Merge tag 'ieee802154-for-davem-2021-08-12' of git://git.kernel.org/pub/scm/linux...
[linux-block.git] / include / linux / dmaengine.h
CommitLineData
9ab65aff 1/* SPDX-License-Identifier: GPL-2.0-or-later */
c13c8260
CL
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
c13c8260 4 */
d2ebfb33
RKAL
5#ifndef LINUX_DMAENGINE_H
6#define LINUX_DMAENGINE_H
1c0f16e5 7
c13c8260 8#include <linux/device.h>
0ad7c000 9#include <linux/err.h>
c13c8260 10#include <linux/uio.h>
187f1882 11#include <linux/bug.h>
90b44f8f 12#include <linux/scatterlist.h>
a8efa9d6 13#include <linux/bitmap.h>
dcc043dc 14#include <linux/types.h>
a8efa9d6 15#include <asm/page.h>
b7f080cf 16
c13c8260 17/**
fe4ada2d 18 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22typedef s32 dma_cookie_t;
76bd061f 23#define DMA_MIN_COOKIE 1
c13c8260 24
71ea1483
DC
25static inline int dma_submit_error(dma_cookie_t cookie)
26{
27 return cookie < 0 ? cookie : 0;
28}
c13c8260
CL
29
30/**
31 * enum dma_status - DMA transaction status
adfedd9a 32 * @DMA_COMPLETE: transaction completed
c13c8260 33 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 34 * @DMA_PAUSED: transaction is paused
c13c8260
CL
35 * @DMA_ERROR: transaction failed
36 */
37enum dma_status {
7db5f727 38 DMA_COMPLETE,
c13c8260 39 DMA_IN_PROGRESS,
07934481 40 DMA_PAUSED,
c13c8260 41 DMA_ERROR,
47ec7f09 42 DMA_OUT_OF_ORDER,
c13c8260
CL
43};
44
7405f74b
DW
45/**
46 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
7405f74b
DW
50 */
51enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
b2f46fd8 54 DMA_PQ,
099f53cb
DW
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
4983a501 57 DMA_MEMSET,
50c7cd2b 58 DMA_MEMSET_SG,
7405f74b 59 DMA_INTERRUPT,
59b5ec21 60 DMA_PRIVATE,
138f4c35 61 DMA_ASYNC_TX,
dc0ee643 62 DMA_SLAVE,
782bc950 63 DMA_CYCLIC,
b14dab79 64 DMA_INTERLEAVE,
47ec7f09 65 DMA_COMPLETION_NO_ORDER,
9c8ebd8b
LP
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
7405f74b 68/* last transaction type for creation of the capabilities mask */
b14dab79
JB
69 DMA_TX_TYPE_END,
70};
dc0ee643 71
49920bc6
VK
72/**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
62268ce9 84 DMA_TRANS_NONE,
49920bc6 85};
7405f74b 86
b14dab79
JB
87/**
88 * Interleaved Transfer Request
89 * ----------------------------
20d60f63 90 * A chunk is collection of contiguous bytes to be transferred.
b14dab79 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
20d60f63 92 * ICGs may or may not change between chunks.
b14dab79
JB
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110/**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
124 */
125struct data_chunk {
126 size_t size;
127 size_t icg;
e1031dc1
MR
128 size_t dst_icg;
129 size_t src_icg;
b14dab79
JB
130};
131
132/**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
466f966b 160 struct data_chunk sgl[];
b14dab79
JB
161};
162
d4c56f97 163/**
636bdeaa 164 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 165 * control completion, and communicate status.
d4c56f97 166 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 167 * this transaction
a88f6667 168 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
2be90e91 169 * acknowledges receipt, i.e. has a chance to establish any dependency
b2f46fd8 170 * chains
b2f46fd8
DW
171 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
172 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
173 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
174 * sources that were the result of a previous operation, in the case of a PQ
175 * operation it continues the calculation with new sources
0403e382
DW
176 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
177 * on the result of this operation
27242021
VK
178 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
179 * cleared or freed
3e00ab4a
AS
180 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
181 * data and the descriptor should be in different format from normal
182 * data descriptors.
9c8ebd8b
LP
183 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
184 * repeated when it ends until a transaction is issued on the same channel
185 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
186 * interleaved transactions and is ignored for all other transaction types.
187 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
188 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
189 * repeated transaction ends. Not setting this flag when the previously queued
190 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
191 * to never be processed and stay in the issued queue forever. The flag is
192 * ignored if the previous transaction is not a repeated transaction.
d4c56f97 193 */
636bdeaa 194enum dma_ctrl_flags {
d4c56f97 195 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 196 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
197 DMA_PREP_PQ_DISABLE_P = (1 << 2),
198 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
199 DMA_PREP_CONTINUE = (1 << 4),
200 DMA_PREP_FENCE = (1 << 5),
27242021 201 DMA_CTRL_REUSE = (1 << 6),
3e00ab4a 202 DMA_PREP_CMD = (1 << 7),
9c8ebd8b
LP
203 DMA_PREP_REPEAT = (1 << 8),
204 DMA_PREP_LOAD_EOT = (1 << 9),
d4c56f97
DW
205};
206
ad283ea4
DW
207/**
208 * enum sum_check_bits - bit position of pq_check_flags
209 */
210enum sum_check_bits {
211 SUM_CHECK_P = 0,
212 SUM_CHECK_Q = 1,
213};
214
215/**
216 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
217 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
218 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
219 */
220enum sum_check_flags {
221 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
222 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
223};
224
225
7405f74b
DW
226/**
227 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
228 * See linux/cpumask.h
229 */
230typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
231
4db8fd32
PU
232/**
233 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
234 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
235 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
236 * helper) to the descriptor.
237 *
238 * Client drivers interested to use this mode can follow:
239 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
240 * 1. prepare the descriptor (dmaengine_prep_*)
241 * construct the metadata in the client's buffer
242 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
243 * descriptor
244 * 3. submit the transfer
245 * - DMA_DEV_TO_MEM:
246 * 1. prepare the descriptor (dmaengine_prep_*)
247 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
248 * descriptor
249 * 3. submit the transfer
250 * 4. when the transfer is completed, the metadata should be available in the
251 * attached buffer
252 *
253 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
254 * driver. The client driver can ask for the pointer, maximum size and the
255 * currently used size of the metadata and can directly update or read it.
256 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
257 * provided as helper functions.
258 *
259 * Note: the metadata area for the descriptor is no longer valid after the
260 * transfer has been completed (valid up to the point when the completion
261 * callback returns if used).
