Merge tag '5.19-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[linux-2.6-block.git] / include / linux / gfp.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1da177e4
LT
2#ifndef __LINUX_GFP_H
3#define __LINUX_GFP_H
4
309381fe 5#include <linux/mmdebug.h>
1da177e4
LT
6#include <linux/mmzone.h>
7#include <linux/stddef.h>
8#include <linux/linkage.h>
082edb7b 9#include <linux/topology.h>
1da177e4 10
3b2ebeaf
MWO
11/* The typedef is in types.h but we want the documentation here */
12#if 0
13/**
14 * typedef gfp_t - Memory allocation flags.
15 *
16 * GFP flags are commonly used throughout Linux to indicate how memory
17 * should be allocated. The GFP acronym stands for get_free_pages(),
18 * the underlying memory allocation function. Not every GFP flag is
19 * supported by every function which may allocate memory. Most users
20 * will want to use a plain ``GFP_KERNEL``.
21 */
22typedef unsigned int __bitwise gfp_t;
23#endif
24
1da177e4
LT
25struct vm_area_struct;
26
1f7866b4
VB
27/*
28 * In case of changes, please don't forget to update
420adbe9 29 * include/trace/events/mmflags.h and tools/perf/builtin-kmem.c
1f7866b4
VB
30 */
31
16b56cf4
NK
32/* Plain integer GFP bitmasks. Do not use this directly. */
33#define ___GFP_DMA 0x01u
34#define ___GFP_HIGHMEM 0x02u
35#define ___GFP_DMA32 0x04u
36#define ___GFP_MOVABLE 0x08u
016c13da 37#define ___GFP_RECLAIMABLE 0x10u
16b56cf4
NK
38#define ___GFP_HIGH 0x20u
39#define ___GFP_IO 0x40u
40#define ___GFP_FS 0x80u
d71e53ce
AD
41#define ___GFP_ZERO 0x100u
42#define ___GFP_ATOMIC 0x200u
43#define ___GFP_DIRECT_RECLAIM 0x400u
44#define ___GFP_KSWAPD_RECLAIM 0x800u
45#define ___GFP_WRITE 0x1000u
46#define ___GFP_NOWARN 0x2000u
47#define ___GFP_RETRY_MAYFAIL 0x4000u
48#define ___GFP_NOFAIL 0x8000u
49#define ___GFP_NORETRY 0x10000u
50#define ___GFP_MEMALLOC 0x20000u
51#define ___GFP_COMP 0x40000u
52#define ___GFP_NOMEMALLOC 0x80000u
53#define ___GFP_HARDWALL 0x100000u
54#define ___GFP_THISNODE 0x200000u
55#define ___GFP_ACCOUNT 0x400000u
013bb59d 56#define ___GFP_ZEROTAGS 0x800000u
f49d9c5b 57#ifdef CONFIG_KASAN_HW_TAGS
9353ffa6
AK
58#define ___GFP_SKIP_ZERO 0x1000000u
59#define ___GFP_SKIP_KASAN_UNPOISON 0x2000000u
60#define ___GFP_SKIP_KASAN_POISON 0x4000000u
f49d9c5b 61#else
9353ffa6 62#define ___GFP_SKIP_ZERO 0
53ae233c 63#define ___GFP_SKIP_KASAN_UNPOISON 0
f49d9c5b
AK
64#define ___GFP_SKIP_KASAN_POISON 0
65#endif
7e784422 66#ifdef CONFIG_LOCKDEP
9353ffa6 67#define ___GFP_NOLOCKDEP 0x8000000u
7e784422
MH
68#else
69#define ___GFP_NOLOCKDEP 0
70#endif
05b0afd7 71/* If the above are modified, __GFP_BITS_SHIFT may need updating */
16b56cf4 72
1da177e4 73/*
dd56b046 74 * Physical address zone modifiers (see linux/mmzone.h - low four bits)
e53ef38d 75 *
e53ef38d 76 * Do not put any conditional on these. If necessary modify the definitions
263ff5d8 77 * without the underscores and use them consistently. The definitions here may
e53ef38d 78 * be used in bit comparisons.
1da177e4 79 */
16b56cf4
NK
80#define __GFP_DMA ((__force gfp_t)___GFP_DMA)
81#define __GFP_HIGHMEM ((__force gfp_t)___GFP_HIGHMEM)
82#define __GFP_DMA32 ((__force gfp_t)___GFP_DMA32)
dd56b046 83#define __GFP_MOVABLE ((__force gfp_t)___GFP_MOVABLE) /* ZONE_MOVABLE allowed */
b70d94ee 84#define GFP_ZONEMASK (__GFP_DMA|__GFP_HIGHMEM|__GFP_DMA32|__GFP_MOVABLE)
dd56b046 85
263fade5
MR
86/**
87 * DOC: Page mobility and placement hints
88 *
dd56b046 89 * Page mobility and placement hints
bf507030 90 * ---------------------------------
1da177e4 91 *
dd56b046
MG
92 * These flags provide hints about how mobile the page is. Pages with similar
93 * mobility are placed within the same pageblocks to minimise problems due
94 * to external fragmentation.
