mm: memcontrol/slab: Use helpers to access slab page's memcg_data
[linux-block.git] / include / linux / memcontrol.h
CommitLineData
c942fddf 1/* SPDX-License-Identifier: GPL-2.0-or-later */
8cdea7c0
BS
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
78fb7466
PE
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
8cdea7c0
BS
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
f8d66542 13#include <linux/cgroup.h>
456f998e 14#include <linux/vm_event_item.h>
7ae1e1d0 15#include <linux/hardirq.h>
a8964b9b 16#include <linux/jump_label.h>
33398cf2
MH
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
00f3ca2c
JW
20#include <linux/mm.h>
21#include <linux/vmstat.h>
33398cf2 22#include <linux/writeback.h>
fdf1cdb9 23#include <linux/page-flags.h>
456f998e 24
78fb7466 25struct mem_cgroup;
bf4f0599 26struct obj_cgroup;
8697d331
BS
27struct page;
28struct mm_struct;
2633d7a0 29struct kmem_cache;
78fb7466 30
71cd3113
JW
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
468c3982 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
71cd3113 34 MEMCG_SOCK,
772616b0 35 MEMCG_PERCPU_B,
b2807f07 36 MEMCG_NR_STAT,
2a7106f2
GT
37};
38
e27be240
JW
39enum memcg_memory_event {
40 MEMCG_LOW,
71cd3113
JW
41 MEMCG_HIGH,
42 MEMCG_MAX,
43 MEMCG_OOM,
fe6bdfc8 44 MEMCG_OOM_KILL,
4b82ab4f 45 MEMCG_SWAP_HIGH,
f3a53a3a
TH
46 MEMCG_SWAP_MAX,
47 MEMCG_SWAP_FAIL,
e27be240 48 MEMCG_NR_MEMORY_EVENTS,
71cd3113
JW
49};
50
5660048c 51struct mem_cgroup_reclaim_cookie {
ef8f2327 52 pg_data_t *pgdat;
5660048c
JW
53 unsigned int generation;
54};
55
71cd3113
JW
56#ifdef CONFIG_MEMCG
57
58#define MEM_CGROUP_ID_SHIFT 16
59#define MEM_CGROUP_ID_MAX USHRT_MAX
60
61struct mem_cgroup_id {
62 int id;
1c2d479a 63 refcount_t ref;
71cd3113
JW
64};
65
33398cf2
MH
66/*
67 * Per memcg event counter is incremented at every pagein/pageout. With THP,
0845f831
RD
68 * it will be incremented by the number of pages. This counter is used
69 * to trigger some periodic events. This is straightforward and better
33398cf2
MH
70 * than using jiffies etc. to handle periodic memcg event.
71 */
72enum mem_cgroup_events_target {
73 MEM_CGROUP_TARGET_THRESH,
74 MEM_CGROUP_TARGET_SOFTLIMIT,
33398cf2
MH
75 MEM_CGROUP_NTARGETS,
76};
77
871789d4
CD
78struct memcg_vmstats_percpu {
79 long stat[MEMCG_NR_STAT];
e27be240 80 unsigned long events[NR_VM_EVENT_ITEMS];
33398cf2
MH
81 unsigned long nr_page_events;
82 unsigned long targets[MEM_CGROUP_NTARGETS];
83};
84
85struct mem_cgroup_reclaim_iter {
86 struct mem_cgroup *position;
87 /* scan generation, increased every round-trip */
88 unsigned int generation;
89};
90
00f3ca2c
JW
91struct lruvec_stat {
92 long count[NR_VM_NODE_STAT_ITEMS];
93};
94
0a4465d3
KT
95/*
96 * Bitmap of shrinker::id corresponding to memcg-aware shrinkers,
97 * which have elements charged to this memcg.
98 */
99struct memcg_shrinker_map {
100 struct rcu_head rcu;
307ed94c 101 unsigned long map[];
0a4465d3
KT
102};
103
33398cf2 104/*
242c37b4 105 * per-node information in memory controller.
33398cf2 106 */
ef8f2327 107struct mem_cgroup_per_node {
33398cf2 108 struct lruvec lruvec;
a983b5eb 109
815744d7
JW
110 /* Legacy local VM stats */
111 struct lruvec_stat __percpu *lruvec_stat_local;
112
113 /* Subtree VM stats (batched updates) */
a983b5eb
JW
114 struct lruvec_stat __percpu *lruvec_stat_cpu;
115 atomic_long_t lruvec_stat[NR_VM_NODE_STAT_ITEMS];
116
b4536f0c 117 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
33398cf2 118
9da83f3f 119 struct mem_cgroup_reclaim_iter iter;
33398cf2 120
0a4465d3 121 struct memcg_shrinker_map __rcu *shrinker_map;
0a432dcb 122
33398cf2
MH
123 struct rb_node tree_node; /* RB tree node */
124 unsigned long usage_in_excess;/* Set to the value by which */
125 /* the soft limit is exceeded*/
126 bool on_tree;
127 struct mem_cgroup *memcg; /* Back pointer, we cannot */
128 /* use container_of */
129};
130
33398cf2
MH
131struct mem_cgroup_threshold {
132 struct eventfd_ctx *eventfd;
133 unsigned long threshold;
134};
135
136/* For threshold */
137struct mem_cgroup_threshold_ary {
138 /* An array index points to threshold just below or equal to usage. */
139 int current_threshold;
140 /* Size of entries[] */
141 unsigned int size;
142 /* Array of thresholds */
307ed94c 143 struct mem_cgroup_threshold entries[];
33398cf2
MH
144};
145
146struct mem_cgroup_thresholds {
147 /* Primary thresholds array */
148 struct mem_cgroup_threshold_ary *primary;
149 /*
150 * Spare threshold array.
151 * This is needed to make mem_cgroup_unregister_event() "never fail".
152 * It must be able to store at least primary->size - 1 entries.
153 */
154 struct mem_cgroup_threshold_ary *spare;
155};
156
567e9ab2
JW
157enum memcg_kmem_state {
158 KMEM_NONE,
159 KMEM_ALLOCATED,
160 KMEM_ONLINE,
161};
162
e81bf979
AL
163#if defined(CONFIG_SMP)
164struct memcg_padding {
165 char x[0];
166} ____cacheline_internodealigned_in_smp;
167#define MEMCG_PADDING(name) struct memcg_padding name;
168#else
169#define MEMCG_PADDING(name)
170#endif
171
97b27821
TH
172/*
173 * Remember four most recent foreign writebacks with dirty pages in this
174 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
175 * one in a given round, we're likely to catch it later if it keeps
176 * foreign-dirtying, so a fairly low count should be enough.
177 *
178 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
179 */
180#define MEMCG_CGWB_FRN_CNT 4
181
182struct memcg_cgwb_frn {
183 u64 bdi_id; /* bdi->id of the foreign inode */
184 int memcg_id; /* memcg->css.id of foreign inode */
185 u64 at; /* jiffies_64 at the time of dirtying */
186 struct wb_completion done; /* tracks in-flight foreign writebacks */
187};
188
bf4f0599
RG
189/*
190 * Bucket for arbitrarily byte-sized objects charged to a memory
191 * cgroup. The bucket can be reparented in one piece when the cgroup
192 * is destroyed, without having to round up the individual references
193 * of all live memory objects in the wild.
194 */
195struct obj_cgroup {
196 struct percpu_ref refcnt;
197 struct mem_cgroup *memcg;
198 atomic_t nr_charged_bytes;
199 union {
200 struct list_head list;
201 struct rcu_head rcu;
202 };
203};
204
33398cf2
MH
205/*
206 * The memory controller data structure. The memory controller controls both
207 * page cache and RSS per cgroup. We would eventually like to provide
208 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
209 * to help the administrator determine what knobs to tune.
