powerpc/hugetlb: Don't do runtime allocation of 16G pages in LPAR configuration
[linux-2.6-block.git] / include / linux / crypto.h
CommitLineData
1da177e4
LT
1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
5cb1454b 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
1da177e4
LT
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
18735dd8 9 * and Nettle, by Niels Möller.
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
60063497 20#include <linux/atomic.h>
1da177e4 21#include <linux/kernel.h>
1da177e4 22#include <linux/list.h>
187f1882 23#include <linux/bug.h>
79911102 24#include <linux/slab.h>
1da177e4 25#include <linux/string.h>
79911102 26#include <linux/uaccess.h>
ada69a16 27#include <linux/completion.h>
1da177e4 28
5d26a105
KC
29/*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38#define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
1da177e4
LT
42/*
43 * Algorithm masks and types.
44 */
2825982d 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f
1da177e4 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
004a403c
LH
47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48#define CRYPTO_ALG_TYPE_AEAD 0x00000003
055bcee3 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
332f8840 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
4e6c3df4 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
4e5f2c40 52#define CRYPTO_ALG_TYPE_KPP 0x00000008
2ebda74f 53#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
1ab53a77 54#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
17f0f4a4 55#define CRYPTO_ALG_TYPE_RNG 0x0000000c
3c339ab8 56#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
63044c4f
GC
57#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
58#define CRYPTO_ALG_TYPE_HASH 0x0000000e
59#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
60#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
055bcee3
HX
61
62#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
63044c4f 63#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
332f8840 64#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
1ab53a77 65#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
1da177e4 66
2825982d 67#define CRYPTO_ALG_LARVAL 0x00000010
6bfd4809
HX
68#define CRYPTO_ALG_DEAD 0x00000020
69#define CRYPTO_ALG_DYING 0x00000040
f3f632d6 70#define CRYPTO_ALG_ASYNC 0x00000080
2825982d 71
6010439f
HX
72/*
73 * Set this bit if and only if the algorithm requires another algorithm of
74 * the same type to handle corner cases.
75 */
76#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
77
73d3864a
HX
78/*
79 * Set if the algorithm has passed automated run-time testing. Note that
80 * if there is no run-time testing for a given algorithm it is considered
81 * to have passed.
82 */
83
84#define CRYPTO_ALG_TESTED 0x00000400
85
64a947b1 86/*
864e0981 87 * Set if the algorithm is an instance that is built from templates.
64a947b1
SK
88 */
89#define CRYPTO_ALG_INSTANCE 0x00000800
90
d912bb76
NM
91/* Set this bit if the algorithm provided is hardware accelerated but
92 * not available to userspace via instruction set or so.
93 */
94#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
95
06ca7f68
SM
96/*
97 * Mark a cipher as a service implementation only usable by another
98 * cipher and never by a normal user of the kernel crypto API
99 */
100#define CRYPTO_ALG_INTERNAL 0x00002000
101
a208fa8f
EB
102/*
103 * Set if the algorithm has a ->setkey() method but can be used without
104 * calling it first, i.e. there is a default key.
105 */
106#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
107
e2861fa7
MG
108/*
109 * Don't trigger module loading
110 */
111#define CRYPTO_NOLOAD 0x00008000
112
1da177e4
LT
113/*
114 * Transform masks and values (for crt_flags).
115 */
9fa68f62
EB
116#define CRYPTO_TFM_NEED_KEY 0x00000001
117
1da177e4
LT
118#define CRYPTO_TFM_REQ_MASK 0x000fff00
119#define CRYPTO_TFM_RES_MASK 0xfff00000
120
1da177e4 121#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
64baf3cf 122#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
32e3983f 123#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
1da177e4
LT
124#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
125#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
126#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
127#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
128#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
129
130/*
131 * Miscellaneous stuff.
132 */
f437a3f4 133#define CRYPTO_MAX_ALG_NAME 128
1da177e4 134
79911102
HX
135/*
136 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
137 * declaration) is used to ensure that the crypto_tfm context structure is
138 * aligned correctly for the given architecture so that there are no alignment
139 * faults for C data types. In particular, this is required on platforms such
140 * as arm where pointers are 32-bit aligned but there are data types such as
141 * u64 which require 64-bit alignment.
142 */
79911102 143#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
79911102 144
79911102 145#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
79911102 146
1da177e4 147struct scatterlist;
32e3983f
HX
148struct crypto_ablkcipher;
149struct crypto_async_request;
5cde0af2 150struct crypto_blkcipher;
40725181 151struct crypto_tfm;
e853c3cf 152struct crypto_type;
40725181 153
32e3983f
HX
154typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
155
0d7f488f
SM
156/**
157 * DOC: Block Cipher Context Data Structures
158 *
159 * These data structures define the operating context for each block cipher
160 * type.
161 */
162
32e3983f
HX
163struct crypto_async_request {
164 struct list_head list;
165 crypto_completion_t complete;
166 void *data;
167 struct crypto_tfm *tfm;
168
169 u32 flags;
170};
171
172struct ablkcipher_request {
173 struct crypto_async_request base;
174
175 unsigned int nbytes;
176
177 void *info;
178
179 struct scatterlist *src;
180 struct scatterlist *dst;
181
182 void *__ctx[] CRYPTO_MINALIGN_ATTR;
183};
184
5cde0af2
HX
185struct blkcipher_desc {
186 struct crypto_blkcipher *tfm;
187 void *info;
188 u32 flags;
189};
190
40725181
HX
191struct cipher_desc {
192 struct crypto_tfm *tfm;
6c2bb98b 193 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
40725181
HX
194 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
195 const u8 *src, unsigned int nbytes);
196 void *info;
197};
1da177e4 198
0d7f488f
SM
199/**
200 * DOC: Block Cipher Algorithm Definitions
201 *
202 * These data structures define modular crypto algorithm implementations,
203 * managed via crypto_register_alg() and crypto_unregister_alg().