1da177e4 95 *
263fade5
MR
96 * %__GFP_MOVABLE (also a zone modifier) indicates that the page can be
97 * moved by page migration during memory compaction or can be reclaimed.
1da177e4 98 *
263fade5
MR
99 * %__GFP_RECLAIMABLE is used for slab allocations that specify
100 * SLAB_RECLAIM_ACCOUNT and whose pages can be freed via shrinkers.
dd56b046 101 *
263fade5
MR
102 * %__GFP_WRITE indicates the caller intends to dirty the page. Where possible,
103 * these pages will be spread between local zones to avoid all the dirty
104 * pages being in one zone (fair zone allocation policy).
769848c0 105 *
263fade5 106 * %__GFP_HARDWALL enforces the cpuset memory allocation policy.
dd56b046 107 *
70c6066e 108 * %__GFP_THISNODE forces the allocation to be satisfied from the requested
263fade5 109 * node with no fallbacks or placement policy enforcements.
a9bb7e62 110 *
263fade5 111 * %__GFP_ACCOUNT causes the allocation to be accounted to kmemcg.
1da177e4 112 */
dd56b046
MG
113#define __GFP_RECLAIMABLE ((__force gfp_t)___GFP_RECLAIMABLE)
114#define __GFP_WRITE ((__force gfp_t)___GFP_WRITE)
115#define __GFP_HARDWALL ((__force gfp_t)___GFP_HARDWALL)
116#define __GFP_THISNODE ((__force gfp_t)___GFP_THISNODE)
a9bb7e62 117#define __GFP_ACCOUNT ((__force gfp_t)___GFP_ACCOUNT)
32dba98e 118
263fade5
MR
119/**
120 * DOC: Watermark modifiers
121 *
dd56b046 122 * Watermark modifiers -- controls access to emergency reserves
bf507030 123 * ------------------------------------------------------------
dd56b046 124 *
263fade5
MR
125 * %__GFP_HIGH indicates that the caller is high-priority and that granting
126 * the request is necessary before the system can make forward progress.
127 * For example, creating an IO context to clean pages.
dd56b046 128 *
263fade5
MR
129 * %__GFP_ATOMIC indicates that the caller cannot reclaim or sleep and is
130 * high priority. Users are typically interrupt handlers. This may be
131 * used in conjunction with %__GFP_HIGH
dd56b046 132 *
263fade5
MR
133 * %__GFP_MEMALLOC allows access to all memory. This should only be used when
134 * the caller guarantees the allocation will allow more memory to be freed
135 * very shortly e.g. process exiting or swapping. Users either should
136 * be the MM or co-ordinating closely with the VM (e.g. swap over NFS).
574c1ae6
MH
137 * Users of this flag have to be extremely careful to not deplete the reserve
138 * completely and implement a throttling mechanism which controls the
139 * consumption of the reserve based on the amount of freed memory.
140 * Usage of a pre-allocated pool (e.g. mempool) should be always considered
141 * before using this flag.
dd56b046 142 *
263fade5
MR
143 * %__GFP_NOMEMALLOC is used to explicitly forbid access to emergency reserves.
144 * This takes precedence over the %__GFP_MEMALLOC flag if both are set.
d0164adc 145 */
dd56b046
MG
146#define __GFP_ATOMIC ((__force gfp_t)___GFP_ATOMIC)
147#define __GFP_HIGH ((__force gfp_t)___GFP_HIGH)
148#define __GFP_MEMALLOC ((__force gfp_t)___GFP_MEMALLOC)
149#define __GFP_NOMEMALLOC ((__force gfp_t)___GFP_NOMEMALLOC)
dd56b046 150
263fade5
MR
151/**
152 * DOC: Reclaim modifiers
153 *
dd56b046 154 * Reclaim modifiers
bf507030 155 * -----------------
29fd1897
MH
156 * Please note that all the following flags are only applicable to sleepable
157 * allocations (e.g. %GFP_NOWAIT and %GFP_ATOMIC will ignore them).
dd56b046 158 *
263fade5 159 * %__GFP_IO can start physical IO.
dd56b046 160 *
263fade5
MR
161 * %__GFP_FS can call down to the low-level FS. Clearing the flag avoids the
162 * allocator recursing into the filesystem which might already be holding
163 * locks.
dd56b046 164 *
263fade5
MR
165 * %__GFP_DIRECT_RECLAIM indicates that the caller may enter direct reclaim.
166 * This flag can be cleared to avoid unnecessary delays when a fallback
167 * option is available.
dd56b046 168 *
263fade5
MR
169 * %__GFP_KSWAPD_RECLAIM indicates that the caller wants to wake kswapd when
170 * the low watermark is reached and have it reclaim pages until the high
171 * watermark is reached. A caller may wish to clear this flag when fallback
172 * options are available and the reclaim is likely to disrupt the system. The
173 * canonical example is THP allocation where a fallback is cheap but
174 * reclaim/compaction may cause indirect stalls.
dd56b046 175 *
263fade5 176 * %__GFP_RECLAIM is shorthand to allow/forbid both direct and kswapd reclaim.
dd56b046 177 *
dcda9b04 178 * The default allocator behavior depends on the request size. We have a concept
263fade5 179 * of so called costly allocations (with order > %PAGE_ALLOC_COSTLY_ORDER).
dcda9b04
MH
180 * !costly allocations are too essential to fail so they are implicitly
181 * non-failing by default (with some exceptions like OOM victims might fail so
182 * the caller still has to check for failures) while costly requests try to be
183 * not disruptive and back off even without invoking the OOM killer.
