da177e4 99#include <asm/processor.h>
1da177e4 100
79442ed1
TC
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
1dff8083
AB
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
568c5fe5
LA
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
593befa6
DD
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
a4a3ede2
PT
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
5470dea4
AD
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
a4a3ede2 129 */
5470dea4 130#if BITS_PER_LONG == 64
3770e52f 131/* This function must be updated when the size of struct page grows above 96
5470dea4
AD
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
c4ffefd1 134 * combine write statements if they are both assignments and can be reordered,
5470dea4
AD
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
3770e52f 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
5470dea4
AD
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
3770e52f 145 BUILD_BUG_ON(sizeof(struct page) > 96);
5470dea4
AD
146
147 switch (sizeof(struct page)) {
3770e52f
AB
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
5470dea4 154 case 80:
df561f66
GS
155 _pp[9] = 0;
156 fallthrough;
5470dea4 157 case 72:
df561f66
GS
158 _pp[8] = 0;
159 fallthrough;
5470dea4 160 case 64:
df561f66
GS
161 _pp[7] = 0;
162 fallthrough;
5470dea4
AD
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
a4a3ede2
PT
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
ea606cf5
AR
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
c9b1d098 198extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 199extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 200
49f0ce5f
JM
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
32927393
CH
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
56f3547b
FT
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
49f0ce5f 211
1cfcee72 212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1da177e4 213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
659508f9 214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
1cfcee72
MWO
215#else
216#define nth_page(page,n) ((page) + (n))
659508f9 217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
1cfcee72 218#endif
1da177e4 219
27ac792c
AR
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
335e52c2
DG
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
0fa73b86 226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
1061b0d2 227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
0fa73b86 228
f86196ea 229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
06d20bdb
MWO
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
f86196ea 234
5748fbc5
KW
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
1da177e4
LT
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
490fc053 247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
3928d4f5
LT
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
0d2ebf9c
SB
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
c43692e8 252
1da177e4 253#ifndef CONFIG_MMU
8feae131
DH
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
605d9288 261 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 262 * When changing, update also include/trace/events/mmflags.h
1da177e4 263 */
cc2383ec
KK
264#define VM_NONE 0x00000000
265
1da177e4
LT
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
7e2cff42 271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
b6b7a8fa 278#ifdef CONFIG_MMU
16ba6f81 279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
b6b7a8fa
DH
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
6aab341e 284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
16ba6f81 285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 286
1da177e4
LT
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
b6fb293f 300#define VM_SYNC 0x00800000 /* Synchronous page faults */
cc2383ec 301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
d2cd9ede 302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
0103bd16 303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 304
d9104d1c
CG
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
b379d790 311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 315
63c17fb8
DH
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
df3735c5 321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
54007f81 322#define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
63c17fb8
DH
323#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
324#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
325#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
326#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
df3735c5 327#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
54007f81 328#define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
63c17fb8
DH
329#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330
5212213a 331#ifdef CONFIG_ARCH_HAS_PKEYS
8f62c883
DH
332# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
2c9e0a6f 334# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
8f62c883
DH
335# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
336# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
2c9e0a6f
RP
337#ifdef CONFIG_PPC
338# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
339#else
340# define VM_PKEY_BIT4 0
8f62c883 341#endif
5212213a
RP
342#endif /* CONFIG_ARCH_HAS_PKEYS */
343
54007f81 344#ifdef CONFIG_X86_USER_SHADOW_STACK
0266e7c5 345/*
87f0df78
RE
346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347 * support core mm.
0266e7c5 348 *
87f0df78
RE
349 * These VMAs will get a single end guard page. This helps userspace protect
350 * itself from attacks. A single page is enough for current shadow stack archs
351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352 * for more details on the guard size.
0266e7c5
RE
353 */
354# define VM_SHADOW_STACK VM_HIGH_ARCH_5
54007f81
YY
355#else
356# define VM_SHADOW_STACK VM_NONE
357#endif
358
5212213a
RP
359#if defined(CONFIG_X86)
360# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
12564485
SA
361#elif defined(CONFIG_PPC)
362# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
cc2383ec
KK
363#elif defined(CONFIG_PARISC)
364# define VM_GROWSUP VM_ARCH_1
74a04967
KA
365#elif defined(CONFIG_SPARC64)
366# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
367# define VM_ARCH_CLEAR VM_SPARC_ADI
8ef8f360
DM
368#elif defined(CONFIG_ARM64)
369# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
370# define VM_ARCH_CLEAR VM_ARM64_BTI
cc2383ec
KK
371#elif !defined(CONFIG_MMU)
372# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
373#endif
374
9f341931
CM
375#if defined(CONFIG_ARM64_MTE)
376# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
377# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
378#else
379# define VM_MTE VM_NONE
380# define VM_MTE_ALLOWED VM_NONE
381#endif
382
cc2383ec
KK
383#ifndef VM_GROWSUP
384# define VM_GROWSUP VM_NONE
385#endif
386
7677f7fd 387#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
fb47a799 388# define VM_UFFD_MINOR_BIT 38
7677f7fd
AR
389# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
390#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391# define VM_UFFD_MINOR VM_NONE
392#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393
a8bef8ff 394/* Bits set in the VMA until the stack is in its final location */
f66066bc 395#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
a8bef8ff 396
c62da0c3
AK
397#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
398
399/* Common data flag combinations */
400#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
403 VM_MAYWRITE | VM_MAYEXEC)
404#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
405 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
406
407#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
408#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
409#endif
410
1da177e4
LT
411#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
412#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
413#endif
414
0266e7c5
RE
415#define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
416
1da177e4 417#ifdef CONFIG_STACK_GROWSUP
30bdbb78 418#define VM_STACK VM_GROWSUP
f66066bc 419#define VM_STACK_EARLY VM_GROWSDOWN
1da177e4 420#else
30bdbb78 421#define VM_STACK VM_GROWSDOWN
f66066bc 422#define VM_STACK_EARLY 0
1da177e4
LT
423#endif
424
30bdbb78
KK
425#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426
6cb4d9a2
AK
427/* VMA basic access permission flags */
428#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429
430
b291f000 431/*
78f11a25 432 * Special vmas that are non-mergable, non-mlock()able.
b291f000 433 */
9050d7eb 434#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 435
b4443772
AK
436/* This mask prevents VMA from being scanned with khugepaged */
437#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
438
a0715cc2
AT
439/* This mask defines which mm->def_flags a process can inherit its parent */
440#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
441
e430a95a
SB
442/* This mask represents all the VMA flag bits used by mlock */
443#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
de60f5f1 444
2c2d57b5
KA
445/* Arch-specific flags to clear when updating VM flags on protection change */
446#ifndef VM_ARCH_CLEAR
447# define VM_ARCH_CLEAR VM_NONE
448#endif
449#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
450
1da177e4
LT
451/*
452 * mapping from the currently active vm_flags protection bits (the
453 * low four bits) to a page protection mask..
454 */
1da177e4 455
dde16072
PX
456/*
457 * The default fault flags that should be used by most of the
458 * arch-specific page fault handlers.
459 */
460#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
c270a7ee
PX
461 FAULT_FLAG_KILLABLE | \
462 FAULT_FLAG_INTERRUPTIBLE)
dde16072 463
4064b982
PX
464/**
465 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
78f4841e 466 * @flags: Fault flags.
4064b982
PX
467 *
468 * This is mostly used for places where we want to try to avoid taking
c1e8d7c6 469 * the mmap_lock for too long a time when waiting for another condition
4064b982 470 * to change, in which case we can try to be polite to release the
c1e8d7c6
ML
471 * mmap_lock in the first round to avoid potential starvation of other
472 * processes that would also want the mmap_lock.
4064b982
PX
473 *
474 * Return: true if the page fault allows retry and this is the first
475 * attempt of the fault handling; false otherwise.
476 */
da2f5eb3 477static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
4064b982
PX
478{
479 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
480 (!(flags & FAULT_FLAG_TRIED));
481}
482
282a8e03
RZ
483#define FAULT_FLAG_TRACE \
484 { FAULT_FLAG_WRITE, "WRITE" }, \
485 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
486 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
487 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
488 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
489 { FAULT_FLAG_TRIED, "TRIED" }, \
490 { FAULT_FLAG_USER, "USER" }, \
491 { FAULT_FLAG_REMOTE, "REMOTE" }, \
c270a7ee 492 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
55324e46
SB
493 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
494 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
282a8e03 495
54cb8821 496/*
11192337 497 * vm_fault is filled by the pagefault handler and passed to the vma's
83c54070
NP
498 * ->fault function. The vma's ->fault is responsible for returning a bitmask
499 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 500 *
c20cd45e
MH
501 * MM layer fills up gfp_mask for page allocations but fault handler might
502 * alter it if its implementation requires a different allocation context.
503 *
9b4bdd2f 504 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 505 */
d0217ac0 506struct vm_fault {
5857c920 507 const struct {
742d3372
WD
508 struct vm_area_struct *vma; /* Target VMA */
509 gfp_t gfp_mask; /* gfp mask to be used for allocations */
510 pgoff_t pgoff; /* Logical page offset based on vma */
824ddc60
NA
511 unsigned long address; /* Faulting virtual address - masked */
512 unsigned long real_address; /* Faulting virtual address - unmasked */
742d3372 513 };
da2f5eb3 514 enum fault_flag flags; /* FAULT_FLAG_xxx flags
742d3372 515 * XXX: should really be 'const' */
82b0f8c3 516 pmd_t *pmd; /* Pointer to pmd entry matching
2994302b 517 * the 'address' */
a2d58167
DJ
518 pud_t *pud; /* Pointer to pud entry matching
519 * the 'address'
520 */
5db4f15c
YS
521 union {
522 pte_t orig_pte; /* Value of PTE at the time of fault */
523 pmd_t orig_pmd; /* Value of PMD at the time of fault,
524 * used by PMD fault only.
525 */
526 };
d0217ac0 527
3917048d 528 struct page *cow_page; /* Page handler may use for COW fault */
d0217ac0 529 struct page *page; /* ->fault handlers should return a
83c54070 530 * page here, unless VM_FAULT_NOPAGE
d0217ac0 531 * is set (which is also implied by
83c54070 532 * VM_FAULT_ERROR).
d0217ac0 533 */
82b0f8c3 534 /* These three entries are valid only while holding ptl lock */
bae473a4
KS
535 pte_t *pte; /* Pointer to pte entry matching
536 * the 'address'. NULL if the page
537 * table hasn't been allocated.
538 */
539 spinlock_t *ptl; /* Page table lock.
540 * Protects pte page table if 'pte'
541 * is not NULL, otherwise pmd.
542 */
7267ec00 543 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
f9ce0be7
KS
544 * vm_ops->map_pages() sets up a page
545 * table from atomic context.
7267ec00
KS
546 * do_fault_around() pre-allocates
547 * page table to avoid allocation from
548 * atomic context.
549 */
54cb8821 550};
1da177e4
LT
551
552/*
553 * These are the virtual MM functions - opening of an area, closing and
554 * unmapping it (needed to keep files on disk up-to-date etc), pointer
27d036e3 555 * to the functions called when a no-page or a wp-page exception occurs.
1da177e4
LT
556 */
557struct vm_operations_struct {
558 void (*open)(struct vm_area_struct * area);
cc6dcfee
SB
559 /**
560 * @close: Called when the VMA is being removed from the MM.
561 * Context: User context. May sleep. Caller holds mmap_lock.
562 */
1da177e4 563 void (*close)(struct vm_area_struct * area);
dd3b614f
DS
564 /* Called any time before splitting to check if it's allowed */
565 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
14d07113 566 int (*mremap)(struct vm_area_struct *area);
95bb7c42
SC
567 /*
568 * Called by mprotect() to make driver-specific permission
569 * checks before mprotect() is finalised. The VMA must not
3e0ee843 570 * be modified. Returns 0 if mprotect() can proceed.
95bb7c42
SC
571 */
572 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
573 unsigned long end, unsigned long newflags);
1c8f4220 574 vm_fault_t (*fault)(struct vm_fault *vmf);
1d024e7a 575 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
f9ce0be7 576 vm_fault_t (*map_pages)(struct vm_fault *vmf,
bae473a4 577 pgoff_t start_pgoff, pgoff_t end_pgoff);
05ea8860 578 unsigned long (*pagesize)(struct vm_area_struct * area);
9637a5ef
DH
579
580 /* notification that a previously read-only page is about to become
581 * writable, if an error is returned it will cause a SIGBUS */
1c8f4220 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
28b2ee20 583
dd906184 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
1c8f4220 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
dd906184 586
28b2ee20 587 /* called by access_process_vm when get_user_pages() fails, typically
96667f8a
DV
588 * for use by special VMAs. See also generic_access_phys() for a generic
589 * implementation useful for any iomem mapping.
28b2ee20
RR
590 */
591 int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 void *buf, int len, int write);
78d683e8
AL
593
594 /* Called by the /proc/PID/maps code to ask the vma whether it
595 * has a special name. Returning non-NULL will also cause this
596 * vma to be dumped unconditionally. */
597 const char *(*name)(struct vm_area_struct *vma);
598
1da177e4 599#ifdef CONFIG_NUMA
a6020ed7
LS
600 /*
601 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 * to hold the policy upon return. Caller should pass NULL @new to
603 * remove a policy and fall back to surrounding context--i.e. do not
604 * install a MPOL_DEFAULT policy, nor the task or system default
605 * mempolicy.
606 */
1da177e4 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
608
609 /*
610 * get_policy() op must add reference [mpol_get()] to any policy at
611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
612 * in mm/mempolicy.c will do this automatically.
613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
c1e8d7c6 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
a6020ed7
LS
615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 * must return NULL--i.e., do not "fallback" to task or system default
617 * policy.
618 */
1da177e4 619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
ddc1a5cb 620 unsigned long addr, pgoff_t *ilx);
1da177e4 621#endif
667a0a06
DV
622 /*
623 * Called by vm_normal_page() for special PTEs to find the
624 * page for @addr. This is useful if the default behavior
625 * (using pte_page()) would not find the correct page.
626 */
627 struct page *(*find_special_page)(struct vm_area_struct *vma,
628 unsigned long addr);
1da177e4
LT
629};
630
ef6a22b7
MG
631#ifdef CONFIG_NUMA_BALANCING
632static inline void vma_numab_state_init(struct vm_area_struct *vma)
633{
634 vma->numab_state = NULL;
635}
636static inline void vma_numab_state_free(struct vm_area_struct *vma)
637{
638 kfree(vma->numab_state);
639}
640#else
641static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
642static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643#endif /* CONFIG_NUMA_BALANCING */
644
5e31275c 645#ifdef CONFIG_PER_VMA_LOCK
5e31275c
SB
646/*
647 * Try to read-lock a vma. The function is allowed to occasionally yield false
648 * locked result to avoid performance overhead, in which case we fall back to
649 * using mmap_lock. The function should never yield false unlocked result.
650 */
651static inline bool vma_start_read(struct vm_area_struct *vma)
652{
b1f02b95
JH
653 /*
654 * Check before locking. A race might cause false locked result.
655 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
656 * ACQUIRE semantics, because this is just a lockless check whose result
657 * we don't rely on for anything - the mm_lock_seq read against which we
658 * need ordering is below.
659 */
660 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
5e31275c
SB
661 return false;
662
c7f8f31c 663 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
5e31275c
SB
664 return false;
665
666 /*
667 * Overflow might produce false locked result.
668 * False unlocked result is impossible because we modify and check
c7f8f31c 669 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
5e31275c 670 * modification invalidates all existing locks.
b1f02b95
JH
671 *
672 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
673 * racing with vma_end_write_all(), we only start reading from the VMA
674 * after it has been unlocked.
675 * This pairs with RELEASE semantics in vma_end_write_all().
5e31275c 676 */
b1f02b95 677 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
c7f8f31c 678 up_read(&vma->vm_lock->lock);
5e31275c
SB
679 return false;
680 }
681 return true;
682}
683
684static inline void vma_end_read(struct vm_area_struct *vma)
685{
686 rcu_read_lock(); /* keeps vma alive till the end of up_read */
c7f8f31c 687 up_read(&vma->vm_lock->lock);
5e31275c
SB
688 rcu_read_unlock();
689}
690
29a22b9e 691/* WARNING! Can only be used if mmap_lock is expected to be write-locked */
55fd6fcc 692static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
5e31275c 693{
5e31275c
SB
694 mmap_assert_write_locked(vma->vm_mm);
695
696 /*
697 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
698 * mm->mm_lock_seq can't be concurrently modified.
699 */
b1f02b95 700 *mm_lock_seq = vma->vm_mm->mm_lock_seq;
55fd6fcc
SB
701 return (vma->vm_lock_seq == *mm_lock_seq);
702}
703
90717566
JH
704/*
705 * Begin writing to a VMA.