210 */
211struct mem_cgroup {
212 struct cgroup_subsys_state css;
213
73f576c0
JW
214 /* Private memcg ID. Used to ID objects that outlive the cgroup */
215 struct mem_cgroup_id id;
216
33398cf2 217 /* Accounted resources */
bd0b230f
WL
218 struct page_counter memory; /* Both v1 & v2 */
219
220 union {
221 struct page_counter swap; /* v2 only */
222 struct page_counter memsw; /* v1 only */
223 };
0db15298
JW
224
225 /* Legacy consumer-oriented counters */
bd0b230f
WL
226 struct page_counter kmem; /* v1 only */
227 struct page_counter tcpmem; /* v1 only */
33398cf2 228
f7e1cb6e
JW
229 /* Range enforcement for interrupt charges */
230 struct work_struct high_work;
231
33398cf2
MH
232 unsigned long soft_limit;
233
234 /* vmpressure notifications */
235 struct vmpressure vmpressure;
236
33398cf2
MH
237 /*
238 * Should the accounting and control be hierarchical, per subtree?
239 */
240 bool use_hierarchy;
241
3d8b38eb
RG
242 /*
243 * Should the OOM killer kill all belonging tasks, had it kill one?
244 */
245 bool oom_group;
246
33398cf2
MH
247 /* protected by memcg_oom_lock */
248 bool oom_lock;
249 int under_oom;
250
251 int swappiness;
252 /* OOM-Killer disable */
253 int oom_kill_disable;
254
1e577f97 255 /* memory.events and memory.events.local */
472912a2 256 struct cgroup_file events_file;
1e577f97 257 struct cgroup_file events_local_file;
472912a2 258
f3a53a3a
TH
259 /* handle for "memory.swap.events" */
260 struct cgroup_file swap_events_file;
261
33398cf2
MH
262 /* protect arrays of thresholds */
263 struct mutex thresholds_lock;
264
265 /* thresholds for memory usage. RCU-protected */
266 struct mem_cgroup_thresholds thresholds;
267
268 /* thresholds for mem+swap usage. RCU-protected */
269 struct mem_cgroup_thresholds memsw_thresholds;
270
271 /* For oom notifier event fd */
272 struct list_head oom_notify;
273
274 /*
275 * Should we move charges of a task when a task is moved into this
276 * mem_cgroup ? And what type of charges should we move ?
277 */
278 unsigned long move_charge_at_immigrate;
e81bf979
AL
279 /* taken only while moving_account > 0 */
280 spinlock_t move_lock;
281 unsigned long move_lock_flags;
282
283 MEMCG_PADDING(_pad1_);
284
33398cf2
MH
285 /*
286 * set > 0 if pages under this cgroup are moving to other cgroup.
287 */
288 atomic_t moving_account;
33398cf2 289 struct task_struct *move_lock_task;
a983b5eb 290
815744d7
JW
291 /* Legacy local VM stats and events */
292 struct memcg_vmstats_percpu __percpu *vmstats_local;
293
294 /* Subtree VM stats and events (batched updates) */
871789d4 295 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
e81bf979
AL
296
297 MEMCG_PADDING(_pad2_);
298
871789d4
CD
299 atomic_long_t vmstats[MEMCG_NR_STAT];
300 atomic_long_t vmevents[NR_VM_EVENT_ITEMS];
42a30035 301
815744d7 302 /* memory.events */
42a30035 303 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
1e577f97 304 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
33398cf2 305
d886f4e4
JW
306 unsigned long socket_pressure;
307
308 /* Legacy tcp memory accounting */
0db15298
JW
309 bool tcpmem_active;
310 int tcpmem_pressure;
d886f4e4 311
84c07d11 312#ifdef CONFIG_MEMCG_KMEM
33398cf2
MH
313 /* Index in the kmem_cache->memcg_params.memcg_caches array */
314 int kmemcg_id;
567e9ab2 315 enum memcg_kmem_state kmem_state;
bf4f0599
RG
316 struct obj_cgroup __rcu *objcg;
317 struct list_head objcg_list; /* list of inherited objcgs */
33398cf2
MH
318#endif
319
33398cf2
MH
320#ifdef CONFIG_CGROUP_WRITEBACK
321 struct list_head cgwb_list;
322 struct wb_domain cgwb_domain;
97b27821 323 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
33398cf2
MH
324#endif
325
326 /* List of events which userspace want to receive */
327 struct list_head event_list;
328 spinlock_t event_list_lock;
329
87eaceb3
YS
330#ifdef CONFIG_TRANSPARENT_HUGEPAGE
331 struct deferred_split deferred_split_queue;
332#endif
333
33398cf2
MH
334 struct mem_cgroup_per_node *nodeinfo[0];
335 /* WARNING: nodeinfo must be the last member here */
336};
7d828602 337
a983b5eb
JW
338/*
339 * size of first charge trial. "32" comes from vmscan.c's magic value.
340 * TODO: maybe necessary to use big numbers in big irons.
341 */
342#define MEMCG_CHARGE_BATCH 32U
343
7d828602 344extern struct mem_cgroup *root_mem_cgroup;
56161634 345
bcfe06bf
RG
346/*
347 * page_memcg - get the memory cgroup associated with a page
348 * @page: a pointer to the page struct
349 *
350 * Returns a pointer to the memory cgroup associated with the page,
351 * or NULL. This function assumes that the page is known to have a
352 * proper memory cgroup pointer. It's not safe to call this function
353 * against some type of pages, e.g. slab pages or ex-slab pages.
354 *
355 * Any of the following ensures page and memcg binding stability:
356 * - the page lock
357 * - LRU isolation
358 * - lock_page_memcg()
359 * - exclusive reference
360 */
361static inline struct mem_cgroup *page_memcg(struct page *page)
362{
363 VM_BUG_ON_PAGE(PageSlab(page), page);
364 return (struct mem_cgroup *)page->memcg_data;
365}
366
367/*
368 * page_memcg_rcu - locklessly get the memory cgroup associated with a page
369 * @page: a pointer to the page struct
370 *
371 * Returns a pointer to the memory cgroup associated with the page,
372 * or NULL. This function assumes that the page is known to have a
373 * proper memory cgroup pointer. It's not safe to call this function
374 * against some type of pages, e.g. slab pages or ex-slab pages.
375 */
376static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
377{
378 VM_BUG_ON_PAGE(PageSlab(page), page);
379 WARN_ON_ONCE(!rcu_read_lock_held());
380
381 return (struct mem_cgroup *)READ_ONCE(page->memcg_data);
382}
383
384/*
385 * page_memcg_check - get the memory cgroup associated with a page
386 * @page: a pointer to the page struct
387 *
388 * Returns a pointer to the memory cgroup associated with the page,
389 * or NULL. This function unlike page_memcg() can take any page
390 * as an argument. It has to be used in cases when it's not known if a page
391 * has an associated memory cgroup pointer or an object cgroups vector.
392 *
393 * Any of the following ensures page and memcg binding stability:
394 * - the page lock
395 * - LRU isolation
396 * - lock_page_memcg()
397 * - exclusive reference
398 */
399static inline struct mem_cgroup *page_memcg_check(struct page *page)
400{
401 /*
402 * Because page->memcg_data might be changed asynchronously
403 * for slab pages, READ_ONCE() should be used here.
404 */
405 unsigned long memcg_data = READ_ONCE(page->memcg_data);
406
407 /*
408 * The lowest bit set means that memcg isn't a valid
409 * memcg pointer, but a obj_cgroups pointer.
