Merge tag 'sched_ext-for-6.12' of git://git.kernel.org/pub/scm/linux/kernel/git/tj...
[linux-2.6-block.git] / include / linux / dmaengine.h
CommitLineData
9ab65aff 1/* SPDX-License-Identifier: GPL-2.0-or-later */
c13c8260
CL
2/*
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
c13c8260 4 */
d2ebfb33
RKAL
5#ifndef LINUX_DMAENGINE_H
6#define LINUX_DMAENGINE_H
1c0f16e5 7
c13c8260 8#include <linux/device.h>
0ad7c000 9#include <linux/err.h>
c13c8260 10#include <linux/uio.h>
187f1882 11#include <linux/bug.h>
90b44f8f 12#include <linux/scatterlist.h>
a8efa9d6 13#include <linux/bitmap.h>
dcc043dc 14#include <linux/types.h>
a8efa9d6 15#include <asm/page.h>
b7f080cf 16
c13c8260 17/**
fe4ada2d 18 * typedef dma_cookie_t - an opaque DMA cookie
c13c8260
CL
19 *
20 * if dma_cookie_t is >0 it's a DMA request cookie, <0 it's an error code
21 */
22typedef s32 dma_cookie_t;
76bd061f 23#define DMA_MIN_COOKIE 1
c13c8260 24
71ea1483
DC
25static inline int dma_submit_error(dma_cookie_t cookie)
26{
27 return cookie < 0 ? cookie : 0;
28}
c13c8260
CL
29
30/**
31 * enum dma_status - DMA transaction status
adfedd9a 32 * @DMA_COMPLETE: transaction completed
c13c8260 33 * @DMA_IN_PROGRESS: transaction not yet processed
07934481 34 * @DMA_PAUSED: transaction is paused
c13c8260
CL
35 * @DMA_ERROR: transaction failed
36 */
37enum dma_status {
7db5f727 38 DMA_COMPLETE,
c13c8260 39 DMA_IN_PROGRESS,
07934481 40 DMA_PAUSED,
c13c8260 41 DMA_ERROR,
47ec7f09 42 DMA_OUT_OF_ORDER,
c13c8260
CL
43};
44
7405f74b
DW
45/**
46 * enum dma_transaction_type - DMA transaction types/indexes
138f4c35
DW
47 *
48 * Note: The DMA_ASYNC_TX capability is not to be set by drivers. It is
49 * automatically set as dma devices are registered.
7405f74b
DW
50 */
51enum dma_transaction_type {
52 DMA_MEMCPY,
53 DMA_XOR,
b2f46fd8 54 DMA_PQ,
099f53cb
DW
55 DMA_XOR_VAL,
56 DMA_PQ_VAL,
4983a501 57 DMA_MEMSET,
50c7cd2b 58 DMA_MEMSET_SG,
7405f74b 59 DMA_INTERRUPT,
59b5ec21 60 DMA_PRIVATE,
138f4c35 61 DMA_ASYNC_TX,
dc0ee643 62 DMA_SLAVE,
782bc950 63 DMA_CYCLIC,
b14dab79 64 DMA_INTERLEAVE,
47ec7f09 65 DMA_COMPLETION_NO_ORDER,
9c8ebd8b
LP
66 DMA_REPEAT,
67 DMA_LOAD_EOT,
7405f74b 68/* last transaction type for creation of the capabilities mask */
b14dab79
JB
69 DMA_TX_TYPE_END,
70};
dc0ee643 71
49920bc6
VK
72/**
73 * enum dma_transfer_direction - dma transfer mode and direction indicator
74 * @DMA_MEM_TO_MEM: Async/Memcpy mode
75 * @DMA_MEM_TO_DEV: Slave mode & From Memory to Device
76 * @DMA_DEV_TO_MEM: Slave mode & From Device to Memory
77 * @DMA_DEV_TO_DEV: Slave mode & From Device to Device
78 */
79enum dma_transfer_direction {
80 DMA_MEM_TO_MEM,
81 DMA_MEM_TO_DEV,
82 DMA_DEV_TO_MEM,
83 DMA_DEV_TO_DEV,
62268ce9 84 DMA_TRANS_NONE,
49920bc6 85};
7405f74b 86
b14dab79
JB
87/**
88 * Interleaved Transfer Request
89 * ----------------------------
20d60f63 90 * A chunk is collection of contiguous bytes to be transferred.
b14dab79 91 * The gap(in bytes) between two chunks is called inter-chunk-gap(ICG).
20d60f63 92 * ICGs may or may not change between chunks.
b14dab79
JB
93 * A FRAME is the smallest series of contiguous {chunk,icg} pairs,
94 * that when repeated an integral number of times, specifies the transfer.
95 * A transfer template is specification of a Frame, the number of times
96 * it is to be repeated and other per-transfer attributes.
97 *
98 * Practically, a client driver would have ready a template for each
99 * type of transfer it is going to need during its lifetime and
100 * set only 'src_start' and 'dst_start' before submitting the requests.
101 *
102 *
103 * | Frame-1 | Frame-2 | ~ | Frame-'numf' |
104 * |====....==.===...=...|====....==.===...=...| ~ |====....==.===...=...|
105 *
106 * == Chunk size
107 * ... ICG
108 */
109
110/**
111 * struct data_chunk - Element of scatter-gather list that makes a frame.
112 * @size: Number of bytes to read from source.
113 * size_dst := fn(op, size_src), so doesn't mean much for destination.
114 * @icg: Number of bytes to jump after last src/dst address of this
115 * chunk and before first src/dst address for next chunk.
116 * Ignored for dst(assumed 0), if dst_inc is true and dst_sgl is false.
117 * Ignored for src(assumed 0), if src_inc is true and src_sgl is false.
e1031dc1
MR
118 * @dst_icg: Number of bytes to jump after last dst address of this
119 * chunk and before the first dst address for next chunk.
120 * Ignored if dst_inc is true and dst_sgl is false.
121 * @src_icg: Number of bytes to jump after last src address of this
122 * chunk and before the first src address for next chunk.
123 * Ignored if src_inc is true and src_sgl is false.
b14dab79
JB
124 */
125struct data_chunk {
126 size_t size;
127 size_t icg;
e1031dc1
MR
128 size_t dst_icg;
129 size_t src_icg;
b14dab79
JB
130};
131
132/**
133 * struct dma_interleaved_template - Template to convey DMAC the transfer pattern
134 * and attributes.
135 * @src_start: Bus address of source for the first chunk.
136 * @dst_start: Bus address of destination for the first chunk.
137 * @dir: Specifies the type of Source and Destination.
138 * @src_inc: If the source address increments after reading from it.
139 * @dst_inc: If the destination address increments after writing to it.
140 * @src_sgl: If the 'icg' of sgl[] applies to Source (scattered read).
141 * Otherwise, source is read contiguously (icg ignored).
142 * Ignored if src_inc is false.
143 * @dst_sgl: If the 'icg' of sgl[] applies to Destination (scattered write).
144 * Otherwise, destination is filled contiguously (icg ignored).
145 * Ignored if dst_inc is false.
146 * @numf: Number of frames in this template.
147 * @frame_size: Number of chunks in a frame i.e, size of sgl[].
148 * @sgl: Array of {chunk,icg} pairs that make up a frame.
149 */
150struct dma_interleaved_template {
151 dma_addr_t src_start;
152 dma_addr_t dst_start;
153 enum dma_transfer_direction dir;
154 bool src_inc;
155 bool dst_inc;
156 bool src_sgl;
157 bool dst_sgl;
158 size_t numf;
159 size_t frame_size;
466f966b 160 struct data_chunk sgl[];
b14dab79
JB
161};
162
5878853f
PC
163/**
164 * struct dma_vec - DMA vector
165 * @addr: Bus address of the start of the vector
166 * @len: Length in bytes of the DMA vector
167 */
168struct dma_vec {
169 dma_addr_t addr;
170 size_t len;
171};
172
d4c56f97 173/**
636bdeaa 174 * enum dma_ctrl_flags - DMA flags to augment operation preparation,
b2f46fd8 175 * control completion, and communicate status.
d4c56f97 176 * @DMA_PREP_INTERRUPT - trigger an interrupt (callback) upon completion of
b2f46fd8 177 * this transaction
a88f6667 178 * @DMA_CTRL_ACK - if clear, the descriptor cannot be reused until the client
2be90e91 179 * acknowledges receipt, i.e. has a chance to establish any dependency
b2f46fd8 180 * chains
b2f46fd8
DW
181 * @DMA_PREP_PQ_DISABLE_P - prevent generation of P while generating Q
182 * @DMA_PREP_PQ_DISABLE_Q - prevent generation of Q while generating P
183 * @DMA_PREP_CONTINUE - indicate to a driver that it is reusing buffers as
184 * sources that were the result of a previous operation, in the case of a PQ
185 * operation it continues the calculation with new sources
0403e382
DW
186 * @DMA_PREP_FENCE - tell the driver that subsequent operations depend
187 * on the result of this operation
27242021
VK
188 * @DMA_CTRL_REUSE: client can reuse the descriptor and submit again till
189 * cleared or freed
3e00ab4a
AS
190 * @DMA_PREP_CMD: tell the driver that the data passed to DMA API is command
191 * data and the descriptor should be in different format from normal
192 * data descriptors.
9c8ebd8b
LP
193 * @DMA_PREP_REPEAT: tell the driver that the transaction shall be automatically
194 * repeated when it ends until a transaction is issued on the same channel
195 * with the DMA_PREP_LOAD_EOT flag set. This flag is only applicable to
196 * interleaved transactions and is ignored for all other transaction types.
