mm/filemap: drop check for truncated page after I/O
[linux-block.git] / include / linux / memcontrol.h
CommitLineData
c942fddf 1/* SPDX-License-Identifier: GPL-2.0-or-later */
8cdea7c0
BS
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
8cdea7c0
BS
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
f8d66542 13#include <linux/cgroup.h>
456f998e 14#include <linux/vm_event_item.h>
7ae1e1d0 15#include <linux/hardirq.h>
a8964b9b 16#include <linux/jump_label.h>
33398cf2
MH
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
00f3ca2c
JW
20#include <linux/mm.h>
21#include <linux/vmstat.h>
33398cf2 22#include <linux/writeback.h>
fdf1cdb9 23#include <linux/page-flags.h>
456f998e 24
78fb7466 25struct mem_cgroup;
bf4f0599 26struct obj_cgroup;
8697d331
BS
27struct page;
28struct mm_struct;
2633d7a0 29struct kmem_cache;
78fb7466 30
71cd3113
JW
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
468c3982 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
71cd3113 34 MEMCG_SOCK,
772616b0 35 MEMCG_PERCPU_B,
b2807f07 36 MEMCG_NR_STAT,
2a7106f2
GT
37};
38
e27be240
JW
39enum memcg_memory_event {
40 MEMCG_LOW,
71cd3113
JW
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
fe6bdfc8 44 MEMCG_OOM_KILL,
4b82ab4f 45 MEMCG_SWAP_HIGH,
f3a53a3a
TH
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
e27be240 48 MEMCG_NR_MEMORY_EVENTS,
71cd3113
JW
49};
50
5660048c 51struct mem_cgroup_reclaim_cookie {
ef8f2327 52 pg_data_t *pgdat;
5660048c
JW
53 unsigned int generation;
54};
55
71cd3113
JW
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
1c2d479a 63 refcount_t ref;
71cd3113
JW
64};
65
33398cf2
MH
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
0845f831
RD
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
33398cf2
MH
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
33398cf2
MH
75 MEM_CGROUP_NTARGETS,
76};
77
871789d4
CD
78struct memcg_vmstats_percpu {
79 long stat[MEMCG_NR_STAT];
e27be240 80 unsigned long events[NR_VM_EVENT_ITEMS];
33398cf2
MH
81 unsigned long nr_page_events;
82 unsigned long targets[MEM_CGROUP_NTARGETS];
83};
84
85struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89};
90
00f3ca2c
JW
91struct lruvec_stat {
92 long count[NR_VM_NODE_STAT_ITEMS];
93};
94
f3344adf
MS
95struct batched_lruvec_stat {
96 s32 count[NR_VM_NODE_STAT_ITEMS];
97};
98
0a4465d3
KT
99/*
100 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
101 * which have elements charged to this memcg.
102 */
103struct memcg_shrinker_map {
104 struct rcu_head rcu;
307ed94c 105 unsigned long map[];
0a4465d3
KT
106};
107
33398cf2 108/*
242c37b4 109 * per-node information in memory controller.
33398cf2 110 */
ef8f2327 111struct mem_cgroup_per_node {
33398cf2 112 struct lruvec lruvec;
a983b5eb 113
f3344adf
MS
114 /*
115 * Legacy local VM stats. This should be struct lruvec_stat and
116 * cannot be optimized to struct batched_lruvec_stat. Because
117 * the threshold of the lruvec_stat_cpu can be as big as
118 * MEMCG_CHARGE_BATCH * PAGE_SIZE. It can fit into s32. But this
119 * filed has no upper limit.
120 */
815744d7
JW
121 struct lruvec_stat __percpu *lruvec_stat_local;
122
123 /* Subtree VM stats (batched updates) */
f3344adf 124 struct batched_lruvec_stat __percpu *lruvec_stat_cpu;
a983b5eb
JW
125 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
126
b4536f0c 127 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
33398cf2 128
9da83f3f 129 struct mem_cgroup_reclaim_iter iter;
33398cf2 130
0a4465d3 131 struct memcg_shrinker_map __rcu *shrinker_map;
0a432dcb 132
33398cf2
MH
133 struct rb_node tree_node; /* RB tree node */
134 unsigned long usage_in_excess;/* Set to the value by which */
135 /* the soft limit is exceeded*/
136 bool on_tree;
137 struct mem_cgroup *memcg; /* Back pointer, we cannot */
138 /* use container_of */
139};
140
33398cf2
MH
141struct mem_cgroup_threshold {
142 struct eventfd_ctx *eventfd;
143 unsigned long threshold;
144};
145
146/* For threshold */
147struct mem_cgroup_threshold_ary {
148 /* An array index points to threshold just below or equal to usage. */
149 int current_threshold;
150 /* Size of entries[] */
151 unsigned int size;
152 /* Array of thresholds */
307ed94c 153 struct mem_cgroup_threshold entries[];
33398cf2
MH
154};
155
156struct mem_cgroup_thresholds {
157 /* Primary thresholds array */
158 struct mem_cgroup_threshold_ary *primary;
159 /*
160 * Spare threshold array.
161 * This is needed to make mem_cgroup_unregister_event() "never fail".
162 * It must be able to store at least primary->size - 1 entries.
163 */
164 struct mem_cgroup_threshold_ary *spare;
165};
166
567e9ab2
JW
167enum memcg_kmem_state {
168 KMEM_NONE,
169 KMEM_ALLOCATED,
170 KMEM_ONLINE,
171};
172
e81bf979
AL
173#if defined(CONFIG_SMP)
174struct memcg_padding {
175 char x[0];
176} ____cacheline_internodealigned_in_smp;
177#define MEMCG_PADDING(name) struct memcg_padding name;
178#else
179#define MEMCG_PADDING(name)
180#endif
181
97b27821
TH
182/*
183 * Remember four most recent foreign writebacks with dirty pages in this
184 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
185 * one in a given round, we're likely to catch it later if it keeps
186 * foreign-dirtying, so a fairly low count should be enough.
187 *
188 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
189 */
190#define MEMCG_CGWB_FRN_CNT 4
191
192struct memcg_cgwb_frn {
193 u64 bdi_id; /* bdi->id of the foreign inode */
194 int memcg_id; /* memcg->css.id of foreign inode */
195 u64 at; /* jiffies_64 at the time of dirtying */
196 struct wb_completion done; /* tracks in-flight foreign writebacks */
197};
198
bf4f0599
RG
199/*
200 * Bucket for arbitrarily byte-sized objects charged to a memory
201 * cgroup. The bucket can be reparented in one piece when the cgroup
202 * is destroyed, without having to round up the individual references
203 * of all live memory objects in the wild.
