mm: memcontrol: simplify lruvec_holds_page_lru_lock
[linux-2.6-block.git] / include / linux / memcontrol.h
CommitLineData
c942fddf 1/* SPDX-License-Identifier: GPL-2.0-or-later */
8cdea7c0
BS
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
8cdea7c0
BS
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
f8d66542 13#include <linux/cgroup.h>
456f998e 14#include <linux/vm_event_item.h>
7ae1e1d0 15#include <linux/hardirq.h>
a8964b9b 16#include <linux/jump_label.h>
33398cf2
MH
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
00f3ca2c
JW
20#include <linux/mm.h>
21#include <linux/vmstat.h>
33398cf2 22#include <linux/writeback.h>
fdf1cdb9 23#include <linux/page-flags.h>
456f998e 24
78fb7466 25struct mem_cgroup;
bf4f0599 26struct obj_cgroup;
8697d331
BS
27struct page;
28struct mm_struct;
2633d7a0 29struct kmem_cache;
78fb7466 30
71cd3113
JW
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
468c3982 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
71cd3113 34 MEMCG_SOCK,
772616b0 35 MEMCG_PERCPU_B,
b2807f07 36 MEMCG_NR_STAT,
2a7106f2
GT
37};
38
e27be240
JW
39enum memcg_memory_event {
40 MEMCG_LOW,
71cd3113
JW
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
fe6bdfc8 44 MEMCG_OOM_KILL,
4b82ab4f 45 MEMCG_SWAP_HIGH,
f3a53a3a
TH
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
e27be240 48 MEMCG_NR_MEMORY_EVENTS,
71cd3113
JW
49};
50
5660048c 51struct mem_cgroup_reclaim_cookie {
ef8f2327 52 pg_data_t *pgdat;
5660048c
JW
53 unsigned int generation;
54};
55
71cd3113
JW
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
1c2d479a 63 refcount_t ref;
71cd3113
JW
64};
65
33398cf2
MH
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
0845f831
RD
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
33398cf2
MH
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
33398cf2
MH
75 MEM_CGROUP_NTARGETS,
76};
77
871789d4 78struct memcg_vmstats_percpu {
2d146aa3
JW
79 /* Local (CPU and cgroup) page state & events */
80 long state[MEMCG_NR_STAT];
81 unsigned long events[NR_VM_EVENT_ITEMS];
82
83 /* Delta calculation for lockless upward propagation */
84 long state_prev[MEMCG_NR_STAT];
85 unsigned long events_prev[NR_VM_EVENT_ITEMS];
86
87 /* Cgroup1: threshold notifications & softlimit tree updates */
88 unsigned long nr_page_events;
89 unsigned long targets[MEM_CGROUP_NTARGETS];
90};
91
92struct memcg_vmstats {
93 /* Aggregated (CPU and subtree) page state & events */
94 long state[MEMCG_NR_STAT];
95 unsigned long events[NR_VM_EVENT_ITEMS];
96
97 /* Pending child counts during tree propagation */
98 long state_pending[MEMCG_NR_STAT];
99 unsigned long events_pending[NR_VM_EVENT_ITEMS];
33398cf2
MH
100};
101
102struct mem_cgroup_reclaim_iter {
103 struct mem_cgroup *position;
104 /* scan generation, increased every round-trip */
105 unsigned int generation;
106};
107
00f3ca2c
JW
108struct lruvec_stat {
109 long count[NR_VM_NODE_STAT_ITEMS];
110};
111
f3344adf
MS
112struct batched_lruvec_stat {
113 s32 count[NR_VM_NODE_STAT_ITEMS];
114};
115
0a4465d3 116/*
3c6f17e6
YS
117 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
118 * shrinkers, which have elements charged to this memcg.
0a4465d3 119 */
e4262c4f 120struct shrinker_info {
0a4465d3 121 struct rcu_head rcu;
3c6f17e6
YS
122 atomic_long_t *nr_deferred;
123 unsigned long *map;
0a4465d3
KT
124};
125
33398cf2 126/*
242c37b4 127 * per-node information in memory controller.
33398cf2 128 */
ef8f2327 129struct mem_cgroup_per_node {
33398cf2 130 struct lruvec lruvec;
a983b5eb 131
f3344adf
MS
132 /*
133 * Legacy local VM stats. This should be struct lruvec_stat and
134 * cannot be optimized to struct batched_lruvec_stat. Because
135 * the threshold of the lruvec_stat_cpu can be as big as
136 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
137 * filed has no upper limit.
138 */
815744d7
JW
139 struct lruvec_stat __percpu *lruvec_stat_local;
140
141 /* Subtree VM stats (batched updates) */
f3344adf 142 struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
a983b5eb
JW
143 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
144
b4536f0c 145 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
33398cf2 146
9da83f3f 147 struct mem_cgroup_reclaim_iter iter;
33398cf2 148
e4262c4f 149 struct shrinker_info __rcu *shrinker_info;
0a432dcb 150
33398cf2
MH
151 struct rb_node tree_node; /* RB tree node */
152 unsigned long usage_in_excess;/* Set to the value by which */
153 /* the soft limit is exceeded*/
154 bool on_tree;
155 struct mem_cgroup *memcg; /* Back pointer, we cannot */
156 /* use container_of */
157};
158
33398cf2
MH
159struct mem_cgroup_threshold {
160 struct eventfd_ctx *eventfd;
161 unsigned long threshold;
162};
163
164/* For threshold */
165struct mem_cgroup_threshold_ary {
166 /* An array index points to threshold just below or equal to usage. */
167 int current_threshold;
168 /* Size of entries[] */
169 unsigned int size;
170 /* Array of thresholds */
307ed94c 171 struct mem_cgroup_threshold entries[];
33398cf2
MH
172};
173
174struct mem_cgroup_thresholds {
175 /* Primary thresholds array */
176 struct mem_cgroup_threshold_ary *primary;
177 /*
178 * Spare threshold array.
179 * This is needed to make mem_cgroup_unregister_event() "never fail".
180 * It must be able to store at least primary->size - 1 entries.
181 */
182 struct mem_cgroup_threshold_ary *spare;
183};
184
567e9ab2
JW
185enum memcg_kmem_state {
186 KMEM_NONE,
187 KMEM_ALLOCATED,
188 KMEM_ONLINE,
189};
190
e81bf979
AL
191#if defined(CONFIG_SMP)
192struct memcg_padding {
193 char x[0];
194} ____cacheline_internodealigned_in_smp;
195#define MEMCG_PADDING(name) struct memcg_padding name;
196#else
197#define MEMCG_PADDING(name)
198#endif
199
97b27821
TH
200/*
201 * Remember four most recent foreign writebacks with dirty pages in this
202 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
203 * one in a given round, we're likely to catch it later if it keeps
204 * foreign-dirtying, so a fairly low count should be enough.
