migrate_pages: try to split pages on queuing
[linux-2.6-block.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
e9da73d6 19#include <linux/bit_spinlock.h>
b0d40c92 20#include <linux/shrinker.h>
9c599024 21#include <linux/resource.h>
e30825f1 22#include <linux/page_ext.h>
8025e5dd 23#include <linux/err.h>
1da177e4
LT
24
25struct mempolicy;
26struct anon_vma;
bf181b9f 27struct anon_vma_chain;
4e950f6f 28struct file_ra_state;
e8edc6e0 29struct user_struct;
4e950f6f 30struct writeback_control;
682aa8e1 31struct bdi_writeback;
1da177e4 32
fccc9987 33#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 34extern unsigned long max_mapnr;
fccc9987
JL
35
36static inline void set_max_mapnr(unsigned long limit)
37{
38 max_mapnr = limit;
39}
40#else
41static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
42#endif
43
4481374c 44extern unsigned long totalram_pages;
1da177e4 45extern void * high_memory;
1da177e4
LT
46extern int page_cluster;
47
48#ifdef CONFIG_SYSCTL
49extern int sysctl_legacy_va_layout;
50#else
51#define sysctl_legacy_va_layout 0
52#endif
53
d07e2259
DC
54#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
55extern const int mmap_rnd_bits_min;
56extern const int mmap_rnd_bits_max;
57extern int mmap_rnd_bits __read_mostly;
58#endif
59#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
60extern const int mmap_rnd_compat_bits_min;
61extern const int mmap_rnd_compat_bits_max;
62extern int mmap_rnd_compat_bits __read_mostly;
63#endif
64
1da177e4
LT
65#include <asm/page.h>
66#include <asm/pgtable.h>
67#include <asm/processor.h>
1da177e4 68
79442ed1
TC
69#ifndef __pa_symbol
70#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
71#endif
72
593befa6
DD
73/*
74 * To prevent common memory management code establishing
75 * a zero page mapping on a read fault.
76 * This macro should be defined within <asm/pgtable.h>.
77 * s390 does this to prevent multiplexing of hardware bits
78 * related to the physical page in case of virtualization.
79 */
80#ifndef mm_forbids_zeropage
81#define mm_forbids_zeropage(X) (0)
82#endif
83
c9b1d098 84extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 85extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 86
49f0ce5f
JM
87extern int sysctl_overcommit_memory;
88extern int sysctl_overcommit_ratio;
89extern unsigned long sysctl_overcommit_kbytes;
90
91extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
92 size_t *, loff_t *);
93extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
94 size_t *, loff_t *);
95
1da177e4
LT
96#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
97
27ac792c
AR
98/* to align the pointer to the (next) page boundary */
99#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
100
0fa73b86
AM
101/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
102#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
103
1da177e4
LT
104/*
105 * Linux kernel virtual memory manager primitives.
106 * The idea being to have a "virtual" mm in the same way
107 * we have a virtual fs - giving a cleaner interface to the
108 * mm details, and allowing different kinds of memory mappings
109 * (from shared memory to executable loading to arbitrary
110 * mmap() functions).
111 */
112
c43692e8
CL
113extern struct kmem_cache *vm_area_cachep;
114
1da177e4 115#ifndef CONFIG_MMU
8feae131
DH
116extern struct rb_root nommu_region_tree;
117extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
118
119extern unsigned int kobjsize(const void *objp);
120#endif
121
122/*
605d9288 123 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 124 */
cc2383ec
KK
125#define VM_NONE 0x00000000
126
1da177e4
LT
127#define VM_READ 0x00000001 /* currently active flags */
128#define VM_WRITE 0x00000002
129#define VM_EXEC 0x00000004
130#define VM_SHARED 0x00000008
131
7e2cff42 132/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
133#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
134#define VM_MAYWRITE 0x00000020
135#define VM_MAYEXEC 0x00000040
136#define VM_MAYSHARE 0x00000080
137
138#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 139#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 140#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 141#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 142#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 143
1da177e4
LT
144#define VM_LOCKED 0x00002000
145#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
146
147 /* Used by sys_madvise() */
148#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
149#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
150
151#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
152#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 153#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 154#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 155#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 156#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 157#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 158#define VM_ARCH_2 0x02000000
0103bd16 159#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 160
d9104d1c
CG
161#ifdef CONFIG_MEM_SOFT_DIRTY
162# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
163#else
164# define VM_SOFTDIRTY 0
165#endif
166
b379d790 167#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
168#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
169#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 170#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 171
cc2383ec
KK
172#if defined(CONFIG_X86)
173# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
174#elif defined(CONFIG_PPC)
175# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
176#elif defined(CONFIG_PARISC)
177# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
178#elif defined(CONFIG_METAG)
179# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
180#elif defined(CONFIG_IA64)
181# define VM_GROWSUP VM_ARCH_1
182#elif !defined(CONFIG_MMU)
183# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
184#endif
185
4aae7e43
QR
186#if defined(CONFIG_X86)
187/* MPX specific bounds table or bounds directory */
188# define VM_MPX VM_ARCH_2
189#endif
190
cc2383ec
KK
191#ifndef VM_GROWSUP
192# define VM_GROWSUP VM_NONE
193#endif
194
a8bef8ff
MG
195/* Bits set in the VMA until the stack is in its final location */
196#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
197
1da177e4
LT
198#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
199#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
200#endif
201
202#ifdef CONFIG_STACK_GROWSUP
203#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
204#else
205#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
206#endif
207
b291f000 208/*
78f11a25
AA
209 * Special vmas that are non-mergable, non-mlock()able.
210 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 211 */
9050d7eb 212#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 213
a0715cc2
AT
214/* This mask defines which mm->def_flags a process can inherit its parent */
215#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
216
de60f5f1
EM
217/* This mask is used to clear all the VMA flags used by mlock */
218#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
219
1da177e4
LT
220/*
221 * mapping from the currently active vm_flags protection bits (the
222 * low four bits) to a page protection mask..
223 */
224extern pgprot_t protection_map[16];
225
d0217ac0 226#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
227#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
228#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
229#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
230#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
231#define FAULT_FLAG_TRIED 0x20 /* Second try */
232#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 233
54cb8821 234/*
d0217ac0 235 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
236 * ->fault function. The vma's ->fault is responsible for returning a bitmask
237 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 238 *
c20cd45e
MH
239 * MM layer fills up gfp_mask for page allocations but fault handler might
240 * alter it if its implementation requires a different allocation context.
241 *
9b4bdd2f 242 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 243 */
d0217ac0
NP
244struct vm_fault {
245 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 246 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
247 pgoff_t pgoff; /* Logical page offset based on vma */
248 void __user *virtual_address; /* Faulting virtual address */
249
2e4cdab0 250 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 251 struct page *page; /* ->fault handlers should return a
83c54070 252 * page here, unless VM_FAULT_NOPAGE
d0217ac0 253 * is set (which is also implied by
83c54070 254 * VM_FAULT_ERROR).
d0217ac0 255 */
8c6e50b0
KS
256 /* for ->map_pages() only */
257 pgoff_t max_pgoff; /* map pages for offset from pgoff till
258 * max_pgoff inclusive */
259 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 260};
1da177e4
LT
261
262/*
263 * These are the virtual MM functions - opening of an area, closing and
264 * unmapping it (needed to keep files on disk up-to-date etc), pointer
265 * to the functions called when a no-page or a wp-page exception occurs.
266 */
267struct vm_operations_struct {
268 void (*open)(struct vm_area_struct * area);
269 void (*close)(struct vm_area_struct * area);
5477e70a 270 int (*mremap)(struct vm_area_struct * area);
d0217ac0 271 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
272 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
273 pmd_t *, unsigned int flags);
8c6e50b0 274 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
275
276 /* notification that a previously read-only page is about to become
277 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 278 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 279
dd906184
BH
280 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
281 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
282
28b2ee20
RR
283 /* called by access_process_vm when get_user_pages() fails, typically
284 * for use by special VMAs that can switch between memory and hardware
285 */
286 int (*access)(struct vm_area_struct *vma, unsigned long addr,
287 void *buf, int len, int write);
78d683e8
AL
288
289 /* Called by the /proc/PID/maps code to ask the vma whether it
290 * has a special name. Returning non-NULL will also cause this
291 * vma to be dumped unconditionally. */
292 const char *(*name)(struct vm_area_struct *vma);
293
1da177e4 294#ifdef CONFIG_NUMA
a6020ed7
LS
295 /*
296 * set_policy() op must add a reference to any non-NULL @new mempolicy
297 * to hold the policy upon return. Caller should pass NULL @new to
298 * remove a policy and fall back to surrounding context--i.e. do not
299 * install a MPOL_DEFAULT policy, nor the task or system default
300 * mempolicy.