410 * In this case the page is shared and doesn't belong
411 * to any specific memory cgroup.
412 */
413 if (memcg_data & 0x1UL)
414 return NULL;
415
416 return (struct mem_cgroup *)memcg_data;
417}
418
270c6a71
RG
419#ifdef CONFIG_MEMCG_KMEM
420/*
421 * page_objcgs - get the object cgroups vector associated with a page
422 * @page: a pointer to the page struct
423 *
424 * Returns a pointer to the object cgroups vector associated with the page,
425 * or NULL. This function assumes that the page is known to have an
426 * associated object cgroups vector. It's not safe to call this function
427 * against pages, which might have an associated memory cgroup: e.g.
428 * kernel stack pages.
429 */
430static inline struct obj_cgroup **page_objcgs(struct page *page)
431{
432 return (struct obj_cgroup **)(READ_ONCE(page->memcg_data) & ~0x1UL);
433}
434
435/*
436 * page_objcgs_check - get the object cgroups vector associated with a page
437 * @page: a pointer to the page struct
438 *
439 * Returns a pointer to the object cgroups vector associated with the page,
440 * or NULL. This function is safe to use if the page can be directly associated
441 * with a memory cgroup.
442 */
443static inline struct obj_cgroup **page_objcgs_check(struct page *page)
444{
445 unsigned long memcg_data = READ_ONCE(page->memcg_data);
446
447 if (memcg_data && (memcg_data & 0x1UL))
448 return (struct obj_cgroup **)(memcg_data & ~0x1UL);
449
450 return NULL;
451}
452
453/*
454 * set_page_objcgs - associate a page with a object cgroups vector
455 * @page: a pointer to the page struct
456 * @objcgs: a pointer to the object cgroups vector
457 *
458 * Atomically associates a page with a vector of object cgroups.
459 */
460static inline bool set_page_objcgs(struct page *page,
461 struct obj_cgroup **objcgs)
462{
463 return !cmpxchg(&page->memcg_data, 0, (unsigned long)objcgs | 0x1UL);
464}
465#else
466static inline struct obj_cgroup **page_objcgs(struct page *page)
467{
468 return NULL;
469}
470
471static inline struct obj_cgroup **page_objcgs_check(struct page *page)
472{
473 return NULL;
474}
475
476static inline bool set_page_objcgs(struct page *page,
477 struct obj_cgroup **objcgs)
478{
479 return true;
480}
481#endif
482
772616b0
RG
483static __always_inline bool memcg_stat_item_in_bytes(int idx)
484{
485 if (idx == MEMCG_PERCPU_B)
486 return true;
487 return vmstat_item_in_bytes(idx);
488}
489
dfd2f10c
KT
490static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
491{
492 return (memcg == root_mem_cgroup);
493}
494
23047a96
JW
495static inline bool mem_cgroup_disabled(void)
496{
497 return !cgroup_subsys_enabled(memory_cgrp_subsys);
498}
499
22f7496f
YS
500static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
501 struct mem_cgroup *memcg,
1bc63fb1 502 bool in_low_reclaim)
9783aa99 503{
1bc63fb1
CD
504 if (mem_cgroup_disabled())
505 return 0;
506
22f7496f
YS
507 /*
508 * There is no reclaim protection applied to a targeted reclaim.
509 * We are special casing this specific case here because
510 * mem_cgroup_protected calculation is not robust enough to keep
511 * the protection invariant for calculated effective values for
512 * parallel reclaimers with different reclaim target. This is
513 * especially a problem for tail memcgs (as they have pages on LRU)
514 * which would want to have effective values 0 for targeted reclaim
515 * but a different value for external reclaim.
516 *
517 * Example
518 * Let's have global and A's reclaim in parallel:
519 * |
520 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
521 * |\
522 * | C (low = 1G, usage = 2.5G)
523 * B (low = 1G, usage = 0.5G)
524 *
525 * For the global reclaim
526 * A.elow = A.low
527 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
528 * C.elow = min(C.usage, C.low)
529 *
530 * With the effective values resetting we have A reclaim
531 * A.elow = 0
532 * B.elow = B.low
533 * C.elow = C.low
534 *
535 * If the global reclaim races with A's reclaim then
536 * B.elow = C.elow = 0 because children_low_usage > A.elow)
537 * is possible and reclaiming B would be violating the protection.
538 *
539 */
540 if (root == memcg)
541 return 0;
542
1bc63fb1
CD
543 if (in_low_reclaim)
544 return READ_ONCE(memcg->memory.emin);
9783aa99 545
1bc63fb1
CD
546 return max(READ_ONCE(memcg->memory.emin),
547 READ_ONCE(memcg->memory.elow));
9783aa99
CD
548}
549
45c7f7e1
CD
550void mem_cgroup_calculate_protection(struct mem_cgroup *root,
551 struct mem_cgroup *memcg);
552
553static inline bool mem_cgroup_supports_protection(struct mem_cgroup *memcg)
554{
555 /*
556 * The root memcg doesn't account charges, and doesn't support
557 * protection.
558 */
559 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg);
560
561}
562
563static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
564{
565 if (!mem_cgroup_supports_protection(memcg))
566 return false;
567
568 return READ_ONCE(memcg->memory.elow) >=
569 page_counter_read(&memcg->memory);
570}
571
572static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
573{
574 if (!mem_cgroup_supports_protection(memcg))
575 return false;
576
577 return READ_ONCE(memcg->memory.emin) >=
578 page_counter_read(&memcg->memory);
579}
241994ed 580
d9eb1ea2 581int mem_cgroup_charge(struct page *page, struct mm_struct *mm, gfp_t gfp_mask);
3fea5a49 582
0a31bc97 583void mem_cgroup_uncharge(struct page *page);
747db954 584void mem_cgroup_uncharge_list(struct list_head *page_list);
569b846d 585
6a93ca8f 586void mem_cgroup_migrate(struct page *oldpage, struct page *newpage);
569b846d 587
ef8f2327
MG
588static struct mem_cgroup_per_node *
589mem_cgroup_nodeinfo(struct mem_cgroup *memcg, int nid)
55779ec7 590{
ef8f2327 591 return memcg->nodeinfo[nid];
55779ec7
JW
592}
593
594/**
867e5e1d 595 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
55779ec7
JW
596 * @memcg: memcg of the wanted lruvec
597 *
867e5e1d
JW
598 * Returns the lru list vector holding pages for a given @memcg &
599 * @node combination. This can be the node lruvec, if the memory
600 * controller is disabled.
55779ec7 601 */
867e5e1d
JW
602static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
603 struct pglist_data *pgdat)
55779ec7 604{
ef8f2327 605 struct mem_cgroup_per_node *mz;
55779ec7
JW
606 struct lruvec *lruvec;
607
608 if (mem_cgroup_disabled()) {
867e5e1d 609 lruvec = &pgdat->__lruvec;
55779ec7
JW
610 goto out;
611 }
612
1b05117d
JW
613 if (!memcg)
614 memcg = root_mem_cgroup;
615
ef8f2327 616 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
55779ec7
JW
617 lruvec = &mz->lruvec;
618out:
619 /*
620 * Since a node can be onlined after the mem_cgroup was created,
599d0c95 621 * we have to be prepared to initialize lruvec->pgdat here;
55779ec7
JW
622 * and if offlined then reonlined, we need to reinitialize it.