197 * @DMA_PREP_LOAD_EOT: tell the driver that the transaction shall replace any
198 * active repeated (as indicated by DMA_PREP_REPEAT) transaction when the
199 * repeated transaction ends. Not setting this flag when the previously queued
200 * transaction is marked with DMA_PREP_REPEAT will cause the new transaction
201 * to never be processed and stay in the issued queue forever. The flag is
202 * ignored if the previous transaction is not a repeated transaction.
d4c56f97 203 */
636bdeaa 204enum dma_ctrl_flags {
d4c56f97 205 DMA_PREP_INTERRUPT = (1 << 0),
636bdeaa 206 DMA_CTRL_ACK = (1 << 1),
0776ae7b
BZ
207 DMA_PREP_PQ_DISABLE_P = (1 << 2),
208 DMA_PREP_PQ_DISABLE_Q = (1 << 3),
209 DMA_PREP_CONTINUE = (1 << 4),
210 DMA_PREP_FENCE = (1 << 5),
27242021 211 DMA_CTRL_REUSE = (1 << 6),
3e00ab4a 212 DMA_PREP_CMD = (1 << 7),
9c8ebd8b
LP
213 DMA_PREP_REPEAT = (1 << 8),
214 DMA_PREP_LOAD_EOT = (1 << 9),
d4c56f97
DW
215};
216
ad283ea4
DW
217/**
218 * enum sum_check_bits - bit position of pq_check_flags
219 */
220enum sum_check_bits {
221 SUM_CHECK_P = 0,
222 SUM_CHECK_Q = 1,
223};
224
225/**
226 * enum pq_check_flags - result of async_{xor,pq}_zero_sum operations
227 * @SUM_CHECK_P_RESULT - 1 if xor zero sum error, 0 otherwise
228 * @SUM_CHECK_Q_RESULT - 1 if reed-solomon zero sum error, 0 otherwise
229 */
230enum sum_check_flags {
231 SUM_CHECK_P_RESULT = (1 << SUM_CHECK_P),
232 SUM_CHECK_Q_RESULT = (1 << SUM_CHECK_Q),
233};
234
235
7405f74b
DW
236/**
237 * dma_cap_mask_t - capabilities bitmap modeled after cpumask_t.
238 * See linux/cpumask.h
239 */
240typedef struct { DECLARE_BITMAP(bits, DMA_TX_TYPE_END); } dma_cap_mask_t;
241
4db8fd32
PU
242/**
243 * enum dma_desc_metadata_mode - per descriptor metadata mode types supported
244 * @DESC_METADATA_CLIENT - the metadata buffer is allocated/provided by the
245 * client driver and it is attached (via the dmaengine_desc_attach_metadata()
246 * helper) to the descriptor.
247 *
248 * Client drivers interested to use this mode can follow:
249 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
250 * 1. prepare the descriptor (dmaengine_prep_*)
251 * construct the metadata in the client's buffer
252 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
253 * descriptor
254 * 3. submit the transfer
255 * - DMA_DEV_TO_MEM:
256 * 1. prepare the descriptor (dmaengine_prep_*)
257 * 2. use dmaengine_desc_attach_metadata() to attach the buffer to the
258 * descriptor
259 * 3. submit the transfer
260 * 4. when the transfer is completed, the metadata should be available in the
261 * attached buffer
262 *
263 * @DESC_METADATA_ENGINE - the metadata buffer is allocated/managed by the DMA
264 * driver. The client driver can ask for the pointer, maximum size and the
265 * currently used size of the metadata and can directly update or read it.
266 * dmaengine_desc_get_metadata_ptr() and dmaengine_desc_set_metadata_len() is
267 * provided as helper functions.
268 *
269 * Note: the metadata area for the descriptor is no longer valid after the
270 * transfer has been completed (valid up to the point when the completion
271 * callback returns if used).
272 *
273 * Client drivers interested to use this mode can follow:
274 * - DMA_MEM_TO_DEV / DEV_MEM_TO_MEM:
275 * 1. prepare the descriptor (dmaengine_prep_*)
276 * 2. use dmaengine_desc_get_metadata_ptr() to get the pointer to the engine's
277 * metadata area
278 * 3. update the metadata at the pointer
279 * 4. use dmaengine_desc_set_metadata_len() to tell the DMA engine the amount
280 * of data the client has placed into the metadata buffer
281 * 5. submit the transfer
282 * - DMA_DEV_TO_MEM:
283 * 1. prepare the descriptor (dmaengine_prep_*)
284 * 2. submit the transfer
285 * 3. on transfer completion, use dmaengine_desc_get_metadata_ptr() to get the
286 * pointer to the engine's metadata area
287 * 4. Read out the metadata from the pointer
288 *
289 * Note: the two mode is not compatible and clients must use one mode for a
290 * descriptor.
291 */
292enum dma_desc_metadata_mode {
293 DESC_METADATA_NONE = 0,
294 DESC_METADATA_CLIENT = BIT(0),
295 DESC_METADATA_ENGINE = BIT(1),
296};
297
acfbb191
AS
298/**
299 * struct dma_chan_percpu - the per-CPU part of struct dma_chan
300 * @memcpy_count: transaction counter
301 * @bytes_transferred: byte counter
302 */
c13c8260 303struct dma_chan_percpu {
c13c8260
CL
304 /* stats */
305 unsigned long memcpy_count;
306 unsigned long bytes_transferred;
307};
308
56f13c0d
PU
309/**
310 * struct dma_router - DMA router structure
311 * @dev: pointer to the DMA router device
312 * @route_free: function to be called when the route can be disconnected
313 */
314struct dma_router {
315 struct device *dev;
316 void (*route_free)(struct device *dev, void *route_data);
317};
318
c13c8260
CL
319/**
320 * struct dma_chan - devices supply DMA channels, clients use them
fe4ada2d 321 * @device: ptr to the dma device who supplies this channel, always !%NULL
71723a96 322 * @slave: ptr to the device using this channel
c13c8260 323 * @cookie: last cookie value returned to client
4d4e58de 324 * @completed_cookie: last completed cookie for this channel
fe4ada2d 325 * @chan_id: channel ID for sysfs
41d5e59c 326 * @dev: class device for sysfs
71723a96 327 * @name: backlink name for sysfs
e937cc1d
PU
328 * @dbg_client_name: slave name for debugfs in format:
329 * dev_name(requester's dev):channel name, for example: "2b00000.mcasp:tx"
c13c8260
CL
330 * @device_node: used to add this to the device chan list
331 * @local: per-cpu pointer to a struct dma_chan_percpu
868d2ee2 332 * @client_count: how many clients are using this channel
bec08513 333 * @table_count: number of appearances in the mem-to-mem allocation table
56f13c0d
PU
334 * @router: pointer to the DMA router structure
335 * @route_data: channel specific data for the router
287d8592 336 * @private: private data for certain client-channel associations
c13c8260
CL
337 */
338struct dma_chan {
c13c8260 339 struct dma_device *device;
71723a96 340 struct device *slave;
c13c8260 341 dma_cookie_t cookie;
4d4e58de 342 dma_cookie_t completed_cookie;
c13c8260
CL
343
344 /* sysfs */
345 int chan_id;
41d5e59c 346 struct dma_chan_dev *dev;
71723a96 347 const char *name;
e937cc1d
PU
348#ifdef CONFIG_DEBUG_FS
349 char *dbg_client_name;
350#endif
c13c8260 351
c13c8260 352 struct list_head device_node;
a29d8b8e 353 struct dma_chan_percpu __percpu *local;
7cc5bf9a 354 int client_count;
bec08513 355 int table_count;
56f13c0d
PU
356
357 /* DMA router */
358 struct dma_router *router;
359 void *route_data;
360
287d8592 361 void *private;
c13c8260
CL
362};
363
41d5e59c
DW
364/**
365 * struct dma_chan_dev - relate sysfs device node to backing channel device
868d2ee2
VK
366 * @chan: driver channel device
367 * @device: sysfs device
368 * @dev_id: parent dma_device dev_id
ab650ef6
PU
369 * @chan_dma_dev: The channel is using custom/different dma-mapping
370 * compared to the parent dma_device
41d5e59c
DW
371 */
372struct dma_chan_dev {
373 struct dma_chan *chan;
374 struct device device;
864498aa 375 int dev_id;
ab650ef6 376 bool chan_dma_dev;
41d5e59c
DW
377};
378
c156d0a5 379/**
ba730340 380 * enum dma_slave_buswidth - defines bus width of the DMA slave
c156d0a5
LW
381 * device, source or target buses
382 */
383enum dma_slave_buswidth {
384 DMA_SLAVE_BUSWIDTH_UNDEFINED = 0,
385 DMA_SLAVE_BUSWIDTH_1_BYTE = 1,
386 DMA_SLAVE_BUSWIDTH_2_BYTES = 2,
93c6ee94 387 DMA_SLAVE_BUSWIDTH_3_BYTES = 3,
c156d0a5
LW
388 DMA_SLAVE_BUSWIDTH_4_BYTES = 4,
389 DMA_SLAVE_BUSWIDTH_8_BYTES = 8,
534a7298
LP
390 DMA_SLAVE_BUSWIDTH_16_BYTES = 16,
391 DMA_SLAVE_BUSWIDTH_32_BYTES = 32,
392 DMA_SLAVE_BUSWIDTH_64_BYTES = 64,
ab959c7d 393 DMA_SLAVE_BUSWIDTH_128_BYTES = 128,
c156d0a5
LW
394};
395
396/**
397 * struct dma_slave_config - dma slave channel runtime config
398 * @direction: whether the data shall go in or out on this slave
397321f4 399 * channel, right now. DMA_MEM_TO_DEV and DMA_DEV_TO_MEM are
d9ff958b
LP
400 * legal values. DEPRECATED, drivers should use the direction argument
401 * to the device_prep_slave_sg and device_prep_dma_cyclic functions or
402 * the dir field in the dma_interleaved_template structure.
c156d0a5
LW
403 * @src_addr: this is the physical address where DMA slave data
404 * should be read (RX), if the source is memory this argument is
405 * ignored.