706 * Exclude concurrent readers under the per-VMA lock until the currently
707 * write-locked mmap_lock is dropped or downgraded.
708 */
55fd6fcc
SB
709static inline void vma_start_write(struct vm_area_struct *vma)
710{
711 int mm_lock_seq;
712
713 if (__is_vma_write_locked(vma, &mm_lock_seq))
5e31275c
SB
714 return;
715
c7f8f31c 716 down_write(&vma->vm_lock->lock);
b1f02b95
JH
717 /*
718 * We should use WRITE_ONCE() here because we can have concurrent reads
719 * from the early lockless pessimistic check in vma_start_read().
720 * We don't really care about the correctness of that early check, but
721 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
722 */
723 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
c7f8f31c 724 up_write(&vma->vm_lock->lock);
5e31275c
SB
725}
726
727static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728{
55fd6fcc
SB
729 int mm_lock_seq;
730
731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
5e31275c
SB
732}
733
29a22b9e
SB
734static inline void vma_assert_locked(struct vm_area_struct *vma)
735{
736 if (!rwsem_is_locked(&vma->vm_lock->lock))
737 vma_assert_write_locked(vma);
738}
739
457f67be
SB
740static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
741{
742 /* When detaching vma should be write-locked */
743 if (detached)
744 vma_assert_write_locked(vma);
745 vma->detached = detached;
746}
747
1235ccd0
SB
748static inline void release_fault_lock(struct vm_fault *vmf)
749{
750 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
751 vma_end_read(vmf->vma);
752 else
753 mmap_read_unlock(vmf->vma->vm_mm);
754}
755
29a22b9e
SB
756static inline void assert_fault_locked(struct vm_fault *vmf)
757{
758 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
759 vma_assert_locked(vmf->vma);
760 else
761 mmap_assert_locked(vmf->vma->vm_mm);
762}
763
50ee3253
SB
764struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
765 unsigned long address);
766
5e31275c
SB
767#else /* CONFIG_PER_VMA_LOCK */
768
5e31275c
SB
769static inline bool vma_start_read(struct vm_area_struct *vma)
770 { return false; }
771static inline void vma_end_read(struct vm_area_struct *vma) {}
772static inline void vma_start_write(struct vm_area_struct *vma) {}
ce2fc5ff
SB
773static inline void vma_assert_write_locked(struct vm_area_struct *vma)
774 { mmap_assert_write_locked(vma->vm_mm); }
457f67be
SB
775static inline void vma_mark_detached(struct vm_area_struct *vma,
776 bool detached) {}
5e31275c 777
284e0592
MWO
778static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 unsigned long address)
780{
781 return NULL;
782}
783
1235ccd0
SB
784static inline void release_fault_lock(struct vm_fault *vmf)
785{
786 mmap_read_unlock(vmf->vma->vm_mm);
787}
788
29a22b9e
SB
789static inline void assert_fault_locked(struct vm_fault *vmf)
790{
791 mmap_assert_locked(vmf->vma->vm_mm);
792}
793
5e31275c
SB
794#endif /* CONFIG_PER_VMA_LOCK */
795
9a9d0b82
MG
796extern const struct vm_operations_struct vma_dummy_vm_ops;
797
c7f8f31c
SB
798/*
799 * WARNING: vma_init does not initialize vma->vm_lock.
800 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
801 */
027232da
KS
802static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
803{
a670468f 804 memset(vma, 0, sizeof(*vma));
027232da 805 vma->vm_mm = mm;
9a9d0b82 806 vma->vm_ops = &vma_dummy_vm_ops;
027232da 807 INIT_LIST_HEAD(&vma->anon_vma_chain);
457f67be 808 vma_mark_detached(vma, false);
ef6a22b7 809 vma_numab_state_init(vma);
027232da
KS
810}
811
bc292ab0
SB
812/* Use when VMA is not part of the VMA tree and needs no locking */
813static inline void vm_flags_init(struct vm_area_struct *vma,
814 vm_flags_t flags)
815{
816 ACCESS_PRIVATE(vma, __vm_flags) = flags;
817}
818
60081bf1
SB
819/*
820 * Use when VMA is part of the VMA tree and modifications need coordination
821 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
822 * it should be locked explicitly beforehand.
823 */
bc292ab0
SB
824static inline void vm_flags_reset(struct vm_area_struct *vma,
825 vm_flags_t flags)
826{
60081bf1 827 vma_assert_write_locked(vma);
bc292ab0
SB
828 vm_flags_init(vma, flags);
829}
830
601c3c29
SB
831static inline void vm_flags_reset_once(struct vm_area_struct *vma,
832 vm_flags_t flags)
833{
60081bf1 834 vma_assert_write_locked(vma);
601c3c29
SB
835 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
836}
837
bc292ab0
SB
838static inline void vm_flags_set(struct vm_area_struct *vma,
839 vm_flags_t flags)
840{
c7322933 841 vma_start_write(vma);
bc292ab0
SB
842 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
843}
844
845static inline void vm_flags_clear(struct vm_area_struct *vma,
846 vm_flags_t flags)
847{
c7322933 848 vma_start_write(vma);
bc292ab0
SB
849 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
850}
851
68f48381
SB
852/*
853 * Use only if VMA is not part of the VMA tree or has no other users and
854 * therefore needs no locking.
855 */
856static inline void __vm_flags_mod(struct vm_area_struct *vma,
857 vm_flags_t set, vm_flags_t clear)
858{
859 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
860}
861
bc292ab0
SB
862/*
863 * Use only when the order of set/clear operations is unimportant, otherwise
864 * use vm_flags_{set|clear} explicitly.
865 */
866static inline void vm_flags_mod(struct vm_area_struct *vma,
867 vm_flags_t set, vm_flags_t clear)
868{
c7322933 869 vma_start_write(vma);
68f48381 870 __vm_flags_mod(vma, set, clear);
bc292ab0
SB
871}
872
bfd40eaf
KS
873static inline void vma_set_anonymous(struct vm_area_struct *vma)
874{
875 vma->vm_ops = NULL;
876}
877
43675e6f
YS
878static inline bool vma_is_anonymous(struct vm_area_struct *vma)
879{
880 return !vma->vm_ops;
881}
882
11250fd1
KW
883/*
884 * Indicate if the VMA is a heap for the given task; for
885 * /proc/PID/maps that is the heap of the main task.
886 */
887static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
888{
d3bb89ea
KW
889 return vma->vm_start < vma->vm_mm->brk &&
890 vma->vm_end > vma->vm_mm->start_brk;
11250fd1
KW
891}
892
893/*
894 * Indicate if the VMA is a stack for the given task; for
895 * /proc/PID/maps that is the stack of the main task.
896 */
897static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
898{
899 /*
900 * We make no effort to guess what a given thread considers to be
901 * its "stack". It's not even well-defined for programs written
902 * languages like Go.
903 */
d3bb89ea
KW
904 return vma->vm_start <= vma->vm_mm->start_stack &&
905 vma->vm_end >= vma->vm_mm->start_stack;
11250fd1
KW
906}
907
222100ee
AK
908static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
909{
910 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
911
912 if (!maybe_stack)
913 return false;
914
915 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
916 VM_STACK_INCOMPLETE_SETUP)
917 return true;
918
919 return false;
920}
921
7969f226
AK
922static inline bool vma_is_foreign(struct vm_area_struct *vma)
923{
924 if (!current->mm)
925 return true;
926
927 if (current->mm != vma->vm_mm)
928 return true;
929
930 return false;
931}
3122e80e
AK
932
933static inline bool vma_is_accessible(struct vm_area_struct *vma)
934{
6cb4d9a2 935 return vma->vm_flags & VM_ACCESS_FLAGS;
3122e80e
AK
936}
937
e8e17ee9
LS
938static inline bool is_shared_maywrite(vm_flags_t vm_flags)
939{
940 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
941 (VM_SHARED | VM_MAYWRITE);
942}
943
944static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
945{
946 return is_shared_maywrite(vma->vm_flags);
947}
948
f39af059
MWO
949static inline
950struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
951{
b62b633e 952 return mas_find(&vmi->mas, max - 1);
f39af059
MWO
953}
954
955static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
956{
957 /*
b62b633e 958 * Uses mas_find() to get the first VMA when the iterator starts.
f39af059
MWO
959 * Calling mas_next() could skip the first entry.
960 */
b62b633e 961 return mas_find(&vmi->mas, ULONG_MAX);
f39af059
MWO
962}
963
bb5dbd22
LH
964static inline
965struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
966{
967 return mas_next_range(&vmi->mas, ULONG_MAX);
968}
969
970
f39af059
MWO
971static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
972{
973 return mas_prev(&vmi->mas, 0);
974}
975
bb5dbd22
LH
976static inline
977struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
978{
979 return mas_prev_range(&vmi->mas, 0);
980}
981
f39af059
MWO
982static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
983{
984 return vmi->mas.index;
985}
986
b62b633e
LH
987static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
988{
989 return vmi->mas.last + 1;
990}
991static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
992 unsigned long count)
993{
994 return mas_expected_entries(&vmi->mas, count);
995}
996
d2406291
PZ
997static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
998 unsigned long start, unsigned long end, gfp_t gfp)
999{
1000 __mas_set_range(&vmi->mas, start, end - 1);
1001 mas_store_gfp(&vmi->mas, NULL, gfp);
1002 if (unlikely(mas_is_err(&vmi->mas)))
1003 return -ENOMEM;
1004
1005 return 0;
1006}
1007
b62b633e
LH
1008/* Free any unused preallocations */
1009static inline void vma_iter_free(struct vma_iterator *vmi)
1010{
1011 mas_destroy(&vmi->mas);
1012}
1013
1014static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1015 struct vm_area_struct *vma)
1016{
1017 vmi->mas.index = vma->vm_start;
1018 vmi->mas.last = vma->vm_end - 1;
1019 mas_store(&vmi->mas, vma);
1020 if (unlikely(mas_is_err(&vmi->mas)))
1021 return -ENOMEM;
1022
1023 return 0;
1024}
1025
1026static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1027{
1028 mas_pause(&vmi->mas);
1029}
1030
1031static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1032{
1033 mas_set(&vmi->mas, addr);
1034}
1035
f39af059
MWO
1036#define for_each_vma(__vmi, __vma) \
1037 while (((__vma) = vma_next(&(__vmi))) != NULL)
1038
1039/* The MM code likes to work with exclusive end addresses */
1040#define for_each_vma_range(__vmi, __vma, __end) \
b62b633e 1041 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
f39af059 1042
43675e6f
YS
1043#ifdef CONFIG_SHMEM
1044/*
1045 * The vma_is_shmem is not inline because it is used only by slow
1046 * paths in userfault.
1047 */
1048bool vma_is_shmem(struct vm_area_struct *vma);
d09e8ca6 1049bool vma_is_anon_shmem(struct vm_area_struct *vma);
43675e6f
YS
1050#else
1051static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
d09e8ca6 1052static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
43675e6f
YS
1053#endif
1054
1055int vma_is_stack_for_current(struct vm_area_struct *vma);
1056
8b11ec1b
LT
1057/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1058#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1059
1da177e4
LT
1060struct mmu_gather;
1061struct inode;
1062
5eb5cea1
MWO
1063/*
1064 * compound_order() can be called without holding a reference, which means
1065 * that niceties like page_folio() don't work. These callers should be
1066 * prepared to handle wild return values. For example, PG_head may be
ebc1baf5 1067 * set before the order is initialised, or this may be a tail page.
5eb5cea1
MWO
1068 * See compaction.c for some good examples.
1069 */
5bf34d7c
MWO
1070static inline unsigned int compound_order(struct page *page)
1071{
5eb5cea1
MWO
1072 struct folio *folio = (struct folio *)page;
1073
1074 if (!test_bit(PG_head, &folio->flags))
5bf34d7c 1075 return 0;
ebc1baf5 1076 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1077}
1078
1079/**
1080 * folio_order - The allocation order of a folio.
1081 * @folio: The folio.
1082 *
1083 * A folio is composed of 2^order pages. See get_order() for the definition
1084 * of order.
1085 *
1086 * Return: The order of the folio.
1087 */
1088static inline unsigned int folio_order(struct folio *folio)
1089{
c3a15bff
MWO
1090 if (!folio_test_large(folio))
1091 return 0;
ebc1baf5 1092 return folio->_flags_1 & 0xff;
5bf34d7c
MWO
1093}
1094
71e3aac0 1095#include <linux/huge_mm.h>
1da177e4
LT
1096
1097/*
1098 * Methods to modify the page usage count.
1099 *
1100 * What counts for a page usage:
1101 * - cache mapping (page->mapping)
1102 * - private data (page->private)
1103 * - page mapped in a task's page tables, each mapping
1104 * is counted separately
1105 *
1106 * Also, many kernel routines increase the page count before a critical
1107 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
1108 */
1109
1110/*
da6052f7 1111 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 1112 */
7c8ee9a8
NP
1113static inline int put_page_testzero(struct page *page)
1114{
fe896d18
JK
1115 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1116 return page_ref_dec_and_test(page);
7c8ee9a8 1117}
1da177e4 1118
b620f633
MWO
1119static inline int folio_put_testzero(struct folio *folio)
1120{
1121 return put_page_testzero(&folio->page);
1122}
1123
1da177e4 1124/*
7c8ee9a8
NP
1125 * Try to grab a ref unless the page has a refcount of zero, return false if
1126 * that is the case.
8e0861fa
AK
1127 * This can be called when MMU is off so it must not access
1128 * any of the virtual mappings.
1da177e4 1129 */
c2530328 1130static inline bool get_page_unless_zero(struct page *page)
7c8ee9a8 1131{
fe896d18 1132 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 1133}
1da177e4 1134
3c1ea2c7
VMO
1135static inline struct folio *folio_get_nontail_page(struct page *page)
1136{
1137 if (unlikely(!get_page_unless_zero(page)))
1138 return NULL;
1139 return (struct folio *)page;
1140}
1141
53df8fdc 1142extern int page_is_ram(unsigned long pfn);
124fe20d
DW
1143
1144enum {
1145 REGION_INTERSECTS,
1146 REGION_DISJOINT,
1147 REGION_MIXED,
1148};
1149
1c29f25b
TK
1150int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1151 unsigned long desc);
53df8fdc 1152
48667e7a 1153/* Support for virtually mapped pages */
b3bdda02
CL
1154struct page *vmalloc_to_page(const void *addr);
1155unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 1156
0738c4bb
PM
1157/*
1158 * Determine if an address is within the vmalloc range
1159 *
1160 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1161 * is no special casing required.
1162 */
81ac3ad9 1163#ifdef CONFIG_MMU
186525bd 1164extern bool is_vmalloc_addr(const void *x);
81ac3ad9
KH
1165extern int is_vmalloc_or_module_addr(const void *x);
1166#else
186525bd
IM
1167static inline bool is_vmalloc_addr(const void *x)
1168{
1169 return false;
1170}
934831d0 1171static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
1172{
1173 return 0;
1174}
1175#endif
9e2779fa 1176
74e8ee47
MWO
1177/*
1178 * How many times the entire folio is mapped as a single unit (eg by a
1179 * PMD or PUD entry). This is probably not what you want, except for
cb67f428
HD
1180 * debugging purposes - it does not include PTE-mapped sub-pages; look
1181 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
74e8ee47
MWO
1182 */
1183static inline int folio_entire_mapcount(struct folio *folio)
6dc5ea16 1184{
74e8ee47 1185 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1aa4d03b 1186 return atomic_read(&folio->_entire_mapcount) + 1;
53f9263b
KS
1187}
1188
70b50f94
AA
1189/*
1190 * The atomic page->_mapcount, starts from -1: so that transitions
1191 * both from it and to it can be tracked, using atomic_inc_and_test
1192 * and atomic_add_negative(-1).
1193 */
22b751c3 1194static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
1195{
1196 atomic_set(&(page)->_mapcount, -1);
1197}
1198
c97eeb8f
MWO
1199/**
1200 * page_mapcount() - Number of times this precise page is mapped.
1201 * @page: The page.
1202 *
1203 * The number of times this page is mapped. If this page is part of
1204 * a large folio, it includes the number of times this page is mapped
1205 * as part of that folio.
6988f31d 1206 *
c97eeb8f 1207 * The result is undefined for pages which cannot be mapped into userspace.
6988f31d 1208 * For example SLAB or special types of pages. See function page_has_type().
c97eeb8f 1209 * They use this field in struct page differently.
6988f31d 1210 */
70b50f94
AA
1211static inline int page_mapcount(struct page *page)
1212{
cb67f428 1213 int mapcount = atomic_read(&page->_mapcount) + 1;
b20ce5e0 1214
c97eeb8f
MWO
1215 if (unlikely(PageCompound(page)))
1216 mapcount += folio_entire_mapcount(page_folio(page));
1217
1218 return mapcount;
b20ce5e0
KS
1219}
1220
b14224fb 1221int folio_total_mapcount(struct folio *folio);
4ba1119c 1222
cb67f428
HD
1223/**
1224 * folio_mapcount() - Calculate the number of mappings of this folio.
