Merge tag 'xfs-for-linus-4.2-rc4' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-block.git] / include / linux / dmaengine.h
CommitLineData
c13c8260
CL
1/*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
c13c8260
CL
14 * The full GNU General Public License is included in this distribution in the
15 * file called COPYING.
16 */
d2ebfb33
RKAL
17#ifndef LINUX_DMAENGINE_H
18#define LINUX_DMAENGINE_H
1c0f16e5 19
c13c8260 20#include <linux/device.h>
0ad7c000 21#include <linux/err.h>
c13c8260 22#include <linux/uio.h>
187f1882 23#include <linux/bug.h>
90b44f8f 24#include <linux/scatterlist.h>
a8efa9d6 25#include <linux/bitmap.h>
dcc043dc 26#include <linux/types.h>
a8efa9d6 27#include <asm/page.h>
b7f080cf 28
c13c8260 29/**
fe4ada2d 30 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
31 *
32 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
33 */
34typedef s32 dma_cookie_t;
76bd061f 35#define DMA_MIN_COOKIE 1
c13c8260 36
71ea1483
DC
37static inline int dma_submit_error(dma_cookie_t cookie)
38{
39 return cookie < 0 ? cookie : 0;
40}
c13c8260
CL
41
42/**
43 * enum dma_status - DMA transaction status
adfedd9a 44 * @DMA_COMPLETE: transaction completed
c13c8260 45 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 46 * @DMA_PAUSED: transaction is paused
c13c8260
CL
47 * @DMA_ERROR: transaction failed
48 */
49enum dma_status {
7db5f727 50 DMA_COMPLETE,
c13c8260 51 DMA_IN_PROGRESS,
07934481 52 DMA_PAUSED,
c13c8260
CL
53 DMA_ERROR,
54};
55
7405f74b
DW
56/**
57 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
58 *
59 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
60 * automatically set as dma devices are registered.
7405f74b
DW
61 */
62enum dma_transaction_type {
63 DMA_MEMCPY,
64 DMA_XOR,
b2f46fd8 65 DMA_PQ,
099f53cb
DW
66 DMA_XOR_VAL,
67 DMA_PQ_VAL,
4983a501 68 DMA_MEMSET,
7405f74b 69 DMA_INTERRUPT,
a86ee03c 70 DMA_SG,
59b5ec21 71 DMA_PRIVATE,
138f4c35 72 DMA_ASYNC_TX,
dc0ee643 73 DMA_SLAVE,
782bc950 74 DMA_CYCLIC,
b14dab79 75 DMA_INTERLEAVE,
7405f74b 76/* last transaction type for creation of the capabilities mask */
b14dab79
JB
77 DMA_TX_TYPE_END,
78};
dc0ee643 79
49920bc6
VK
80/**
81 * enum dma_transfer_direction - dma transfer mode and direction indicator
82 * @DMA_MEM_TO_MEM: Async/Memcpy mode
83 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
84 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
85 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
86 */
87enum dma_transfer_direction {
88 DMA_MEM_TO_MEM,
89 DMA_MEM_TO_DEV,
90 DMA_DEV_TO_MEM,
91 DMA_DEV_TO_DEV,
62268ce9 92 DMA_TRANS_NONE,
49920bc6 93};
7405f74b 94
b14dab79
JB
95/**
96 * Interleaved Transfer Request
97 * ----------------------------
98 * A chunk is collection of contiguous bytes to be transfered.
99 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
100 * ICGs may or maynot change between chunks.
101 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
102 * that when repeated an integral number of times, specifies the transfer.
103 * A transfer template is specification of a Frame, the number of times
104 * it is to be repeated and other per-transfer attributes.
105 *
106 * Practically, a client driver would have ready a template for each
107 * type of transfer it is going to need during its lifetime and
108 * set only 'src_start' and 'dst_start' before submitting the requests.
109 *
110 *
111 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
112 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
113 *
114 * == Chunk size
115 * ... ICG
116 */
117
118/**
119 * struct data_chunk - Element of scatter-gather list that makes a frame.
120 * @size: Number of bytes to read from source.
121 * size_dst := fn(op, size_src), so doesn't mean much for destination.
122 * @icg: Number of bytes to jump after last src/dst address of this
123 * chunk and before first src/dst address for next chunk.
124 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
125 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
126 * @dst_icg: Number of bytes to jump after last dst address of this
127 * chunk and before the first dst address for next chunk.
128 * Ignored if dst_inc is true and dst_sgl is false.
129 * @src_icg: Number of bytes to jump after last src address of this
130 * chunk and before the first src address for next chunk.
131 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
132 */
133struct data_chunk {
134 size_t size;
135 size_t icg;
e1031dc1
MR
136 size_t dst_icg;
137 size_t src_icg;
b14dab79
JB
138};
139
140/**
141 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
142 * and attributes.