262 *
263 * Client drivers interested to use this mode can follow:
264 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
265 * 1. prepare the descriptor (dmaengine_prep_*)
266 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
267 * metadata area
268 * 3. update the metadata at the pointer
269 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
270 * of data the client has placed into the metadata buffer
271 * 5. submit the transfer
272 * - DMA_DEV_TO_MEM:
273 * 1. prepare the descriptor (dmaengine_prep_*)
274 * 2. submit the transfer
275 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
276 * pointer to the engine's metadata area
277 * 4. Read out the metadata from the pointer
278 *
279 * Note: the two mode is not compatible and clients must use one mode for a
280 * descriptor.
281 */
282enum dma_desc_metadata_mode {
283 DESC_METADATA_NONE = 0,
284 DESC_METADATA_CLIENT = BIT(0),
285 DESC_METADATA_ENGINE = BIT(1),
286};
287
acfbb191
AS
288/**
289 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
290 * @memcpy_count: transaction counter
291 * @bytes_transferred: byte counter
292 */
c13c8260 293struct dma_chan_percpu {
c13c8260
CL
294 /* stats */
295 unsigned long memcpy_count;
296 unsigned long bytes_transferred;
297};
298
56f13c0d
PU
299/**
300 * struct dma_router - DMA router structure
301 * @dev: pointer to the DMA router device
302 * @route_free: function to be called when the route can be disconnected
303 */
304struct dma_router {
305 struct device *dev;
306 void (*route_free)(struct device *dev, void *route_data);
307};
308
c13c8260
CL
309/**
310 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 311 * @device: ptr to the dma device who supplies this channel, always !%NULL
71723a96 312 * @slave: ptr to the device using this channel
c13c8260 313 * @cookie: last cookie value returned to client
4d4e58de 314 * @completed_cookie: last completed cookie for this channel
fe4ada2d 315 * @chan_id: channel ID for sysfs
41d5e59c 316 * @dev: class device for sysfs
71723a96 317 * @name: backlink name for sysfs
e937cc1d
PU
318 * @dbg_client_name: slave name for debugfs in format:
319 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
c13c8260
CL
320 * @device_node: used to add this to the device chan list
321 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 322 * @client_count: how many clients are using this channel
bec08513 323 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
324 * @router: pointer to the DMA router structure
325 * @route_data: channel specific data for the router
287d8592 326 * @private: private data for certain client-channel associations
c13c8260
CL
327 */
328struct dma_chan {
c13c8260 329 struct dma_device *device;
71723a96 330 struct device *slave;
c13c8260 331 dma_cookie_t cookie;
4d4e58de 332 dma_cookie_t completed_cookie;
c13c8260
CL
333
334 /* sysfs */
335 int chan_id;
41d5e59c 336 struct dma_chan_dev *dev;
71723a96 337 const char *name;
e937cc1d
PU
338#ifdef CONFIG_DEBUG_FS
339 char *dbg_client_name;
340#endif
c13c8260 341
c13c8260 342 struct list_head device_node;
a29d8b8e 343 struct dma_chan_percpu __percpu *local;
7cc5bf9a 344 int client_count;
bec08513 345 int table_count;
56f13c0d
PU
346
347 /* DMA router */
348 struct dma_router *router;
349 void *route_data;
350
287d8592 351 void *private;
c13c8260
CL
352};
353
41d5e59c
DW
354/**
355 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
356 * @chan: driver channel device
357 * @device: sysfs device
358 * @dev_id: parent dma_device dev_id
ab650ef6
PU
359 * @chan_dma_dev: The channel is using custom/different dma-mapping
360 * compared to the parent dma_device
41d5e59c
DW
361 */
362struct dma_chan_dev {
363 struct dma_chan *chan;
364 struct device device;
864498aa 365 int dev_id;
ab650ef6 366 bool chan_dma_dev;
41d5e59c
DW
367};
368
c156d0a5 369/**
ba730340 370 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
371 * device, source or target buses
372 */
373enum dma_slave_buswidth {
374 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
375 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
376 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 377 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
378 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
379 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
380 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
381 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
382 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
c156d0a5
LW
383};
384
385/**
386 * struct dma_slave_config - dma slave channel runtime config
387 * @direction: whether the data shall go in or out on this slave
397321f4 388 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
389 * legal values. DEPRECATED, drivers should use the direction argument
390 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
391 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
392 * @src_addr: this is the physical address where DMA slave data
393 * should be read (RX), if the source is memory this argument is
394 * ignored.
395 * @dst_addr: this is the physical address where DMA slave data
396 * should be written (TX), if the source is memory this argument
397 * is ignored.
398 * @src_addr_width: this is the width in bytes of the source (RX)
399 * register where DMA data shall be read. If the source
400 * is memory this may be ignored depending on architecture.
3f7632e1 401 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64.
c156d0a5
LW
402 * @dst_addr_width: same as src_addr_width but for destination
403 * target (TX) mutatis mutandis.
404 * @src_maxburst: the maximum number of words (note: words, as in
405 * units of the src_addr_width member, not bytes) that can be sent
406 * in one burst to the device. Typically something like half the
407 * FIFO depth on I/O peripherals so you don't overflow it. This
408 * may or may not be applicable on memory sources.
409 * @dst_maxburst: same as src_maxburst but for destination target
410 * mutatis mutandis.
54cd2558
PU
411 * @src_port_window_size: The length of the register area in words the data need
412 * to be accessed on the device side. It is only used for devices which is using
413 * an area instead of a single register to receive the data. Typically the DMA
414 * loops in this area in order to transfer the data.
415 * @dst_port_window_size: same as src_port_window_size but for the destination
416 * port.
dcc043dc
VK
417 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
418 * with 'true' if peripheral should be flow controller. Direction will be
419 * selected at Runtime.
4fd1e324
LD
420 * @slave_id: Slave requester id. Only valid for slave channels. The dma
421 * slave peripheral will have unique id as dma requester which need to be
422 * pass as slave config.
e7bbb7ac
VK
423 * @peripheral_config: peripheral configuration for programming peripheral
424 * for dmaengine transfer
425 * @peripheral_size: peripheral configuration buffer size
c156d0a5
LW
426 *
427 * This struct is passed in as configuration data to a DMA engine
428 * in order to set up a certain channel for DMA transport at runtime.
429 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
430 * callback in the dma_device structure, device_config and this struct
431 * will then be passed in as an argument to the function.
c156d0a5 432 *
7cbccb55
LPC
433 * The rationale for adding configuration information to this struct is as
434 * follows: if it is likely that more than one DMA slave controllers in
435 * the world will support the configuration option, then make it generic.