1225 * @folio: The folio.
1226 *
1227 * A large folio tracks both how many times the entire folio is mapped,
1228 * and how many times each individual page in the folio is mapped.
1229 * This function calculates the total number of times the folio is
1230 * mapped.
1231 *
1232 * Return: The number of times this folio is mapped.
1233 */
1234static inline int folio_mapcount(struct folio *folio)
4ba1119c 1235{
cb67f428
HD
1236 if (likely(!folio_test_large(folio)))
1237 return atomic_read(&folio->_mapcount) + 1;
b14224fb 1238 return folio_total_mapcount(folio);
4ba1119c
MWO
1239}
1240
b20ce5e0
KS
1241static inline int total_mapcount(struct page *page)
1242{
be5ef2d9
HD
1243 if (likely(!PageCompound(page)))
1244 return atomic_read(&page->_mapcount) + 1;
b14224fb 1245 return folio_total_mapcount(page_folio(page));
be5ef2d9
HD
1246}
1247
1248static inline bool folio_large_is_mapped(struct folio *folio)
1249{
4b51634c 1250 /*
1aa4d03b 1251 * Reading _entire_mapcount below could be omitted if hugetlb
eec20426 1252 * participated in incrementing nr_pages_mapped when compound mapped.
4b51634c 1253 */
eec20426 1254 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1aa4d03b 1255 atomic_read(&folio->_entire_mapcount) >= 0;
cb67f428
HD
1256}
1257
1258/**
1259 * folio_mapped - Is this folio mapped into userspace?
1260 * @folio: The folio.
1261 *
1262 * Return: True if any page in this folio is referenced by user page tables.
1263 */
1264static inline bool folio_mapped(struct folio *folio)
1265{
be5ef2d9
HD
1266 if (likely(!folio_test_large(folio)))
1267 return atomic_read(&folio->_mapcount) >= 0;
1268 return folio_large_is_mapped(folio);
1269}
1270
1271/*
1272 * Return true if this page is mapped into pagetables.
1273 * For compound page it returns true if any sub-page of compound page is mapped,
1274 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1275 */
1276static inline bool page_mapped(struct page *page)
1277{
1278 if (likely(!PageCompound(page)))
1279 return atomic_read(&page->_mapcount) >= 0;
1280 return folio_large_is_mapped(page_folio(page));
70b50f94
AA
1281}
1282
b49af68f
CL
1283static inline struct page *virt_to_head_page(const void *x)
1284{
1285 struct page *page = virt_to_page(x);
ccaafd7f 1286
1d798ca3 1287 return compound_head(page);
b49af68f
CL
1288}
1289
7d4203c1
VB
1290static inline struct folio *virt_to_folio(const void *x)
1291{
1292 struct page *page = virt_to_page(x);
1293
1294 return page_folio(page);
1295}
1296
8d29c703 1297void __folio_put(struct folio *folio);
ddc58f27 1298
1d7ea732 1299void put_pages_list(struct list_head *pages);
1da177e4 1300
8dfcc9ba 1301void split_page(struct page *page, unsigned int order);
715cbfd6 1302void folio_copy(struct folio *dst, struct folio *src);
8dfcc9ba 1303
a1554c00
ML
1304unsigned long nr_free_buffer_pages(void);
1305
5375336c 1306void destroy_large_folio(struct folio *folio);
33f2ef89 1307
a50b854e
MWO
1308/* Returns the number of bytes in this potentially compound page. */
1309static inline unsigned long page_size(struct page *page)
1310{
1311 return PAGE_SIZE << compound_order(page);
1312}
1313
94ad9338
MWO
1314/* Returns the number of bits needed for the number of bytes in a page */
1315static inline unsigned int page_shift(struct page *page)
1316{
1317 return PAGE_SHIFT + compound_order(page);
1318}
1319
18788cfa
MWO
1320/**
1321 * thp_order - Order of a transparent huge page.
1322 * @page: Head page of a transparent huge page.
1323 */
1324static inline unsigned int thp_order(struct page *page)
1325{
1326 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1327 return compound_order(page);
1328}
1329
18788cfa
MWO
1330/**
1331 * thp_size - Size of a transparent huge page.
1332 * @page: Head page of a transparent huge page.
1333 *
1334 * Return: Number of bytes in this page.
1335 */
1336static inline unsigned long thp_size(struct page *page)
1337{
1338 return PAGE_SIZE << thp_order(page);
1339}
1340
3dece370 1341#ifdef CONFIG_MMU
14fd403f
AA
1342/*
1343 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1344 * servicing faults for write access. In the normal case, do always want
1345 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1346 * that do not have writing enabled, when used by access_process_vm.
1347 */
1348static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1349{
1350 if (likely(vma->vm_flags & VM_WRITE))
161e393c 1351 pte = pte_mkwrite(pte, vma);
14fd403f
AA
1352 return pte;
1353}
8c6e50b0 1354
f9ce0be7 1355vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
3bd786f7
YF
1356void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1357 struct page *page, unsigned int nr, unsigned long addr);
f9ce0be7 1358
2b740303 1359vm_fault_t finish_fault(struct vm_fault *vmf);
3dece370 1360#endif
14fd403f 1361
1da177e4
LT
1362/*
1363 * Multiple processes may "see" the same page. E.g. for untouched
1364 * mappings of /dev/null, all processes see the same page full of
1365 * zeroes, and text pages of executables and shared libraries have
1366 * only one copy in memory, at most, normally.
1367 *
1368 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
1369 * page_count() == 0 means the page is free. page->lru is then used for
1370 * freelist management in the buddy allocator.
da6052f7 1371 * page_count() > 0 means the page has been allocated.
1da177e4 1372 *
da6052f7
NP
1373 * Pages are allocated by the slab allocator in order to provide memory
1374 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1375 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1376 * unless a particular usage is carefully commented. (the responsibility of
1377 * freeing the kmalloc memory is the caller's, of course).
1da177e4 1378 *
da6052f7
NP
1379 * A page may be used by anyone else who does a __get_free_page().
1380 * In this case, page_count still tracks the references, and should only
1381 * be used through the normal accessor functions. The top bits of page->flags
1382 * and page->virtual store page management information, but all other fields
1383 * are unused and could be used privately, carefully. The management of this
1384 * page is the responsibility of the one who allocated it, and those who have
1385 * subsequently been given references to it.
1386 *
1387 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
1388 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1389 * The following discussion applies only to them.
1390 *
da6052f7
NP
1391 * A pagecache page contains an opaque `private' member, which belongs to the
1392 * page's address_space. Usually, this is the address of a circular list of
1393 * the page's disk buffers. PG_private must be set to tell the VM to call
1394 * into the filesystem to release these pages.
1da177e4 1395 *
da6052f7
NP
1396 * A page may belong to an inode's memory mapping. In this case, page->mapping
1397 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 1398 * in units of PAGE_SIZE.
1da177e4 1399 *
da6052f7
NP
1400 * If pagecache pages are not associated with an inode, they are said to be
1401 * anonymous pages. These may become associated with the swapcache, and in that
1402 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 1403 *
da6052f7
NP
1404 * In either case (swapcache or inode backed), the pagecache itself holds one
1405 * reference to the page. Setting PG_private should also increment the
1406 * refcount. The each user mapping also has a reference to the page.
1da177e4 1407 *
da6052f7 1408 * The pagecache pages are stored in a per-mapping radix tree, which is
b93b0163 1409 * rooted at mapping->i_pages, and indexed by offset.
da6052f7
NP
1410 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1411 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 1412 *
da6052f7 1413 * All pagecache pages may be subject to I/O:
1da177e4
LT
1414 * - inode pages may need to be read from disk,
1415 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
1416 * to be written back to the inode on disk,
1417 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1418 * modified may need to be swapped out to swap space and (later) to be read
1419 * back into memory.
1da177e4
LT
1420 */
1421
27674ef6 1422#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
e7638488 1423DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
07d80269 1424
f4f451a1
MS
1425bool __put_devmap_managed_page_refs(struct page *page, int refs);
1426static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1427{
1428 if (!static_branch_unlikely(&devmap_managed_key))
1429 return false;
1430 if (!is_zone_device_page(page))
1431 return false;
f4f451a1 1432 return __put_devmap_managed_page_refs(page, refs);
e7638488 1433}
27674ef6 1434#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
f4f451a1 1435static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
e7638488
DW
1436{
1437 return false;
1438}
27674ef6 1439#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
7b2d55d2 1440
f4f451a1
MS
1441static inline bool put_devmap_managed_page(struct page *page)
1442{
1443 return put_devmap_managed_page_refs(page, 1);
1444}
1445
f958d7b5 1446/* 127: arbitrary random number, small enough to assemble well */
86d234cb
MWO
1447#define folio_ref_zero_or_close_to_overflow(folio) \
1448 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1449
1450/**
1451 * folio_get - Increment the reference count on a folio.
1452 * @folio: The folio.
1453 *
1454 * Context: May be called in any context, as long as you know that
1455 * you have a refcount on the folio. If you do not already have one,
1456 * folio_try_get() may be the right interface for you to use.
1457 */
1458static inline void folio_get(struct folio *folio)
1459{
1460 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1461 folio_ref_inc(folio);
1462}
f958d7b5 1463
3565fce3
DW
1464static inline void get_page(struct page *page)
1465{
86d234cb 1466 folio_get(page_folio(page));
3565fce3
DW
1467}
1468
cd1adf1b
LT
1469static inline __must_check bool try_get_page(struct page *page)
1470{
1471 page = compound_head(page);
1472 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1473 return false;
1474 page_ref_inc(page);
1475 return true;
1476}
3565fce3 1477
b620f633
MWO
1478/**
1479 * folio_put - Decrement the reference count on a folio.
1480 * @folio: The folio.
1481 *
1482 * If the folio's reference count reaches zero, the memory will be
1483 * released back to the page allocator and may be used by another
1484 * allocation immediately. Do not access the memory or the struct folio
1485 * after calling folio_put() unless you can be sure that it wasn't the
1486 * last reference.
1487 *
1488 * Context: May be called in process or interrupt context, but not in NMI
1489 * context. May be called while holding a spinlock.
1490 */
1491static inline void folio_put(struct folio *folio)
1492{
1493 if (folio_put_testzero(folio))
8d29c703 1494 __folio_put(folio);
b620f633
MWO
1495}
1496
3fe7fa58
MWO
1497/**
1498 * folio_put_refs - Reduce the reference count on a folio.
1499 * @folio: The folio.
1500 * @refs: The amount to subtract from the folio's reference count.
1501 *
1502 * If the folio's reference count reaches zero, the memory will be
1503 * released back to the page allocator and may be used by another
1504 * allocation immediately. Do not access the memory or the struct folio
1505 * after calling folio_put_refs() unless you can be sure that these weren't
1506 * the last references.
1507 *
1508 * Context: May be called in process or interrupt context, but not in NMI
1509 * context. May be called while holding a spinlock.
1510 */
1511static inline void folio_put_refs(struct folio *folio, int refs)
1512{
1513 if (folio_ref_sub_and_test(folio, refs))
8d29c703 1514 __folio_put(folio);
3fe7fa58
MWO
1515}
1516
0411d6ee
SP
1517/*
1518 * union release_pages_arg - an array of pages or folios
449c7967 1519 *
0411d6ee 1520 * release_pages() releases a simple array of multiple pages, and
449c7967
LT
1521 * accepts various different forms of said page array: either
1522 * a regular old boring array of pages, an array of folios, or
1523 * an array of encoded page pointers.
1524 *
1525 * The transparent union syntax for this kind of "any of these
1526 * argument types" is all kinds of ugly, so look away.
1527 */
1528typedef union {
1529 struct page **pages;
1530 struct folio **folios;
1531 struct encoded_page **encoded_pages;
1532} release_pages_arg __attribute__ ((__transparent_union__));
1533
1534void release_pages(release_pages_arg, int nr);
e3c4cebf
MWO
1535
1536/**
1537 * folios_put - Decrement the reference count on an array of folios.
1538 * @folios: The folios.
1539 * @nr: How many folios there are.
1540 *
1541 * Like folio_put(), but for an array of folios. This is more efficient
1542 * than writing the loop yourself as it will optimise the locks which
1543 * need to be taken if the folios are freed.
1544 *
1545 * Context: May be called in process or interrupt context, but not in NMI
1546 * context. May be called while holding a spinlock.
1547 */
1548static inline void folios_put(struct folio **folios, unsigned int nr)
1549{
449c7967 1550 release_pages(folios, nr);
3fe7fa58
MWO
1551}
1552
3565fce3
DW
1553static inline void put_page(struct page *page)
1554{
b620f633 1555 struct folio *folio = page_folio(page);
3565fce3 1556
7b2d55d2 1557 /*
89574945
CH
1558 * For some devmap managed pages we need to catch refcount transition
1559 * from 2 to 1:
7b2d55d2 1560 */
89574945 1561 if (put_devmap_managed_page(&folio->page))
7b2d55d2 1562 return;
b620f633 1563 folio_put(folio);
3565fce3
DW
1564}
1565
3faa52c0
JH
1566/*
1567 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1568 * the page's refcount so that two separate items are tracked: the original page
1569 * reference count, and also a new count of how many pin_user_pages() calls were
1570 * made against the page. ("gup-pinned" is another term for the latter).
1571 *
1572 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1573 * distinct from normal pages. As such, the unpin_user_page() call (and its
1574 * variants) must be used in order to release gup-pinned pages.
1575 *
1576 * Choice of value:
1577 *
1578 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1579 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1580 * simpler, due to the fact that adding an even power of two to the page
1581 * refcount has the effect of using only the upper N bits, for the code that
1582 * counts up using the bias value. This means that the lower bits are left for
1583 * the exclusive use of the original code that increments and decrements by one
1584 * (or at least, by much smaller values than the bias value).
fc1d8e7c 1585 *
3faa52c0
JH
1586 * Of course, once the lower bits overflow into the upper bits (and this is
1587 * OK, because subtraction recovers the original values), then visual inspection
1588 * no longer suffices to directly view the separate counts. However, for normal
1589 * applications that don't have huge page reference counts, this won't be an
1590 * issue.
fc1d8e7c 1591 *
40fcc7fc
MWO
1592 * Locking: the lockless algorithm described in folio_try_get_rcu()
1593 * provides safe operation for get_user_pages(), page_mkclean() and
1594 * other calls that race to set up page table entries.
fc1d8e7c 1595 */
3faa52c0 1596#define GUP_PIN_COUNTING_BIAS (1U << 10)
fc1d8e7c 1597
3faa52c0 1598void unpin_user_page(struct page *page);
f1f6a7dd
JH
1599void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 bool make_dirty);
458a4f78
JM
1601void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 bool make_dirty);
f1f6a7dd 1603void unpin_user_pages(struct page **pages, unsigned long npages);
fc1d8e7c 1604
97a7e473
PX
1605static inline bool is_cow_mapping(vm_flags_t flags)
1606{
1607 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1608}
1609
fc4f4be9
DH
1610#ifndef CONFIG_MMU
1611static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1612{
1613 /*
1614 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1615 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1616 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1617 * underlying memory if ptrace is active, so this is only possible if
1618 * ptrace does not apply. Note that there is no mprotect() to upgrade
1619 * write permissions later.
1620 */
b6b7a8fa 1621 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
fc4f4be9
DH
1622}
1623#endif
1624
9127ab4f
CS
1625#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1626#define SECTION_IN_PAGE_FLAGS
1627#endif
1628
89689ae7 1629/*
7a8010cd
VB
1630 * The identification function is mainly used by the buddy allocator for
1631 * determining if two pages could be buddies. We are not really identifying
1632 * the zone since we could be using the section number id if we do not have
1633 * node id available in page flags.
1634 * We only guarantee that it will return the same value for two combinable
1635 * pages in a zone.