204 */
205struct obj_cgroup {
206 struct percpu_ref refcnt;
207 struct mem_cgroup *memcg;
208 atomic_t nr_charged_bytes;
209 union {
210 struct list_head list;
211 struct rcu_head rcu;
212 };
213};
214
33398cf2
MH
215/*
216 * The memory controller data structure. The memory controller controls both
217 * page cache and RSS per cgroup. We would eventually like to provide
218 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
219 * to help the administrator determine what knobs to tune.
220 */
221struct mem_cgroup {
222 struct cgroup_subsys_state css;
223
73f576c0
JW
224 /* Private memcg ID. Used to ID objects that outlive the cgroup */
225 struct mem_cgroup_id id;
226
33398cf2 227 /* Accounted resources */
bd0b230f
WL
228 struct page_counter memory; /* Both v1 & v2 */
229
230 union {
231 struct page_counter swap; /* v2 only */
232 struct page_counter memsw; /* v1 only */
233 };
0db15298
JW
234
235 /* Legacy consumer-oriented counters */
bd0b230f
WL
236 struct page_counter kmem; /* v1 only */
237 struct page_counter tcpmem; /* v1 only */
33398cf2 238
f7e1cb6e
JW
239 /* Range enforcement for interrupt charges */
240 struct work_struct high_work;
241
33398cf2
MH
242 unsigned long soft_limit;
243
244 /* vmpressure notifications */
245 struct vmpressure vmpressure;
246
3d8b38eb
RG
247 /*
248 * Should the OOM killer kill all belonging tasks, had it kill one?
249 */
250 bool oom_group;
251
33398cf2
MH
252 /* protected by memcg_oom_lock */
253 bool oom_lock;
254 int under_oom;
255
256 int swappiness;
257 /* OOM-Killer disable */
258 int oom_kill_disable;
259
1e577f97 260 /* memory.events and memory.events.local */
472912a2 261 struct cgroup_file events_file;
1e577f97 262 struct cgroup_file events_local_file;
472912a2 263
f3a53a3a
TH
264 /* handle for "memory.swap.events" */
265 struct cgroup_file swap_events_file;
266
33398cf2
MH
267 /* protect arrays of thresholds */
268 struct mutex thresholds_lock;
269
270 /* thresholds for memory usage. RCU-protected */
271 struct mem_cgroup_thresholds thresholds;
272
273 /* thresholds for mem+swap usage. RCU-protected */
274 struct mem_cgroup_thresholds memsw_thresholds;
275
276 /* For oom notifier event fd */
277 struct list_head oom_notify;
278
279 /*
280 * Should we move charges of a task when a task is moved into this
281 * mem_cgroup ? And what type of charges should we move ?
282 */
283 unsigned long move_charge_at_immigrate;
e81bf979
AL
284 /* taken only while moving_account > 0 */
285 spinlock_t move_lock;
286 unsigned long move_lock_flags;
287
288 MEMCG_PADDING(_pad1_);
289
871789d4
CD
290 atomic_long_t vmstats[MEMCG_NR_STAT];
291 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
42a30035 292
815744d7 293 /* memory.events */
42a30035 294 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
1e577f97 295 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
33398cf2 296
d886f4e4
JW
297 unsigned long socket_pressure;
298
299 /* Legacy tcp memory accounting */
0db15298
JW
300 bool tcpmem_active;
301 int tcpmem_pressure;
d886f4e4 302
84c07d11 303#ifdef CONFIG_MEMCG_KMEM
33398cf2 304 int kmemcg_id;
567e9ab2 305 enum memcg_kmem_state kmem_state;
bf4f0599
RG
306 struct obj_cgroup __rcu *objcg;
307 struct list_head objcg_list; /* list of inherited objcgs */
33398cf2
MH
308#endif
309
4df91062
FT
310 MEMCG_PADDING(_pad2_);
311
312 /*
313 * set > 0 if pages under this cgroup are moving to other cgroup.
314 */
315 atomic_t moving_account;
316 struct task_struct *move_lock_task;
317
318 /* Legacy local VM stats and events */
319 struct memcg_vmstats_percpu __percpu *vmstats_local;
320
321 /* Subtree VM stats and events (batched updates) */
322 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
323
33398cf2
MH
324#ifdef CONFIG_CGROUP_WRITEBACK
325 struct list_head cgwb_list;
326 struct wb_domain cgwb_domain;
97b27821 327 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
33398cf2
MH
328#endif
329
330 /* List of events which userspace want to receive */
331 struct list_head event_list;
332 spinlock_t event_list_lock;
333
87eaceb3
YS
334#ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 struct deferred_split deferred_split_queue;
336#endif
337
33398cf2
MH
338 struct mem_cgroup_per_node *nodeinfo[0];
339 /* WARNING: nodeinfo must be the last member here */
340};
7d828602 341
a983b5eb
JW
342/*
343 * size of first charge trial. "32" comes from vmscan.c's magic value.
344 * TODO: maybe necessary to use big numbers in big irons.
345 */
346#define MEMCG_CHARGE_BATCH 32U
347
7d828602 348extern struct mem_cgroup *root_mem_cgroup;
56161634 349
87944e29
RG
350enum page_memcg_data_flags {
351 /* page->memcg_data is a pointer to an objcgs vector */
352 MEMCG_DATA_OBJCGS = (1UL << 0),
18b2db3b
RG
353 /* page has been accounted as a non-slab kernel page */
354 MEMCG_DATA_KMEM = (1UL << 1),
87944e29 355 /* the next bit after the last actual flag */
18b2db3b 356 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
87944e29
RG
357};
358
359#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
360
bcfe06bf
RG
361/*
362 * page_memcg - get the memory cgroup associated with a page
363 * @page: a pointer to the page struct
364 *
365 * Returns a pointer to the memory cgroup associated with the page,
366 * or NULL. This function assumes that the page is known to have a
367 * proper memory cgroup pointer. It's not safe to call this function
368 * against some type of pages, e.g. slab pages or ex-slab pages.
369 *
370 * Any of the following ensures page and memcg binding stability:
371 * - the page lock
372 * - LRU isolation
373 * - lock_page_memcg()
374 * - exclusive reference
375 */
376static inline struct mem_cgroup *page_memcg(struct page *page)
377{
18b2db3b
RG
378 unsigned long memcg_data = page->memcg_data;
379
bcfe06bf 380 VM_BUG_ON_PAGE(PageSlab(page), page);
18b2db3b
RG
381 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_OBJCGS, page);
382
383 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
bcfe06bf
RG
384}
385
386/*
387 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
388 * @page: a pointer to the page struct
389 *
390 * Returns a pointer to the memory cgroup associated with the page,
391 * or NULL. This function assumes that the page is known to have a
392 * proper memory cgroup pointer. It's not safe to call this function
393 * against some type of pages, e.g. slab pages or ex-slab pages.