406 * @dst_addr: this is the physical address where DMA slave data
37fe4605 407 * should be written (TX), if the destination is memory this argument
c156d0a5
LW
408 * is ignored.
409 * @src_addr_width: this is the width in bytes of the source (RX)
410 * register where DMA data shall be read. If the source
411 * is memory this may be ignored depending on architecture.
ab959c7d 412 * Legal values: 1, 2, 3, 4, 8, 16, 32, 64, 128.
c156d0a5
LW
413 * @dst_addr_width: same as src_addr_width but for destination
414 * target (TX) mutatis mutandis.
415 * @src_maxburst: the maximum number of words (note: words, as in
416 * units of the src_addr_width member, not bytes) that can be sent
417 * in one burst to the device. Typically something like half the
418 * FIFO depth on I/O peripherals so you don't overflow it. This
419 * may or may not be applicable on memory sources.
420 * @dst_maxburst: same as src_maxburst but for destination target
421 * mutatis mutandis.
54cd2558
PU
422 * @src_port_window_size: The length of the register area in words the data need
423 * to be accessed on the device side. It is only used for devices which is using
424 * an area instead of a single register to receive the data. Typically the DMA
425 * loops in this area in order to transfer the data.
426 * @dst_port_window_size: same as src_port_window_size but for the destination
427 * port.
dcc043dc
VK
428 * @device_fc: Flow Controller Settings. Only valid for slave channels. Fill
429 * with 'true' if peripheral should be flow controller. Direction will be
430 * selected at Runtime.
e7bbb7ac
VK
431 * @peripheral_config: peripheral configuration for programming peripheral
432 * for dmaengine transfer
433 * @peripheral_size: peripheral configuration buffer size
c156d0a5
LW
434 *
435 * This struct is passed in as configuration data to a DMA engine
436 * in order to set up a certain channel for DMA transport at runtime.
437 * The DMA device/engine has to provide support for an additional
2c44ad91
MR
438 * callback in the dma_device structure, device_config and this struct
439 * will then be passed in as an argument to the function.
c156d0a5 440 *
7cbccb55
LPC
441 * The rationale for adding configuration information to this struct is as
442 * follows: if it is likely that more than one DMA slave controllers in
443 * the world will support the configuration option, then make it generic.
444 * If not: if it is fixed so that it be sent in static from the platform
445 * data, then prefer to do that.
c156d0a5
LW
446 */
447struct dma_slave_config {
49920bc6 448 enum dma_transfer_direction direction;
95756320
VK
449 phys_addr_t src_addr;
450 phys_addr_t dst_addr;
c156d0a5
LW
451 enum dma_slave_buswidth src_addr_width;
452 enum dma_slave_buswidth dst_addr_width;
453 u32 src_maxburst;
454 u32 dst_maxburst;
54cd2558
PU
455 u32 src_port_window_size;
456 u32 dst_port_window_size;
dcc043dc 457 bool device_fc;
e7bbb7ac
VK
458 void *peripheral_config;
459 size_t peripheral_size;
c156d0a5
LW
460};
461
50720563
LPC
462/**
463 * enum dma_residue_granularity - Granularity of the reported transfer residue
464 * @DMA_RESIDUE_GRANULARITY_DESCRIPTOR: Residue reporting is not support. The
465 * DMA channel is only able to tell whether a descriptor has been completed or
466 * not, which means residue reporting is not supported by this channel. The
467 * residue field of the dma_tx_state field will always be 0.
468 * @DMA_RESIDUE_GRANULARITY_SEGMENT: Residue is updated after each successfully
469 * completed segment of the transfer (For cyclic transfers this is after each
470 * period). This is typically implemented by having the hardware generate an
471 * interrupt after each transferred segment and then the drivers updates the
472 * outstanding residue by the size of the segment. Another possibility is if
473 * the hardware supports scatter-gather and the segment descriptor has a field
474 * which gets set after the segment has been completed. The driver then counts
475 * the number of segments without the flag set to compute the residue.
476 * @DMA_RESIDUE_GRANULARITY_BURST: Residue is updated after each transferred
477 * burst. This is typically only supported if the hardware has a progress
478 * register of some sort (E.g. a register with the current read/write address
479 * or a register with the amount of bursts/beats/bytes that have been
480 * transferred or still need to be transferred).
481 */
482enum dma_residue_granularity {
483 DMA_RESIDUE_GRANULARITY_DESCRIPTOR = 0,
484 DMA_RESIDUE_GRANULARITY_SEGMENT = 1,
485 DMA_RESIDUE_GRANULARITY_BURST = 2,
486};
487
c2cbd427
SB
488/**
489 * struct dma_slave_caps - expose capabilities of a slave channel only
490 * @src_addr_widths: bit mask of src addr widths the channel supports.
491 * Width is specified in bytes, e.g. for a channel supporting
492 * a width of 4 the mask should have BIT(4) set.
493 * @dst_addr_widths: bit mask of dst addr widths the channel supports
494 * @directions: bit mask of slave directions the channel supports.
495 * Since the enum dma_transfer_direction is not defined as bit flag for
496 * each type, the dma controller should set BIT(<TYPE>) and same
497 * should be checked by controller as well
d97758e0 498 * @min_burst: min burst capability per-transfer
6d5bbed3 499 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
500 * @max_sg_burst: max number of SG list entries executed in a single burst
501 * DMA tansaction with no software intervention for reinitialization.
502 * Zero value means unlimited number of entries.
d8095f94
MS
503 * @cmd_pause: true, if pause is supported (i.e. for reading residue or
504 * for resume later)
505 * @cmd_resume: true, if resume is supported
221a27c7 506 * @cmd_terminate: true, if terminate cmd is supported
50720563 507 * @residue_granularity: granularity of the reported transfer residue
27242021
VK
508 * @descriptor_reuse: if a descriptor can be reused by client and
509 * resubmitted multiple times
221a27c7
VK
510 */
511struct dma_slave_caps {
512 u32 src_addr_widths;
ceacbdbf 513 u32 dst_addr_widths;
221a27c7 514 u32 directions;
d97758e0 515 u32 min_burst;
6d5bbed3 516 u32 max_burst;
b1b40b8f 517 u32 max_sg_burst;
221a27c7 518 bool cmd_pause;
d8095f94 519 bool cmd_resume;
221a27c7 520 bool cmd_terminate;
50720563 521 enum dma_residue_granularity residue_granularity;
27242021 522 bool descriptor_reuse;
221a27c7
VK
523};
524
41d5e59c
DW
525static inline const char *dma_chan_name(struct dma_chan *chan)
526{
527 return dev_name(&chan->dev->device);
528}
d379b01e 529
59b5ec21
DW
530/**
531 * typedef dma_filter_fn - callback filter for dma_request_channel
532 * @chan: channel to be reviewed
533 * @filter_param: opaque parameter passed through dma_request_channel
534 *
535 * When this optional parameter is specified in a call to dma_request_channel a
536 * suitable channel is passed to this routine for further dispositioning before
537 * being returned. Where 'suitable' indicates a non-busy channel that
7dd60251
DW
538 * satisfies the given capability mask. It returns 'true' to indicate that the
539 * channel is suitable.