204 */
205
206/**
207 * struct ablkcipher_alg - asynchronous block cipher definition
208 * @min_keysize: Minimum key size supported by the transformation. This is the
209 * smallest key length supported by this transformation algorithm.
210 * This must be set to one of the pre-defined values as this is
211 * not hardware specific. Possible values for this field can be
212 * found via git grep "_MIN_KEY_SIZE" include/crypto/
213 * @max_keysize: Maximum key size supported by the transformation. This is the
214 * largest key length supported by this transformation algorithm.
215 * This must be set to one of the pre-defined values as this is
216 * not hardware specific. Possible values for this field can be
217 * found via git grep "_MAX_KEY_SIZE" include/crypto/
218 * @setkey: Set key for the transformation. This function is used to either
219 * program a supplied key into the hardware or store the key in the
220 * transformation context for programming it later. Note that this
221 * function does modify the transformation context. This function can
222 * be called multiple times during the existence of the transformation
223 * object, so one must make sure the key is properly reprogrammed into
224 * the hardware. This function is also responsible for checking the key
225 * length for validity. In case a software fallback was put in place in
226 * the @cra_init call, this function might need to use the fallback if
227 * the algorithm doesn't support all of the key sizes.
228 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
229 * the supplied scatterlist containing the blocks of data. The crypto
230 * API consumer is responsible for aligning the entries of the
231 * scatterlist properly and making sure the chunks are correctly
232 * sized. In case a software fallback was put in place in the
233 * @cra_init call, this function might need to use the fallback if
234 * the algorithm doesn't support all of the key sizes. In case the
235 * key was stored in transformation context, the key might need to be
236 * re-programmed into the hardware in this function. This function
237 * shall not modify the transformation context, as this function may
238 * be called in parallel with the same transformation object.
239 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
240 * and the conditions are exactly the same.
0d7f488f
SM
241 * @ivsize: IV size applicable for transformation. The consumer must provide an
242 * IV of exactly that size to perform the encrypt or decrypt operation.
243 *
c79b411e 244 * All fields except @ivsize are mandatory and must be filled.
1da177e4 245 */
b5b7f088
HX
246struct ablkcipher_alg {
247 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
248 unsigned int keylen);
249 int (*encrypt)(struct ablkcipher_request *req);
250 int (*decrypt)(struct ablkcipher_request *req);
23508e11 251
b5b7f088
HX
252 unsigned int min_keysize;
253 unsigned int max_keysize;
254 unsigned int ivsize;
255};
256
0d7f488f
SM
257/**
258 * struct blkcipher_alg - synchronous block cipher definition
259 * @min_keysize: see struct ablkcipher_alg
260 * @max_keysize: see struct ablkcipher_alg
261 * @setkey: see struct ablkcipher_alg
262 * @encrypt: see struct ablkcipher_alg
263 * @decrypt: see struct ablkcipher_alg
0d7f488f
SM
264 * @ivsize: see struct ablkcipher_alg
265 *
c79b411e 266 * All fields except @ivsize are mandatory and must be filled.
0d7f488f 267 */
5cde0af2
HX
268struct blkcipher_alg {
269 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
270 unsigned int keylen);
271 int (*encrypt)(struct blkcipher_desc *desc,
272 struct scatterlist *dst, struct scatterlist *src,
273 unsigned int nbytes);
274 int (*decrypt)(struct blkcipher_desc *desc,
275 struct scatterlist *dst, struct scatterlist *src,
276 unsigned int nbytes);
277
278 unsigned int min_keysize;
279 unsigned int max_keysize;
280 unsigned int ivsize;
281};
282
0d7f488f
SM
283/**
284 * struct cipher_alg - single-block symmetric ciphers definition
285 * @cia_min_keysize: Minimum key size supported by the transformation. This is
286 * the smallest key length supported by this transformation
287 * algorithm. This must be set to one of the pre-defined
288 * values as this is not hardware specific. Possible values
289 * for this field can be found via git grep "_MIN_KEY_SIZE"
290 * include/crypto/
291 * @cia_max_keysize: Maximum key size supported by the transformation. This is
292 * the largest key length supported by this transformation
293 * algorithm. This must be set to one of the pre-defined values
294 * as this is not hardware specific. Possible values for this
295 * field can be found via git grep "_MAX_KEY_SIZE"
296 * include/crypto/
297 * @cia_setkey: Set key for the transformation. This function is used to either
298 * program a supplied key into the hardware or store the key in the
299 * transformation context for programming it later. Note that this
300 * function does modify the transformation context. This function
301 * can be called multiple times during the existence of the
302 * transformation object, so one must make sure the key is properly
303 * reprogrammed into the hardware. This function is also
304 * responsible for checking the key length for validity.
305 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
306 * single block of data, which must be @cra_blocksize big. This
307 * always operates on a full @cra_blocksize and it is not possible
308 * to encrypt a block of smaller size. The supplied buffers must
309 * therefore also be at least of @cra_blocksize size. Both the
310 * input and output buffers are always aligned to @cra_alignmask.
311 * In case either of the input or output buffer supplied by user
312 * of the crypto API is not aligned to @cra_alignmask, the crypto
313 * API will re-align the buffers. The re-alignment means that a
314 * new buffer will be allocated, the data will be copied into the
315 * new buffer, then the processing will happen on the new buffer,
316 * then the data will be copied back into the original buffer and
317 * finally the new buffer will be freed. In case a software
318 * fallback was put in place in the @cra_init call, this function
319 * might need to use the fallback if the algorithm doesn't support
320 * all of the key sizes. In case the key was stored in
321 * transformation context, the key might need to be re-programmed
322 * into the hardware in this function. This function shall not
323 * modify the transformation context, as this function may be
324 * called in parallel with the same transformation object.