394 */
395static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
396{
397 VM_BUG_ON_PAGE(PageSlab(page), page);
398 WARN_ON_ONCE(!rcu_read_lock_held());
399
18b2db3b
RG
400 return (struct mem_cgroup *)(READ_ONCE(page->memcg_data) &
401 ~MEMCG_DATA_FLAGS_MASK);
bcfe06bf
RG
402}
403
404/*
405 * page_memcg_check - get the memory cgroup associated with a page
406 * @page: a pointer to the page struct
407 *
408 * Returns a pointer to the memory cgroup associated with the page,
409 * or NULL. This function unlike page_memcg() can take any page
410 * as an argument. It has to be used in cases when it's not known if a page
411 * has an associated memory cgroup pointer or an object cgroups vector.
412 *
413 * Any of the following ensures page and memcg binding stability:
414 * - the page lock
415 * - LRU isolation
416 * - lock_page_memcg()
417 * - exclusive reference
418 */
419static inline struct mem_cgroup *page_memcg_check(struct page *page)
420{
421 /*
422 * Because page->memcg_data might be changed asynchronously
423 * for slab pages, READ_ONCE() should be used here.
424 */
425 unsigned long memcg_data = READ_ONCE(page->memcg_data);
426
87944e29 427 if (memcg_data & MEMCG_DATA_OBJCGS)
bcfe06bf
RG
428 return NULL;
429
18b2db3b
RG
430 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
431}
432
433/*
434 * PageMemcgKmem - check if the page has MemcgKmem flag set
435 * @page: a pointer to the page struct
436 *
437 * Checks if the page has MemcgKmem flag set. The caller must ensure that
438 * the page has an associated memory cgroup. It's not safe to call this function
439 * against some types of pages, e.g. slab pages.
440 */
441static inline bool PageMemcgKmem(struct page *page)
442{
443 VM_BUG_ON_PAGE(page->memcg_data & MEMCG_DATA_OBJCGS, page);
444 return page->memcg_data & MEMCG_DATA_KMEM;
bcfe06bf
RG
445}
446
270c6a71
RG
447#ifdef CONFIG_MEMCG_KMEM
448/*
449 * page_objcgs - get the object cgroups vector associated with a page
450 * @page: a pointer to the page struct
451 *
452 * Returns a pointer to the object cgroups vector associated with the page,
453 * or NULL. This function assumes that the page is known to have an
454 * associated object cgroups vector. It's not safe to call this function
455 * against pages, which might have an associated memory cgroup: e.g.
456 * kernel stack pages.
457 */
458static inline struct obj_cgroup **page_objcgs(struct page *page)
459{
87944e29
RG
460 unsigned long memcg_data = READ_ONCE(page->memcg_data);
461
462 VM_BUG_ON_PAGE(memcg_data && !(memcg_data & MEMCG_DATA_OBJCGS), page);
18b2db3b 463 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
87944e29
RG
464
465 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
270c6a71
RG
466}
467
468/*
469 * page_objcgs_check - get the object cgroups vector associated with a page
470 * @page: a pointer to the page struct
471 *
472 * Returns a pointer to the object cgroups vector associated with the page,
473 * or NULL. This function is safe to use if the page can be directly associated
474 * with a memory cgroup.
475 */
476static inline struct obj_cgroup **page_objcgs_check(struct page *page)
477{
478 unsigned long memcg_data = READ_ONCE(page->memcg_data);
479
87944e29
RG
480 if (!memcg_data || !(memcg_data & MEMCG_DATA_OBJCGS))
481 return NULL;
270c6a71 482
18b2db3b
RG
483 VM_BUG_ON_PAGE(memcg_data & MEMCG_DATA_KMEM, page);
484
87944e29 485 return (struct obj_cgroup **)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
270c6a71
RG
486}
487
270c6a71
RG
488#else
489static inline struct obj_cgroup **page_objcgs(struct page *page)
490{
491 return NULL;
492}
493
494static inline struct obj_cgroup **page_objcgs_check(struct page *page)
495{
496 return NULL;
497}
270c6a71
RG
498#endif
499
772616b0
RG
500static __always_inline bool memcg_stat_item_in_bytes(int idx)
501{
502 if (idx == MEMCG_PERCPU_B)
503 return true;
504 return vmstat_item_in_bytes(idx);
505}
506
dfd2f10c
KT
507static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
508{
509 return (memcg == root_mem_cgroup);
510}
511
23047a96
JW
512static inline bool mem_cgroup_disabled(void)
513{
514 return !cgroup_subsys_enabled(memory_cgrp_subsys);
515}
516
22f7496f
YS
517static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
518 struct mem_cgroup *memcg,
1bc63fb1 519 bool in_low_reclaim)
9783aa99 520{
1bc63fb1
CD
521 if (mem_cgroup_disabled())
522 return 0;
523
22f7496f
YS
524 /*
525 * There is no reclaim protection applied to a targeted reclaim.
526 * We are special casing this specific case here because
527 * mem_cgroup_protected calculation is not robust enough to keep
528 * the protection invariant for calculated effective values for
529 * parallel reclaimers with different reclaim target. This is
530 * especially a problem for tail memcgs (as they have pages on LRU)
531 * which would want to have effective values 0 for targeted reclaim
532 * but a different value for external reclaim.
533 *
534 * Example
535 * Let's have global and A's reclaim in parallel:
536 * |
537 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
538 * |\
539 * | C (low = 1G, usage = 2.5G)
540 * B (low = 1G, usage = 0.5G)
541 *
542 * For the global reclaim
543 * A.elow = A.low
544 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
545 * C.elow = min(C.usage, C.low)
546 *
547 * With the effective values resetting we have A reclaim
548 * A.elow = 0
549 * B.elow = B.low
550 * C.elow = C.low
551 *
552 * If the global reclaim races with A's reclaim then
553 * B.elow = C.elow = 0 because children_low_usage > A.elow)
554 * is possible and reclaiming B would be violating the protection.
555 *
556 */
557 if (root == memcg)
558 return 0;
559
1bc63fb1
CD
560 if (in_low_reclaim)
561 return READ_ONCE(memcg->memory.emin);
9783aa99 562
1bc63fb1
CD
563 return max(READ_ONCE(memcg->memory.emin),
564 READ_ONCE(memcg->memory.elow));
9783aa99
CD
565}
566
45c7f7e1
CD
567void mem_cgroup_calculate_protection(struct mem_cgroup *root,
568 struct mem_cgroup *memcg);
569
570static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
571{
572 /*
573 * The root memcg doesn't account charges, and doesn't support
574 * protection.