143 * @src_start: Bus address of source for the first chunk.
144 * @dst_start: Bus address of destination for the first chunk.
145 * @dir: Specifies the type of Source and Destination.
146 * @src_inc: If the source address increments after reading from it.
147 * @dst_inc: If the destination address increments after writing to it.
148 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
149 * Otherwise, source is read contiguously (icg ignored).
150 * Ignored if src_inc is false.
151 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
152 * Otherwise, destination is filled contiguously (icg ignored).
153 * Ignored if dst_inc is false.
154 * @numf: Number of frames in this template.
155 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
156 * @sgl: Array of {chunk,icg} pairs that make up a frame.
157 */
158struct dma_interleaved_template {
159 dma_addr_t src_start;
160 dma_addr_t dst_start;
161 enum dma_transfer_direction dir;
162 bool src_inc;
163 bool dst_inc;
164 bool src_sgl;
165 bool dst_sgl;
166 size_t numf;
167 size_t frame_size;
168 struct data_chunk sgl[0];
169};
170
d4c56f97 171/**
636bdeaa 172 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 173 * control completion, and communicate status.
d4c56f97 174 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 175 * this transaction
a88f6667 176 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
b2f46fd8
DW
177 * acknowledges receipt, i.e. has has a chance to establish any dependency
178 * chains
b2f46fd8
DW
179 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
180 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
181 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
182 * sources that were the result of a previous operation, in the case of a PQ
183 * operation it continues the calculation with new sources
0403e382
DW
184 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
185 * on the result of this operation
d4c56f97 186 */
636bdeaa 187enum dma_ctrl_flags {
d4c56f97 188 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 189 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
190 DMA_PREP_PQ_DISABLE_P = (1 << 2),
191 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
192 DMA_PREP_CONTINUE = (1 << 4),
193 DMA_PREP_FENCE = (1 << 5),
d4c56f97
DW
194};
195
ad283ea4
DW
196/**
197 * enum sum_check_bits - bit position of pq_check_flags
198 */
199enum sum_check_bits {
200 SUM_CHECK_P = 0,
201 SUM_CHECK_Q = 1,
202};
203
204/**
205 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
206 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
207 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
208 */
209enum sum_check_flags {
210 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
211 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
212};
213
214
7405f74b
DW
215/**
216 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
217 * See linux/cpumask.h
218 */
219typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
220
c13c8260
CL
221/**
222 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
c13c8260
CL
223 * @memcpy_count: transaction counter
224 * @bytes_transferred: byte counter
225 */
226
227struct dma_chan_percpu {
c13c8260
CL
228 /* stats */
229 unsigned long memcpy_count;
230 unsigned long bytes_transferred;
231};
232
56f13c0d
PU
233/**
234 * struct dma_router - DMA router structure
235 * @dev: pointer to the DMA router device
236 * @route_free: function to be called when the route can be disconnected
237 */
238struct dma_router {
239 struct device *dev;
240 void (*route_free)(struct device *dev, void *route_data);
241};
242
c13c8260
CL
243/**
244 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 245 * @device: ptr to the dma device who supplies this channel, always !%NULL
c13c8260 246 * @cookie: last cookie value returned to client
4d4e58de 247 * @completed_cookie: last completed cookie for this channel
fe4ada2d 248 * @chan_id: channel ID for sysfs
41d5e59c 249 * @dev: class device for sysfs
c13c8260
CL
250 * @device_node: used to add this to the device chan list
251 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 252 * @client_count: how many clients are using this channel
bec08513 253 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
254 * @router: pointer to the DMA router structure
255 * @route_data: channel specific data for the router
287d8592 256 * @private: private data for certain client-channel associations
c13c8260
CL
257 */
258struct dma_chan {
c13c8260
CL
259 struct dma_device *device;
260 dma_cookie_t cookie;
4d4e58de 261 dma_cookie_t completed_cookie;
c13c8260
CL
262
263 /* sysfs */
264 int chan_id;
41d5e59c 265 struct dma_chan_dev *dev;
c13c8260 266
c13c8260 267 struct list_head device_node;
a29d8b8e 268 struct dma_chan_percpu __percpu *local;
7cc5bf9a 269 int client_count;
bec08513 270 int table_count;
56f13c0d
PU
271
272 /* DMA router */
273 struct dma_router *router;
274 void *route_data;
275
287d8592 276 void *private;
c13c8260
CL
277};
278
41d5e59c
DW
279/**
280 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
281 * @chan: driver channel device
282 * @device: sysfs device
283 * @dev_id: parent dma_device dev_id
284 * @idr_ref: reference count to gate release of dma_device dev_id
41d5e59c
DW
285 */
286struct dma_chan_dev {
287 struct dma_chan *chan;
288 struct device device;
864498aa
DW
289 int dev_id;
290 atomic_t *idr_ref;
41d5e59c
DW
291};
292
c156d0a5 293/**
ba730340 294 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
295 * device, source or target buses
296 */
297enum dma_slave_buswidth {
298 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
299 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
300 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 301 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
302 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
303 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
304 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
305 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
306 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
c156d0a5
LW
307};
308
309/**
310 * struct dma_slave_config - dma slave channel runtime config
311 * @direction: whether the data shall go in or out on this slave
397321f4 312 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
313 * legal values. DEPRECATED, drivers should use the direction argument
314 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
315 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
316 * @src_addr: this is the physical address where DMA slave data
317 * should be read (RX), if the source is memory this argument is
318 * ignored.
