Merge tag 'v6.10-p2' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
[linux-2.6-block.git] / include / linux / kvm_host.h
CommitLineData
20c8ccb1 1/* SPDX-License-Identifier: GPL-2.0-only */
edf88417
AK
2#ifndef __KVM_HOST_H
3#define __KVM_HOST_H
6aa8b732 4
6aa8b732
AK
5
6#include <linux/types.h>
e56a7a28 7#include <linux/hardirq.h>
6aa8b732
AK
8#include <linux/list.h>
9#include <linux/mutex.h>
10#include <linux/spinlock.h>
06ff0d37
MR
11#include <linux/signal.h>
12#include <linux/sched.h>
6bd5b743 13#include <linux/sched/stat.h>
187f1882 14#include <linux/bug.h>
4a42d848 15#include <linux/minmax.h>
6aa8b732 16#include <linux/mm.h>
b297e672 17#include <linux/mmu_notifier.h>
15ad7146 18#include <linux/preempt.h>
0937c48d 19#include <linux/msi.h>
d89f5eff 20#include <linux/slab.h>
d1e5b0e9 21#include <linux/vmalloc.h>
bd2b53b2 22#include <linux/rcupdate.h>
bd80158a 23#include <linux/ratelimit.h>
83f09228 24#include <linux/err.h>
c11f11fc 25#include <linux/irqflags.h>
521921ba 26#include <linux/context_tracking.h>
1a02b270 27#include <linux/irqbypass.h>
da4ad88c 28#include <linux/rcuwait.h>
e3736c3e 29#include <linux/refcount.h>
1d487e9b 30#include <linux/nospec.h>
2fdef3a2 31#include <linux/notifier.h>
ef9989af 32#include <linux/ftrace.h>
26b8345a 33#include <linux/hashtable.h>
ef9989af 34#include <linux/instrumentation.h>
ed922739 35#include <linux/interval_tree.h>
a54d8066 36#include <linux/rbtree.h>
c5b07754 37#include <linux/xarray.h>
e8edc6e0 38#include <asm/signal.h>
6aa8b732 39
6aa8b732 40#include <linux/kvm.h>
102d8325 41#include <linux/kvm_para.h>
6aa8b732 42
edf88417 43#include <linux/kvm_types.h>
d77a39d9 44
edf88417 45#include <asm/kvm_host.h>
fb04a1ed 46#include <linux/kvm_dirty_ring.h>
d657a98e 47
a1c42dde
JG
48#ifndef KVM_MAX_VCPU_IDS
49#define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
0b1b1dfd
GK
50#endif
51
67b29204 52/*
30ee198c
JMC
53 * The bit 16 ~ bit 31 of kvm_userspace_memory_region::flags are internally
54 * used in kvm, other bits are visible for userspace which are defined in
67b29204
XG
55 * include/linux/kvm_h.
56 */
57#define KVM_MEMSLOT_INVALID (1UL << 16)
58
361209e0 59/*
164bf7e5 60 * Bit 63 of the memslot generation number is an "update in-progress flag",
b0d23708 61 * e.g. is temporarily set for the duration of kvm_swap_active_memslots().
361209e0
SC
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
164bf7e5 78#define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
361209e0 79
87da7e66
XG
80/* Two fragments for cross MMIO pages. */
81#define KVM_MAX_MMIO_FRAGMENTS 2
f78146b0 82
eed52e43
SC
83#ifndef KVM_MAX_NR_ADDRESS_SPACES
84#define KVM_MAX_NR_ADDRESS_SPACES 1
f481b069
PB
85#endif
86
9c5b1172
XG
87/*
88 * For the normal pfn, the highest 12 bits should be zero,
81c52c56
XG
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
9c5b1172 91 */
81c52c56
XG
92#define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93#define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94#define KVM_PFN_NOSLOT (0x1ULL << 63)
9c5b1172
XG
95
96#define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97#define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
81c52c56 98#define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
fe5ed56c 99#define KVM_PFN_ERR_SIGPENDING (KVM_PFN_ERR_MASK + 3)
6c8ee57b 100
81c52c56
XG
101/*
102 * error pfns indicate that the gfn is in slot but faild to
103 * translate it to pfn on host.
104 */
ba049e93 105static inline bool is_error_pfn(kvm_pfn_t pfn)
83f09228 106{
9c5b1172 107 return !!(pfn & KVM_PFN_ERR_MASK);
83f09228
XG
108}
109
fe5ed56c
PX
110/*
111 * KVM_PFN_ERR_SIGPENDING indicates that fetching the PFN was interrupted
112 * by a pending signal. Note, the signal may or may not be fatal.
113 */
114static inline bool is_sigpending_pfn(kvm_pfn_t pfn)
115{
116 return pfn == KVM_PFN_ERR_SIGPENDING;
117}
118
81c52c56
XG
119/*
120 * error_noslot pfns indicate that the gfn can not be
121 * translated to pfn - it is not in slot or failed to
122 * translate it to pfn.
123 */
ba049e93 124static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
83f09228 125{
81c52c56 126 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
83f09228
XG
127}
128
81c52c56 129/* noslot pfn indicates that the gfn is not in slot. */
ba049e93 130static inline bool is_noslot_pfn(kvm_pfn_t pfn)
83f09228 131{
81c52c56 132 return pfn == KVM_PFN_NOSLOT;
83f09228
XG
133}
134
bf640876
DD
135/*
136 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
137 * provide own defines and kvm_is_error_hva
138 */
139#ifndef KVM_HVA_ERR_BAD
140
7068d097
XG
141#define KVM_HVA_ERR_BAD (PAGE_OFFSET)
142#define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
ca3a490c
XG
143
144static inline bool kvm_is_error_hva(unsigned long addr)
145{
7068d097 146 return addr >= PAGE_OFFSET;
ca3a490c
XG
147}
148
bf640876
DD
149#endif
150
721f5b0d
PD
151static inline bool kvm_is_error_gpa(gpa_t gpa)
152{
153 return gpa == INVALID_GPA;
154}
155
6cede2e6
XG
156#define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
157
9c5b1172 158static inline bool is_error_page(struct page *page)
6cede2e6
XG
159{
160 return IS_ERR(page);
161}
162
930f7fd6
RK
163#define KVM_REQUEST_MASK GENMASK(7,0)
164#define KVM_REQUEST_NO_WAKEUP BIT(8)
7a97cec2 165#define KVM_REQUEST_WAIT BIT(9)
df06dae3 166#define KVM_REQUEST_NO_ACTION BIT(10)
d9e368d6 167/*
2860c4b1 168 * Architecture-independent vcpu->requests bit members
c59fb127 169 * Bits 3-7 are reserved for more arch-independent bits.
d9e368d6 170 */
cf87ac73
GS
171#define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
172#define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
173#define KVM_REQ_UNBLOCK 2
174#define KVM_REQ_DIRTY_RING_SOFT_FULL 3
175#define KVM_REQUEST_ARCH_BASE 8
2387149e 176
df06dae3
SC
177/*
178 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
179 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
180 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
181 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
182 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
183 * guarantee the vCPU received an IPI and has actually exited guest mode.
184 */
185#define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
186
2387149e 187#define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
c593642c 188 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
2387149e
AJ
189 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
190})
191#define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
0cd31043 192
7ee3e8c3 193bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
620b2438 194 unsigned long *vcpu_bitmap);
7ee3e8c3 195bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
7ee3e8c3 196
7a84428a
AW
197#define KVM_USERSPACE_IRQ_SOURCE_ID 0
198#define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
5550af4d 199
0d9ce162 200extern struct mutex kvm_lock;
fc1b7492
GL
201extern struct list_head vm_list;
202
743eeb0b
SL
203struct kvm_io_range {
204 gpa_t addr;
205 int len;
206 struct kvm_io_device *dev;
207};
208
786a9f88 209#define NR_IOBUS_DEVS 1000
a1300716 210
2eeb2e94 211struct kvm_io_bus {
6ea34c9b
AK
212 int dev_count;
213 int ioeventfd_count;
a1300716 214 struct kvm_io_range range[];
2eeb2e94
GH
215};
216
e93f8a0f
MT
217enum kvm_bus {
218 KVM_MMIO_BUS,
219 KVM_PIO_BUS,
060f0ce6 220 KVM_VIRTIO_CCW_NOTIFY_BUS,
68c3b4d1 221 KVM_FAST_MMIO_BUS,
e93f8a0f
MT
222 KVM_NR_BUSES
223};
224
e32edf4f 225int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
e93f8a0f 226 int len, const void *val);
e32edf4f
NN
227int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
228 gpa_t addr, int len, const void *val, long cookie);
229int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
230 int len, void *val);
743eeb0b
SL
231int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
232 int len, struct kvm_io_device *dev);
5d3c4c79
SC
233int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
234 struct kvm_io_device *dev);
8a39d006
AP
235struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
236 gpa_t addr);
2eeb2e94 237
af585b92
GN
238#ifdef CONFIG_KVM_ASYNC_PF
239struct kvm_async_pf {
240 struct work_struct work;
241 struct list_head link;
242 struct list_head queue;
243 struct kvm_vcpu *vcpu;
736c291c 244 gpa_t cr2_or_gpa;
af585b92
GN
245 unsigned long addr;
246 struct kvm_arch_async_pf arch;
f2e10669 247 bool wakeup_all;
2a18b7e7 248 bool notpresent_injected;
af585b92
GN
249};
250
251void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
252void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
e8c22266
VK
253bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
254 unsigned long hva, struct kvm_arch_async_pf *arch);
344d9588 255int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
af585b92
GN
256#endif
257
f128cf8c 258#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
3e1efe2b 259union kvm_mmu_notifier_arg {
5a475554 260 unsigned long attributes;
3e1efe2b
SC
261};
262
3039bcc7
SC
263struct kvm_gfn_range {
264 struct kvm_memory_slot *slot;
265 gfn_t start;
266 gfn_t end;
3e1efe2b 267 union kvm_mmu_notifier_arg arg;
3039bcc7
SC
268 bool may_block;
269};
270bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
271bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
272bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
5f7c292b
SC
273#endif
274
6b7e2d09
XG
275enum {
276 OUTSIDE_GUEST_MODE,
277 IN_GUEST_MODE,
c142786c
AK
278 EXITING_GUEST_MODE,
279 READING_SHADOW_PAGE_TABLES,
6b7e2d09
XG
280};
281
e45adf66
KA
282#define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
283
284struct kvm_host_map {
285 /*
286 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
287 * a 'struct page' for it. When using mem= kernel parameter some memory
288 * can be used as guest memory but they are not managed by host
289 * kernel).
290 * If 'pfn' is not managed by the host kernel, this field is
291 * initialized to KVM_UNMAPPED_PAGE.
292 */
293 struct page *page;
294 void *hva;
295 kvm_pfn_t pfn;
296 kvm_pfn_t gfn;
297};
298
299/*
300 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
301 * directly to check for that.