184 * The following three modifiers might be used to override some of these
185 * implicit rules
186 *
263fade5
MR
187 * %__GFP_NORETRY: The VM implementation will try only very lightweight
188 * memory direct reclaim to get some memory under memory pressure (thus
189 * it can sleep). It will avoid disruptive actions like OOM killer. The
190 * caller must handle the failure which is quite likely to happen under
191 * heavy memory pressure. The flag is suitable when failure can easily be
192 * handled at small cost, such as reduced throughput
193 *
194 * %__GFP_RETRY_MAYFAIL: The VM implementation will retry memory reclaim
195 * procedures that have previously failed if there is some indication
196 * that progress has been made else where. It can wait for other
197 * tasks to attempt high level approaches to freeing memory such as
198 * compaction (which removes fragmentation) and page-out.
199 * There is still a definite limit to the number of retries, but it is
200 * a larger limit than with %__GFP_NORETRY.
201 * Allocations with this flag may fail, but only when there is
202 * genuinely little unused memory. While these allocations do not
203 * directly trigger the OOM killer, their failure indicates that
204 * the system is likely to need to use the OOM killer soon. The
205 * caller must handle failure, but can reasonably do so by failing
206 * a higher-level request, or completing it only in a much less
207 * efficient manner.
208 * If the allocation does fail, and the caller is in a position to
209 * free some non-essential memory, doing so could benefit the system
210 * as a whole.
211 *
212 * %__GFP_NOFAIL: The VM implementation _must_ retry infinitely: the caller
213 * cannot handle allocation failures. The allocation could block
214 * indefinitely but will never return with failure. Testing for
215 * failure is pointless.
216 * New users should be evaluated carefully (and the flag should be
217 * used only when there is no reasonable failure policy) but it is
218 * definitely preferable to use the flag rather than opencode endless
219 * loop around allocator.
220 * Using this flag for costly allocations is _highly_ discouraged.
dd56b046
MG
221 */
222#define __GFP_IO ((__force gfp_t)___GFP_IO)
223#define __GFP_FS ((__force gfp_t)___GFP_FS)
d0164adc
MG
224#define __GFP_DIRECT_RECLAIM ((__force gfp_t)___GFP_DIRECT_RECLAIM) /* Caller can reclaim */
225#define __GFP_KSWAPD_RECLAIM ((__force gfp_t)___GFP_KSWAPD_RECLAIM) /* kswapd can wake */
dd56b046 226#define __GFP_RECLAIM ((__force gfp_t)(___GFP_DIRECT_RECLAIM|___GFP_KSWAPD_RECLAIM))
dcda9b04 227#define __GFP_RETRY_MAYFAIL ((__force gfp_t)___GFP_RETRY_MAYFAIL)
dd56b046
MG
228#define __GFP_NOFAIL ((__force gfp_t)___GFP_NOFAIL)
229#define __GFP_NORETRY ((__force gfp_t)___GFP_NORETRY)
d0164adc 230
263fade5
MR
231/**
232 * DOC: Action modifiers
233 *
dd56b046 234 * Action modifiers
bf507030 235 * ----------------
dd56b046 236 *
263fade5 237 * %__GFP_NOWARN suppresses allocation failure reports.
dd56b046 238 *
263fade5 239 * %__GFP_COMP address compound page metadata.
dd56b046 240 *
263fade5 241 * %__GFP_ZERO returns a zeroed page on success.
013bb59d 242 *
c82ce319 243 * %__GFP_ZEROTAGS zeroes memory tags at allocation time if the memory itself
9353ffa6
AK
244 * is being zeroed (either via __GFP_ZERO or via init_on_alloc, provided that
245 * __GFP_SKIP_ZERO is not set). This flag is intended for optimization: setting
246 * memory tags at the same time as zeroing memory has minimal additional
247 * performace impact.
c275c5c6 248 *
53ae233c
AK
249 * %__GFP_SKIP_KASAN_UNPOISON makes KASAN skip unpoisoning on page allocation.
250 * Only effective in HW_TAGS mode.
251 *
252 * %__GFP_SKIP_KASAN_POISON makes KASAN skip poisoning on page deallocation.
253 * Typically, used for userspace pages. Only effective in HW_TAGS mode.