319 * @dst_addr: this is the physical address where DMA slave data
320 * should be written (TX), if the source is memory this argument
321 * is ignored.
322 * @src_addr_width: this is the width in bytes of the source (RX)
323 * register where DMA data shall be read. If the source
324 * is memory this may be ignored depending on architecture.
325 * Legal values: 1, 2, 4, 8.
326 * @dst_addr_width: same as src_addr_width but for destination
327 * target (TX) mutatis mutandis.
328 * @src_maxburst: the maximum number of words (note: words, as in
329 * units of the src_addr_width member, not bytes) that can be sent
330 * in one burst to the device. Typically something like half the
331 * FIFO depth on I/O peripherals so you don't overflow it. This
332 * may or may not be applicable on memory sources.
333 * @dst_maxburst: same as src_maxburst but for destination target
334 * mutatis mutandis.
dcc043dc
VK
335 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
336 * with 'true' if peripheral should be flow controller. Direction will be
337 * selected at Runtime.
4fd1e324
LD
338 * @slave_id: Slave requester id. Only valid for slave channels. The dma
339 * slave peripheral will have unique id as dma requester which need to be
340 * pass as slave config.
c156d0a5
LW
341 *
342 * This struct is passed in as configuration data to a DMA engine
343 * in order to set up a certain channel for DMA transport at runtime.
344 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
345 * callback in the dma_device structure, device_config and this struct
346 * will then be passed in as an argument to the function.
c156d0a5 347 *
7cbccb55
LPC
348 * The rationale for adding configuration information to this struct is as
349 * follows: if it is likely that more than one DMA slave controllers in
350 * the world will support the configuration option, then make it generic.
351 * If not: if it is fixed so that it be sent in static from the platform
352 * data, then prefer to do that.
c156d0a5
LW
353 */
354struct dma_slave_config {
49920bc6 355 enum dma_transfer_direction direction;
c156d0a5
LW
356 dma_addr_t src_addr;
357 dma_addr_t dst_addr;
358 enum dma_slave_buswidth src_addr_width;
359 enum dma_slave_buswidth dst_addr_width;
360 u32 src_maxburst;
361 u32 dst_maxburst;
dcc043dc 362 bool device_fc;
4fd1e324 363 unsigned int slave_id;
c156d0a5
LW
364};
365
50720563
LPC
366/**
367 * enum dma_residue_granularity - Granularity of the reported transfer residue
368 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
369 * DMA channel is only able to tell whether a descriptor has been completed or
370 * not, which means residue reporting is not supported by this channel. The
371 * residue field of the dma_tx_state field will always be 0.
372 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
373 * completed segment of the transfer (For cyclic transfers this is after each
374 * period). This is typically implemented by having the hardware generate an
375 * interrupt after each transferred segment and then the drivers updates the
376 * outstanding residue by the size of the segment. Another possibility is if
377 * the hardware supports scatter-gather and the segment descriptor has a field
378 * which gets set after the segment has been completed. The driver then counts
379 * the number of segments without the flag set to compute the residue.
380 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
381 * burst. This is typically only supported if the hardware has a progress
382 * register of some sort (E.g. a register with the current read/write address
383 * or a register with the amount of bursts/beats/bytes that have been
384 * transferred or still need to be transferred).