302 */
303static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
304{
305 return !!map->hva;
306}
307
6bd5b743
WL
308static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
309{
310 return single_task_running() && !need_resched() && ktime_before(cur, stop);
311}
312
f78146b0
AK
313/*
314 * Sometimes a large or cross-page mmio needs to be broken up into separate
315 * exits for userspace servicing.
316 */
317struct kvm_mmio_fragment {
318 gpa_t gpa;
319 void *data;
320 unsigned len;
321};
322
d17fbbf7
ZX
323struct kvm_vcpu {
324 struct kvm *kvm;
31bb117e 325#ifdef CONFIG_PREEMPT_NOTIFIERS
d17fbbf7 326 struct preempt_notifier preempt_notifier;
31bb117e 327#endif
6b7e2d09 328 int cpu;
8750e72a 329 int vcpu_id; /* id given by userspace at creation */
5bad5d55 330 int vcpu_idx; /* index into kvm->vcpu_array */
2031f287
SC
331 int ____srcu_idx; /* Don't use this directly. You've been warned. */
332#ifdef CONFIG_PROVE_RCU
333 int srcu_depth;
334#endif
6b7e2d09 335 int mode;
86dafed5 336 u64 requests;
d0bfb940 337 unsigned long guest_debug;
6b7e2d09
XG
338
339 struct mutex mutex;
340 struct kvm_run *run;
f656ce01 341
510958e9 342#ifndef __KVM_HAVE_ARCH_WQP
da4ad88c 343 struct rcuwait wait;
510958e9 344#endif
0e4524a5 345 struct pid __rcu *pid;
d17fbbf7
ZX
346 int sigset_active;
347 sigset_t sigset;
19020f8a 348 unsigned int halt_poll_ns;
3491caf2 349 bool valid_wakeup;
d17fbbf7 350
34c16eec 351#ifdef CONFIG_HAS_IOMEM
d17fbbf7
ZX
352 int mmio_needed;
353 int mmio_read_completed;
354 int mmio_is_write;
f78146b0
AK
355 int mmio_cur_fragment;
356 int mmio_nr_fragments;
357 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
34c16eec 358#endif
1165f5fe 359
af585b92
GN
360#ifdef CONFIG_KVM_ASYNC_PF
361 struct {
362 u32 queued;
363 struct list_head queue;
364 struct list_head done;
365 spinlock_t lock;
366 } async_pf;
367#endif
368
4c088493
R
369#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
370 /*
371 * Cpu relax intercept or pause loop exit optimization
372 * in_spin_loop: set when a vcpu does a pause loop exit
373 * or cpu relax intercepted.
374 * dy_eligible: indicates whether vcpu is eligible for directed yield.
375 */
376 struct {
377 bool in_spin_loop;
378 bool dy_eligible;
379 } spin_loop;
380#endif
3a08a8f9 381 bool preempted;
d73eb57b 382 bool ready;
d657a98e 383 struct kvm_vcpu_arch arch;
ce55c049
JZ
384 struct kvm_vcpu_stat stat;
385 char stats_id[KVM_STATS_NAME_SIZE];
fb04a1ed 386 struct kvm_dirty_ring dirty_ring;
fe22ed82
DM
387
388 /*
a54d8066
MS
389 * The most recently used memslot by this vCPU and the slots generation
390 * for which it is valid.
391 * No wraparound protection is needed since generations won't overflow in
392 * thousands of years, even assuming 1M memslot operations per second.
fe22ed82 393 */
a54d8066
MS
394 struct kvm_memory_slot *last_used_slot;
395 u64 last_used_slot_gen;
d657a98e
ZX
396};
397
ef9989af
MR
398/*
399 * Start accounting time towards a guest.
400 * Must be called before entering guest context.
401 */
402static __always_inline void guest_timing_enter_irqoff(void)
1ca0016c
SC
403{
404 /*
405 * This is running in ioctl context so its safe to assume that it's the
406 * stime pending cputime to flush.
407 */
408 instrumentation_begin();
409 vtime_account_guest_enter();
410 instrumentation_end();
ef9989af 411}
1ca0016c 412
ef9989af
MR
413/*
414 * Enter guest context and enter an RCU extended quiescent state.
415 *
416 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
417 * unsafe to use any code which may directly or indirectly use RCU, tracing
418 * (including IRQ flag tracing), or lockdep. All code in this period must be
419 * non-instrumentable.
420 */
421static __always_inline void guest_context_enter_irqoff(void)
422{
1ca0016c
SC
423 /*
424 * KVM does not hold any references to rcu protected data when it
425 * switches CPU into a guest mode. In fact switching to a guest mode
426 * is very similar to exiting to userspace from rcu point of view. In
427 * addition CPU may stay in a guest mode for quite a long time (up to
428 * one time slice). Lets treat guest mode as quiescent state, just like
429 * we do with user-mode execution.
430 */
431 if (!context_tracking_guest_enter()) {
432 instrumentation_begin();
b5ad0d2e 433 rcu_virt_note_context_switch();
1ca0016c
SC
434 instrumentation_end();
435 }
436}
437
ef9989af
MR
438/*
439 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
440 * guest_state_enter_irqoff().
441 */
442static __always_inline void guest_enter_irqoff(void)
443{
444 guest_timing_enter_irqoff();
445 guest_context_enter_irqoff();
446}
447
448/**
449 * guest_state_enter_irqoff - Fixup state when entering a guest
450 *
451 * Entry to a guest will enable interrupts, but the kernel state is interrupts
452 * disabled when this is invoked. Also tell RCU about it.
453 *
454 * 1) Trace interrupts on state
455 * 2) Invoke context tracking if enabled to adjust RCU state
456 * 3) Tell lockdep that interrupts are enabled
457 *
458 * Invoked from architecture specific code before entering a guest.
459 * Must be called with interrupts disabled and the caller must be
460 * non-instrumentable.
461 * The caller has to invoke guest_timing_enter_irqoff() before this.
462 *
463 * Note: this is analogous to exit_to_user_mode().
464 */
465static __always_inline void guest_state_enter_irqoff(void)
466{
467 instrumentation_begin();
468 trace_hardirqs_on_prepare();
8b023acc 469 lockdep_hardirqs_on_prepare();
ef9989af
MR
470 instrumentation_end();
471
472 guest_context_enter_irqoff();
473 lockdep_hardirqs_on(CALLER_ADDR0);
474}
475
476/*
477 * Exit guest context and exit an RCU extended quiescent state.
478 *
479 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
480 * unsafe to use any code which may directly or indirectly use RCU, tracing
481 * (including IRQ flag tracing), or lockdep. All code in this period must be
482 * non-instrumentable.
483 */
484static __always_inline void guest_context_exit_irqoff(void)
1ca0016c
SC
485{
486 context_tracking_guest_exit();
ef9989af 487}
1ca0016c 488
ef9989af
MR
489/*
490 * Stop accounting time towards a guest.
491 * Must be called after exiting guest context.
492 */
493static __always_inline void guest_timing_exit_irqoff(void)
494{
1ca0016c
SC
495 instrumentation_begin();
496 /* Flush the guest cputime we spent on the guest */
497 vtime_account_guest_exit();
498 instrumentation_end();
499}
500
ef9989af
MR
501/*
502 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
503 * guest_timing_exit_irqoff().
504 */
505static __always_inline void guest_exit_irqoff(void)
506{
507 guest_context_exit_irqoff();
508 guest_timing_exit_irqoff();
509}
510
1ca0016c
SC
511static inline void guest_exit(void)
512{
513 unsigned long flags;
514
515 local_irq_save(flags);
516 guest_exit_irqoff();
517 local_irq_restore(flags);
518}
519
ef9989af
MR
520/**
521 * guest_state_exit_irqoff - Establish state when returning from guest mode
522 *
523 * Entry from a guest disables interrupts, but guest mode is traced as
524 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
525 *
526 * 1) Tell lockdep that interrupts are disabled
527 * 2) Invoke context tracking if enabled to reactivate RCU
528 * 3) Trace interrupts off state
529 *
530 * Invoked from architecture specific code after exiting a guest.
531 * Must be invoked with interrupts disabled and the caller must be
532 * non-instrumentable.
533 * The caller has to invoke guest_timing_exit_irqoff() after this.
534 *
535 * Note: this is analogous to enter_from_user_mode().
536 */
537static __always_inline void guest_state_exit_irqoff(void)
538{
539 lockdep_hardirqs_off(CALLER_ADDR0);
540 guest_context_exit_irqoff();
541
542 instrumentation_begin();
543 trace_hardirqs_off_finish();
544 instrumentation_end();
545}
546
6b7e2d09
XG
547static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
548{
cde9af6e
AJ
549 /*
550 * The memory barrier ensures a previous write to vcpu->requests cannot
551 * be reordered with the read of vcpu->mode. It pairs with the general
552 * memory barrier following the write of vcpu->mode in VCPU RUN.
553 */
554 smp_mb__before_atomic();
6b7e2d09
XG
555 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
556}
557
660c22c4
TY
558/*
559 * Some of the bitops functions do not support too long bitmaps.
560 * This number must be determined not to exceed such limits.
561 */
562#define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
563
a54d8066
MS
564/*
565 * Since at idle each memslot belongs to two memslot sets it has to contain
566 * two embedded nodes for each data structure that it forms a part of.
567 *
568 * Two memslot sets (one active and one inactive) are necessary so the VM
569 * continues to run on one memslot set while the other is being modified.
570 *
571 * These two memslot sets normally point to the same set of memslots.
572 * They can, however, be desynchronized when performing a memslot management
573 * operation by replacing the memslot to be modified by its copy.
574 * After the operation is complete, both memslot sets once again point to
575 * the same, common set of memslot data.
576 *
577 * The memslots themselves are independent of each other so they can be
578 * individually added or deleted.