2dff4405 254 */
dd56b046
MG
255#define __GFP_NOWARN ((__force gfp_t)___GFP_NOWARN)
256#define __GFP_COMP ((__force gfp_t)___GFP_COMP)
257#define __GFP_ZERO ((__force gfp_t)___GFP_ZERO)
013bb59d 258#define __GFP_ZEROTAGS ((__force gfp_t)___GFP_ZEROTAGS)
9353ffa6 259#define __GFP_SKIP_ZERO ((__force gfp_t)___GFP_SKIP_ZERO)
53ae233c
AK
260#define __GFP_SKIP_KASAN_UNPOISON ((__force gfp_t)___GFP_SKIP_KASAN_UNPOISON)
261#define __GFP_SKIP_KASAN_POISON ((__force gfp_t)___GFP_SKIP_KASAN_POISON)
2dff4405 262
7e784422
MH
263/* Disable lockdep for GFP context tracking */
264#define __GFP_NOLOCKDEP ((__force gfp_t)___GFP_NOLOCKDEP)
265
dd56b046 266/* Room for N __GFP_FOO bits */
ada543af 267#define __GFP_BITS_SHIFT (27 + IS_ENABLED(CONFIG_LOCKDEP))
af4ca457 268#define __GFP_BITS_MASK ((__force gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
1da177e4 269
263fade5
MR
270/**
271 * DOC: Useful GFP flag combinations
272 *
273 * Useful GFP flag combinations
bf507030 274 * ----------------------------
263fade5 275 *
dd56b046
MG
276 * Useful GFP flag combinations that are commonly used. It is recommended
277 * that subsystems start with one of these combinations and then set/clear
263fade5
MR
278 * %__GFP_FOO flags as necessary.
279 *
280 * %GFP_ATOMIC users can not sleep and need the allocation to succeed. A lower
ab00db21
MH
281 * watermark is applied to allow access to "atomic reserves".
282 * The current implementation doesn't support NMI and few other strict
283 * non-preemptive contexts (e.g. raw_spin_lock). The same applies to %GFP_NOWAIT.
263fade5
MR
284 *
285 * %GFP_KERNEL is typical for kernel-internal allocations. The caller requires
286 * %ZONE_NORMAL or a lower zone for direct access but can direct reclaim.
287 *
288 * %GFP_KERNEL_ACCOUNT is the same as GFP_KERNEL, except the allocation is
289 * accounted to kmemcg.
290 *
291 * %GFP_NOWAIT is for kernel allocations that should not stall for direct
292 * reclaim, start physical IO or use any filesystem callback.
293 *
294 * %GFP_NOIO will use direct reclaim to discard clean pages or slab pages
295 * that do not require the starting of any physical IO.
296 * Please try to avoid using this flag directly and instead use
297 * memalloc_noio_{save,restore} to mark the whole scope which cannot
298 * perform any IO with a short explanation why. All allocation requests
299 * will inherit GFP_NOIO implicitly.
300 *
301 * %GFP_NOFS will use direct reclaim but will not use any filesystem interfaces.
302 * Please try to avoid using this flag directly and instead use
303 * memalloc_nofs_{save,restore} to mark the whole scope which cannot/shouldn't
304 * recurse into the FS layer with a short explanation why. All allocation
305 * requests will inherit GFP_NOFS implicitly.
306 *
307 * %GFP_USER is for userspace allocations that also need to be directly
308 * accessibly by the kernel or hardware. It is typically used by hardware
309 * for buffers that are mapped to userspace (e.g. graphics) that hardware
310 * still must DMA to. cpuset limits are enforced for these allocations.
311 *
312 * %GFP_DMA exists for historical reasons and should be avoided where possible.
313 * The flags indicates that the caller requires that the lowest zone be
314 * used (%ZONE_DMA or 16M on x86-64). Ideally, this would be removed but
315 * it would require careful auditing as some users really require it and
316 * others use the flag to avoid lowmem reserves in %ZONE_DMA and treat the
317 * lowest zone as a type of emergency reserve.
318 *
319 * %GFP_DMA32 is similar to %GFP_DMA except that the caller requires a 32-bit
04a536bf
MC
320 * address. Note that kmalloc(..., GFP_DMA32) does not return DMA32 memory
321 * because the DMA32 kmalloc cache array is not implemented.
322 * (Reason: there is no such user in kernel).
263fade5
MR
323 *
324 * %GFP_HIGHUSER is for userspace allocations that may be mapped to userspace,
325 * do not need to be directly accessible by the kernel but that cannot
326 * move once in use. An example may be a hardware allocation that maps
327 * data directly into userspace but has no addressing limitations.
328 *
329 * %GFP_HIGHUSER_MOVABLE is for userspace allocations that the kernel does not
330 * need direct access to but can use kmap() when access is required. They
331 * are expected to be movable via page reclaim or page migration. Typically,
332 * pages on the LRU would also be allocated with %GFP_HIGHUSER_MOVABLE.