385 */
386enum dma_residue_granularity {
387 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
388 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
389 DMA_RESIDUE_GRANULARITY_BURST = 2,
390};
391
221a27c7
VK
392/* struct dma_slave_caps - expose capabilities of a slave channel only
393 *
394 * @src_addr_widths: bit mask of src addr widths the channel supports
ceacbdbf 395 * @dst_addr_widths: bit mask of dstn addr widths the channel supports
221a27c7
VK
396 * @directions: bit mask of slave direction the channel supported
397 * since the enum dma_transfer_direction is not defined as bits for each
398 * type of direction, the dma controller should fill (1 << <TYPE>) and same
399 * should be checked by controller as well
400 * @cmd_pause: true, if pause and thereby resume is supported
401 * @cmd_terminate: true, if terminate cmd is supported
50720563 402 * @residue_granularity: granularity of the reported transfer residue
221a27c7
VK
403 */
404struct dma_slave_caps {
405 u32 src_addr_widths;
ceacbdbf 406 u32 dst_addr_widths;
221a27c7
VK
407 u32 directions;
408 bool cmd_pause;
409 bool cmd_terminate;
50720563 410 enum dma_residue_granularity residue_granularity;
221a27c7
VK
411};
412
41d5e59c
DW
413static inline const char *dma_chan_name(struct dma_chan *chan)
414{
415 return dev_name(&chan->dev->device);
416}
d379b01e 417
c13c8260
CL
418void dma_chan_cleanup(struct kref *kref);
419
59b5ec21
DW
420/**
421 * typedef dma_filter_fn - callback filter for dma_request_channel
422 * @chan: channel to be reviewed
423 * @filter_param: opaque parameter passed through dma_request_channel
424 *
425 * When this optional parameter is specified in a call to dma_request_channel a
426 * suitable channel is passed to this routine for further dispositioning before
427 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
428 * satisfies the given capability mask. It returns 'true' to indicate that the
429 * channel is suitable.
59b5ec21 430 */
7dd60251 431typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 432
7405f74b 433typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62
DW
434
435struct dmaengine_unmap_data {
c1f43dd9 436 u8 map_cnt;
d38a8c62
DW
437 u8 to_cnt;
438 u8 from_cnt;
439 u8 bidi_cnt;
440 struct device *dev;
441 struct kref kref;
442 size_t len;
443 dma_addr_t addr[0];
444};
445
7405f74b
DW
446/**
447 * struct dma_async_tx_descriptor - async transaction descriptor
448 * ---dma generic offload fields---
449 * @cookie: tracking cookie for this transaction, set to -EBUSY if
450 * this tx is sitting on a dependency list
636bdeaa
DW
451 * @flags: flags to augment operation preparation, control completion, and
452 * communicate status
7405f74b 453 * @phys: physical address of the descriptor
7405f74b 454 * @chan: target channel for this operation
aba96bad
VK
455 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
456 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
457 * @callback: routine to call after this operation is complete
458 * @callback_param: general parameter to pass to the callback routine
459 * ---async_tx api specific fields---
19242d72 460 * @next: at completion submit this descriptor
7405f74b 461 * @parent: pointer to the next level up in the dependency chain
19242d72 462 * @lock: protect the parent and next pointers
7405f74b
DW
463 */
464struct dma_async_tx_descriptor {
465 dma_cookie_t cookie;
636bdeaa 466 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 467 dma_addr_t phys;
7405f74b
DW
468 struct dma_chan *chan;
469 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
7405f74b
DW
470 dma_async_tx_callback callback;
471 void *callback_param;
d38a8c62 472 struct dmaengine_unmap_data *unmap;
5fc6d897 473#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 474 struct dma_async_tx_descriptor *next;
7405f74b
DW
475 struct dma_async_tx_descriptor *parent;
476 spinlock_t lock;
caa20d97 477#endif
7405f74b
DW
478};
479
89716462 480#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
481static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
482 struct dmaengine_unmap_data *unmap)
483{
484 kref_get(&unmap->kref);
485 tx->unmap = unmap;
486}
487
89716462
DW
488struct dmaengine_unmap_data *
489dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 490void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
491#else
492static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
493 struct dmaengine_unmap_data *unmap)
494{
495}
496static inline struct dmaengine_unmap_data *
497dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
498{
499 return NULL;
500}
501static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
502{
503}
504#endif
45c463ae 505
d38a8c62
DW
506static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
507{
508 if (tx->unmap) {
45c463ae 509 dmaengine_unmap_put(tx->unmap);
d38a8c62
DW
510 tx->unmap = NULL;
511 }
512}
513
5fc6d897 514#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
515static inline void txd_lock(struct dma_async_tx_descriptor *txd)
516{
517}
518static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
519{
520}
521static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
522{
523 BUG();
524}
525static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
526{
527}
528static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
529{
530}
531static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
532{
533 return NULL;
534}
535static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
536{
537 return NULL;
538}
539
540#else
541static inline void txd_lock(struct dma_async_tx_descriptor *txd)
542{
543 spin_lock_bh(&txd->lock);
544}
545static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
546{
547 spin_unlock_bh(&txd->lock);
548}
549static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
550{
551 txd->next = next;
552 next->parent = txd;
553}
554static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
555{
556 txd->parent = NULL;
557}
558static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
559{
560 txd->next = NULL;
561}
562static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
563{
564 return txd->parent;
565}
566static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
567{
568 return txd->next;
569}
570#endif
571
07934481
LW
572/**
573 * struct dma_tx_state - filled in to report the status of
574 * a transfer.