579 */
6aa8b732 580struct kvm_memory_slot {
a54d8066
MS
581 struct hlist_node id_node[2];
582 struct interval_tree_node hva_node[2];
583 struct rb_node gfn_node[2];
6aa8b732
AK
584 gfn_t base_gfn;
585 unsigned long npages;
6aa8b732 586 unsigned long *dirty_bitmap;
db3fe4eb 587 struct kvm_arch_memory_slot arch;
8a7ae055 588 unsigned long userspace_addr;
6104f472 589 u32 flags;
1e702d9a 590 short id;
9e9eb226 591 u16 as_id;
a7800aa8
SC
592
593#ifdef CONFIG_KVM_PRIVATE_MEM
594 struct {
595 struct file __rcu *file;
596 pgoff_t pgoff;
597 } gmem;
598#endif
6aa8b732
AK
599};
600
a7800aa8
SC
601static inline bool kvm_slot_can_be_private(const struct kvm_memory_slot *slot)
602{
603 return slot && (slot->flags & KVM_MEM_GUEST_MEMFD);
604}
605
8283e36a 606static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
044c59c4
PX
607{
608 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
609}
610
87bf6e7d
TY
611static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
612{
613 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
614}
615
03133347
CI
616static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
617{
618 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
619
620 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
621}
622
3c9bd400
JZ
623#ifndef KVM_DIRTY_LOG_MANUAL_CAPS
624#define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
625#endif
626
84223598
CH
627struct kvm_s390_adapter_int {
628 u64 ind_addr;
629 u64 summary_addr;
630 u64 ind_offset;
631 u32 summary_offset;
632 u32 adapter_id;
633};
634
5c919412
AS
635struct kvm_hv_sint {
636 u32 vcpu;
637 u32 sint;
638};
639
14243b38
DW
640struct kvm_xen_evtchn {
641 u32 port;
8733068b
DW
642 u32 vcpu_id;
643 int vcpu_idx;
14243b38
DW
644 u32 priority;
645};
646
399ec807
AK
647struct kvm_kernel_irq_routing_entry {
648 u32 gsi;
5116d8f6 649 u32 type;
4925663a 650 int (*set)(struct kvm_kernel_irq_routing_entry *e,
aa2fbe6d
YZ
651 struct kvm *kvm, int irq_source_id, int level,
652 bool line_status);
399ec807
AK
653 union {
654 struct {
655 unsigned irqchip;
656 unsigned pin;
657 } irqchip;
0455e72c
EA
658 struct {
659 u32 address_lo;
660 u32 address_hi;
661 u32 data;
662 u32 flags;
663 u32 devid;
664 } msi;
84223598 665 struct kvm_s390_adapter_int adapter;
5c919412 666 struct kvm_hv_sint hv_sint;
14243b38 667 struct kvm_xen_evtchn xen_evtchn;
399ec807 668 };
46e624b9
GN
669 struct hlist_node link;
670};
671
b053b2ae
SR
672#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
673struct kvm_irq_routing_table {
674 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
675 u32 nr_rt_entries;
676 /*
677 * Array indexed by gsi. Each entry contains list of irq chips
678 * the gsi is connected to.
679 */
a48e1f65 680 struct hlist_head map[] __counted_by(nr_rt_entries);
b053b2ae
SR
681};
682#endif
683
d663b8a2 684bool kvm_arch_irqchip_in_kernel(struct kvm *kvm);
b053b2ae 685
bdd1c37a
CP
686#ifndef KVM_INTERNAL_MEM_SLOTS
687#define KVM_INTERNAL_MEM_SLOTS 0
0743247f
AW
688#endif
689
4fc096a9 690#define KVM_MEM_SLOTS_NUM SHRT_MAX
bdd1c37a 691#define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_INTERNAL_MEM_SLOTS)
93a5cef0 692
eed52e43
SC
693#if KVM_MAX_NR_ADDRESS_SPACES == 1
694static inline int kvm_arch_nr_memslot_as_ids(struct kvm *kvm)
695{
696 return KVM_MAX_NR_ADDRESS_SPACES;
697}
698
f481b069
PB
699static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
700{
701 return 0;
702}
703#endif
704
a7800aa8
SC
705/*
706 * Arch code must define kvm_arch_has_private_mem if support for private memory
707 * is enabled.
708 */
709#if !defined(kvm_arch_has_private_mem) && !IS_ENABLED(CONFIG_KVM_PRIVATE_MEM)
710static inline bool kvm_arch_has_private_mem(struct kvm *kvm)
711{
712 return false;
713}
714#endif
715
46a26bf5 716struct kvm_memslots {
49c7754c 717 u64 generation;
a54d8066 718 atomic_long_t last_used_slot;
ed922739 719 struct rb_root_cached hva_tree;
a54d8066 720 struct rb_root gfn_tree;
26b8345a 721 /*
a54d8066 722 * The mapping table from slot id to memslot.
26b8345a
MS
723 *
724 * 7-bit bucket count matches the size of the old id to index array for
725 * 512 slots, while giving good performance with this slot count.
726 * Higher bucket counts bring only small performance improvements but
727 * always result in higher memory usage (even for lower memslot counts).
728 */
729 DECLARE_HASHTABLE(id_hash, 7);
a54d8066 730 int node_idx;
46a26bf5
MT
731};
732
6aa8b732 733struct kvm {
531810ca
BG
734#ifdef KVM_HAVE_MMU_RWLOCK
735 rwlock_t mmu_lock;
736#else
aaee2c94 737 spinlock_t mmu_lock;
531810ca
BG
738#endif /* KVM_HAVE_MMU_RWLOCK */
739
79fac95e 740 struct mutex slots_lock;
b10a038e
BG
741
742 /*
743 * Protects the arch-specific fields of struct kvm_memory_slots in
744 * use by the VM. To be used under the slots_lock (above) or in a
745 * kvm->srcu critical section where acquiring the slots_lock would
746 * lead to deadlock with the synchronize_srcu in
b0d23708 747 * kvm_swap_active_memslots().
b10a038e
BG
748 */
749 struct mutex slots_arch_lock;
6d4e4c4f 750 struct mm_struct *mm; /* userspace tied to this vm */
afa319a5 751 unsigned long nr_memslot_pages;
a54d8066 752 /* The two memslot sets - active and inactive (per address space) */
eed52e43 753 struct kvm_memslots __memslots[KVM_MAX_NR_ADDRESS_SPACES][2];
a54d8066 754 /* The current active memslot set for each address space */
eed52e43 755 struct kvm_memslots __rcu *memslots[KVM_MAX_NR_ADDRESS_SPACES];
c5b07754 756 struct xarray vcpu_array;
6c7b2202
PB
757 /*
758 * Protected by slots_lock, but can be read outside if an
759 * incorrect answer is acceptable.
760 */
761 atomic_t nr_memslots_dirty_logging;
6c7caebc 762
52ac8b35
PB
763 /* Used to wait for completion of MMU notifiers. */
764 spinlock_t mn_invalidate_lock;
765 unsigned long mn_active_invalidate_count;
766 struct rcuwait mn_memslots_update_rcuwait;
767
982ed0de
DW
768 /* For management / invalidation of gfn_to_pfn_caches */
769 spinlock_t gpc_lock;
770 struct list_head gpc_list;
771
6c7caebc
PB
772 /*
773 * created_vcpus is protected by kvm->lock, and is incremented
774 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
775 * incremented after storing the kvm_vcpu pointer in vcpus,
776 * and is accessed atomically.
777 */
73880c80 778 atomic_t online_vcpus;
f502cc56 779 int max_vcpus;
6c7caebc 780 int created_vcpus;
217ece61 781 int last_boosted_vcpu;
133de902 782 struct list_head vm_list;
60eead79 783 struct mutex lock;
4a12f951 784 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
8ed26ab8 785#ifdef CONFIG_HAVE_KVM_IRQCHIP
721eecbf
GH
786 struct {
787 spinlock_t lock;
788 struct list_head items;
d583fbd7 789 /* resampler_list update side is protected by resampler_lock. */
7a84428a
AW
790 struct list_head resampler_list;
791 struct mutex resampler_lock;
721eecbf 792 } irqfds;
8ed26ab8 793#endif
d34e6b17 794 struct list_head ioeventfds;
ba1389b7 795 struct kvm_vm_stat stat;
d69fb81f 796 struct kvm_arch arch;
e3736c3e 797 refcount_t users_count;
4b4357e0 798#ifdef CONFIG_KVM_MMIO
5f94c174 799 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
2b3c246a
SL
800 spinlock_t ring_lock;
801 struct list_head coalesced_zones;
5f94c174 802#endif
e930bffe 803
60eead79 804 struct mutex irq_lock;
75858a84 805#ifdef CONFIG_HAVE_KVM_IRQCHIP
bd2b53b2 806 /*
9957c86d 807 * Update side is protected by irq_lock.
bd2b53b2 808 */
4b6a2872 809 struct kvm_irq_routing_table __rcu *irq_routing;
c5b31cc2 810
136bdfee 811 struct hlist_head irq_ack_notifier_list;
75858a84
AK
812#endif
813
f128cf8c 814#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
e930bffe 815 struct mmu_notifier mmu_notifier;
20ec3ebd
CP
816 unsigned long mmu_invalidate_seq;
817 long mmu_invalidate_in_progress;
8569992d
CP
818 gfn_t mmu_invalidate_range_start;
819 gfn_t mmu_invalidate_range_end;
e930bffe 820#endif
07f0a7bd 821 struct list_head devices;
3c9bd400 822 u64 manual_dirty_log_protect;
536a6f88
JF
823 struct dentry *debugfs_dentry;
824 struct kvm_stat_data **debugfs_stat_data;
6ade8694
PM
825 struct srcu_struct srcu;
826 struct srcu_struct irq_srcu;
fdeaf7e3 827 pid_t userspace_pid;
9eb8ca04 828 bool override_halt_poll_ns;
acd05785 829 unsigned int max_halt_poll_ns;
fb04a1ed 830 u32 dirty_ring_size;
86bdf3eb 831 bool dirty_ring_with_bitmap;
0b8f1173 832 bool vm_bugged;
f4d31653 833 bool vm_dead;
2fdef3a2
SS
834
835#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
836 struct notifier_block pm_notifier;
5a475554
CP
837#endif
838#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
839 /* Protected by slots_locks (for writes) and RCU (for reads) */
840 struct xarray mem_attr_array;
2fdef3a2 841#endif
fcfe1bae 842 char stats_id[KVM_STATS_NAME_SIZE];
6aa8b732
AK
843};
844
a737f256
CD
845#define kvm_err(fmt, ...) \
846 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
847#define kvm_info(fmt, ...) \
848 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
849#define kvm_debug(fmt, ...) \
850 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
ae0f5499
BD
851#define kvm_debug_ratelimited(fmt, ...) \
852 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
853 ## __VA_ARGS__)
a737f256
CD
854#define kvm_pr_unimpl(fmt, ...) \
855 pr_err_ratelimited("kvm [%i]: " fmt, \
856 task_tgid_nr(current), ## __VA_ARGS__)
f0242478 857
a737f256
CD
858/* The guest did something we don't support. */
859#define vcpu_unimpl(vcpu, fmt, ...) \
671d9ab3
BP
860 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
861 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
6aa8b732 862
ee86dbc6
AS
863#define vcpu_debug(vcpu, fmt, ...) \
864 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
ae0f5499
BD
865#define vcpu_debug_ratelimited(vcpu, fmt, ...) \
866 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
867 ## __VA_ARGS__)
765eaa0f
AS
868#define vcpu_err(vcpu, fmt, ...) \
869 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
ee86dbc6 870
f4d31653
PB
871static inline void kvm_vm_dead(struct kvm *kvm)
872{
873 kvm->vm_dead = true;
874 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
875}
876
0b8f1173
SC
877static inline void kvm_vm_bugged(struct kvm *kvm)
878{
879 kvm->vm_bugged = true;
f4d31653 880 kvm_vm_dead(kvm);
0b8f1173
SC
881}
882
f4d31653 883
0b8f1173
SC
884#define KVM_BUG(cond, kvm, fmt...) \
885({ \
c9d60154 886 bool __ret = !!(cond); \
0b8f1173
SC
887 \
888 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
889 kvm_vm_bugged(kvm); \
890 unlikely(__ret); \
891})
892
893#define KVM_BUG_ON(cond, kvm) \
894({ \
c9d60154 895 bool __ret = !!(cond); \
0b8f1173
SC
896 \
897 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
898 kvm_vm_bugged(kvm); \
899 unlikely(__ret); \
900})
901
52e322ed
SC
902/*
903 * Note, "data corruption" refers to corruption of host kernel data structures,
904 * not guest data. Guest data corruption, suspected or confirmed, that is tied
905 * and contained to a single VM should *never* BUG() and potentially panic the
906 * host, i.e. use this variant of KVM_BUG() if and only if a KVM data structure
907 * is corrupted and that corruption can have a cascading effect to other parts
908 * of the hosts and/or to other VMs.