59b5ec21 540 */
7dd60251 541typedef bool (*dma_filter_fn)(struct dma_chan *chan, void *filter_param);
59b5ec21 542
7405f74b 543typedef void (*dma_async_tx_callback)(void *dma_async_param);
d38a8c62 544
f067025b
DJ
545enum dmaengine_tx_result {
546 DMA_TRANS_NOERROR = 0, /* SUCCESS */
547 DMA_TRANS_READ_FAILED, /* Source DMA read failed */
548 DMA_TRANS_WRITE_FAILED, /* Destination DMA write failed */
549 DMA_TRANS_ABORTED, /* Op never submitted / aborted */
550};
551
552struct dmaengine_result {
553 enum dmaengine_tx_result result;
554 u32 residue;
555};
556
557typedef void (*dma_async_tx_callback_result)(void *dma_async_param,
558 const struct dmaengine_result *result);
559
d38a8c62 560struct dmaengine_unmap_data {
0c0eb4ca
ZY
561#if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
562 u16 map_cnt;
563#else
c1f43dd9 564 u8 map_cnt;
0c0eb4ca 565#endif
d38a8c62
DW
566 u8 to_cnt;
567 u8 from_cnt;
568 u8 bidi_cnt;
569 struct device *dev;
570 struct kref kref;
571 size_t len;
466f966b 572 dma_addr_t addr[];
d38a8c62
DW
573};
574
4db8fd32
PU
575struct dma_async_tx_descriptor;
576
577struct dma_descriptor_metadata_ops {
578 int (*attach)(struct dma_async_tx_descriptor *desc, void *data,
579 size_t len);
580
581 void *(*get_ptr)(struct dma_async_tx_descriptor *desc,
582 size_t *payload_len, size_t *max_len);
583 int (*set_len)(struct dma_async_tx_descriptor *desc,
584 size_t payload_len);
585};
586
7405f74b
DW
587/**
588 * struct dma_async_tx_descriptor - async transaction descriptor
589 * ---dma generic offload fields---
590 * @cookie: tracking cookie for this transaction, set to -EBUSY if
591 * this tx is sitting on a dependency list
636bdeaa 592 * @flags: flags to augment operation preparation, control completion, and
dda51089 593 * communicate status
7405f74b 594 * @phys: physical address of the descriptor
7405f74b 595 * @chan: target channel for this operation
aba96bad
VK
596 * @tx_submit: accept the descriptor, assign ordered cookie and mark the
597 * descriptor pending. To be pushed on .issue_pending() call
7405f74b
DW
598 * @callback: routine to call after this operation is complete
599 * @callback_param: general parameter to pass to the callback routine
4db8fd32
PU
600 * @desc_metadata_mode: core managed metadata mode to protect mixed use of
601 * DESC_METADATA_CLIENT or DESC_METADATA_ENGINE. Otherwise
602 * DESC_METADATA_NONE
603 * @metadata_ops: DMA driver provided metadata mode ops, need to be set by the
604 * DMA driver if metadata mode is supported with the descriptor
7405f74b 605 * ---async_tx api specific fields---
19242d72 606 * @next: at completion submit this descriptor
7405f74b 607 * @parent: pointer to the next level up in the dependency chain
19242d72 608 * @lock: protect the parent and next pointers
7405f74b
DW
609 */
610struct dma_async_tx_descriptor {
611 dma_cookie_t cookie;
636bdeaa 612 enum dma_ctrl_flags flags; /* not a 'long' to pack with cookie */
7405f74b 613 dma_addr_t phys;
7405f74b
DW
614 struct dma_chan *chan;
615 dma_cookie_t (*tx_submit)(struct dma_async_tx_descriptor *tx);
27242021 616 int (*desc_free)(struct dma_async_tx_descriptor *tx);
7405f74b 617 dma_async_tx_callback callback;
f067025b 618 dma_async_tx_callback_result callback_result;
7405f74b 619 void *callback_param;
d38a8c62 620 struct dmaengine_unmap_data *unmap;
4db8fd32
PU
621 enum dma_desc_metadata_mode desc_metadata_mode;
622 struct dma_descriptor_metadata_ops *metadata_ops;
5fc6d897 623#ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
19242d72 624 struct dma_async_tx_descriptor *next;
7405f74b
DW
625 struct dma_async_tx_descriptor *parent;
626 spinlock_t lock;
caa20d97 627#endif
7405f74b
DW
628};
629
89716462 630#ifdef CONFIG_DMA_ENGINE
d38a8c62
DW
631static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
632 struct dmaengine_unmap_data *unmap)
633{
634 kref_get(&unmap->kref);
635 tx->unmap = unmap;
636}
637
89716462
DW
638struct dmaengine_unmap_data *
639dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags);
45c463ae 640void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap);
89716462
DW
641#else
642static inline void dma_set_unmap(struct dma_async_tx_descriptor *tx,
643 struct dmaengine_unmap_data *unmap)
644{
645}
646static inline struct dmaengine_unmap_data *
647dmaengine_get_unmap_data(struct device *dev, int nr, gfp_t flags)
648{
649 return NULL;
650}
651static inline void dmaengine_unmap_put(struct dmaengine_unmap_data *unmap)
652{
653}
654#endif
45c463ae 655
d38a8c62
DW
656static inline void dma_descriptor_unmap(struct dma_async_tx_descriptor *tx)
657{
3a92063b
AS
658 if (!tx->unmap)
659 return;
660
661 dmaengine_unmap_put(tx->unmap);
662 tx->unmap = NULL;
d38a8c62
DW
663}
664
5fc6d897 665#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
caa20d97
DW
666static inline void txd_lock(struct dma_async_tx_descriptor *txd)
667{
668}
669static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
670{
671}
672static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
673{
674 BUG();
675}
676static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
677{
678}
679static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
680{
681}
682static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
683{
684 return NULL;
685}
686static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
687{
688 return NULL;
689}
690
691#else
692static inline void txd_lock(struct dma_async_tx_descriptor *txd)
693{
694 spin_lock_bh(&txd->lock);
695}
696static inline void txd_unlock(struct dma_async_tx_descriptor *txd)
697{
698 spin_unlock_bh(&txd->lock);
699}
700static inline void txd_chain(struct dma_async_tx_descriptor *txd, struct dma_async_tx_descriptor *next)
701{
702 txd->next = next;
703 next->parent = txd;
704}
705static inline void txd_clear_parent(struct dma_async_tx_descriptor *txd)
706{
707 txd->parent = NULL;
708}
709static inline void txd_clear_next(struct dma_async_tx_descriptor *txd)
710{
711 txd->next = NULL;
712}
713static inline struct dma_async_tx_descriptor *txd_parent(struct dma_async_tx_descriptor *txd)
714{
715 return txd->parent;
716}
717static inline struct dma_async_tx_descriptor *txd_next(struct dma_async_tx_descriptor *txd)
718{
719 return txd->next;
720}
721#endif
722
07934481
LW
723/**
724 * struct dma_tx_state - filled in to report the status of
725 * a transfer.
726 * @last: last completed DMA cookie
727 * @used: last issued DMA cookie (i.e. the one in progress)
728 * @residue: the remaining number of bytes left to transmit
729 * on the selected transfer for states DMA_IN_PROGRESS and
730 * DMA_PAUSED if this is implemented in the driver, else 0
6755ec06 731 * @in_flight_bytes: amount of data in bytes cached by the DMA.
07934481
LW
732 */
733struct dma_tx_state {
734 dma_cookie_t last;
735 dma_cookie_t used;
736 u32 residue;
6755ec06 737 u32 in_flight_bytes;
07934481
LW
738};
739
77a68e56
MR
740/**
741 * enum dmaengine_alignment - defines alignment of the DMA async tx
742 * buffers
743 */
744enum dmaengine_alignment {
745 DMAENGINE_ALIGN_1_BYTE = 0,
746 DMAENGINE_ALIGN_2_BYTES = 1,
747 DMAENGINE_ALIGN_4_BYTES = 2,
748 DMAENGINE_ALIGN_8_BYTES = 3,
749 DMAENGINE_ALIGN_16_BYTES = 4,
750 DMAENGINE_ALIGN_32_BYTES = 5,
751 DMAENGINE_ALIGN_64_BYTES = 6,
660343d0
PU
752 DMAENGINE_ALIGN_128_BYTES = 7,
753 DMAENGINE_ALIGN_256_BYTES = 8,
77a68e56
MR
754};
755
a8135d0d
PU
756/**
757 * struct dma_slave_map - associates slave device and it's slave channel with
758 * parameter to be used by a filter function
759 * @devname: name of the device
760 * @slave: slave channel name
761 * @param: opaque parameter to pass to struct dma_filter.fn
762 */
763struct dma_slave_map {
764 const char *devname;
765 const char *slave;
766 void *param;
767};
768
769/**
770 * struct dma_filter - information for slave device/channel to filter_fn/param
771 * mapping
772 * @fn: filter function callback
773 * @mapcnt: number of slave device/channel in the map
774 * @map: array of channel to filter mapping data
775 */
776struct dma_filter {
777 dma_filter_fn fn;
778 int mapcnt;
779 const struct dma_slave_map *map;
780};
781
c13c8260
CL
782/**
783 * struct dma_device - info on the entity supplying DMA services
8b544310 784 * @ref: reference is taken and put every time a channel is allocated or freed
c13c8260 785 * @chancnt: how many DMA channels are supported
0f571515 786 * @privatecnt: how many DMA channels are requested by dma_request_channel
c13c8260
CL
787 * @channels: the list of struct dma_chan
788 * @global_node: list_head for global dma_device_list
a8135d0d 789 * @filter: information for device/slave to filter function/param mapping
7405f74b 790 * @cap_mask: one or more dma_capability flags
4db8fd32 791 * @desc_metadata_modes: supported metadata modes by the DMA device
7405f74b 792 * @max_xor: maximum number of xor sources, 0 if no capability
b2f46fd8 793 * @max_pq: maximum number of PQ sources and PQ-continue capability
83544ae9
DW
794 * @copy_align: alignment shift for memcpy operations
795 * @xor_align: alignment shift for xor operations
796 * @pq_align: alignment shift for pq operations
4983a501 797 * @fill_align: alignment shift for memset operations
fe4ada2d 798 * @dev_id: unique device ID
7405f74b 799 * @dev: struct device reference for dma mapping api
dae7a589 800 * @owner: owner module (automatically set based on the provided dev)
8b544310 801 * @chan_ida: unique channel ID
cb8cea51 802 * @src_addr_widths: bit mask of src addr widths the device supports
c2cbd427
SB
803 * Width is specified in bytes, e.g. for a device supporting
804 * a width of 4 the mask should have BIT(4) set.
cb8cea51 805 * @dst_addr_widths: bit mask of dst addr widths the device supports
c2cbd427
SB
806 * @directions: bit mask of slave directions the device supports.
807 * Since the enum dma_transfer_direction is not defined as bit flag for
808 * each type, the dma controller should set BIT(<TYPE>) and same
809 * should be checked by controller as well
d97758e0 810 * @min_burst: min burst capability per-transfer
6d5bbed3 811 * @max_burst: max burst capability per-transfer
b1b40b8f
SS
812 * @max_sg_burst: max number of SG list entries executed in a single burst
813 * DMA tansaction with no software intervention for reinitialization.
814 * Zero value means unlimited number of entries.