325 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
326 * @cia_encrypt, and the conditions are exactly the same.
327 *
328 * All fields are mandatory and must be filled.
329 */
1da177e4
LT
330struct cipher_alg {
331 unsigned int cia_min_keysize;
332 unsigned int cia_max_keysize;
6c2bb98b 333 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
560c06ae 334 unsigned int keylen);
6c2bb98b
HX
335 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
336 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
337};
338
1da177e4 339struct compress_alg {
6c2bb98b
HX
340 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
341 unsigned int slen, u8 *dst, unsigned int *dlen);
342 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
343 unsigned int slen, u8 *dst, unsigned int *dlen);
1da177e4
LT
344};
345
17c18f9e
CL
346#ifdef CONFIG_CRYPTO_STATS
347/*
348 * struct crypto_istat_aead - statistics for AEAD algorithm
349 * @encrypt_cnt: number of encrypt requests
350 * @encrypt_tlen: total data size handled by encrypt requests
351 * @decrypt_cnt: number of decrypt requests
352 * @decrypt_tlen: total data size handled by decrypt requests
44f13133 353 * @err_cnt: number of error for AEAD requests
17c18f9e
CL
354 */
355struct crypto_istat_aead {
356 atomic64_t encrypt_cnt;
357 atomic64_t encrypt_tlen;
358 atomic64_t decrypt_cnt;
359 atomic64_t decrypt_tlen;
44f13133 360 atomic64_t err_cnt;
17c18f9e
CL
361};
362
363/*
364 * struct crypto_istat_akcipher - statistics for akcipher algorithm
365 * @encrypt_cnt: number of encrypt requests
366 * @encrypt_tlen: total data size handled by encrypt requests
367 * @decrypt_cnt: number of decrypt requests
368 * @decrypt_tlen: total data size handled by decrypt requests
369 * @verify_cnt: number of verify operation
370 * @sign_cnt: number of sign requests
44f13133 371 * @err_cnt: number of error for akcipher requests
17c18f9e
CL
372 */
373struct crypto_istat_akcipher {
374 atomic64_t encrypt_cnt;
375 atomic64_t encrypt_tlen;
376 atomic64_t decrypt_cnt;
377 atomic64_t decrypt_tlen;
378 atomic64_t verify_cnt;
379 atomic64_t sign_cnt;
44f13133 380 atomic64_t err_cnt;
17c18f9e
CL
381};
382
383/*
384 * struct crypto_istat_cipher - statistics for cipher algorithm
385 * @encrypt_cnt: number of encrypt requests
386 * @encrypt_tlen: total data size handled by encrypt requests
387 * @decrypt_cnt: number of decrypt requests
388 * @decrypt_tlen: total data size handled by decrypt requests
44f13133 389 * @err_cnt: number of error for cipher requests
17c18f9e
CL
390 */
391struct crypto_istat_cipher {
392 atomic64_t encrypt_cnt;
393 atomic64_t encrypt_tlen;
394 atomic64_t decrypt_cnt;
395 atomic64_t decrypt_tlen;
44f13133 396 atomic64_t err_cnt;
17c18f9e
CL
397};
398
399/*
400 * struct crypto_istat_compress - statistics for compress algorithm
401 * @compress_cnt: number of compress requests
402 * @compress_tlen: total data size handled by compress requests
403 * @decompress_cnt: number of decompress requests
404 * @decompress_tlen: total data size handled by decompress requests
44f13133 405 * @err_cnt: number of error for compress requests
17c18f9e
CL
406 */
407struct crypto_istat_compress {
408 atomic64_t compress_cnt;
409 atomic64_t compress_tlen;
410 atomic64_t decompress_cnt;
411 atomic64_t decompress_tlen;
44f13133 412 atomic64_t err_cnt;
17c18f9e
CL
413};
414
415/*
416 * struct crypto_istat_hash - statistics for has algorithm
417 * @hash_cnt: number of hash requests
418 * @hash_tlen: total data size hashed
44f13133 419 * @err_cnt: number of error for hash requests
17c18f9e
CL
420 */
421struct crypto_istat_hash {
422 atomic64_t hash_cnt;
423 atomic64_t hash_tlen;
44f13133 424 atomic64_t err_cnt;
17c18f9e
CL
425};
426
427/*
428 * struct crypto_istat_kpp - statistics for KPP algorithm
429 * @setsecret_cnt: number of setsecrey operation
430 * @generate_public_key_cnt: number of generate_public_key operation
431 * @compute_shared_secret_cnt: number of compute_shared_secret operation
44f13133 432 * @err_cnt: number of error for KPP requests
17c18f9e
CL
433 */
434struct crypto_istat_kpp {
435 atomic64_t setsecret_cnt;
436 atomic64_t generate_public_key_cnt;
437 atomic64_t compute_shared_secret_cnt;
44f13133 438 atomic64_t err_cnt;
17c18f9e
CL
439};
440
441/*
442 * struct crypto_istat_rng: statistics for RNG algorithm
443 * @generate_cnt: number of RNG generate requests
444 * @generate_tlen: total data size of generated data by the RNG
445 * @seed_cnt: number of times the RNG was seeded
44f13133 446 * @err_cnt: number of error for RNG requests
17c18f9e
CL
447 */
448struct crypto_istat_rng {
449 atomic64_t generate_cnt;
450 atomic64_t generate_tlen;
451 atomic64_t seed_cnt;
44f13133 452 atomic64_t err_cnt;
17c18f9e
CL
453};
454#endif /* CONFIG_CRYPTO_STATS */
17f0f4a4 455
b5b7f088 456#define cra_ablkcipher cra_u.ablkcipher
5cde0af2 457#define cra_blkcipher cra_u.blkcipher
1da177e4 458#define cra_cipher cra_u.cipher
1da177e4
LT
459#define cra_compress cra_u.compress
460
0d7f488f
SM
461/**
462 * struct crypto_alg - definition of a cryptograpic cipher algorithm
463 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
464 * CRYPTO_ALG_* flags for the flags which go in here. Those are
465 * used for fine-tuning the description of the transformation
466 * algorithm.