205 *
206 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
207 */
208#define MEMCG_CGWB_FRN_CNT 4
209
210struct memcg_cgwb_frn {
211 u64 bdi_id; /* bdi->id of the foreign inode */
212 int memcg_id; /* memcg->css.id of foreign inode */
213 u64 at; /* jiffies_64 at the time of dirtying */
214 struct wb_completion done; /* tracks in-flight foreign writebacks */
215};
216
bf4f0599
RG
217/*
218 * Bucket for arbitrarily byte-sized objects charged to a memory
219 * cgroup. The bucket can be reparented in one piece when the cgroup
220 * is destroyed, without having to round up the individual references
221 * of all live memory objects in the wild.
222 */
223struct obj_cgroup {
224 struct percpu_ref refcnt;
225 struct mem_cgroup *memcg;
226 atomic_t nr_charged_bytes;
227 union {
228 struct list_head list;
229 struct rcu_head rcu;
230 };
231};
232
33398cf2
MH
233/*
234 * The memory controller data structure. The memory controller controls both
235 * page cache and RSS per cgroup. We would eventually like to provide
236 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
237 * to help the administrator determine what knobs to tune.
238 */
239struct mem_cgroup {
240 struct cgroup_subsys_state css;
241
73f576c0
JW
242 /* Private memcg ID. Used to ID objects that outlive the cgroup */
243 struct mem_cgroup_id id;
244
33398cf2 245 /* Accounted resources */
bd0b230f
WL
246 struct page_counter memory; /* Both v1 & v2 */
247
248 union {
249 struct page_counter swap; /* v2 only */
250 struct page_counter memsw; /* v1 only */
251 };
0db15298
JW
252
253 /* Legacy consumer-oriented counters */
bd0b230f
WL
254 struct page_counter kmem; /* v1 only */
255 struct page_counter tcpmem; /* v1 only */
33398cf2 256
f7e1cb6e
JW
257 /* Range enforcement for interrupt charges */
258 struct work_struct high_work;
259
33398cf2
MH
260 unsigned long soft_limit;
261
262 /* vmpressure notifications */
263 struct vmpressure vmpressure;
264
3d8b38eb
RG
265 /*
266 * Should the OOM killer kill all belonging tasks, had it kill one?
267 */
268 bool oom_group;
269
33398cf2
MH
270 /* protected by memcg_oom_lock */
271 bool oom_lock;
272 int under_oom;
273
274 int swappiness;
275 /* OOM-Killer disable */
276 int oom_kill_disable;
277
1e577f97 278 /* memory.events and memory.events.local */
472912a2 279 struct cgroup_file events_file;
1e577f97 280 struct cgroup_file events_local_file;
472912a2 281
f3a53a3a
TH
282 /* handle for "memory.swap.events" */
283 struct cgroup_file swap_events_file;
284
33398cf2
MH
285 /* protect arrays of thresholds */
286 struct mutex thresholds_lock;
287
288 /* thresholds for memory usage. RCU-protected */
289 struct mem_cgroup_thresholds thresholds;
290
291 /* thresholds for mem+swap usage. RCU-protected */
292 struct mem_cgroup_thresholds memsw_thresholds;
293
294 /* For oom notifier event fd */
295 struct list_head oom_notify;
296
297 /*
298 * Should we move charges of a task when a task is moved into this
299 * mem_cgroup ? And what type of charges should we move ?
300 */
301 unsigned long move_charge_at_immigrate;
e81bf979
AL
302 /* taken only while moving_account > 0 */
303 spinlock_t move_lock;
304 unsigned long move_lock_flags;
305
306 MEMCG_PADDING(_pad1_);
307
2d146aa3
JW
308 /* memory.stat */
309 struct memcg_vmstats vmstats;
42a30035 310
815744d7 311 /* memory.events */
42a30035 312 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
1e577f97 313 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
33398cf2 314
d886f4e4
JW
315 unsigned long socket_pressure;
316
317 /* Legacy tcp memory accounting */
0db15298
JW
318 bool tcpmem_active;
319 int tcpmem_pressure;
d886f4e4 320
84c07d11 321#ifdef CONFIG_MEMCG_KMEM
33398cf2 322 int kmemcg_id;
567e9ab2 323 enum memcg_kmem_state kmem_state;
bf4f0599
RG
324 struct obj_cgroup __rcu *objcg;
325 struct list_head objcg_list; /* list of inherited objcgs */
33398cf2
MH
326#endif
327
4df91062
FT
328 MEMCG_PADDING(_pad2_);
329
330 /*
331 * set > 0 if pages under this cgroup are moving to other cgroup.
332 */
333 atomic_t moving_account;
334 struct task_struct *move_lock_task;
335
4df91062
FT
336 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
337
33398cf2
MH
338#ifdef CONFIG_CGROUP_WRITEBACK
339 struct list_head cgwb_list;
340 struct wb_domain cgwb_domain;
97b27821 341 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
33398cf2
MH
342#endif
343
344 /* List of events which userspace want to receive */
345 struct list_head event_list;
346 spinlock_t event_list_lock;
347
87eaceb3
YS
348#ifdef CONFIG_TRANSPARENT_HUGEPAGE
349 struct deferred_split deferred_split_queue;
350#endif
351
33398cf2
MH
352 struct mem_cgroup_per_node *nodeinfo[0];
353 /* WARNING: nodeinfo must be the last member here */
354};
7d828602 355
a983b5eb
JW
356/*
357 * size of first charge trial. "32" comes from vmscan.c's magic value.
358 * TODO: maybe necessary to use big numbers in big irons.
359 */
360#define MEMCG_CHARGE_BATCH 32U
361
7d828602 362extern struct mem_cgroup *root_mem_cgroup;
56161634 363
87944e29
RG
364enum page_memcg_data_flags {
365 /* page->memcg_data is a pointer to an objcgs vector */
366 MEMCG_DATA_OBJCGS = (1UL << 0),
18b2db3b
RG
367 /* page has been accounted as a non-slab kernel page */
368 MEMCG_DATA_KMEM = (1UL << 1),
87944e29 369 /* the next bit after the last actual flag */
18b2db3b 370 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
87944e29
RG
371};
372
373#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
374
b4e0b68f
MS
375static inline bool PageMemcgKmem(struct page *page);
376
377/*
378 * After the initialization objcg->memcg is always pointing at
379 * a valid memcg, but can be atomically swapped to the parent memcg.
380 *
381 * The caller must ensure that the returned memcg won't be released:
382 * e.g. acquire the rcu_read_lock or css_set_lock.
383 */
384static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
385{
386 return READ_ONCE(objcg->memcg);
387}
388
389/*
390 * __page_memcg - get the memory cgroup associated with a non-kmem page
391 * @page: a pointer to the page struct
392 *
393 * Returns a pointer to the memory cgroup associated with the page,
394 * or NULL. This function assumes that the page is known to have a
395 * proper memory cgroup pointer. It's not safe to call this function
396 * against some type of pages, e.g. slab pages or ex-slab pages or
397 * kmem pages.