333 *
334 * %GFP_TRANSHUGE and %GFP_TRANSHUGE_LIGHT are used for THP allocations. They
335 * are compound allocations that will generally fail quickly if memory is not
336 * available and will not wake kswapd/kcompactd on failure. The _LIGHT
337 * version does not attempt reclaim/compaction at all and is by default used
338 * in page fault path, while the non-light is used by khugepaged.
d0164adc
MG
339 */
340#define GFP_ATOMIC (__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)
dd56b046 341#define GFP_KERNEL (__GFP_RECLAIM | __GFP_IO | __GFP_FS)
a9bb7e62 342#define GFP_KERNEL_ACCOUNT (GFP_KERNEL | __GFP_ACCOUNT)
d0164adc 343#define GFP_NOWAIT (__GFP_KSWAPD_RECLAIM)
71baba4b
MG
344#define GFP_NOIO (__GFP_RECLAIM)
345#define GFP_NOFS (__GFP_RECLAIM | __GFP_IO)
71baba4b 346#define GFP_USER (__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)
dd56b046
MG
347#define GFP_DMA __GFP_DMA
348#define GFP_DMA32 __GFP_DMA32
2d48366b 349#define GFP_HIGHUSER (GFP_USER | __GFP_HIGHMEM)
c275c5c6
PC
350#define GFP_HIGHUSER_MOVABLE (GFP_HIGHUSER | __GFP_MOVABLE | \
351 __GFP_SKIP_KASAN_POISON)
25160354
VB
352#define GFP_TRANSHUGE_LIGHT ((GFP_HIGHUSER_MOVABLE | __GFP_COMP | \
353 __GFP_NOMEMALLOC | __GFP_NOWARN) & ~__GFP_RECLAIM)
354#define GFP_TRANSHUGE (GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)
1da177e4 355
dd56b046 356/* Convert GFP flags to their corresponding migrate type */
e12ba74d 357#define GFP_MOVABLE_MASK (__GFP_RECLAIMABLE|__GFP_MOVABLE)
016c13da 358#define GFP_MOVABLE_SHIFT 3
6cb06229 359
01c0bfe0 360static inline int gfp_migratetype(const gfp_t gfp_flags)
467c996c 361{
016c13da
MG
362 VM_WARN_ON((gfp_flags & GFP_MOVABLE_MASK) == GFP_MOVABLE_MASK);
363 BUILD_BUG_ON((1UL << GFP_MOVABLE_SHIFT) != ___GFP_MOVABLE);
364 BUILD_BUG_ON((___GFP_MOVABLE >> GFP_MOVABLE_SHIFT) != MIGRATE_MOVABLE);
467c996c
MG
365
366 if (unlikely(page_group_by_mobility_disabled))
367 return MIGRATE_UNMOVABLE;
368
369 /* Group based on mobility */
fe573327 370 return (__force unsigned long)(gfp_flags & GFP_MOVABLE_MASK) >> GFP_MOVABLE_SHIFT;
467c996c 371}
dd56b046
MG
372#undef GFP_MOVABLE_MASK
373#undef GFP_MOVABLE_SHIFT
a2f1b424 374
d0164adc
MG
375static inline bool gfpflags_allow_blocking(const gfp_t gfp_flags)
376{
543dfb2d 377 return !!(gfp_flags & __GFP_DIRECT_RECLAIM);
d0164adc
MG
378}
379
20eb4f29
TH
380/**
381 * gfpflags_normal_context - is gfp_flags a normal sleepable context?
382 * @gfp_flags: gfp_flags to test
383 *
384 * Test whether @gfp_flags indicates that the allocation is from the
385 * %current context and allowed to sleep.
386 *
387 * An allocation being allowed to block doesn't mean it owns the %current
388 * context. When direct reclaim path tries to allocate memory, the
389 * allocation context is nested inside whatever %current was doing at the
390 * time of the original allocation. The nested allocation may be allowed
391 * to block but modifying anything %current owns can corrupt the outer
392 * context's expectations.
393 *
394 * %true result from this function indicates that the allocation context
395 * can sleep and use anything that's associated with %current.
396 */
397static inline bool gfpflags_normal_context(const gfp_t gfp_flags)
398{
399 return (gfp_flags & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC)) ==
400 __GFP_DIRECT_RECLAIM;
401}
402
b70d94ee
CL
403#ifdef CONFIG_HIGHMEM
404#define OPT_ZONE_HIGHMEM ZONE_HIGHMEM
405#else
406#define OPT_ZONE_HIGHMEM ZONE_NORMAL
407#endif
408
4b51d669 409#ifdef CONFIG_ZONE_DMA
b70d94ee
CL
410#define OPT_ZONE_DMA ZONE_DMA
411#else
412#define OPT_ZONE_DMA ZONE_NORMAL
4b51d669 413#endif
b70d94ee 414
4e4785bc 415#ifdef CONFIG_ZONE_DMA32
b70d94ee
CL
416#define OPT_ZONE_DMA32 ZONE_DMA32
417#else
418#define OPT_ZONE_DMA32 ZONE_NORMAL
4e4785bc 419#endif
b70d94ee
CL
420
421/*
422 * GFP_ZONE_TABLE is a word size bitstring that is used for looking up the
ac2e8e40
HL
423 * zone to use given the lowest 4 bits of gfp_t. Entries are GFP_ZONES_SHIFT
424 * bits long and there are 16 of them to cover all possible combinations of
263ff5d8 425 * __GFP_DMA, __GFP_DMA32, __GFP_MOVABLE and __GFP_HIGHMEM.
b70d94ee
CL
426 *
427 * The zone fallback order is MOVABLE=>HIGHMEM=>NORMAL=>DMA32=>DMA.