623 */
ef8f2327
MG
624 if (unlikely(lruvec->pgdat != pgdat))
625 lruvec->pgdat = pgdat;
55779ec7
JW
626 return lruvec;
627}
628
599d0c95 629struct lruvec *mem_cgroup_page_lruvec(struct page *, struct pglist_data *);
c9b0ed51 630
64219994 631struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
e993d905 632
d46eb14b
SB
633struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
634
f745c6f5
SB
635struct mem_cgroup *get_mem_cgroup_from_page(struct page *page);
636
33398cf2
MH
637static inline
638struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
639 return css ? container_of(css, struct mem_cgroup, css) : NULL;
640}
641
bf4f0599
RG
642static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
643{
644 return percpu_ref_tryget(&objcg->refcnt);
645}
646
647static inline void obj_cgroup_get(struct obj_cgroup *objcg)
648{
649 percpu_ref_get(&objcg->refcnt);
650}
651
652static inline void obj_cgroup_put(struct obj_cgroup *objcg)
653{
654 percpu_ref_put(&objcg->refcnt);
655}
656
657/*
658 * After the initialization objcg->memcg is always pointing at
659 * a valid memcg, but can be atomically swapped to the parent memcg.
660 *
661 * The caller must ensure that the returned memcg won't be released:
662 * e.g. acquire the rcu_read_lock or css_set_lock.
663 */
664static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
665{
666 return READ_ONCE(objcg->memcg);
667}
668
dc0b5864
RG
669static inline void mem_cgroup_put(struct mem_cgroup *memcg)
670{
d46eb14b
SB
671 if (memcg)
672 css_put(&memcg->css);
dc0b5864
RG
673}
674
8e8ae645
JW
675#define mem_cgroup_from_counter(counter, member) \
676 container_of(counter, struct mem_cgroup, member)
677
33398cf2
MH
678struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
679 struct mem_cgroup *,
680 struct mem_cgroup_reclaim_cookie *);
681void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
7c5f64f8
VD
682int mem_cgroup_scan_tasks(struct mem_cgroup *,
683 int (*)(struct task_struct *, void *), void *);
33398cf2 684
23047a96
JW
685static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
686{
687 if (mem_cgroup_disabled())
688 return 0;
689
73f576c0 690 return memcg->id.id;
23047a96 691}
73f576c0 692struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
23047a96 693
aa9694bb
CD
694static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
695{
696 return mem_cgroup_from_css(seq_css(m));
697}
698
2262185c
RG
699static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
700{
701 struct mem_cgroup_per_node *mz;
702
703 if (mem_cgroup_disabled())
704 return NULL;
705
706 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
707 return mz->memcg;
708}
709
8e8ae645
JW
710/**
711 * parent_mem_cgroup - find the accounting parent of a memcg
712 * @memcg: memcg whose parent to find
713 *
714 * Returns the parent memcg, or NULL if this is the root or the memory
715 * controller is in legacy no-hierarchy mode.
716 */
717static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
718{
719 if (!memcg->memory.parent)
720 return NULL;
721 return mem_cgroup_from_counter(memcg->memory.parent, memory);
722}
723
33398cf2
MH
724static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
725 struct mem_cgroup *root)
726{
727 if (root == memcg)
728 return true;
729 if (!root->use_hierarchy)
730 return false;
731 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
732}
e1aab161 733
2314b42d
JW
734static inline bool mm_match_cgroup(struct mm_struct *mm,
735 struct mem_cgroup *memcg)
2e4d4091 736{
587af308 737 struct mem_cgroup *task_memcg;
413918bb 738 bool match = false;
c3ac9a8a 739
2e4d4091 740 rcu_read_lock();
587af308 741 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
413918bb 742 if (task_memcg)
2314b42d 743 match = mem_cgroup_is_descendant(task_memcg, memcg);
2e4d4091 744 rcu_read_unlock();
c3ac9a8a 745 return match;
2e4d4091 746}
8a9f3ccd 747
64219994 748struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page);
2fc04524 749ino_t page_cgroup_ino(struct page *page);
d324236b 750
eb01aaab
VD
751static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
752{
753 if (mem_cgroup_disabled())
754 return true;
755 return !!(memcg->css.flags & CSS_ONLINE);
756}
757
58ae83db
KH
758/*
759 * For memory reclaim.
760 */
889976db 761int mem_cgroup_select_victim_node(struct mem_cgroup *memcg);
33398cf2
MH
762
763void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 764 int zid, int nr_pages);
33398cf2 765
b4536f0c
MH
766static inline
767unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
768 enum lru_list lru, int zone_idx)
769{
770 struct mem_cgroup_per_node *mz;
771
772 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
e0e3f42f 773 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
33398cf2
MH
774}
775
b23afb93
TH
776void mem_cgroup_handle_over_high(void);
777
bbec2e15 778unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
7c5f64f8 779
9783aa99
CD
780unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
781
f0c867d9 782void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
64219994 783 struct task_struct *p);
58ae83db 784
f0c867d9 785void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
786
29ef680a 787static inline void mem_cgroup_enter_user_fault(void)
519e5247 788{
29ef680a
MH
789 WARN_ON(current->in_user_fault);
790 current->in_user_fault = 1;
519e5247
JW
791}
792
29ef680a 793static inline void mem_cgroup_exit_user_fault(void)
519e5247 794{
29ef680a
MH
795 WARN_ON(!current->in_user_fault);
796 current->in_user_fault = 0;
519e5247
JW
797}
798
3812c8c8
JW
799static inline bool task_in_memcg_oom(struct task_struct *p)
800{
626ebc41 801 return p->memcg_in_oom;
3812c8c8
JW
802}
803
49426420 804bool mem_cgroup_oom_synchronize(bool wait);
3d8b38eb
RG
805struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
806 struct mem_cgroup *oom_domain);
807void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
3812c8c8 808
c255a458 809#ifdef CONFIG_MEMCG_SWAP
eccb52e7 810extern bool cgroup_memory_noswap;
c077719b 811#endif
f8d66542 812
739f79fc
JW
813struct mem_cgroup *lock_page_memcg(struct page *page);
814void __unlock_page_memcg(struct mem_cgroup *memcg);
62cccb8c 815void unlock_page_memcg(struct page *page);
d7365e78 816
42a30035
JW
817/*
818 * idx can be of type enum memcg_stat_item or node_stat_item.
819 * Keep in sync with memcg_exact_page_state().
820 */
821static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
822{
823 long x = atomic_long_read(&memcg->vmstats[idx]);
824#ifdef CONFIG_SMP
825 if (x < 0)
826 x = 0;
827#endif
828 return x;
829}
830
0b3d6e6f
GT
831/*
832 * idx can be of type enum memcg_stat_item or node_stat_item.
833 * Keep in sync with memcg_exact_page_state().
834 */
205b20cc
JW
835static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
836 int idx)
2a2e4885 837{
815744d7
JW
838 long x = 0;
839 int cpu;
840
841 for_each_possible_cpu(cpu)
842 x += per_cpu(memcg->vmstats_local->stat[idx], cpu);
a983b5eb
JW
843#ifdef CONFIG_SMP
844 if (x < 0)
845 x = 0;
846#endif
847 return x;
2a2e4885
JW
848}
849
db9adbcb 850void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
2a2e4885 851
04fecbf5 852/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 853static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 854 int idx, int val)
2a2e4885 855{
c3cc3911
JW
856 unsigned long flags;
857
858 local_irq_save(flags);
a983b5eb 859 __mod_memcg_state(memcg, idx, val);
c3cc3911 860 local_irq_restore(flags);
2a2e4885
JW
861}
862
33398cf2 863/**
ccda7f43 864 * mod_memcg_page_state - update page state statistics
62cccb8c 865 * @page: the page
33398cf2
MH
866 * @idx: page state item to account
867 * @val: number of pages (positive or negative)
868 *
fdf1cdb9
JW
869 * The @page must be locked or the caller must use lock_page_memcg()
870 * to prevent double accounting when the page is concurrently being
871 * moved to another memcg:
81f8c3a4 872 *
fdf1cdb9 873 * lock_page(page) or lock_page_memcg(page)
81f8c3a4 874 * if (TestClearPageState(page))
ccda7f43 875 * mod_memcg_page_state(page, state, -1);
fdf1cdb9 876 * unlock_page(page) or unlock_page_memcg(page)
2a2e4885
JW
877 *
878 * Kernel pages are an exception to this, since they'll never move.