467 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
468 * of the smallest possible unit which can be transformed with
469 * this algorithm. The users must respect this value.
470 * In case of HASH transformation, it is possible for a smaller
471 * block than @cra_blocksize to be passed to the crypto API for
472 * transformation, in case of any other transformation type, an
473 * error will be returned upon any attempt to transform smaller
474 * than @cra_blocksize chunks.
475 * @cra_ctxsize: Size of the operational context of the transformation. This
476 * value informs the kernel crypto API about the memory size
477 * needed to be allocated for the transformation context.
478 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
479 * buffer containing the input data for the algorithm must be
480 * aligned to this alignment mask. The data buffer for the
481 * output data must be aligned to this alignment mask. Note that
482 * the Crypto API will do the re-alignment in software, but
483 * only under special conditions and there is a performance hit.
484 * The re-alignment happens at these occasions for different
485 * @cra_u types: cipher -- For both input data and output data
486 * buffer; ahash -- For output hash destination buf; shash --
487 * For output hash destination buf.
488 * This is needed on hardware which is flawed by design and
489 * cannot pick data from arbitrary addresses.
490 * @cra_priority: Priority of this transformation implementation. In case
491 * multiple transformations with same @cra_name are available to
492 * the Crypto API, the kernel will use the one with highest
493 * @cra_priority.
494 * @cra_name: Generic name (usable by multiple implementations) of the
495 * transformation algorithm. This is the name of the transformation
496 * itself. This field is used by the kernel when looking up the
497 * providers of particular transformation.
498 * @cra_driver_name: Unique name of the transformation provider. This is the
499 * name of the provider of the transformation. This can be any
500 * arbitrary value, but in the usual case, this contains the
501 * name of the chip or provider and the name of the
502 * transformation algorithm.
503 * @cra_type: Type of the cryptographic transformation. This is a pointer to
504 * struct crypto_type, which implements callbacks common for all
12f7c14a 505 * transformation types. There are multiple options:
0d7f488f 506 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
b0d955ba 507 * &crypto_ahash_type, &crypto_rng_type.
0d7f488f
SM
508 * This field might be empty. In that case, there are no common
509 * callbacks. This is the case for: cipher, compress, shash.
510 * @cra_u: Callbacks implementing the transformation. This is a union of
511 * multiple structures. Depending on the type of transformation selected
512 * by @cra_type and @cra_flags above, the associated structure must be
513 * filled with callbacks. This field might be empty. This is the case
514 * for ahash, shash.
515 * @cra_init: Initialize the cryptographic transformation object. This function
516 * is used to initialize the cryptographic transformation object.
517 * This function is called only once at the instantiation time, right
518 * after the transformation context was allocated. In case the
519 * cryptographic hardware has some special requirements which need to
520 * be handled by software, this function shall check for the precise
521 * requirement of the transformation and put any software fallbacks
522 * in place.
523 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
524 * counterpart to @cra_init, used to remove various changes set in
525 * @cra_init.
0063ec44
GH
526 * @cra_u.ablkcipher: Union member which contains an asynchronous block cipher
527 * definition. See @struct @ablkcipher_alg.
528 * @cra_u.blkcipher: Union member which contains a synchronous block cipher
529 * definition See @struct @blkcipher_alg.
530 * @cra_u.cipher: Union member which contains a single-block symmetric cipher
531 * definition. See @struct @cipher_alg.
532 * @cra_u.compress: Union member which contains a (de)compression algorithm.
533 * See @struct @compress_alg.
0d7f488f
SM
534 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
535 * @cra_list: internally used
536 * @cra_users: internally used
537 * @cra_refcnt: internally used
538 * @cra_destroy: internally used
539 *
17c18f9e 540 * @stats: union of all possible crypto_istat_xxx structures
bfad6cb3
CL
541 * @stats.aead: statistics for AEAD algorithm
542 * @stats.akcipher: statistics for akcipher algorithm
543 * @stats.cipher: statistics for cipher algorithm
544 * @stats.compress: statistics for compress algorithm
545 * @stats.hash: statistics for hash algorithm
546 * @stats.rng: statistics for rng algorithm
547 * @stats.kpp: statistics for KPP algorithm
cac5818c 548 *
0d7f488f
SM
549 * The struct crypto_alg describes a generic Crypto API algorithm and is common
550 * for all of the transformations. Any variable not documented here shall not
551 * be used by a cipher implementation as it is internal to the Crypto API.