436 * If not: if it is fixed so that it be sent in static from the platform
437 * data, then prefer to do that.
c156d0a5
LW
438 */
439struct dma_slave_config {
49920bc6 440 enum dma_transfer_direction direction;
95756320
VK
441 phys_addr_t src_addr;
442 phys_addr_t dst_addr;
c156d0a5
LW
443 enum dma_slave_buswidth src_addr_width;
444 enum dma_slave_buswidth dst_addr_width;
445 u32 src_maxburst;
446 u32 dst_maxburst;
54cd2558
PU
447 u32 src_port_window_size;
448 u32 dst_port_window_size;
dcc043dc 449 bool device_fc;
4fd1e324 450 unsigned int slave_id;
e7bbb7ac
VK
451 void *peripheral_config;
452 size_t peripheral_size;
c156d0a5
LW
453};
454
50720563
LPC
455/**
456 * enum dma_residue_granularity - Granularity of the reported transfer residue
457 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
458 * DMA channel is only able to tell whether a descriptor has been completed or
459 * not, which means residue reporting is not supported by this channel. The
460 * residue field of the dma_tx_state field will always be 0.
461 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
462 * completed segment of the transfer (For cyclic transfers this is after each
463 * period). This is typically implemented by having the hardware generate an
464 * interrupt after each transferred segment and then the drivers updates the
465 * outstanding residue by the size of the segment. Another possibility is if
466 * the hardware supports scatter-gather and the segment descriptor has a field
467 * which gets set after the segment has been completed. The driver then counts
468 * the number of segments without the flag set to compute the residue.
469 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
470 * burst. This is typically only supported if the hardware has a progress
471 * register of some sort (E.g. a register with the current read/write address
472 * or a register with the amount of bursts/beats/bytes that have been
473 * transferred or still need to be transferred).
474 */
475enum dma_residue_granularity {
476 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
477 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
478 DMA_RESIDUE_GRANULARITY_BURST = 2,
479};
480
c2cbd427
SB
481/**
482 * struct dma_slave_caps - expose capabilities of a slave channel only
483 * @src_addr_widths: bit mask of src addr widths the channel supports.
484 * Width is specified in bytes, e.g. for a channel supporting
485 * a width of 4 the mask should have BIT(4) set.
486 * @dst_addr_widths: bit mask of dst addr widths the channel supports
487 * @directions: bit mask of slave directions the channel supports.
488 * Since the enum dma_transfer_direction is not defined as bit flag for
489 * each type, the dma controller should set BIT(<TYPE>) and same
490 * should be checked by controller as well
d97758e0 491 * @min_burst: min burst capability per-transfer
6d5bbed3 492 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
493 * @max_sg_burst: max number of SG list entries executed in a single burst
494 * DMA tansaction with no software intervention for reinitialization.
495 * Zero value means unlimited number of entries.
d8095f94
MS
496 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
497 * for resume later)
498 * @cmd_resume: true, if resume is supported
221a27c7 499 * @cmd_terminate: true, if terminate cmd is supported
50720563 500 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
501 * @descriptor_reuse: if a descriptor can be reused by client and
502 * resubmitted multiple times
221a27c7
VK
503 */
504struct dma_slave_caps {
505 u32 src_addr_widths;
ceacbdbf 506 u32 dst_addr_widths;
221a27c7 507 u32 directions;
d97758e0 508 u32 min_burst;
6d5bbed3 509 u32 max_burst;
b1b40b8f 510 u32 max_sg_burst;
221a27c7 511 bool cmd_pause;
d8095f94 512 bool cmd_resume;
221a27c7 513 bool cmd_terminate;
50720563 514 enum dma_residue_granularity residue_granularity;
27242021 515 bool descriptor_reuse;
221a27c7
VK
516};
517
41d5e59c
DW
518static inline const char *dma_chan_name(struct dma_chan *chan)
519{
520 return dev_name(&chan->dev->device);
521}
d379b01e 522
c13c8260
CL
523void dma_chan_cleanup(struct kref *kref);
524
59b5ec21
DW
525/**
526 * typedef dma_filter_fn - callback filter for dma_request_channel
527 * @chan: channel to be reviewed
528 * @filter_param: opaque parameter passed through dma_request_channel
529 *
530 * When this optional parameter is specified in a call to dma_request_channel a
531 * suitable channel is passed to this routine for further dispositioning before
532 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
533 * satisfies the given capability mask. It returns 'true' to indicate that the
534 * channel is suitable.
59b5ec21 535 */
7dd60251 536typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 537
7405f74b 538typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62 539
f067025b
DJ
540enum dmaengine_tx_result {
541 DMA_TRANS_NOERROR = 0, /* SUCCESS */
542 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
543 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
544 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
545};
546
547struct dmaengine_result {
548 enum dmaengine_tx_result result;
549 u32 residue;
550};
551
552typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
553 const struct dmaengine_result *result);
554
d38a8c62 555struct dmaengine_unmap_data {
0c0eb4ca
ZY
556#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
557 u16 map_cnt;
558#else
c1f43dd9 559 u8 map_cnt;
0c0eb4ca 560#endif
d38a8c62
DW
561 u8 to_cnt;
562 u8 from_cnt;
563 u8 bidi_cnt;
564 struct device *dev;
565 struct kref kref;
566 size_t len;
466f966b 567 dma_addr_t addr[];
d38a8c62
DW
568};
569
4db8fd32
PU
570struct dma_async_tx_descriptor;
571
572struct dma_descriptor_metadata_ops {
573 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
574 size_t len);
575
576 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
577 size_t *payload_len, size_t *max_len);
578 int (*set_len)(struct dma_async_tx_descriptor *desc,
579 size_t payload_len);
580};
581
7405f74b
DW
582/**
583 * struct dma_async_tx_descriptor - async transaction descriptor
584 * ---dma generic offload fields---
585 * @cookie: tracking cookie for this transaction, set to -EBUSY if
586 * this tx is sitting on a dependency list
636bdeaa 587 * @flags: flags to augment operation preparation, control completion, and
dda51089 588 * communicate status
7405f74b 589 * @phys: physical address of the descriptor
7405f74b 590 * @chan: target channel for this operation
aba96bad
VK
591 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
592 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
593 * @callback: routine to call after this operation is complete
594 * @callback_param: general parameter to pass to the callback routine
4db8fd32
PU
595 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
596 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
597 * DESC_METADATA_NONE
598 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
599 * DMA driver if metadata mode is supported with the descriptor
7405f74b 600 * ---async_tx api specific fields---