301 */
1da177e4 302 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
303
304 /*
305 * get_policy() op must add reference [mpol_get()] to any policy at
306 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
307 * in mm/mempolicy.c will do this automatically.
308 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
309 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
310 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
311 * must return NULL--i.e., do not "fallback" to task or system default
312 * policy.
313 */
1da177e4
LT
314 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
315 unsigned long addr);
316#endif
667a0a06
DV
317 /*
318 * Called by vm_normal_page() for special PTEs to find the
319 * page for @addr. This is useful if the default behavior
320 * (using pte_page()) would not find the correct page.
321 */
322 struct page *(*find_special_page)(struct vm_area_struct *vma,
323 unsigned long addr);
1da177e4
LT
324};
325
326struct mmu_gather;
327struct inode;
328
349aef0b
AM
329#define page_private(page) ((page)->private)
330#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 331
1da177e4
LT
332/*
333 * FIXME: take this include out, include page-flags.h in
334 * files which need it (119 of them)
335 */
336#include <linux/page-flags.h>
71e3aac0 337#include <linux/huge_mm.h>
1da177e4
LT
338
339/*
340 * Methods to modify the page usage count.
341 *
342 * What counts for a page usage:
343 * - cache mapping (page->mapping)
344 * - private data (page->private)
345 * - page mapped in a task's page tables, each mapping
346 * is counted separately
347 *
348 * Also, many kernel routines increase the page count before a critical
349 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
350 */
351
352/*
da6052f7 353 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 354 */
7c8ee9a8
NP
355static inline int put_page_testzero(struct page *page)
356{
309381fe 357 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 358 return atomic_dec_and_test(&page->_count);
7c8ee9a8 359}
1da177e4
LT
360
361/*
7c8ee9a8
NP
362 * Try to grab a ref unless the page has a refcount of zero, return false if
363 * that is the case.
8e0861fa
AK
364 * This can be called when MMU is off so it must not access
365 * any of the virtual mappings.
1da177e4 366 */
7c8ee9a8
NP
367static inline int get_page_unless_zero(struct page *page)
368{
8dc04efb 369 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 370}
1da177e4 371
53df8fdc 372extern int page_is_ram(unsigned long pfn);
124fe20d
DW
373
374enum {
375 REGION_INTERSECTS,
376 REGION_DISJOINT,
377 REGION_MIXED,
378};
379
380int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 381
48667e7a 382/* Support for virtually mapped pages */
b3bdda02
CL
383struct page *vmalloc_to_page(const void *addr);
384unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 385
0738c4bb
PM
386/*
387 * Determine if an address is within the vmalloc range
388 *
389 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
390 * is no special casing required.
391 */
9e2779fa
CL
392static inline int is_vmalloc_addr(const void *x)
393{
0738c4bb 394#ifdef CONFIG_MMU
9e2779fa
CL
395 unsigned long addr = (unsigned long)x;
396
397 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
398#else
399 return 0;
8ca3ed87 400#endif
0738c4bb 401}
81ac3ad9
KH
402#ifdef CONFIG_MMU
403extern int is_vmalloc_or_module_addr(const void *x);
404#else
934831d0 405static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
406{
407 return 0;
408}
409#endif
9e2779fa 410
39f1f78d
AV
411extern void kvfree(const void *addr);
412
53f9263b
KS
413static inline atomic_t *compound_mapcount_ptr(struct page *page)
414{
415 return &page[1].compound_mapcount;
416}
417
418static inline int compound_mapcount(struct page *page)
419{
420 if (!PageCompound(page))
421 return 0;
422 page = compound_head(page);
423 return atomic_read(compound_mapcount_ptr(page)) + 1;
424}
425
70b50f94
AA
426/*
427 * The atomic page->_mapcount, starts from -1: so that transitions
428 * both from it and to it can be tracked, using atomic_inc_and_test
429 * and atomic_add_negative(-1).
430 */
22b751c3 431static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
432{
433 atomic_set(&(page)->_mapcount, -1);
434}
435
436static inline int page_mapcount(struct page *page)
437{
53f9263b 438 int ret;
1d148e21 439 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b
KS
440
441 ret = atomic_read(&page->_mapcount) + 1;
442 if (PageCompound(page)) {
443 page = compound_head(page);
444 ret += atomic_read(compound_mapcount_ptr(page)) + 1;
445 if (PageDoubleMap(page))
446 ret--;
447 }
448 return ret;
70b50f94
AA
449}
450
4c21e2f2 451static inline int page_count(struct page *page)
1da177e4 452{
d85f3385 453 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
454}
455
456static inline void get_page(struct page *page)
457{
ddc58f27 458 page = compound_head(page);
91807063
AA
459 /*
460 * Getting a normal page or the head of a compound page
70b50f94 461 * requires to already have an elevated page->_count.
91807063 462 */
309381fe 463 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
1da177e4
LT
464 atomic_inc(&page->_count);
465}
466
b49af68f
CL
467static inline struct page *virt_to_head_page(const void *x)
468{
469 struct page *page = virt_to_page(x);
ccaafd7f 470
1d798ca3 471 return compound_head(page);
b49af68f
CL
472}
473
7835e98b
NP
474/*
475 * Setup the page count before being freed into the page allocator for
476 * the first time (boot or memory hotplug)
477 */
478static inline void init_page_count(struct page *page)
479{
480 atomic_set(&page->_count, 1);
481}
482
ddc58f27
KS
483void __put_page(struct page *page);
484
485static inline void put_page(struct page *page)
486{
487 page = compound_head(page);
488 if (put_page_testzero(page))
489 __put_page(page);
490}
491
1d7ea732 492void put_pages_list(struct list_head *pages);
1da177e4 493
8dfcc9ba 494void split_page(struct page *page, unsigned int order);
748446bb 495int split_free_page(struct page *page);
8dfcc9ba 496
33f2ef89
AW
497/*
498 * Compound pages have a destructor function. Provide a
499 * prototype for that function and accessor functions.
f1e61557 500 * These are _only_ valid on the head of a compound page.
33f2ef89 501 */
f1e61557
KS
502typedef void compound_page_dtor(struct page *);
503
504/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
505enum compound_dtor_id {
506 NULL_COMPOUND_DTOR,
507 COMPOUND_PAGE_DTOR,
508#ifdef CONFIG_HUGETLB_PAGE
509 HUGETLB_PAGE_DTOR,
510#endif
511 NR_COMPOUND_DTORS,
512};
513extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
514
515static inline void set_compound_page_dtor(struct page *page,
f1e61557 516 enum compound_dtor_id compound_dtor)
33f2ef89 517{
f1e61557
KS
518 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
519 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
520}
521
522static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
523{
f1e61557
KS
524 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
525 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
526}
527
d00181b9 528static inline unsigned int compound_order(struct page *page)
d85f3385 529{
6d777953 530 if (!PageHead(page))
d85f3385 531 return 0;
e4b294c2 532 return page[1].compound_order;
d85f3385
CL
533}
534
f1e61557 535static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 536{
e4b294c2 537 page[1].compound_order = order;
d85f3385
CL
538}
539
3dece370 540#ifdef CONFIG_MMU
14fd403f
AA
541/*
542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
543 * servicing faults for write access. In the normal case, do always want
544 * pte_mkwrite. But get_user_pages can cause write faults for mappings
545 * that do not have writing enabled, when used by access_process_vm.
546 */
547static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
548{
549 if (likely(vma->vm_flags & VM_WRITE))
550 pte = pte_mkwrite(pte);
551 return pte;
552}
8c6e50b0
KS
553
554void do_set_pte(struct vm_area_struct *vma, unsigned long address,
555 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 556#endif
14fd403f 557
1da177e4
LT
558/*
559 * Multiple processes may "see" the same page. E.g. for untouched
560 * mappings of /dev/null, all processes see the same page full of
561 * zeroes, and text pages of executables and shared libraries have
562 * only one copy in memory, at most, normally.
563 *
564 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
565 * page_count() == 0 means the page is free. page->lru is then used for
566 * freelist management in the buddy allocator.
da6052f7 567 * page_count() > 0 means the page has been allocated.
1da177e4 568 *
da6052f7
NP
569 * Pages are allocated by the slab allocator in order to provide memory
570 * to kmalloc and kmem_cache_alloc. In this case, the management of the
571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
572 * unless a particular usage is carefully commented. (the responsibility of
573 * freeing the kmalloc memory is the caller's, of course).
1da177e4 574 *
da6052f7
NP
575 * A page may be used by anyone else who does a __get_free_page().