575 */
576 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
577
578}
579
580static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
581{
582 if (!mem_cgroup_supports_protection(memcg))
583 return false;
584
585 return READ_ONCE(memcg->memory.elow) >=
586 page_counter_read(&memcg->memory);
587}
588
589static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
590{
591 if (!mem_cgroup_supports_protection(memcg))
592 return false;
593
594 return READ_ONCE(memcg->memory.emin) >=
595 page_counter_read(&memcg->memory);
596}
241994ed 597
d9eb1ea2 598int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
3fea5a49 599
0a31bc97 600void mem_cgroup_uncharge(struct page *page);
747db954 601void mem_cgroup_uncharge_list(struct list_head *page_list);
569b846d 602
6a93ca8f 603void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
569b846d 604
ef8f2327
MG
605static struct mem_cgroup_per_node *
606mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
55779ec7 607{
ef8f2327 608 return memcg->nodeinfo[nid];
55779ec7
JW
609}
610
611/**
867e5e1d 612 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
55779ec7 613 * @memcg: memcg of the wanted lruvec
9a1ac228 614 * @pgdat: pglist_data
55779ec7 615 *
867e5e1d 616 * Returns the lru list vector holding pages for a given @memcg &
9a1ac228 617 * @pgdat combination. This can be the node lruvec, if the memory
867e5e1d 618 * controller is disabled.
55779ec7 619 */
867e5e1d
JW
620static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
621 struct pglist_data *pgdat)
55779ec7 622{
ef8f2327 623 struct mem_cgroup_per_node *mz;
55779ec7
JW
624 struct lruvec *lruvec;
625
626 if (mem_cgroup_disabled()) {
867e5e1d 627 lruvec = &pgdat->__lruvec;
55779ec7
JW
628 goto out;
629 }
630
1b05117d
JW
631 if (!memcg)
632 memcg = root_mem_cgroup;
633
ef8f2327 634 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
55779ec7
JW
635 lruvec = &mz->lruvec;
636out:
637 /*
638 * Since a node can be onlined after the mem_cgroup was created,
599d0c95 639 * we have to be prepared to initialize lruvec->pgdat here;
55779ec7
JW
640 * and if offlined then reonlined, we need to reinitialize it.
641 */
ef8f2327
MG
642 if (unlikely(lruvec->pgdat != pgdat))
643 lruvec->pgdat = pgdat;
55779ec7
JW
644 return lruvec;
645}
646
9a1ac228
HS
647/**
648 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
649 * @page: the page
650 * @pgdat: pgdat of the page
651 *
652 * This function relies on page->mem_cgroup being stable.
653 */
654static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
655 struct pglist_data *pgdat)
656{
657 struct mem_cgroup *memcg = page_memcg(page);
658
7ea510b9 659 VM_WARN_ON_ONCE_PAGE(!memcg && !mem_cgroup_disabled(), page);
9a1ac228
HS
660 return mem_cgroup_lruvec(memcg, pgdat);
661}
c9b0ed51 662
2a5e4e34
AD
663static inline bool lruvec_holds_page_lru_lock(struct page *page,
664 struct lruvec *lruvec)
665{
666 pg_data_t *pgdat = page_pgdat(page);
667 const struct mem_cgroup *memcg;
668 struct mem_cgroup_per_node *mz;
669
670 if (mem_cgroup_disabled())
671 return lruvec == &pgdat->__lruvec;
672
673 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
674 memcg = page_memcg(page) ? : root_mem_cgroup;
675
676 return lruvec->pgdat == pgdat && mz->memcg == memcg;
677}
678
64219994 679struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
e993d905 680
d46eb14b
SB
681struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
682
6168d0da
AS
683struct lruvec *lock_page_lruvec(struct page *page);
684struct lruvec *lock_page_lruvec_irq(struct page *page);
685struct lruvec *lock_page_lruvec_irqsave(struct page *page,
686 unsigned long *flags);
687
688#ifdef CONFIG_DEBUG_VM
689void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page);
690#else
691static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
692{
693}
694#endif
695
33398cf2
MH
696static inline
697struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
698 return css ? container_of(css, struct mem_cgroup, css) : NULL;
699}
700
bf4f0599
RG
701static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
702{
703 return percpu_ref_tryget(&objcg->refcnt);
704}
705
706static inline void obj_cgroup_get(struct obj_cgroup *objcg)
707{
708 percpu_ref_get(&objcg->refcnt);
709}
710
711static inline void obj_cgroup_put(struct obj_cgroup *objcg)
712{
713 percpu_ref_put(&objcg->refcnt);
714}
715
716/*
717 * After the initialization objcg->memcg is always pointing at
718 * a valid memcg, but can be atomically swapped to the parent memcg.
719 *
720 * The caller must ensure that the returned memcg won't be released:
721 * e.g. acquire the rcu_read_lock or css_set_lock.
722 */
723static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
724{
725 return READ_ONCE(objcg->memcg);
726}
727
dc0b5864
RG
728static inline void mem_cgroup_put(struct mem_cgroup *memcg)
729{
d46eb14b
SB
730 if (memcg)
731 css_put(&memcg->css);
dc0b5864
RG
732}
733
8e8ae645
JW
734#define mem_cgroup_from_counter(counter, member) \
735 container_of(counter, struct mem_cgroup, member)
736
33398cf2
MH
737struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
738 struct mem_cgroup *,
739 struct mem_cgroup_reclaim_cookie *);
740void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
7c5f64f8
VD
741int mem_cgroup_scan_tasks(struct mem_cgroup *,
742 int (*)(struct task_struct *, void *), void *);
33398cf2 743
23047a96
JW
744static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
745{
746 if (mem_cgroup_disabled())
747 return 0;
748
73f576c0 749 return memcg->id.id;
23047a96 750}
73f576c0 751struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
23047a96 752
aa9694bb
CD
753static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
754{
755 return mem_cgroup_from_css(seq_css(m));
756}
757
2262185c
RG
758static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
759{
760 struct mem_cgroup_per_node *mz;
761
762 if (mem_cgroup_disabled())
763 return NULL;
764
765 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
766 return mz->memcg;
767}
768
8e8ae645
JW
769/**
770 * parent_mem_cgroup - find the accounting parent of a memcg
771 * @memcg: memcg whose parent to find
772 *
773 * Returns the parent memcg, or NULL if this is the root or the memory
774 * controller is in legacy no-hierarchy mode.