19242d72 601 * @next: at completion submit this descriptor
7405f74b 602 * @parent: pointer to the next level up in the dependency chain
19242d72 603 * @lock: protect the parent and next pointers
7405f74b
DW
604 */
605struct dma_async_tx_descriptor {
606 dma_cookie_t cookie;
636bdeaa 607 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 608 dma_addr_t phys;
7405f74b
DW
609 struct dma_chan *chan;
610 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 611 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b 612 dma_async_tx_callback callback;
f067025b 613 dma_async_tx_callback_result callback_result;
7405f74b 614 void *callback_param;
d38a8c62 615 struct dmaengine_unmap_data *unmap;
4db8fd32
PU
616 enum dma_desc_metadata_mode desc_metadata_mode;
617 struct dma_descriptor_metadata_ops *metadata_ops;
5fc6d897 618#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 619 struct dma_async_tx_descriptor *next;
7405f74b
DW
620 struct dma_async_tx_descriptor *parent;
621 spinlock_t lock;
caa20d97 622#endif
7405f74b
DW
623};
624
89716462 625#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
626static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
627 struct dmaengine_unmap_data *unmap)
628{
629 kref_get(&unmap->kref);
630 tx->unmap = unmap;
631}
632
89716462
DW
633struct dmaengine_unmap_data *
634dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 635void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
636#else
637static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
638 struct dmaengine_unmap_data *unmap)
639{
640}
641static inline struct dmaengine_unmap_data *
642dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
643{
644 return NULL;
645}
646static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
647{
648}
649#endif
45c463ae 650
d38a8c62
DW
651static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
652{
3a92063b
AS
653 if (!tx->unmap)
654 return;
655
656 dmaengine_unmap_put(tx->unmap);
657 tx->unmap = NULL;
d38a8c62
DW
658}
659
5fc6d897 660#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
661static inline void txd_lock(struct dma_async_tx_descriptor *txd)
662{
663}
664static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
665{
666}
667static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
668{
669 BUG();
670}
671static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
672{
673}
674static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
675{
676}
677static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
678{
679 return NULL;
680}
681static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
682{
683 return NULL;
684}
685
686#else
687static inline void txd_lock(struct dma_async_tx_descriptor *txd)
688{
689 spin_lock_bh(&txd->lock);
690}
691static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
692{
693 spin_unlock_bh(&txd->lock);
694}
695static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
696{
697 txd->next = next;
698 next->parent = txd;
699}
700static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
701{
702 txd->parent = NULL;
703}
704static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
705{
706 txd->next = NULL;
707}
708static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
709{
710 return txd->parent;
711}
712static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
713{
714 return txd->next;
715}
716#endif
717
07934481
LW
718/**
719 * struct dma_tx_state - filled in to report the status of
720 * a transfer.
721 * @last: last completed DMA cookie
722 * @used: last issued DMA cookie (i.e. the one in progress)
723 * @residue: the remaining number of bytes left to transmit
724 * on the selected transfer for states DMA_IN_PROGRESS and
725 * DMA_PAUSED if this is implemented in the driver, else 0
6755ec06 726 * @in_flight_bytes: amount of data in bytes cached by the DMA.
07934481
LW
727 */
728struct dma_tx_state {
729 dma_cookie_t last;
730 dma_cookie_t used;
731 u32 residue;
6755ec06 732 u32 in_flight_bytes;
07934481
LW
733};
734
77a68e56
MR
735/**
736 * enum dmaengine_alignment - defines alignment of the DMA async tx
737 * buffers
738 */
739enum dmaengine_alignment {
740 DMAENGINE_ALIGN_1_BYTE = 0,
741 DMAENGINE_ALIGN_2_BYTES = 1,
742 DMAENGINE_ALIGN_4_BYTES = 2,
743 DMAENGINE_ALIGN_8_BYTES = 3,
744 DMAENGINE_ALIGN_16_BYTES = 4,
745 DMAENGINE_ALIGN_32_BYTES = 5,
746 DMAENGINE_ALIGN_64_BYTES = 6,
660343d0
PU
747 DMAENGINE_ALIGN_128_BYTES = 7,
748 DMAENGINE_ALIGN_256_BYTES = 8,
77a68e56
MR
749};
750
a8135d0d
PU
751/**
752 * struct dma_slave_map - associates slave device and it's slave channel with
753 * parameter to be used by a filter function
754 * @devname: name of the device
755 * @slave: slave channel name
756 * @param: opaque parameter to pass to struct dma_filter.fn
757 */
758struct dma_slave_map {
759 const char *devname;
760 const char *slave;
761 void *param;
762};
763
764/**
765 * struct dma_filter - information for slave device/channel to filter_fn/param
766 * mapping
767 * @fn: filter function callback
768 * @mapcnt: number of slave device/channel in the map
769 * @map: array of channel to filter mapping data
770 */
771struct dma_filter {
772 dma_filter_fn fn;
773 int mapcnt;
774 const struct dma_slave_map *map;
775};
776
c13c8260
CL
777/**
778 * struct dma_device - info on the entity supplying DMA services
779 * @chancnt: how many DMA channels are supported
0f571515 780 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
781 * @channels: the list of struct dma_chan
782 * @global_node: list_head for global dma_device_list
a8135d0d 783 * @filter: information for device/slave to filter function/param mapping
7405f74b 784 * @cap_mask: one or more dma_capability flags
4db8fd32 785 * @desc_metadata_modes: supported metadata modes by the DMA device
7405f74b 786 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 787 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
788 * @copy_align: alignment shift for memcpy operations
789 * @xor_align: alignment shift for xor operations
790 * @pq_align: alignment shift for pq operations
4983a501 791 * @fill_align: alignment shift for memset operations
fe4ada2d 792 * @dev_id: unique device ID
7405f74b 793 * @dev: struct device reference for dma mapping api
dae7a589 794 * @owner: owner module (automatically set based on the provided dev)
cb8cea51 795 * @src_addr_widths: bit mask of src addr widths the device supports
c2cbd427
SB
796 * Width is specified in bytes, e.g. for a device supporting
797 * a width of 4 the mask should have BIT(4) set.
cb8cea51 798 * @dst_addr_widths: bit mask of dst addr widths the device supports
c2cbd427
SB
799 * @directions: bit mask of slave directions the device supports.
800 * Since the enum dma_transfer_direction is not defined as bit flag for
801 * each type, the dma controller should set BIT(<TYPE>) and same
802 * should be checked by controller as well
d97758e0 803 * @min_burst: min burst capability per-transfer
6d5bbed3 804 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
805 * @max_sg_burst: max number of SG list entries executed in a single burst
806 * DMA tansaction with no software intervention for reinitialization.