428 * But GFP_MOVABLE is not only a zone specifier but also an allocation
429 * policy. Therefore __GFP_MOVABLE plus another zone selector is valid.
263ff5d8 430 * Only 1 bit of the lowest 3 bits (DMA,DMA32,HIGHMEM) can be set to "1".
b70d94ee
CL
431 *
432 * bit result
433 * =================
434 * 0x0 => NORMAL
435 * 0x1 => DMA or NORMAL
436 * 0x2 => HIGHMEM or NORMAL
437 * 0x3 => BAD (DMA+HIGHMEM)
4b33b695 438 * 0x4 => DMA32 or NORMAL
b70d94ee
CL
439 * 0x5 => BAD (DMA+DMA32)
440 * 0x6 => BAD (HIGHMEM+DMA32)
441 * 0x7 => BAD (HIGHMEM+DMA32+DMA)
442 * 0x8 => NORMAL (MOVABLE+0)
443 * 0x9 => DMA or NORMAL (MOVABLE+DMA)
444 * 0xa => MOVABLE (Movable is valid only if HIGHMEM is set too)
445 * 0xb => BAD (MOVABLE+HIGHMEM+DMA)
4b33b695 446 * 0xc => DMA32 or NORMAL (MOVABLE+DMA32)
b70d94ee
CL
447 * 0xd => BAD (MOVABLE+DMA32+DMA)
448 * 0xe => BAD (MOVABLE+DMA32+HIGHMEM)
449 * 0xf => BAD (MOVABLE+DMA32+HIGHMEM+DMA)
450 *
b11a7b94 451 * GFP_ZONES_SHIFT must be <= 2 on 32 bit platforms.
b70d94ee
CL
452 */
453
b11a7b94
DW
454#if defined(CONFIG_ZONE_DEVICE) && (MAX_NR_ZONES-1) <= 4
455/* ZONE_DEVICE is not a valid GFP zone specifier */
456#define GFP_ZONES_SHIFT 2
457#else
458#define GFP_ZONES_SHIFT ZONES_SHIFT
459#endif
460
461#if 16 * GFP_ZONES_SHIFT > BITS_PER_LONG
462#error GFP_ZONES_SHIFT too large to create GFP_ZONE_TABLE integer
b70d94ee
CL
463#endif
464
465#define GFP_ZONE_TABLE ( \
b11a7b94
DW
466 (ZONE_NORMAL << 0 * GFP_ZONES_SHIFT) \
467 | (OPT_ZONE_DMA << ___GFP_DMA * GFP_ZONES_SHIFT) \
468 | (OPT_ZONE_HIGHMEM << ___GFP_HIGHMEM * GFP_ZONES_SHIFT) \
469 | (OPT_ZONE_DMA32 << ___GFP_DMA32 * GFP_ZONES_SHIFT) \
470 | (ZONE_NORMAL << ___GFP_MOVABLE * GFP_ZONES_SHIFT) \
471 | (OPT_ZONE_DMA << (___GFP_MOVABLE | ___GFP_DMA) * GFP_ZONES_SHIFT) \
472 | (ZONE_MOVABLE << (___GFP_MOVABLE | ___GFP_HIGHMEM) * GFP_ZONES_SHIFT)\
473 | (OPT_ZONE_DMA32 << (___GFP_MOVABLE | ___GFP_DMA32) * GFP_ZONES_SHIFT)\
b70d94ee
CL
474)
475
476/*
263ff5d8 477 * GFP_ZONE_BAD is a bitmap for all combinations of __GFP_DMA, __GFP_DMA32
b70d94ee
CL
478 * __GFP_HIGHMEM and __GFP_MOVABLE that are not permitted. One flag per
479 * entry starting with bit 0. Bit is set if the combination is not
480 * allowed.
481 */
482#define GFP_ZONE_BAD ( \
16b56cf4
NK
483 1 << (___GFP_DMA | ___GFP_HIGHMEM) \
484 | 1 << (___GFP_DMA | ___GFP_DMA32) \
485 | 1 << (___GFP_DMA32 | ___GFP_HIGHMEM) \
486 | 1 << (___GFP_DMA | ___GFP_DMA32 | ___GFP_HIGHMEM) \
487 | 1 << (___GFP_MOVABLE | ___GFP_HIGHMEM | ___GFP_DMA) \
488 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA) \
489 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_HIGHMEM) \
490 | 1 << (___GFP_MOVABLE | ___GFP_DMA32 | ___GFP_DMA | ___GFP_HIGHMEM) \
b70d94ee
CL
491)
492
493static inline enum zone_type gfp_zone(gfp_t flags)
494{
495 enum zone_type z;
16b56cf4 496 int bit = (__force int) (flags & GFP_ZONEMASK);
b70d94ee 497
b11a7b94
DW
498 z = (GFP_ZONE_TABLE >> (bit * GFP_ZONES_SHIFT)) &
499 ((1 << GFP_ZONES_SHIFT) - 1);
82d4b577 500 VM_BUG_ON((GFP_ZONE_BAD >> bit) & 1);
b70d94ee 501 return z;
4e4785bc
CL
502}
503
1da177e4
LT
504/*
505 * There is only one page-allocator function, and two main namespaces to
506 * it. The alloc_page*() variants return 'struct page *' and as such
507 * can allocate highmem pages, the *get*page*() variants return
508 * virtual kernel addresses to the allocated page(s).