775 */
776static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
777{
778 if (!memcg->memory.parent)
779 return NULL;
780 return mem_cgroup_from_counter(memcg->memory.parent, memory);
781}
782
33398cf2
MH
783static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
784 struct mem_cgroup *root)
785{
786 if (root == memcg)
787 return true;
33398cf2
MH
788 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
789}
e1aab161 790
2314b42d
JW
791static inline bool mm_match_cgroup(struct mm_struct *mm,
792 struct mem_cgroup *memcg)
2e4d4091 793{
587af308 794 struct mem_cgroup *task_memcg;
413918bb 795 bool match = false;
c3ac9a8a 796
2e4d4091 797 rcu_read_lock();
587af308 798 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413918bb 799 if (task_memcg)
2314b42d 800 match = mem_cgroup_is_descendant(task_memcg, memcg);
2e4d4091 801 rcu_read_unlock();
c3ac9a8a 802 return match;
2e4d4091 803}
8a9f3ccd 804
64219994 805struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
2fc04524 806ino_t page_cgroup_ino(struct page *page);
d324236b 807
eb01aaab
VD
808static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
809{
810 if (mem_cgroup_disabled())
811 return true;
812 return !!(memcg->css.flags & CSS_ONLINE);
813}
814
58ae83db
KH
815/*
816 * For memory reclaim.
817 */
889976db 818int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
33398cf2
MH
819
820void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 821 int zid, int nr_pages);
33398cf2 822
b4536f0c
MH
823static inline
824unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
825 enum lru_list lru, int zone_idx)
826{
827 struct mem_cgroup_per_node *mz;
828
829 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
e0e3f42f 830 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
33398cf2
MH
831}
832
b23afb93
TH
833void mem_cgroup_handle_over_high(void);
834
bbec2e15 835unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
7c5f64f8 836
9783aa99
CD
837unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
838
f0c867d9 839void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
64219994 840 struct task_struct *p);
58ae83db 841
f0c867d9 842void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
843
29ef680a 844static inline void mem_cgroup_enter_user_fault(void)
519e5247 845{
29ef680a
MH
846 WARN_ON(current->in_user_fault);
847 current->in_user_fault = 1;
519e5247
JW
848}
849
29ef680a 850static inline void mem_cgroup_exit_user_fault(void)
519e5247 851{
29ef680a
MH
852 WARN_ON(!current->in_user_fault);
853 current->in_user_fault = 0;
519e5247
JW
854}
855
3812c8c8
JW
856static inline bool task_in_memcg_oom(struct task_struct *p)
857{
626ebc41 858 return p->memcg_in_oom;
3812c8c8
JW
859}
860
49426420 861bool mem_cgroup_oom_synchronize(bool wait);
3d8b38eb
RG
862struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
863 struct mem_cgroup *oom_domain);
864void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
3812c8c8 865
c255a458 866#ifdef CONFIG_MEMCG_SWAP
eccb52e7 867extern bool cgroup_memory_noswap;
c077719b 868#endif
f8d66542 869
739f79fc
JW
870struct mem_cgroup *lock_page_memcg(struct page *page);
871void __unlock_page_memcg(struct mem_cgroup *memcg);
62cccb8c 872void unlock_page_memcg(struct page *page);
d7365e78 873
42a30035
JW
874/*
875 * idx can be of type enum memcg_stat_item or node_stat_item.
876 * Keep in sync with memcg_exact_page_state().
877 */
878static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
879{
880 long x = atomic_long_read(&memcg->vmstats[idx]);
881#ifdef CONFIG_SMP
882 if (x < 0)
883 x = 0;
884#endif
885 return x;
886}
887
0b3d6e6f
GT
888/*
889 * idx can be of type enum memcg_stat_item or node_stat_item.
890 * Keep in sync with memcg_exact_page_state().
891 */
205b20cc
JW
892static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
893 int idx)
2a2e4885 894{
815744d7
JW
895 long x = 0;
896 int cpu;
897
898 for_each_possible_cpu(cpu)
899 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
a983b5eb
JW
900#ifdef CONFIG_SMP
901 if (x < 0)
902 x = 0;
903#endif
904 return x;
2a2e4885
JW
905}
906
db9adbcb 907void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
2a2e4885 908
04fecbf5 909/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 910static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 911 int idx, int val)
2a2e4885 912{
c3cc3911
JW
913 unsigned long flags;
914
915 local_irq_save(flags);
a983b5eb 916 __mod_memcg_state(memcg, idx, val);
c3cc3911 917 local_irq_restore(flags);
2a2e4885
JW
918}
919
42a30035
JW
920static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
921 enum node_stat_item idx)
922{
923 struct mem_cgroup_per_node *pn;
924 long x;
925
926 if (mem_cgroup_disabled())
927 return node_page_state(lruvec_pgdat(lruvec), idx);
928
929 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
930 x = atomic_long_read(&pn->lruvec_stat[idx]);
931#ifdef CONFIG_SMP
932 if (x < 0)
933 x = 0;
934#endif
935 return x;
936}
937
205b20cc
JW
938static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
939 enum node_stat_item idx)
2a7106f2 940{
00f3ca2c 941 struct mem_cgroup_per_node *pn;
815744d7
JW
942 long x = 0;
943 int cpu;
00f3ca2c
JW
944
945 if (mem_cgroup_disabled())
946 return node_page_state(lruvec_pgdat(lruvec), idx);
947
948 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
815744d7
JW
949 for_each_possible_cpu(cpu)
950 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
a983b5eb
JW
951#ifdef CONFIG_SMP
952 if (x < 0)
953 x = 0;
954#endif
955 return x;
2a7106f2
GT
956}
957
eedc4e5a
RG
958void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
959 int val);
da3ceeff 960void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
991e7673 961
da3ceeff 962static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
991e7673
SB
963 int val)
964{
965 unsigned long flags;
966
967 local_irq_save(flags);
da3ceeff 968 __mod_lruvec_kmem_state(p, idx, val);
991e7673
SB
969 local_irq_restore(flags);
970}
971
eedc4e5a
RG
972static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
973 enum node_stat_item idx, int val)
974{
975 unsigned long flags;
976
977 local_irq_save(flags);
978 __mod_memcg_lruvec_state(lruvec, idx, val);
979 local_irq_restore(flags);
980}
981
ef8f2327 982unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
983 gfp_t gfp_mask,
984 unsigned long *total_scanned);
a63d83f4 985
db9adbcb
JW
986void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
987 unsigned long count);
c9019e9b 988
2262185c 989static inline void count_memcg_events(struct mem_cgroup *memcg,