807 * Zero value means unlimited number of entries.
cb8cea51
MR
808 * @residue_granularity: granularity of the transfer residue reported
809 * by tx_status
fe4ada2d
RD
810 * @device_alloc_chan_resources: allocate resources and return the
811 * number of allocated descriptors
4f910c03 812 * @device_router_config: optional callback for DMA router configuration
fe4ada2d 813 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
814 * @device_prep_dma_memcpy: prepares a memcpy operation
815 * @device_prep_dma_xor: prepares a xor operation
099f53cb 816 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
817 * @device_prep_dma_pq: prepares a pq operation
818 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 819 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 820 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 821 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 822 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
823 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
824 * The function takes a buffer of size buf_len. The callback function will
825 * be called after period_len bytes have been transferred.
b14dab79 826 * @device_prep_interleaved_dma: Transfer expression in a generic way.
ff39988a 827 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
3b6d694e
SS
828 * @device_caps: May be used to override the generic DMA slave capabilities
829 * with per-channel specific ones
94a73e30
MR
830 * @device_config: Pushes a new configuration to a channel, return 0 or an error
831 * code
23a3ea2f
MR
832 * @device_pause: Pauses any transfer happening on a channel. Returns
833 * 0 or an error code
834 * @device_resume: Resumes any transfer on a channel previously
835 * paused. Returns 0 or an error code
7fa0cf46
MR
836 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
837 * or an error code
b36f09c3
LPC
838 * @device_synchronize: Synchronizes the termination of a transfers to the
839 * current context.
07934481
LW
840 * @device_tx_status: poll for transaction completion, the optional
841 * txstate parameter can be supplied with a pointer to get a
25985edc 842 * struct with auxiliary transfer status information, otherwise the call
07934481 843 * will just return a simple status code
7405f74b 844 * @device_issue_pending: push pending transactions to hardware
9eeacd3a 845 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
8ad342a8
LG
846 * @device_release: called sometime atfer dma_async_device_unregister() is
847 * called and there are no further references to this structure. This
848 * must be implemented to free resources however many existing drivers
849 * do not and are therefore not safe to unbind while in use.
e937cc1d
PU
850 * @dbg_summary_show: optional routine to show contents in debugfs; default code
851 * will be used when this is omitted, but custom code can show extra,
852 * controller specific information.
c13c8260
CL
853 */
854struct dma_device {
8ad342a8 855 struct kref ref;
c13c8260 856 unsigned int chancnt;
0f571515 857 unsigned int privatecnt;
c13c8260
CL
858 struct list_head channels;
859 struct list_head global_node;
a8135d0d 860 struct dma_filter filter;
7405f74b 861 dma_cap_mask_t cap_mask;
4db8fd32 862 enum dma_desc_metadata_mode desc_metadata_modes;
b2f46fd8
DW
863 unsigned short max_xor;
864 unsigned short max_pq;
77a68e56
MR
865 enum dmaengine_alignment copy_align;
866 enum dmaengine_alignment xor_align;
867 enum dmaengine_alignment pq_align;
868 enum dmaengine_alignment fill_align;
b2f46fd8 869 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 870
c13c8260 871 int dev_id;
7405f74b 872 struct device *dev;
dae7a589 873 struct module *owner;
08210094
DJ
874 struct ida chan_ida;
875 struct mutex chan_mutex; /* to protect chan_ida */
c13c8260 876
cb8cea51
MR
877 u32 src_addr_widths;
878 u32 dst_addr_widths;
879 u32 directions;
d97758e0 880 u32 min_burst;
6d5bbed3 881 u32 max_burst;
b1b40b8f 882 u32 max_sg_burst;
9eeacd3a 883 bool descriptor_reuse;
cb8cea51
MR
884 enum dma_residue_granularity residue_granularity;
885
aa1e6f1a 886 int (*device_alloc_chan_resources)(struct dma_chan *chan);
4f910c03 887 int (*device_router_config)(struct dma_chan *chan);
c13c8260 888 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
889
890 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 891 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 892 size_t len, unsigned long flags);
7405f74b 893 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 894 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 895 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 896 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 897 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 898 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
899 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
900 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
901 unsigned int src_cnt, const unsigned char *scf,
902 size_t len, unsigned long flags);
903 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
904 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
905 unsigned int src_cnt, const unsigned char *scf, size_t len,
906 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
907 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
908 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
909 unsigned long flags);
50c7cd2b
MR
910 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
911 struct dma_chan *chan, struct scatterlist *sg,
912 unsigned int nents, int value, unsigned long flags);
7405f74b 913 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 914 struct dma_chan *chan, unsigned long flags);
7405f74b 915
dc0ee643
HS
916 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
917 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 918 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 919 unsigned long flags, void *context);
782bc950
SH
920 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
921 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 922 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 923 unsigned long flags);
b14dab79
JB
924 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
925 struct dma_chan *chan, struct dma_interleaved_template *xt,
926 unsigned long flags);
ff39988a
SY
927 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
928 struct dma_chan *chan, dma_addr_t dst, u64 data,
929 unsigned long flags);
94a73e30 930
3b6d694e
SS
931 void (*device_caps)(struct dma_chan *chan,
932 struct dma_slave_caps *caps);
94a73e30
MR
933 int (*device_config)(struct dma_chan *chan,
934 struct dma_slave_config *config);
23a3ea2f
MR
935 int (*device_pause)(struct dma_chan *chan);
936 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 937 int (*device_terminate_all)(struct dma_chan *chan);
b36f09c3 938 void (*device_synchronize)(struct dma_chan *chan);
dc0ee643 939
07934481
LW
940 enum dma_status (*device_tx_status)(struct dma_chan *chan,
941 dma_cookie_t cookie,
942 struct dma_tx_state *txstate);
7405f74b 943 void (*device_issue_pending)(struct dma_chan *chan);
8ad342a8 944 void (*device_release)(struct dma_device *dev);
e937cc1d
PU
945 /* debugfs support */
946#ifdef CONFIG_DEBUG_FS
947 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
26cf132d 948 struct dentry *dbg_dev_root;
e937cc1d 949#endif
c13c8260
CL
950};
951
6e3ecaf0
SH
952static inline int dmaengine_slave_config(struct dma_chan *chan,
953 struct dma_slave_config *config)
954{
94a73e30
MR
955 if (chan->device->device_config)
956 return chan->device->device_config(chan, config);
957
2c44ad91 958 return -ENOSYS;
6e3ecaf0
SH
959}
960
61cc13a5
AS
961static inline bool is_slave_direction(enum dma_transfer_direction direction)
962{