575 * @last: last completed DMA cookie
576 * @used: last issued DMA cookie (i.e. the one in progress)
577 * @residue: the remaining number of bytes left to transmit
578 * on the selected transfer for states DMA_IN_PROGRESS and
579 * DMA_PAUSED if this is implemented in the driver, else 0
580 */
581struct dma_tx_state {
582 dma_cookie_t last;
583 dma_cookie_t used;
584 u32 residue;
585};
586
c13c8260
CL
587/**
588 * struct dma_device - info on the entity supplying DMA services
589 * @chancnt: how many DMA channels are supported
0f571515 590 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
591 * @channels: the list of struct dma_chan
592 * @global_node: list_head for global dma_device_list
7405f74b
DW
593 * @cap_mask: one or more dma_capability flags
594 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 595 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
596 * @copy_align: alignment shift for memcpy operations
597 * @xor_align: alignment shift for xor operations
598 * @pq_align: alignment shift for pq operations
4983a501 599 * @fill_align: alignment shift for memset operations
fe4ada2d 600 * @dev_id: unique device ID
7405f74b 601 * @dev: struct device reference for dma mapping api
cb8cea51
MR
602 * @src_addr_widths: bit mask of src addr widths the device supports
603 * @dst_addr_widths: bit mask of dst addr widths the device supports
604 * @directions: bit mask of slave direction the device supports since
605 * the enum dma_transfer_direction is not defined as bits for
606 * each type of direction, the dma controller should fill (1 <<
607 * <TYPE>) and same should be checked by controller as well
608 * @residue_granularity: granularity of the transfer residue reported
609 * by tx_status
fe4ada2d
RD
610 * @device_alloc_chan_resources: allocate resources and return the
611 * number of allocated descriptors
612 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
613 * @device_prep_dma_memcpy: prepares a memcpy operation
614 * @device_prep_dma_xor: prepares a xor operation
099f53cb 615 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
616 * @device_prep_dma_pq: prepares a pq operation
617 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 618 * @device_prep_dma_memset: prepares a memset operation
7405f74b 619 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 620 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
621 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
622 * The function takes a buffer of size buf_len. The callback function will
623 * be called after period_len bytes have been transferred.
b14dab79 624 * @device_prep_interleaved_dma: Transfer expression in a generic way.
94a73e30
MR
625 * @device_config: Pushes a new configuration to a channel, return 0 or an error
626 * code
23a3ea2f
MR
627 * @device_pause: Pauses any transfer happening on a channel. Returns
628 * 0 or an error code
629 * @device_resume: Resumes any transfer on a channel previously
630 * paused. Returns 0 or an error code
7fa0cf46
MR
631 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
632 * or an error code
07934481
LW
633 * @device_tx_status: poll for transaction completion, the optional
634 * txstate parameter can be supplied with a pointer to get a
25985edc 635 * struct with auxiliary transfer status information, otherwise the call
07934481 636 * will just return a simple status code
7405f74b 637 * @device_issue_pending: push pending transactions to hardware
c13c8260
CL
638 */
639struct dma_device {
640
641 unsigned int chancnt;
0f571515 642 unsigned int privatecnt;
c13c8260
CL
643 struct list_head channels;
644 struct list_head global_node;
7405f74b 645 dma_cap_mask_t cap_mask;
b2f46fd8
DW
646 unsigned short max_xor;
647 unsigned short max_pq;
83544ae9
DW
648 u8 copy_align;
649 u8 xor_align;
650 u8 pq_align;
4983a501 651 u8 fill_align;
b2f46fd8 652 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 653
c13c8260 654 int dev_id;
7405f74b 655 struct device *dev;
c13c8260 656
cb8cea51
MR
657 u32 src_addr_widths;
658 u32 dst_addr_widths;
659 u32 directions;
660 enum dma_residue_granularity residue_granularity;
661
aa1e6f1a 662 int (*device_alloc_chan_resources)(struct dma_chan *chan);
c13c8260 663 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
664
665 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 666 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 667 size_t len, unsigned long flags);
7405f74b 668 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 669 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 670 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 671 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 672 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 673 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
674 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
675 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
676 unsigned int src_cnt, const unsigned char *scf,
677 size_t len, unsigned long flags);
678 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
679 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
680 unsigned int src_cnt, const unsigned char *scf, size_t len,
681 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
682 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
683 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
684 unsigned long flags);
7405f74b 685 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 686 struct dma_chan *chan, unsigned long flags);
a86ee03c
IS
687 struct dma_async_tx_descriptor *(*device_prep_dma_sg)(
688 struct dma_chan *chan,