e27be240
JW
990 enum vm_event_item idx,
991 unsigned long count)
2262185c 992{
c3cc3911
JW
993 unsigned long flags;
994
995 local_irq_save(flags);
a983b5eb 996 __count_memcg_events(memcg, idx, count);
c3cc3911 997 local_irq_restore(flags);
2262185c
RG
998}
999
1000static inline void count_memcg_page_event(struct page *page,
e27be240 1001 enum vm_event_item idx)
2262185c 1002{
bcfe06bf
RG
1003 struct mem_cgroup *memcg = page_memcg(page);
1004
1005 if (memcg)
1006 count_memcg_events(memcg, idx, 1);
2262185c
RG
1007}
1008
1009static inline void count_memcg_event_mm(struct mm_struct *mm,
1010 enum vm_event_item idx)
68ae564b 1011{
33398cf2
MH
1012 struct mem_cgroup *memcg;
1013
68ae564b
DR
1014 if (mem_cgroup_disabled())
1015 return;
33398cf2
MH
1016
1017 rcu_read_lock();
1018 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
fe6bdfc8 1019 if (likely(memcg))
c9019e9b 1020 count_memcg_events(memcg, idx, 1);
33398cf2 1021 rcu_read_unlock();
68ae564b 1022}
c9019e9b 1023
e27be240
JW
1024static inline void memcg_memory_event(struct mem_cgroup *memcg,
1025 enum memcg_memory_event event)
c9019e9b 1026{
8b21ca02
MS
1027 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1028 event == MEMCG_SWAP_FAIL;
1029
1e577f97 1030 atomic_long_inc(&memcg->memory_events_local[event]);
8b21ca02
MS
1031 if (!swap_event)
1032 cgroup_file_notify(&memcg->events_local_file);
1e577f97 1033
9852ae3f
CD
1034 do {
1035 atomic_long_inc(&memcg->memory_events[event]);
8b21ca02
MS
1036 if (swap_event)
1037 cgroup_file_notify(&memcg->swap_events_file);
1038 else
1039 cgroup_file_notify(&memcg->events_file);
9852ae3f 1040
04fd61a4
YS
1041 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1042 break;
9852ae3f
CD
1043 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1044 break;
1045 } while ((memcg = parent_mem_cgroup(memcg)) &&
1046 !mem_cgroup_is_root(memcg));
c9019e9b
JW
1047}
1048
fe6bdfc8
RG
1049static inline void memcg_memory_event_mm(struct mm_struct *mm,
1050 enum memcg_memory_event event)
1051{
1052 struct mem_cgroup *memcg;
1053
1054 if (mem_cgroup_disabled())
1055 return;
1056
1057 rcu_read_lock();
1058 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1059 if (likely(memcg))
1060 memcg_memory_event(memcg, event);
1061 rcu_read_unlock();
1062}
1063
be6c8982 1064void split_page_memcg(struct page *head, unsigned int nr);
ca3e0214 1065
c255a458 1066#else /* CONFIG_MEMCG */
23047a96
JW
1067
1068#define MEM_CGROUP_ID_SHIFT 0
1069#define MEM_CGROUP_ID_MAX 0
1070
7a81b88c
KH
1071struct mem_cgroup;
1072
bcfe06bf
RG
1073static inline struct mem_cgroup *page_memcg(struct page *page)
1074{
1075 return NULL;
1076}
1077
1078static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1079{
1080 WARN_ON_ONCE(!rcu_read_lock_held());
1081 return NULL;
1082}
1083
1084static inline struct mem_cgroup *page_memcg_check(struct page *page)
1085{
1086 return NULL;
1087}
1088
18b2db3b
RG
1089static inline bool PageMemcgKmem(struct page *page)
1090{
1091 return false;
1092}
1093
dfd2f10c
KT
1094static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1095{
1096 return true;
1097}
1098
23047a96
JW
1099static inline bool mem_cgroup_disabled(void)
1100{
1101 return true;
1102}
1103
e27be240
JW
1104static inline void memcg_memory_event(struct mem_cgroup *memcg,
1105 enum memcg_memory_event event)
241994ed
JW
1106{
1107}
1108
fe6bdfc8
RG
1109static inline void memcg_memory_event_mm(struct mm_struct *mm,
1110 enum memcg_memory_event event)
1111{
1112}
1113
22f7496f
YS
1114static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1115 struct mem_cgroup *memcg,
1bc63fb1 1116 bool in_low_reclaim)
9783aa99 1117{
1bc63fb1 1118 return 0;
9783aa99
CD
1119}
1120
45c7f7e1
CD
1121static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1122 struct mem_cgroup *memcg)
1123{
1124}
1125
1126static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1127{
1128 return false;
1129}
1130
1131static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
241994ed 1132{
45c7f7e1 1133 return false;
241994ed
JW
1134}
1135
3fea5a49 1136static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
d9eb1ea2 1137 gfp_t gfp_mask)
3fea5a49
JW
1138{
1139 return 0;
1140}
1141
0a31bc97 1142static inline void mem_cgroup_uncharge(struct page *page)
569b846d
KH
1143{
1144}
1145
747db954 1146static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
8a9f3ccd
BS
1147{
1148}
1149
6a93ca8f 1150static inline void mem_cgroup_migrate(struct page *old, struct page *new)
69029cd5
KH
1151{
1152}
1153
867e5e1d
JW
1154static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1155 struct pglist_data *pgdat)
08e552c6 1156{
867e5e1d 1157 return &pgdat->__lruvec;
08e552c6
KH
1158}
1159
fa9add64 1160static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
599d0c95 1161 struct pglist_data *pgdat)
66e1707b 1162{
867e5e1d 1163 return &pgdat->__lruvec;
66e1707b
BS
1164}
1165
2a5e4e34
AD
1166static inline bool lruvec_holds_page_lru_lock(struct page *page,
1167 struct lruvec *lruvec)
1168{
1169 pg_data_t *pgdat = page_pgdat(page);
1170
1171 return lruvec == &pgdat->__lruvec;
1172}
1173
b910718a
JW
1174static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1175{
1176 return NULL;
1177}
1178
587af308 1179static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 1180 struct mem_cgroup *memcg)
bed7161a 1181{
587af308 1182 return true;
bed7161a
BS
1183}
1184
d46eb14b
SB
1185static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1186{
1187 return NULL;
1188}
1189
dc0b5864
RG
1190static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1191{
1192}
1193
6168d0da
AS
1194static inline struct lruvec *lock_page_lruvec(struct page *page)
1195{
1196 struct pglist_data *pgdat = page_pgdat(page);
1197
1198 spin_lock(&pgdat->__lruvec.lru_lock);
1199 return &pgdat->__lruvec;
1200}
1201
1202static inline struct lruvec *lock_page_lruvec_irq(struct page *page)
1203{
1204 struct pglist_data *pgdat = page_pgdat(page);
1205
1206 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1207 return &pgdat->__lruvec;
1208}
1209
1210static inline struct lruvec *lock_page_lruvec_irqsave(struct page *page,
1211 unsigned long *flagsp)
1212{
1213 struct pglist_data *pgdat = page_pgdat(page);
1214
1215 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1216 return &pgdat->__lruvec;
1217}
1218
5660048c
JW
1219static inline struct mem_cgroup *
1220mem_cgroup_iter(struct mem_cgroup *root,
1221 struct mem_cgroup *prev,
1222 struct mem_cgroup_reclaim_cookie *reclaim)
1223{
1224 return NULL;
1225}
1226