33398cf2 879 */
00f3ca2c 880static inline void __mod_memcg_page_state(struct page *page,
04fecbf5 881 int idx, int val)
00f3ca2c 882{
bcfe06bf
RG
883 struct mem_cgroup *memcg = page_memcg(page);
884
885 if (memcg)
886 __mod_memcg_state(memcg, idx, val);
00f3ca2c
JW
887}
888
ccda7f43 889static inline void mod_memcg_page_state(struct page *page,
04fecbf5 890 int idx, int val)
33398cf2 891{
bcfe06bf
RG
892 struct mem_cgroup *memcg = page_memcg(page);
893
894 if (memcg)
895 mod_memcg_state(memcg, idx, val);
33398cf2
MH
896}
897
42a30035
JW
898static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
899 enum node_stat_item idx)
900{
901 struct mem_cgroup_per_node *pn;
902 long x;
903
904 if (mem_cgroup_disabled())
905 return node_page_state(lruvec_pgdat(lruvec), idx);
906
907 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
908 x = atomic_long_read(&pn->lruvec_stat[idx]);
909#ifdef CONFIG_SMP
910 if (x < 0)
911 x = 0;
912#endif
913 return x;
914}
915
205b20cc
JW
916static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
917 enum node_stat_item idx)
2a7106f2 918{
00f3ca2c 919 struct mem_cgroup_per_node *pn;
815744d7
JW
920 long x = 0;
921 int cpu;
00f3ca2c
JW
922
923 if (mem_cgroup_disabled())
924 return node_page_state(lruvec_pgdat(lruvec), idx);
925
926 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
815744d7
JW
927 for_each_possible_cpu(cpu)
928 x += per_cpu(pn->lruvec_stat_local->count[idx], cpu);
a983b5eb
JW
929#ifdef CONFIG_SMP
930 if (x < 0)
931 x = 0;
932#endif
933 return x;
2a7106f2
GT
934}
935
eedc4e5a
RG
936void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
937 int val);
db9adbcb
JW
938void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
939 int val);
ec9f0238 940void __mod_lruvec_slab_state(void *p, enum node_stat_item idx, int val);
991e7673 941
8380ce47 942void mod_memcg_obj_state(void *p, int idx, int val);
00f3ca2c 943
991e7673
SB
944static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
945 int val)
946{
947 unsigned long flags;
948
949 local_irq_save(flags);
950 __mod_lruvec_slab_state(p, idx, val);
951 local_irq_restore(flags);
952}
953
eedc4e5a
RG
954static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
955 enum node_stat_item idx, int val)
956{
957 unsigned long flags;
958
959 local_irq_save(flags);
960 __mod_memcg_lruvec_state(lruvec, idx, val);
961 local_irq_restore(flags);
962}
963
00f3ca2c
JW
964static inline void mod_lruvec_state(struct lruvec *lruvec,
965 enum node_stat_item idx, int val)
966{
c3cc3911
JW
967 unsigned long flags;
968
969 local_irq_save(flags);
28454265 970 __mod_lruvec_state(lruvec, idx, val);
c3cc3911 971 local_irq_restore(flags);
00f3ca2c
JW
972}
973
974static inline void __mod_lruvec_page_state(struct page *page,
975 enum node_stat_item idx, int val)
976{
9da7b521 977 struct page *head = compound_head(page); /* rmap on tail pages */
bcfe06bf 978 struct mem_cgroup *memcg = page_memcg(head);
28454265
JW
979 pg_data_t *pgdat = page_pgdat(page);
980 struct lruvec *lruvec;
00f3ca2c 981
28454265 982 /* Untracked pages have no memcg, no lruvec. Update only the node */
bcfe06bf 983 if (!memcg) {
28454265 984 __mod_node_page_state(pgdat, idx, val);
00f3ca2c 985 return;
28454265
JW
986 }
987
bcfe06bf 988 lruvec = mem_cgroup_lruvec(memcg, pgdat);
28454265 989 __mod_lruvec_state(lruvec, idx, val);
00f3ca2c
JW
990}
991
992static inline void mod_lruvec_page_state(struct page *page,
993 enum node_stat_item idx, int val)
994{
c3cc3911
JW
995 unsigned long flags;
996
997 local_irq_save(flags);
28454265 998 __mod_lruvec_page_state(page, idx, val);
c3cc3911 999 local_irq_restore(flags);
2a7106f2
GT
1000}
1001
ef8f2327 1002unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
1003 gfp_t gfp_mask,
1004 unsigned long *total_scanned);
a63d83f4 1005
db9adbcb
JW
1006void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1007 unsigned long count);
c9019e9b 1008
2262185c 1009static inline void count_memcg_events(struct mem_cgroup *memcg,
e27be240
JW
1010 enum vm_event_item idx,
1011 unsigned long count)
2262185c 1012{
c3cc3911
JW
1013 unsigned long flags;
1014
1015 local_irq_save(flags);
a983b5eb 1016 __count_memcg_events(memcg, idx, count);
c3cc3911 1017 local_irq_restore(flags);
2262185c
RG
1018}
1019
1020static inline void count_memcg_page_event(struct page *page,
e27be240 1021 enum vm_event_item idx)
2262185c 1022{
bcfe06bf
RG
1023 struct mem_cgroup *memcg = page_memcg(page);
1024
1025 if (memcg)
1026 count_memcg_events(memcg, idx, 1);
2262185c
RG
1027}
1028
1029static inline void count_memcg_event_mm(struct mm_struct *mm,
1030 enum vm_event_item idx)
68ae564b 1031{
33398cf2
MH
1032 struct mem_cgroup *memcg;
1033
68ae564b
DR
1034 if (mem_cgroup_disabled())
1035 return;
33398cf2
MH
1036
1037 rcu_read_lock();
1038 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
fe6bdfc8 1039 if (likely(memcg))
c9019e9b 1040 count_memcg_events(memcg, idx, 1);
33398cf2 1041 rcu_read_unlock();
68ae564b 1042}
c9019e9b 1043
e27be240
JW
1044static inline void memcg_memory_event(struct mem_cgroup *memcg,
1045 enum memcg_memory_event event)
c9019e9b 1046{
1e577f97
SB
1047 atomic_long_inc(&memcg->memory_events_local[event]);
1048 cgroup_file_notify(&memcg->events_local_file);
1049
9852ae3f
CD
1050 do {
1051 atomic_long_inc(&memcg->memory_events[event]);
1052 cgroup_file_notify(&memcg->events_file);
1053
04fd61a4
YS
1054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1055 break;
9852ae3f
CD
1056 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1057 break;
1058 } while ((memcg = parent_mem_cgroup(memcg)) &&
1059 !mem_cgroup_is_root(memcg));
c9019e9b
JW
1060}
1061
fe6bdfc8
RG
1062static inline void memcg_memory_event_mm(struct mm_struct *mm,
1063 enum memcg_memory_event event)
1064{
1065 struct mem_cgroup *memcg;
1066
1067 if (mem_cgroup_disabled())
1068 return;
1069
1070 rcu_read_lock();
1071 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1072 if (likely(memcg))
1073 memcg_memory_event(memcg, event);
1074 rcu_read_unlock();
1075}
1076
ca3e0214 1077#ifdef CONFIG_TRANSPARENT_HUGEPAGE
e94c8a9c 1078void mem_cgroup_split_huge_fixup(struct page *head);
ca3e0214
KH
1079#endif
1080
c255a458 1081#else /* CONFIG_MEMCG */
23047a96
JW
1082
1083#define MEM_CGROUP_ID_SHIFT 0
1084#define MEM_CGROUP_ID_MAX 0
1085
7a81b88c
KH
1086struct mem_cgroup;
1087
bcfe06bf
RG
1088static inline struct mem_cgroup *page_memcg(struct page *page)
1089{
1090 return NULL;
1091}
1092
1093static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1094{
1095 WARN_ON_ONCE(!rcu_read_lock_held());
1096 return NULL;