576 * In this case, page_count still tracks the references, and should only
577 * be used through the normal accessor functions. The top bits of page->flags
578 * and page->virtual store page management information, but all other fields
579 * are unused and could be used privately, carefully. The management of this
580 * page is the responsibility of the one who allocated it, and those who have
581 * subsequently been given references to it.
582 *
583 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
584 * managed by the Linux memory manager: I/O, buffers, swapping etc.
585 * The following discussion applies only to them.
586 *
da6052f7
NP
587 * A pagecache page contains an opaque `private' member, which belongs to the
588 * page's address_space. Usually, this is the address of a circular list of
589 * the page's disk buffers. PG_private must be set to tell the VM to call
590 * into the filesystem to release these pages.
1da177e4 591 *
da6052f7
NP
592 * A page may belong to an inode's memory mapping. In this case, page->mapping
593 * is the pointer to the inode, and page->index is the file offset of the page,
594 * in units of PAGE_CACHE_SIZE.
1da177e4 595 *
da6052f7
NP
596 * If pagecache pages are not associated with an inode, they are said to be
597 * anonymous pages. These may become associated with the swapcache, and in that
598 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 599 *
da6052f7
NP
600 * In either case (swapcache or inode backed), the pagecache itself holds one
601 * reference to the page. Setting PG_private should also increment the
602 * refcount. The each user mapping also has a reference to the page.
1da177e4 603 *
da6052f7
NP
604 * The pagecache pages are stored in a per-mapping radix tree, which is
605 * rooted at mapping->page_tree, and indexed by offset.
606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
607 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 608 *
da6052f7 609 * All pagecache pages may be subject to I/O:
1da177e4
LT
610 * - inode pages may need to be read from disk,
611 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
612 * to be written back to the inode on disk,
613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
614 * modified may need to be swapped out to swap space and (later) to be read
615 * back into memory.
1da177e4
LT
616 */
617
618/*
619 * The zone field is never updated after free_area_init_core()
620 * sets it, so none of the operations on it need to be atomic.
1da177e4 621 */
348f8b6c 622
90572890 623/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 624#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
625#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
626#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 627#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 628
348f8b6c 629/*
25985edc 630 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
d41dee36
AW
634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 637#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 638
bce54bbf
WD
639/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
640#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 641#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
642#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
643 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 644#else
89689ae7 645#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
646#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
647 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
648#endif
649
bd8029b6 650#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 651
9223b419
CL
652#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
654#endif
655
d41dee36
AW
656#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
657#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
658#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 659#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 660#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 661
33dd4e0e 662static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 663{
348f8b6c 664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 665}
1da177e4 666
9127ab4f
CS
667#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
668#define SECTION_IN_PAGE_FLAGS
669#endif
670
89689ae7 671/*
7a8010cd
VB
672 * The identification function is mainly used by the buddy allocator for
673 * determining if two pages could be buddies. We are not really identifying
674 * the zone since we could be using the section number id if we do not have
675 * node id available in page flags.
676 * We only guarantee that it will return the same value for two combinable
677 * pages in a zone.
89689ae7 678 */
cb2b95e1
AW
679static inline int page_zone_id(struct page *page)
680{
89689ae7 681 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
682}
683
25ba77c1 684static inline int zone_to_nid(struct zone *zone)
89fa3024 685{
d5f541ed
CL
686#ifdef CONFIG_NUMA
687 return zone->node;
688#else
689 return 0;
690#endif
89fa3024
CL
691}
692
89689ae7 693#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 694extern int page_to_nid(const struct page *page);
89689ae7 695#else
33dd4e0e 696static inline int page_to_nid(const struct page *page)
d41dee36 697{
89689ae7 698 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 699}
89689ae7
CL
700#endif
701
57e0a030 702#ifdef CONFIG_NUMA_BALANCING
90572890 703static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 704{
90572890 705 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
706}
707
90572890 708static inline int cpupid_to_pid(int cpupid)
57e0a030 709{
90572890 710 return cpupid & LAST__PID_MASK;
57e0a030 711}
b795854b 712
90572890 713static inline int cpupid_to_cpu(int cpupid)
b795854b 714{
90572890 715 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
716}
717
90572890 718static inline int cpupid_to_nid(int cpupid)
b795854b 719{
90572890 720 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
721}
722
90572890 723static inline bool cpupid_pid_unset(int cpupid)
57e0a030 724{
90572890 725 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
726}
727
90572890 728static inline bool cpupid_cpu_unset(int cpupid)
b795854b 729{
90572890 730 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
731}
732
8c8a743c
PZ
733static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
734{
735 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
736}
737
738#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
739#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
740static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 741{
1ae71d03 742 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 743}
90572890
PZ
744
745static inline int page_cpupid_last(struct page *page)
746{
747 return page->_last_cpupid;
748}
749static inline void page_cpupid_reset_last(struct page *page)
b795854b 750{
1ae71d03 751 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
752}
753#else
90572890 754static inline int page_cpupid_last(struct page *page)
75980e97 755{
90572890 756 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
757}
758
90572890 759extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 760
90572890 761static inline void page_cpupid_reset_last(struct page *page)
75980e97 762{
90572890 763 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 764
90572890
PZ
765 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
766 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 767}
90572890
PZ
768#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
769#else /* !CONFIG_NUMA_BALANCING */
770static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 771{
90572890 772 return page_to_nid(page); /* XXX */
57e0a030
MG
773}
774
90572890 775static inline int page_cpupid_last(struct page *page)
57e0a030 776{
90572890 777 return page_to_nid(page); /* XXX */
57e0a030
MG
778}
779
90572890 780static inline int cpupid_to_nid(int cpupid)
b795854b
MG
781{
782 return -1;
783}
784
90572890 785static inline int cpupid_to_pid(int cpupid)
b795854b
MG
786{
787 return -1;
788}
789
90572890 790static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
791{
792 return -1;
793}
794
90572890
PZ
795static inline int cpu_pid_to_cpupid(int nid, int pid)
796{
797 return -1;
798}
799
800static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
801{
802 return 1;
803}
804
90572890 805static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
806{
807}
8c8a743c
PZ
808
809static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
810{
811 return false;
812}
90572890 813#endif /* CONFIG_NUMA_BALANCING */
57e0a030 814
33dd4e0e 815static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
816{
817 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
818}
819
9127ab4f 820#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
821static inline void set_page_section(struct page *page, unsigned long section)
822{
823 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
824 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
825}
826
aa462abe 827static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
828{
829 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
830}
308c05e3 831#endif
d41dee36 832
2f1b6248 833static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
834{
835 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
836 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
837}
2f1b6248 838
348f8b6c
DH
839static inline void set_page_node(struct page *page, unsigned long node)
840{
841 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
842 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 843}
89689ae7 844
2f1b6248 845static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 846 unsigned long node, unsigned long pfn)
1da177e4 847{
348f8b6c
DH
848 set_page_zone(page, zone);
849 set_page_node(page, node);
9127ab4f 850#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 851 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 852#endif
1da177e4
LT
853}
854
0610c25d
GT
855#ifdef CONFIG_MEMCG
856static inline struct mem_cgroup *page_memcg(struct page *page)
857{
858 return page->mem_cgroup;
859}
860
861static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
862{
863 page->mem_cgroup = memcg;
864}
865#else
866static inline struct mem_cgroup *page_memcg(struct page *page)
867{
868 return NULL;
869}
870
871static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
872{
873}
874#endif
875
f6ac2354
CL
876/*
877 * Some inline functions in vmstat.h depend on page_zone()
878 */
879#include <linux/vmstat.h>
880
33dd4e0e 881static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 882{
aa462abe 883 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
884}
885
886#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
887#define HASHED_PAGE_VIRTUAL
888#endif
889
890#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
891static inline void *page_address(const struct page *page)
892{
893 return page->virtual;
894}
895static inline void set_page_address(struct page *page, void *address)
896{
897 page->virtual = address;
898}
1da177e4
LT
899#define page_address_init() do { } while(0)
900#endif
901
902#if defined(HASHED_PAGE_VIRTUAL)
f9918794 903void *page_address(const struct page *page);
1da177e4
LT
904void set_page_address(struct page *page, void *virtual);
905void page_address_init(void);
906#endif
907
908#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
909#define page_address(page) lowmem_page_address(page)
910#define set_page_address(page, address) do { } while(0)
911#define page_address_init() do { } while(0)
912#endif
913
e39155ea
KS
914extern void *page_rmapping(struct page *page);
915extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 916extern struct address_space *page_mapping(struct page *page);
1da177e4 917
f981c595
MG
918extern struct address_space *__page_file_mapping(struct page *);
919
920static inline
921struct address_space *page_file_mapping(struct page *page)
922{
923 if (unlikely(PageSwapCache(page)))
924 return __page_file_mapping(page);
925
926 return page->mapping;
927}
928
1da177e4
LT
929/*
930 * Return the pagecache index of the passed page. Regular pagecache pages
931 * use ->index whereas swapcache pages use ->private
932 */
933static inline pgoff_t page_index(struct page *page)
934{
935 if (unlikely(PageSwapCache(page)))
4c21e2f2 936 return page_private(page);
1da177e4
LT
937 return page->index;
938}
939
f981c595
MG
940extern pgoff_t __page_file_index(struct page *page);
941
942/*
943 * Return the file index of the page. Regular pagecache pages use ->index
944 * whereas swapcache pages use swp_offset(->private)
945 */
946static inline pgoff_t page_file_index(struct page *page)
947{
948 if (unlikely(PageSwapCache(page)))
949 return __page_file_index(page);
950
951 return page->index;
952}
953
1da177e4
LT
954/*
955 * Return true if this page is mapped into pagetables.