689 struct scatterlist *dst_sg, unsigned int dst_nents,
690 struct scatterlist *src_sg, unsigned int src_nents,
691 unsigned long flags);
7405f74b 692
dc0ee643
HS
693 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
694 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 695 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 696 unsigned long flags, void *context);
782bc950
SH
697 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
698 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 699 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 700 unsigned long flags);
b14dab79
JB
701 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
702 struct dma_chan *chan, struct dma_interleaved_template *xt,
703 unsigned long flags);
94a73e30
MR
704
705 int (*device_config)(struct dma_chan *chan,
706 struct dma_slave_config *config);
23a3ea2f
MR
707 int (*device_pause)(struct dma_chan *chan);
708 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 709 int (*device_terminate_all)(struct dma_chan *chan);
dc0ee643 710
07934481
LW
711 enum dma_status (*device_tx_status)(struct dma_chan *chan,
712 dma_cookie_t cookie,
713 struct dma_tx_state *txstate);
7405f74b 714 void (*device_issue_pending)(struct dma_chan *chan);
c13c8260
CL
715};
716
6e3ecaf0
SH
717static inline int dmaengine_slave_config(struct dma_chan *chan,
718 struct dma_slave_config *config)
719{
94a73e30
MR
720 if (chan->device->device_config)
721 return chan->device->device_config(chan, config);
722
2c44ad91 723 return -ENOSYS;
6e3ecaf0
SH
724}
725
61cc13a5
AS
726static inline bool is_slave_direction(enum dma_transfer_direction direction)
727{
728 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
729}
730
90b44f8f 731static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 732 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 733 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
734{
735 struct scatterlist sg;
922ee08b
KM
736 sg_init_table(&sg, 1);
737 sg_dma_address(&sg) = buf;
738 sg_dma_len(&sg) = len;
90b44f8f 739
185ecb5f
AB
740 return chan->device->device_prep_slave_sg(chan, &sg, 1,
741 dir, flags, NULL);
90b44f8f
VK
742}
743
16052827
AB
744static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
745 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
746 enum dma_transfer_direction dir, unsigned long flags)
747{
748 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 749 dir, flags, NULL);
16052827
AB
750}
751
e42d98eb
AB
752#ifdef CONFIG_RAPIDIO_DMA_ENGINE
753struct rio_dma_ext;
754static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
755 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
756 enum dma_transfer_direction dir, unsigned long flags,
757 struct rio_dma_ext *rio_ext)
758{
759 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
760 dir, flags, rio_ext);
761}
762#endif
763
16052827
AB
764static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
765 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
766 size_t period_len, enum dma_transfer_direction dir,
767 unsigned long flags)
16052827
AB
768{
769 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 770 period_len, dir, flags);
a14acb4a
BS
771}
772
773static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
774 struct dma_chan *chan, struct dma_interleaved_template *xt,
775 unsigned long flags)
776{
777 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
778}
779
4983a501
MR
780static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
781 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
782 unsigned long flags)
783{
784 if (!chan || !chan->device)
785 return NULL;
786
787 return chan->device->device_prep_dma_memset(chan, dest, value,
788 len, flags);
789}
790
b65612a8
VK
791static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_sg(
792 struct dma_chan *chan,
793 struct scatterlist *dst_sg, unsigned int dst_nents,
794 struct scatterlist *src_sg, unsigned int src_nents,
795 unsigned long flags)
796{
797 return chan->device->device_prep_dma_sg(chan, dst_sg, dst_nents,
798 src_sg, src_nents, flags);
799}
800
6e3ecaf0
SH
801static inline int dmaengine_terminate_all(struct dma_chan *chan)
802{
7fa0cf46
MR
803 if (chan->device->device_terminate_all)
804 return chan->device->device_terminate_all(chan);
805
2c44ad91 806 return -ENOSYS;
6e3ecaf0
SH
807}
808
809static inline int dmaengine_pause(struct dma_chan *chan)
810{
23a3ea2f
MR
811 if (chan->device->device_pause)
812 return chan->device->device_pause(chan);
813
2c44ad91 814 return -ENOSYS;
6e3ecaf0
SH
815}
816
817static inline int dmaengine_resume(struct dma_chan *chan)
818{
23a3ea2f
MR
819 if (chan->device->device_resume)
820 return chan->device->device_resume(chan);
821
2c44ad91 822 return -ENOSYS;
6e3ecaf0
SH
823}
824
3052cc2c
LPC
825static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
826 dma_cookie_t cookie, struct dma_tx_state *state)
827{
828 return chan->device->device_tx_status(chan, cookie, state);
829}
830
98d530fe 831static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
832{
833 return desc->tx_submit(desc);
834}
835
83544ae9
DW
836static inline bool dmaengine_check_align(u8 align, size_t off1, size_t off2, size_t len)
837{
838 size_t mask;
839
840 if (!align)
841 return true;
842 mask = (1 << align) - 1;
843 if (mask & (off1 | off2 | len))
844 return false;
845 return true;
846}
847
848static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
849 size_t off2, size_t len)
850{
851 return dmaengine_check_align(dev->copy_align, off1, off2, len);
852}
853
854static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
855 size_t off2, size_t len)
856{
