mm, hwpoison: enable memory error handling on 1GB hugepage
[linux-2.6-block.git] / include / linux / highmem.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef _LINUX_HIGHMEM_H
3#define _LINUX_HIGHMEM_H
4
1da177e4 5#include <linux/fs.h>
597781f3 6#include <linux/kernel.h>
187f1882 7#include <linux/bug.h>
522a0032 8#include <linux/cacheflush.h>
1da177e4 9#include <linux/mm.h>
ad76fb6b 10#include <linux/uaccess.h>
43b3a0c7 11#include <linux/hardirq.h>
1da177e4 12
13f876ba 13#include "highmem-internal.h"
03beb076 14
13f876ba
TG
15/**
16 * kmap - Map a page for long term usage
17 * @page: Pointer to the page to be mapped
18 *
19 * Returns: The virtual address of the mapping
20 *
21 * Can only be invoked from preemptible task context because on 32bit
22 * systems with CONFIG_HIGHMEM enabled this function might sleep.
23 *
24 * For systems with CONFIG_HIGHMEM=n and for pages in the low memory area
25 * this returns the virtual address of the direct kernel mapping.
26 *
27 * The returned virtual address is globally visible and valid up to the
28 * point where it is unmapped via kunmap(). The pointer can be handed to
29 * other contexts.
30 *
31 * For highmem pages on 32bit systems this can be slow as the mapping space
32 * is limited and protected by a global lock. In case that there is no
33 * mapping slot available the function blocks until a slot is released via
34 * kunmap().
298fa1ad 35 */
13f876ba 36static inline void *kmap(struct page *page);
525aaf9b 37
13f876ba
TG
38/**
39 * kunmap - Unmap the virtual address mapped by kmap()
e7392b4e 40 * @page: Pointer to the page which was mapped by kmap()
13f876ba
TG
41 *
42 * Counterpart to kmap(). A NOOP for CONFIG_HIGHMEM=n and for mappings of
43 * pages in the low memory area.
78b6d91e 44 */
13f876ba 45static inline void kunmap(struct page *page);
298fa1ad 46
13f876ba
TG
47/**
48 * kmap_to_page - Get the page for a kmap'ed address
49 * @addr: The address to look up
50 *
51 * Returns: The page which is mapped to @addr.
52 */
53static inline struct page *kmap_to_page(void *addr);
1da177e4 54
13f876ba
TG
55/**
56 * kmap_flush_unused - Flush all unused kmap mappings in order to
57 * remove stray mappings
58 */
59static inline void kmap_flush_unused(void);
1da177e4 60
13f876ba 61/**
f3ba3c71 62 * kmap_local_page - Map a page for temporary usage
13f876ba
TG
63 * @page: Pointer to the page to be mapped
64 *
65 * Returns: The virtual address of the mapping
66 *
13f876ba
TG
67 * Can be invoked from any context.
68 *
69 * Requires careful handling when nesting multiple mappings because the map
70 * management is stack based. The unmap has to be in the reverse order of
71 * the map operation:
72 *
f3ba3c71
TG
73 * addr1 = kmap_local_page(page1);
74 * addr2 = kmap_local_page(page2);
13f876ba 75 * ...
f3ba3c71
TG
76 * kunmap_local(addr2);
77 * kunmap_local(addr1);
13f876ba
TG
78 *
79 * Unmapping addr1 before addr2 is invalid and causes malfunction.
80 *
81 * Contrary to kmap() mappings the mapping is only valid in the context of
82 * the caller and cannot be handed to other contexts.
83 *
84 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
85 * virtual address of the direct mapping. Only real highmem pages are
86 * temporarily mapped.
87 *
f3ba3c71
TG
88 * While it is significantly faster than kmap() for the higmem case it
89 * comes with restrictions about the pointer validity. Only use when really
90 * necessary.
91 *
92 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
93 * disabling migration in order to keep the virtual address stable across
94 * preemption. No caller of kmap_local_page() can rely on this side effect.
95 */
96static inline void *kmap_local_page(struct page *page);
97
53c36de0
MWO
98/**
99 * kmap_local_folio - Map a page in this folio for temporary usage
100 * @folio: The folio containing the page.
101 * @offset: The byte offset within the folio which identifies the page.
102 *
103 * Requires careful handling when nesting multiple mappings because the map
104 * management is stack based. The unmap has to be in the reverse order of
105 * the map operation::
106 *
107 * addr1 = kmap_local_folio(folio1, offset1);
108 * addr2 = kmap_local_folio(folio2, offset2);
109 * ...