552 */
1da177e4
LT
553struct crypto_alg {
554 struct list_head cra_list;
6bfd4809
HX
555 struct list_head cra_users;
556
1da177e4
LT
557 u32 cra_flags;
558 unsigned int cra_blocksize;
559 unsigned int cra_ctxsize;
95477377 560 unsigned int cra_alignmask;
5cb1454b
HX
561
562 int cra_priority;
ce8614a3 563 refcount_t cra_refcnt;
5cb1454b 564
d913ea0d
HX
565 char cra_name[CRYPTO_MAX_ALG_NAME];
566 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
1da177e4 567
e853c3cf
HX
568 const struct crypto_type *cra_type;
569
1da177e4 570 union {
b5b7f088 571 struct ablkcipher_alg ablkcipher;
5cde0af2 572 struct blkcipher_alg blkcipher;
1da177e4 573 struct cipher_alg cipher;
1da177e4
LT
574 struct compress_alg compress;
575 } cra_u;
c7fc0599
HX
576
577 int (*cra_init)(struct crypto_tfm *tfm);
578 void (*cra_exit)(struct crypto_tfm *tfm);
6521f302 579 void (*cra_destroy)(struct crypto_alg *alg);
1da177e4
LT
580
581 struct module *cra_module;
cac5818c 582
2ced2607 583#ifdef CONFIG_CRYPTO_STATS
cac5818c 584 union {
17c18f9e
CL
585 struct crypto_istat_aead aead;
586 struct crypto_istat_akcipher akcipher;
587 struct crypto_istat_cipher cipher;
588 struct crypto_istat_compress compress;
589 struct crypto_istat_hash hash;
590 struct crypto_istat_rng rng;
591 struct crypto_istat_kpp kpp;
592 } stats;
2ced2607 593#endif /* CONFIG_CRYPTO_STATS */
cac5818c 594
edf18b91 595} CRYPTO_MINALIGN_ATTR;
1da177e4 596
f7d76e05 597#ifdef CONFIG_CRYPTO_STATS
1f6669b9 598void crypto_stats_init(struct crypto_alg *alg);
f7d76e05
CL
599void crypto_stats_get(struct crypto_alg *alg);
600void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
601void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg);
602void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
603void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret);
604void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg);
605void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg);
606void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
607void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg);
608void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg);
609void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg);
610void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg);
611void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg);
612void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret);
613void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret);
614void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret);
615void crypto_stats_rng_seed(struct crypto_alg *alg, int ret);
616void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret);
617void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
618void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg);
619#else
1f6669b9
CL
620static inline void crypto_stats_init(struct crypto_alg *alg)
621{}
f7d76e05
CL
622static inline void crypto_stats_get(struct crypto_alg *alg)
623{}
624static inline void crypto_stats_ablkcipher_encrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
625{}
626static inline void crypto_stats_ablkcipher_decrypt(unsigned int nbytes, int ret, struct crypto_alg *alg)
627{}
628static inline void crypto_stats_aead_encrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
629{}
630static inline void crypto_stats_aead_decrypt(unsigned int cryptlen, struct crypto_alg *alg, int ret)
631{}
632static inline void crypto_stats_ahash_update(unsigned int nbytes, int ret, struct crypto_alg *alg)
633{}
634static inline void crypto_stats_ahash_final(unsigned int nbytes, int ret, struct crypto_alg *alg)
635{}
636static inline void crypto_stats_akcipher_encrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
637{}
638static inline void crypto_stats_akcipher_decrypt(unsigned int src_len, int ret, struct crypto_alg *alg)
639{}
640static inline void crypto_stats_akcipher_sign(int ret, struct crypto_alg *alg)
641{}
642static inline void crypto_stats_akcipher_verify(int ret, struct crypto_alg *alg)
643{}
644static inline void crypto_stats_compress(unsigned int slen, int ret, struct crypto_alg *alg)
645{}
646static inline void crypto_stats_decompress(unsigned int slen, int ret, struct crypto_alg *alg)
647{}
648static inline void crypto_stats_kpp_set_secret(struct crypto_alg *alg, int ret)
649{}
650static inline void crypto_stats_kpp_generate_public_key(struct crypto_alg *alg, int ret)
651{}
652static inline void crypto_stats_kpp_compute_shared_secret(struct crypto_alg *alg, int ret)
653{}
654static inline void crypto_stats_rng_seed(struct crypto_alg *alg, int ret)
655{}
656static inline void crypto_stats_rng_generate(struct crypto_alg *alg, unsigned int dlen, int ret)
657{}
658static inline void crypto_stats_skcipher_encrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
659{}
660static inline void crypto_stats_skcipher_decrypt(unsigned int cryptlen, int ret, struct crypto_alg *alg)
661{}
662#endif
ada69a16
GBY
663/*
664 * A helper struct for waiting for completion of async crypto ops
665 */
666struct crypto_wait {
667 struct completion completion;
668 int err;
669};
670
671/*
672 * Macro for declaring a crypto op async wait object on stack
673 */
674#define DECLARE_CRYPTO_WAIT(_wait) \
675 struct crypto_wait _wait = { \
676 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
677
678/*
679 * Async ops completion helper functioons
680 */
681void crypto_req_done(struct crypto_async_request *req, int err);
682
683static inline int crypto_wait_req(int err, struct crypto_wait *wait)
684{
685 switch (err) {
686 case -EINPROGRESS:
687 case -EBUSY:
688 wait_for_completion(&wait->completion);
689 reinit_completion(&wait->completion);
690 err = wait->err;
691 break;
692 };
693
694 return err;
695}
696
697static inline void crypto_init_wait(struct crypto_wait *wait)
698{
699 init_completion(&wait->completion);
700}
701
1da177e4
LT
702/*
703 * Algorithm registration interface.
704 */
705int crypto_register_alg(struct crypto_alg *alg);
706int crypto_unregister_alg(struct crypto_alg *alg);
4b004346
MB
707int crypto_register_algs(struct crypto_alg *algs, int count);
708int crypto_unregister_algs(struct crypto_alg *algs, int count);
1da177e4
LT
709
710/*
711 * Algorithm query interface.