398 */
399static inline struct mem_cgroup *__page_memcg(struct page *page)
400{
401 unsigned long memcg_data = page->memcg_data;
402
403 VM_BUG_ON_PAGE(PageSlab(page), page);
404 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
405 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
406
407 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
408}
409
410/*
411 * __page_objcg - get the object cgroup associated with a kmem page
412 * @page: a pointer to the page struct
413 *
414 * Returns a pointer to the object cgroup associated with the page,
415 * or NULL. This function assumes that the page is known to have a
416 * proper object cgroup pointer. It's not safe to call this function
417 * against some type of pages, e.g. slab pages or ex-slab pages or
418 * LRU pages.
419 */
420static inline struct obj_cgroup *__page_objcg(struct page *page)
421{
422 unsigned long memcg_data = page->memcg_data;
423
424 VM_BUG_ON_PAGE(PageSlab(page), page);
425 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
426 VM_BUG_ON_PAGE(!(memcg_data & MEMCG_DATA_KMEM), page);
427
428 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
429}
430
bcfe06bf
RG
431/*
432 * page_memcg - get the memory cgroup associated with a page
433 * @page: a pointer to the page struct
434 *
435 * Returns a pointer to the memory cgroup associated with the page,
436 * or NULL. This function assumes that the page is known to have a
437 * proper memory cgroup pointer. It's not safe to call this function
438 * against some type of pages, e.g. slab pages or ex-slab pages.
439 *
b4e0b68f
MS
440 * For a non-kmem page any of the following ensures page and memcg binding
441 * stability:
442 *
bcfe06bf
RG
443 * - the page lock
444 * - LRU isolation
445 * - lock_page_memcg()
446 * - exclusive reference
b4e0b68f
MS
447 *
448 * For a kmem page a caller should hold an rcu read lock to protect memcg
449 * associated with a kmem page from being released.
bcfe06bf
RG
450 */
451static inline struct mem_cgroup *page_memcg(struct page *page)
452{
b4e0b68f
MS
453 if (PageMemcgKmem(page))
454 return obj_cgroup_memcg(__page_objcg(page));
455 else
456 return __page_memcg(page);
bcfe06bf
RG
457}
458
459/*
460 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
461 * @page: a pointer to the page struct
462 *
463 * Returns a pointer to the memory cgroup associated with the page,
464 * or NULL. This function assumes that the page is known to have a
465 * proper memory cgroup pointer. It's not safe to call this function
466 * against some type of pages, e.g. slab pages or ex-slab pages.
467 */
468static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
469{
b4e0b68f
MS
470 unsigned long memcg_data = READ_ONCE(page->memcg_data);
471
bcfe06bf
RG
472 VM_BUG_ON_PAGE(PageSlab(page), page);
473 WARN_ON_ONCE(!rcu_read_lock_held());
474
b4e0b68f
MS
475 if (memcg_data & MEMCG_DATA_KMEM) {
476 struct obj_cgroup *objcg;
477
478 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
479 return obj_cgroup_memcg(objcg);
480 }
481
482 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
bcfe06bf
RG
483}
484
485/*
486 * page_memcg_check - get the memory cgroup associated with a page
487 * @page: a pointer to the page struct
488 *
489 * Returns a pointer to the memory cgroup associated with the page,
b4e0b68f 490 * or NULL. This function unlike page_memcg() can take any page
bcfe06bf 491 * as an argument. It has to be used in cases when it's not known if a page
b4e0b68f
MS
492 * has an associated memory cgroup pointer or an object cgroups vector or
493 * an object cgroup.
494 *
495 * For a non-kmem page any of the following ensures page and memcg binding
496 * stability:
bcfe06bf 497 *
bcfe06bf
RG
498 * - the page lock
499 * - LRU isolation
500 * - lock_page_memcg()
501 * - exclusive reference
b4e0b68f
MS
502 *
503 * For a kmem page a caller should hold an rcu read lock to protect memcg
504 * associated with a kmem page from being released.
bcfe06bf
RG
505 */
506static inline struct mem_cgroup *page_memcg_check(struct page *page)
507{
508 /*
509 * Because page->memcg_data might be changed asynchronously
510 * for slab pages, READ_ONCE() should be used here.
511 */
512 unsigned long memcg_data = READ_ONCE(page->memcg_data);
513
87944e29 514 if (memcg_data & MEMCG_DATA_OBJCGS)
bcfe06bf
RG
515 return NULL;
516
b4e0b68f
MS
517 if (memcg_data & MEMCG_DATA_KMEM) {
518 struct obj_cgroup *objcg;
519
520 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
521 return obj_cgroup_memcg(objcg);
522 }
523
18b2db3b
RG
524 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
525}
526
bd290e1e 527#ifdef CONFIG_MEMCG_KMEM
18b2db3b
RG
528/*
529 * PageMemcgKmem - check if the page has MemcgKmem flag set
530 * @page: a pointer to the page struct
531 *
532 * Checks if the page has MemcgKmem flag set. The caller must ensure that
533 * the page has an associated memory cgroup. It's not safe to call this function
534 * against some types of pages, e.g. slab pages.
535 */
536static inline bool PageMemcgKmem(struct page *page)
537{
538 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
539 return page->memcg_data & MEMCG_DATA_KMEM;
bcfe06bf
RG
540}
541
270c6a71
RG
542/*
543 * page_objcgs - get the object cgroups vector associated with a page
544 * @page: a pointer to the page struct
545 *
546 * Returns a pointer to the object cgroups vector associated with the page,
547 * or NULL. This function assumes that the page is known to have an
548 * associated object cgroups vector. It's not safe to call this function
549 * against pages, which might have an associated memory cgroup: e.g.
550 * kernel stack pages.
551 */
552static inline struct obj_cgroup **page_objcgs(struct page *page)
553{
87944e29
RG
554 unsigned long memcg_data = READ_ONCE(page->memcg_data);
555
556 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
18b2db3b 557 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
87944e29
RG
558
559 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
270c6a71
RG
560}
561
562/*
563 * page_objcgs_check - get the object cgroups vector associated with a page
564 * @page: a pointer to the page struct
565 *
566 * Returns a pointer to the object cgroups vector associated with the page,
567 * or NULL. This function is safe to use if the page can be directly associated
568 * with a memory cgroup.