1097}
1098
1099static inline struct mem_cgroup *page_memcg_check(struct page *page)
1100{
1101 return NULL;
1102}
1103
dfd2f10c
KT
1104static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1105{
1106 return true;
1107}
1108
23047a96
JW
1109static inline bool mem_cgroup_disabled(void)
1110{
1111 return true;
1112}
1113
e27be240
JW
1114static inline void memcg_memory_event(struct mem_cgroup *memcg,
1115 enum memcg_memory_event event)
241994ed
JW
1116{
1117}
1118
fe6bdfc8
RG
1119static inline void memcg_memory_event_mm(struct mm_struct *mm,
1120 enum memcg_memory_event event)
1121{
1122}
1123
22f7496f
YS
1124static inline unsigned long mem_cgroup_protection(struct mem_cgroup *root,
1125 struct mem_cgroup *memcg,
1bc63fb1 1126 bool in_low_reclaim)
9783aa99 1127{
1bc63fb1 1128 return 0;
9783aa99
CD
1129}
1130
45c7f7e1
CD
1131static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1132 struct mem_cgroup *memcg)
1133{
1134}
1135
1136static inline bool mem_cgroup_below_low(struct mem_cgroup *memcg)
1137{
1138 return false;
1139}
1140
1141static inline bool mem_cgroup_below_min(struct mem_cgroup *memcg)
241994ed 1142{
45c7f7e1 1143 return false;
241994ed
JW
1144}
1145
3fea5a49 1146static inline int mem_cgroup_charge(struct page *page, struct mm_struct *mm,
d9eb1ea2 1147 gfp_t gfp_mask)
3fea5a49
JW
1148{
1149 return 0;
1150}
1151
0a31bc97 1152static inline void mem_cgroup_uncharge(struct page *page)
569b846d
KH
1153{
1154}
1155
747db954 1156static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
8a9f3ccd
BS
1157{
1158}
1159
6a93ca8f 1160static inline void mem_cgroup_migrate(struct page *old, struct page *new)
69029cd5
KH
1161{
1162}
1163
867e5e1d
JW
1164static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1165 struct pglist_data *pgdat)
08e552c6 1166{
867e5e1d 1167 return &pgdat->__lruvec;
08e552c6
KH
1168}
1169
fa9add64 1170static inline struct lruvec *mem_cgroup_page_lruvec(struct page *page,
599d0c95 1171 struct pglist_data *pgdat)
66e1707b 1172{
867e5e1d 1173 return &pgdat->__lruvec;
66e1707b
BS
1174}
1175
b910718a
JW
1176static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1177{
1178 return NULL;
1179}
1180
587af308 1181static inline bool mm_match_cgroup(struct mm_struct *mm,
c0ff4b85 1182 struct mem_cgroup *memcg)
bed7161a 1183{
587af308 1184 return true;
bed7161a
BS
1185}
1186
d46eb14b
SB
1187static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1188{
1189 return NULL;
1190}
1191
f745c6f5
SB
1192static inline struct mem_cgroup *get_mem_cgroup_from_page(struct page *page)
1193{
1194 return NULL;
1195}
1196
dc0b5864
RG
1197static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1198{
1199}
1200
5660048c
JW
1201static inline struct mem_cgroup *
1202mem_cgroup_iter(struct mem_cgroup *root,
1203 struct mem_cgroup *prev,
1204 struct mem_cgroup_reclaim_cookie *reclaim)
1205{
1206 return NULL;
1207}
1208
1209static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1210 struct mem_cgroup *prev)
1211{
1212}
1213
7c5f64f8
VD
1214static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1215 int (*fn)(struct task_struct *, void *), void *arg)
1216{
1217 return 0;
1218}
1219
23047a96 1220static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
f8d66542 1221{
23047a96
JW
1222 return 0;
1223}
1224
1225static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1226{
1227 WARN_ON_ONCE(id);
1228 /* XXX: This should always return root_mem_cgroup */
1229 return NULL;
f8d66542 1230}
a636b327 1231
aa9694bb
CD
1232static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1233{
1234 return NULL;
1235}
1236
2262185c
RG
1237static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1238{
1239 return NULL;
1240}
1241
eb01aaab 1242static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
14797e23 1243{
13308ca9 1244 return true;
14797e23
KM
1245}
1246
b4536f0c
MH
1247static inline
1248unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1249 enum lru_list lru, int zone_idx)
1250{
1251 return 0;
1252}
a3d8e054 1253
bbec2e15 1254static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
7c5f64f8
VD
1255{
1256 return 0;
1257}
1258
9783aa99
CD
1259static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1260{
1261 return 0;
1262}
1263
e222432b 1264static inline void
f0c867d9 1265mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1266{
1267}
1268
1269static inline void
1270mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
e222432b
BS
1271{
1272}
1273
739f79fc
JW
1274static inline struct mem_cgroup *lock_page_memcg(struct page *page)
1275{
1276 return NULL;
1277}
1278
1279static inline void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5
KH
1280{
1281}
1282
62cccb8c 1283static inline void unlock_page_memcg(struct page *page)
89c06bd5
KH
1284{
1285}
1286
b23afb93
TH
1287static inline void mem_cgroup_handle_over_high(void)
1288{
1289}
1290
29ef680a 1291static inline void mem_cgroup_enter_user_fault(void)
519e5247
JW
1292{
1293}
1294
29ef680a 1295static inline void mem_cgroup_exit_user_fault(void)
519e5247
JW
1296{
1297}
1298
3812c8c8
JW
1299static inline bool task_in_memcg_oom(struct task_struct *p)
1300{
1301 return false;
1302}
1303
49426420 1304static inline bool mem_cgroup_oom_synchronize(bool wait)
3812c8c8
JW
1305{
1306 return false;
1307}
1308
3d8b38eb
RG
1309static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1310 struct task_struct *victim, struct mem_cgroup *oom_domain)
1311{
1312 return NULL;
1313}
1314
1315static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1316{
1317}
1318
42a30035
JW
1319static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1320{
1321 return 0;
1322}
1323
205b20cc
JW
1324static inline unsigned long memcg_page_state_local(struct mem_cgroup *memcg,
1325 int idx)
2a2e4885
JW
1326{
1327 return 0;
1328}
1329
00f3ca2c 1330static inline void __mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1331 int idx,
00f3ca2c 1332 int nr)
2a2e4885
JW
1333{
1334}
1335
00f3ca2c 1336static inline void mod_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1337 int idx,
00f3ca2c 1338 int nr)
2a2e4885
JW
1339{
1340}
1341
00f3ca2c 1342static inline void __mod_memcg_page_state(struct page *page,
04fecbf5 1343 int idx,
00f3ca2c 1344 int nr)
2a2e4885
JW
1345{
1346}
1347
ccda7f43 1348static inline void mod_memcg_page_state(struct page *page,
04fecbf5 1349 int idx,
ccda7f43 1350 int nr)
553af430
JW
1351{
1352}
1353
42a30035
JW
1354static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1355 enum node_stat_item idx)
1356{
1357 return node_page_state(lruvec_pgdat(lruvec), idx);
1358}