e1534ae9 956 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 957 */
e1534ae9 958static inline bool page_mapped(struct page *page)
1da177e4 959{
e1534ae9
KS
960 int i;
961 if (likely(!PageCompound(page)))
962 return atomic_read(&page->_mapcount) >= 0;
963 page = compound_head(page);
964 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
965 return true;
966 for (i = 0; i < hpage_nr_pages(page); i++) {
967 if (atomic_read(&page[i]._mapcount) >= 0)
968 return true;
969 }
970 return false;
1da177e4
LT
971}
972
2f064f34
MH
973/*
974 * Return true only if the page has been allocated with
975 * ALLOC_NO_WATERMARKS and the low watermark was not
976 * met implying that the system is under some pressure.
977 */
978static inline bool page_is_pfmemalloc(struct page *page)
979{
980 /*
981 * Page index cannot be this large so this must be
982 * a pfmemalloc page.
983 */
984 return page->index == -1UL;
985}
986
987/*
988 * Only to be called by the page allocator on a freshly allocated
989 * page.
990 */
991static inline void set_page_pfmemalloc(struct page *page)
992{
993 page->index = -1UL;
994}
995
996static inline void clear_page_pfmemalloc(struct page *page)
997{
998 page->index = 0;
999}
1000
1da177e4
LT
1001/*
1002 * Different kinds of faults, as returned by handle_mm_fault().
1003 * Used to decide whether a process gets delivered SIGBUS or
1004 * just gets major/minor fault counters bumped up.
1005 */
d0217ac0 1006
83c54070 1007#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1008
83c54070
NP
1009#define VM_FAULT_OOM 0x0001
1010#define VM_FAULT_SIGBUS 0x0002
1011#define VM_FAULT_MAJOR 0x0004
1012#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1013#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1014#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1015#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1016
83c54070
NP
1017#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1018#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1019#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1020#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1021
aa50d3a7
AK
1022#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1023
33692f27
LT
1024#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1025 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1026 VM_FAULT_FALLBACK)
aa50d3a7
AK
1027
1028/* Encode hstate index for a hwpoisoned large page */
1029#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1030#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1031
1c0fe6e3
NP
1032/*
1033 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1034 */
1035extern void pagefault_out_of_memory(void);
1036
1da177e4
LT
1037#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1038
ddd588b5 1039/*
7bf02ea2 1040 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1041 * various contexts.
1042 */
4b59e6c4 1043#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1044
7bf02ea2
DR
1045extern void show_free_areas(unsigned int flags);
1046extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1047
1da177e4 1048int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1049#ifdef CONFIG_SHMEM
1050bool shmem_mapping(struct address_space *mapping);
1051#else
1052static inline bool shmem_mapping(struct address_space *mapping)
1053{
1054 return false;
1055}
1056#endif
1da177e4 1057
e8edc6e0 1058extern int can_do_mlock(void);
1da177e4
LT
1059extern int user_shm_lock(size_t, struct user_struct *);
1060extern void user_shm_unlock(size_t, struct user_struct *);
1061
1062/*
1063 * Parameter block passed down to zap_pte_range in exceptional cases.
1064 */
1065struct zap_details {
1da177e4
LT
1066 struct address_space *check_mapping; /* Check page->mapping if set */
1067 pgoff_t first_index; /* Lowest page->index to unmap */
1068 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1069};
1070
7e675137
NP
1071struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1072 pte_t pte);
1073
c627f9cc
JS
1074int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1075 unsigned long size);
14f5ff5d 1076void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1077 unsigned long size, struct zap_details *);
4f74d2c8
LT
1078void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1079 unsigned long start, unsigned long end);
e6473092
MM
1080
1081/**
1082 * mm_walk - callbacks for walk_page_range
e6473092 1083 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1084 * this handler is required to be able to handle
1085 * pmd_trans_huge() pmds. They may simply choose to
1086 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1087 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1088 * @pte_hole: if set, called for each hole at all levels
5dc37642 1089 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1090 * @test_walk: caller specific callback function to determine whether
1091 * we walk over the current vma or not. A positive returned
1092 * value means "do page table walk over the current vma,"
1093 * and a negative one means "abort current page table walk
1094 * right now." 0 means "skip the current vma."
1095 * @mm: mm_struct representing the target process of page table walk
1096 * @vma: vma currently walked (NULL if walking outside vmas)
1097 * @private: private data for callbacks' usage
e6473092 1098 *
fafaa426 1099 * (see the comment on walk_page_range() for more details)
e6473092
MM
1100 */
1101struct mm_walk {
0f157a5b
AM
1102 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1103 unsigned long next, struct mm_walk *walk);
1104 int (*pte_entry)(pte_t *pte, unsigned long addr,
1105 unsigned long next, struct mm_walk *walk);
1106 int (*pte_hole)(unsigned long addr, unsigned long next,
1107 struct mm_walk *walk);
1108 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1109 unsigned long addr, unsigned long next,
1110 struct mm_walk *walk);
fafaa426
NH
1111 int (*test_walk)(unsigned long addr, unsigned long next,
1112 struct mm_walk *walk);
2165009b 1113 struct mm_struct *mm;
fafaa426 1114 struct vm_area_struct *vma;
2165009b 1115 void *private;
e6473092
MM
1116};
1117
2165009b
DH
1118int walk_page_range(unsigned long addr, unsigned long end,
1119 struct mm_walk *walk);
900fc5f1 1120int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1121void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1122 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1123int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1124 struct vm_area_struct *vma);
1da177e4
LT
1125void unmap_mapping_range(struct address_space *mapping,
1126 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1127int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1128 unsigned long *pfn);
d87fe660 1129int follow_phys(struct vm_area_struct *vma, unsigned long address,
1130 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1131int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1132 void *buf, int len, int write);
1da177e4
LT
1133
1134static inline void unmap_shared_mapping_range(struct address_space *mapping,
1135 loff_t const holebegin, loff_t const holelen)
1136{
1137 unmap_mapping_range(mapping, holebegin, holelen, 0);
1138}
1139
7caef267 1140extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1141extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1142void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1143void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1144int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1145int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1146int invalidate_inode_page(struct page *page);
1147
7ee1dd3f 1148#ifdef CONFIG_MMU
83c54070 1149extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1150 unsigned long address, unsigned int flags);
5c723ba5
PZ
1151extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1152 unsigned long address, unsigned int fault_flags);
7ee1dd3f
DH
1153#else
1154static inline int handle_mm_fault(struct mm_struct *mm,
1155 struct vm_area_struct *vma, unsigned long address,
d06063cc 1156 unsigned int flags)
7ee1dd3f
DH
1157{
1158 /* should never happen if there's no MMU */
1159 BUG();
1160 return VM_FAULT_SIGBUS;
1161}
5c723ba5
PZ
1162static inline int fixup_user_fault(struct task_struct *tsk,
1163 struct mm_struct *mm, unsigned long address,
1164 unsigned int fault_flags)
1165{
1166 /* should never happen if there's no MMU */
1167 BUG();
1168 return -EFAULT;
1169}
7ee1dd3f 1170#endif
f33ea7f4 1171
1da177e4 1172extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1173extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1174 void *buf, int len, int write);
1da177e4 1175
28a35716
ML
1176long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1177 unsigned long start, unsigned long nr_pages,
1178 unsigned int foll_flags, struct page **pages,
1179 struct vm_area_struct **vmas, int *nonblocking);
1180long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1181 unsigned long start, unsigned long nr_pages,
1182 int write, int force, struct page **pages,
1183 struct vm_area_struct **vmas);
f0818f47
AA
1184long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1185 unsigned long start, unsigned long nr_pages,
1186 int write, int force, struct page **pages,
1187 int *locked);
0fd71a56
AA
1188long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1189 unsigned long start, unsigned long nr_pages,
1190 int write, int force, struct page **pages,
1191 unsigned int gup_flags);
f0818f47
AA
1192long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1193 unsigned long start, unsigned long nr_pages,