8b544310 815 * @descriptor_reuse: a submitted transfer can be resubmitted after completion
cb8cea51
MR
816 * @residue_granularity: granularity of the transfer residue reported
817 * by tx_status
fe4ada2d
RD
818 * @device_alloc_chan_resources: allocate resources and return the
819 * number of allocated descriptors
4f910c03 820 * @device_router_config: optional callback for DMA router configuration
fe4ada2d 821 * @device_free_chan_resources: release DMA channel's resources
7405f74b
DW
822 * @device_prep_dma_memcpy: prepares a memcpy operation
823 * @device_prep_dma_xor: prepares a xor operation
099f53cb 824 * @device_prep_dma_xor_val: prepares a xor validation operation
b2f46fd8
DW
825 * @device_prep_dma_pq: prepares a pq operation
826 * @device_prep_dma_pq_val: prepares a pqzero_sum operation
4983a501 827 * @device_prep_dma_memset: prepares a memset operation
50c7cd2b 828 * @device_prep_dma_memset_sg: prepares a memset operation over a scatter list
7405f74b 829 * @device_prep_dma_interrupt: prepares an end of chain interrupt operation
dc0ee643 830 * @device_prep_slave_sg: prepares a slave dma operation
782bc950
SH
831 * @device_prep_dma_cyclic: prepare a cyclic dma operation suitable for audio.
832 * The function takes a buffer of size buf_len. The callback function will
833 * be called after period_len bytes have been transferred.
b14dab79 834 * @device_prep_interleaved_dma: Transfer expression in a generic way.
ff39988a 835 * @device_prep_dma_imm_data: DMA's 8 byte immediate data to the dst address
3b6d694e
SS
836 * @device_caps: May be used to override the generic DMA slave capabilities
837 * with per-channel specific ones
94a73e30
MR
838 * @device_config: Pushes a new configuration to a channel, return 0 or an error
839 * code
23a3ea2f
MR
840 * @device_pause: Pauses any transfer happening on a channel. Returns
841 * 0 or an error code
842 * @device_resume: Resumes any transfer on a channel previously
843 * paused. Returns 0 or an error code
7fa0cf46
MR
844 * @device_terminate_all: Aborts all transfers on a channel. Returns 0
845 * or an error code
b36f09c3
LPC
846 * @device_synchronize: Synchronizes the termination of a transfers to the
847 * current context.
07934481
LW
848 * @device_tx_status: poll for transaction completion, the optional
849 * txstate parameter can be supplied with a pointer to get a
25985edc 850 * struct with auxiliary transfer status information, otherwise the call
07934481 851 * will just return a simple status code
7405f74b 852 * @device_issue_pending: push pending transactions to hardware
8ad342a8
LG
853 * @device_release: called sometime atfer dma_async_device_unregister() is
854 * called and there are no further references to this structure. This
855 * must be implemented to free resources however many existing drivers
856 * do not and are therefore not safe to unbind while in use.
e937cc1d
PU
857 * @dbg_summary_show: optional routine to show contents in debugfs; default code
858 * will be used when this is omitted, but custom code can show extra,
859 * controller specific information.
8b544310 860 * @dbg_dev_root: the root folder in debugfs for this device
c13c8260
CL
861 */
862struct dma_device {
8ad342a8 863 struct kref ref;
c13c8260 864 unsigned int chancnt;
0f571515 865 unsigned int privatecnt;
c13c8260
CL
866 struct list_head channels;
867 struct list_head global_node;
a8135d0d 868 struct dma_filter filter;
8b544310 869 dma_cap_mask_t cap_mask;
4db8fd32 870 enum dma_desc_metadata_mode desc_metadata_modes;
b2f46fd8
DW
871 unsigned short max_xor;
872 unsigned short max_pq;
77a68e56
MR
873 enum dmaengine_alignment copy_align;
874 enum dmaengine_alignment xor_align;
875 enum dmaengine_alignment pq_align;
876 enum dmaengine_alignment fill_align;
b2f46fd8 877 #define DMA_HAS_PQ_CONTINUE (1 << 15)
c13c8260 878
c13c8260 879 int dev_id;
7405f74b 880 struct device *dev;
dae7a589 881 struct module *owner;
08210094 882 struct ida chan_ida;
c13c8260 883
cb8cea51
MR
884 u32 src_addr_widths;
885 u32 dst_addr_widths;
886 u32 directions;
d97758e0 887 u32 min_burst;
6d5bbed3 888 u32 max_burst;
b1b40b8f 889 u32 max_sg_burst;
9eeacd3a 890 bool descriptor_reuse;
cb8cea51
MR
891 enum dma_residue_granularity residue_granularity;
892
aa1e6f1a 893 int (*device_alloc_chan_resources)(struct dma_chan *chan);
4f910c03 894 int (*device_router_config)(struct dma_chan *chan);
c13c8260 895 void (*device_free_chan_resources)(struct dma_chan *chan);
7405f74b
DW
896
897 struct dma_async_tx_descriptor *(*device_prep_dma_memcpy)(
ceacbdbf 898 struct dma_chan *chan, dma_addr_t dst, dma_addr_t src,
d4c56f97 899 size_t len, unsigned long flags);
7405f74b 900 struct dma_async_tx_descriptor *(*device_prep_dma_xor)(
ceacbdbf 901 struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
d4c56f97 902 unsigned int src_cnt, size_t len, unsigned long flags);
099f53cb 903 struct dma_async_tx_descriptor *(*device_prep_dma_xor_val)(
0036731c 904 struct dma_chan *chan, dma_addr_t *src, unsigned int src_cnt,
ad283ea4 905 size_t len, enum sum_check_flags *result, unsigned long flags);
b2f46fd8
DW
906 struct dma_async_tx_descriptor *(*device_prep_dma_pq)(
907 struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
908 unsigned int src_cnt, const unsigned char *scf,
909 size_t len, unsigned long flags);
910 struct dma_async_tx_descriptor *(*device_prep_dma_pq_val)(
911 struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
912 unsigned int src_cnt, const unsigned char *scf, size_t len,
913 enum sum_check_flags *pqres, unsigned long flags);
4983a501
MR
914 struct dma_async_tx_descriptor *(*device_prep_dma_memset)(
915 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
916 unsigned long flags);
50c7cd2b
MR
917 struct dma_async_tx_descriptor *(*device_prep_dma_memset_sg)(
918 struct dma_chan *chan, struct scatterlist *sg,
919 unsigned int nents, int value, unsigned long flags);
7405f74b 920 struct dma_async_tx_descriptor *(*device_prep_dma_interrupt)(
636bdeaa 921 struct dma_chan *chan, unsigned long flags);
7405f74b 922
5878853f
PC
923 struct dma_async_tx_descriptor *(*device_prep_peripheral_dma_vec)(
924 struct dma_chan *chan, const struct dma_vec *vecs,
925 size_t nents, enum dma_transfer_direction direction,
926 unsigned long flags);
dc0ee643
HS
927 struct dma_async_tx_descriptor *(*device_prep_slave_sg)(
928 struct dma_chan *chan, struct scatterlist *sgl,
49920bc6 929 unsigned int sg_len, enum dma_transfer_direction direction,
185ecb5f 930 unsigned long flags, void *context);
782bc950
SH
931 struct dma_async_tx_descriptor *(*device_prep_dma_cyclic)(
932 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
185ecb5f 933 size_t period_len, enum dma_transfer_direction direction,
31c1e5a1 934 unsigned long flags);
b14dab79
JB
935 struct dma_async_tx_descriptor *(*device_prep_interleaved_dma)(
936 struct dma_chan *chan, struct dma_interleaved_template *xt,
937 unsigned long flags);
ff39988a
SY
938 struct dma_async_tx_descriptor *(*device_prep_dma_imm_data)(
939 struct dma_chan *chan, dma_addr_t dst, u64 data,
940 unsigned long flags);
94a73e30 941
8b544310
AS
942 void (*device_caps)(struct dma_chan *chan, struct dma_slave_caps *caps);
943 int (*device_config)(struct dma_chan *chan, struct dma_slave_config *config);
23a3ea2f
MR
944 int (*device_pause)(struct dma_chan *chan);
945 int (*device_resume)(struct dma_chan *chan);
7fa0cf46 946 int (*device_terminate_all)(struct dma_chan *chan);
b36f09c3 947 void (*device_synchronize)(struct dma_chan *chan);
dc0ee643 948
07934481
LW
949 enum dma_status (*device_tx_status)(struct dma_chan *chan,
950 dma_cookie_t cookie,
951 struct dma_tx_state *txstate);
7405f74b 952 void (*device_issue_pending)(struct dma_chan *chan);
8ad342a8 953 void (*device_release)(struct dma_device *dev);
e937cc1d 954 /* debugfs support */
e937cc1d 955 void (*dbg_summary_show)(struct seq_file *s, struct dma_device *dev);
26cf132d 956 struct dentry *dbg_dev_root;
c13c8260
CL
957};
958
6e3ecaf0
SH
959static inline int dmaengine_slave_config(struct dma_chan *chan,
960 struct dma_slave_config *config)
961{
94a73e30
MR
962 if (chan->device->device_config)
963 return chan->device->device_config(chan, config);
964
2c44ad91 965 return -ENOSYS;
6e3ecaf0
SH
966}
967
61cc13a5
AS
968static inline bool is_slave_direction(enum dma_transfer_direction direction)
969{
a22fe1d6
FL
970 return (direction == DMA_MEM_TO_DEV) || (direction == DMA_DEV_TO_MEM) ||
971 (direction == DMA_DEV_TO_DEV);
61cc13a5
AS
972}
973
90b44f8f 974static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_single(
922ee08b 975 struct dma_chan *chan, dma_addr_t buf, size_t len,
49920bc6 976 enum dma_transfer_direction dir, unsigned long flags)
90b44f8f
VK
977{
978 struct scatterlist sg;
922ee08b
KM
979 sg_init_table(&sg, 1);
980 sg_dma_address(&sg) = buf;
981 sg_dma_len(&sg) = len;
90b44f8f 982
757d12e5
VK
983 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
984 return NULL;
985
185ecb5f
AB