909 */
910#define KVM_BUG_ON_DATA_CORRUPTION(cond, kvm) \
911({ \
912 bool __ret = !!(cond); \
913 \
914 if (IS_ENABLED(CONFIG_BUG_ON_DATA_CORRUPTION)) \
915 BUG_ON(__ret); \
916 else if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
917 kvm_vm_bugged(kvm); \
918 unlikely(__ret); \
919})
920
2031f287
SC
921static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
922{
923#ifdef CONFIG_PROVE_RCU
924 WARN_ONCE(vcpu->srcu_depth++,
925 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
926#endif
927 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
928}
929
930static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
931{
932 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
933
934#ifdef CONFIG_PROVE_RCU
935 WARN_ONCE(--vcpu->srcu_depth,
936 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
937#endif
938}
939
3c9bd400
JZ
940static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
941{
942 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
943}
944
4a12f951
CB
945static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
946{
947 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
3898da94
PB
948 lockdep_is_held(&kvm->slots_lock) ||
949 !refcount_read(&kvm->users_count));
4a12f951
CB
950}
951
988a2cae
GN
952static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
953{
1d487e9b
PB
954 int num_vcpus = atomic_read(&kvm->online_vcpus);
955 i = array_index_nospec(i, num_vcpus);
956
957 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
988a2cae 958 smp_rmb();
c5b07754 959 return xa_load(&kvm->vcpu_array, i);
988a2cae
GN
960}
961
214bd3a6
MZ
962#define kvm_for_each_vcpu(idx, vcpup, kvm) \
963 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
964 (atomic_read(&kvm->online_vcpus) - 1))
988a2cae 965
db27a7a3
DH
966static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
967{
9b9e3fc4 968 struct kvm_vcpu *vcpu = NULL;
46808a4c 969 unsigned long i;
db27a7a3 970
9b9e3fc4 971 if (id < 0)
c896939f 972 return NULL;
9b9e3fc4
GK
973 if (id < KVM_MAX_VCPUS)
974 vcpu = kvm_get_vcpu(kvm, id);
c896939f
DH
975 if (vcpu && vcpu->vcpu_id == id)
976 return vcpu;
db27a7a3
DH
977 kvm_for_each_vcpu(i, vcpu, kvm)
978 if (vcpu->vcpu_id == id)
979 return vcpu;
980 return NULL;
981}
982
27592ae8 983void kvm_destroy_vcpus(struct kvm *kvm);
fb3f0f51 984
ec7660cc 985void vcpu_load(struct kvm_vcpu *vcpu);
313a3dc7
CO
986void vcpu_put(struct kvm_vcpu *vcpu);
987
6ef768fa 988#ifdef __KVM_HAVE_IOAPIC
993225ad 989void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
abdb080f 990void kvm_arch_post_irq_routing_update(struct kvm *kvm);
6ef768fa 991#else
993225ad 992static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
6ef768fa
PB
993{
994}
abdb080f 995static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
b053b2ae
SR
996{
997}
6ef768fa
PB
998#endif
999
c5b31cc2 1000#ifdef CONFIG_HAVE_KVM_IRQCHIP
a0f155e9
CH
1001int kvm_irqfd_init(void);
1002void kvm_irqfd_exit(void);
1003#else
1004static inline int kvm_irqfd_init(void)
1005{
1006 return 0;
1007}
1008
1009static inline void kvm_irqfd_exit(void)
1010{
1011}
1012#endif
81a1cf9f 1013int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module);
cb498ea2 1014void kvm_exit(void);
6aa8b732 1015
d39f13b0 1016void kvm_get_kvm(struct kvm *kvm);
605c7130 1017bool kvm_get_kvm_safe(struct kvm *kvm);
d39f13b0 1018void kvm_put_kvm(struct kvm *kvm);
54526d1f 1019bool file_is_kvm(struct file *file);
149487bd 1020void kvm_put_kvm_no_destroy(struct kvm *kvm);
d39f13b0 1021
f481b069 1022static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
90d83dc3 1023{
eed52e43 1024 as_id = array_index_nospec(as_id, KVM_MAX_NR_ADDRESS_SPACES);
7e988b10 1025 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
3898da94
PB
1026 lockdep_is_held(&kvm->slots_lock) ||
1027 !refcount_read(&kvm->users_count));
90d83dc3
LJ
1028}
1029
f481b069
PB
1030static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
1031{
1032 return __kvm_memslots(kvm, 0);
1033}
1034
8e73485c
PB
1035static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
1036{
f481b069
PB
1037 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
1038
1039 return __kvm_memslots(vcpu->kvm, as_id);
8e73485c
PB
1040}
1041
a54d8066
MS
1042static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
1043{
1044 return RB_EMPTY_ROOT(&slots->gfn_tree);
1045}
1046
26f45714
RK
1047bool kvm_are_all_memslots_empty(struct kvm *kvm);
1048
a54d8066
MS
1049#define kvm_for_each_memslot(memslot, bkt, slots) \
1050 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
1051 if (WARN_ON_ONCE(!memslot->npages)) { \
1052 } else
1053
0577d1ab
SC
1054static inline
1055struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
28a37544 1056{
f85e2cb5 1057 struct kvm_memory_slot *slot;
a54d8066 1058 int idx = slots->node_idx;
bf3e05bc 1059
a54d8066 1060 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
26b8345a
MS
1061 if (slot->id == id)
1062 return slot;
1063 }
bf3e05bc 1064
26b8345a 1065 return NULL;
28a37544
XG
1066}
1067
f4209439
MS
1068/* Iterator used for walking memslots that overlap a gfn range. */
1069struct kvm_memslot_iter {
1070 struct kvm_memslots *slots;
1071 struct rb_node *node;
1072 struct kvm_memory_slot *slot;
1073};
1074
1075static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1076{
1077 iter->node = rb_next(iter->node);
1078 if (!iter->node)
1079 return;
1080
1081 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1082}
1083
1084static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1085 struct kvm_memslots *slots,
1086 gfn_t start)
1087{
1088 int idx = slots->node_idx;
1089 struct rb_node *tmp;
1090 struct kvm_memory_slot *slot;
1091
1092 iter->slots = slots;
1093
1094 /*
1095 * Find the so called "upper bound" of a key - the first node that has
1096 * its key strictly greater than the searched one (the start gfn in our case).
1097 */
1098 iter->node = NULL;
1099 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1100 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1101 if (start < slot->base_gfn) {
1102 iter->node = tmp;
1103 tmp = tmp->rb_left;
1104 } else {
1105 tmp = tmp->rb_right;
1106 }
1107 }
1108
1109 /*
1110 * Find the slot with the lowest gfn that can possibly intersect with
1111 * the range, so we'll ideally have slot start <= range start
1112 */
1113 if (iter->node) {
1114 /*
1115 * A NULL previous node means that the very first slot
1116 * already has a higher start gfn.
1117 * In this case slot start > range start.
1118 */
1119 tmp = rb_prev(iter->node);
1120 if (tmp)
1121 iter->node = tmp;
1122 } else {
1123 /* a NULL node below means no slots */
1124 iter->node = rb_last(&slots->gfn_tree);
1125 }
1126
1127 if (iter->node) {
1128 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1129
1130 /*
1131 * It is possible in the slot start < range start case that the
1132 * found slot ends before or at range start (slot end <= range start)
1133 * and so it does not overlap the requested range.
1134 *
1135 * In such non-overlapping case the next slot (if it exists) will
1136 * already have slot start > range start, otherwise the logic above
1137 * would have found it instead of the current slot.