569 */
570static inline struct obj_cgroup **page_objcgs_check(struct page *page)
571{
572 unsigned long memcg_data = READ_ONCE(page->memcg_data);
573
87944e29
RG
574 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
575 return NULL;
270c6a71 576
18b2db3b
RG
577 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
578
87944e29 579 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
270c6a71
RG
580}
581
270c6a71 582#else
bd290e1e
MS
583static inline bool PageMemcgKmem(struct page *page)
584{
585 return false;
586}
587
270c6a71
RG
588static inline struct obj_cgroup **page_objcgs(struct page *page)
589{
590 return NULL;
591}
592
593static inline struct obj_cgroup **page_objcgs_check(struct page *page)
594{
595 return NULL;
596}
270c6a71
RG
597#endif
598
772616b0
RG
599static __always_inline bool memcg_stat_item_in_bytes(int idx)
600{
601 if (idx == MEMCG_PERCPU_B)
602 return true;
603 return vmstat_item_in_bytes(idx);
604}
605
dfd2f10c
KT
606static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
607{
608 return (memcg == root_mem_cgroup);
609}
610
23047a96
JW
611static inline bool mem_cgroup_disabled(void)
612{
613 return !cgroup_subsys_enabled(memory_cgrp_subsys);
614}
615
22f7496f
YS
616static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
617 struct mem_cgroup *memcg,
1bc63fb1 618 bool in_low_reclaim)
9783aa99 619{
1bc63fb1
CD
620 if (mem_cgroup_disabled())
621 return 0;
622
22f7496f
YS
623 /*
624 * There is no reclaim protection applied to a targeted reclaim.
625 * We are special casing this specific case here because
626 * mem_cgroup_protected calculation is not robust enough to keep
627 * the protection invariant for calculated effective values for
628 * parallel reclaimers with different reclaim target. This is
629 * especially a problem for tail memcgs (as they have pages on LRU)
630 * which would want to have effective values 0 for targeted reclaim
631 * but a different value for external reclaim.
632 *
633 * Example
634 * Let's have global and A's reclaim in parallel:
635 * |
636 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
637 * |\
638 * | C (low = 1G, usage = 2.5G)
639 * B (low = 1G, usage = 0.5G)
640 *
641 * For the global reclaim
642 * A.elow = A.low
643 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
644 * C.elow = min(C.usage, C.low)
645 *
646 * With the effective values resetting we have A reclaim
647 * A.elow = 0
648 * B.elow = B.low
649 * C.elow = C.low
650 *
651 * If the global reclaim races with A's reclaim then
652 * B.elow = C.elow = 0 because children_low_usage > A.elow)
653 * is possible and reclaiming B would be violating the protection.
654 *
655 */
656 if (root == memcg)
657 return 0;
658
1bc63fb1
CD
659 if (in_low_reclaim)
660 return READ_ONCE(memcg->memory.emin);
9783aa99 661
1bc63fb1
CD
662 return max(READ_ONCE(memcg->memory.emin),
663 READ_ONCE(memcg->memory.elow));
9783aa99
CD
664}
665
45c7f7e1
CD
666void mem_cgroup_calculate_protection(struct mem_cgroup *root,
667 struct mem_cgroup *memcg);
668
669static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
670{
671 /*
672 * The root memcg doesn't account charges, and doesn't support
673 * protection.
674 */
675 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
676
677}
678
679static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
680{
681 if (!mem_cgroup_supports_protection(memcg))
682 return false;
683
684 return READ_ONCE(memcg->memory.elow) >=
685 page_counter_read(&memcg->memory);
686}
687
688static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
689{
690 if (!mem_cgroup_supports_protection(memcg))
691 return false;
692
693 return READ_ONCE(memcg->memory.emin) >=
694 page_counter_read(&memcg->memory);
695}
241994ed 696
d9eb1ea2 697int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
0add0c77
SB
698int mem_cgroup_swapin_charge_page(struct page *page, struct mm_struct *mm,
699 gfp_t gfp, swp_entry_t entry);
700void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
3fea5a49 701
0a31bc97 702void mem_cgroup_uncharge(struct page *page);
747db954 703void mem_cgroup_uncharge_list(struct list_head *page_list);
569b846d 704
6a93ca8f 705void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
569b846d 706
55779ec7 707/**
867e5e1d 708 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
55779ec7 709 * @memcg: memcg of the wanted lruvec
9a1ac228 710 * @pgdat: pglist_data
55779ec7 711 *
867e5e1d 712 * Returns the lru list vector holding pages for a given @memcg &
9a1ac228 713 * @pgdat combination. This can be the node lruvec, if the memory
867e5e1d 714 * controller is disabled.
55779ec7 715 */
867e5e1d
JW
716static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
717 struct pglist_data *pgdat)
55779ec7 718{
ef8f2327 719 struct mem_cgroup_per_node *mz;
55779ec7
JW
720 struct lruvec *lruvec;
721
722 if (mem_cgroup_disabled()) {
867e5e1d 723 lruvec = &pgdat->__lruvec;
55779ec7
JW
724 goto out;
725 }
726
1b05117d
JW
727 if (!memcg)
728 memcg = root_mem_cgroup;
729
a3747b53 730 mz = memcg->nodeinfo[pgdat->node_id];
55779ec7
JW
731 lruvec = &mz->lruvec;
732out:
733 /*
734 * Since a node can be onlined after the mem_cgroup was created,
599d0c95 735 * we have to be prepared to initialize lruvec->pgdat here;
55779ec7
JW
736 * and if offlined then reonlined, we need to reinitialize it.
737 */
ef8f2327
MG
738 if (unlikely(lruvec->pgdat != pgdat))
739 lruvec->pgdat = pgdat;
55779ec7
JW
740 return lruvec;
741}
742
9a1ac228
HS
743/**
744 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
745 * @page: the page
9a1ac228
HS
746 *
747 * This function relies on page->mem_cgroup being stable.
748 */
a984226f 749static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
9a1ac228 750{
a984226f 751 pg_data_t *pgdat = page_pgdat(page);
9a1ac228
HS
752 struct mem_cgroup *memcg = page_memcg(page);
753
7ea510b9 754 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
9a1ac228
HS
755 return mem_cgroup_lruvec(memcg, pgdat);
756}
c9b0ed51 757
64219994 758struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
e993d905 759
d46eb14b
SB
760struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
761
6168d0da
AS
762struct lruvec *lock_page_lruvec(struct page *page);
763struct lruvec *lock_page_lruvec_irq(struct page *page);
764struct lruvec *lock_page_lruvec_irqsave(struct page *page,
765 unsigned long *flags);
766
767#ifdef CONFIG_DEBUG_VM
768void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
769#else
770static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
771{
772}
773#endif
774
33398cf2
MH
775static inline
776struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
777 return css ? container_of(css, struct mem_cgroup, css) : NULL;
778}
779
bf4f0599
RG
780static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
781{
782 return percpu_ref_tryget(&objcg->refcnt);
783}
784
785static inline void obj_cgroup_get(struct obj_cgroup *objcg)
786{
787 percpu_ref_get(&objcg->refcnt);
788}
789
b4e0b68f
MS
790static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
791 unsigned long nr)
bf4f0599 792{
b4e0b68f 793 percpu_ref_get_many(&objcg->refcnt, nr);
bf4f0599
RG
794}
795
b4e0b68f 796static inline void obj_cgroup_put(struct obj_cgroup *objcg)
bf4f0599 797{
b4e0b68f 798 percpu_ref_put(&objcg->refcnt);
bf4f0599
RG
799}
800
dc0b5864
RG
801static inline void mem_cgroup_put(struct mem_cgroup *memcg)
802{
d46eb14b
SB
803 if (memcg)
804 css_put(&memcg->css);
dc0b5864
RG
805}
806
8e8ae645
JW
807#define mem_cgroup_from_counter(counter, member) \
808 container_of(counter, struct mem_cgroup, member)
809
33398cf2
MH
810struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
811 struct mem_cgroup *,
812 struct mem_cgroup_reclaim_cookie *);
813void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
7c5f64f8
VD
814int mem_cgroup_scan_tasks(struct mem_cgroup *,
815 int (*)(struct task_struct *, void *), void *);
33398cf2 816
23047a96
JW
817static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
818{
819 if (mem_cgroup_disabled())
820 return 0;
821
73f576c0 822 return memcg->id.id;
23047a96 823}
73f576c0 824struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
23047a96 825
aa9694bb
CD
826static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
827{
828 return mem_cgroup_from_css(seq_css(m));
829}
830
2262185c
RG
831static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
832{
833 struct mem_cgroup_per_node *mz;
834
835 if (mem_cgroup_disabled())
836 return NULL;
837
838 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
839 return mz->memcg;
840}
841
8e8ae645
JW
842/**
843 * parent_mem_cgroup - find the accounting parent of a memcg
844 * @memcg: memcg whose parent to find
845 *
846 * Returns the parent memcg, or NULL if this is the root or the memory
847 * controller is in legacy no-hierarchy mode.