857 return dmaengine_check_align(dev->xor_align, off1, off2, len);
858}
859
860static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
861 size_t off2, size_t len)
862{
863 return dmaengine_check_align(dev->pq_align, off1, off2, len);
864}
865
4983a501
MR
866static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
867 size_t off2, size_t len)
868{
869 return dmaengine_check_align(dev->fill_align, off1, off2, len);
870}
871
b2f46fd8
DW
872static inline void
873dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
874{
875 dma->max_pq = maxpq;
876 if (has_pq_continue)
877 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
878}
879
880static inline bool dmaf_continue(enum dma_ctrl_flags flags)
881{
882 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
883}
884
885static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
886{
887 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
888
889 return (flags & mask) == mask;
890}
891
892static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
893{
894 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
895}
896
d3f3cf85 897static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
898{
899 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
900}
901
902/* dma_maxpq - reduce maxpq in the face of continued operations
903 * @dma - dma device with PQ capability
904 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
905 *
906 * When an engine does not support native continuation we need 3 extra
907 * source slots to reuse P and Q with the following coefficients:
908 * 1/ {00} * P : remove P from Q', but use it as a source for P'
909 * 2/ {01} * Q : use Q to continue Q' calculation
910 * 3/ {00} * Q : subtract Q from P' to cancel (2)
911 *
912 * In the case where P is disabled we only need 1 extra source:
913 * 1/ {01} * Q : use Q to continue Q' calculation
914 */
915static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
916{
917 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
918 return dma_dev_to_maxpq(dma);
919 else if (dmaf_p_disabled_continue(flags))
920 return dma_dev_to_maxpq(dma) - 1;
921 else if (dmaf_continue(flags))
922 return dma_dev_to_maxpq(dma) - 3;
923 BUG();
924}
925
87d001ef
MR
926static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
927 size_t dir_icg)
928{
929 if (inc) {
930 if (dir_icg)
931 return dir_icg;
932 else if (sgl)
933 return icg;
934 }
935
936 return 0;
937}
938
939static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
940 struct data_chunk *chunk)
941{
942 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
943 chunk->icg, chunk->dst_icg);
944}
945
946static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
947 struct data_chunk *chunk)
948{
949 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
950 chunk->icg, chunk->src_icg);
951}
952
c13c8260
CL
953/* --- public DMA engine API --- */
954
649274d9 955#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
956void dmaengine_get(void);
957void dmaengine_put(void);
649274d9
DW
958#else
959static inline void dmaengine_get(void)
960{
961}
962static inline void dmaengine_put(void)
963{
964}
965#endif
966
729b5d1b
DW
967#ifdef CONFIG_ASYNC_TX_DMA
968#define async_dmaengine_get() dmaengine_get()
969#define async_dmaengine_put() dmaengine_put()
5fc6d897 970#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
971#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
972#else
729b5d1b 973#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 974#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
975#else
976static inline void async_dmaengine_get(void)
977{
978}
979static inline void async_dmaengine_put(void)
980{
981}
982static inline struct dma_chan *
983async_dma_find_channel(enum dma_transaction_type type)
984{
985 return NULL;
986}
138f4c35 987#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 988void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 989 struct dma_chan *chan);
c13c8260 990
0839875e 991static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 992{
636bdeaa
DW
993 tx->flags |= DMA_CTRL_ACK;
994}
995
ef560682
GL
996static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
997{
998 tx->flags &= ~DMA_CTRL_ACK;
999}
1000
0839875e 1001static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1002{
0839875e 1003 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1004}
1005
7405f74b
DW
1006#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1007static inline void
1008__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1009{
7405f74b
DW
1010 set_bit(tx_type, dstp->bits);
1011}
c13c8260 1012
0f571515
AN
1013#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1014static inline void
1015__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1016{
1017 clear_bit(tx_type, dstp->bits);
1018}
1019
33df8ca0
DW
1020#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1021static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1022{
1023 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1024}
1025
7405f74b
DW
1026#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1027static inline int
1028__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1029{
1030 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1031}
1032
7405f74b 1033#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1034 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1035
c13c8260 1036/**
7405f74b 1037 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1038 * @chan: target DMA channel
c13c8260
CL
1039 *
1040 * This allows drivers to push copies to HW in batches,
1041 * reducing MMIO writes where possible.