89689ae7 1636 */
cb2b95e1
AW
1637static inline int page_zone_id(struct page *page)
1638{
89689ae7 1639 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
1640}
1641
89689ae7 1642#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 1643extern int page_to_nid(const struct page *page);
89689ae7 1644#else
33dd4e0e 1645static inline int page_to_nid(const struct page *page)
d41dee36 1646{
f165b378
PT
1647 struct page *p = (struct page *)page;
1648
1649 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 1650}
89689ae7
CL
1651#endif
1652
874fd90c
MWO
1653static inline int folio_nid(const struct folio *folio)
1654{
1655 return page_to_nid(&folio->page);
1656}
1657
57e0a030 1658#ifdef CONFIG_NUMA_BALANCING
33024536
HY
1659/* page access time bits needs to hold at least 4 seconds */
1660#define PAGE_ACCESS_TIME_MIN_BITS 12
1661#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1662#define PAGE_ACCESS_TIME_BUCKETS \
1663 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1664#else
1665#define PAGE_ACCESS_TIME_BUCKETS 0
1666#endif
1667
1668#define PAGE_ACCESS_TIME_MASK \
1669 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1670
90572890 1671static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 1672{
90572890 1673 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
1674}
1675
90572890 1676static inline int cpupid_to_pid(int cpupid)
57e0a030 1677{
90572890 1678 return cpupid & LAST__PID_MASK;
57e0a030 1679}
b795854b 1680
90572890 1681static inline int cpupid_to_cpu(int cpupid)
b795854b 1682{
90572890 1683 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
1684}
1685
90572890 1686static inline int cpupid_to_nid(int cpupid)
b795854b 1687{
90572890 1688 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
1689}
1690
90572890 1691static inline bool cpupid_pid_unset(int cpupid)
57e0a030 1692{
90572890 1693 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
1694}
1695
90572890 1696static inline bool cpupid_cpu_unset(int cpupid)
b795854b 1697{
90572890 1698 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
1699}
1700
8c8a743c
PZ
1701static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1702{
1703 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1704}
1705
1706#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890 1707#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
8f0f4788 1708static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
b795854b 1709{
8f0f4788 1710 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 1711}
90572890 1712
f39eac30 1713static inline int folio_last_cpupid(struct folio *folio)
90572890 1714{
f39eac30 1715 return folio->_last_cpupid;
90572890
PZ
1716}
1717static inline void page_cpupid_reset_last(struct page *page)
b795854b 1718{
1ae71d03 1719 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
1720}
1721#else
f39eac30 1722static inline int folio_last_cpupid(struct folio *folio)
75980e97 1723{
f39eac30 1724 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
1725}
1726
8f0f4788 1727int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
75980e97 1728
90572890 1729static inline void page_cpupid_reset_last(struct page *page)
75980e97 1730{
09940a4f 1731 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 1732}
90572890 1733#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
33024536 1734
f3930843 1735static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1736{
1737 int last_time;
1738
8f0f4788
KW
1739 last_time = folio_xchg_last_cpupid(folio,
1740 time >> PAGE_ACCESS_TIME_BUCKETS);
33024536
HY
1741 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1742}
fc137c0d
R
1743
1744static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1745{
1746 unsigned int pid_bit;
1747
d46031f4 1748 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
f3a6c979
MG
1749 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1750 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
fc137c0d
R
1751 }
1752}
90572890 1753#else /* !CONFIG_NUMA_BALANCING */
8f0f4788 1754static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
57e0a030 1755{
8f0f4788 1756 return folio_nid(folio); /* XXX */
57e0a030
MG
1757}
1758
f3930843 1759static inline int folio_xchg_access_time(struct folio *folio, int time)
33024536
HY
1760{
1761 return 0;
1762}
1763
f39eac30 1764static inline int folio_last_cpupid(struct folio *folio)
57e0a030 1765{
f39eac30 1766 return folio_nid(folio); /* XXX */
57e0a030
MG
1767}
1768
90572890 1769static inline int cpupid_to_nid(int cpupid)
b795854b
MG
1770{
1771 return -1;
1772}
1773
90572890 1774static inline int cpupid_to_pid(int cpupid)
b795854b
MG
1775{
1776 return -1;
1777}
1778
90572890 1779static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
1780{
1781 return -1;
1782}
1783
90572890
PZ
1784static inline int cpu_pid_to_cpupid(int nid, int pid)
1785{
1786 return -1;
1787}
1788
1789static inline bool cpupid_pid_unset(int cpupid)
b795854b 1790{
2b787449 1791 return true;
b795854b
MG
1792}
1793
90572890 1794static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
1795{
1796}
8c8a743c
PZ
1797
1798static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1799{
1800 return false;
1801}
fc137c0d
R
1802
1803static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1804{
1805}
90572890 1806#endif /* CONFIG_NUMA_BALANCING */
57e0a030 1807
2e903b91 1808#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
34303244 1809
cf10bd4c
AK
1810/*
1811 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1812 * setting tags for all pages to native kernel tag value 0xff, as the default
1813 * value 0x00 maps to 0xff.
1814 */
1815
2813b9c0
AK
1816static inline u8 page_kasan_tag(const struct page *page)
1817{
cf10bd4c
AK
1818 u8 tag = 0xff;
1819
1820 if (kasan_enabled()) {
1821 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1822 tag ^= 0xff;
1823 }
1824
1825 return tag;
2813b9c0
AK
1826}
1827
1828static inline void page_kasan_tag_set(struct page *page, u8 tag)
1829{
27fe7339
PC
1830 unsigned long old_flags, flags;
1831
1832 if (!kasan_enabled())
1833 return;
1834
1835 tag ^= 0xff;
1836 old_flags = READ_ONCE(page->flags);
1837 do {
1838 flags = old_flags;
1839 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1840 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1841 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
2813b9c0
AK
1842}
1843
1844static inline void page_kasan_tag_reset(struct page *page)
1845{
34303244
AK
1846 if (kasan_enabled())
1847 page_kasan_tag_set(page, 0xff);
2813b9c0 1848}
34303244
AK
1849
1850#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1851
2813b9c0
AK
1852static inline u8 page_kasan_tag(const struct page *page)
1853{
1854 return 0xff;
1855}
1856
1857static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1858static inline void page_kasan_tag_reset(struct page *page) { }
34303244
AK
1859
1860#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
2813b9c0 1861
33dd4e0e 1862static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
1863{
1864 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1865}
1866
75ef7184
MG
1867static inline pg_data_t *page_pgdat(const struct page *page)
1868{
1869 return NODE_DATA(page_to_nid(page));
1870}
1871
32b8fc48
MWO
1872static inline struct zone *folio_zone(const struct folio *folio)
1873{
1874 return page_zone(&folio->page);
1875}
1876
1877static inline pg_data_t *folio_pgdat(const struct folio *folio)
1878{
1879 return page_pgdat(&folio->page);
1880}
1881
9127ab4f 1882#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
1883static inline void set_page_section(struct page *page, unsigned long section)
1884{
1885 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1886 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1887}
1888
aa462abe 1889static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
1890{
1891 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1892}
308c05e3 1893#endif
d41dee36 1894
bf6bd276
MWO
1895/**
1896 * folio_pfn - Return the Page Frame Number of a folio.
1897 * @folio: The folio.
1898 *
1899 * A folio may contain multiple pages. The pages have consecutive
1900 * Page Frame Numbers.
1901 *
1902 * Return: The Page Frame Number of the first page in the folio.
1903 */
1904static inline unsigned long folio_pfn(struct folio *folio)
1905{
1906 return page_to_pfn(&folio->page);
1907}
1908
018ee47f
YZ
1909static inline struct folio *pfn_folio(unsigned long pfn)
1910{
1911 return page_folio(pfn_to_page(pfn));
1912}
1913
0b90ddae
MWO
1914/**
1915 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1916 * @folio: The folio.
1917 *
1918 * This function checks if a folio has been pinned via a call to
1919 * a function in the pin_user_pages() family.
1920 *
1921 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1922 * because it means "definitely not pinned for DMA", but true means "probably
1923 * pinned for DMA, but possibly a false positive due to having at least
1924 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1925 *
1926 * False positives are OK, because: a) it's unlikely for a folio to
1927 * get that many refcounts, and b) all the callers of this routine are
1928 * expected to be able to deal gracefully with a false positive.
1929 *
1930 * For large folios, the result will be exactly correct. That's because
94688e8e 1931 * we have more tracking data available: the _pincount field is used
0b90ddae
MWO
1932 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1933 *
1934 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1935 *
1936 * Return: True, if it is likely that the page has been "dma-pinned".
1937 * False, if the page is definitely not dma-pinned.
1938 */
1939static inline bool folio_maybe_dma_pinned(struct folio *folio)
1940{
1941 if (folio_test_large(folio))
94688e8e 1942 return atomic_read(&folio->_pincount) > 0;
0b90ddae
MWO
1943
1944 /*
1945 * folio_ref_count() is signed. If that refcount overflows, then
1946 * folio_ref_count() returns a negative value, and callers will avoid
1947 * further incrementing the refcount.
1948 *
1949 * Here, for that overflow case, use the sign bit to count a little
1950 * bit higher via unsigned math, and thus still get an accurate result.
1951 */
1952 return ((unsigned int)folio_ref_count(folio)) >=
1953 GUP_PIN_COUNTING_BIAS;
1954}
1955
1956static inline bool page_maybe_dma_pinned(struct page *page)
1957{
1958 return folio_maybe_dma_pinned(page_folio(page));
1959}
1960
1961/*
1962 * This should most likely only be called during fork() to see whether we
fb3d824d 1963 * should break the cow immediately for an anon page on the src mm.
623a1ddf
DH
1964 *
1965 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
0b90ddae
MWO
1966 */
1967static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1968 struct page *page)
1969{
623a1ddf 1970 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
0b90ddae
MWO
1971
1972 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1973 return false;
1974
1975 return page_maybe_dma_pinned(page);
1976}
1977
c8070b78
DH
1978/**
1979 * is_zero_page - Query if a page is a zero page
1980 * @page: The page to query
1981 *
1982 * This returns true if @page is one of the permanent zero pages.
1983 */
1984static inline bool is_zero_page(const struct page *page)
1985{
1986 return is_zero_pfn(page_to_pfn(page));
1987}
1988
1989/**
1990 * is_zero_folio - Query if a folio is a zero page
1991 * @folio: The folio to query
1992 *
1993 * This returns true if @folio is one of the permanent zero pages.
1994 */
1995static inline bool is_zero_folio(const struct folio *folio)
1996{
1997 return is_zero_page(&folio->page);
1998}
1999
5d949953 2000/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
8e3560d9 2001#ifdef CONFIG_MIGRATION
5d949953 2002static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9 2003{
1c563432 2004#ifdef CONFIG_CMA
5d949953 2005 int mt = folio_migratetype(folio);
1c563432
MK
2006
2007 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2008 return false;
2009#endif
c8070b78 2010 /* The zero page can be "pinned" but gets special handling. */
6e17c6de 2011 if (is_zero_folio(folio))
fcab34b4
AW
2012 return true;
2013
2014 /* Coherent device memory must always allow eviction. */
5d949953 2015 if (folio_is_device_coherent(folio))
fcab34b4
AW
2016 return false;
2017
5d949953
VMO
2018 /* Otherwise, non-movable zone folios can be pinned. */
2019 return !folio_is_zone_movable(folio);
2020
8e3560d9
PT
2021}
2022#else
5d949953 2023static inline bool folio_is_longterm_pinnable(struct folio *folio)
8e3560d9
PT
2024{
2025 return true;
2026}
2027#endif
2028
2f1b6248 2029static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
2030{
2031 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2032 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2033}
2f1b6248 2034
348f8b6c
DH
2035static inline void set_page_node(struct page *page, unsigned long node)
2036{
2037 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2038 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 2039}
89689ae7 2040
2f1b6248 2041static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 2042 unsigned long node, unsigned long pfn)
1da177e4 2043{
348f8b6c
DH
2044 set_page_zone(page, zone);
2045 set_page_node(page, node);
9127ab4f 2046#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 2047 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 2048#endif
1da177e4
LT
2049}
2050
7b230db3
MWO
2051/**
2052 * folio_nr_pages - The number of pages in the folio.
2053 * @folio: The folio.
2054 *
2055 * Return: A positive power of two.
2056 */
2057static inline long folio_nr_pages(struct folio *folio)
2058{
c3a15bff
MWO
2059 if (!folio_test_large(folio))
2060 return 1;
2061#ifdef CONFIG_64BIT
2062 return folio->_folio_nr_pages;
2063#else
ebc1baf5 2064 return 1L << (folio->_flags_1 & 0xff);
c3a15bff 2065#endif
7b230db3
MWO
2066}
2067
21a000fe
MWO
2068/*
2069 * compound_nr() returns the number of pages in this potentially compound
2070 * page. compound_nr() can be called on a tail page, and is defined to
2071 * return 1 in that case.
2072 */
2073static inline unsigned long compound_nr(struct page *page)
2074{
2075 struct folio *folio = (struct folio *)page;
2076
2077 if (!test_bit(PG_head, &folio->flags))
2078 return 1;
2079#ifdef CONFIG_64BIT
2080 return folio->_folio_nr_pages;
2081#else
ebc1baf5 2082 return 1L << (folio->_flags_1 & 0xff);
21a000fe
MWO
2083#endif
2084}
2085
2086/**
2087 * thp_nr_pages - The number of regular pages in this huge page.
2088 * @page: The head page of a huge page.
2089 */
2090static inline int thp_nr_pages(struct page *page)
2091{
2092 return folio_nr_pages((struct folio *)page);
2093}
2094
7b230db3
MWO
2095/**
2096 * folio_next - Move to the next physical folio.
2097 * @folio: The folio we're currently operating on.
2098 *
2099 * If you have physically contiguous memory which may span more than
2100 * one folio (eg a &struct bio_vec), use this function to move from one
2101 * folio to the next. Do not use it if the memory is only virtually
2102 * contiguous as the folios are almost certainly not adjacent to each
2103 * other. This is the folio equivalent to writing ``page++``.
2104 *
2105 * Context: We assume that the folios are refcounted and/or locked at a
2106 * higher level and do not adjust the reference counts.
2107 * Return: The next struct folio.
2108 */
2109static inline struct folio *folio_next(struct folio *folio)
2110{
2111 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2112}
2113
2114/**
2115 * folio_shift - The size of the memory described by this folio.
2116 * @folio: The folio.
2117 *
2118 * A folio represents a number of bytes which is a power-of-two in size.
2119 * This function tells you which power-of-two the folio is. See also
2120 * folio_size() and folio_order().
2121 *
2122 * Context: The caller should have a reference on the folio to prevent
2123 * it from being split. It is not necessary for the folio to be locked.
2124 * Return: The base-2 logarithm of the size of this folio.
2125 */
2126static inline unsigned int folio_shift(struct folio *folio)
2127{
2128 return PAGE_SHIFT + folio_order(folio);
2129}
2130
2131/**
2132 * folio_size - The number of bytes in a folio.
2133 * @folio: The folio.
2134 *
2135 * Context: The caller should have a reference on the folio to prevent
2136 * it from being split. It is not necessary for the folio to be locked.
2137 * Return: The number of bytes in this folio.
2138 */
2139static inline size_t folio_size(struct folio *folio)
2140{
2141 return PAGE_SIZE << folio_order(folio);
2142}
2143
fa4e3f5f
VMO
2144/**
2145 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2146 * @folio: The folio.
2147 *
2148 * folio_estimated_sharers() aims to serve as a function to efficiently
2149 * estimate the number of processes sharing a folio. This is done by
2150 * looking at the precise mapcount of the first subpage in the folio, and
2151 * assuming the other subpages are the same. This may not be true for large
2152 * folios. If you want exact mapcounts for exact calculations, look at
2153 * page_mapcount() or folio_total_mapcount().
2154 *
2155 * Return: The estimated number of processes sharing a folio.
2156 */
2157static inline int folio_estimated_sharers(struct folio *folio)
2158{
2159 return page_mapcount(folio_page(folio, 0));
2160}
2161
b424de33
MWO
2162#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2163static inline int arch_make_page_accessible(struct page *page)
2164{
2165 return 0;
2166}
2167#endif
2168
2169#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2170static inline int arch_make_folio_accessible(struct folio *folio)
2171{
2172 int ret;
2173 long i, nr = folio_nr_pages(folio);
2174
2175 for (i = 0; i < nr; i++) {
2176 ret = arch_make_page_accessible(folio_page(folio, i));
2177 if (ret)
2178 break;
2179 }
2180
2181 return ret;
2182}
2183#endif
2184
f6ac2354
CL
2185/*
2186 * Some inline functions in vmstat.h depend on page_zone()
2187 */
2188#include <linux/vmstat.h>
2189
33dd4e0e 2190static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 2191{
1dff8083 2192 return page_to_virt(page);
1da177e4
LT
2193}
2194
2195#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2196#define HASHED_PAGE_VIRTUAL
2197#endif
2198
2199#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
2200static inline void *page_address(const struct page *page)
2201{
2202 return page->virtual;
2203}
2204static inline void set_page_address(struct page *page, void *address)
2205{
2206 page->virtual = address;
2207}
1da177e4
LT
2208#define page_address_init() do { } while(0)
2209#endif
2210
2211#if defined(HASHED_PAGE_VIRTUAL)
f9918794 2212void *page_address(const struct page *page);
1da177e4
LT
2213void set_page_address(struct page *page, void *virtual);
2214void page_address_init(void);
2215#endif
2216
2217#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2218#define page_address(page) lowmem_page_address(page)
2219#define set_page_address(page, address) do { } while(0)
2220#define page_address_init() do { } while(0)
2221#endif
2222
7d4203c1
VB
2223static inline void *folio_address(const struct folio *folio)
2224{
2225 return page_address(&folio->page);
2226}
2227
f6ab1f7f
HY
2228extern pgoff_t __page_file_index(struct page *page);
2229
1da177e4
LT
2230/*
2231 * Return the pagecache index of the passed page. Regular pagecache pages
f6ab1f7f 2232 * use ->index whereas swapcache pages use swp_offset(->private)
1da177e4
LT
2233 */
2234static inline pgoff_t page_index(struct page *page)
2235{
2236 if (unlikely(PageSwapCache(page)))
f6ab1f7f 2237 return __page_file_index(page);
1da177e4
LT
2238 return page->index;
2239}
2240
2f064f34
MH
2241/*
2242 * Return true only if the page has been allocated with
2243 * ALLOC_NO_WATERMARKS and the low watermark was not
2244 * met implying that the system is under some pressure.