1138 */
1139 if (iter->slot->base_gfn + iter->slot->npages <= start)
1140 kvm_memslot_iter_next(iter);
1141 }
1142}
1143
1144static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1145{
1146 if (!iter->node)
1147 return false;
1148
1149 /*
1150 * If this slot starts beyond or at the end of the range so does
1151 * every next one
1152 */
1153 return iter->slot->base_gfn < end;
1154}
1155
1156/* Iterate over each memslot at least partially intersecting [start, end) range */
1157#define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1158 for (kvm_memslot_iter_start(iter, slots, start); \
1159 kvm_memslot_iter_is_valid(iter, end); \
1160 kvm_memslot_iter_next(iter))
1161
74d0727c
TY
1162/*
1163 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1164 * - create a new memory slot
1165 * - delete an existing memory slot
1166 * - modify an existing memory slot
1167 * -- move it in the guest physical memory space
1168 * -- just change its flags
1169 *
1170 * Since flags can be changed by some of these operations, the following
1171 * differentiation is the best we can do for __kvm_set_memory_region():
1172 */
1173enum kvm_mr_change {
1174 KVM_MR_CREATE,
1175 KVM_MR_DELETE,
1176 KVM_MR_MOVE,
1177 KVM_MR_FLAGS_ONLY,
1178};
1179
210c7c4d 1180int kvm_set_memory_region(struct kvm *kvm,
bb58b90b 1181 const struct kvm_userspace_memory_region2 *mem);
f78e0e2e 1182int __kvm_set_memory_region(struct kvm *kvm,
bb58b90b 1183 const struct kvm_userspace_memory_region2 *mem);
e96c81ee 1184void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
15248258 1185void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
f7784b8e 1186int kvm_arch_prepare_memory_region(struct kvm *kvm,
537a17b3
SC
1187 const struct kvm_memory_slot *old,
1188 struct kvm_memory_slot *new,
7b6195a9 1189 enum kvm_mr_change change);
f7784b8e 1190void kvm_arch_commit_memory_region(struct kvm *kvm,
9d4c197c 1191 struct kvm_memory_slot *old,
f36f3f28 1192 const struct kvm_memory_slot *new,
8482644a 1193 enum kvm_mr_change change);
2df72e9b
MT
1194/* flush all memory translations */
1195void kvm_arch_flush_shadow_all(struct kvm *kvm);
1196/* flush memory translations pointing to 'slot' */
1197void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1198 struct kvm_memory_slot *slot);
a983fb23 1199
d9ef13c2
PB
1200int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1201 struct page **pages, int nr_pages);
48987781 1202
954bbbc2 1203struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
05da4558 1204unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
ba6a3541 1205unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
4d8b81ab 1206unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
64d83126
CD
1207unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1208 bool *writable);
b4231d61
IE
1209void kvm_release_page_clean(struct page *page);
1210void kvm_release_page_dirty(struct page *page);
35149e21 1211
ba049e93
DW
1212kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1213kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
612819c3 1214 bool *writable);
8283e36a
BG
1215kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1216kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1217kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
c8b88b33
PX
1218 bool atomic, bool interruptible, bool *async,
1219 bool write_fault, bool *writable, hva_t *hva);
037d92dc 1220
ba049e93 1221void kvm_release_pfn_clean(kvm_pfn_t pfn);
f7a6509f 1222void kvm_release_pfn_dirty(kvm_pfn_t pfn);
ba049e93
DW
1223void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1224void kvm_set_pfn_accessed(kvm_pfn_t pfn);
35149e21 1225
357a18ad 1226void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
195aefde
IE
1227int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1228 int len);
1229int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
4e335d9e
PB
1230int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1231 void *data, unsigned long len);
0958f0ce
VK
1232int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1233 void *data, unsigned int offset,
1234 unsigned long len);
195aefde
IE
1235int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1236 int offset, int len);
1237int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1238 unsigned long len);
4e335d9e
PB
1239int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1240 void *data, unsigned long len);
1241int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
7a86dab8
JM
1242 void *data, unsigned int offset,
1243 unsigned long len);
4e335d9e
PB
1244int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1245 gpa_t gpa, unsigned long len);
cac0f1b7 1246
53f98558
AJ
1247#define __kvm_get_guest(kvm, gfn, offset, v) \
1248({ \
1249 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1250 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1251 int __ret = -EFAULT; \
1252 \
1253 if (!kvm_is_error_hva(__addr)) \
1254 __ret = get_user(v, __uaddr); \
1255 __ret; \
1256})
1257
1258#define kvm_get_guest(kvm, gpa, v) \
1259({ \
1260 gpa_t __gpa = gpa; \
1261 struct kvm *__kvm = kvm; \
1262 \
1263 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1264 offset_in_page(__gpa), v); \
1265})
1266
4d2d4ce0 1267#define __kvm_put_guest(kvm, gfn, offset, v) \
cac0f1b7
SP
1268({ \
1269 unsigned long __addr = gfn_to_hva(kvm, gfn); \
4d2d4ce0 1270 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
cac0f1b7
SP
1271 int __ret = -EFAULT; \
1272 \
1273 if (!kvm_is_error_hva(__addr)) \
4d2d4ce0 1274 __ret = put_user(v, __uaddr); \
cac0f1b7
SP
1275 if (!__ret) \
1276 mark_page_dirty(kvm, gfn); \
1277 __ret; \
1278})
1279
4d2d4ce0 1280#define kvm_put_guest(kvm, gpa, v) \
cac0f1b7
SP
1281({ \
1282 gpa_t __gpa = gpa; \
1283 struct kvm *__kvm = kvm; \
4d2d4ce0 1284 \
cac0f1b7 1285 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
4d2d4ce0 1286 offset_in_page(__gpa), v); \
cac0f1b7
SP
1287})
1288
195aefde 1289int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
6aa8b732 1290struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
33e94154 1291bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
995decb6 1292bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
f9b84e19 1293unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
8283e36a 1294void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
6aa8b732
AK
1295void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1296
8e73485c
PB
1297struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1298struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
ba049e93
DW
1299kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1300kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
e45adf66 1301int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
e45adf66 1302void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
8e73485c
PB
1303unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1304unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1305int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1306 int len);
1307int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1308 unsigned long len);
1309int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1310 unsigned long len);
1311int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1312 int offset, int len);
1313int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1314 unsigned long len);
1315void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1316
982ed0de 1317/**
52491a38
ML
1318 * kvm_gpc_init - initialize gfn_to_pfn_cache.
1319 *
1320 * @gpc: struct gfn_to_pfn_cache object.
982ed0de 1321 * @kvm: pointer to kvm instance.
8c82a0b3
ML
1322 *
1323 * This sets up a gfn_to_pfn_cache by initializing locks and assigning the
1324 * immutable attributes. Note, the cache must be zero-allocated (or zeroed by
1325 * the caller before init).
1326 */
a4bff3df 1327void kvm_gpc_init(struct gfn_to_pfn_cache *gpc, struct kvm *kvm);
8c82a0b3
ML
1328
1329/**
1330 * kvm_gpc_activate - prepare a cached kernel mapping and HPA for a given guest
1331 * physical address.
1332 *
1333 * @gpc: struct gfn_to_pfn_cache object.
982ed0de
DW
1334 * @gpa: guest physical address to map.
1335 * @len: sanity check; the range being access must fit a single page.
982ed0de
DW
1336 *
1337 * @return: 0 for success.
1338 * -EINVAL for a mapping which would cross a page boundary.
8c82a0b3 1339 * -EFAULT for an untranslatable guest physical address.
982ed0de 1340 *
8c82a0b3 1341 * This primes a gfn_to_pfn_cache and links it into the @gpc->kvm's list for
aba3caef
ML
1342 * invalidations to be processed. Callers are required to use kvm_gpc_check()
1343 * to ensure that the cache is valid before accessing the target page.
982ed0de 1344 */
8c82a0b3 1345int kvm_gpc_activate(struct gfn_to_pfn_cache *gpc, gpa_t gpa, unsigned long len);
982ed0de 1346
721f5b0d
PD
1347/**
1348 * kvm_gpc_activate_hva - prepare a cached kernel mapping and HPA for a given HVA.
1349 *
1350 * @gpc: struct gfn_to_pfn_cache object.
1351 * @hva: userspace virtual address to map.
1352 * @len: sanity check; the range being access must fit a single page.
1353 *
1354 * @return: 0 for success.
1355 * -EINVAL for a mapping which would cross a page boundary.
1356 * -EFAULT for an untranslatable guest physical address.
1357 *
1358 * The semantics of this function are the same as those of kvm_gpc_activate(). It
1359 * merely bypasses a layer of address translation.
1360 */
1361int kvm_gpc_activate_hva(struct gfn_to_pfn_cache *gpc, unsigned long hva, unsigned long len);
1362
982ed0de 1363/**
aba3caef 1364 * kvm_gpc_check - check validity of a gfn_to_pfn_cache.
982ed0de 1365 *
982ed0de 1366 * @gpc: struct gfn_to_pfn_cache object.
982ed0de 1367 * @len: sanity check; the range being access must fit a single page.
982ed0de
DW
1368 *
1369 * @return: %true if the cache is still valid and the address matches.
1370 * %false if the cache is not valid.
1371 *
1372 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1373 * while calling this function, and then continue to hold the lock until the
1374 * access is complete.
1375 *
1376 * Callers in IN_GUEST_MODE may do so without locking, although they should
1377 * still hold a read lock on kvm->scru for the memslot checks.
1378 */
58f5ee5f 1379bool kvm_gpc_check(struct gfn_to_pfn_cache *gpc, unsigned long len);
982ed0de
DW
1380
1381/**
aba3caef 1382 * kvm_gpc_refresh - update a previously initialized cache.
982ed0de 1383 *
982ed0de 1384 * @gpc: struct gfn_to_pfn_cache object.
982ed0de 1385 * @len: sanity check; the range being access must fit a single page.
982ed0de
DW
1386 *
1387 * @return: 0 for success.
1388 * -EINVAL for a mapping which would cross a page boundary.
0318f207 1389 * -EFAULT for an untranslatable guest physical address.
982ed0de
DW
1390 *
1391 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
0318f207 1392 * return from this function does not mean the page can be immediately
982ed0de
DW
1393 * accessed because it may have raced with an invalidation. Callers must
1394 * still lock and check the cache status, as this function does not return
1395 * with the lock still held to permit access.
1396 */
58f5ee5f 1397int kvm_gpc_refresh(struct gfn_to_pfn_cache *gpc, unsigned long len);
982ed0de
DW
1398
1399/**
52491a38 1400 * kvm_gpc_deactivate - deactivate and unlink a gfn_to_pfn_cache.
982ed0de 1401 *
982ed0de
DW
1402 * @gpc: struct gfn_to_pfn_cache object.
1403 *
8c82a0b3 1404 * This removes a cache from the VM's list to be processed on MMU notifier
982ed0de
DW
1405 * invocation.
1406 */
8c82a0b3 1407void kvm_gpc_deactivate(struct gfn_to_pfn_cache *gpc);
982ed0de 1408
721f5b0d
PD
1409static inline bool kvm_gpc_is_gpa_active(struct gfn_to_pfn_cache *gpc)
1410{
1411 return gpc->active && !kvm_is_error_gpa(gpc->gpa);
1412}
1413
1414static inline bool kvm_gpc_is_hva_active(struct gfn_to_pfn_cache *gpc)
1415{
1416 return gpc->active && kvm_is_error_gpa(gpc->gpa);
1417}
1418
20b7035c
JS
1419void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1420void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1421
91b99ea7 1422void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
fac42688 1423bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
3217f7c2
CD
1424void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1425void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
178f02ff 1426bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
b6d33834 1427void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
fa93384f 1428int kvm_vcpu_yield_to(struct kvm_vcpu *target);
b9926482 1429void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool yield_to_kernel_mode);
a4ee1ca4 1430
d9e368d6 1431void kvm_flush_remote_tlbs(struct kvm *kvm);
d4788996 1432void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
619b5072
DM
1433void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
1434 const struct kvm_memory_slot *memslot);
7053df4e 1435
6926f95a
SC
1436#ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1437int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
837f66c7 1438int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min);
6926f95a
SC
1439int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1440void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1441void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1442#endif
1443
8569992d
CP
1444void kvm_mmu_invalidate_begin(struct kvm *kvm);
1445void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end);
1446void kvm_mmu_invalidate_end(struct kvm *kvm);
a7800aa8 1447bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
edb298c6 1448
043405e1
CO
1449long kvm_arch_dev_ioctl(struct file *filp,
1450 unsigned int ioctl, unsigned long arg);
313a3dc7
CO
1451long kvm_arch_vcpu_ioctl(struct file *filp,
1452 unsigned int ioctl, unsigned long arg);
1499fa80 1453vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
018d00d2 1454
784aa3d7 1455int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
018d00d2 1456
3b0f1d01 1457void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
ba0513b5
MS
1458 struct kvm_memory_slot *slot,
1459 gfn_t gfn_offset,
1460 unsigned long mask);
0dff0846
SC
1461void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1462
619b5072 1463#ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
0dff0846
SC
1464int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1465int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2a49f61d 1466 int *is_dirty, struct kvm_memory_slot **memslot);
0dff0846 1467#endif
5bb064dc 1468
aa2fbe6d
YZ
1469int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1470 bool line_status);
e5d83c74
PB
1471int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1472 struct kvm_enable_cap *cap);
d8708b80 1473int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg);
ed51862f
AG
1474long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
1475 unsigned long arg);
313a3dc7 1476
d0752060
HB
1477int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1478int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1479
8b006791
ZX
1480int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1481 struct kvm_translation *tr);
1482
b6c7a5dc
HB
1483int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1484int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1485int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1486 struct kvm_sregs *sregs);
1487int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1488 struct kvm_sregs *sregs);
62d9f0db
MT
1489int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1490 struct kvm_mp_state *mp_state);
1491int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1492 struct kvm_mp_state *mp_state);
d0bfb940
JK
1493int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1494 struct kvm_guest_debug *dbg);
1b94f6f8 1495int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
b6c7a5dc 1496
e790d9ef
RK
1497void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1498
e9b11c17
ZX
1499void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1500void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
897cc38e 1501int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
e529ef66 1502int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
31928aa5 1503void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
d40ccc62 1504void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
e9b11c17 1505
2fdef3a2
SS
1506#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1507int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1508#endif
1509
741cbbae 1510#ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
d56f5136 1511void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
e36de87d
VP
1512#else
1513static inline void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu) {}
741cbbae 1514#endif
235539b4 1515
441f7bfa 1516#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
13a34e06
RK
1517int kvm_arch_hardware_enable(void);
1518void kvm_arch_hardware_disable(void);
441f7bfa 1519#endif
1d737c8a 1520int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
199b5763 1521bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
b6d33834 1522int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
17e433b5 1523bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
52acd22f 1524bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
77bcd9e6 1525bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu);
d970a325
PB
1526int kvm_arch_post_init_vm(struct kvm *kvm);
1527void kvm_arch_pre_destroy_vm(struct kvm *kvm);
284851ee 1528void kvm_arch_create_vm_debugfs(struct kvm *kvm);
e9b11c17 1529
d89f5eff 1530#ifndef __KVM_HAVE_ARCH_VM_ALLOC
d1e5b0e9
MO
1531/*
1532 * All architectures that want to use vzalloc currently also
1533 * need their own kvm_arch_alloc_vm implementation.