509 */
510
54a6eb5c
MG
511static inline int gfp_zonelist(gfp_t flags)
512{
c00eb15a
YB
513#ifdef CONFIG_NUMA
514 if (unlikely(flags & __GFP_THISNODE))
515 return ZONELIST_NOFALLBACK;
516#endif
517 return ZONELIST_FALLBACK;
54a6eb5c
MG
518}
519
1da177e4
LT
520/*
521 * We get the zone list from the current node and the gfp_mask.
cb152a1a 522 * This zone list contains a maximum of MAX_NUMNODES*MAX_NR_ZONES zones.
54a6eb5c
MG
523 * There are two zonelists per node, one for all zones with memory and
524 * one containing just zones from the node the zonelist belongs to.
1da177e4 525 *
d3c251ab
MR
526 * For the case of non-NUMA systems the NODE_DATA() gets optimized to
527 * &contig_page_data at compile-time.
1da177e4 528 */
0e88460d
MG
529static inline struct zonelist *node_zonelist(int nid, gfp_t flags)
530{
54a6eb5c 531 return NODE_DATA(nid)->node_zonelists + gfp_zonelist(flags);
0e88460d 532}
1da177e4
LT
533
534#ifndef HAVE_ARCH_FREE_PAGE
535static inline void arch_free_page(struct page *page, int order) { }
536#endif
cc102509
NP
537#ifndef HAVE_ARCH_ALLOC_PAGE
538static inline void arch_alloc_page(struct page *page, int order) { }
539#endif
1da177e4 540
84172f4b
MWO
541struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
542 nodemask_t *nodemask);
cc09cb13
MWO
543struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid,
544 nodemask_t *nodemask);
e4048e5d 545
387ba26f
MG
546unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
547 nodemask_t *nodemask, int nr_pages,
0f87d9d3
MG
548 struct list_head *page_list,
549 struct page **page_array);
387ba26f 550
c00b6b96
CW
551unsigned long alloc_pages_bulk_array_mempolicy(gfp_t gfp,
552 unsigned long nr_pages,
553 struct page **page_array);
554
387ba26f
MG
555/* Bulk allocate order-0 pages */
556static inline unsigned long
0f87d9d3 557alloc_pages_bulk_list(gfp_t gfp, unsigned long nr_pages, struct list_head *list)
387ba26f 558{
0f87d9d3
MG
559 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, list, NULL);
560}
561
562static inline unsigned long
563alloc_pages_bulk_array(gfp_t gfp, unsigned long nr_pages, struct page **page_array)
564{
565 return __alloc_pages_bulk(gfp, numa_mem_id(), NULL, nr_pages, NULL, page_array);
387ba26f
MG
566}
567
a2afc59f
URS
568static inline unsigned long
569alloc_pages_bulk_array_node(gfp_t gfp, int nid, unsigned long nr_pages, struct page **page_array)
570{
571 if (nid == NUMA_NO_NODE)
572 nid = numa_mem_id();
573
574 return __alloc_pages_bulk(gfp, nid, NULL, nr_pages, NULL, page_array);
575}
576
96db800f
VB
577/*
578 * Allocate pages, preferring the node given as nid. The node must be valid and
579 * online. For more general interface, see alloc_pages_node().
580 */
581static inline struct page *
582__alloc_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
1da177e4 583{
0bc35a97 584 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
8addc2d0 585 VM_WARN_ON((gfp_mask & __GFP_THISNODE) && !node_online(nid));
819a6928 586
84172f4b 587 return __alloc_pages(gfp_mask, order, nid, NULL);
1da177e4
LT
588}
589
cc09cb13
MWO
590static inline
591struct folio *__folio_alloc_node(gfp_t gfp, unsigned int order, int nid)
592{
593 VM_BUG_ON(nid < 0 || nid >= MAX_NUMNODES);
594 VM_WARN_ON((gfp & __GFP_THISNODE) && !node_online(nid));
595
596 return __folio_alloc(gfp, order, nid, NULL);
597}
598
96db800f
VB
599/*
600 * Allocate pages, preferring the node given as nid. When nid == NUMA_NO_NODE,
82c1fc71
VB
601 * prefer the current CPU's closest node. Otherwise node must be valid and
602 * online.