2245 */
1d7bab6a 2246static inline bool page_is_pfmemalloc(const struct page *page)
2f064f34
MH
2247{
2248 /*
c07aea3e
MC
2249 * lru.next has bit 1 set if the page is allocated from the
2250 * pfmemalloc reserves. Callers may simply overwrite it if
2251 * they do not need to preserve that information.
2f064f34 2252 */
c07aea3e 2253 return (uintptr_t)page->lru.next & BIT(1);
2f064f34
MH
2254}
2255
02d65d6f
SK
2256/*
2257 * Return true only if the folio has been allocated with
2258 * ALLOC_NO_WATERMARKS and the low watermark was not
2259 * met implying that the system is under some pressure.
2260 */
2261static inline bool folio_is_pfmemalloc(const struct folio *folio)
2262{
2263 /*
2264 * lru.next has bit 1 set if the page is allocated from the
2265 * pfmemalloc reserves. Callers may simply overwrite it if
2266 * they do not need to preserve that information.
2267 */
2268 return (uintptr_t)folio->lru.next & BIT(1);
2269}
2270
2f064f34
MH
2271/*
2272 * Only to be called by the page allocator on a freshly allocated
2273 * page.
2274 */
2275static inline void set_page_pfmemalloc(struct page *page)
2276{
c07aea3e 2277 page->lru.next = (void *)BIT(1);
2f064f34
MH
2278}
2279
2280static inline void clear_page_pfmemalloc(struct page *page)
2281{
c07aea3e 2282 page->lru.next = NULL;
2f064f34
MH
2283}
2284
1c0fe6e3
NP
2285/*
2286 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2287 */
2288extern void pagefault_out_of_memory(void);
2289
1da177e4 2290#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
ee6c400f 2291#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
7b230db3 2292#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1da177e4 2293
21b85b09
MK
2294/*
2295 * Parameter block passed down to zap_pte_range in exceptional cases.
2296 */
2297struct zap_details {
2298 struct folio *single_folio; /* Locked folio to be unmapped */
2299 bool even_cows; /* Zap COWed private pages too? */
2300 zap_flags_t zap_flags; /* Extra flags for zapping */
2301};
2302
2303/*
2304 * Whether to drop the pte markers, for example, the uffd-wp information for
2305 * file-backed memory. This should only be specified when we will completely
2306 * drop the page in the mm, either by truncation or unmapping of the vma. By
2307 * default, the flag is not set.
2308 */
2309#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
04ada095
MK
2310/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2311#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
21b85b09 2312
af7f588d
MD
2313#ifdef CONFIG_SCHED_MM_CID
2314void sched_mm_cid_before_execve(struct task_struct *t);
2315void sched_mm_cid_after_execve(struct task_struct *t);
2316void sched_mm_cid_fork(struct task_struct *t);
2317void sched_mm_cid_exit_signals(struct task_struct *t);
2318static inline int task_mm_cid(struct task_struct *t)
2319{
2320 return t->mm_cid;
2321}
2322#else
2323static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2324static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2325static inline void sched_mm_cid_fork(struct task_struct *t) { }
2326static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2327static inline int task_mm_cid(struct task_struct *t)
2328{
2329 /*
2330 * Use the processor id as a fall-back when the mm cid feature is
2331 * disabled. This provides functional per-cpu data structure accesses
2332 * in user-space, althrough it won't provide the memory usage benefits.
2333 */
2334 return raw_smp_processor_id();
2335}
2336#endif
2337
710ec38b 2338#ifdef CONFIG_MMU
7f43add4 2339extern bool can_do_mlock(void);
710ec38b
AB
2340#else
2341static inline bool can_do_mlock(void) { return false; }
2342#endif
d7c9e99a
AG
2343extern int user_shm_lock(size_t, struct ucounts *);
2344extern void user_shm_unlock(size_t, struct ucounts *);
1da177e4 2345
318e9342
VMO
2346struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2347 pte_t pte);
25b2995a
CH
2348struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2349 pte_t pte);
65610453
KW
2350struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2351 unsigned long addr, pmd_t pmd);
28093f9f
GS
2352struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2353 pmd_t pmd);
7e675137 2354
27d036e3
LR
2355void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2356 unsigned long size);
21b85b09
MK
2357void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2358 unsigned long size, struct zap_details *details);
e9adcfec
MK
2359static inline void zap_vma_pages(struct vm_area_struct *vma)
2360{
2361 zap_page_range_single(vma, vma->vm_start,
2362 vma->vm_end - vma->vm_start, NULL);
2363}
fd892593 2364void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
763ecb03 2365 struct vm_area_struct *start_vma, unsigned long start,
fd892593 2366 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
e6473092 2367
ac46d4f3
JG
2368struct mmu_notifier_range;
2369
42b77728 2370void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 2371 unsigned long end, unsigned long floor, unsigned long ceiling);
c78f4636
PX
2372int
2373copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
ff5c19ed 2374int follow_pte(struct mm_struct *mm, unsigned long address,
9fd6dad1 2375 pte_t **ptepp, spinlock_t **ptlp);
3b6748e2
JW
2376int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2377 unsigned long *pfn);
d87fe660 2378int follow_phys(struct vm_area_struct *vma, unsigned long address,
2379 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
2380int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2381 void *buf, int len, int write);
1da177e4 2382
7caef267 2383extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 2384extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 2385void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 2386void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
af7628d6
MWO
2387int generic_error_remove_folio(struct address_space *mapping,
2388 struct folio *folio);
83f78668 2389
d85a143b
LT
2390struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2391 unsigned long address, struct pt_regs *regs);
2392
7ee1dd3f 2393#ifdef CONFIG_MMU
2b740303 2394extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2395 unsigned long address, unsigned int flags,
2396 struct pt_regs *regs);
64019a2e 2397extern int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
2398 unsigned long address, unsigned int fault_flags,
2399 bool *unlocked);
977fbdcd
MW
2400void unmap_mapping_pages(struct address_space *mapping,
2401 pgoff_t start, pgoff_t nr, bool even_cows);
2402void unmap_mapping_range(struct address_space *mapping,
2403 loff_t const holebegin, loff_t const holelen, int even_cows);
7ee1dd3f 2404#else
2b740303 2405static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
bce617ed
PX
2406 unsigned long address, unsigned int flags,
2407 struct pt_regs *regs)
7ee1dd3f
DH
2408{
2409 /* should never happen if there's no MMU */
2410 BUG();
2411 return VM_FAULT_SIGBUS;
2412}
64019a2e 2413static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
4a9e1cda 2414 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
2415{
2416 /* should never happen if there's no MMU */
2417 BUG();
2418 return -EFAULT;
2419}
977fbdcd
MW
2420static inline void unmap_mapping_pages(struct address_space *mapping,
2421 pgoff_t start, pgoff_t nr, bool even_cows) { }
2422static inline void unmap_mapping_range(struct address_space *mapping,
2423 loff_t const holebegin, loff_t const holelen, int even_cows) { }
7ee1dd3f 2424#endif
f33ea7f4 2425
977fbdcd
MW
2426static inline void unmap_shared_mapping_range(struct address_space *mapping,
2427 loff_t const holebegin, loff_t const holelen)
2428{
2429 unmap_mapping_range(mapping, holebegin, holelen, 0);
2430}
2431
ca5e8632
LS
2432static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2433 unsigned long addr);
2434
977fbdcd
MW
2435extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2436 void *buf, int len, unsigned int gup_flags);
5ddd36b9 2437extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 2438 void *buf, int len, unsigned int gup_flags);
1da177e4 2439
64019a2e 2440long get_user_pages_remote(struct mm_struct *mm,
ca5e8632
LS
2441 unsigned long start, unsigned long nr_pages,
2442 unsigned int gup_flags, struct page **pages,
2443 int *locked);
64019a2e 2444long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2445 unsigned long start, unsigned long nr_pages,
2446 unsigned int gup_flags, struct page **pages,
0b295316 2447 int *locked);
ca5e8632 2448
6a1960b8
LS
2449/*
2450 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2451 */
ca5e8632
LS
2452static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2453 unsigned long addr,
2454 int gup_flags,
2455 struct vm_area_struct **vmap)
2456{
2457 struct page *page;
2458 struct vm_area_struct *vma;
6a1960b8
LS
2459 int got;
2460
2461 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2462 return ERR_PTR(-EINVAL);
2463
2464 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
ca5e8632
LS
2465
2466 if (got < 0)
2467 return ERR_PTR(got);
ca5e8632
LS
2468
2469 vma = vma_lookup(mm, addr);
2470 if (WARN_ON_ONCE(!vma)) {
2471 put_page(page);
2472 return ERR_PTR(-EINVAL);
2473 }
2474
2475 *vmap = vma;
2476 return page;
2477}
2478
c12d2da5 2479long get_user_pages(unsigned long start, unsigned long nr_pages,
54d02069 2480 unsigned int gup_flags, struct page **pages);
eddb1c22 2481long pin_user_pages(unsigned long start, unsigned long nr_pages,
4c630f30 2482 unsigned int gup_flags, struct page **pages);
c12d2da5 2483long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 2484 struct page **pages, unsigned int gup_flags);
91429023
JH
2485long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2486 struct page **pages, unsigned int gup_flags);
9a4e9f3b 2487
73b0140b
IW
2488int get_user_pages_fast(unsigned long start, int nr_pages,
2489 unsigned int gup_flags, struct page **pages);
eddb1c22
JH
2490int pin_user_pages_fast(unsigned long start, int nr_pages,
2491 unsigned int gup_flags, struct page **pages);
1101fb8f 2492void folio_add_pin(struct folio *folio);
8025e5dd 2493
79eb597c
DJ
2494int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2495int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2496 struct task_struct *task, bool bypass_rlim);
2497
18022c5d 2498struct kvec;
f3e8fccd 2499struct page *get_dump_page(unsigned long addr);
1da177e4 2500
b5e84594
MWO
2501bool folio_mark_dirty(struct folio *folio);
2502bool set_page_dirty(struct page *page);
1da177e4 2503int set_page_dirty_lock(struct page *page);
b9ea2515 2504
a9090253 2505int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 2506
b6a2fea3
OW
2507extern unsigned long move_page_tables(struct vm_area_struct *vma,
2508 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013 2509 unsigned long new_addr, unsigned long len,
b1e5a3de 2510 bool need_rmap_locks, bool for_stack);
58705444
PX
2511
2512/*
2513 * Flags used by change_protection(). For now we make it a bitmap so
2514 * that we can pass in multiple flags just like parameters. However
2515 * for now all the callers are only use one of the flags at the same
2516 * time.
2517 */
64fe24a3
DH
2518/*
2519 * Whether we should manually check if we can map individual PTEs writable,
2520 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2521 * PTEs automatically in a writable mapping.
2522 */
2523#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
58705444
PX
2524/* Whether this protection change is for NUMA hints */
2525#define MM_CP_PROT_NUMA (1UL << 1)
292924b2
PX
2526/* Whether this change is for write protecting */
2527#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2528#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2529#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2530 MM_CP_UFFD_WP_RESOLVE)
58705444 2531
54cbbbf3 2532bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
eb309ec8
DH
2533int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2534static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2535{
2536 /*
2537 * We want to check manually if we can change individual PTEs writable
2538 * if we can't do that automatically for all PTEs in a mapping. For
2539 * private mappings, that's always the case when we have write
2540 * permissions as we properly have to handle COW.
2541 */
2542 if (vma->vm_flags & VM_SHARED)
2543 return vma_wants_writenotify(vma, vma->vm_page_prot);
2544 return !!(vma->vm_flags & VM_WRITE);
2545
2546}
6a56ccbc
DH
2547bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2548 pte_t pte);
a79390f5 2549extern long change_protection(struct mmu_gather *tlb,
4a18419f 2550 struct vm_area_struct *vma, unsigned long start,
1ef488ed 2551 unsigned long end, unsigned long cp_flags);
2286a691
LH
2552extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2553 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2554 unsigned long start, unsigned long end, unsigned long newflags);
1da177e4 2555
465a454f
PZ
2556/*
2557 * doesn't attempt to fault and will return short.
2558 */
dadbb612
SJ
2559int get_user_pages_fast_only(unsigned long start, int nr_pages,
2560 unsigned int gup_flags, struct page **pages);
dadbb612
SJ
2561
2562static inline bool get_user_page_fast_only(unsigned long addr,
2563 unsigned int gup_flags, struct page **pagep)
2564{
2565 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2566}
d559db08
KH
2567/*
2568 * per-process(per-mm_struct) statistics.