1194 int write, int force, struct page **pages);
d2bf6be8
NP
1195int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1196 struct page **pages);
8025e5dd
JK
1197
1198/* Container for pinned pfns / pages */
1199struct frame_vector {
1200 unsigned int nr_allocated; /* Number of frames we have space for */
1201 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1202 bool got_ref; /* Did we pin pages by getting page ref? */
1203 bool is_pfns; /* Does array contain pages or pfns? */
1204 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1205 * pfns_vector_pages() or pfns_vector_pfns()
1206 * for access */
1207};
1208
1209struct frame_vector *frame_vector_create(unsigned int nr_frames);
1210void frame_vector_destroy(struct frame_vector *vec);
1211int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1212 bool write, bool force, struct frame_vector *vec);
1213void put_vaddr_frames(struct frame_vector *vec);
1214int frame_vector_to_pages(struct frame_vector *vec);
1215void frame_vector_to_pfns(struct frame_vector *vec);
1216
1217static inline unsigned int frame_vector_count(struct frame_vector *vec)
1218{
1219 return vec->nr_frames;
1220}
1221
1222static inline struct page **frame_vector_pages(struct frame_vector *vec)
1223{
1224 if (vec->is_pfns) {
1225 int err = frame_vector_to_pages(vec);
1226
1227 if (err)
1228 return ERR_PTR(err);
1229 }
1230 return (struct page **)(vec->ptrs);
1231}
1232
1233static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1234{
1235 if (!vec->is_pfns)
1236 frame_vector_to_pfns(vec);
1237 return (unsigned long *)(vec->ptrs);
1238}
1239
18022c5d
MG
1240struct kvec;
1241int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1242 struct page **pages);
1243int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1244struct page *get_dump_page(unsigned long addr);
1da177e4 1245
cf9a2ae8 1246extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1247extern void do_invalidatepage(struct page *page, unsigned int offset,
1248 unsigned int length);
cf9a2ae8 1249
1da177e4 1250int __set_page_dirty_nobuffers(struct page *page);
76719325 1251int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1252int redirty_page_for_writepage(struct writeback_control *wbc,
1253 struct page *page);
c4843a75
GT
1254void account_page_dirtied(struct page *page, struct address_space *mapping,
1255 struct mem_cgroup *memcg);
1256void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1257 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1258int set_page_dirty(struct page *page);
1da177e4 1259int set_page_dirty_lock(struct page *page);
11f81bec 1260void cancel_dirty_page(struct page *page);
1da177e4 1261int clear_page_dirty_for_io(struct page *page);
b9ea2515 1262
a9090253 1263int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1264
39aa3cb3 1265/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1266static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1267{
1268 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1269}
1270
b5330628
ON
1271static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1272{
1273 return !vma->vm_ops;
1274}
1275
a09a79f6
MP
1276static inline int stack_guard_page_start(struct vm_area_struct *vma,
1277 unsigned long addr)
1278{
1279 return (vma->vm_flags & VM_GROWSDOWN) &&
1280 (vma->vm_start == addr) &&
1281 !vma_growsdown(vma->vm_prev, addr);
1282}
1283
1284/* Is the vma a continuation of the stack vma below it? */
1285static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1286{
1287 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1288}
1289
1290static inline int stack_guard_page_end(struct vm_area_struct *vma,
1291 unsigned long addr)
1292{
1293 return (vma->vm_flags & VM_GROWSUP) &&
1294 (vma->vm_end == addr) &&
1295 !vma_growsup(vma->vm_next, addr);
1296}
1297
58cb6548
ON
1298extern struct task_struct *task_of_stack(struct task_struct *task,
1299 struct vm_area_struct *vma, bool in_group);
b7643757 1300
b6a2fea3
OW
1301extern unsigned long move_page_tables(struct vm_area_struct *vma,
1302 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1303 unsigned long new_addr, unsigned long len,
1304 bool need_rmap_locks);
7da4d641
PZ
1305extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1306 unsigned long end, pgprot_t newprot,
4b10e7d5 1307 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1308extern int mprotect_fixup(struct vm_area_struct *vma,
1309 struct vm_area_struct **pprev, unsigned long start,
1310 unsigned long end, unsigned long newflags);
1da177e4 1311
465a454f
PZ
1312/*
1313 * doesn't attempt to fault and will return short.
1314 */
1315int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1316 struct page **pages);
d559db08
KH
1317/*
1318 * per-process(per-mm_struct) statistics.
1319 */
d559db08
KH
1320static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1321{
69c97823
KK
1322 long val = atomic_long_read(&mm->rss_stat.count[member]);
1323
1324#ifdef SPLIT_RSS_COUNTING
1325 /*
1326 * counter is updated in asynchronous manner and may go to minus.
1327 * But it's never be expected number for users.
1328 */
1329 if (val < 0)
1330 val = 0;
172703b0 1331#endif
69c97823
KK
1332 return (unsigned long)val;
1333}
d559db08
KH
1334
1335static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1336{
172703b0 1337 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1338}
1339
1340static inline void inc_mm_counter(struct mm_struct *mm, int member)
1341{
172703b0 1342 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1343}
1344
1345static inline void dec_mm_counter(struct mm_struct *mm, int member)
1346{
172703b0 1347 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1348}
1349
eca56ff9
JM
1350/* Optimized variant when page is already known not to be PageAnon */
1351static inline int mm_counter_file(struct page *page)
1352{
1353 if (PageSwapBacked(page))
1354 return MM_SHMEMPAGES;
1355 return MM_FILEPAGES;
1356}
1357
1358static inline int mm_counter(struct page *page)
1359{
1360 if (PageAnon(page))
1361 return MM_ANONPAGES;
1362 return mm_counter_file(page);
1363}
1364
d559db08
KH
1365static inline unsigned long get_mm_rss(struct mm_struct *mm)
1366{
1367 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1368 get_mm_counter(mm, MM_ANONPAGES) +
1369 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1370}
1371
1372static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1373{
1374 return max(mm->hiwater_rss, get_mm_rss(mm));
1375}
1376
1377static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1378{
1379 return max(mm->hiwater_vm, mm->total_vm);
1380}
1381
1382static inline void update_hiwater_rss(struct mm_struct *mm)
1383{
1384 unsigned long _rss = get_mm_rss(mm);
1385
1386 if ((mm)->hiwater_rss < _rss)
1387 (mm)->hiwater_rss = _rss;
1388}
1389
1390static inline void update_hiwater_vm(struct mm_struct *mm)
1391{
1392 if (mm->hiwater_vm < mm->total_vm)
1393 mm->hiwater_vm = mm->total_vm;
1394}
1395
695f0559
PC
1396static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1397{
1398 mm->hiwater_rss = get_mm_rss(mm);
1399}
1400
d559db08
KH
1401static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1402 struct mm_struct *mm)
1403{
1404 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1405
1406 if (*maxrss < hiwater_rss)
1407 *maxrss = hiwater_rss;
1408}
1409
53bddb4e 1410#if defined(SPLIT_RSS_COUNTING)
05af2e10 1411void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1412#else
05af2e10 1413static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1414{
1415}
1416#endif
465a454f 1417
4e950f6f 1418int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1419
25ca1d6c
NK
1420extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1421 spinlock_t **ptl);
1422static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423 spinlock_t **ptl)
1424{
1425 pte_t *ptep;
1426 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1427 return ptep;
1428}
c9cfcddf 1429
5f22df00
NP
1430#ifdef __PAGETABLE_PUD_FOLDED
1431static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1432 unsigned long address)
1433{
1434 return 0;
1435}
1436#else
1bb3630e 1437int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1438#endif
1439
2d2f5119 1440#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1441static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1442 unsigned long address)
1443{
1444 return 0;
1445}
dc6c9a35 1446
2d2f5119
KS
1447static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1448
dc6c9a35
KS
1449static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1450{
1451 return 0;
1452}
1453
1454static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1455static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1456
5f22df00 1457#else
1bb3630e 1458int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1459
2d2f5119
KS
1460static inline void mm_nr_pmds_init(struct mm_struct *mm)
1461{
1462 atomic_long_set(&mm->nr_pmds, 0);
1463}
1464
dc6c9a35
KS
1465static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1466{
1467 return atomic_long_read(&mm->nr_pmds);
1468}
1469
1470static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1471{
1472 atomic_long_inc(&mm->nr_pmds);
1473}
1474
1475static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1476{
1477 atomic_long_dec(&mm->nr_pmds);
1478}
5f22df00
NP
1479#endif
1480
8ac1f832
AA
1481int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1482 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1483int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1484
1da177e4
LT
1485/*
1486 * The following ifdef needed to get the 4level-fixup.h header to work.