986 return chan->device->device_prep_slave_sg(chan, &sg, 1,
987 dir, flags, NULL);
90b44f8f
VK
988}
989
5878853f
PC
990/**
991 * dmaengine_prep_peripheral_dma_vec() - Prepare a DMA scatter-gather descriptor
992 * @chan: The channel to be used for this descriptor
993 * @vecs: The array of DMA vectors that should be transferred
994 * @nents: The number of DMA vectors in the array
995 * @dir: Specifies the direction of the data transfer
996 * @flags: DMA engine flags
997 */
998static inline struct dma_async_tx_descriptor *dmaengine_prep_peripheral_dma_vec(
999 struct dma_chan *chan, const struct dma_vec *vecs, size_t nents,
1000 enum dma_transfer_direction dir, unsigned long flags)
1001{
1002 if (!chan || !chan->device || !chan->device->device_prep_peripheral_dma_vec)
1003 return NULL;
1004
1005 return chan->device->device_prep_peripheral_dma_vec(chan, vecs, nents,
1006 dir, flags);
1007}
1008
16052827
AB
1009static inline struct dma_async_tx_descriptor *dmaengine_prep_slave_sg(
1010 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
1011 enum dma_transfer_direction dir, unsigned long flags)
1012{
757d12e5
VK
1013 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1014 return NULL;
1015
16052827 1016 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
185ecb5f 1017 dir, flags, NULL);
16052827
AB
1018}
1019
e42d98eb
AB
1020#ifdef CONFIG_RAPIDIO_DMA_ENGINE
1021struct rio_dma_ext;
1022static inline struct dma_async_tx_descriptor *dmaengine_prep_rio_sg(
1023 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
1024 enum dma_transfer_direction dir, unsigned long flags,
1025 struct rio_dma_ext *rio_ext)
1026{
757d12e5
VK
1027 if (!chan || !chan->device || !chan->device->device_prep_slave_sg)
1028 return NULL;
1029
e42d98eb
AB
1030 return chan->device->device_prep_slave_sg(chan, sgl, sg_len,
1031 dir, flags, rio_ext);
1032}
1033#endif
1034
16052827
AB
1035static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_cyclic(
1036 struct dma_chan *chan, dma_addr_t buf_addr, size_t buf_len,
e7736cde
PU
1037 size_t period_len, enum dma_transfer_direction dir,
1038 unsigned long flags)
16052827 1039{
757d12e5
VK
1040 if (!chan || !chan->device || !chan->device->device_prep_dma_cyclic)
1041 return NULL;
1042
16052827 1043 return chan->device->device_prep_dma_cyclic(chan, buf_addr, buf_len,
31c1e5a1 1044 period_len, dir, flags);
a14acb4a
BS
1045}
1046
1047static inline struct dma_async_tx_descriptor *dmaengine_prep_interleaved_dma(
1048 struct dma_chan *chan, struct dma_interleaved_template *xt,
1049 unsigned long flags)
1050{
757d12e5
VK
1051 if (!chan || !chan->device || !chan->device->device_prep_interleaved_dma)
1052 return NULL;
9c8ebd8b
LP
1053 if (flags & DMA_PREP_REPEAT &&
1054 !test_bit(DMA_REPEAT, chan->device->cap_mask.bits))
1055 return NULL;
757d12e5 1056
a14acb4a 1057 return chan->device->device_prep_interleaved_dma(chan, xt, flags);
90b44f8f
VK
1058}
1059
fc44ff0a
BW
1060/**
1061 * dmaengine_prep_dma_memset() - Prepare a DMA memset descriptor.
1062 * @chan: The channel to be used for this descriptor
1063 * @dest: Address of buffer to be set
1064 * @value: Treated as a single byte value that fills the destination buffer
1065 * @len: The total size of dest
1066 * @flags: DMA engine flags
1067 */
4983a501
MR
1068static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memset(
1069 struct dma_chan *chan, dma_addr_t dest, int value, size_t len,
1070 unsigned long flags)
1071{
757d12e5 1072 if (!chan || !chan->device || !chan->device->device_prep_dma_memset)
4983a501
MR
1073 return NULL;
1074
1075 return chan->device->device_prep_dma_memset(chan, dest, value,
1076 len, flags);
1077}
1078
77d65d6f
BB
1079static inline struct dma_async_tx_descriptor *dmaengine_prep_dma_memcpy(
1080 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
1081 size_t len, unsigned long flags)
1082{
1083 if (!chan || !chan->device || !chan->device->device_prep_dma_memcpy)
1084 return NULL;
1085
1086 return chan->device->device_prep_dma_memcpy(chan, dest, src,
1087 len, flags);
1088}
1089
4db8fd32
PU
1090static inline bool dmaengine_is_metadata_mode_supported(struct dma_chan *chan,
1091 enum dma_desc_metadata_mode mode)
1092{
1093 if (!chan)
1094 return false;
1095
1096 return !!(chan->device->desc_metadata_modes & mode);
1097}
1098
1099#ifdef CONFIG_DMA_ENGINE
1100int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor *desc,
1101 void *data, size_t len);
1102void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor *desc,
1103 size_t *payload_len, size_t *max_len);
1104int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor *desc,
1105 size_t payload_len);
1106#else /* CONFIG_DMA_ENGINE */
1107static inline int dmaengine_desc_attach_metadata(
1108 struct dma_async_tx_descriptor *desc, void *data, size_t len)
1109{
1110 return -EINVAL;
1111}
1112static inline void *dmaengine_desc_get_metadata_ptr(
1113 struct dma_async_tx_descriptor *desc, size_t *payload_len,
1114 size_t *max_len)
1115{
1116 return NULL;
1117}
1118static inline int dmaengine_desc_set_metadata_len(
1119 struct dma_async_tx_descriptor *desc, size_t payload_len)
1120{
1121 return -EINVAL;
1122}
1123#endif /* CONFIG_DMA_ENGINE */
1124
b36f09c3
LPC
1125/**
1126 * dmaengine_terminate_all() - Terminate all active DMA transfers
1127 * @chan: The channel for which to terminate the transfers
1128 *
1129 * This function is DEPRECATED use either dmaengine_terminate_sync() or
1130 * dmaengine_terminate_async() instead.
1131 */
6e3ecaf0
SH
1132static inline int dmaengine_terminate_all(struct dma_chan *chan)
1133{
7fa0cf46
MR
1134 if (chan->device->device_terminate_all)
1135 return chan->device->device_terminate_all(chan);
1136
2c44ad91 1137 return -ENOSYS;
6e3ecaf0
SH
1138}
1139
b36f09c3
LPC
1140/**
1141 * dmaengine_terminate_async() - Terminate all active DMA transfers
1142 * @chan: The channel for which to terminate the transfers
1143 *
1144 * Calling this function will terminate all active and pending descriptors
1145 * that have previously been submitted to the channel. It is not guaranteed
1146 * though that the transfer for the active descriptor has stopped when the
1147 * function returns. Furthermore it is possible the complete callback of a
1148 * submitted transfer is still running when this function returns.
1149 *
1150 * dmaengine_synchronize() needs to be called before it is safe to free
1151 * any memory that is accessed by previously submitted descriptors or before
1152 * freeing any resources accessed from within the completion callback of any
20d60f63 1153 * previously submitted descriptors.
b36f09c3
LPC
1154 *
1155 * This function can be called from atomic context as well as from within a
1156 * complete callback of a descriptor submitted on the same channel.
1157 *
1158 * If none of the two conditions above apply consider using
1159 * dmaengine_terminate_sync() instead.
1160 */
1161static inline int dmaengine_terminate_async(struct dma_chan *chan)
1162{
1163 if (chan->device->device_terminate_all)
1164 return chan->device->device_terminate_all(chan);
1165
1166 return -EINVAL;
1167}
1168
1169/**
1170 * dmaengine_synchronize() - Synchronize DMA channel termination
1171 * @chan: The channel to synchronize
1172 *
1173 * Synchronizes to the DMA channel termination to the current context. When this
1174 * function returns it is guaranteed that all transfers for previously issued
20d60f63 1175 * descriptors have stopped and it is safe to free the memory associated
b36f09c3
LPC
1176 * with them. Furthermore it is guaranteed that all complete callback functions
1177 * for a previously submitted descriptor have finished running and it is safe to
1178 * free resources accessed from within the complete callbacks.
1179 *
1180 * The behavior of this function is undefined if dma_async_issue_pending() has
1181 * been called between dmaengine_terminate_async() and this function.
1182 *
1183 * This function must only be called from non-atomic context and must not be
1184 * called from within a complete callback of a descriptor submitted on the same
1185 * channel.
1186 */
1187static inline void dmaengine_synchronize(struct dma_chan *chan)
1188{
b1d6ab1a
LPC
1189 might_sleep();
1190
b36f09c3
LPC
1191 if (chan->device->device_synchronize)
1192 chan->device->device_synchronize(chan);
1193}
1194
1195/**
1196 * dmaengine_terminate_sync() - Terminate all active DMA transfers
1197 * @chan: The channel for which to terminate the transfers
1198 *
1199 * Calling this function will terminate all active and pending transfers
1200 * that have previously been submitted to the channel. It is similar to
1201 * dmaengine_terminate_async() but guarantees that the DMA transfer has actually
1202 * stopped and that all complete callbacks have finished running when the
1203 * function returns.
1204 *
1205 * This function must only be called from non-atomic context and must not be
1206 * called from within a complete callback of a descriptor submitted on the same
1207 * channel.