963 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM);
964}
965
90b44f8f 966static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 967 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 968 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
969{
970 struct scatterlist sg;
922ee08b
KM
971 sg_init_table(&sg, 1);
972 sg_dma_address(&sg) = buf;
973 sg_dma_len(&sg) = len;
90b44f8f 974
757d12e5
VK
975 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
976 return NULL;
977
185ecb5f
AB
978 return chan->device->device_prep_slave_sg(chan, &sg, 1,
979 dir, flags, NULL);
90b44f8f
VK
980}
981
16052827
AB
982static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
983 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
984 enum dma_transfer_direction dir, unsigned long flags)
985{
757d12e5
VK
986 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
987 return NULL;
988
16052827 989 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 990 dir, flags, NULL);
16052827
AB
991}
992
e42d98eb
AB
993#ifdef CONFIG_RAPIDIO_DMA_ENGINE
994struct rio_dma_ext;
995static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
996 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
997 enum dma_transfer_direction dir, unsigned long flags,
998 struct rio_dma_ext *rio_ext)
999{
757d12e5
VK
1000 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1001 return NULL;
1002
e42d98eb
AB
1003 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1004 dir, flags, rio_ext);
1005}
1006#endif
1007
16052827
AB
1008static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1009 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
1010 size_t period_len, enum dma_transfer_direction dir,
1011 unsigned long flags)
16052827 1012{
757d12e5
VK
1013 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1014 return NULL;
1015
16052827 1016 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 1017 period_len, dir, flags);
a14acb4a
BS
1018}
1019
1020static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1021 struct dma_chan *chan, struct dma_interleaved_template *xt,
1022 unsigned long flags)
1023{
757d12e5
VK
1024 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1025 return NULL;
9c8ebd8b
LP
1026 if (flags & DMA_PREP_REPEAT &&
1027 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1028 return NULL;
757d12e5 1029
a14acb4a 1030 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
1031}
1032
4983a501
MR
1033static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1034 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1035 unsigned long flags)
1036{
757d12e5 1037 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
4983a501
MR
1038 return NULL;
1039
1040 return chan->device->device_prep_dma_memset(chan, dest, value,
1041 len, flags);
1042}
1043
77d65d6f
BB
1044static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1045 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1046 size_t len, unsigned long flags)
1047{
1048 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1049 return NULL;
1050
1051 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1052 len, flags);
1053}
1054
4db8fd32
PU
1055static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1056 enum dma_desc_metadata_mode mode)
1057{
1058 if (!chan)
1059 return false;
1060
1061 return !!(chan->device->desc_metadata_modes & mode);
1062}
1063
1064#ifdef CONFIG_DMA_ENGINE
1065int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1066 void *data, size_t len);
1067void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1068 size_t *payload_len, size_t *max_len);
1069int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1070 size_t payload_len);
1071#else /* CONFIG_DMA_ENGINE */
1072static inline int dmaengine_desc_attach_metadata(
1073 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1074{
1075 return -EINVAL;
1076}
1077static inline void *dmaengine_desc_get_metadata_ptr(
1078 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1079 size_t *max_len)
1080{
1081 return NULL;
1082}
1083static inline int dmaengine_desc_set_metadata_len(
1084 struct dma_async_tx_descriptor *desc, size_t payload_len)
1085{
1086 return -EINVAL;
1087}
1088#endif /* CONFIG_DMA_ENGINE */
1089
b36f09c3
LPC
1090/**
1091 * dmaengine_terminate_all() - Terminate all active DMA transfers
1092 * @chan: The channel for which to terminate the transfers
1093 *
1094 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1095 * dmaengine_terminate_async() instead.
1096 */
6e3ecaf0
SH
1097static inline int dmaengine_terminate_all(struct dma_chan *chan)
1098{
7fa0cf46
MR
1099 if (chan->device->device_terminate_all)
1100 return chan->device->device_terminate_all(chan);
1101
2c44ad91 1102 return -ENOSYS;
6e3ecaf0
SH
1103}
1104
b36f09c3
LPC
1105/**
1106 * dmaengine_terminate_async() - Terminate all active DMA transfers
1107 * @chan: The channel for which to terminate the transfers
1108 *
1109 * Calling this function will terminate all active and pending descriptors
1110 * that have previously been submitted to the channel. It is not guaranteed
1111 * though that the transfer for the active descriptor has stopped when the
1112 * function returns. Furthermore it is possible the complete callback of a
1113 * submitted transfer is still running when this function returns.
1114 *
1115 * dmaengine_synchronize() needs to be called before it is safe to free
1116 * any memory that is accessed by previously submitted descriptors or before
1117 * freeing any resources accessed from within the completion callback of any
20d60f63 1118 * previously submitted descriptors.
b36f09c3
LPC
1119 *
1120 * This function can be called from atomic context as well as from within a
1121 * complete callback of a descriptor submitted on the same channel.
1122 *
1123 * If none of the two conditions above apply consider using
1124 * dmaengine_terminate_sync() instead.
1125 */
1126static inline int dmaengine_terminate_async(struct dma_chan *chan)
1127{
1128 if (chan->device->device_terminate_all)
1129 return chan->device->device_terminate_all(chan);
1130
1131 return -EINVAL;
1132}
1133
1134/**
1135 * dmaengine_synchronize() - Synchronize DMA channel termination
1136 * @chan: The channel to synchronize
1137 *
1138 * Synchronizes to the DMA channel termination to the current context. When this
1139 * function returns it is guaranteed that all transfers for previously issued
20d60f63 1140 * descriptors have stopped and it is safe to free the memory associated
b36f09c3
LPC
1141 * with them. Furthermore it is guaranteed that all complete callback functions
1142 * for a previously submitted descriptor have finished running and it is safe to
1143 * free resources accessed from within the complete callbacks.
1144 *
1145 * The behavior of this function is undefined if dma_async_issue_pending() has
1146 * been called between dmaengine_terminate_async() and this function.
1147 *
1148 * This function must only be called from non-atomic context and must not be
1149 * called from within a complete callback of a descriptor submitted on the same
1150 * channel.
1151 */
1152static inline void dmaengine_synchronize(struct dma_chan *chan)
1153{
b1d6ab1a
LPC
1154 might_sleep();
1155
b36f09c3
LPC
1156 if (chan->device->device_synchronize)
1157 chan->device->device_synchronize(chan);
1158}
1159
1160/**
1161 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1162 * @chan: The channel for which to terminate the transfers
1163 *
1164 * Calling this function will terminate all active and pending transfers
1165 * that have previously been submitted to the channel. It is similar to
1166 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1167 * stopped and that all complete callbacks have finished running when the
1168 * function returns.