848 */
849static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
850{
851 if (!memcg->memory.parent)
852 return NULL;
853 return mem_cgroup_from_counter(memcg->memory.parent, memory);
854}
855
33398cf2
MH
856static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
857 struct mem_cgroup *root)
858{
859 if (root == memcg)
860 return true;
33398cf2
MH
861 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
862}
e1aab161 863
2314b42d
JW
864static inline bool mm_match_cgroup(struct mm_struct *mm,
865 struct mem_cgroup *memcg)
2e4d4091 866{
587af308 867 struct mem_cgroup *task_memcg;
413918bb 868 bool match = false;
c3ac9a8a 869
2e4d4091 870 rcu_read_lock();
587af308 871 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413918bb 872 if (task_memcg)
2314b42d 873 match = mem_cgroup_is_descendant(task_memcg, memcg);
2e4d4091 874 rcu_read_unlock();
c3ac9a8a 875 return match;
2e4d4091 876}
8a9f3ccd 877
64219994 878struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
2fc04524 879ino_t page_cgroup_ino(struct page *page);
d324236b 880
eb01aaab
VD
881static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
882{
883 if (mem_cgroup_disabled())
884 return true;
885 return !!(memcg->css.flags & CSS_ONLINE);
886}
887
58ae83db
KH
888/*
889 * For memory reclaim.
890 */
889976db 891int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
33398cf2
MH
892
893void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 894 int zid, int nr_pages);
33398cf2 895
b4536f0c
MH
896static inline
897unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
898 enum lru_list lru, int zone_idx)
899{
900 struct mem_cgroup_per_node *mz;
901
902 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
e0e3f42f 903 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
33398cf2
MH
904}
905
b23afb93
TH
906void mem_cgroup_handle_over_high(void);
907
bbec2e15 908unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
7c5f64f8 909
9783aa99
CD
910unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
911
f0c867d9 912void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
64219994 913 struct task_struct *p);
58ae83db 914
f0c867d9 915void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
916
29ef680a 917static inline void mem_cgroup_enter_user_fault(void)
519e5247 918{
29ef680a
MH
919 WARN_ON(current->in_user_fault);
920 current->in_user_fault = 1;
519e5247
JW
921}
922
29ef680a 923static inline void mem_cgroup_exit_user_fault(void)
519e5247 924{
29ef680a
MH
925 WARN_ON(!current->in_user_fault);
926 current->in_user_fault = 0;
519e5247
JW
927}
928
3812c8c8
JW
929static inline bool task_in_memcg_oom(struct task_struct *p)
930{
626ebc41 931 return p->memcg_in_oom;
3812c8c8
JW
932}
933
49426420 934bool mem_cgroup_oom_synchronize(bool wait);
3d8b38eb
RG
935struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
936 struct mem_cgroup *oom_domain);
937void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
3812c8c8 938
c255a458 939#ifdef CONFIG_MEMCG_SWAP
eccb52e7 940extern bool cgroup_memory_noswap;
c077719b 941#endif
f8d66542 942
1c824a68 943void lock_page_memcg(struct page *page);
62cccb8c 944void unlock_page_memcg(struct page *page);
d7365e78 945
db9adbcb 946void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
2a2e4885 947
04fecbf5 948/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 949static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 950 int idx, int val)
2a2e4885 951{
c3cc3911
JW
952 unsigned long flags;
953
954 local_irq_save(flags);
a983b5eb 955 __mod_memcg_state(memcg, idx, val);
c3cc3911 956 local_irq_restore(flags);
2a2e4885
JW
957}
958
42a30035
JW
959static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
960 enum node_stat_item idx)
961{
962 struct mem_cgroup_per_node *pn;
963 long x;
964
965 if (mem_cgroup_disabled())
966 return node_page_state(lruvec_pgdat(lruvec), idx);
967
968 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
969 x = atomic_long_read(&pn->lruvec_stat[idx]);
970#ifdef CONFIG_SMP
971 if (x < 0)
972 x = 0;
973#endif
974 return x;
975}
976
205b20cc
JW
977static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
978 enum node_stat_item idx)
2a7106f2 979{
00f3ca2c 980 struct mem_cgroup_per_node *pn;
815744d7
JW
981 long x = 0;
982 int cpu;
00f3ca2c
JW
983
984 if (mem_cgroup_disabled())
985 return node_page_state(lruvec_pgdat(lruvec), idx);
986
987 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
815744d7
JW
988 for_each_possible_cpu(cpu)
989 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
a983b5eb
JW
990#ifdef CONFIG_SMP
991 if (x < 0)
992 x = 0;
993#endif
994 return x;
2a7106f2
GT
995}
996
eedc4e5a
RG
997void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
998 int val);
da3ceeff 999void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
991e7673 1000
da3ceeff 1001static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
991e7673
SB
1002 int val)
1003{
1004 unsigned long flags;
1005
1006 local_irq_save(flags);
da3ceeff 1007 __mod_lruvec_kmem_state(p, idx, val);
991e7673
SB
1008 local_irq_restore(flags);
1009}
1010
eedc4e5a
RG
1011static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1012 enum node_stat_item idx, int val)
1013{
1014 unsigned long flags;
1015
1016 local_irq_save(flags);
1017 __mod_memcg_lruvec_state(lruvec, idx, val);
1018 local_irq_restore(flags);
1019}
1020
db9adbcb
JW
1021void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1022 unsigned long count);
c9019e9b 1023
2262185c 1024static inline void count_memcg_events(struct mem_cgroup *memcg,
e27be240
JW
1025 enum vm_event_item idx,
1026 unsigned long count)
2262185c 1027{
c3cc3911
JW
1028 unsigned long flags;
1029
1030 local_irq_save(flags);
a983b5eb 1031 __count_memcg_events(memcg, idx, count);
c3cc3911 1032 local_irq_restore(flags);
2262185c
RG
1033}
1034
1035static inline void count_memcg_page_event(struct page *page,
e27be240 1036 enum vm_event_item idx)
2262185c 1037{
bcfe06bf
RG
1038 struct mem_cgroup *memcg = page_memcg(page);
1039
1040 if (memcg)
1041 count_memcg_events(memcg, idx, 1);
2262185c
RG
1042}
1043
1044static inline void count_memcg_event_mm(struct mm_struct *mm,
1045 enum vm_event_item idx)
68ae564b 1046{
33398cf2
MH
1047 struct mem_cgroup *memcg;
1048
68ae564b
DR
1049 if (mem_cgroup_disabled())
1050 return;
33398cf2
MH
1051