1042 */
7405f74b 1043static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1044{
ec8670f1 1045 chan->device->device_issue_pending(chan);
c13c8260
CL
1046}
1047
1048/**
7405f74b 1049 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1050 * @chan: DMA channel
1051 * @cookie: transaction identifier to check status of
1052 * @last: returns last completed cookie, can be NULL
1053 * @used: returns last issued cookie, can be NULL
1054 *
1055 * If @last and @used are passed in, upon return they reflect the driver
1056 * internal state and can be used with dma_async_is_complete() to check
1057 * the status of multiple cookies without re-checking hardware state.
1058 */
7405f74b 1059static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1060 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1061{
07934481
LW
1062 struct dma_tx_state state;
1063 enum dma_status status;
1064
1065 status = chan->device->device_tx_status(chan, cookie, &state);
1066 if (last)
1067 *last = state.last;
1068 if (used)
1069 *used = state.used;
1070 return status;
c13c8260
CL
1071}
1072
1073/**
1074 * dma_async_is_complete - test a cookie against chan state
1075 * @cookie: transaction identifier to test status of
1076 * @last_complete: last know completed transaction
1077 * @last_used: last cookie value handed out
1078 *
e239345f 1079 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1080 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1081 */
1082static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1083 dma_cookie_t last_complete, dma_cookie_t last_used)
1084{
1085 if (last_complete <= last_used) {
1086 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1087 return DMA_COMPLETE;
c13c8260
CL
1088 } else {
1089 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1090 return DMA_COMPLETE;
c13c8260
CL
1091 }
1092 return DMA_IN_PROGRESS;
1093}
1094
bca34692
DW
1095static inline void
1096dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1097{
1098 if (st) {
1099 st->last = last;
1100 st->used = used;
1101 st->residue = residue;
1102 }
1103}
1104
07f2211e 1105#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1106struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1107enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1108enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1109void dma_issue_pending_all(void);
a53e28da
LPC
1110struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
1111 dma_filter_fn fn, void *fn_param);
0ad7c000
SW
1112struct dma_chan *dma_request_slave_channel_reason(struct device *dev,
1113 const char *name);
bef29ec5 1114struct dma_chan *dma_request_slave_channel(struct device *dev, const char *name);
8f33d527 1115void dma_release_channel(struct dma_chan *chan);
fdb8df99 1116int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1117#else
4a43f394
JM
1118static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1119{
1120 return NULL;
1121}
1122static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1123{
adfedd9a 1124 return DMA_COMPLETE;
4a43f394 1125}
07f2211e
DW
1126static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1127{
adfedd9a 1128 return DMA_COMPLETE;
07f2211e 1129}
c50331e8
DW
1130static inline void dma_issue_pending_all(void)
1131{
8f33d527 1132}
a53e28da 1133static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
8f33d527
GL
1134 dma_filter_fn fn, void *fn_param)
1135{
1136 return NULL;
1137}
0ad7c000
SW
1138static inline struct dma_chan *dma_request_slave_channel_reason(
1139 struct device *dev, const char *name)
1140{
1141 return ERR_PTR(-ENODEV);
1142}
9a6cecc8 1143static inline struct dma_chan *dma_request_slave_channel(struct device *dev,
bef29ec5 1144 const char *name)
9a6cecc8 1145{
d18d5f59 1146 return NULL;
9a6cecc8 1147}
8f33d527
GL
1148static inline void dma_release_channel(struct dma_chan *chan)
1149{
c50331e8 1150}
fdb8df99
LP
1151static inline int dma_get_slave_caps(struct dma_chan *chan,
1152 struct dma_slave_caps *caps)
1153{
1154 return -ENXIO;
1155}
07f2211e 1156#endif
c13c8260
CL
1157
1158/* --- DMA device --- */
1159
1160int dma_async_device_register(struct dma_device *device);
1161void dma_async_device_unregister(struct dma_device *device);
07f2211e 1162void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
7bb587f4 1163struct dma_chan *dma_get_slave_channel(struct dma_chan *chan);
8010dad5 1164struct dma_chan *dma_get_any_slave_channel(struct dma_device *device);
59b5ec21 1165#define dma_request_channel(mask, x, y) __dma_request_channel(&(mask), x, y)
864ef69b
MP
1166#define dma_request_slave_channel_compat(mask, x, y, dev, name) \
1167 __dma_request_slave_channel_compat(&(mask), x, y, dev, name)
1168
1169static inline struct dma_chan
a53e28da
LPC
1170*__dma_request_slave_channel_compat(const dma_cap_mask_t *mask,
1171 dma_filter_fn fn, void *fn_param,
1172 struct device *dev, char *name)
864ef69b
MP
1173{
1174 struct dma_chan *chan;
1175
1176 chan = dma_request_slave_channel(dev, name);
1177 if (chan)
1178 return chan;
1179
1180 return __dma_request_channel(mask, fn, fn_param);
1181}
c13c8260 1182#endif /* DMAENGINE_H */