2569 */
d559db08
KH
2570static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2571{
f1a79412 2572 return percpu_counter_read_positive(&mm->rss_stat[member]);
69c97823 2573}
d559db08 2574
f1a79412 2575void mm_trace_rss_stat(struct mm_struct *mm, int member);
b3d1411b 2576
d559db08
KH
2577static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2578{
f1a79412 2579 percpu_counter_add(&mm->rss_stat[member], value);
b3d1411b 2580
f1a79412 2581 mm_trace_rss_stat(mm, member);
d559db08
KH
2582}
2583
2584static inline void inc_mm_counter(struct mm_struct *mm, int member)
2585{
f1a79412 2586 percpu_counter_inc(&mm->rss_stat[member]);
b3d1411b 2587
f1a79412 2588 mm_trace_rss_stat(mm, member);
d559db08
KH
2589}
2590
2591static inline void dec_mm_counter(struct mm_struct *mm, int member)
2592{
f1a79412 2593 percpu_counter_dec(&mm->rss_stat[member]);
b3d1411b 2594
f1a79412 2595 mm_trace_rss_stat(mm, member);
d559db08
KH
2596}
2597
eca56ff9
JM
2598/* Optimized variant when page is already known not to be PageAnon */
2599static inline int mm_counter_file(struct page *page)
2600{
2601 if (PageSwapBacked(page))
2602 return MM_SHMEMPAGES;
2603 return MM_FILEPAGES;
2604}
2605
2606static inline int mm_counter(struct page *page)
2607{
2608 if (PageAnon(page))
2609 return MM_ANONPAGES;
2610 return mm_counter_file(page);
2611}
2612
d559db08
KH
2613static inline unsigned long get_mm_rss(struct mm_struct *mm)
2614{
2615 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
2616 get_mm_counter(mm, MM_ANONPAGES) +
2617 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
2618}
2619
2620static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2621{
2622 return max(mm->hiwater_rss, get_mm_rss(mm));
2623}
2624
2625static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2626{
2627 return max(mm->hiwater_vm, mm->total_vm);
2628}
2629
2630static inline void update_hiwater_rss(struct mm_struct *mm)
2631{
2632 unsigned long _rss = get_mm_rss(mm);
2633
2634 if ((mm)->hiwater_rss < _rss)
2635 (mm)->hiwater_rss = _rss;
2636}
2637
2638static inline void update_hiwater_vm(struct mm_struct *mm)
2639{
2640 if (mm->hiwater_vm < mm->total_vm)
2641 mm->hiwater_vm = mm->total_vm;
2642}
2643
695f0559
PC
2644static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2645{
2646 mm->hiwater_rss = get_mm_rss(mm);
2647}
2648
d559db08
KH
2649static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2650 struct mm_struct *mm)
2651{
2652 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2653
2654 if (*maxrss < hiwater_rss)
2655 *maxrss = hiwater_rss;
2656}
2657
78e7c5af
AK
2658#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2659static inline int pte_special(pte_t pte)
2660{
2661 return 0;
2662}
2663
2664static inline pte_t pte_mkspecial(pte_t pte)
2665{
2666 return pte;
2667}
2668#endif
2669
17596731 2670#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
3565fce3
DW
2671static inline int pte_devmap(pte_t pte)
2672{
2673 return 0;
2674}
2675#endif
2676
25ca1d6c
NK
2677extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2678 spinlock_t **ptl);
2679static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2680 spinlock_t **ptl)
2681{
2682 pte_t *ptep;
2683 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2684 return ptep;
2685}
c9cfcddf 2686
c2febafc
KS
2687#ifdef __PAGETABLE_P4D_FOLDED
2688static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2689 unsigned long address)
2690{
2691 return 0;
2692}
2693#else
2694int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2695#endif
2696
b4e98d9a 2697#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
c2febafc 2698static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
5f22df00
NP
2699 unsigned long address)
2700{
2701 return 0;
2702}
b4e98d9a
KS
2703static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2704static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2705
5f22df00 2706#else
c2febafc 2707int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
b4e98d9a 2708
b4e98d9a
KS
2709static inline void mm_inc_nr_puds(struct mm_struct *mm)
2710{
6d212db1
MS
2711 if (mm_pud_folded(mm))
2712 return;
af5b0f6a 2713 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a
KS
2714}
2715
2716static inline void mm_dec_nr_puds(struct mm_struct *mm)
2717{
6d212db1
MS
2718 if (mm_pud_folded(mm))
2719 return;
af5b0f6a 2720 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
b4e98d9a 2721}
5f22df00
NP
2722#endif
2723
2d2f5119 2724#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
2725static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2726 unsigned long address)
2727{
2728 return 0;
2729}
dc6c9a35 2730
dc6c9a35
KS
2731static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2732static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2733
5f22df00 2734#else
1bb3630e 2735int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 2736
dc6c9a35
KS
2737static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2738{
6d212db1
MS
2739 if (mm_pmd_folded(mm))
2740 return;
af5b0f6a 2741 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35
KS
2742}
2743
2744static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2745{
6d212db1
MS
2746 if (mm_pmd_folded(mm))
2747 return;
af5b0f6a 2748 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
dc6c9a35 2749}
5f22df00
NP
2750#endif
2751
c4812909 2752#ifdef CONFIG_MMU
af5b0f6a 2753static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
c4812909 2754{
af5b0f6a 2755 atomic_long_set(&mm->pgtables_bytes, 0);
c4812909
KS
2756}
2757
af5b0f6a 2758static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909 2759{
af5b0f6a 2760 return atomic_long_read(&mm->pgtables_bytes);
c4812909
KS
2761}
2762
2763static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2764{
af5b0f6a 2765 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2766}
2767
2768static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2769{
af5b0f6a 2770 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
c4812909
KS
2771}
2772#else
c4812909 2773
af5b0f6a
KS
2774static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2775static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
c4812909
KS
2776{
2777 return 0;
2778}
2779
2780static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2781static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2782#endif
2783
4cf58924
JFG
2784int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2785int __pte_alloc_kernel(pmd_t *pmd);
1bb3630e 2786
f949286c
MR
2787#if defined(CONFIG_MMU)
2788
c2febafc
KS
2789static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2790 unsigned long address)
2791{
2792 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2793 NULL : p4d_offset(pgd, address);
2794}
2795
2796static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2797 unsigned long address)
1da177e4 2798{
c2febafc
KS
2799 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2800 NULL : pud_offset(p4d, address);
1da177e4 2801}
d8626138 2802
1da177e4
LT
2803static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2804{
1bb3630e
HD
2805 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2806 NULL: pmd_offset(pud, address);
1da177e4 2807}
f949286c 2808#endif /* CONFIG_MMU */
1bb3630e 2809
bf2d4334
VMO
2810static inline struct ptdesc *virt_to_ptdesc(const void *x)
2811{
2812 return page_ptdesc(virt_to_page(x));
2813}
2814
2815static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2816{
2817 return page_to_virt(ptdesc_page(pt));
2818}
2819
2820static inline void *ptdesc_address(const struct ptdesc *pt)
2821{
2822 return folio_address(ptdesc_folio(pt));
2823}
2824
2825static inline bool pagetable_is_reserved(struct ptdesc *pt)
2826{
2827 return folio_test_reserved(ptdesc_folio(pt));
2828}
2829
2830/**
2831 * pagetable_alloc - Allocate pagetables
2832 * @gfp: GFP flags
2833 * @order: desired pagetable order
2834 *
2835 * pagetable_alloc allocates memory for page tables as well as a page table
2836 * descriptor to describe that memory.
2837 *
2838 * Return: The ptdesc describing the allocated page tables.
2839 */
2840static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2841{
2842 struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2843
2844 return page_ptdesc(page);
2845}
2846
2847/**
2848 * pagetable_free - Free pagetables
2849 * @pt: The page table descriptor
2850 *
2851 * pagetable_free frees the memory of all page tables described by a page
2852 * table descriptor and the memory for the descriptor itself.
2853 */
2854static inline void pagetable_free(struct ptdesc *pt)
2855{
2856 struct page *page = ptdesc_page(pt);
2857
2858 __free_pages(page, compound_order(page));
2859}
2860
57c1ffce 2861#if USE_SPLIT_PTE_PTLOCKS
597d795a 2862#if ALLOC_SPLIT_PTLOCKS
b35f1819 2863void __init ptlock_cache_init(void);
f5ecca06 2864bool ptlock_alloc(struct ptdesc *ptdesc);
6ed1b8a0 2865void ptlock_free(struct ptdesc *ptdesc);
539edb58 2866
1865484a 2867static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
539edb58 2868{
1865484a 2869 return ptdesc->ptl;
539edb58 2870}
597d795a 2871#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
2872static inline void ptlock_cache_init(void)
2873{
2874}
2875
f5ecca06 2876static inline bool ptlock_alloc(struct ptdesc *ptdesc)
49076ec2 2877{
49076ec2
KS
2878 return true;
2879}
539edb58 2880
6ed1b8a0 2881static inline void ptlock_free(struct ptdesc *ptdesc)
49076ec2 2882{
49076ec2
KS
2883}
2884
1865484a 2885static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
49076ec2 2886{
1865484a 2887 return &ptdesc->ptl;
49076ec2 2888}
597d795a 2889#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
2890
2891static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2892{
1865484a 2893 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
49076ec2
KS
2894}
2895
75b25d49 2896static inline bool ptlock_init(struct ptdesc *ptdesc)
49076ec2
KS
2897{
2898 /*
2899 * prep_new_page() initialize page->private (and therefore page->ptl)
2900 * with 0. Make sure nobody took it in use in between.
2901 *
2902 * It can happen if arch try to use slab for page table allocation:
1d798ca3 2903 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 2904 */
75b25d49
VMO
2905 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2906 if (!ptlock_alloc(ptdesc))
49076ec2 2907 return false;
75b25d49 2908 spin_lock_init(ptlock_ptr(ptdesc));
49076ec2
KS
2909 return true;
2910}
2911
57c1ffce 2912#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
2913/*
2914 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2915 */
49076ec2
KS
2916static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2917{
2918 return &mm->page_table_lock;
2919}
b35f1819 2920static inline void ptlock_cache_init(void) {}
75b25d49 2921static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
6ed1b8a0 2922static inline void ptlock_free(struct ptdesc *ptdesc) {}
57c1ffce 2923#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 2924
7e11dca1 2925static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2f569afd 2926{
7e11dca1
VMO
2927 struct folio *folio = ptdesc_folio(ptdesc);
2928
2929 if (!ptlock_init(ptdesc))
706874e9 2930 return false;
7e11dca1
VMO
2931 __folio_set_pgtable(folio);
2932 lruvec_stat_add_folio(folio, NR_PAGETABLE);
706874e9 2933 return true;
2f569afd
MS
2934}
2935
7e11dca1
VMO
2936static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2937{
2938 struct folio *folio = ptdesc_folio(ptdesc);
2939
2940 ptlock_free(ptdesc);
2941 __folio_clear_pgtable(folio);
2942 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2943}
2944
0d940a9b
HD
2945pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2946static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2947{
2948 return __pte_offset_map(pmd, addr, NULL);
2949}
2950
2951pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2952 unsigned long addr, spinlock_t **ptlp);
2953static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2954 unsigned long addr, spinlock_t **ptlp)
2955{
2956 pte_t *pte;
2957
2958 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2959 return pte;
2960}
2961
2962pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2963 unsigned long addr, spinlock_t **ptlp);
c74df32c
HD
2964
2965#define pte_unmap_unlock(pte, ptl) do { \
2966 spin_unlock(ptl); \
2967 pte_unmap(pte); \
2968} while (0)
2969
4cf58924 2970#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3ed3a4f0
KS
2971
2972#define pte_alloc_map(mm, pmd, address) \
4cf58924 2973 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1bb3630e 2974
c74df32c 2975#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
4cf58924 2976 (pte_alloc(mm, pmd) ? \
3ed3a4f0 2977 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 2978
1bb3630e 2979#define pte_alloc_kernel(pmd, address) \
4cf58924 2980 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1bb3630e 2981 NULL: pte_offset_kernel(pmd, address))
1da177e4 2982
e009bb30
KS
2983#if USE_SPLIT_PMD_PTLOCKS
2984
7e25de77 2985static inline struct page *pmd_pgtable_page(pmd_t *pmd)
634391ac
MS
2986{
2987 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2988 return virt_to_page((void *)((unsigned long) pmd & mask));
2989}
2990
bf2d4334
VMO
2991static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2992{
2993 return page_ptdesc(pmd_pgtable_page(pmd));
2994}
2995
e009bb30
KS
2996static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2997{
1865484a 2998 return ptlock_ptr(pmd_ptdesc(pmd));
e009bb30
KS
2999}
3000
edbaefe5 3001static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
e009bb30 3002{
e009bb30 3003#ifdef CONFIG_TRANSPARENT_HUGEPAGE
edbaefe5 3004 ptdesc->pmd_huge_pte = NULL;
e009bb30 3005#endif
75b25d49 3006 return ptlock_init(ptdesc);
e009bb30
KS
3007}
3008
7e5f42ae 3009static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
e009bb30
KS
3010{
3011#ifdef CONFIG_TRANSPARENT_HUGEPAGE
7e5f42ae 3012 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
e009bb30 3013#endif
6ed1b8a0 3014 ptlock_free(ptdesc);
e009bb30
KS
3015}
3016
f8546d84 3017#define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
e009bb30
KS
3018
3019#else
3020
9a86cb7b
KS
3021static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3022{
3023 return &mm->page_table_lock;
3024}
3025
edbaefe5 3026static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
7e5f42ae 3027static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
e009bb30 3028
c389a250 3029#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 3030
e009bb30
KS
3031#endif
3032
9a86cb7b
KS
3033static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3034{
3035 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3036 spin_lock(ptl);
3037 return ptl;
3038}
3039
7e11dca1 3040static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
b2b29d6d 3041{
7e11dca1
VMO
3042 struct folio *folio = ptdesc_folio(ptdesc);
3043
3044 if (!pmd_ptlock_init(ptdesc))
b2b29d6d 3045 return false;
7e11dca1
VMO
3046 __folio_set_pgtable(folio);
3047 lruvec_stat_add_folio(folio, NR_PAGETABLE);
b2b29d6d
MW
3048 return true;
3049}
3050
7e11dca1
VMO
3051static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3052{
3053 struct folio *folio = ptdesc_folio(ptdesc);
3054
3055 pmd_ptlock_free(ptdesc);
3056 __folio_clear_pgtable(folio);
3057 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3058}
3059
a00cc7d9
MW
3060/*
3061 * No scalability reason to split PUD locks yet, but follow the same pattern
3062 * as the PMD locks to make it easier if we decide to. The VM should not be
3063 * considered ready to switch to split PUD locks yet; there may be places
3064 * which need to be converted from page_table_lock.
3065 */
3066static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3067{
3068 return &mm->page_table_lock;
3069}
3070
3071static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3072{
3073 spinlock_t *ptl = pud_lockptr(mm, pud);
3074
3075 spin_lock(ptl);
3076 return ptl;
3077}
62906027 3078
55d2a0bd
BW
3079static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3080{
3081 struct folio *folio = ptdesc_folio(ptdesc);
3082
3083 __folio_set_pgtable(folio);
3084 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3085}
3086
3087static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3088{
3089 struct folio *folio = ptdesc_folio(ptdesc);
3090
3091 __folio_clear_pgtable(folio);
3092 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3093}
3094
a00cc7d9 3095extern void __init pagecache_init(void);
49a7f04a
DH
3096extern void free_initmem(void);
3097
69afade7
JL
3098/*
3099 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3100 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 3101 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
3102 * Return pages freed into the buddy system.
3103 */
11199692 3104extern unsigned long free_reserved_area(void *start, void *end,
e5cb113f 3105 int poison, const char *s);
c3d5f5f0 3106
c3d5f5f0 3107extern void adjust_managed_page_count(struct page *page, long count);
69afade7 3108
61167ad5
YD
3109extern void reserve_bootmem_region(phys_addr_t start,
3110 phys_addr_t end, int nid);
92923ca3 3111
69afade7 3112/* Free the reserved page into the buddy system, so it gets managed. */
a0cd7a7c 3113static inline void free_reserved_page(struct page *page)
69afade7
JL
3114{
3115 ClearPageReserved(page);
3116 init_page_count(page);
3117 __free_page(page);
69afade7
JL
3118 adjust_managed_page_count(page, 1);
3119}
a0cd7a7c 3120#define free_highmem_page(page) free_reserved_page(page)
69afade7
JL
3121
3122static inline void mark_page_reserved(struct page *page)
3123{
3124 SetPageReserved(page);
3125 adjust_managed_page_count(page, -1);
3126}
3127
bf2d4334
VMO
3128static inline void free_reserved_ptdesc(struct ptdesc *pt)
3129{
3130 free_reserved_page(ptdesc_page(pt));
3131}
3132
69afade7
JL
3133/*
3134 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
3135 * The freed pages will be poisoned with pattern "poison" if it's within
3136 * range [0, UCHAR_MAX].
3137 * Return pages freed into the buddy system.
69afade7
JL
3138 */
3139static inline unsigned long free_initmem_default(int poison)
3140{
3141 extern char __init_begin[], __init_end[];
3142
11199692 3143 return free_reserved_area(&__init_begin, &__init_end,
c5a54c70 3144 poison, "unused kernel image (initmem)");
69afade7
JL
3145}
3146
7ee3d4e8
JL
3147static inline unsigned long get_num_physpages(void)
3148{
3149 int nid;
3150 unsigned long phys_pages = 0;
3151
3152 for_each_online_node(nid)
3153 phys_pages += node_present_pages(nid);
3154
3155 return phys_pages;
3156}
3157
c713216d 3158/*
3f08a302 3159 * Using memblock node mappings, an architecture may initialise its
bc9331a1
MR
3160 * zones, allocate the backing mem_map and account for memory holes in an
3161 * architecture independent manner.