1487 * Remove it when 4level-fixup.h has been removed.
1488 */
1bb3630e 1489#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1490static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1491{
1bb3630e
HD
1492 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1493 NULL: pud_offset(pgd, address);
1da177e4
LT
1494}
1495
1496static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1497{
1bb3630e
HD
1498 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1499 NULL: pmd_offset(pud, address);
1da177e4 1500}
1bb3630e
HD
1501#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1502
57c1ffce 1503#if USE_SPLIT_PTE_PTLOCKS
597d795a 1504#if ALLOC_SPLIT_PTLOCKS
b35f1819 1505void __init ptlock_cache_init(void);
539edb58
PZ
1506extern bool ptlock_alloc(struct page *page);
1507extern void ptlock_free(struct page *page);
1508
1509static inline spinlock_t *ptlock_ptr(struct page *page)
1510{
1511 return page->ptl;
1512}
597d795a 1513#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1514static inline void ptlock_cache_init(void)
1515{
1516}
1517
49076ec2
KS
1518static inline bool ptlock_alloc(struct page *page)
1519{
49076ec2
KS
1520 return true;
1521}
539edb58 1522
49076ec2
KS
1523static inline void ptlock_free(struct page *page)
1524{
49076ec2
KS
1525}
1526
1527static inline spinlock_t *ptlock_ptr(struct page *page)
1528{
539edb58 1529 return &page->ptl;
49076ec2 1530}
597d795a 1531#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1532
1533static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1534{
1535 return ptlock_ptr(pmd_page(*pmd));
1536}
1537
1538static inline bool ptlock_init(struct page *page)
1539{
1540 /*
1541 * prep_new_page() initialize page->private (and therefore page->ptl)
1542 * with 0. Make sure nobody took it in use in between.
1543 *
1544 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1545 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1546 */
309381fe 1547 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1548 if (!ptlock_alloc(page))
1549 return false;
1550 spin_lock_init(ptlock_ptr(page));
1551 return true;
1552}
1553
1554/* Reset page->mapping so free_pages_check won't complain. */
1555static inline void pte_lock_deinit(struct page *page)
1556{
1557 page->mapping = NULL;
1558 ptlock_free(page);
1559}
1560
57c1ffce 1561#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1562/*
1563 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1564 */
49076ec2
KS
1565static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1566{
1567 return &mm->page_table_lock;
1568}
b35f1819 1569static inline void ptlock_cache_init(void) {}
49076ec2
KS
1570static inline bool ptlock_init(struct page *page) { return true; }
1571static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1572#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1573
b35f1819
KS
1574static inline void pgtable_init(void)
1575{
1576 ptlock_cache_init();
1577 pgtable_cache_init();
1578}
1579
390f44e2 1580static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1581{
706874e9
VD
1582 if (!ptlock_init(page))
1583 return false;
2f569afd 1584 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1585 return true;
2f569afd
MS
1586}
1587
1588static inline void pgtable_page_dtor(struct page *page)
1589{
1590 pte_lock_deinit(page);
1591 dec_zone_page_state(page, NR_PAGETABLE);
1592}
1593
c74df32c
HD
1594#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1595({ \
4c21e2f2 1596 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1597 pte_t *__pte = pte_offset_map(pmd, address); \
1598 *(ptlp) = __ptl; \
1599 spin_lock(__ptl); \
1600 __pte; \
1601})
1602
1603#define pte_unmap_unlock(pte, ptl) do { \
1604 spin_unlock(ptl); \
1605 pte_unmap(pte); \
1606} while (0)
1607
8ac1f832
AA
1608#define pte_alloc_map(mm, vma, pmd, address) \
1609 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1610 pmd, address))? \
1611 NULL: pte_offset_map(pmd, address))
1bb3630e 1612
c74df32c 1613#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1614 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1615 pmd, address))? \
c74df32c
HD
1616 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1617
1bb3630e 1618#define pte_alloc_kernel(pmd, address) \
8ac1f832 1619 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1620 NULL: pte_offset_kernel(pmd, address))
1da177e4 1621
e009bb30
KS
1622#if USE_SPLIT_PMD_PTLOCKS
1623
634391ac
MS
1624static struct page *pmd_to_page(pmd_t *pmd)
1625{
1626 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1627 return virt_to_page((void *)((unsigned long) pmd & mask));
1628}
1629
e009bb30
KS
1630static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1631{
634391ac 1632 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1633}
1634
1635static inline bool pgtable_pmd_page_ctor(struct page *page)
1636{
e009bb30
KS
1637#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1638 page->pmd_huge_pte = NULL;
1639#endif
49076ec2 1640 return ptlock_init(page);
e009bb30
KS
1641}
1642
1643static inline void pgtable_pmd_page_dtor(struct page *page)
1644{
1645#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1646 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1647#endif
49076ec2 1648 ptlock_free(page);
e009bb30
KS
1649}
1650
634391ac 1651#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1652
1653#else
1654
9a86cb7b
KS
1655static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1656{
1657 return &mm->page_table_lock;
1658}
1659
e009bb30
KS
1660static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1661static inline void pgtable_pmd_page_dtor(struct page *page) {}
1662
c389a250 1663#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1664
e009bb30
KS
1665#endif
1666
9a86cb7b
KS
1667static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1668{
1669 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1670 spin_lock(ptl);
1671 return ptl;
1672}
1673
1da177e4 1674extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1675extern void free_area_init_node(int nid, unsigned long * zones_size,
1676 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1677extern void free_initmem(void);
1678
69afade7
JL
1679/*
1680 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1681 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1682 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1683 * Return pages freed into the buddy system.
1684 */
11199692 1685extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1686 int poison, char *s);
c3d5f5f0 1687
cfa11e08
JL
1688#ifdef CONFIG_HIGHMEM
1689/*
1690 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1691 * and totalram_pages.
1692 */
1693extern void free_highmem_page(struct page *page);
1694#endif
69afade7 1695
c3d5f5f0 1696extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1697extern void mem_init_print_info(const char *str);
69afade7 1698
92923ca3
NZ
1699extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1700
69afade7
JL
1701/* Free the reserved page into the buddy system, so it gets managed. */
1702static inline void __free_reserved_page(struct page *page)
1703{
1704 ClearPageReserved(page);
1705 init_page_count(page);
1706 __free_page(page);
1707}
1708
1709static inline void free_reserved_page(struct page *page)
1710{
1711 __free_reserved_page(page);
1712 adjust_managed_page_count(page, 1);
1713}
1714
1715static inline void mark_page_reserved(struct page *page)
1716{
1717 SetPageReserved(page);
1718 adjust_managed_page_count(page, -1);
1719}
1720
1721/*
1722 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1723 * The freed pages will be poisoned with pattern "poison" if it's within
1724 * range [0, UCHAR_MAX].
1725 * Return pages freed into the buddy system.
69afade7
JL
1726 */
1727static inline unsigned long free_initmem_default(int poison)
1728{
1729 extern char __init_begin[], __init_end[];
1730
11199692 1731 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1732 poison, "unused kernel");
1733}
1734
7ee3d4e8
JL
1735static inline unsigned long get_num_physpages(void)
1736{
1737 int nid;
1738 unsigned long phys_pages = 0;
1739
1740 for_each_online_node(nid)
1741 phys_pages += node_present_pages(nid);
1742
1743 return phys_pages;
1744}
1745
0ee332c1 1746#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1747/*
0ee332c1 1748 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1749 * zones, allocate the backing mem_map and account for memory holes in a more
1750 * architecture independent manner. This is a substitute for creating the
1751 * zone_sizes[] and zholes_size[] arrays and passing them to
1752 * free_area_init_node()
1753 *
1754 * An architecture is expected to register range of page frames backed by
0ee332c1 1755 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1756 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1757 * usage, an architecture is expected to do something like
1758 *
1759 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1760 * max_highmem_pfn};
1761 * for_each_valid_physical_page_range()
0ee332c1 1762 * memblock_add_node(base, size, nid)
c713216d
MG
1763 * free_area_init_nodes(max_zone_pfns);
1764 *
0ee332c1
TH
1765 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1766 * registered physical page range. Similarly
1767 * sparse_memory_present_with_active_regions() calls memory_present() for
1768 * each range when SPARSEMEM is enabled.