1052 rcu_read_lock();
1053 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
fe6bdfc8 1054 if (likely(memcg))
c9019e9b 1055 count_memcg_events(memcg, idx, 1);
33398cf2 1056 rcu_read_unlock();
68ae564b 1057}
c9019e9b 1058
e27be240
JW
1059static inline void memcg_memory_event(struct mem_cgroup *memcg,
1060 enum memcg_memory_event event)
c9019e9b 1061{
8b21ca02
MS
1062 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1063 event == MEMCG_SWAP_FAIL;
1064
1e577f97 1065 atomic_long_inc(&memcg->memory_events_local[event]);
8b21ca02
MS
1066 if (!swap_event)
1067 cgroup_file_notify(&memcg->events_local_file);
1e577f97 1068
9852ae3f
CD
1069 do {
1070 atomic_long_inc(&memcg->memory_events[event]);
8b21ca02
MS
1071 if (swap_event)
1072 cgroup_file_notify(&memcg->swap_events_file);
1073 else
1074 cgroup_file_notify(&memcg->events_file);
9852ae3f 1075
04fd61a4
YS
1076 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1077 break;
9852ae3f
CD
1078 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1079 break;
1080 } while ((memcg = parent_mem_cgroup(memcg)) &&
1081 !mem_cgroup_is_root(memcg));
c9019e9b
JW
1082}
1083
fe6bdfc8
RG
1084static inline void memcg_memory_event_mm(struct mm_struct *mm,
1085 enum memcg_memory_event event)
1086{
1087 struct mem_cgroup *memcg;
1088
1089 if (mem_cgroup_disabled())
1090 return;
1091
1092 rcu_read_lock();
1093 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1094 if (likely(memcg))
1095 memcg_memory_event(memcg, event);
1096 rcu_read_unlock();
1097}
1098
be6c8982 1099void split_page_memcg(struct page *head, unsigned int nr);
ca3e0214 1100
2d146aa3
JW
1101unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1102 gfp_t gfp_mask,
1103 unsigned long *total_scanned);
1104
c255a458 1105#else /* CONFIG_MEMCG */
23047a96
JW
1106
1107#define MEM_CGROUP_ID_SHIFT 0
1108#define MEM_CGROUP_ID_MAX 0
1109
bcfe06bf
RG
1110static inline struct mem_cgroup *page_memcg(struct page *page)
1111{
1112 return NULL;
1113}
1114
1115static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1116{
1117 WARN_ON_ONCE(!rcu_read_lock_held());
1118 return NULL;
1119}
1120
1121static inline struct mem_cgroup *page_memcg_check(struct page *page)
1122{
1123 return NULL;
1124}
1125
18b2db3b
RG
1126static inline bool PageMemcgKmem(struct page *page)
1127{
1128 return false;
1129}
1130
dfd2f10c
KT
1131static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1132{
1133 return true;
1134}
1135
23047a96
JW
1136static inline bool mem_cgroup_disabled(void)
1137{
1138 return true;
1139}
1140
e27be240
JW
1141static inline void memcg_memory_event(struct mem_cgroup *memcg,
1142 enum memcg_memory_event event)
241994ed
JW
1143{
1144}
1145
fe6bdfc8
RG
1146static inline void memcg_memory_event_mm(struct mm_struct *mm,
1147 enum memcg_memory_event event)
1148{
1149}
1150
22f7496f
YS
1151static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1152 struct mem_cgroup *memcg,
1bc63fb1 1153 bool in_low_reclaim)
9783aa99 1154{
1bc63fb1 1155 return 0;
9783aa99
CD
1156}
1157
45c7f7e1
CD
1158static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1159 struct mem_cgroup *memcg)
1160{
1161}
1162
1163static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1164{
1165 return false;
1166}
1167
1168static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
241994ed 1169{
45c7f7e1 1170 return false;
241994ed
JW
1171}
1172
3fea5a49 1173static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
d9eb1ea2 1174 gfp_t gfp_mask)
3fea5a49
JW
1175{
1176 return 0;
1177}
1178
0add0c77
SB
1179static inline int mem_cgroup_swapin_charge_page(struct page *page,
1180 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1181{
1182 return 0;
1183}
1184
1185static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1186{
1187}
1188
0a31bc97 1189static inline void mem_cgroup_uncharge(struct page *page)
569b846d
KH
1190{
1191}
1192
747db954 1193static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
8a9f3ccd
BS
1194{
1195}
1196
6a93ca8f 1197static inline void mem_cgroup_migrate(struct page *old, struct page *new)
69029cd5
KH
1198{
1199}
1200
867e5e1d
JW
1201static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1202 struct pglist_data *pgdat)
08e552c6 1203{
867e5e1d 1204 return &pgdat->__lruvec;
08e552c6
KH
1205}
1206
a984226f 1207static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page)
66e1707b 1208{
a984226f
MS
1209 pg_data_t *pgdat = page_pgdat(page);
1210
867e5e1d 1211 return &pgdat->__lruvec;
66e1707b
BS
1212}
1213
2d146aa3
JW
1214static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1215{
1216}
1217
b910718a
JW
1218static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1219{
1220 return NULL;
1221}
1222
587af308 1223static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 1224 struct mem_cgroup *memcg)
bed7161a 1225{
587af308 1226 return true;
bed7161a
BS
1227}
1228
d46eb14b
SB
1229static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1230{
1231 return NULL;
1232}
1233
dc0b5864
RG
1234static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1235{
1236}
1237
6168d0da
AS
1238static inline struct lruvec *lock_page_lruvec(struct page *page)
1239{
1240 struct pglist_data *pgdat = page_pgdat(page);
1241
1242 spin_lock(&pgdat->__lruvec.lru_lock);
1243 return &pgdat->__lruvec;
1244}
1245
1246static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1247{
1248 struct pglist_data *pgdat = page_pgdat(page);
1249
1250 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1251 return &pgdat->__lruvec;
1252}
1253
1254static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1255 unsigned long *flagsp)
1256{
1257 struct pglist_data *pgdat = page_pgdat(page);
1258
1259 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1260 return &pgdat->__lruvec;
1261}
1262
5660048c
JW
1263static inline struct mem_cgroup *
1264mem_cgroup_iter(struct mem_cgroup *root,
1265 struct mem_cgroup *prev,
1266 struct mem_cgroup_reclaim_cookie *reclaim)
1267{
1268 return NULL;
1269}
1270
1271static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1272 struct mem_cgroup *prev)
1273{
1274}
1275
7c5f64f8
VD
1276static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1277 int (*fn)(struct task_struct *, void *), void *arg)
1278{
1279 return 0;
1280}
1281
23047a96 1282static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