1208 */
1209static inline int dmaengine_terminate_sync(struct dma_chan *chan)
1210{
1211 int ret;
1212
1213 ret = dmaengine_terminate_async(chan);
1214 if (ret)
1215 return ret;
1216
1217 dmaengine_synchronize(chan);
1218
1219 return 0;
1220}
1221
6e3ecaf0
SH
1222static inline int dmaengine_pause(struct dma_chan *chan)
1223{
23a3ea2f
MR
1224 if (chan->device->device_pause)
1225 return chan->device->device_pause(chan);
1226
2c44ad91 1227 return -ENOSYS;
6e3ecaf0
SH
1228}
1229
1230static inline int dmaengine_resume(struct dma_chan *chan)
1231{
23a3ea2f
MR
1232 if (chan->device->device_resume)
1233 return chan->device->device_resume(chan);
1234
2c44ad91 1235 return -ENOSYS;
6e3ecaf0
SH
1236}
1237
3052cc2c
LPC
1238static inline enum dma_status dmaengine_tx_status(struct dma_chan *chan,
1239 dma_cookie_t cookie, struct dma_tx_state *state)
1240{
1241 return chan->device->device_tx_status(chan, cookie, state);
1242}
1243
98d530fe 1244static inline dma_cookie_t dmaengine_submit(struct dma_async_tx_descriptor *desc)
6e3ecaf0
SH
1245{
1246 return desc->tx_submit(desc);
1247}
1248
77a68e56
MR
1249static inline bool dmaengine_check_align(enum dmaengine_alignment align,
1250 size_t off1, size_t off2, size_t len)
83544ae9 1251{
88ac039c 1252 return !(((1 << align) - 1) & (off1 | off2 | len));
83544ae9
DW
1253}
1254
1255static inline bool is_dma_copy_aligned(struct dma_device *dev, size_t off1,
1256 size_t off2, size_t len)
1257{
1258 return dmaengine_check_align(dev->copy_align, off1, off2, len);
1259}
1260
1261static inline bool is_dma_xor_aligned(struct dma_device *dev, size_t off1,
1262 size_t off2, size_t len)
1263{
1264 return dmaengine_check_align(dev->xor_align, off1, off2, len);
1265}
1266
1267static inline bool is_dma_pq_aligned(struct dma_device *dev, size_t off1,
1268 size_t off2, size_t len)
1269{
1270 return dmaengine_check_align(dev->pq_align, off1, off2, len);
1271}
1272
4983a501
MR
1273static inline bool is_dma_fill_aligned(struct dma_device *dev, size_t off1,
1274 size_t off2, size_t len)
1275{
1276 return dmaengine_check_align(dev->fill_align, off1, off2, len);
1277}
1278
b2f46fd8
DW
1279static inline void
1280dma_set_maxpq(struct dma_device *dma, int maxpq, int has_pq_continue)
1281{
1282 dma->max_pq = maxpq;
1283 if (has_pq_continue)
1284 dma->max_pq |= DMA_HAS_PQ_CONTINUE;
1285}
1286
1287static inline bool dmaf_continue(enum dma_ctrl_flags flags)
1288{
1289 return (flags & DMA_PREP_CONTINUE) == DMA_PREP_CONTINUE;
1290}
1291
1292static inline bool dmaf_p_disabled_continue(enum dma_ctrl_flags flags)
1293{
1294 enum dma_ctrl_flags mask = DMA_PREP_CONTINUE | DMA_PREP_PQ_DISABLE_P;
1295
1296 return (flags & mask) == mask;
1297}
1298
1299static inline bool dma_dev_has_pq_continue(struct dma_device *dma)
1300{
1301 return (dma->max_pq & DMA_HAS_PQ_CONTINUE) == DMA_HAS_PQ_CONTINUE;
1302}
1303
d3f3cf85 1304static inline unsigned short dma_dev_to_maxpq(struct dma_device *dma)
b2f46fd8
DW
1305{
1306 return dma->max_pq & ~DMA_HAS_PQ_CONTINUE;
1307}
1308
1309/* dma_maxpq - reduce maxpq in the face of continued operations
1310 * @dma - dma device with PQ capability
1311 * @flags - to check if DMA_PREP_CONTINUE and DMA_PREP_PQ_DISABLE_P are set
1312 *
1313 * When an engine does not support native continuation we need 3 extra
1314 * source slots to reuse P and Q with the following coefficients:
1315 * 1/ {00} * P : remove P from Q', but use it as a source for P'
1316 * 2/ {01} * Q : use Q to continue Q' calculation
1317 * 3/ {00} * Q : subtract Q from P' to cancel (2)
1318 *
1319 * In the case where P is disabled we only need 1 extra source:
1320 * 1/ {01} * Q : use Q to continue Q' calculation
1321 */
1322static inline int dma_maxpq(struct dma_device *dma, enum dma_ctrl_flags flags)
1323{
1324 if (dma_dev_has_pq_continue(dma) || !dmaf_continue(flags))
1325 return dma_dev_to_maxpq(dma);
5f77dd85 1326 if (dmaf_p_disabled_continue(flags))
b2f46fd8 1327 return dma_dev_to_maxpq(dma) - 1;
5f77dd85 1328 if (dmaf_continue(flags))
b2f46fd8
DW
1329 return dma_dev_to_maxpq(dma) - 3;
1330 BUG();
1331}
1332
87d001ef
MR
1333static inline size_t dmaengine_get_icg(bool inc, bool sgl, size_t icg,
1334 size_t dir_icg)
1335{
1336 if (inc) {
1337 if (dir_icg)
1338 return dir_icg;
5f77dd85 1339 if (sgl)
87d001ef
MR
1340 return icg;
1341 }
1342
1343 return 0;
1344}
1345
1346static inline size_t dmaengine_get_dst_icg(struct dma_interleaved_template *xt,
1347 struct data_chunk *chunk)
1348{
1349 return dmaengine_get_icg(xt->dst_inc, xt->dst_sgl,
1350 chunk->icg, chunk->dst_icg);
1351}
1352
1353static inline size_t dmaengine_get_src_icg(struct dma_interleaved_template *xt,
1354 struct data_chunk *chunk)
1355{
1356 return dmaengine_get_icg(xt->src_inc, xt->src_sgl,
1357 chunk->icg, chunk->src_icg);
1358}
1359
c13c8260
CL
1360/* --- public DMA engine API --- */
1361
649274d9 1362#ifdef CONFIG_DMA_ENGINE
209b84a8
DW
1363void dmaengine_get(void);
1364void dmaengine_put(void);
649274d9
DW
1365#else
1366static inline void dmaengine_get(void)
1367{
1368}
1369static inline void dmaengine_put(void)
1370{
1371}
1372#endif
1373
729b5d1b
DW
1374#ifdef CONFIG_ASYNC_TX_DMA
1375#define async_dmaengine_get() dmaengine_get()
1376#define async_dmaengine_put() dmaengine_put()
5fc6d897 1377#ifndef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
138f4c35
DW
1378#define async_dma_find_channel(type) dma_find_channel(DMA_ASYNC_TX)
1379#else
729b5d1b 1380#define async_dma_find_channel(type) dma_find_channel(type)
5fc6d897 1381#endif /* CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH */
729b5d1b
DW
1382#else
1383static inline void async_dmaengine_get(void)
1384{
1385}
1386static inline void async_dmaengine_put(void)
1387{
1388}
1389static inline struct dma_chan *
1390async_dma_find_channel(enum dma_transaction_type type)
1391{
1392 return NULL;
1393}
138f4c35 1394#endif /* CONFIG_ASYNC_TX_DMA */
7405f74b 1395void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
7bced397 1396 struct dma_chan *chan);
c13c8260 1397
0839875e 1398static inline void async_tx_ack(struct dma_async_tx_descriptor *tx)
7405f74b 1399{
636bdeaa
DW
1400 tx->flags |= DMA_CTRL_ACK;
1401}
1402
ef560682
GL
1403static inline void async_tx_clear_ack(struct dma_async_tx_descriptor *tx)
1404{
1405 tx->flags &= ~DMA_CTRL_ACK;
1406}
1407
0839875e 1408static inline bool async_tx_test_ack(struct dma_async_tx_descriptor *tx)
636bdeaa 1409{
0839875e 1410 return (tx->flags & DMA_CTRL_ACK) == DMA_CTRL_ACK;
c13c8260
CL
1411}
1412
7405f74b
DW
1413#define dma_cap_set(tx, mask) __dma_cap_set((tx), &(mask))
1414static inline void
1415__dma_cap_set(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
c13c8260 1416{
7405f74b
DW
1417 set_bit(tx_type, dstp->bits);
1418}
c13c8260 1419
0f571515
AN
1420#define dma_cap_clear(tx, mask) __dma_cap_clear((tx), &(mask))
1421static inline void
1422__dma_cap_clear(enum dma_transaction_type tx_type, dma_cap_mask_t *dstp)
1423{
1424 clear_bit(tx_type, dstp->bits);
1425}
1426
33df8ca0
DW
1427#define dma_cap_zero(mask) __dma_cap_zero(&(mask))
1428static inline void __dma_cap_zero(dma_cap_mask_t *dstp)
1429{
1430 bitmap_zero(dstp->bits, DMA_TX_TYPE_END);
1431}
1432
7405f74b
DW
1433#define dma_has_cap(tx, mask) __dma_has_cap((tx), &(mask))
1434static inline int
1435__dma_has_cap(enum dma_transaction_type tx_type, dma_cap_mask_t *srcp)
1436{
1437 return test_bit(tx_type, srcp->bits);
c13c8260
CL
1438}
1439
7405f74b 1440#define for_each_dma_cap_mask(cap, mask) \
e5a087fd 1441 for_each_set_bit(cap, mask.bits, DMA_TX_TYPE_END)
7405f74b 1442
c13c8260 1443/**
7405f74b 1444 * dma_async_issue_pending - flush pending transactions to HW
fe4ada2d 1445 * @chan: target DMA channel
c13c8260
CL
1446 *
1447 * This allows drivers to push copies to HW in batches,
1448 * reducing MMIO writes where possible.