1359
205b20cc
JW
1360static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1361 enum node_stat_item idx)
2a7106f2 1362{
00f3ca2c 1363 return node_page_state(lruvec_pgdat(lruvec), idx);
2a7106f2
GT
1364}
1365
eedc4e5a
RG
1366static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1367 enum node_stat_item idx, int val)
1368{
1369}
1370
00f3ca2c
JW
1371static inline void __mod_lruvec_state(struct lruvec *lruvec,
1372 enum node_stat_item idx, int val)
d69b042f 1373{
00f3ca2c
JW
1374 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1375}
1376
1377static inline void mod_lruvec_state(struct lruvec *lruvec,
1378 enum node_stat_item idx, int val)
1379{
1380 mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
1381}
1382
1383static inline void __mod_lruvec_page_state(struct page *page,
1384 enum node_stat_item idx, int val)
1385{
1386 __mod_node_page_state(page_pgdat(page), idx, val);
1387}
1388
1389static inline void mod_lruvec_page_state(struct page *page,
1390 enum node_stat_item idx, int val)
1391{
1392 mod_node_page_state(page_pgdat(page), idx, val);
d69b042f
BS
1393}
1394
ec9f0238
RG
1395static inline void __mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1396 int val)
1397{
1398 struct page *page = virt_to_head_page(p);
1399
1400 __mod_node_page_state(page_pgdat(page), idx, val);
1401}
1402
991e7673
SB
1403static inline void mod_lruvec_slab_state(void *p, enum node_stat_item idx,
1404 int val)
1405{
1406 struct page *page = virt_to_head_page(p);
1407
1408 mod_node_page_state(page_pgdat(page), idx, val);
1409}
1410
8380ce47
RG
1411static inline void mod_memcg_obj_state(void *p, int idx, int val)
1412{
1413}
1414
4e416953 1415static inline
ef8f2327 1416unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
1417 gfp_t gfp_mask,
1418 unsigned long *total_scanned)
4e416953 1419{
0608f43d 1420 return 0;
4e416953
BS
1421}
1422
e94c8a9c 1423static inline void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
1424{
1425}
1426
2262185c
RG
1427static inline void count_memcg_events(struct mem_cgroup *memcg,
1428 enum vm_event_item idx,
1429 unsigned long count)
1430{
1431}
1432
9851ac13
KT
1433static inline void __count_memcg_events(struct mem_cgroup *memcg,
1434 enum vm_event_item idx,
1435 unsigned long count)
1436{
1437}
1438
2262185c 1439static inline void count_memcg_page_event(struct page *page,
04fecbf5 1440 int idx)
2262185c
RG
1441{
1442}
1443
456f998e 1444static inline
2262185c 1445void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
456f998e
YH
1446{
1447}
c255a458 1448#endif /* CONFIG_MEMCG */
78fb7466 1449
04fecbf5 1450/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1451static inline void __inc_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1452 int idx)
00f3ca2c
JW
1453{
1454 __mod_memcg_state(memcg, idx, 1);
1455}
1456
04fecbf5 1457/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1458static inline void __dec_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1459 int idx)
00f3ca2c
JW
1460{
1461 __mod_memcg_state(memcg, idx, -1);
1462}
1463
04fecbf5 1464/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1465static inline void __inc_memcg_page_state(struct page *page,
04fecbf5 1466 int idx)
00f3ca2c
JW
1467{
1468 __mod_memcg_page_state(page, idx, 1);
1469}
1470
04fecbf5 1471/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1472static inline void __dec_memcg_page_state(struct page *page,
04fecbf5 1473 int idx)
00f3ca2c
JW
1474{
1475 __mod_memcg_page_state(page, idx, -1);
1476}
1477
1478static inline void __inc_lruvec_state(struct lruvec *lruvec,
1479 enum node_stat_item idx)
1480{
1481 __mod_lruvec_state(lruvec, idx, 1);
1482}
1483
1484static inline void __dec_lruvec_state(struct lruvec *lruvec,
1485 enum node_stat_item idx)
1486{
1487 __mod_lruvec_state(lruvec, idx, -1);
1488}
1489
1490static inline void __inc_lruvec_page_state(struct page *page,
1491 enum node_stat_item idx)
1492{
1493 __mod_lruvec_page_state(page, idx, 1);
1494}
1495
1496static inline void __dec_lruvec_page_state(struct page *page,
1497 enum node_stat_item idx)
1498{
1499 __mod_lruvec_page_state(page, idx, -1);
1500}
1501
ec9f0238
RG
1502static inline void __inc_lruvec_slab_state(void *p, enum node_stat_item idx)
1503{
1504 __mod_lruvec_slab_state(p, idx, 1);
1505}
1506
1507static inline void __dec_lruvec_slab_state(void *p, enum node_stat_item idx)
1508{
1509 __mod_lruvec_slab_state(p, idx, -1);
1510}
1511
04fecbf5 1512/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1513static inline void inc_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1514 int idx)
00f3ca2c
JW
1515{
1516 mod_memcg_state(memcg, idx, 1);
1517}
1518
04fecbf5 1519/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1520static inline void dec_memcg_state(struct mem_cgroup *memcg,
04fecbf5 1521 int idx)
00f3ca2c
JW
1522{
1523 mod_memcg_state(memcg, idx, -1);
1524}
1525
04fecbf5 1526/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1527static inline void inc_memcg_page_state(struct page *page,
04fecbf5 1528 int idx)
00f3ca2c
JW
1529{
1530 mod_memcg_page_state(page, idx, 1);
1531}
1532
04fecbf5 1533/* idx can be of type enum memcg_stat_item or node_stat_item */
00f3ca2c 1534static inline void dec_memcg_page_state(struct page *page,
04fecbf5 1535 int idx)
00f3ca2c
JW
1536{
1537 mod_memcg_page_state(page, idx, -1);
1538}
1539
1540static inline void inc_lruvec_state(struct lruvec *lruvec,
1541 enum node_stat_item idx)
1542{
1543 mod_lruvec_state(lruvec, idx, 1);
1544}
1545
1546static inline void dec_lruvec_state(struct lruvec *lruvec,
1547 enum node_stat_item idx)
1548{
1549 mod_lruvec_state(lruvec, idx, -1);
1550}
1551
1552static inline void inc_lruvec_page_state(struct page *page,
1553 enum node_stat_item idx)
1554{
1555 mod_lruvec_page_state(page, idx, 1);
1556}
1557
1558static inline void dec_lruvec_page_state(struct page *page,
1559 enum node_stat_item idx)
1560{
1561 mod_lruvec_page_state(page, idx, -1);
1562}
1563
7cf111bc
JW
1564static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1565{
1566 struct mem_cgroup *memcg;
1567
1568 memcg = lruvec_memcg(lruvec);
1569 if (!memcg)
1570 return NULL;
1571 memcg = parent_mem_cgroup(memcg);
1572 if (!memcg)
1573 return NULL;
1574 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1575}
1576
52ebea74 1577#ifdef CONFIG_CGROUP_WRITEBACK
841710aa 1578
841710aa 1579struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
c5edf9cd
TH
1580void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1581 unsigned long *pheadroom, unsigned long *pdirty,
1582 unsigned long *pwriteback);