f8d66542 1283{
23047a96
JW
1284 return 0;
1285}
1286
1287static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1288{
1289 WARN_ON_ONCE(id);
1290 /* XXX: This should always return root_mem_cgroup */
1291 return NULL;
f8d66542 1292}
a636b327 1293
aa9694bb
CD
1294static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1295{
1296 return NULL;
1297}
1298
2262185c
RG
1299static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1300{
1301 return NULL;
1302}
1303
eb01aaab 1304static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
14797e23 1305{
13308ca9 1306 return true;
14797e23
KM
1307}
1308
b4536f0c
MH
1309static inline
1310unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1311 enum lru_list lru, int zone_idx)
1312{
1313 return 0;
1314}
a3d8e054 1315
bbec2e15 1316static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
7c5f64f8
VD
1317{
1318 return 0;
1319}
1320
9783aa99
CD
1321static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1322{
1323 return 0;
1324}
1325
e222432b 1326static inline void
f0c867d9 1327mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1328{
1329}
1330
1331static inline void
1332mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
e222432b
BS
1333{
1334}
1335
1c824a68 1336static inline void lock_page_memcg(struct page *page)
89c06bd5
KH
1337{
1338}
1339
62cccb8c 1340static inline void unlock_page_memcg(struct page *page)
89c06bd5
KH
1341{
1342}
1343
b23afb93
TH
1344static inline void mem_cgroup_handle_over_high(void)
1345{
1346}
1347
29ef680a 1348static inline void mem_cgroup_enter_user_fault(void)
519e5247
JW
1349{
1350}
1351
29ef680a 1352static inline void mem_cgroup_exit_user_fault(void)
519e5247
JW
1353{
1354}
1355
3812c8c8
JW
1356static inline bool task_in_memcg_oom(struct task_struct *p)
1357{
1358 return false;
1359}
1360
49426420 1361static inline bool mem_cgroup_oom_synchronize(bool wait)
3812c8c8
JW
1362{
1363 return false;
1364}
1365
3d8b38eb
RG
1366static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1367 struct task_struct *victim, struct mem_cgroup *oom_domain)
1368{
1369 return NULL;
1370}
1371
1372static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1373{
1374}
1375
00f3ca2c 1376static inline void __mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1377 int idx,
00f3ca2c 1378 int nr)
2a2e4885
JW
1379{
1380}
1381
00f3ca2c 1382static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1383 int idx,
00f3ca2c 1384 int nr)
2a2e4885
JW
1385{
1386}
1387
42a30035
JW
1388static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1389 enum node_stat_item idx)
1390{
1391 return node_page_state(lruvec_pgdat(lruvec), idx);
1392}
1393
205b20cc
JW
1394static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1395 enum node_stat_item idx)
2a7106f2 1396{
00f3ca2c 1397 return node_page_state(lruvec_pgdat(lruvec), idx);
2a7106f2
GT
1398}
1399
eedc4e5a
RG
1400static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1401 enum node_stat_item idx, int val)
1402{
1403}
1404
da3ceeff 1405static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
ec9f0238
RG
1406 int val)
1407{
1408 struct page *page = virt_to_head_page(p);
1409
1410 __mod_node_page_state(page_pgdat(page), idx, val);
1411}
1412
da3ceeff 1413static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
991e7673
SB
1414 int val)
1415{
1416 struct page *page = virt_to_head_page(p);
1417
1418 mod_node_page_state(page_pgdat(page), idx, val);
1419}
1420
2262185c
RG
1421static inline void count_memcg_events(struct mem_cgroup *memcg,
1422 enum vm_event_item idx,
1423 unsigned long count)
1424{
1425}
1426
9851ac13
KT
1427static inline void __count_memcg_events(struct mem_cgroup *memcg,
1428 enum vm_event_item idx,
1429 unsigned long count)
1430{
1431}
1432
2262185c 1433static inline void count_memcg_page_event(struct page *page,
04fecbf5 1434 int idx)
2262185c
RG
1435{
1436}
1437
456f998e 1438static inline
2262185c 1439void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
456f998e
YH
1440{
1441}
6168d0da 1442
2d146aa3
JW
1443static inline void split_page_memcg(struct page *head, unsigned int nr)
1444{
1445}
1446
1447static inline
1448unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1449 gfp_t gfp_mask,
1450 unsigned long *total_scanned)
6168d0da 1451{
2d146aa3 1452 return 0;
6168d0da 1453}
c255a458 1454#endif /* CONFIG_MEMCG */
78fb7466 1455
da3ceeff 1456static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
ec9f0238 1457{
da3ceeff 1458 __mod_lruvec_kmem_state(p, idx, 1);
ec9f0238
RG
1459}
1460
da3ceeff 1461static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
ec9f0238 1462{
da3ceeff 1463 __mod_lruvec_kmem_state(p, idx, -1);
ec9f0238
RG
1464}
1465
7cf111bc
JW
1466static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1467{
1468 struct mem_cgroup *memcg;
1469
1470 memcg = lruvec_memcg(lruvec);
1471 if (!memcg)
1472 return NULL;
1473 memcg = parent_mem_cgroup(memcg);
1474 if (!memcg)
1475 return NULL;
1476 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1477}
1478
6168d0da
AS
1479static inline void unlock_page_lruvec(struct lruvec *lruvec)
1480{
1481 spin_unlock(&lruvec->lru_lock);
1482}
1483
1484static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1485{
1486 spin_unlock_irq(&lruvec->lru_lock);
1487}
1488
1489static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1490 unsigned long flags)
1491{
1492 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1493}
1494
f2e4d28d
MS
1495static inline bool lruvec_holds_page_lru_lock(struct page *page,
1496 struct lruvec *lruvec)
1497{
1498 return lruvec_pgdat(lruvec) == page_pgdat(page) &&
1499 lruvec_memcg(lruvec) == page_memcg(page);
1500}
1501
2a5e4e34
AD
1502/* Don't lock again iff page's lruvec locked */
1503static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1504 struct lruvec *locked_lruvec)
1505{
1506 if (locked_lruvec) {
1507 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1508 return locked_lruvec;
1509
1510 unlock_page_lruvec_irq(locked_lruvec);
1511 }
1512
1513 return lock_page_lruvec_irq(page);
1514}
1515
1516/* Don't lock again iff page's lruvec locked */
1517static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1518 struct lruvec *locked_lruvec, unsigned long *flags)
1519{
1520 if (locked_lruvec) {