110 * kunmap_local(addr2);
111 * kunmap_local(addr1);
112 *
113 * Unmapping addr1 before addr2 is invalid and causes malfunction.
114 *
115 * Contrary to kmap() mappings the mapping is only valid in the context of
116 * the caller and cannot be handed to other contexts.
117 *
118 * On CONFIG_HIGHMEM=n kernels and for low memory pages this returns the
119 * virtual address of the direct mapping. Only real highmem pages are
120 * temporarily mapped.
121 *
122 * While it is significantly faster than kmap() for the higmem case it
123 * comes with restrictions about the pointer validity. Only use when really
124 * necessary.
125 *
126 * On HIGHMEM enabled systems mapping a highmem page has the side effect of
127 * disabling migration in order to keep the virtual address stable across
128 * preemption. No caller of kmap_local_folio() can rely on this side effect.
129 *
130 * Context: Can be invoked from any context.
131 * Return: The virtual address of @offset.
132 */
133static inline void *kmap_local_folio(struct folio *folio, size_t offset);
134
f3ba3c71
TG
135/**
136 * kmap_atomic - Atomically map a page for temporary usage - Deprecated!
137 * @page: Pointer to the page to be mapped
138 *
139 * Returns: The virtual address of the mapping
140 *
e7392b4e
FDF
141 * In fact a wrapper around kmap_local_page() which also disables pagefaults
142 * and, depending on PREEMPT_RT configuration, also CPU migration and
143 * preemption. Therefore users should not count on the latter two side effects.
144 *
145 * Mappings should always be released by kunmap_atomic().
f3ba3c71
TG
146 *
147 * Do not use in new code. Use kmap_local_page() instead.
85a85e76
FDF
148 *
149 * It is used in atomic context when code wants to access the contents of a
150 * page that might be allocated from high memory (see __GFP_HIGHMEM), for
151 * example a page in the pagecache. The API has two functions, and they
cffe57be 152 * can be used in a manner similar to the following::
85a85e76 153 *
cffe57be
BS
154 * // Find the page of interest.
155 * struct page *page = find_get_page(mapping, offset);
85a85e76 156 *
cffe57be
BS
157 * // Gain access to the contents of that page.
158 * void *vaddr = kmap_atomic(page);
85a85e76 159 *
cffe57be
BS
160 * // Do something to the contents of that page.
161 * memset(vaddr, 0, PAGE_SIZE);
85a85e76 162 *
cffe57be
BS
163 * // Unmap that page.
164 * kunmap_atomic(vaddr);
85a85e76
FDF
165 *
166 * Note that the kunmap_atomic() call takes the result of the kmap_atomic()
167 * call, not the argument.
168 *
169 * If you need to map two pages because you want to copy from one page to
170 * another you need to keep the kmap_atomic calls strictly nested, like:
171 *
172 * vaddr1 = kmap_atomic(page1);
173 * vaddr2 = kmap_atomic(page2);
174 *
175 * memcpy(vaddr1, vaddr2, PAGE_SIZE);
176 *
177 * kunmap_atomic(vaddr2);
178 * kunmap_atomic(vaddr1);
13f876ba
TG
179 */
180static inline void *kmap_atomic(struct page *page);
5a178119 181
13f876ba
TG
182/* Highmem related interfaces for management code */
183static inline unsigned int nr_free_highpages(void);
184static inline unsigned long totalhigh_pages(void);
1da177e4 185
13f876ba
TG
186#ifndef ARCH_HAS_FLUSH_ANON_PAGE
187static inline void flush_anon_page(struct vm_area_struct *vma, struct page *page, unsigned long vmaddr)
e23c4597
IW
188{
189}
7438f363 190#endif
1da177e4 191
f358afc5 192#ifndef ARCH_IMPLEMENTS_FLUSH_KERNEL_VMAP_RANGE
13f876ba 193static inline void flush_kernel_vmap_range(void *vaddr, int size)
298fa1ad 194{
298fa1ad 195}
13f876ba 196static inline void invalidate_kernel_vmap_range(void *vaddr, int size)
298fa1ad 197{
298fa1ad 198}
7438f363 199#endif
980c19e3 200
1da177e4 201/* when CONFIG_HIGHMEM is not set these will be plain clear/copy_page */
487ff320 202#ifndef clear_user_highpage
1da177e4
LT
203static inline void clear_user_highpage(struct page *page, unsigned long vaddr)
204{
d2c20e51 205 void *addr = kmap_local_page(page);
1da177e4 206 clear_user_page(addr, vaddr, page);
d2c20e51 207 kunmap_local(addr);
1da177e4 208}
487ff320 209#endif
1da177e4 210
92638b4e 211#ifndef __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE
769848c0 212/**
92638b4e 213 * alloc_zeroed_user_highpage_movable - Allocate a zeroed HIGHMEM page for a VMA that the caller knows can move
769848c0
MG
214 * @vma: The VMA the page is to be allocated for
215 * @vaddr: The virtual address the page will be inserted into
216 *
e7392b4e
FDF
217 * Returns: The allocated and zeroed HIGHMEM page
218 *
92638b4e
PC
219 * This function will allocate a page for a VMA that the caller knows will
220 * be able to migrate in the future using move_pages() or reclaimed
769848c0
MG
221 *
222 * An architecture may override this function by defining
92638b4e 223 * __HAVE_ARCH_ALLOC_ZEROED_USER_HIGHPAGE_MOVABLE and providing their own
769848c0
MG
224 * implementation.