1449 */
7405f74b 1450static inline void dma_async_issue_pending(struct dma_chan *chan)
c13c8260 1451{
ec8670f1 1452 chan->device->device_issue_pending(chan);
c13c8260
CL
1453}
1454
1455/**
7405f74b 1456 * dma_async_is_tx_complete - poll for transaction completion
c13c8260
CL
1457 * @chan: DMA channel
1458 * @cookie: transaction identifier to check status of
1459 * @last: returns last completed cookie, can be NULL
1460 * @used: returns last issued cookie, can be NULL
1461 *
1462 * If @last and @used are passed in, upon return they reflect the driver
1463 * internal state and can be used with dma_async_is_complete() to check
1464 * the status of multiple cookies without re-checking hardware state.
1465 */
7405f74b 1466static inline enum dma_status dma_async_is_tx_complete(struct dma_chan *chan,
c13c8260
CL
1467 dma_cookie_t cookie, dma_cookie_t *last, dma_cookie_t *used)
1468{
07934481
LW
1469 struct dma_tx_state state;
1470 enum dma_status status;
1471
1472 status = chan->device->device_tx_status(chan, cookie, &state);
1473 if (last)
1474 *last = state.last;
1475 if (used)
1476 *used = state.used;
1477 return status;
c13c8260
CL
1478}
1479
1480/**
1481 * dma_async_is_complete - test a cookie against chan state
1482 * @cookie: transaction identifier to test status of
1483 * @last_complete: last know completed transaction
1484 * @last_used: last cookie value handed out
1485 *
e239345f 1486 * dma_async_is_complete() is used in dma_async_is_tx_complete()
8a5703f8 1487 * the test logic is separated for lightweight testing of multiple cookies
c13c8260
CL
1488 */
1489static inline enum dma_status dma_async_is_complete(dma_cookie_t cookie,
1490 dma_cookie_t last_complete, dma_cookie_t last_used)
1491{
1492 if (last_complete <= last_used) {
1493 if ((cookie <= last_complete) || (cookie > last_used))
adfedd9a 1494 return DMA_COMPLETE;
c13c8260
CL
1495 } else {
1496 if ((cookie <= last_complete) && (cookie > last_used))
adfedd9a 1497 return DMA_COMPLETE;
c13c8260
CL
1498 }
1499 return DMA_IN_PROGRESS;
1500}
1501
bca34692
DW
1502static inline void
1503dma_set_tx_state(struct dma_tx_state *st, dma_cookie_t last, dma_cookie_t used, u32 residue)
1504{
3a92063b
AS
1505 if (!st)
1506 return;
1507
1508 st->last = last;
1509 st->used = used;
1510 st->residue = residue;
bca34692
DW
1511}
1512
07f2211e 1513#ifdef CONFIG_DMA_ENGINE
4a43f394
JM
1514struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type);
1515enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie);
07f2211e 1516enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx);
c50331e8 1517void dma_issue_pending_all(void);
a53e28da 1518struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1519 dma_filter_fn fn, void *fn_param,
1520 struct device_node *np);
a8135d0d
PU
1521
1522struct dma_chan *dma_request_chan(struct device *dev, const char *name);
1523struct dma_chan *dma_request_chan_by_mask(const dma_cap_mask_t *mask);
1524
8f33d527 1525void dma_release_channel(struct dma_chan *chan);
fdb8df99 1526int dma_get_slave_caps(struct dma_chan *chan, struct dma_slave_caps *caps);
07f2211e 1527#else
4a43f394
JM
1528static inline struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
1529{
1530 return NULL;
1531}
1532static inline enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
1533{
adfedd9a 1534 return DMA_COMPLETE;
4a43f394 1535}
07f2211e
DW
1536static inline enum dma_status dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
1537{
adfedd9a 1538 return DMA_COMPLETE;
07f2211e 1539}
c50331e8
DW
1540static inline void dma_issue_pending_all(void)
1541{
8f33d527 1542}
a53e28da 1543static inline struct dma_chan *__dma_request_channel(const dma_cap_mask_t *mask,
f5151311
BW
1544 dma_filter_fn fn,
1545 void *fn_param,
1546 struct device_node *np)
8f33d527
GL
1547{
1548 return NULL;
1549}
a8135d0d
PU
1550static inline struct dma_chan *dma_request_chan(struct device *dev,
1551 const char *name)
1552{
1553 return ERR_PTR(-ENODEV);
1554}
1555static inline struct dma_chan *dma_request_chan_by_mask(
1556 const dma_cap_mask_t *mask)
1557{
1558 return ERR_PTR(-ENODEV);
1559}
8f33d527
GL
1560static inline void dma_release_channel(struct dma_chan *chan)
1561{
c50331e8 1562}
fdb8df99
LP
1563static inline int dma_get_slave_caps(struct dma_chan *chan,
1564 struct dma_slave_caps *caps)
1565{
1566 return -ENXIO;
1567}
07f2211e 1568#endif
c13c8260 1569
27242021
VK
1570static inline int dmaengine_desc_set_reuse(struct dma_async_tx_descriptor *tx)
1571{
1572 struct dma_slave_caps caps;
53a256a9 1573 int ret;
27242021 1574
53a256a9
LW
1575 ret = dma_get_slave_caps(tx->chan, &caps);
1576 if (ret)
1577 return ret;
27242021 1578
3a92063b 1579 if (!caps.descriptor_reuse)
27242021 1580 return -EPERM;
3a92063b
AS
1581
1582 tx->flags |= DMA_CTRL_REUSE;
1583 return 0;
27242021
VK
1584}
1585
1586static inline void dmaengine_desc_clear_reuse(struct dma_async_tx_descriptor *tx)
1587{
1588 tx->flags &= ~DMA_CTRL_REUSE;
1589}
1590
1591static inline bool dmaengine_desc_test_reuse(struct dma_async_tx_descriptor *tx)
1592{
1593 return (tx->flags & DMA_CTRL_REUSE) == DMA_CTRL_REUSE;
1594}
1595
1596static inline int dmaengine_desc_free(struct dma_async_tx_descriptor *desc)
1597{
1598 /* this is supported for reusable desc, so check that */
3a92063b 1599 if (!dmaengine_desc_test_reuse(desc))
27242021 1600 return -EPERM;
3a92063b
AS
1601
1602 return desc->desc_free(desc);
27242021
VK
1603}
1604
c13c8260
CL
1605/* --- DMA device --- */
1606
1607int dma_async_device_register(struct dma_device *device);
f39b948d 1608int dmaenginem_async_device_register(struct dma_device *device);
c13c8260 1609void dma_async_device_unregister(struct dma_device *device);
e81274cd 1610int dma_async_device_channel_register(struct dma_device *device,
10b8e0fd
AD
1611 struct dma_chan *chan,
1612 const char *name);
e81274cd
DJ
1613void dma_async_device_channel_unregister(struct dma_device *device,
1614 struct dma_chan *chan);
07f2211e 1615void dma_run_dependencies(struct dma_async_tx_descriptor *tx);
f5151311
BW
1616#define dma_request_channel(mask, x, y) \
1617 __dma_request_channel(&(mask), x, y, NULL)
864ef69b 1618
7547dbd3
PU
1619/* Deprecated, please use dma_request_chan() directly */
1620static inline struct dma_chan * __deprecated
1621dma_request_slave_channel(struct device *dev, const char *name)
1622{
1623 struct dma_chan *ch = dma_request_chan(dev, name);
1624
1625 return IS_ERR(ch) ? NULL : ch;
1626}
1627
864ef69b 1628static inline struct dma_chan
71ca5b78 1629*dma_request_slave_channel_compat(const dma_cap_mask_t mask,
a53e28da 1630 dma_filter_fn fn, void *fn_param,
1dc04288 1631 struct device *dev, const char *name)
864ef69b
MP
1632{
1633 struct dma_chan *chan;
1634
1635 chan = dma_request_slave_channel(dev, name);
1636 if (chan)
1637 return chan;
1638
7dfffb95
GU
1639 if (!fn || !fn_param)
1640 return NULL;
1641
71ca5b78 1642 return __dma_request_channel(&mask, fn, fn_param, NULL);
864ef69b 1643}
816ebf48
PU
1644
1645static inline char *
1646dmaengine_get_direction_text(enum dma_transfer_direction dir)
1647{
1648 switch (dir) {
1649 case DMA_DEV_TO_MEM:
1650 return "DEV_TO_MEM";
1651 case DMA_MEM_TO_DEV:
1652 return "MEM_TO_DEV";
1653 case DMA_MEM_TO_MEM:
1654 return "MEM_TO_MEM";
1655 case DMA_DEV_TO_DEV:
1656 return "DEV_TO_DEV";
1657 default:
1873300a 1658 return "invalid";
816ebf48 1659 }
864ef69b 1660}
ab650ef6
PU
1661
1662static inline struct device *dmaengine_get_dma_device(struct dma_chan *chan)
1663{
1664 if (chan->dev->chan_dma_dev)
1665 return &chan->dev->device;
1666
1667 return chan->device->dev;
1668}
1669
c13c8260 1670#endif /* DMAENGINE_H */