1521 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1522 return locked_lruvec;
1523
1524 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1525 }
1526
1527 return lock_page_lruvec_irqsave(page, flags);
1528}
1529
52ebea74 1530#ifdef CONFIG_CGROUP_WRITEBACK
841710aa 1531
841710aa 1532struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
c5edf9cd
TH
1533void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1534 unsigned long *pheadroom, unsigned long *pdirty,
1535 unsigned long *pwriteback);
841710aa 1536
97b27821
TH
1537void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1538 struct bdi_writeback *wb);
1539
1540static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1541 struct bdi_writeback *wb)
1542{
08d1d0e6
BH
1543 if (mem_cgroup_disabled())
1544 return;
1545
bcfe06bf 1546 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
97b27821
TH
1547 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1548}
1549
1550void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1551
841710aa
TH
1552#else /* CONFIG_CGROUP_WRITEBACK */
1553
1554static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1555{
1556 return NULL;
1557}
1558
c2aa723a 1559static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
c5edf9cd
TH
1560 unsigned long *pfilepages,
1561 unsigned long *pheadroom,
c2aa723a
TH
1562 unsigned long *pdirty,
1563 unsigned long *pwriteback)
1564{
1565}
1566
97b27821
TH
1567static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1568 struct bdi_writeback *wb)
1569{
1570}
1571
1572static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1573{
1574}
1575
841710aa 1576#endif /* CONFIG_CGROUP_WRITEBACK */
52ebea74 1577
e1aab161 1578struct sock;
baac50bb
JW
1579bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1580void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
d886f4e4 1581#ifdef CONFIG_MEMCG
ef12947c
JW
1582extern struct static_key_false memcg_sockets_enabled_key;
1583#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
2d758073
JW
1584void mem_cgroup_sk_alloc(struct sock *sk);
1585void mem_cgroup_sk_free(struct sock *sk);
baac50bb 1586static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c 1587{
0db15298 1588 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
8e8ae645 1589 return true;
8e8ae645
JW
1590 do {
1591 if (time_before(jiffies, memcg->socket_pressure))
1592 return true;
1593 } while ((memcg = parent_mem_cgroup(memcg)));
1594 return false;
e805605c 1595}
0a432dcb 1596
e4262c4f
YS
1597int alloc_shrinker_info(struct mem_cgroup *memcg);
1598void free_shrinker_info(struct mem_cgroup *memcg);
2bfd3637 1599void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
a178015c 1600void reparent_shrinker_deferred(struct mem_cgroup *memcg);
e805605c 1601#else
80e95fe0 1602#define mem_cgroup_sockets_enabled 0
2d758073
JW
1603static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1604static inline void mem_cgroup_sk_free(struct sock *sk) { };
baac50bb 1605static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c
JW
1606{
1607 return false;
1608}
0a432dcb 1609
2bfd3637
YS
1610static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1611 int nid, int shrinker_id)
0a432dcb
YS
1612{
1613}
e805605c 1614#endif
7ae1e1d0 1615
9b6f7e16 1616#ifdef CONFIG_MEMCG_KMEM
f4b00eab
RG
1617int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1618void __memcg_kmem_uncharge_page(struct page *page, int order);
45264778 1619
bf4f0599
RG
1620struct obj_cgroup *get_obj_cgroup_from_current(void);
1621
1622int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1623void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1624
ef12947c 1625extern struct static_key_false memcg_kmem_enabled_key;
749c5415 1626
dbcf73e2 1627extern int memcg_nr_cache_ids;
64219994
MH
1628void memcg_get_cache_ids(void);
1629void memcg_put_cache_ids(void);
ebe945c2
GC
1630
1631/*
1632 * Helper macro to loop through all memcg-specific caches. Callers must still
1633 * check if the cache is valid (it is either valid or NULL).
1634 * the slab_mutex must be held when looping through those caches
1635 */
749c5415 1636#define for_each_memcg_cache_index(_idx) \
dbcf73e2 1637 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
749c5415 1638
7ae1e1d0
GC
1639static inline bool memcg_kmem_enabled(void)
1640{
eda330e5 1641 return static_branch_likely(&memcg_kmem_enabled_key);
7ae1e1d0
GC
1642}
1643
f4b00eab
RG
1644static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1645 int order)
60cd4bcd
SB
1646{
1647 if (memcg_kmem_enabled())
f4b00eab 1648 return __memcg_kmem_charge_page(page, gfp, order);
60cd4bcd
SB
1649 return 0;
1650}
1651
f4b00eab 1652static inline void memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1653{
1654 if (memcg_kmem_enabled())
f4b00eab 1655 __memcg_kmem_uncharge_page(page, order);
60cd4bcd
SB
1656}
1657
33398cf2 1658/*
a7cb874b
RG
1659 * A helper for accessing memcg's kmem_id, used for getting
1660 * corresponding LRU lists.
33398cf2
MH
1661 */
1662static inline int memcg_cache_id(struct mem_cgroup *memcg)
1663{
1664 return memcg ? memcg->kmemcg_id : -1;
1665}
5722d094 1666
8380ce47
RG
1667struct mem_cgroup *mem_cgroup_from_obj(void *p);
1668
7ae1e1d0 1669#else
9b6f7e16 1670
f4b00eab
RG
1671static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1672 int order)
9b6f7e16
RG
1673{
1674 return 0;
1675}
1676
f4b00eab 1677static inline void memcg_kmem_uncharge_page(struct page *page, int order)
9b6f7e16
RG
1678{
1679}
1680
f4b00eab
RG
1681static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1682 int order)
60cd4bcd
SB
1683{
1684 return 0;
1685}
1686
f4b00eab 1687static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1688{
1689}
1690
749c5415
GC
1691#define for_each_memcg_cache_index(_idx) \
1692 for (; NULL; )
1693
b9ce5ef4
GC
1694static inline bool memcg_kmem_enabled(void)
1695{
1696 return false;
1697}
1698
2633d7a0
GC
1699static inline int memcg_cache_id(struct mem_cgroup *memcg)
1700{
1701 return -1;
1702}
1703
05257a1a
VD
1704static inline void memcg_get_cache_ids(void)
1705{
1706}
1707
1708static inline void memcg_put_cache_ids(void)
1709{
1710}
1711
8380ce47
RG
1712static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1713{
1714 return NULL;
1715}
1716
84c07d11 1717#endif /* CONFIG_MEMCG_KMEM */
127424c8 1718
8cdea7c0 1719#endif /* _LINUX_MEMCONTROL_H */