1534 */
d89f5eff
JK
1535static inline struct kvm *kvm_arch_alloc_vm(void)
1536{
b1cd1633 1537 return kzalloc(sizeof(struct kvm), GFP_KERNEL_ACCOUNT);
d89f5eff 1538}
78b497f2
JG
1539#endif
1540
1541static inline void __kvm_arch_free_vm(struct kvm *kvm)
1542{
1543 kvfree(kvm);
1544}
d89f5eff 1545
78b497f2 1546#ifndef __KVM_HAVE_ARCH_VM_FREE
d89f5eff
JK
1547static inline void kvm_arch_free_vm(struct kvm *kvm)
1548{
78b497f2 1549 __kvm_arch_free_vm(kvm);
d89f5eff
JK
1550}
1551#endif
1552
a1342c80
DM
1553#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
1554static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
b08660e5
TL
1555{
1556 return -ENOTSUPP;
1557}
cfb0c08e
RRA
1558#else
1559int kvm_arch_flush_remote_tlbs(struct kvm *kvm);
b08660e5
TL
1560#endif
1561
d4788996
DM
1562#ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
1563static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm,
1564 gfn_t gfn, u64 nr_pages)
1565{
1566 return -EOPNOTSUPP;
1567}
1568#else
1569int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages);
1570#endif
1571
e0f0bbc5
AW
1572#ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1573void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1574void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1575bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1576#else
1577static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1578{
1579}
1580
1581static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1582{
1583}
1584
1585static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1586{
1587 return false;
1588}
1589#endif
5544eb9b
PB
1590#ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1591void kvm_arch_start_assignment(struct kvm *kvm);
1592void kvm_arch_end_assignment(struct kvm *kvm);
1593bool kvm_arch_has_assigned_device(struct kvm *kvm);
1594#else
1595static inline void kvm_arch_start_assignment(struct kvm *kvm)
1596{
1597}
1598
1599static inline void kvm_arch_end_assignment(struct kvm *kvm)
1600{
1601}
1602
742ab6df 1603static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
5544eb9b
PB
1604{
1605 return false;
1606}
1607#endif
e0f0bbc5 1608
da4ad88c 1609static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
b6d33834 1610{
2246f8b5 1611#ifdef __KVM_HAVE_ARCH_WQP
da4ad88c 1612 return vcpu->arch.waitp;
2246f8b5 1613#else
da4ad88c 1614 return &vcpu->wait;
b6d33834 1615#endif
2246f8b5 1616}
b6d33834 1617
d92a5d1c
SC
1618/*
1619 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1620 * true if the vCPU was blocking and was awakened, false otherwise.
1621 */
1622static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1623{
1624 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1625}
1626
1627static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1628{
1629 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1630}
1631
01c94e64
EA
1632#ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1633/*
1634 * returns true if the virtual interrupt controller is initialized and
1635 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1636 * controller is dynamically instantiated and this is not always true.
1637 */
1638bool kvm_arch_intc_initialized(struct kvm *kvm);
1639#else
1640static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1641{
1642 return true;
1643}
1644#endif
1645
e1bfc245
SC
1646#ifdef CONFIG_GUEST_PERF_EVENTS
1647unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1648
1649void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1650void kvm_unregister_perf_callbacks(void);
1651#else
1652static inline void kvm_register_perf_callbacks(void *ign) {}
1653static inline void kvm_unregister_perf_callbacks(void) {}
1654#endif /* CONFIG_GUEST_PERF_EVENTS */
1655
e08b9637 1656int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
d19a9cd2 1657void kvm_arch_destroy_vm(struct kvm *kvm);
ad8ba2cd 1658void kvm_arch_sync_events(struct kvm *kvm);
e9b11c17 1659
3d80840d 1660int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
682c59a3 1661
b14b2690 1662struct page *kvm_pfn_to_refcounted_page(kvm_pfn_t pfn);
284dc493 1663bool kvm_is_zone_device_page(struct page *page);
c77fb9dc 1664
62c476c7
BAY
1665struct kvm_irq_ack_notifier {
1666 struct hlist_node link;
1667 unsigned gsi;
1668 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1669};
1670
9957c86d
PM
1671int kvm_irq_map_gsi(struct kvm *kvm,
1672 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1673int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
8ba918d4 1674
aa2fbe6d
YZ
1675int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1676 bool line_status);
bd2b53b2 1677int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
aa2fbe6d 1678 int irq_source_id, int level, bool line_status);
b97e6de9
PB
1679int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1680 struct kvm *kvm, int irq_source_id,
1681 int level, bool line_status);
c7c9c56c 1682bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
ba1aefcd 1683void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
44882eed 1684void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
3de42dc0
XZ
1685void kvm_register_irq_ack_notifier(struct kvm *kvm,
1686 struct kvm_irq_ack_notifier *kian);
fa40a821
MT
1687void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1688 struct kvm_irq_ack_notifier *kian);
5550af4d
SY
1689int kvm_request_irq_source_id(struct kvm *kvm);
1690void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
cdc238eb 1691bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
62c476c7 1692
9d4cba7f 1693/*
a54d8066 1694 * Returns a pointer to the memslot if it contains gfn.
0f22af94
DM
1695 * Otherwise returns NULL.
1696 */
1697static inline struct kvm_memory_slot *
a54d8066 1698try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
0f22af94 1699{
a54d8066 1700 if (!slot)
0f22af94
DM
1701 return NULL;
1702
0f22af94
DM
1703 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1704 return slot;
1705 else
1706 return NULL;
1707}
1708
1709/*
a54d8066 1710 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
0577d1ab 1711 *
c928bfc2
MS
1712 * With "approx" set returns the memslot also when the address falls
1713 * in a hole. In that case one of the memslots bordering the hole is
1714 * returned.
9d4cba7f
PM
1715 */
1716static inline struct kvm_memory_slot *
a54d8066 1717search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
9d4cba7f 1718{
0f22af94 1719 struct kvm_memory_slot *slot;
a54d8066
MS
1720 struct rb_node *node;
1721 int idx = slots->node_idx;
1722
1723 slot = NULL;
1724 for (node = slots->gfn_tree.rb_node; node; ) {
1725 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1726 if (gfn >= slot->base_gfn) {
1727 if (gfn < slot->base_gfn + slot->npages)
1728 return slot;
1729 node = node->rb_right;
1730 } else
1731 node = node->rb_left;
c928bfc2 1732 }
9d4cba7f 1733
a54d8066 1734 return approx ? slot : NULL;
9d4cba7f
PM
1735}
1736
1737static inline struct kvm_memory_slot *
c928bfc2 1738____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
9d4cba7f 1739{
0f22af94 1740 struct kvm_memory_slot *slot;
0f22af94 1741
a54d8066
MS
1742 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1743 slot = try_get_memslot(slot, gfn);
0f22af94
DM
1744 if (slot)
1745 return slot;
1746
a54d8066 1747 slot = search_memslots(slots, gfn, approx);
0f22af94 1748 if (slot) {
a54d8066 1749 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
0f22af94
DM
1750 return slot;
1751 }
1752
1753 return NULL;
9d4cba7f
PM
1754}
1755
c928bfc2
MS
1756/*
1757 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1758 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1759 * because that would bloat other code too much.
1760 */
1761static inline struct kvm_memory_slot *
1762__gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1763{
1764 return ____gfn_to_memslot(slots, gfn, false);
1765}
1766
66a03505 1767static inline unsigned long
8ca6f063 1768__gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
66a03505 1769{
da27a83f
PB
1770 /*
1771 * The index was checked originally in search_memslots. To avoid
1772 * that a malicious guest builds a Spectre gadget out of e.g. page
1773 * table walks, do not let the processor speculate loads outside
1774 * the guest's registered memslots.