c713216d
MG
3162 *
3163 * An architecture is expected to register range of page frames backed by
0ee332c1 3164 * physical memory with memblock_add[_node]() before calling
9691a071 3165 * free_area_init() passing in the PFN each zone ends at. At a basic
c713216d
MG
3166 * usage, an architecture is expected to do something like
3167 *
3168 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3169 * max_highmem_pfn};
3170 * for_each_valid_physical_page_range()
952eea9b 3171 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
9691a071 3172 * free_area_init(max_zone_pfns);
c713216d 3173 */
9691a071 3174void free_area_init(unsigned long *max_zone_pfn);
1e01979c 3175unsigned long node_map_pfn_alignment(void);
32996250
YL
3176unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3177 unsigned long end_pfn);
c713216d
MG
3178extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3179 unsigned long end_pfn);
3180extern void get_pfn_range_for_nid(unsigned int nid,
3181 unsigned long *start_pfn, unsigned long *end_pfn);
f2dbcfa7 3182
a9ee6cf5 3183#ifndef CONFIG_NUMA
6f24fbd3 3184static inline int early_pfn_to_nid(unsigned long pfn)
f2dbcfa7
KH
3185{
3186 return 0;
3187}
3188#else
3189/* please see mm/page_alloc.c */
3190extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7
KH
3191#endif
3192
0e0b864e 3193extern void set_dma_reserve(unsigned long new_dma_reserve);
1da177e4 3194extern void mem_init(void);
8feae131 3195extern void __init mmap_init(void);
974f4367
MH
3196
3197extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
527ed4f7 3198static inline void show_mem(void)
974f4367 3199{
527ed4f7 3200 __show_mem(0, NULL, MAX_NR_ZONES - 1);
974f4367 3201}
d02bd27b 3202extern long si_mem_available(void);
1da177e4
LT
3203extern void si_meminfo(struct sysinfo * val);
3204extern void si_meminfo_node(struct sysinfo *val, int nid);
f6f34b43
SD
3205#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3206extern unsigned long arch_reserved_kernel_pages(void);
3207#endif
1da177e4 3208
a8e99259
MH
3209extern __printf(3, 4)
3210void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
a238ab5b 3211
e7c8d5c9 3212extern void setup_per_cpu_pageset(void);
e7c8d5c9 3213
8feae131 3214/* nommu.c */
33e5d769 3215extern atomic_long_t mmap_pages_allocated;
7e660872 3216extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 3217
6b2dbba8 3218/* interval_tree.c */
6b2dbba8 3219void vma_interval_tree_insert(struct vm_area_struct *node,
f808c13f 3220 struct rb_root_cached *root);
9826a516
ML
3221void vma_interval_tree_insert_after(struct vm_area_struct *node,
3222 struct vm_area_struct *prev,
f808c13f 3223 struct rb_root_cached *root);
6b2dbba8 3224void vma_interval_tree_remove(struct vm_area_struct *node,
f808c13f
DB
3225 struct rb_root_cached *root);
3226struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
6b2dbba8
ML
3227 unsigned long start, unsigned long last);
3228struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3229 unsigned long start, unsigned long last);
3230
3231#define vma_interval_tree_foreach(vma, root, start, last) \
3232 for (vma = vma_interval_tree_iter_first(root, start, last); \
3233 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 3234
bf181b9f 3235void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
f808c13f 3236 struct rb_root_cached *root);
bf181b9f 3237void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
f808c13f
DB
3238 struct rb_root_cached *root);
3239struct anon_vma_chain *
3240anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3241 unsigned long start, unsigned long last);
bf181b9f
ML
3242struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3243 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
3244#ifdef CONFIG_DEBUG_VM_RB
3245void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3246#endif
bf181b9f
ML
3247
3248#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3249 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3250 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3251
1da177e4 3252/* mmap.c */
34b4e4aa 3253extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
7c9813e8
LH
3254extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3255 unsigned long start, unsigned long end, pgoff_t pgoff,
3256 struct vm_area_struct *next);
cf51e86d
LH
3257extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3258 unsigned long start, unsigned long end, pgoff_t pgoff);
1da177e4 3259extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1da177e4 3260extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
a8fb5618 3261extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 3262extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
3263 unsigned long addr, unsigned long len, pgoff_t pgoff,
3264 bool *need_rmap_locks);
1da177e4 3265extern void exit_mmap(struct mm_struct *);
94d7d923
LS
3266struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3267 struct vm_area_struct *prev,
3268 struct vm_area_struct *vma,
3269 unsigned long start, unsigned long end,
3270 unsigned long vm_flags,
3271 struct mempolicy *policy,
3272 struct vm_userfaultfd_ctx uffd_ctx,
3273 struct anon_vma_name *anon_name);
3274
3275/* We are about to modify the VMA's flags. */
3276static inline struct vm_area_struct
3277*vma_modify_flags(struct vma_iterator *vmi,
3278 struct vm_area_struct *prev,
3279 struct vm_area_struct *vma,
3280 unsigned long start, unsigned long end,
3281 unsigned long new_flags)
3282{
3283 return vma_modify(vmi, prev, vma, start, end, new_flags,
3284 vma_policy(vma), vma->vm_userfaultfd_ctx,
3285 anon_vma_name(vma));
3286}
3287
3288/* We are about to modify the VMA's flags and/or anon_name. */
3289static inline struct vm_area_struct
3290*vma_modify_flags_name(struct vma_iterator *vmi,
3291 struct vm_area_struct *prev,
3292 struct vm_area_struct *vma,
3293 unsigned long start,
3294 unsigned long end,
3295 unsigned long new_flags,
3296 struct anon_vma_name *new_name)
3297{
3298 return vma_modify(vmi, prev, vma, start, end, new_flags,
3299 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3300}
3301
3302/* We are about to modify the VMA's memory policy. */
3303static inline struct vm_area_struct
3304*vma_modify_policy(struct vma_iterator *vmi,
3305 struct vm_area_struct *prev,
3306 struct vm_area_struct *vma,
3307 unsigned long start, unsigned long end,
3308 struct mempolicy *new_pol)
3309{
3310 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3311 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3312}
3313
3314/* We are about to modify the VMA's flags and/or uffd context. */
3315static inline struct vm_area_struct
3316*vma_modify_flags_uffd(struct vma_iterator *vmi,
3317 struct vm_area_struct *prev,
3318 struct vm_area_struct *vma,
3319 unsigned long start, unsigned long end,
3320 unsigned long new_flags,
3321 struct vm_userfaultfd_ctx new_ctx)
3322{
3323 return vma_modify(vmi, prev, vma, start, end, new_flags,
3324 vma_policy(vma), new_ctx, anon_vma_name(vma));
3325}
925d1c40 3326
9c599024
CG
3327static inline int check_data_rlimit(unsigned long rlim,
3328 unsigned long new,
3329 unsigned long start,
3330 unsigned long end_data,
3331 unsigned long start_data)
3332{
3333 if (rlim < RLIM_INFINITY) {
3334 if (((new - start) + (end_data - start_data)) > rlim)
3335 return -ENOSPC;
3336 }
3337
3338 return 0;
3339}
3340
7906d00c
AA
3341extern int mm_take_all_locks(struct mm_struct *mm);
3342extern void mm_drop_all_locks(struct mm_struct *mm);
3343
fe69d560 3344extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
35d7bdc8 3345extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
38646013 3346extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 3347extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 3348
84638335
KK
3349extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3350extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3351
2eefd878
DS
3352extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3353 const struct vm_special_mapping *sm);
3935ed6a
SS
3354extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3355 unsigned long addr, unsigned long len,
a62c34bd
AL
3356 unsigned long flags,
3357 const struct vm_special_mapping *spec);
3358/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
3359extern int install_special_mapping(struct mm_struct *mm,
3360 unsigned long addr, unsigned long len,
3361 unsigned long flags, struct page **pages);
1da177e4 3362
649775be 3363unsigned long randomize_stack_top(unsigned long stack_top);
5ad7dd88 3364unsigned long randomize_page(unsigned long start, unsigned long range);
649775be 3365
1da177e4
LT
3366extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3367
0165ab44 3368extern unsigned long mmap_region(struct file *file, unsigned long addr,
897ab3e0
MR
3369 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3370 struct list_head *uf);
1fcfd8db 3371extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 3372 unsigned long len, unsigned long prot, unsigned long flags,
592b5fad
YY
3373 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3374 struct list_head *uf);
183654ce 3375extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
11f9a21a 3376 unsigned long start, size_t len, struct list_head *uf,
408579cd 3377 bool unlock);
897ab3e0
MR
3378extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3379 struct list_head *uf);
0726b01e 3380extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
1da177e4 3381
bebeb3d6 3382#ifdef CONFIG_MMU
27b26701
LH
3383extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3384 unsigned long start, unsigned long end,
408579cd 3385 struct list_head *uf, bool unlock);
bebeb3d6
ML
3386extern int __mm_populate(unsigned long addr, unsigned long len,
3387 int ignore_errors);
3388static inline void mm_populate(unsigned long addr, unsigned long len)
3389{
3390 /* Ignore errors */
3391 (void) __mm_populate(addr, len, 1);
3392}
3393#else
3394static inline void mm_populate(unsigned long addr, unsigned long len) {}
3395#endif
3396
2632bb84 3397/* This takes the mm semaphore itself */
16e72e9b 3398extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
bfce281c 3399extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 3400extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
3401 unsigned long, unsigned long,
3402 unsigned long, unsigned long);
1da177e4 3403
db4fbfb9
ML
3404struct vm_unmapped_area_info {
3405#define VM_UNMAPPED_AREA_TOPDOWN 1
3406 unsigned long flags;
3407 unsigned long length;
3408 unsigned long low_limit;
3409 unsigned long high_limit;
3410 unsigned long align_mask;
3411 unsigned long align_offset;
3412};
3413
baceaf1c 3414extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
db4fbfb9 3415
85821aab 3416/* truncate.c */
1da177e4 3417extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
3418extern void truncate_inode_pages_range(struct address_space *,
3419 loff_t lstart, loff_t lend);
91b0abe3 3420extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
3421
3422/* generic vm_area_ops exported for stackable file systems */
2bcd6454 3423extern vm_fault_t filemap_fault(struct vm_fault *vmf);
f9ce0be7 3424extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
bae473a4 3425 pgoff_t start_pgoff, pgoff_t end_pgoff);
2bcd6454 3426extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
1da177e4 3427
1be7107f 3428extern unsigned long stack_guard_gap;
d05f3169 3429/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
8d7071af
LT
3430int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3431struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
d05f3169 3432
11192337 3433/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
8d7071af 3434int expand_downwards(struct vm_area_struct *vma, unsigned long address);
1da177e4
LT
3435
3436/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3437extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3438extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3439 struct vm_area_struct **pprev);
3440
abdba2dd
LH
3441/*
3442 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3443 * NULL if none. Assume start_addr < end_addr.
ce6d42f2 3444 */
ce6d42f2 3445struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
abdba2dd 3446 unsigned long start_addr, unsigned long end_addr);
1da177e4 3447
ce6d42f2
LH
3448/**
3449 * vma_lookup() - Find a VMA at a specific address
3450 * @mm: The process address space.
3451 * @addr: The user address.
3452 *
3453 * Return: The vm_area_struct at the given address, %NULL otherwise.
3454 */
3455static inline
3456struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3457{
d7c62295 3458 return mtree_load(&mm->mm_mt, addr);
ce6d42f2
LH
3459}
3460
0266e7c5
RE
3461static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3462{
3463 if (vma->vm_flags & VM_GROWSDOWN)
3464 return stack_guard_gap;
3465
3466 /* See reasoning around the VM_SHADOW_STACK definition */
3467 if (vma->vm_flags & VM_SHADOW_STACK)
3468 return PAGE_SIZE;
3469
3470 return 0;
3471}
3472
1be7107f
HD
3473static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3474{
0266e7c5 3475 unsigned long gap = stack_guard_start_gap(vma);
1be7107f
HD
3476 unsigned long vm_start = vma->vm_start;
3477
0266e7c5
RE
3478 vm_start -= gap;
3479 if (vm_start > vma->vm_start)
3480 vm_start = 0;
1be7107f
HD
3481 return vm_start;
3482}
3483
3484static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3485{
3486 unsigned long vm_end = vma->vm_end;
3487
3488 if (vma->vm_flags & VM_GROWSUP) {
3489 vm_end += stack_guard_gap;
3490 if (vm_end < vma->vm_end)
3491 vm_end = -PAGE_SIZE;
3492 }
3493 return vm_end;
3494}
3495
1da177e4
LT
3496static inline unsigned long vma_pages(struct vm_area_struct *vma)
3497{
3498 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3499}
3500
640708a2
PE
3501/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3502static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3503 unsigned long vm_start, unsigned long vm_end)
3504{
dc8635b2 3505 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
640708a2
PE
3506
3507 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3508 vma = NULL;
3509
3510 return vma;
3511}
3512
017b1660
MK
3513static inline bool range_in_vma(struct vm_area_struct *vma,
3514 unsigned long start, unsigned long end)
3515{
3516 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3517}
3518
bad849b3 3519#ifdef CONFIG_MMU
804af2cf 3520pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 3521void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
3522#else
3523static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3524{
3525 return __pgprot(0);
3526}
64e45507
PF
3527static inline void vma_set_page_prot(struct vm_area_struct *vma)
3528{
3529 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3530}
bad849b3
DH
3531#endif
3532
295992fb
CK
3533void vma_set_file(struct vm_area_struct *vma, struct file *file);
3534
5877231f 3535#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 3536unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
3537 unsigned long start, unsigned long end);
3538#endif
3539
f440fa1a 3540struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
8d7071af 3541 unsigned long addr);
deceb6cd
HD
3542int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3543 unsigned long pfn, unsigned long size, pgprot_t);
74ffa5a3
CH
3544int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3545 unsigned long pfn, unsigned long size, pgprot_t prot);
a145dd41 3546int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
8cd3984d
AR
3547int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3548 struct page **pages, unsigned long *num);
a667d745
SJ
3549int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3550 unsigned long num);
3551int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3552 unsigned long num);
ae2b01f3 3553vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
e0dc0d8f 3554 unsigned long pfn);
f5e6d1d5
MW
3555vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3556 unsigned long pfn, pgprot_t pgprot);
5d747637 3557vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 3558 pfn_t pfn);
ab77dab4
SJ
3559vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3560 unsigned long addr, pfn_t pfn);
b4cbb197
LT
3561int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3562
1c8f4220
SJ
3563static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3564 unsigned long addr, struct page *page)
3565{
3566 int err = vm_insert_page(vma, addr, page);
3567
3568 if (err == -ENOMEM)
3569 return VM_FAULT_OOM;
3570 if (err < 0 && err != -EBUSY)
3571 return VM_FAULT_SIGBUS;
3572
3573 return VM_FAULT_NOPAGE;
3574}
3575
f8f6ae5d
JG
3576#ifndef io_remap_pfn_range
3577static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3578 unsigned long addr, unsigned long pfn,
3579 unsigned long size, pgprot_t prot)
3580{
3581 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3582}
3583#endif
3584
d97baf94
SJ
3585static inline vm_fault_t vmf_error(int err)
3586{
3587 if (err == -ENOMEM)
3588 return VM_FAULT_OOM;
1ea7ca1b
JC
3589 else if (err == -EHWPOISON)
3590 return VM_FAULT_HWPOISON;
d97baf94
SJ
3591 return VM_FAULT_SIGBUS;
3592}
3593
2ba39cc4
CH
3594/*
3595 * Convert errno to return value for ->page_mkwrite() calls.
3596 *
3597 * This should eventually be merged with vmf_error() above, but will need a
3598 * careful audit of all vmf_error() callers.
3599 */
3600static inline vm_fault_t vmf_fs_error(int err)
3601{
3602 if (err == 0)
3603 return VM_FAULT_LOCKED;
3604 if (err == -EFAULT || err == -EAGAIN)
3605 return VM_FAULT_NOPAGE;
3606 if (err == -ENOMEM)
3607 return VM_FAULT_OOM;
3608 /* -ENOSPC, -EDQUOT, -EIO ... */
3609 return VM_FAULT_SIGBUS;
3610}
3611
df06b37f
KB
3612struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3613 unsigned int foll_flags);
240aadee 3614
2b740303 3615static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
9a291a7c
JM
3616{
3617 if (vm_fault & VM_FAULT_OOM)
3618 return -ENOMEM;
3619 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3620 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3621 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3622 return -EFAULT;
3623 return 0;
3624}
3625
474098ed
DH
3626/*
3627 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3628 * a (NUMA hinting) fault is required.
3629 */
d74943a2
DH
3630static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3631 unsigned int flags)
474098ed
DH
3632{
3633 /*
d74943a2
DH
3634 * If callers don't want to honor NUMA hinting faults, no need to
3635 * determine if we would actually have to trigger a NUMA hinting fault.
474098ed 3636 */
d74943a2
DH
3637 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3638 return true;
3639
3640 /*
3641 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3642 *
3643 * Requiring a fault here even for inaccessible VMAs would mean that
3644 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3645 * refuses to process NUMA hinting faults in inaccessible VMAs.
3646 */
3647 return !vma_is_accessible(vma);
474098ed
DH
3648}
3649
8b1e0f81 3650typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
aee16b3c
JF
3651extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3652 unsigned long size, pte_fn_t fn, void *data);
be1db475
DA
3653extern int apply_to_existing_page_range(struct mm_struct *mm,
3654 unsigned long address, unsigned long size,
3655 pte_fn_t fn, void *data);
aee16b3c 3656
8823b1db 3657#ifdef CONFIG_PAGE_POISONING
8db26a3d
VB
3658extern void __kernel_poison_pages(struct page *page, int numpages);
3659extern void __kernel_unpoison_pages(struct page *page, int numpages);
3660extern bool _page_poisoning_enabled_early;
3661DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3662static inline bool page_poisoning_enabled(void)
3663{
3664 return _page_poisoning_enabled_early;
3665}
3666/*
3667 * For use in fast paths after init_mem_debugging() has run, or when a
3668 * false negative result is not harmful when called too early.
3669 */
3670static inline bool page_poisoning_enabled_static(void)
3671{
3672 return static_branch_unlikely(&_page_poisoning_enabled);
3673}
3674static inline void kernel_poison_pages(struct page *page, int numpages)
3675{
3676 if (page_poisoning_enabled_static())
3677 __kernel_poison_pages(page, numpages);
3678}
3679static inline void kernel_unpoison_pages(struct page *page, int numpages)
3680{
3681 if (page_poisoning_enabled_static())
3682 __kernel_unpoison_pages(page, numpages);
3683}
8823b1db
LA
3684#else
3685static inline bool page_poisoning_enabled(void) { return false; }
8db26a3d 3686static inline bool page_poisoning_enabled_static(void) { return false; }
03b6c9a3 3687static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
8db26a3d
VB
3688static inline void kernel_poison_pages(struct page *page, int numpages) { }
3689static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
8823b1db
LA
3690#endif
3691
51cba1eb 3692DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
6471384a
AP
3693static inline bool want_init_on_alloc(gfp_t flags)
3694{
51cba1eb
KC
3695 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3696 &init_on_alloc))
6471384a
AP
3697 return true;
3698 return flags & __GFP_ZERO;
3699}
3700
51cba1eb 3701DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
6471384a
AP
3702static inline bool want_init_on_free(void)
3703{
51cba1eb
KC
3704 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3705 &init_on_free);
6471384a
AP
3706}
3707
8e57f8ac
VB
3708extern bool _debug_pagealloc_enabled_early;
3709DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
031bc574
JK
3710
3711static inline bool debug_pagealloc_enabled(void)
8e57f8ac
VB
3712{
3713 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3714 _debug_pagealloc_enabled_early;
3715}
3716
3717/*
ea09800b
ML
3718 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3719 * or when a false negative result is not harmful when called too early.