1227static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1228 struct mem_cgroup *prev)
1229{
1230}
1231
7c5f64f8
VD
1232static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1233 int (*fn)(struct task_struct *, void *), void *arg)
1234{
1235 return 0;
1236}
1237
23047a96 1238static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
f8d66542 1239{
23047a96
JW
1240 return 0;
1241}
1242
1243static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1244{
1245 WARN_ON_ONCE(id);
1246 /* XXX: This should always return root_mem_cgroup */
1247 return NULL;
f8d66542 1248}
a636b327 1249
aa9694bb
CD
1250static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1251{
1252 return NULL;
1253}
1254
2262185c
RG
1255static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1256{
1257 return NULL;
1258}
1259
eb01aaab 1260static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
14797e23 1261{
13308ca9 1262 return true;
14797e23
KM
1263}
1264
b4536f0c
MH
1265static inline
1266unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1267 enum lru_list lru, int zone_idx)
1268{
1269 return 0;
1270}
a3d8e054 1271
bbec2e15 1272static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
7c5f64f8
VD
1273{
1274 return 0;
1275}
1276
9783aa99
CD
1277static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1278{
1279 return 0;
1280}
1281
e222432b 1282static inline void
f0c867d9 1283mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1284{
1285}
1286
1287static inline void
1288mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
e222432b
BS
1289{
1290}
1291
739f79fc
JW
1292static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1293{
1294 return NULL;
1295}
1296
1297static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5
KH
1298{
1299}
1300
62cccb8c 1301static inline void unlock_page_memcg(struct page *page)
89c06bd5
KH
1302{
1303}
1304
b23afb93
TH
1305static inline void mem_cgroup_handle_over_high(void)
1306{
1307}
1308
29ef680a 1309static inline void mem_cgroup_enter_user_fault(void)
519e5247
JW
1310{
1311}
1312
29ef680a 1313static inline void mem_cgroup_exit_user_fault(void)
519e5247
JW
1314{
1315}
1316
3812c8c8
JW
1317static inline bool task_in_memcg_oom(struct task_struct *p)
1318{
1319 return false;
1320}
1321
49426420 1322static inline bool mem_cgroup_oom_synchronize(bool wait)
3812c8c8
JW
1323{
1324 return false;
1325}
1326
3d8b38eb
RG
1327static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1328 struct task_struct *victim, struct mem_cgroup *oom_domain)
1329{
1330 return NULL;
1331}
1332
1333static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1334{
1335}
1336
42a30035
JW
1337static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1338{
1339 return 0;
1340}
1341
205b20cc
JW
1342static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1343 int idx)
2a2e4885
JW
1344{
1345 return 0;
1346}
1347
00f3ca2c 1348static inline void __mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1349 int idx,
00f3ca2c 1350 int nr)
2a2e4885
JW
1351{
1352}
1353
00f3ca2c 1354static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1355 int idx,
00f3ca2c 1356 int nr)
2a2e4885
JW
1357{
1358}
1359
42a30035
JW
1360static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1361 enum node_stat_item idx)
1362{
1363 return node_page_state(lruvec_pgdat(lruvec), idx);
1364}
1365
205b20cc
JW
1366static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1367 enum node_stat_item idx)
2a7106f2 1368{
00f3ca2c 1369 return node_page_state(lruvec_pgdat(lruvec), idx);
2a7106f2
GT
1370}
1371
eedc4e5a
RG
1372static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1373 enum node_stat_item idx, int val)
1374{
1375}
1376
da3ceeff 1377static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
ec9f0238
RG
1378 int val)
1379{
1380 struct page *page = virt_to_head_page(p);
1381
1382 __mod_node_page_state(page_pgdat(page), idx, val);
1383}
1384
da3ceeff 1385static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
991e7673
SB
1386 int val)
1387{
1388 struct page *page = virt_to_head_page(p);
1389
1390 mod_node_page_state(page_pgdat(page), idx, val);
1391}
1392
4e416953 1393static inline
ef8f2327 1394unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
1395 gfp_t gfp_mask,
1396 unsigned long *total_scanned)
4e416953 1397{
0608f43d 1398 return 0;
4e416953
BS
1399}
1400
be6c8982 1401static inline void split_page_memcg(struct page *head, unsigned int nr)
ca3e0214
KH
1402{
1403}
1404
2262185c
RG
1405static inline void count_memcg_events(struct mem_cgroup *memcg,
1406 enum vm_event_item idx,
1407 unsigned long count)
1408{
1409}
1410
9851ac13
KT
1411static inline void __count_memcg_events(struct mem_cgroup *memcg,
1412 enum vm_event_item idx,
1413 unsigned long count)
1414{
1415}
1416
2262185c 1417static inline void count_memcg_page_event(struct page *page,
04fecbf5 1418 int idx)
2262185c
RG
1419{
1420}
1421
456f998e 1422static inline
2262185c 1423void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
456f998e
YH
1424{
1425}
6168d0da
AS
1426
1427static inline void lruvec_memcg_debug(struct lruvec *lruvec, struct page *page)
1428{
1429}
c255a458 1430#endif /* CONFIG_MEMCG */
78fb7466 1431
da3ceeff 1432static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
ec9f0238 1433{
da3ceeff 1434 __mod_lruvec_kmem_state(p, idx, 1);
ec9f0238
RG
1435}
1436
da3ceeff 1437static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
ec9f0238 1438{
da3ceeff 1439 __mod_lruvec_kmem_state(p, idx, -1);
ec9f0238
RG
1440}
1441
7cf111bc
JW
1442static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1443{
1444 struct mem_cgroup *memcg;
1445
1446 memcg = lruvec_memcg(lruvec);
1447 if (!memcg)
1448 return NULL;
1449 memcg = parent_mem_cgroup(memcg);
1450 if (!memcg)
1451 return NULL;
1452 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1453}
1454
6168d0da
AS
1455static inline void unlock_page_lruvec(struct lruvec *lruvec)
1456{
1457 spin_unlock(&lruvec->lru_lock);
1458}
1459
1460static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1461{
1462 spin_unlock_irq(&lruvec->lru_lock);
1463}
1464
1465static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1466 unsigned long flags)
1467{
1468 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1469}
1470
2a5e4e34
AD
1471/* Don't lock again iff page's lruvec locked */
1472static inline struct lruvec *relock_page_lruvec_irq(struct page *page,
1473 struct lruvec *locked_lruvec)
1474{
1475 if (locked_lruvec) {
1476 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1477 return locked_lruvec;
1478