1775 */
4422829e
PB
1776 unsigned long offset = gfn - slot->base_gfn;
1777 offset = array_index_nospec(offset, slot->npages);
da27a83f 1778 return slot->userspace_addr + offset * PAGE_SIZE;
66a03505
GS
1779}
1780
0ee8dcb8
XG
1781static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1782{
1783 return gfn_to_memslot(kvm, gfn)->id;
1784}
1785
d19a748b
TY
1786static inline gfn_t
1787hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
887c08ac 1788{
d19a748b
TY
1789 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1790
1791 return slot->base_gfn + gfn_offset;
887c08ac
XG
1792}
1793
1755fbcc
AK
1794static inline gpa_t gfn_to_gpa(gfn_t gfn)
1795{
1796 return (gpa_t)gfn << PAGE_SHIFT;
1797}
6aa8b732 1798
c30a358d
JR
1799static inline gfn_t gpa_to_gfn(gpa_t gpa)
1800{
1801 return (gfn_t)(gpa >> PAGE_SHIFT);
1802}
1803
ba049e93 1804static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
62c476c7
BAY
1805{
1806 return (hpa_t)pfn << PAGE_SHIFT;
1807}
1808
9e7325ac 1809static inline bool kvm_is_gpa_in_memslot(struct kvm *kvm, gpa_t gpa)
dfeec843
HC
1810{
1811 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1812
9e7325ac 1813 return !kvm_is_error_hva(hva);
dfeec843
HC
1814}
1815
78b74638
PD
1816static inline void kvm_gpc_mark_dirty_in_slot(struct gfn_to_pfn_cache *gpc)
1817{
1818 lockdep_assert_held(&gpc->lock);
1819
1820 if (!gpc->memslot)
1821 return;
1822
1823 mark_page_dirty_in_slot(gpc->kvm, gpc->memslot, gpa_to_gfn(gpc->gpa));
dfeec843
HC
1824}
1825
ba1389b7
AK
1826enum kvm_stat_kind {
1827 KVM_STAT_VM,
1828 KVM_STAT_VCPU,
1829};
1830
536a6f88 1831struct kvm_stat_data {
536a6f88 1832 struct kvm *kvm;
bc9e9e67 1833 const struct _kvm_stats_desc *desc;
ba1389b7 1834 enum kvm_stat_kind kind;
417bc304 1835};
09cbcef6 1836
cb082bfa
JZ
1837struct _kvm_stats_desc {
1838 struct kvm_stats_desc desc;
1839 char name[KVM_STATS_NAME_SIZE];
1840};
1841
f95937cc 1842#define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
cb082bfa
JZ
1843 .flags = type | unit | base | \
1844 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1845 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1846 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1847 .exponent = exp, \
f95937cc
JZ
1848 .size = sz, \
1849 .bucket_size = bsz
cb082bfa 1850
f95937cc 1851#define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
cb082bfa
JZ
1852 { \
1853 { \
f95937cc 1854 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
cb082bfa
JZ
1855 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1856 }, \
1857 .name = #stat, \
1858 }
f95937cc 1859#define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
cb082bfa
JZ
1860 { \
1861 { \
f95937cc 1862 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
cb082bfa
JZ
1863 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1864 }, \
1865 .name = #stat, \
1866 }
f95937cc 1867#define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
cb082bfa
JZ
1868 { \
1869 { \
f95937cc 1870 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
cb082bfa
JZ
1871 .offset = offsetof(struct kvm_vm_stat, stat) \
1872 }, \
1873 .name = #stat, \
1874 }
f95937cc 1875#define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
cb082bfa
JZ
1876 { \
1877 { \
f95937cc 1878 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
cb082bfa
JZ
1879 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1880 }, \
1881 .name = #stat, \
1882 }
1883/* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
f95937cc
JZ
1884#define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1885 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
cb082bfa
JZ
1886
1887#define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
f95937cc
JZ
1888 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1889 unit, base, exponent, 1, 0)
cb082bfa 1890#define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
f95937cc
JZ
1891 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1892 unit, base, exponent, 1, 0)
cb082bfa 1893#define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
f95937cc
JZ
1894 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1895 unit, base, exponent, 1, 0)
1896#define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1897 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1898 unit, base, exponent, sz, bsz)
1899#define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1900 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1901 unit, base, exponent, sz, 0)
cb082bfa
JZ
1902
1903/* Cumulative counter, read/write */
1904#define STATS_DESC_COUNTER(SCOPE, name) \
1905 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1906 KVM_STATS_BASE_POW10, 0)
1907/* Instantaneous counter, read only */
1908#define STATS_DESC_ICOUNTER(SCOPE, name) \
1909 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1910 KVM_STATS_BASE_POW10, 0)
1911/* Peak counter, read/write */
1912#define STATS_DESC_PCOUNTER(SCOPE, name) \
1913 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1914 KVM_STATS_BASE_POW10, 0)
1915
1b870fa5
PB
1916/* Instantaneous boolean value, read only */
1917#define STATS_DESC_IBOOLEAN(SCOPE, name) \
1918 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1919 KVM_STATS_BASE_POW10, 0)
1920/* Peak (sticky) boolean value, read/write */
1921#define STATS_DESC_PBOOLEAN(SCOPE, name) \
1922 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1923 KVM_STATS_BASE_POW10, 0)
1924
cb082bfa
JZ
1925/* Cumulative time in nanosecond */
1926#define STATS_DESC_TIME_NSEC(SCOPE, name) \
1927 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1928 KVM_STATS_BASE_POW10, -9)
f95937cc
JZ
1929/* Linear histogram for time in nanosecond */
1930#define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1931 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1932 KVM_STATS_BASE_POW10, -9, sz, bsz)
1933/* Logarithmic histogram for time in nanosecond */
1934#define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1935 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1936 KVM_STATS_BASE_POW10, -9, sz)
cb082bfa 1937
fcfe1bae 1938#define KVM_GENERIC_VM_STATS() \
3cc4e148
JZ
1939 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1940 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
fcfe1bae 1941
ce55c049
JZ
1942#define KVM_GENERIC_VCPU_STATS() \
1943 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1944 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1945 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1946 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1947 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
87bcc5fa 1948 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
8ccba534
JZ
1949 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1950 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1951 HALT_POLL_HIST_COUNT), \
1952 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1953 HALT_POLL_HIST_COUNT), \
1954 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
c3858335 1955 HALT_POLL_HIST_COUNT), \
1b870fa5 1956 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
ce55c049 1957
76f7c879 1958extern struct dentry *kvm_debugfs_dir;
f95937cc 1959
cb082bfa
JZ
1960ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1961 const struct _kvm_stats_desc *desc,
1962 void *stats, size_t size_stats,
1963 char __user *user_buffer, size_t size, loff_t *offset);
f95937cc
JZ
1964
1965/**
1966 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1967 * statistics data.
1968 *
1969 * @data: start address of the stats data
1970 * @size: the number of bucket of the stats data
1971 * @value: the new value used to update the linear histogram's bucket
1972 * @bucket_size: the size (width) of a bucket
1973 */
1974static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1975 u64 value, size_t bucket_size)
1976{
1977 size_t index = div64_u64(value, bucket_size);
1978
1979 index = min(index, size - 1);
1980 ++data[index];
1981}
1982
1983/**
1984 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1985 * statistics data.
1986 *
1987 * @data: start address of the stats data
1988 * @size: the number of bucket of the stats data
1989 * @value: the new value used to update the logarithmic histogram's bucket
1990 */
1991static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1992{
1993 size_t index = fls64(value);
1994
1995 index = min(index, size - 1);
1996 ++data[index];
1997}
1998
1999#define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
2000 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
2001#define KVM_STATS_LOG_HIST_UPDATE(array, value) \
2002 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
2003
2004
fcfe1bae
JZ
2005extern const struct kvm_stats_header kvm_vm_stats_header;
2006extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
ce55c049
JZ
2007extern const struct kvm_stats_header kvm_vcpu_stats_header;
2008extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
d4c9ff2d 2009
f128cf8c 2010#ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
20ec3ebd 2011static inline int mmu_invalidate_retry(struct kvm *kvm, unsigned long mmu_seq)
e930bffe 2012{
20ec3ebd 2013 if (unlikely(kvm->mmu_invalidate_in_progress))
e930bffe
AA
2014 return 1;
2015 /*
20ec3ebd
CP
2016 * Ensure the read of mmu_invalidate_in_progress happens before
2017 * the read of mmu_invalidate_seq. This interacts with the
2018 * smp_wmb() in mmu_notifier_invalidate_range_end to make sure
2019 * that the caller either sees the old (non-zero) value of
2020 * mmu_invalidate_in_progress or the new (incremented) value of
2021 * mmu_invalidate_seq.
2022 *
2023 * PowerPC Book3s HV KVM calls this under a per-page lock rather
2024 * than under kvm->mmu_lock, for scalability, so can't rely on
2025 * kvm->mmu_lock to keep things ordered.
e930bffe 2026 */
a355aa54 2027 smp_rmb();
20ec3ebd 2028 if (kvm->mmu_invalidate_seq != mmu_seq)
e930bffe
AA
2029 return 1;
2030 return 0;
2031}
4a42d848 2032
8569992d 2033static inline int mmu_invalidate_retry_gfn(struct kvm *kvm,
20ec3ebd 2034 unsigned long mmu_seq,
8569992d 2035 gfn_t gfn)
4a42d848
DS
2036{
2037 lockdep_assert_held(&kvm->mmu_lock);
2038 /*
20ec3ebd
CP
2039 * If mmu_invalidate_in_progress is non-zero, then the range maintained
2040 * by kvm_mmu_notifier_invalidate_range_start contains all addresses
2041 * that might be being invalidated. Note that it may include some false
4a42d848
DS
2042 * positives, due to shortcuts when handing concurrent invalidations.
2043 */
8569992d
CP
2044 if (unlikely(kvm->mmu_invalidate_in_progress)) {
2045 /*
2046 * Dropping mmu_lock after bumping mmu_invalidate_in_progress
2047 * but before updating the range is a KVM bug.
2048 */
2049 if (WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA ||
2050 kvm->mmu_invalidate_range_end == INVALID_GPA))
2051 return 1;
2052
2053 if (gfn >= kvm->mmu_invalidate_range_start &&
2054 gfn < kvm->mmu_invalidate_range_end)
2055 return 1;
2056 }
2057
20ec3ebd 2058 if (kvm->mmu_invalidate_seq != mmu_seq)
4a42d848
DS
2059 return 1;
2060 return 0;
2061}
d02c357e
SC
2062
2063/*
2064 * This lockless version of the range-based retry check *must* be paired with a
2065 * call to the locked version after acquiring mmu_lock, i.e. this is safe to
2066 * use only as a pre-check to avoid contending mmu_lock. This version *will*
2067 * get false negatives and false positives.
2068 */
2069static inline bool mmu_invalidate_retry_gfn_unsafe(struct kvm *kvm,
2070 unsigned long mmu_seq,
2071 gfn_t gfn)
2072{
2073 /*
2074 * Use READ_ONCE() to ensure the in-progress flag and sequence counter
2075 * are always read from memory, e.g. so that checking for retry in a
2076 * loop won't result in an infinite retry loop. Don't force loads for
2077 * start+end, as the key to avoiding infinite retry loops is observing
2078 * the 1=>0 transition of in-progress, i.e. getting false negatives
2079 * due to stale start+end values is acceptable.
2080 */
2081 if (unlikely(READ_ONCE(kvm->mmu_invalidate_in_progress)) &&
2082 gfn >= kvm->mmu_invalidate_range_start &&
2083 gfn < kvm->mmu_invalidate_range_end)
2084 return true;
2085
2086 return READ_ONCE(kvm->mmu_invalidate_seq) != mmu_seq;
2087}
e930bffe
AA
2088#endif
2089
a725d56a 2090#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
399ec807 2091
ddc9cfb7 2092#define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
399ec807 2093
5c0aea0e 2094bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
399ec807
AK
2095int kvm_set_irq_routing(struct kvm *kvm,
2096 const struct kvm_irq_routing_entry *entries,
2097 unsigned nr,
2098 unsigned flags);
c63cf538
RK
2099int kvm_set_routing_entry(struct kvm *kvm,
2100 struct kvm_kernel_irq_routing_entry *e,
e8cde093 2101 const struct kvm_irq_routing_entry *ue);
399ec807
AK
2102void kvm_free_irq_routing(struct kvm *kvm);
2103
2104#else
2105
2106static inline void kvm_free_irq_routing(struct kvm *kvm) {}
2107
2108#endif
2109
297e2105
PM
2110int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
2111
d34e6b17 2112void kvm_eventfd_init(struct kvm *kvm);
914daba8
AG
2113int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
2114
c5b31cc2 2115#ifdef CONFIG_HAVE_KVM_IRQCHIP
d4db2935 2116int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
721eecbf 2117void kvm_irqfd_release(struct kvm *kvm);
fef8f2b9
DM
2118bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2119 unsigned int irqchip,
2120 unsigned int pin);
9957c86d 2121void kvm_irq_routing_update(struct kvm *);
914daba8
AG
2122#else
2123static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2124{
2125 return -EINVAL;
2126}
2127
2128static inline void kvm_irqfd_release(struct kvm *kvm) {}
fef8f2b9
DM
2129
2130static inline bool kvm_notify_irqfd_resampler(struct kvm *kvm,
2131 unsigned int irqchip,
2132 unsigned int pin)
2133{
2134 return false;
2135}
c5b31cc2 2136#endif /* CONFIG_HAVE_KVM_IRQCHIP */
721eecbf 2137
07646749
SO
2138void kvm_arch_irq_routing_update(struct kvm *kvm);
2139
df06dae3 2140static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
a8eeb04a 2141{
2e4682ba
PB
2142 /*
2143 * Ensure the rest of the request is published to kvm_check_request's
2144 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2145 */
2146 smp_wmb();
86dafed5 2147 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
a8eeb04a
AK
2148}
2149
df06dae3
SC
2150static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2151{
2152 /*
2153 * Request that don't require vCPU action should never be logged in
2154 * vcpu->requests. The vCPU won't clear the request, so it will stay
2155 * logged indefinitely and prevent the vCPU from entering the guest.