8e57f8ac
VB
3720 */
3721static inline bool debug_pagealloc_enabled_static(void)
031bc574 3722{
96a2b03f
VB
3723 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3724 return false;
3725
3726 return static_branch_unlikely(&_debug_pagealloc_enabled);
031bc574
JK
3727}
3728
c87cbc1f 3729/*
5d6ad668
MR
3730 * To support DEBUG_PAGEALLOC architecture must ensure that
3731 * __kernel_map_pages() never fails
c87cbc1f 3732 */
d6332692 3733extern void __kernel_map_pages(struct page *page, int numpages, int enable);
8f14a963 3734#ifdef CONFIG_DEBUG_PAGEALLOC
77bc7fd6
MR
3735static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3736{
3737 if (debug_pagealloc_enabled_static())
3738 __kernel_map_pages(page, numpages, 1);
3739}
3740
3741static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3742{
3743 if (debug_pagealloc_enabled_static())
3744 __kernel_map_pages(page, numpages, 0);
3745}
884c175f
KW
3746
3747extern unsigned int _debug_guardpage_minorder;
3748DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3749
3750static inline unsigned int debug_guardpage_minorder(void)
3751{
3752 return _debug_guardpage_minorder;
3753}
3754
3755static inline bool debug_guardpage_enabled(void)
3756{
3757 return static_branch_unlikely(&_debug_guardpage_enabled);
3758}
3759
3760static inline bool page_is_guard(struct page *page)
3761{
3762 if (!debug_guardpage_enabled())
3763 return false;
3764
3765 return PageGuard(page);
3766}
3767
3768bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3769 int migratetype);
3770static inline bool set_page_guard(struct zone *zone, struct page *page,
3771 unsigned int order, int migratetype)
3772{
3773 if (!debug_guardpage_enabled())
3774 return false;
3775 return __set_page_guard(zone, page, order, migratetype);
3776}
3777
3778void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3779 int migratetype);
3780static inline void clear_page_guard(struct zone *zone, struct page *page,
3781 unsigned int order, int migratetype)
3782{
3783 if (!debug_guardpage_enabled())
3784 return;
3785 __clear_page_guard(zone, page, order, migratetype);
3786}
3787
5d6ad668 3788#else /* CONFIG_DEBUG_PAGEALLOC */
77bc7fd6
MR
3789static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3790static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
884c175f
KW
3791static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3792static inline bool debug_guardpage_enabled(void) { return false; }
3793static inline bool page_is_guard(struct page *page) { return false; }
3794static inline bool set_page_guard(struct zone *zone, struct page *page,
3795 unsigned int order, int migratetype) { return false; }
3796static inline void clear_page_guard(struct zone *zone, struct page *page,
3797 unsigned int order, int migratetype) {}
5d6ad668 3798#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 3799
a6c19dfe 3800#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 3801extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
3802extern int in_gate_area_no_mm(unsigned long addr);
3803extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 3804#else
a6c19dfe
AL
3805static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3806{
3807 return NULL;
3808}
3809static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3810static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3811{
3812 return 0;
3813}
1da177e4
LT
3814#endif /* __HAVE_ARCH_GATE_AREA */
3815
44a70ade
MH
3816extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3817
146732ce
JT
3818#ifdef CONFIG_SYSCTL
3819extern int sysctl_drop_caches;
32927393
CH
3820int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3821 loff_t *);
146732ce
JT
3822#endif
3823
cb731d6c 3824void drop_slab(void);
9d0243bc 3825
7a9166e3
LY
3826#ifndef CONFIG_MMU
3827#define randomize_va_space 0
3828#else
a62eaf15 3829extern int randomize_va_space;
7a9166e3 3830#endif
a62eaf15 3831
045e72ac 3832const char * arch_vma_name(struct vm_area_struct *vma);
89165b8b 3833#ifdef CONFIG_MMU
03252919 3834void print_vma_addr(char *prefix, unsigned long rip);
89165b8b
CH
3835#else
3836static inline void print_vma_addr(char *prefix, unsigned long rip)
3837{
3838}
3839#endif
e6e5494c 3840
35fd1eb1 3841void *sparse_buffer_alloc(unsigned long size);
e9c0a3f0 3842struct page * __populate_section_memmap(unsigned long pfn,
e3246d8f
JM
3843 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3844 struct dev_pagemap *pgmap);
7b09f5af
FC
3845void pmd_init(void *addr);
3846void pud_init(void *addr);
29c71111 3847pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
c2febafc
KS
3848p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3849pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
29c71111 3850pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1d9cfee7 3851pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
4917f55b 3852 struct vmem_altmap *altmap, struct page *reuse);
8f6aac41 3853void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc 3854struct vmem_altmap;
56993b4e
AK
3855void *vmemmap_alloc_block_buf(unsigned long size, int node,
3856 struct vmem_altmap *altmap);
8f6aac41 3857void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2045a3b8
FC
3858void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3859 unsigned long addr, unsigned long next);
3860int vmemmap_check_pmd(pmd_t *pmd, int node,
3861 unsigned long addr, unsigned long next);
0aad818b 3862int vmemmap_populate_basepages(unsigned long start, unsigned long end,
1d9cfee7 3863 int node, struct vmem_altmap *altmap);
2045a3b8
FC
3864int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3865 int node, struct vmem_altmap *altmap);
7b73d978
CH
3866int vmemmap_populate(unsigned long start, unsigned long end, int node,
3867 struct vmem_altmap *altmap);
c2b91e2e 3868void vmemmap_populate_print_last(void);
0197518c 3869#ifdef CONFIG_MEMORY_HOTPLUG
24b6d416
CH
3870void vmemmap_free(unsigned long start, unsigned long end,
3871 struct vmem_altmap *altmap);
0197518c 3872#endif
87a7ae75 3873
95a2ac93
SK
3874#ifdef CONFIG_SPARSEMEM_VMEMMAP
3875static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3876{
3877 /* number of pfns from base where pfn_to_page() is valid */
3878 if (altmap)
3879 return altmap->reserve + altmap->free;
3880 return 0;
3881}
3882
3883static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 unsigned long nr_pfns)
3885{
3886 altmap->alloc -= nr_pfns;
3887}
3888#else
3889static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3890{
3891 return 0;
3892}
3893
3894static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3895 unsigned long nr_pfns)
3896{
3897}
3898#endif
3899
c1a6c536 3900#define VMEMMAP_RESERVE_NR 2
0b6f1582 3901#ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
c1a6c536
AK
3902static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3903 struct dev_pagemap *pgmap)
87a7ae75 3904{
c1a6c536
AK
3905 unsigned long nr_pages;
3906 unsigned long nr_vmemmap_pages;
3907
3908 if (!pgmap || !is_power_of_2(sizeof(struct page)))
3909 return false;
3910
3911 nr_pages = pgmap_vmemmap_nr(pgmap);
3912 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3913 /*
3914 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3915 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3916 */
3917 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
87a7ae75 3918}
c1a6c536
AK
3919/*
3920 * If we don't have an architecture override, use the generic rule
3921 */
3922#ifndef vmemmap_can_optimize
3923#define vmemmap_can_optimize __vmemmap_can_optimize
3924#endif
3925
87a7ae75
AK
3926#else
3927static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3928 struct dev_pagemap *pgmap)
3929{
3930 return false;
3931}
3932#endif
3933
46723bfa 3934void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
15670bfe 3935 unsigned long nr_pages);
6a46079c 3936
82ba011b
AK
3937enum mf_flags {
3938 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 3939 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 3940 MF_MUST_KILL = 1 << 2,
cf870c70 3941 MF_SOFT_OFFLINE = 1 << 3,
bf181c58 3942 MF_UNPOISON = 1 << 4,
67f22ba7 3943 MF_SW_SIMULATED = 1 << 5,
38f6d293 3944 MF_NO_RETRY = 1 << 6,
82ba011b 3945};
c36e2024
SR
3946int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3947 unsigned long count, int mf_flags);
83b57531 3948extern int memory_failure(unsigned long pfn, int flags);
06202231 3949extern void memory_failure_queue_kick(int cpu);
847ce401 3950extern int unpoison_memory(unsigned long pfn);
d0505e9f 3951extern void shake_page(struct page *p);
5844a486 3952extern atomic_long_t num_poisoned_pages __read_mostly;
feec24a6 3953extern int soft_offline_page(unsigned long pfn, int flags);
405ce051 3954#ifdef CONFIG_MEMORY_FAILURE
870388db
KW
3955/*
3956 * Sysfs entries for memory failure handling statistics.
3957 */
3958extern const struct attribute_group memory_failure_attr_group;
d302c239 3959extern void memory_failure_queue(unsigned long pfn, int flags);
e591ef7d
NH
3960extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3961 bool *migratable_cleared);
5033091d
NH
3962void num_poisoned_pages_inc(unsigned long pfn);
3963void num_poisoned_pages_sub(unsigned long pfn, long i);
4248d008 3964struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
405ce051 3965#else
d302c239
TL
3966static inline void memory_failure_queue(unsigned long pfn, int flags)
3967{
3968}
3969
e591ef7d
NH
3970static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3971 bool *migratable_cleared)
405ce051
NH
3972{
3973 return 0;
3974}
d027122d 3975
a46c9304 3976static inline void num_poisoned_pages_inc(unsigned long pfn)
d027122d
NH
3977{
3978}
5033091d
NH
3979
3980static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3981{
3982}
3983#endif
3984
4248d008
LX
3985#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3986void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3987 struct vm_area_struct *vma, struct list_head *to_kill,
3988 unsigned long ksm_addr);
3989#endif
3990
5033091d
NH
3991#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3992extern void memblk_nr_poison_inc(unsigned long pfn);
3993extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3994#else
3995static inline void memblk_nr_poison_inc(unsigned long pfn)
3996{
3997}
3998
3999static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4000{
4001}
405ce051 4002#endif
6a46079c 4003
03b122da
TL
4004#ifndef arch_memory_failure
4005static inline int arch_memory_failure(unsigned long pfn, int flags)
4006{
4007 return -ENXIO;
4008}
4009#endif
4010
4011#ifndef arch_is_platform_page
4012static inline bool arch_is_platform_page(u64 paddr)
4013{
4014 return false;
4015}
4016#endif
cc637b17
XX
4017
4018/*
4019 * Error handlers for various types of pages.
4020 */
cc3e2af4 4021enum mf_result {
cc637b17
XX
4022 MF_IGNORED, /* Error: cannot be handled */
4023 MF_FAILED, /* Error: handling failed */
4024 MF_DELAYED, /* Will be handled later */
4025 MF_RECOVERED, /* Successfully recovered */
4026};
4027
4028enum mf_action_page_type {
4029 MF_MSG_KERNEL,
4030 MF_MSG_KERNEL_HIGH_ORDER,
4031 MF_MSG_SLAB,
4032 MF_MSG_DIFFERENT_COMPOUND,
cc637b17
XX
4033 MF_MSG_HUGE,
4034 MF_MSG_FREE_HUGE,
4035 MF_MSG_UNMAP_FAILED,
4036 MF_MSG_DIRTY_SWAPCACHE,
4037 MF_MSG_CLEAN_SWAPCACHE,
4038 MF_MSG_DIRTY_MLOCKED_LRU,
4039 MF_MSG_CLEAN_MLOCKED_LRU,
4040 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4041 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4042 MF_MSG_DIRTY_LRU,
4043 MF_MSG_CLEAN_LRU,
4044 MF_MSG_TRUNCATED_LRU,
4045 MF_MSG_BUDDY,
6100e34b 4046 MF_MSG_DAX,
5d1fd5dc 4047 MF_MSG_UNSPLIT_THP,
cc637b17
XX
4048 MF_MSG_UNKNOWN,
4049};
4050
47ad8475
AA
4051#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4052extern void clear_huge_page(struct page *page,
c79b57e4 4053 unsigned long addr_hint,
47ad8475 4054 unsigned int pages_per_huge_page);
1cb9dc4b
LS
4055int copy_user_large_folio(struct folio *dst, struct folio *src,
4056 unsigned long addr_hint,
4057 struct vm_area_struct *vma);
e87340ca
Z
4058long copy_folio_from_user(struct folio *dst_folio,
4059 const void __user *usr_src,
4060 bool allow_pagefault);
2484ca9b
THV
4061
4062/**
4063 * vma_is_special_huge - Are transhuge page-table entries considered special?
4064 * @vma: Pointer to the struct vm_area_struct to consider
4065 *
4066 * Whether transhuge page-table entries are considered "special" following
4067 * the definition in vm_normal_page().
4068 *
4069 * Return: true if transhuge page-table entries should be considered special,
4070 * false otherwise.
4071 */
4072static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4073{
4074 return vma_is_dax(vma) || (vma->vm_file &&
4075 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4076}
4077
47ad8475
AA
4078#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4079
f9872caf
CS
4080#if MAX_NUMNODES > 1
4081void __init setup_nr_node_ids(void);
4082#else
4083static inline void setup_nr_node_ids(void) {}
4084#endif
4085
010c164a
SL
4086extern int memcmp_pages(struct page *page1, struct page *page2);
4087
4088static inline int pages_identical(struct page *page1, struct page *page2)
4089{
4090 return !memcmp_pages(page1, page2);
4091}
4092
c5acad84
TH
4093#ifdef CONFIG_MAPPING_DIRTY_HELPERS
4094unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4095 pgoff_t first_index, pgoff_t nr,
4096 pgoff_t bitmap_pgoff,
4097 unsigned long *bitmap,
4098 pgoff_t *start,
4099 pgoff_t *end);
4100
4101unsigned long wp_shared_mapping_range(struct address_space *mapping,
4102 pgoff_t first_index, pgoff_t nr);
4103#endif
4104
2374c09b
CH
4105extern int sysctl_nr_trim_pages;
4106
5bb1bb35 4107#ifdef CONFIG_PRINTK
8e7f37f2 4108void mem_dump_obj(void *object);
5bb1bb35
PM
4109#else
4110static inline void mem_dump_obj(void *object) {}
4111#endif
8e7f37f2 4112
22247efd 4113/**
28464bbb
LS
4114 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4115 * handle them.
22247efd
PX
4116 * @seals: the seals to check
4117 * @vma: the vma to operate on
4118 *
28464bbb
LS
4119 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4120 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors.
22247efd 4121 */
28464bbb 4122static inline int seal_check_write(int seals, struct vm_area_struct *vma)
22247efd 4123{
28464bbb 4124 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
22247efd
PX
4125 /*
4126 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
28464bbb 4127 * write seals are active.
22247efd
PX
4128 */
4129 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4130 return -EPERM;
4131
4132 /*
28464bbb 4133 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
22247efd
PX
4134 * MAP_SHARED and read-only, take care to not allow mprotect to
4135 * revert protections on such mappings. Do this only for shared
4136 * mappings. For private mappings, don't need to mask
4137 * VM_MAYWRITE as we still want them to be COW-writable.
4138 */
4139 if (vma->vm_flags & VM_SHARED)
1c71222e 4140 vm_flags_clear(vma, VM_MAYWRITE);
22247efd
PX
4141 }
4142
4143 return 0;
4144}
4145
9a10064f
CC
4146#ifdef CONFIG_ANON_VMA_NAME
4147int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac
SB
4148 unsigned long len_in,
4149 struct anon_vma_name *anon_name);
9a10064f
CC
4150#else
4151static inline int
4152madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
5c26f6ac 4153 unsigned long len_in, struct anon_vma_name *anon_name) {
9a10064f
CC
4154 return 0;
4155}
4156#endif
4157
dcdfdd40
KS
4158#ifdef CONFIG_UNACCEPTED_MEMORY
4159
4160bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4161void accept_memory(phys_addr_t start, phys_addr_t end);
4162
4163#else
4164
4165static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4166 phys_addr_t end)
4167{
4168 return false;
4169}
4170
4171static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4172{
4173}
4174
4175#endif
4176
7cd34dd3
AH
4177static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4178{
4179 phys_addr_t paddr = pfn << PAGE_SHIFT;
4180
4181 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4182}
4183
1da177e4 4184#endif /* _LINUX_MM_H */