96db800f
VB
603 */
604static inline struct page *alloc_pages_node(int nid, gfp_t gfp_mask,
6484eb3e
MG
605 unsigned int order)
606{
0bc35a97 607 if (nid == NUMA_NO_NODE)
82c1fc71 608 nid = numa_mem_id();
6484eb3e 609
0bc35a97 610 return __alloc_pages_node(nid, gfp_mask, order);
6484eb3e
MG
611}
612
1da177e4 613#ifdef CONFIG_NUMA
d7f946d0 614struct page *alloc_pages(gfp_t gfp, unsigned int order);
cc09cb13 615struct folio *folio_alloc(gfp_t gfp, unsigned order);
f584b680
MWO
616struct folio *vma_alloc_folio(gfp_t gfp, int order, struct vm_area_struct *vma,
617 unsigned long addr, bool hugepage);
1da177e4 618#else
43ee5b6d
CH
619static inline struct page *alloc_pages(gfp_t gfp_mask, unsigned int order)
620{
621 return alloc_pages_node(numa_node_id(), gfp_mask, order);
622}
cc09cb13
MWO
623static inline struct folio *folio_alloc(gfp_t gfp, unsigned int order)
624{
625 return __folio_alloc_node(gfp, order, numa_node_id());
626}
f584b680
MWO
627#define vma_alloc_folio(gfp, order, vma, addr, hugepage) \
628 folio_alloc(gfp, order)
1da177e4
LT
629#endif
630#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)
adf88aa8
MWO
631static inline struct page *alloc_page_vma(gfp_t gfp,
632 struct vm_area_struct *vma, unsigned long addr)
633{
634 struct folio *folio = vma_alloc_folio(gfp, 0, vma, addr, false);
635
636 return &folio->page;
637}
1da177e4 638
b3c97528
HH
639extern unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order);
640extern unsigned long get_zeroed_page(gfp_t gfp_mask);
1da177e4 641
abd58f38 642void *alloc_pages_exact(size_t size, gfp_t gfp_mask) __alloc_size(1);
2be0ffe2 643void free_pages_exact(void *virt, size_t size);
595ec197 644__meminit void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) __alloc_size(2);
2be0ffe2 645
1da177e4 646#define __get_free_page(gfp_mask) \
fd23855e 647 __get_free_pages((gfp_mask), 0)
1da177e4
LT
648
649#define __get_dma_pages(gfp_mask, order) \
fd23855e 650 __get_free_pages((gfp_mask) | GFP_DMA, (order))
1da177e4 651
b3c97528
HH
652extern void __free_pages(struct page *page, unsigned int order);
653extern void free_pages(unsigned long addr, unsigned int order);
1da177e4 654
b63ae8ca 655struct page_frag_cache;
2976db80 656extern void __page_frag_cache_drain(struct page *page, unsigned int count);
b358e212
KH
657extern void *page_frag_alloc_align(struct page_frag_cache *nc,
658 unsigned int fragsz, gfp_t gfp_mask,
659 unsigned int align_mask);
660
661static inline void *page_frag_alloc(struct page_frag_cache *nc,
662 unsigned int fragsz, gfp_t gfp_mask)
663{
664 return page_frag_alloc_align(nc, fragsz, gfp_mask, ~0u);
665}
666
8c2dd3e4 667extern void page_frag_free(void *addr);
b63ae8ca 668
1da177e4 669#define __free_page(page) __free_pages((page), 0)
fd23855e 670#define free_page(addr) free_pages((addr), 0)
1da177e4
LT
671
672void page_alloc_init(void);
4037d452 673void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp);
93481ff0
VB
674void drain_all_pages(struct zone *zone);
675void drain_local_pages(struct zone *zone);
1da177e4 676
0e1cc95b 677void page_alloc_init_late(void);
0e1cc95b 678
f90ac398
MG
679/*
680 * gfp_allowed_mask is set to GFP_BOOT_MASK during early boot to restrict what
681 * GFP flags are used before interrupts are enabled. Once interrupts are
682 * enabled, it is set to __GFP_BITS_MASK while the system is running. During
683 * hibernation, it is used by PM to avoid I/O during memory allocation while
684 * devices are suspended.
685 */
dcce284a
BH
686extern gfp_t gfp_allowed_mask;
687
c93bdd0e
MG
688/* Returns true if the gfp_mask allows use of ALLOC_NO_WATERMARK */
689bool gfp_pfmemalloc_allowed(gfp_t gfp_mask);
690
c9e664f1
RW
691extern void pm_restrict_gfp_mask(void);
692extern void pm_restore_gfp_mask(void);
dcce284a 693
164cc4fe
RR
694extern gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma);
695
f90ac398
MG
696#ifdef CONFIG_PM_SLEEP
697extern bool pm_suspended_storage(void);
698#else
699static inline bool pm_suspended_storage(void)
700{
701 return false;
702}
703#endif /* CONFIG_PM_SLEEP */
704
8df995f6 705#ifdef CONFIG_CONTIG_ALLOC
041d3a8c 706/* The below functions must be run on a range from a single zone. */
0815f3d8 707extern int alloc_contig_range(unsigned long start, unsigned long end,
ca96b625 708 unsigned migratetype, gfp_t gfp_mask);
5e27a2df
AK
709extern struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
710 int nid, nodemask_t *nodemask);
080fe206 711#endif
78fa5150 712void free_contig_range(unsigned long pfn, unsigned long nr_pages);
041d3a8c 713
080fe206 714#ifdef CONFIG_CMA
47118af0
MN
715/* CMA stuff */
716extern void init_cma_reserved_pageblock(struct page *page);
041d3a8c
MN
717#endif
718
1da177e4 719#endif /* __LINUX_GFP_H */