2156 */
2157 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2158 (req & KVM_REQUEST_NO_ACTION));
2159
2160 __kvm_make_request(req, vcpu);
2161}
2162
2fa6e1e1
RK
2163static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2164{
2165 return READ_ONCE(vcpu->requests);
2166}
2167
72875d8a
RK
2168static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2169{
86dafed5 2170 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
72875d8a
RK
2171}
2172
2173static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2174{
86dafed5 2175 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
72875d8a
RK
2176}
2177
a8eeb04a
AK
2178static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2179{
72875d8a
RK
2180 if (kvm_test_request(req, vcpu)) {
2181 kvm_clear_request(req, vcpu);
2e4682ba
PB
2182
2183 /*
2184 * Ensure the rest of the request is visible to kvm_check_request's
2185 * caller. Paired with the smp_wmb in kvm_make_request.
2186 */
2187 smp_mb__after_atomic();
0719837c
AK
2188 return true;
2189 } else {
2190 return false;
2191 }
a8eeb04a
AK
2192}
2193
441f7bfa 2194#ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
8b415dcd 2195extern bool kvm_rebooting;
441f7bfa 2196#endif
8b415dcd 2197
ec76d819
SJS
2198extern unsigned int halt_poll_ns;
2199extern unsigned int halt_poll_ns_grow;
49113d36 2200extern unsigned int halt_poll_ns_grow_start;
ec76d819
SJS
2201extern unsigned int halt_poll_ns_shrink;
2202
852b6d57 2203struct kvm_device {
8538cb22 2204 const struct kvm_device_ops *ops;
852b6d57 2205 struct kvm *kvm;
852b6d57 2206 void *private;
07f0a7bd 2207 struct list_head vm_node;
852b6d57
SW
2208};
2209
2210/* create, destroy, and name are mandatory */
2211struct kvm_device_ops {
2212 const char *name;
a28ebea2
CD
2213
2214 /*
2215 * create is called holding kvm->lock and any operations not suitable
2216 * to do while holding the lock should be deferred to init (see
2217 * below).
2218 */
852b6d57
SW
2219 int (*create)(struct kvm_device *dev, u32 type);
2220
023e9fdd
CD
2221 /*
2222 * init is called after create if create is successful and is called
2223 * outside of holding kvm->lock.
2224 */
2225 void (*init)(struct kvm_device *dev);
2226
852b6d57
SW
2227 /*
2228 * Destroy is responsible for freeing dev.
2229 *
2230 * Destroy may be called before or after destructors are called
2231 * on emulated I/O regions, depending on whether a reference is
2232 * held by a vcpu or other kvm component that gets destroyed
2233 * after the emulated I/O.
2234 */
2235 void (*destroy)(struct kvm_device *dev);
2236
2bde9b3e
CLG
2237 /*
2238 * Release is an alternative method to free the device. It is
2239 * called when the device file descriptor is closed. Once
2240 * release is called, the destroy method will not be called
2241 * anymore as the device is removed from the device list of
2242 * the VM. kvm->lock is held.
2243 */
2244 void (*release)(struct kvm_device *dev);
2245
852b6d57
SW
2246 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2247 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2248 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2249 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2250 unsigned long arg);
a1cd3f08 2251 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
852b6d57
SW
2252};
2253
852b6d57 2254struct kvm_device *kvm_device_from_filp(struct file *filp);
8538cb22 2255int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
571ee1b6 2256void kvm_unregister_device_ops(u32 type);
852b6d57 2257
5df554ad 2258extern struct kvm_device_ops kvm_mpic_ops;
ea2f83a7 2259extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
a0675c25 2260extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
5df554ad 2261
4c088493
R
2262#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2263
2264static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2265{
2266 vcpu->spin_loop.in_spin_loop = val;
2267}
2268static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2269{
2270 vcpu->spin_loop.dy_eligible = val;
2271}
2272
2273#else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2274
2275static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2276{
2277}
2278
2279static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2280{
2281}
4c088493 2282#endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
1a02b270 2283
c36b7150
PB
2284static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2285{
2286 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2287 !(memslot->flags & KVM_MEMSLOT_INVALID));
2288}
2289
7495e22b 2290struct kvm_vcpu *kvm_get_running_vcpu(void);
fcd07f9a 2291struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
7495e22b 2292
1a02b270 2293#ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
14717e20 2294bool kvm_arch_has_irq_bypass(void);
1a02b270
EA
2295int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2296 struct irq_bypass_producer *);
2297void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2298 struct irq_bypass_producer *);
2299void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2300void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
f70c20aa
FW
2301int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2302 uint32_t guest_irq, bool set);
515a0c79
LM
2303bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2304 struct kvm_kernel_irq_routing_entry *);
1a02b270 2305#endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
35181e86 2306
3491caf2
CB
2307#ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2308/* If we wakeup during the poll time, was it a sucessful poll? */
2309static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2310{
2311 return vcpu->valid_wakeup;
2312}
2313
2314#else
2315static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2316{
2317 return true;
2318}
2319#endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2320
cdd6ad3a
CB
2321#ifdef CONFIG_HAVE_KVM_NO_POLL
2322/* Callback that tells if we must not poll */
2323bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2324#else
2325static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2326{
2327 return false;
2328}
2329#endif /* CONFIG_HAVE_KVM_NO_POLL */
2330
5cb0944c
PB
2331#ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2332long kvm_arch_vcpu_async_ioctl(struct file *filp,
2333 unsigned int ioctl, unsigned long arg);
2334#else
2335static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2336 unsigned int ioctl,
2337 unsigned long arg)
2338{
2339 return -ENOIOCTLCMD;
2340}
2341#endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2342
683412cc
MZ
2343void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2344
bd2a6394
CD
2345#ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2346int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2347#else
2348static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2349{
2350 return 0;
2351}
2352#endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2353
c57c8046
JS
2354typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2355
2356int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2357 uintptr_t data, const char *name,
2358 struct task_struct **thread_ptr);
2359
935ace2f
TG
2360#ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
2361static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2362{
2363 vcpu->run->exit_reason = KVM_EXIT_INTR;
2364 vcpu->stat.signal_exits++;
2365}
2366#endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2367
43a063ca
YA
2368/*
2369 * If more than one page is being (un)accounted, @virt must be the address of
2370 * the first page of a block of pages what were allocated together (i.e
2371 * accounted together).
2372 *
2373 * kvm_account_pgtable_pages() is thread-safe because mod_lruvec_page_state()
2374 * is thread-safe.
2375 */
2376static inline void kvm_account_pgtable_pages(void *virt, int nr)
2377{
2378 mod_lruvec_page_state(virt_to_page(virt), NR_SECONDARY_PAGETABLE, nr);
2379}
2380
fb04a1ed
PX
2381/*
2382 * This defines how many reserved entries we want to keep before we
2383 * kick the vcpu to the userspace to avoid dirty ring full. This
2384 * value can be tuned to higher if e.g. PML is enabled on the host.
2385 */
2386#define KVM_DIRTY_RING_RSVD_ENTRIES 64
2387
2388/* Max number of entries allowed for each kvm dirty ring */
2389#define KVM_DIRTY_RING_MAX_ENTRIES 65536
2390
16f95f3b 2391static inline void kvm_prepare_memory_fault_exit(struct kvm_vcpu *vcpu,
8dd2eee9
CP
2392 gpa_t gpa, gpa_t size,
2393 bool is_write, bool is_exec,
2394 bool is_private)
16f95f3b
CP
2395{
2396 vcpu->run->exit_reason = KVM_EXIT_MEMORY_FAULT;
2397 vcpu->run->memory_fault.gpa = gpa;
2398 vcpu->run->memory_fault.size = size;
2399
8dd2eee9 2400 /* RWX flags are not (yet) defined or communicated to userspace. */
16f95f3b 2401 vcpu->run->memory_fault.flags = 0;
8dd2eee9
CP
2402 if (is_private)
2403 vcpu->run->memory_fault.flags |= KVM_MEMORY_EXIT_FLAG_PRIVATE;
16f95f3b
CP
2404}
2405
5a475554
CP
2406#ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2407static inline unsigned long kvm_get_memory_attributes(struct kvm *kvm, gfn_t gfn)
2408{
2409 return xa_to_value(xa_load(&kvm->mem_attr_array, gfn));
2410}
2411
2412bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2413 unsigned long attrs);
2414bool kvm_arch_pre_set_memory_attributes(struct kvm *kvm,
2415 struct kvm_gfn_range *range);
2416bool kvm_arch_post_set_memory_attributes(struct kvm *kvm,
2417 struct kvm_gfn_range *range);
a7800aa8
SC
2418
2419static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2420{
2421 return IS_ENABLED(CONFIG_KVM_PRIVATE_MEM) &&
2422 kvm_get_memory_attributes(kvm, gfn) & KVM_MEMORY_ATTRIBUTE_PRIVATE;
2423}
2424#else
2425static inline bool kvm_mem_is_private(struct kvm *kvm, gfn_t gfn)
2426{
2427 return false;
2428}
5a475554
CP
2429#endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2430
a7800aa8
SC
2431#ifdef CONFIG_KVM_PRIVATE_MEM
2432int kvm_gmem_get_pfn(struct kvm *kvm, struct kvm_memory_slot *slot,
2433 gfn_t gfn, kvm_pfn_t *pfn, int *max_order);
2434#else
2435static inline int kvm_gmem_get_pfn(struct kvm *kvm,
2436 struct kvm_memory_slot *slot, gfn_t gfn,
2437 kvm_pfn_t *pfn, int *max_order)
2438{
2439 KVM_BUG_ON(1, kvm);
2440 return -EIO;
2441}
2442#endif /* CONFIG_KVM_PRIVATE_MEM */
2443
bfd99ff5 2444#endif