c713216d
MG
1769 *
1770 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1771 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1772 */
1773extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1774unsigned long node_map_pfn_alignment(void);
32996250
YL
1775unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1776 unsigned long end_pfn);
c713216d
MG
1777extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1778 unsigned long end_pfn);
1779extern void get_pfn_range_for_nid(unsigned int nid,
1780 unsigned long *start_pfn, unsigned long *end_pfn);
1781extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1782extern void free_bootmem_with_active_regions(int nid,
1783 unsigned long max_low_pfn);
1784extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1785
0ee332c1 1786#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1787
0ee332c1 1788#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1789 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1790static inline int __early_pfn_to_nid(unsigned long pfn,
1791 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1792{
1793 return 0;
1794}
1795#else
1796/* please see mm/page_alloc.c */
1797extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1798/* there is a per-arch backend function. */
8a942fde
MG
1799extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1800 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1801#endif
1802
0e0b864e 1803extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1804extern void memmap_init_zone(unsigned long, int, unsigned long,
1805 unsigned long, enum memmap_context);
bc75d33f 1806extern void setup_per_zone_wmarks(void);
1b79acc9 1807extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1808extern void mem_init(void);
8feae131 1809extern void __init mmap_init(void);
b2b755b5 1810extern void show_mem(unsigned int flags);
1da177e4
LT
1811extern void si_meminfo(struct sysinfo * val);
1812extern void si_meminfo_node(struct sysinfo *val, int nid);
1813
3ee9a4f0 1814extern __printf(3, 4)
d00181b9
KS
1815void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1816 const char *fmt, ...);
a238ab5b 1817
e7c8d5c9 1818extern void setup_per_cpu_pageset(void);
e7c8d5c9 1819
112067f0 1820extern void zone_pcp_update(struct zone *zone);
340175b7 1821extern void zone_pcp_reset(struct zone *zone);
112067f0 1822
75f7ad8e
PS
1823/* page_alloc.c */
1824extern int min_free_kbytes;
1825
8feae131 1826/* nommu.c */
33e5d769 1827extern atomic_long_t mmap_pages_allocated;
7e660872 1828extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1829
6b2dbba8 1830/* interval_tree.c */
6b2dbba8
ML
1831void vma_interval_tree_insert(struct vm_area_struct *node,
1832 struct rb_root *root);
9826a516
ML
1833void vma_interval_tree_insert_after(struct vm_area_struct *node,
1834 struct vm_area_struct *prev,
1835 struct rb_root *root);
6b2dbba8
ML
1836void vma_interval_tree_remove(struct vm_area_struct *node,
1837 struct rb_root *root);
1838struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1839 unsigned long start, unsigned long last);
1840struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1841 unsigned long start, unsigned long last);
1842
1843#define vma_interval_tree_foreach(vma, root, start, last) \
1844 for (vma = vma_interval_tree_iter_first(root, start, last); \
1845 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1846
bf181b9f
ML
1847void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1848 struct rb_root *root);
1849void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1850 struct rb_root *root);
1851struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1852 struct rb_root *root, unsigned long start, unsigned long last);
1853struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1854 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1855#ifdef CONFIG_DEBUG_VM_RB
1856void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1857#endif
bf181b9f
ML
1858
1859#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1860 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1861 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1862
1da177e4 1863/* mmap.c */
34b4e4aa 1864extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1865extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1866 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1867extern struct vm_area_struct *vma_merge(struct mm_struct *,
1868 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1869 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1870 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1871extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1872extern int split_vma(struct mm_struct *,
1873 struct vm_area_struct *, unsigned long addr, int new_below);
1874extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1875extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1876 struct rb_node **, struct rb_node *);
a8fb5618 1877extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1878extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1879 unsigned long addr, unsigned long len, pgoff_t pgoff,
1880 bool *need_rmap_locks);
1da177e4 1881extern void exit_mmap(struct mm_struct *);
925d1c40 1882
9c599024
CG
1883static inline int check_data_rlimit(unsigned long rlim,
1884 unsigned long new,
1885 unsigned long start,
1886 unsigned long end_data,
1887 unsigned long start_data)
1888{
1889 if (rlim < RLIM_INFINITY) {
1890 if (((new - start) + (end_data - start_data)) > rlim)
1891 return -ENOSPC;
1892 }
1893
1894 return 0;
1895}
1896
7906d00c
AA
1897extern int mm_take_all_locks(struct mm_struct *mm);
1898extern void mm_drop_all_locks(struct mm_struct *mm);
1899
38646013
JS
1900extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1901extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1902
84638335
KK
1903extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1904extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1905
3935ed6a
SS
1906extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1907 unsigned long addr, unsigned long len,
a62c34bd
AL
1908 unsigned long flags,
1909 const struct vm_special_mapping *spec);
1910/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1911extern int install_special_mapping(struct mm_struct *mm,
1912 unsigned long addr, unsigned long len,
1913 unsigned long flags, struct page **pages);
1da177e4
LT
1914
1915extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1916
0165ab44 1917extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1918 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1919extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1920 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1921 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1922extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1923
1fcfd8db
ON
1924static inline unsigned long
1925do_mmap_pgoff(struct file *file, unsigned long addr,
1926 unsigned long len, unsigned long prot, unsigned long flags,
1927 unsigned long pgoff, unsigned long *populate)
1928{
1929 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1930}
1931
bebeb3d6
ML
1932#ifdef CONFIG_MMU
1933extern int __mm_populate(unsigned long addr, unsigned long len,
1934 int ignore_errors);
1935static inline void mm_populate(unsigned long addr, unsigned long len)
1936{
1937 /* Ignore errors */
1938 (void) __mm_populate(addr, len, 1);
1939}
1940#else
1941static inline void mm_populate(unsigned long addr, unsigned long len) {}
1942#endif
1943
e4eb1ff6
LT
1944/* These take the mm semaphore themselves */
1945extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1946extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1947extern unsigned long vm_mmap(struct file *, unsigned long,
1948 unsigned long, unsigned long,
1949 unsigned long, unsigned long);
1da177e4 1950
db4fbfb9
ML
1951struct vm_unmapped_area_info {
1952#define VM_UNMAPPED_AREA_TOPDOWN 1
1953 unsigned long flags;
1954 unsigned long length;
1955 unsigned long low_limit;
1956 unsigned long high_limit;
1957 unsigned long align_mask;
1958 unsigned long align_offset;
1959};
1960
1961extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1962extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1963
1964/*
1965 * Search for an unmapped address range.
1966 *
1967 * We are looking for a range that:
1968 * - does not intersect with any VMA;
1969 * - is contained within the [low_limit, high_limit) interval;
1970 * - is at least the desired size.