1169 *
1170 * This function must only be called from non-atomic context and must not be
1171 * called from within a complete callback of a descriptor submitted on the same
1172 * channel.
1173 */
1174static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1175{
1176 int ret;
1177
1178 ret = dmaengine_terminate_async(chan);
1179 if (ret)
1180 return ret;
1181
1182 dmaengine_synchronize(chan);
1183
1184 return 0;
1185}
1186
6e3ecaf0
SH
1187static inline int dmaengine_pause(struct dma_chan *chan)
1188{
23a3ea2f
MR
1189 if (chan->device->device_pause)
1190 return chan->device->device_pause(chan);
1191
2c44ad91 1192 return -ENOSYS;
6e3ecaf0
SH
1193}
1194
1195static inline int dmaengine_resume(struct dma_chan *chan)
1196{
23a3ea2f
MR
1197 if (chan->device->device_resume)
1198 return chan->device->device_resume(chan);
1199
2c44ad91 1200 return -ENOSYS;
6e3ecaf0
SH
1201}
1202
3052cc2c
LPC
1203static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1204 dma_cookie_t cookie, struct dma_tx_state *state)
1205{
1206 return chan->device->device_tx_status(chan, cookie, state);
1207}
1208
98d530fe 1209static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
1210{
1211 return desc->tx_submit(desc);
1212}
1213
77a68e56
MR
1214static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1215 size_t off1, size_t off2, size_t len)
83544ae9 1216{
88ac039c 1217 return !(((1 << align) - 1) & (off1 | off2 | len));
83544ae9
DW
1218}
1219
1220static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1221 size_t off2, size_t len)
1222{
1223 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1224}
1225
1226static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1227 size_t off2, size_t len)
1228{
1229 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1230}
1231
1232static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1233 size_t off2, size_t len)
1234{
1235 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1236}
1237
4983a501
MR
1238static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1239 size_t off2, size_t len)
1240{
1241 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1242}
1243
b2f46fd8
DW
1244static inline void
1245dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1246{
1247 dma->max_pq = maxpq;
1248 if (has_pq_continue)
1249 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1250}
1251
1252static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1253{
1254 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1255}
1256
1257static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1258{
1259 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1260
1261 return (flags & mask) == mask;
1262}
1263
1264static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1265{
1266 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1267}
1268
d3f3cf85 1269static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
1270{
1271 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1272}
1273
1274/* dma_maxpq - reduce maxpq in the face of continued operations
1275 * @dma - dma device with PQ capability
1276 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1277 *
1278 * When an engine does not support native continuation we need 3 extra
1279 * source slots to reuse P and Q with the following coefficients:
1280 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1281 * 2/ {01} * Q : use Q to continue Q' calculation
1282 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1283 *
1284 * In the case where P is disabled we only need 1 extra source:
1285 * 1/ {01} * Q : use Q to continue Q' calculation
1286 */
1287static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1288{
1289 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1290 return dma_dev_to_maxpq(dma);
5f77dd85 1291 if (dmaf_p_disabled_continue(flags))
b2f46fd8 1292 return dma_dev_to_maxpq(dma) - 1;
5f77dd85 1293 if (dmaf_continue(flags))
b2f46fd8
DW
1294 return dma_dev_to_maxpq(dma) - 3;
1295 BUG();
1296}
1297
87d001ef
MR
1298static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1299 size_t dir_icg)
1300{
1301 if (inc) {
1302 if (dir_icg)
1303 return dir_icg;
5f77dd85 1304 if (sgl)
87d001ef
MR
1305 return icg;
1306 }
1307
1308 return 0;
1309}
1310
1311static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1312 struct data_chunk *chunk)
1313{
1314 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1315 chunk->icg, chunk->dst_icg);
1316}
1317
1318static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1319 struct data_chunk *chunk)
1320{
1321 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1322 chunk->icg, chunk->src_icg);
1323}
1324
c13c8260
CL
1325/* --- public DMA engine API --- */
1326
649274d9 1327#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
1328void dmaengine_get(void);
1329void dmaengine_put(void);
649274d9
DW
1330#else
1331static inline void dmaengine_get(void)
1332{
1333}
1334static inline void dmaengine_put(void)
1335{
1336}
1337#endif
1338
729b5d1b
DW
1339#ifdef CONFIG_ASYNC_TX_DMA
1340#define async_dmaengine_get() dmaengine_get()
1341#define async_dmaengine_put() dmaengine_put()
5fc6d897 1342#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
1343#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1344#else
729b5d1b 1345#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1346#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1347#else
1348static inline void async_dmaengine_get(void)
1349{
1350}
1351static inline void async_dmaengine_put(void)
1352{
1353}
1354static inline struct dma_chan *
1355async_dma_find_channel(enum dma_transaction_type type)
1356{
1357 return NULL;
1358}
138f4c35 1359#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1360void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1361 struct dma_chan *chan);
c13c8260 1362
0839875e 1363static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1364{
636bdeaa
DW
1365 tx->flags |= DMA_CTRL_ACK;
1366}
1367
ef560682
GL
1368static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1369{
1370 tx->flags &= ~DMA_CTRL_ACK;
1371}
1372
0839875e 1373static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1374{
0839875e 1375 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1376}
1377
7405f74b
DW
1378#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1379static inline void
1380__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1381{
7405f74b
DW
1382 set_bit(tx_type, dstp->bits);
1383}
c13c8260 1384
0f571515
AN
1385#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1386static inline void
1387__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1388{
1389 clear_bit(tx_type, dstp->bits);
1390}
1391
33df8ca0
DW
1392#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1393static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1394{
1395 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1396}
1397
7405f74b
DW
1398#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1399static inline int
1400__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1401{
1402 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1403}
1404
7405f74b 1405#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1406 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1407
c13c8260 1408/**
7405f74b 1409 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1410 * @chan: target DMA channel
c13c8260
CL
1411 *
1412 * This allows drivers to push copies to HW in batches,
1413 * reducing MMIO writes where possible.
1414 */
7405f74b 1415static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1416{
ec8670f1 1417 chan->device->device_issue_pending(chan);
c13c8260
CL
1418}
1419
1420/**
7405f74b 1421 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1422 * @chan: DMA channel
1423 * @cookie: transaction identifier to check status of
1424 * @last: returns last completed cookie, can be NULL
1425 * @used: returns last issued cookie, can be NULL
1426 *
1427 * If @last and @used are passed in, upon return they reflect the driver
1428 * internal state and can be used with dma_async_is_complete() to check
1429 * the status of multiple cookies without re-checking hardware state.