225 */
1da177e4 226static inline struct page *
92638b4e
PC
227alloc_zeroed_user_highpage_movable(struct vm_area_struct *vma,
228 unsigned long vaddr)
1da177e4 229{
92638b4e 230 struct page *page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
1da177e4
LT
231
232 if (page)
233 clear_user_highpage(page, vaddr);
234
235 return page;
236}
237#endif
238
239static inline void clear_highpage(struct page *page)
240{
d2c20e51 241 void *kaddr = kmap_local_page(page);
1da177e4 242 clear_page(kaddr);
d2c20e51 243 kunmap_local(kaddr);
1da177e4
LT
244}
245
d9da8f6c
AK
246static inline void clear_highpage_kasan_tagged(struct page *page)
247{
248 u8 tag;
249
250 tag = page_kasan_tag(page);
251 page_kasan_tag_reset(page);
252 clear_highpage(page);
253 page_kasan_tag_set(page, tag);
254}
255
013bb59d
PC
256#ifndef __HAVE_ARCH_TAG_CLEAR_HIGHPAGE
257
258static inline void tag_clear_highpage(struct page *page)
259{
260}
261
262#endif
263
0060ef3b
MWO
264/*
265 * If we pass in a base or tail page, we can zero up to PAGE_SIZE.
266 * If we pass in a head page, we can zero up to the size of the compound page.
267 */
c0357139 268#ifdef CONFIG_HIGHMEM
0060ef3b
MWO
269void zero_user_segments(struct page *page, unsigned start1, unsigned end1,
270 unsigned start2, unsigned end2);
c0357139 271#else
eebd2aa3 272static inline void zero_user_segments(struct page *page,
0060ef3b
MWO
273 unsigned start1, unsigned end1,
274 unsigned start2, unsigned end2)
eebd2aa3 275{
d2c20e51 276 void *kaddr = kmap_local_page(page);
0060ef3b 277 unsigned int i;
eebd2aa3 278
0060ef3b 279 BUG_ON(end1 > page_size(page) || end2 > page_size(page));
eebd2aa3
CL
280
281 if (end1 > start1)
282 memset(kaddr + start1, 0, end1 - start1);
283
284 if (end2 > start2)
285 memset(kaddr + start2, 0, end2 - start2);
286
d2c20e51 287 kunmap_local(kaddr);
0060ef3b
MWO
288 for (i = 0; i < compound_nr(page); i++)
289 flush_dcache_page(page + i);
eebd2aa3 290}
c0357139 291#endif
eebd2aa3
CL
292
293static inline void zero_user_segment(struct page *page,
294 unsigned start, unsigned end)
295{
296 zero_user_segments(page, start, end, 0, 0);
297}
298
299static inline void zero_user(struct page *page,
300 unsigned start, unsigned size)
301{
302 zero_user_segments(page, start, start + size, 0, 0);
303}
01f2705d 304
77fff4ae
AN
305#ifndef __HAVE_ARCH_COPY_USER_HIGHPAGE
306
9de455b2
AN
307static inline void copy_user_highpage(struct page *to, struct page *from,
308 unsigned long vaddr, struct vm_area_struct *vma)
1da177e4
LT
309{
310 char *vfrom, *vto;
311
d2c20e51
IW
312 vfrom = kmap_local_page(from);
313 vto = kmap_local_page(to);
1da177e4 314 copy_user_page(vto, vfrom, vaddr, to);
d2c20e51
IW
315 kunmap_local(vto);
316 kunmap_local(vfrom);
1da177e4
LT
317}
318
77fff4ae
AN
319#endif
320
a4602b62
KA
321#ifndef __HAVE_ARCH_COPY_HIGHPAGE
322
1da177e4
LT
323static inline void copy_highpage(struct page *to, struct page *from)
324{
325 char *vfrom, *vto;
326
d2c20e51
IW
327 vfrom = kmap_local_page(from);
328 vto = kmap_local_page(to);
1da177e4 329 copy_page(vto, vfrom);
d2c20e51
IW
330 kunmap_local(vto);
331 kunmap_local(vfrom);