1971 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1972 */
1973static inline unsigned long
1974vm_unmapped_area(struct vm_unmapped_area_info *info)
1975{
cdd7875e 1976 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 1977 return unmapped_area_topdown(info);
cdd7875e
BP
1978 else
1979 return unmapped_area(info);
db4fbfb9
ML
1980}
1981
85821aab 1982/* truncate.c */
1da177e4 1983extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
1984extern void truncate_inode_pages_range(struct address_space *,
1985 loff_t lstart, loff_t lend);
91b0abe3 1986extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
1987
1988/* generic vm_area_ops exported for stackable file systems */
d0217ac0 1989extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 1990extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 1991extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
1992
1993/* mm/page-writeback.c */
1994int write_one_page(struct page *page, int wait);
1cf6e7d8 1995void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
1996
1997/* readahead.c */
1998#define VM_MAX_READAHEAD 128 /* kbytes */
1999#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2000
1da177e4 2001int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2002 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2003
2004void page_cache_sync_readahead(struct address_space *mapping,
2005 struct file_ra_state *ra,
2006 struct file *filp,
2007 pgoff_t offset,
2008 unsigned long size);
2009
2010void page_cache_async_readahead(struct address_space *mapping,
2011 struct file_ra_state *ra,
2012 struct file *filp,
2013 struct page *pg,
2014 pgoff_t offset,
2015 unsigned long size);
2016
d05f3169 2017/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2018extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2019
2020/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2021extern int expand_downwards(struct vm_area_struct *vma,
2022 unsigned long address);
8ca3eb08 2023#if VM_GROWSUP
46dea3d0 2024extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2025#else
fee7e49d 2026 #define expand_upwards(vma, address) (0)
9ab88515 2027#endif
1da177e4
LT
2028
2029/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2030extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2031extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2032 struct vm_area_struct **pprev);
2033
2034/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2035 NULL if none. Assume start_addr < end_addr. */
2036static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2037{
2038 struct vm_area_struct * vma = find_vma(mm,start_addr);
2039
2040 if (vma && end_addr <= vma->vm_start)
2041 vma = NULL;
2042 return vma;
2043}
2044
2045static inline unsigned long vma_pages(struct vm_area_struct *vma)
2046{
2047 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2048}
2049
640708a2
PE
2050/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2051static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2052 unsigned long vm_start, unsigned long vm_end)
2053{
2054 struct vm_area_struct *vma = find_vma(mm, vm_start);
2055
2056 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2057 vma = NULL;
2058
2059 return vma;
2060}
2061
bad849b3 2062#ifdef CONFIG_MMU
804af2cf 2063pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2064void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2065#else
2066static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2067{
2068 return __pgprot(0);
2069}
64e45507
PF
2070static inline void vma_set_page_prot(struct vm_area_struct *vma)
2071{
2072 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2073}
bad849b3
DH
2074#endif
2075
5877231f 2076#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2077unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2078 unsigned long start, unsigned long end);
2079#endif
2080
deceb6cd 2081struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2082int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2083 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2084int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2085int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2086 unsigned long pfn);
423bad60
NP
2087int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2088 unsigned long pfn);
b4cbb197
LT
2089int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2090
deceb6cd 2091
240aadee
ML
2092struct page *follow_page_mask(struct vm_area_struct *vma,
2093 unsigned long address, unsigned int foll_flags,
2094 unsigned int *page_mask);
2095
2096static inline struct page *follow_page(struct vm_area_struct *vma,
2097 unsigned long address, unsigned int foll_flags)
2098{
2099 unsigned int unused_page_mask;
2100 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2101}
2102
deceb6cd
HD
2103#define FOLL_WRITE 0x01 /* check pte is writable */
2104#define FOLL_TOUCH 0x02 /* mark page accessed */
2105#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2106#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2107#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2108#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2109 * and return without waiting upon it */
84d33df2 2110#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2111#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2112#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2113#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2114#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2115#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2116#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2117
2f569afd 2118typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2119 void *data);
2120extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2121 unsigned long size, pte_fn_t fn, void *data);
2122
1da177e4 2123
12d6f21e 2124#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2125extern bool _debug_pagealloc_enabled;
2126extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2127
2128static inline bool debug_pagealloc_enabled(void)
2129{
2130 return _debug_pagealloc_enabled;
2131}
2132
2133static inline void
2134kernel_map_pages(struct page *page, int numpages, int enable)
2135{
2136 if (!debug_pagealloc_enabled())
2137 return;
2138
2139 __kernel_map_pages(page, numpages, enable);
2140}
8a235efa
RW
2141#ifdef CONFIG_HIBERNATION
2142extern bool kernel_page_present(struct page *page);
2143#endif /* CONFIG_HIBERNATION */
12d6f21e 2144#else
1da177e4 2145static inline void
9858db50 2146kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2147#ifdef CONFIG_HIBERNATION
2148static inline bool kernel_page_present(struct page *page) { return true; }
2149#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2150#endif
2151
a6c19dfe 2152#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2153extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2154extern int in_gate_area_no_mm(unsigned long addr);
2155extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2156#else
a6c19dfe
AL
2157static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2158{
2159 return NULL;
2160}
2161static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2162static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2163{
2164 return 0;
2165}
1da177e4
LT
2166#endif /* __HAVE_ARCH_GATE_AREA */
2167
146732ce
JT
2168#ifdef CONFIG_SYSCTL
2169extern int sysctl_drop_caches;
8d65af78 2170int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2171 void __user *, size_t *, loff_t *);
146732ce
JT
2172#endif
2173
cb731d6c
VD
2174void drop_slab(void);
2175void drop_slab_node(int nid);
9d0243bc 2176
7a9166e3
LY
2177#ifndef CONFIG_MMU
2178#define randomize_va_space 0
2179#else
a62eaf15 2180extern int randomize_va_space;
7a9166e3 2181#endif
a62eaf15 2182
045e72ac 2183const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2184void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2185
9bdac914
YL
2186void sparse_mem_maps_populate_node(struct page **map_map,
2187 unsigned long pnum_begin,
2188 unsigned long pnum_end,
2189 unsigned long map_count,
2190 int nodeid);
2191
98f3cfc1 2192struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2193pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2194pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2195pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2196pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2197void *vmemmap_alloc_block(unsigned long size, int node);
9bdac914 2198void *vmemmap_alloc_block_buf(unsigned long size, int node);
8f6aac41 2199void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2200int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2201 int node);
2202int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2203void vmemmap_populate_print_last(void);
0197518c 2204#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2205void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2206#endif
46723bfa
YI
2207void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2208 unsigned long size);
6a46079c 2209
82ba011b
AK
2210enum mf_flags {
2211 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2212 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2213 MF_MUST_KILL = 1 << 2,
cf870c70 2214 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2215};
cd42f4a3 2216extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2217extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2218extern int unpoison_memory(unsigned long pfn);
ead07f6a 2219extern int get_hwpoison_page(struct page *page);
4e41a30c 2220#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2221extern int sysctl_memory_failure_early_kill;
2222extern int sysctl_memory_failure_recovery;
facb6011 2223extern void shake_page(struct page *p, int access);
293c07e3 2224extern atomic_long_t num_poisoned_pages;
facb6011 2225extern int soft_offline_page(struct page *page, int flags);
6a46079c 2226
cc637b17
XX
2227
2228/*
2229 * Error handlers for various types of pages.
2230 */
cc3e2af4 2231enum mf_result {
cc637b17
XX
2232 MF_IGNORED, /* Error: cannot be handled */
2233 MF_FAILED, /* Error: handling failed */
2234 MF_DELAYED, /* Will be handled later */
2235 MF_RECOVERED, /* Successfully recovered */
2236};
2237
2238enum mf_action_page_type {
2239 MF_MSG_KERNEL,
2240 MF_MSG_KERNEL_HIGH_ORDER,
2241 MF_MSG_SLAB,
2242 MF_MSG_DIFFERENT_COMPOUND,
2243 MF_MSG_POISONED_HUGE,
2244 MF_MSG_HUGE,
2245 MF_MSG_FREE_HUGE,
2246 MF_MSG_UNMAP_FAILED,
2247 MF_MSG_DIRTY_SWAPCACHE,
2248 MF_MSG_CLEAN_SWAPCACHE,
2249 MF_MSG_DIRTY_MLOCKED_LRU,
2250 MF_MSG_CLEAN_MLOCKED_LRU,
2251 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2252 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2253 MF_MSG_DIRTY_LRU,
2254 MF_MSG_CLEAN_LRU,
2255 MF_MSG_TRUNCATED_LRU,
2256 MF_MSG_BUDDY,
2257 MF_MSG_BUDDY_2ND,
2258 MF_MSG_UNKNOWN,
2259};
2260
47ad8475
AA
2261#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2262extern void clear_huge_page(struct page *page,
2263 unsigned long addr,
2264 unsigned int pages_per_huge_page);
2265extern void copy_user_huge_page(struct page *dst, struct page *src,
2266 unsigned long addr, struct vm_area_struct *vma,
2267 unsigned int pages_per_huge_page);
2268#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2269
e30825f1
JK
2270extern struct page_ext_operations debug_guardpage_ops;
2271extern struct page_ext_operations page_poisoning_ops;
2272
c0a32fc5
SG
2273#ifdef CONFIG_DEBUG_PAGEALLOC
2274extern unsigned int _debug_guardpage_minorder;
e30825f1 2275extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2276
2277static inline unsigned int debug_guardpage_minorder(void)
2278{
2279 return _debug_guardpage_minorder;
2280}
2281
e30825f1
JK
2282static inline bool debug_guardpage_enabled(void)
2283{
2284 return _debug_guardpage_enabled;
2285}
2286
c0a32fc5
SG
2287static inline bool page_is_guard(struct page *page)
2288{
e30825f1
JK
2289 struct page_ext *page_ext;
2290
2291 if (!debug_guardpage_enabled())
2292 return false;
2293
2294 page_ext = lookup_page_ext(page);
2295 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2296}
2297#else
2298static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2299static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2300static inline bool page_is_guard(struct page *page) { return false; }
2301#endif /* CONFIG_DEBUG_PAGEALLOC */
2302
f9872caf
CS
2303#if MAX_NUMNODES > 1
2304void __init setup_nr_node_ids(void);
2305#else
2306static inline void setup_nr_node_ids(void) {}
2307#endif
2308
1da177e4
LT
2309#endif /* __KERNEL__ */
2310#endif /* _LINUX_MM_H */