841710aa 1583
97b27821
TH
1584void mem_cgroup_track_foreign_dirty_slowpath(struct page *page,
1585 struct bdi_writeback *wb);
1586
1587static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1588 struct bdi_writeback *wb)
1589{
08d1d0e6
BH
1590 if (mem_cgroup_disabled())
1591 return;
1592
bcfe06bf 1593 if (unlikely(&page_memcg(page)->css != wb->memcg_css))
97b27821
TH
1594 mem_cgroup_track_foreign_dirty_slowpath(page, wb);
1595}
1596
1597void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1598
841710aa
TH
1599#else /* CONFIG_CGROUP_WRITEBACK */
1600
1601static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1602{
1603 return NULL;
1604}
1605
c2aa723a 1606static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
c5edf9cd
TH
1607 unsigned long *pfilepages,
1608 unsigned long *pheadroom,
c2aa723a
TH
1609 unsigned long *pdirty,
1610 unsigned long *pwriteback)
1611{
1612}
1613
97b27821
TH
1614static inline void mem_cgroup_track_foreign_dirty(struct page *page,
1615 struct bdi_writeback *wb)
1616{
1617}
1618
1619static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1620{
1621}
1622
841710aa 1623#endif /* CONFIG_CGROUP_WRITEBACK */
52ebea74 1624
e1aab161 1625struct sock;
baac50bb
JW
1626bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1627void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
d886f4e4 1628#ifdef CONFIG_MEMCG
ef12947c
JW
1629extern struct static_key_false memcg_sockets_enabled_key;
1630#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
2d758073
JW
1631void mem_cgroup_sk_alloc(struct sock *sk);
1632void mem_cgroup_sk_free(struct sock *sk);
baac50bb 1633static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c 1634{
0db15298 1635 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
8e8ae645 1636 return true;
8e8ae645
JW
1637 do {
1638 if (time_before(jiffies, memcg->socket_pressure))
1639 return true;
1640 } while ((memcg = parent_mem_cgroup(memcg)));
1641 return false;
e805605c 1642}
0a432dcb
YS
1643
1644extern int memcg_expand_shrinker_maps(int new_id);
1645
1646extern void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1647 int nid, int shrinker_id);
e805605c 1648#else
80e95fe0 1649#define mem_cgroup_sockets_enabled 0
2d758073
JW
1650static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1651static inline void mem_cgroup_sk_free(struct sock *sk) { };
baac50bb 1652static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
e805605c
JW
1653{
1654 return false;
1655}
0a432dcb
YS
1656
1657static inline void memcg_set_shrinker_bit(struct mem_cgroup *memcg,
1658 int nid, int shrinker_id)
1659{
1660}
e805605c 1661#endif
7ae1e1d0 1662
9b6f7e16 1663#ifdef CONFIG_MEMCG_KMEM
4b13f64d
RG
1664int __memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1665 unsigned int nr_pages);
1666void __memcg_kmem_uncharge(struct mem_cgroup *memcg, unsigned int nr_pages);
f4b00eab
RG
1667int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1668void __memcg_kmem_uncharge_page(struct page *page, int order);
45264778 1669
bf4f0599
RG
1670struct obj_cgroup *get_obj_cgroup_from_current(void);
1671
1672int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1673void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1674
ef12947c 1675extern struct static_key_false memcg_kmem_enabled_key;
749c5415 1676
dbcf73e2 1677extern int memcg_nr_cache_ids;
64219994
MH
1678void memcg_get_cache_ids(void);
1679void memcg_put_cache_ids(void);
ebe945c2
GC
1680
1681/*
1682 * Helper macro to loop through all memcg-specific caches. Callers must still
1683 * check if the cache is valid (it is either valid or NULL).
1684 * the slab_mutex must be held when looping through those caches
1685 */
749c5415 1686#define for_each_memcg_cache_index(_idx) \
dbcf73e2 1687 for ((_idx) = 0; (_idx) < memcg_nr_cache_ids; (_idx)++)
749c5415 1688
7ae1e1d0
GC
1689static inline bool memcg_kmem_enabled(void)
1690{
eda330e5 1691 return static_branch_likely(&memcg_kmem_enabled_key);
7ae1e1d0
GC
1692}
1693
f4b00eab
RG
1694static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1695 int order)
60cd4bcd
SB
1696{
1697 if (memcg_kmem_enabled())
f4b00eab 1698 return __memcg_kmem_charge_page(page, gfp, order);
60cd4bcd
SB
1699 return 0;
1700}
1701
f4b00eab 1702static inline void memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1703{
1704 if (memcg_kmem_enabled())
f4b00eab 1705 __memcg_kmem_uncharge_page(page, order);
60cd4bcd
SB
1706}
1707
4b13f64d
RG
1708static inline int memcg_kmem_charge(struct mem_cgroup *memcg, gfp_t gfp,
1709 unsigned int nr_pages)
60cd4bcd
SB
1710{
1711 if (memcg_kmem_enabled())
4b13f64d 1712 return __memcg_kmem_charge(memcg, gfp, nr_pages);
60cd4bcd
SB
1713 return 0;
1714}
49a18eae 1715
4b13f64d
RG
1716static inline void memcg_kmem_uncharge(struct mem_cgroup *memcg,
1717 unsigned int nr_pages)
49a18eae
RG
1718{
1719 if (memcg_kmem_enabled())
4b13f64d 1720 __memcg_kmem_uncharge(memcg, nr_pages);
49a18eae
RG
1721}
1722
33398cf2 1723/*
9f706d68 1724 * helper for accessing a memcg's index. It will be used as an index in the
33398cf2
MH
1725 * child cache array in kmem_cache, and also to derive its name. This function
1726 * will return -1 when this is not a kmem-limited memcg.
1727 */
1728static inline int memcg_cache_id(struct mem_cgroup *memcg)
1729{
1730 return memcg ? memcg->kmemcg_id : -1;
1731}
5722d094 1732
8380ce47
RG
1733struct mem_cgroup *mem_cgroup_from_obj(void *p);
1734
7ae1e1d0 1735#else
9b6f7e16 1736
f4b00eab
RG
1737static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1738 int order)
9b6f7e16
RG
1739{
1740 return 0;
1741}
1742
f4b00eab 1743static inline void memcg_kmem_uncharge_page(struct page *page, int order)
9b6f7e16
RG
1744{
1745}
1746
f4b00eab
RG
1747static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1748 int order)
60cd4bcd
SB
1749{
1750 return 0;
1751}
1752
f4b00eab 1753static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
60cd4bcd
SB
1754{
1755}
1756
749c5415
GC
1757#define for_each_memcg_cache_index(_idx) \
1758 for (; NULL; )
1759
b9ce5ef4
GC
1760static inline bool memcg_kmem_enabled(void)
1761{
1762 return false;
1763}
1764
2633d7a0
GC
1765static inline int memcg_cache_id(struct mem_cgroup *memcg)
1766{
1767 return -1;
1768}
1769
05257a1a
VD
1770static inline void memcg_get_cache_ids(void)
1771{
1772}
1773
1774static inline void memcg_put_cache_ids(void)
1775{
1776}
1777
8380ce47
RG
1778static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1779{
1780 return NULL;
1781}
1782
84c07d11 1783#endif /* CONFIG_MEMCG_KMEM */
127424c8 1784
8cdea7c0 1785#endif /* _LINUX_MEMCONTROL_H */