712 */
fce32d70 713int crypto_has_alg(const char *name, u32 type, u32 mask);
1da177e4
LT
714
715/*
716 * Transforms: user-instantiated objects which encapsulate algorithms
6d7d684d
HX
717 * and core processing logic. Managed via crypto_alloc_*() and
718 * crypto_free_*(), as well as the various helpers below.
1da177e4 719 */
1da177e4 720
32e3983f
HX
721struct ablkcipher_tfm {
722 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
723 unsigned int keylen);
724 int (*encrypt)(struct ablkcipher_request *req);
725 int (*decrypt)(struct ablkcipher_request *req);
61da88e2 726
ecfc4329
HX
727 struct crypto_ablkcipher *base;
728
32e3983f
HX
729 unsigned int ivsize;
730 unsigned int reqsize;
731};
732
5cde0af2
HX
733struct blkcipher_tfm {
734 void *iv;
735 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
736 unsigned int keylen);
737 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
738 struct scatterlist *src, unsigned int nbytes);
739 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
740 struct scatterlist *src, unsigned int nbytes);
741};
742
1da177e4 743struct cipher_tfm {
1da177e4
LT
744 int (*cit_setkey)(struct crypto_tfm *tfm,
745 const u8 *key, unsigned int keylen);
f28776a3
HX
746 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
747 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
748};
749
1da177e4
LT
750struct compress_tfm {
751 int (*cot_compress)(struct crypto_tfm *tfm,
752 const u8 *src, unsigned int slen,
753 u8 *dst, unsigned int *dlen);
754 int (*cot_decompress)(struct crypto_tfm *tfm,
755 const u8 *src, unsigned int slen,
756 u8 *dst, unsigned int *dlen);
757};
758
32e3983f 759#define crt_ablkcipher crt_u.ablkcipher
5cde0af2 760#define crt_blkcipher crt_u.blkcipher
1da177e4 761#define crt_cipher crt_u.cipher
1da177e4
LT
762#define crt_compress crt_u.compress
763
764struct crypto_tfm {
765
766 u32 crt_flags;
767
768 union {
32e3983f 769 struct ablkcipher_tfm ablkcipher;
5cde0af2 770 struct blkcipher_tfm blkcipher;
1da177e4 771 struct cipher_tfm cipher;
1da177e4
LT
772 struct compress_tfm compress;
773 } crt_u;
4a779486
HX
774
775 void (*exit)(struct crypto_tfm *tfm);
1da177e4
LT
776
777 struct crypto_alg *__crt_alg;
f10b7897 778
79911102 779 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
1da177e4
LT
780};
781
32e3983f
HX
782struct crypto_ablkcipher {
783 struct crypto_tfm base;
784};
785
5cde0af2
HX
786struct crypto_blkcipher {
787 struct crypto_tfm base;
788};
789
78a1fe4f
HX
790struct crypto_cipher {
791 struct crypto_tfm base;
792};
793
794struct crypto_comp {
795 struct crypto_tfm base;
796};
797
2b8c19db
HX
798enum {
799 CRYPTOA_UNSPEC,
800 CRYPTOA_ALG,
ebc610e5 801 CRYPTOA_TYPE,
39e1ee01 802 CRYPTOA_U32,
ebc610e5 803 __CRYPTOA_MAX,
2b8c19db
HX
804};
805
ebc610e5
HX
806#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
807
39e1ee01
HX
808/* Maximum number of (rtattr) parameters for each template. */
809#define CRYPTO_MAX_ATTRS 32
810
2b8c19db
HX
811struct crypto_attr_alg {
812 char name[CRYPTO_MAX_ALG_NAME];
813};
814
ebc610e5
HX
815struct crypto_attr_type {
816 u32 type;
817 u32 mask;
818};
819
39e1ee01
HX
820struct crypto_attr_u32 {
821 u32 num;
822};
823
1da177e4
LT
824/*
825 * Transform user interface.
826 */
827
6d7d684d 828struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
7b2cd92a
HX
829void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
830
831static inline void crypto_free_tfm(struct crypto_tfm *tfm)
832{
833 return crypto_destroy_tfm(tfm, tfm);
834}
1da177e4 835
da7f033d
HX
836int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
837
1da177e4
LT
838/*
839 * Transform helpers which query the underlying algorithm.
840 */
841static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
842{
843 return tfm->__crt_alg->cra_name;
844}
845
b14cdd67
ML
846static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
847{
848 return tfm->__crt_alg->cra_driver_name;
849}
850
851static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
852{
853 return tfm->__crt_alg->cra_priority;
854}
855
1da177e4
LT
856static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
857{
858 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
859}
860
1da177e4
LT
861static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
862{
863 return tfm->__crt_alg->cra_blocksize;
864}
865
fbdae9f3
HX
866static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
867{
868 return tfm->__crt_alg->cra_alignmask;
869}
870
f28776a3
HX
871static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
872{
873 return tfm->crt_flags;
874}
875
876static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
877{
878 tfm->crt_flags |= flags;
879}
880
881static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
882{
883 tfm->crt_flags &= ~flags;
884}
885
40725181
HX
886static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
887{
f10b7897
HX
888 return tfm->__crt_ctx;
889}
890
891static inline unsigned int crypto_tfm_ctx_alignment(void)
892{
893 struct crypto_tfm *tfm;
894 return __alignof__(tfm->__crt_ctx);
40725181
HX
895}
896
1da177e4
LT
897/*
898 * API wrappers.