1479 unlock_page_lruvec_irq(locked_lruvec);
1480 }
1481
1482 return lock_page_lruvec_irq(page);
1483}
1484
1485/* Don't lock again iff page's lruvec locked */
1486static inline struct lruvec *relock_page_lruvec_irqsave(struct page *page,
1487 struct lruvec *locked_lruvec, unsigned long *flags)
1488{
1489 if (locked_lruvec) {
1490 if (lruvec_holds_page_lru_lock(page, locked_lruvec))
1491 return locked_lruvec;
1492
1493 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1494 }
1495
1496 return lock_page_lruvec_irqsave(page, flags);
1497}
1498
52ebea74 1499#ifdef CONFIG_CGROUP_WRITEBACK
841710aa 1500
841710aa 1501struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
c5edf9cd
TH
1502void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1503 unsigned long *pheadroom, unsigned long *pdirty,
1504 unsigned long *pwriteback);
841710aa 1505
97b27821
TH
1506void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1507 struct bdi_writeback *wb);
1508
1509static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1510 struct bdi_writeback *wb)
1511{
08d1d0e6
BH
1512 if (mem_cgroup_disabled())
1513 return;
1514
bcfe06bf 1515 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
97b27821
TH
1516 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1517}
1518
1519void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1520
841710aa
TH
1521#else /* CONFIG_CGROUP_WRITEBACK */
1522
1523static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1524{
1525 return NULL;
1526}
1527
c2aa723a 1528static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
c5edf9cd
TH
1529 unsigned long *pfilepages,
1530 unsigned long *pheadroom,
c2aa723a
TH
1531 unsigned long *pdirty,
1532 unsigned long *pwriteback)
1533{
1534}
1535
97b27821
TH
1536static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1537 struct bdi_writeback *wb)
1538{
1539}
1540
1541static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1542{
1543}
1544
841710aa 1545#endif /* CONFIG_CGROUP_WRITEBACK */
52ebea74 1546
e1aab161 1547struct sock;
baac50bb
JW
1548bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1549void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
d886f4e4 1550#ifdef CONFIG_MEMCG
ef12947c
JW
1551extern struct static_key_false memcg_sockets_enabled_key;
1552#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
2d758073
JW
1553void mem_cgroup_sk_alloc(struct sock *sk);
1554void mem_cgroup_sk_free(struct sock *sk);
baac50bb 1555static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c 1556{
0db15298 1557 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
8e8ae645 1558 return true;
8e8ae645
JW
1559 do {
1560 if (time_before(jiffies, memcg->socket_pressure))
1561 return true;
1562 } while ((memcg = parent_mem_cgroup(memcg)));
1563 return false;
e805605c 1564}
0a432dcb
YS
1565
1566extern int memcg_expand_shrinker_maps(int new_id);
1567
1568extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1569 int nid, int shrinker_id);
e805605c 1570#else
80e95fe0 1571#define mem_cgroup_sockets_enabled 0
2d758073
JW
1572static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1573static inline void mem_cgroup_sk_free(struct sock *sk) { };
baac50bb 1574static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c
JW
1575{
1576 return false;
1577}
0a432dcb
YS
1578
1579static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1580 int nid, int shrinker_id)
1581{
1582}
e805605c 1583#endif
7ae1e1d0 1584
9b6f7e16 1585#ifdef CONFIG_MEMCG_KMEM
f4b00eab
RG
1586int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1587void __memcg_kmem_uncharge_page(struct page *page, int order);
45264778 1588
bf4f0599
RG
1589struct obj_cgroup *get_obj_cgroup_from_current(void);
1590
1591int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1592void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1593
ef12947c 1594extern struct static_key_false memcg_kmem_enabled_key;
749c5415 1595
dbcf73e2 1596extern int memcg_nr_cache_ids;
64219994
MH
1597void memcg_get_cache_ids(void);
1598void memcg_put_cache_ids(void);
ebe945c2
GC
1599
1600/*
1601 * Helper macro to loop through all memcg-specific caches. Callers must still
1602 * check if the cache is valid (it is either valid or NULL).
1603 * the slab_mutex must be held when looping through those caches
1604 */
749c5415 1605#define for_each_memcg_cache_index(_idx) \
dbcf73e2 1606 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
749c5415 1607
7ae1e1d0
GC
1608static inline bool memcg_kmem_enabled(void)
1609{
eda330e5 1610 return static_branch_likely(&memcg_kmem_enabled_key);
7ae1e1d0
GC
1611}
1612
f4b00eab
RG
1613static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1614 int order)
60cd4bcd
SB
1615{
1616 if (memcg_kmem_enabled())
f4b00eab 1617 return __memcg_kmem_charge_page(page, gfp, order);
60cd4bcd
SB
1618 return 0;
1619}
1620
f4b00eab 1621static inline void memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1622{
1623 if (memcg_kmem_enabled())
f4b00eab 1624 __memcg_kmem_uncharge_page(page, order);
60cd4bcd
SB
1625}
1626
33398cf2 1627/*
a7cb874b
RG
1628 * A helper for accessing memcg's kmem_id, used for getting
1629 * corresponding LRU lists.
33398cf2
MH
1630 */
1631static inline int memcg_cache_id(struct mem_cgroup *memcg)
1632{
1633 return memcg ? memcg->kmemcg_id : -1;
1634}
5722d094 1635
8380ce47
RG
1636struct mem_cgroup *mem_cgroup_from_obj(void *p);
1637
7ae1e1d0 1638#else
9b6f7e16 1639
f4b00eab
RG
1640static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1641 int order)
9b6f7e16
RG
1642{
1643 return 0;
1644}
1645
f4b00eab 1646static inline void memcg_kmem_uncharge_page(struct page *page, int order)
9b6f7e16
RG
1647{
1648}
1649
f4b00eab
RG
1650static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1651 int order)
60cd4bcd
SB
1652{
1653 return 0;
1654}
1655
f4b00eab 1656static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1657{
1658}
1659
749c5415
GC
1660#define for_each_memcg_cache_index(_idx) \
1661 for (; NULL; )
1662
b9ce5ef4
GC
1663static inline bool memcg_kmem_enabled(void)
1664{
1665 return false;
1666}
1667
2633d7a0
GC
1668static inline int memcg_cache_id(struct mem_cgroup *memcg)
1669{
1670 return -1;
1671}
1672
05257a1a
VD
1673static inline void memcg_get_cache_ids(void)
1674{
1675}
1676
1677static inline void memcg_put_cache_ids(void)
1678{
1679}
1680
8380ce47
RG
1681static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1682{
1683 return NULL;
1684}
1685
84c07d11 1686#endif /* CONFIG_MEMCG_KMEM */
127424c8 1687
8cdea7c0 1688#endif /* _LINUX_MEMCONTROL_H */