1da177e4
LT
332}
333
a4602b62
KA
334#endif
335
6a0996db
IW
336static inline void memcpy_page(struct page *dst_page, size_t dst_off,
337 struct page *src_page, size_t src_off,
338 size_t len)
339{
340 char *dst = kmap_local_page(dst_page);
341 char *src = kmap_local_page(src_page);
342
ca18f6ea 343 VM_BUG_ON(dst_off + len > PAGE_SIZE || src_off + len > PAGE_SIZE);
6a0996db
IW
344 memcpy(dst + dst_off, src + src_off, len);
345 kunmap_local(src);
346 kunmap_local(dst);
347}
348
6a0996db
IW
349static inline void memset_page(struct page *page, size_t offset, int val,
350 size_t len)
351{
352 char *addr = kmap_local_page(page);
353
ca18f6ea 354 VM_BUG_ON(offset + len > PAGE_SIZE);
6a0996db
IW
355 memset(addr + offset, val, len);
356 kunmap_local(addr);
357}
358
bb90d4bc
IW
359static inline void memcpy_from_page(char *to, struct page *page,
360 size_t offset, size_t len)
361{
61b205f5 362 char *from = kmap_local_page(page);
bb90d4bc 363
ca18f6ea 364 VM_BUG_ON(offset + len > PAGE_SIZE);
bb90d4bc 365 memcpy(to, from + offset, len);
61b205f5 366 kunmap_local(from);
bb90d4bc
IW
367}
368
369static inline void memcpy_to_page(struct page *page, size_t offset,
370 const char *from, size_t len)
371{
61b205f5 372 char *to = kmap_local_page(page);
bb90d4bc 373
ca18f6ea 374 VM_BUG_ON(offset + len > PAGE_SIZE);
bb90d4bc 375 memcpy(to + offset, from, len);
8dad53a1 376 flush_dcache_page(page);
61b205f5 377 kunmap_local(to);
bb90d4bc
IW
378}
379
28961998
IW
380static inline void memzero_page(struct page *page, size_t offset, size_t len)
381{
d9a42b53 382 char *addr = kmap_local_page(page);
f38adfef
FDF
383
384 VM_BUG_ON(offset + len > PAGE_SIZE);
28961998 385 memset(addr + offset, 0, len);
8dad53a1 386 flush_dcache_page(page);
d9a42b53 387 kunmap_local(addr);
28961998
IW
388}
389
c0357139
MWO
390/**
391 * folio_zero_segments() - Zero two byte ranges in a folio.
392 * @folio: The folio to write to.
393 * @start1: The first byte to zero.
394 * @xend1: One more than the last byte in the first range.
395 * @start2: The first byte to zero in the second range.
396 * @xend2: One more than the last byte in the second range.
397 */
398static inline void folio_zero_segments(struct folio *folio,
399 size_t start1, size_t xend1, size_t start2, size_t xend2)
400{
401 zero_user_segments(&folio->page, start1, xend1, start2, xend2);
402}
403
404/**
405 * folio_zero_segment() - Zero a byte range in a folio.
406 * @folio: The folio to write to.
407 * @start: The first byte to zero.
408 * @xend: One more than the last byte to zero.
409 */
410static inline void folio_zero_segment(struct folio *folio,
411 size_t start, size_t xend)
412{
413 zero_user_segments(&folio->page, start, xend, 0, 0);
414}
415
416/**
417 * folio_zero_range() - Zero a byte range in a folio.
418 * @folio: The folio to write to.
419 * @start: The first byte to zero.
420 * @length: The number of bytes to zero.
421 */
422static inline void folio_zero_range(struct folio *folio,
423 size_t start, size_t length)
424{
425 zero_user_segments(&folio->page, start, start + length, 0, 0);
426}
427
1da177e4 428#endif /* _LINUX_HIGHMEM_H */