1430 */
7405f74b 1431static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1432 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1433{
07934481
LW
1434 struct dma_tx_state state;
1435 enum dma_status status;
1436
1437 status = chan->device->device_tx_status(chan, cookie, &state);
1438 if (last)
1439 *last = state.last;
1440 if (used)
1441 *used = state.used;
1442 return status;
c13c8260
CL
1443}
1444
1445/**
1446 * dma_async_is_complete - test a cookie against chan state
1447 * @cookie: transaction identifier to test status of
1448 * @last_complete: last know completed transaction
1449 * @last_used: last cookie value handed out
1450 *
e239345f 1451 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1452 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1453 */
1454static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1455 dma_cookie_t last_complete, dma_cookie_t last_used)
1456{
1457 if (last_complete <= last_used) {
1458 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1459 return DMA_COMPLETE;
c13c8260
CL
1460 } else {
1461 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1462 return DMA_COMPLETE;
c13c8260
CL
1463 }
1464 return DMA_IN_PROGRESS;
1465}
1466
bca34692
DW
1467static inline void
1468dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1469{
3a92063b
AS
1470 if (!st)
1471 return;
1472
1473 st->last = last;
1474 st->used = used;
1475 st->residue = residue;
bca34692
DW
1476}
1477
07f2211e 1478#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1479struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1480enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1481enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1482void dma_issue_pending_all(void);
a53e28da 1483struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1484 dma_filter_fn fn, void *fn_param,
1485 struct device_node *np);
a8135d0d
PU
1486
1487struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1488struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1489
8f33d527 1490void dma_release_channel(struct dma_chan *chan);
fdb8df99 1491int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1492#else
4a43f394
JM
1493static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1494{
1495 return NULL;
1496}
1497static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1498{
adfedd9a 1499 return DMA_COMPLETE;
4a43f394 1500}
07f2211e
DW
1501static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1502{
adfedd9a 1503 return DMA_COMPLETE;
07f2211e 1504}
c50331e8
DW
1505static inline void dma_issue_pending_all(void)
1506{
8f33d527 1507}
a53e28da 1508static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1509 dma_filter_fn fn,
1510 void *fn_param,
1511 struct device_node *np)
8f33d527
GL
1512{
1513 return NULL;
1514}
a8135d0d
PU
1515static inline struct dma_chan *dma_request_chan(struct device *dev,
1516 const char *name)
1517{
1518 return ERR_PTR(-ENODEV);
1519}
1520static inline struct dma_chan *dma_request_chan_by_mask(
1521 const dma_cap_mask_t *mask)
1522{
1523 return ERR_PTR(-ENODEV);
1524}
8f33d527
GL
1525static inline void dma_release_channel(struct dma_chan *chan)
1526{
c50331e8 1527}
fdb8df99
LP
1528static inline int dma_get_slave_caps(struct dma_chan *chan,
1529 struct dma_slave_caps *caps)
1530{
1531 return -ENXIO;
1532}
07f2211e 1533#endif
c13c8260 1534
27242021
VK
1535static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1536{
1537 struct dma_slave_caps caps;
53a256a9 1538 int ret;
27242021 1539
53a256a9
LW
1540 ret = dma_get_slave_caps(tx->chan, &caps);
1541 if (ret)
1542 return ret;
27242021 1543
3a92063b 1544 if (!caps.descriptor_reuse)
27242021 1545 return -EPERM;
3a92063b
AS
1546
1547 tx->flags |= DMA_CTRL_REUSE;
1548 return 0;
27242021
VK
1549}
1550
1551static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1552{
1553 tx->flags &= ~DMA_CTRL_REUSE;
1554}
1555
1556static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1557{
1558 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1559}
1560
1561static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1562{
1563 /* this is supported for reusable desc, so check that */
3a92063b 1564 if (!dmaengine_desc_test_reuse(desc))
27242021 1565 return -EPERM;
3a92063b
AS
1566
1567 return desc->desc_free(desc);
27242021
VK
1568}
1569
c13c8260
CL
1570/* --- DMA device --- */
1571
1572int dma_async_device_register(struct dma_device *device);
f39b948d 1573int dmaenginem_async_device_register(struct dma_device *device);
c13c8260 1574void dma_async_device_unregister(struct dma_device *device);
e81274cd
DJ
1575int dma_async_device_channel_register(struct dma_device *device,
1576 struct dma_chan *chan);
1577void dma_async_device_channel_unregister(struct dma_device *device,
1578 struct dma_chan *chan);
07f2211e 1579void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
f5151311
BW
1580#define dma_request_channel(mask, x, y) \
1581 __dma_request_channel(&(mask), x, y, NULL)
864ef69b 1582
7547dbd3
PU
1583/* Deprecated, please use dma_request_chan() directly */
1584static inline struct dma_chan * __deprecated
1585dma_request_slave_channel(struct device *dev, const char *name)
1586{
1587 struct dma_chan *ch = dma_request_chan(dev, name);
1588
1589 return IS_ERR(ch) ? NULL : ch;
1590}
1591
864ef69b 1592static inline struct dma_chan
71ca5b78 1593*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
a53e28da 1594 dma_filter_fn fn, void *fn_param,
1dc04288 1595 struct device *dev, const char *name)
864ef69b
MP
1596{
1597 struct dma_chan *chan;
1598
1599 chan = dma_request_slave_channel(dev, name);
1600 if (chan)
1601 return chan;
1602
7dfffb95
GU
1603 if (!fn || !fn_param)
1604 return NULL;
1605
71ca5b78 1606 return __dma_request_channel(&mask, fn, fn_param, NULL);
864ef69b 1607}
816ebf48
PU
1608
1609static inline char *
1610dmaengine_get_direction_text(enum dma_transfer_direction dir)
1611{
1612 switch (dir) {
1613 case DMA_DEV_TO_MEM:
1614 return "DEV_TO_MEM";
1615 case DMA_MEM_TO_DEV:
1616 return "MEM_TO_DEV";
1617 case DMA_MEM_TO_MEM:
1618 return "MEM_TO_MEM";
1619 case DMA_DEV_TO_DEV:
1620 return "DEV_TO_DEV";
1621 default:
1873300a 1622 return "invalid";
816ebf48 1623 }
864ef69b 1624}
ab650ef6
PU
1625
1626static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1627{
1628 if (chan->dev->chan_dma_dev)
1629 return &chan->dev->device;
1630
1631 return chan->device->dev;
1632}
1633
c13c8260 1634#endif /* DMAENGINE_H */