899 */
32e3983f
HX
900static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
901 struct crypto_tfm *tfm)
902{
903 return (struct crypto_ablkcipher *)tfm;
904}
905
378f4f51 906static inline u32 crypto_skcipher_type(u32 type)
32e3983f 907{
c79b411e 908 type &= ~CRYPTO_ALG_TYPE_MASK;
32e3983f 909 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
378f4f51
HX
910 return type;
911}
912
913static inline u32 crypto_skcipher_mask(u32 mask)
914{
c79b411e 915 mask &= ~CRYPTO_ALG_TYPE_MASK;
332f8840 916 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
378f4f51
HX
917 return mask;
918}
32e3983f 919
f13ec330
SM
920/**
921 * DOC: Asynchronous Block Cipher API
922 *
923 * Asynchronous block cipher API is used with the ciphers of type
924 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
925 *
926 * Asynchronous cipher operations imply that the function invocation for a
927 * cipher request returns immediately before the completion of the operation.
928 * The cipher request is scheduled as a separate kernel thread and therefore
929 * load-balanced on the different CPUs via the process scheduler. To allow
930 * the kernel crypto API to inform the caller about the completion of a cipher
931 * request, the caller must provide a callback function. That function is
932 * invoked with the cipher handle when the request completes.
933 *
934 * To support the asynchronous operation, additional information than just the
935 * cipher handle must be supplied to the kernel crypto API. That additional
936 * information is given by filling in the ablkcipher_request data structure.
937 *
938 * For the asynchronous block cipher API, the state is maintained with the tfm
939 * cipher handle. A single tfm can be used across multiple calls and in
940 * parallel. For asynchronous block cipher calls, context data supplied and
941 * only used by the caller can be referenced the request data structure in
942 * addition to the IV used for the cipher request. The maintenance of such
943 * state information would be important for a crypto driver implementer to
944 * have, because when calling the callback function upon completion of the
945 * cipher operation, that callback function may need some information about
946 * which operation just finished if it invoked multiple in parallel. This
947 * state information is unused by the kernel crypto API.
948 */
949
32e3983f
HX
950static inline struct crypto_tfm *crypto_ablkcipher_tfm(
951 struct crypto_ablkcipher *tfm)
952{
953 return &tfm->base;
954}
955
f13ec330
SM
956/**
957 * crypto_free_ablkcipher() - zeroize and free cipher handle
958 * @tfm: cipher handle to be freed
959 */
32e3983f
HX
960static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
961{
962 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
963}
964
f13ec330
SM
965/**
966 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
967 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
968 * ablkcipher
969 * @type: specifies the type of the cipher
970 * @mask: specifies the mask for the cipher
971 *
972 * Return: true when the ablkcipher is known to the kernel crypto API; false
973 * otherwise
974 */
32e3983f
HX
975static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
976 u32 mask)
977{
378f4f51
HX
978 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
979 crypto_skcipher_mask(mask));
32e3983f
HX
980}
981
982static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
983 struct crypto_ablkcipher *tfm)
984{
985 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
986}
987
f13ec330
SM
988/**
989 * crypto_ablkcipher_ivsize() - obtain IV size
990 * @tfm: cipher handle
991 *
992 * The size of the IV for the ablkcipher referenced by the cipher handle is
993 * returned. This IV size may be zero if the cipher does not need an IV.
994 *
995 * Return: IV size in bytes
996 */
32e3983f
HX
997static inline unsigned int crypto_ablkcipher_ivsize(
998 struct crypto_ablkcipher *tfm)
999{
1000 return crypto_ablkcipher_crt(tfm)->ivsize;
1001}
1002
f13ec330
SM
1003/**
1004 * crypto_ablkcipher_blocksize() - obtain block size of cipher
1005 * @tfm: cipher handle
1006 *
1007 * The block size for the ablkcipher referenced with the cipher handle is
1008 * returned. The caller may use that information to allocate appropriate
1009 * memory for the data returned by the encryption or decryption operation
1010 *
1011 * Return: block size of cipher
1012 */
32e3983f
HX
1013static inline unsigned int crypto_ablkcipher_blocksize(
1014 struct crypto_ablkcipher *tfm)
1015{
1016 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
1017}
1018
1019static inline unsigned int crypto_ablkcipher_alignmask(
1020 struct crypto_ablkcipher *tfm)
1021{
1022 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
1023}
1024
1025static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
1026{
1027 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
1028}
1029
1030static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
1031 u32 flags)
1032{
1033 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
1034}
1035
1036static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
1037 u32 flags)
1038{
1039 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
1040}
1041
f13ec330
SM
1042/**
1043 * crypto_ablkcipher_setkey() - set key for cipher
1044 * @tfm: cipher handle
1045 * @key: buffer holding the key
1046 * @keylen: length of the key in bytes
1047 *
1048 * The caller provided key is set for the ablkcipher referenced by the cipher
1049 * handle.
1050 *
1051 * Note, the key length determines the cipher type. Many block ciphers implement
1052 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1053 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1054 * is performed.
1055 *
1056 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1057 */
32e3983f
HX
1058static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
1059 const u8 *key, unsigned int keylen)
1060{
ecfc4329
HX
1061 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
1062
1063 return crt->setkey(crt->base, key, keylen);
32e3983f
HX
1064}
1065
f13ec330
SM
1066/**
1067 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
1068 * @req: ablkcipher_request out of which the cipher handle is to be obtained
1069 *
1070 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
1071 * data structure.
1072 *
1073 * Return: crypto_ablkcipher handle
1074 */
32e3983f
HX
1075static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
1076 struct ablkcipher_request *req)
1077{
1078 return __crypto_ablkcipher_cast(req->base.tfm);
1079}
1080
f13ec330
SM
1081/**
1082 * crypto_ablkcipher_encrypt() - encrypt plaintext
1083 * @req: reference to the ablkcipher_request handle that holds all information
1084 * needed to perform the cipher operation
1085 *
1086 * Encrypt plaintext data using the ablkcipher_request handle. That data
1087 * structure and how it is filled with data is discussed with the
1088 * ablkcipher_request_* functions.
1089 *
1090 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1091 */
32e3983f
HX
1092static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
1093{
1094 struct ablkcipher_tfm *crt =
1095 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
f7d76e05
CL
1096 struct crypto_alg *alg = crt->base->base.__crt_alg;
1097 unsigned int nbytes = req->nbytes;
cac5818c
CL
1098 int ret;
1099
f7d76e05 1100 crypto_stats_get(alg);
cac5818c 1101 ret = crt->encrypt(req);
f7d76e05 1102 crypto_stats_ablkcipher_encrypt(nbytes, ret, alg);
cac5818c 1103 return ret;
32e3983f
HX
1104}
1105
f13ec330
SM
1106/**
1107 * crypto_ablkcipher_decrypt() - decrypt ciphertext
1108 * @req: reference to the ablkcipher_request handle that holds all information
1109 * needed to perform the cipher operation
1110 *
1111 * Decrypt ciphertext data using the ablkcipher_request handle. That data
1112 * structure and how it is filled with data is discussed with the
1113 * ablkcipher_request_* functions.
1114 *
1115 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1116 */
32e3983f
HX
1117static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
1118{
1119 struct ablkcipher_tfm *crt =
1120 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
f7d76e05
CL
1121 struct crypto_alg *alg = crt->base->base.__crt_alg;
1122 unsigned int nbytes = req->nbytes;
cac5818c
CL
1123 int ret;
1124
f7d76e05 1125 crypto_stats_get(alg);
cac5818c 1126 ret = crt->decrypt(req);
f7d76e05 1127 crypto_stats_ablkcipher_decrypt(nbytes, ret, alg);
cac5818c 1128 return ret;
32e3983f
HX
1129}
1130
f13ec330
SM
1131/**
1132 * DOC: Asynchronous Cipher Request Handle
1133 *
1134 * The ablkcipher_request data structure contains all pointers to data
1135 * required for the asynchronous cipher operation. This includes the cipher
1136 * handle (which can be used by multiple ablkcipher_request instances), pointer
1137 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
1138 * as a handle to the ablkcipher_request_* API calls in a similar way as
1139 * ablkcipher handle to the crypto_ablkcipher_* API calls.
1140 */
1141
1142/**
1143 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
1144 * @tfm: cipher handle
1145 *
1146 * Return: number of bytes
1147 */
b16c3a2e
HX
1148static inline unsigned int crypto_ablkcipher_reqsize(
1149 struct crypto_ablkcipher *tfm)
32e3983f
HX
1150{
1151 return crypto_ablkcipher_crt(tfm)->reqsize;
1152}
1153
f13ec330
SM
1154/**
1155 * ablkcipher_request_set_tfm() - update cipher handle reference in request
1156 * @req: request handle to be modified
1157 * @tfm: cipher handle that shall be added to the request handle
1158 *
1159 * Allow the caller to replace the existing ablkcipher handle in the request
1160 * data structure with a different one.
1161 */
e196d625
HX
1162static inline void ablkcipher_request_set_tfm(
1163 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
1164{
ecfc4329 1165 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
e196d625
HX
1166}
1167
b5b7f088
HX
1168static inline struct ablkcipher_request *ablkcipher_request_cast(
1169 struct crypto_async_request *req)
1170{
1171 return container_of(req, struct ablkcipher_request, base);
1172}
1173
f13ec330
SM
1174/**
1175 * ablkcipher_request_alloc() - allocate request data structure
1176 * @tfm: cipher handle to be registered with the request
1177 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
1178 *
1179 * Allocate the request data structure that must be used with the ablkcipher
1180 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
1181 * handle is registered in the request data structure.
1182 *
6eae29e7 1183 * Return: allocated request handle in case of success, or NULL if out of memory
f13ec330 1184 */
32e3983f
HX
1185static inline struct ablkcipher_request *ablkcipher_request_alloc(
1186 struct crypto_ablkcipher *tfm, gfp_t gfp)
1187{
1188 struct ablkcipher_request *req;
1189
1190 req = kmalloc(sizeof(struct ablkcipher_request) +
1191 crypto_ablkcipher_reqsize(tfm), gfp);
1192
1193 if (likely(req))
e196d625 1194 ablkcipher_request_set_tfm(req, tfm);
32e3983f
HX
1195
1196 return req;
1197}
1198
f13ec330
SM
1199/**
1200 * ablkcipher_request_free() - zeroize and free request data structure
1201 * @req: request data structure cipher handle to be freed
1202 */
32e3983f
HX
1203static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1204{
aef73cfc 1205 kzfree(req);
32e3983f
HX
1206}
1207
f13ec330
SM
1208/**
1209 * ablkcipher_request_set_callback() - set asynchronous callback function
1210 * @req: request handle
1211 * @flags: specify zero or an ORing of the flags
0184cfe7 1212 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
f13ec330
SM
1213 * increase the wait queue beyond the initial maximum size;
1214 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1215 * @compl: callback function pointer to be registered with the request handle
1216 * @data: The data pointer refers to memory that is not used by the kernel
1217 * crypto API, but provided to the callback function for it to use. Here,
1218 * the caller can provide a reference to memory the callback function can
1219 * operate on. As the callback function is invoked asynchronously to the
1220 * related functionality, it may need to access data structures of the
1221 * related functionality which can be referenced using this pointer. The
1222 * callback function can access the memory via the "data" field in the
1223 * crypto_async_request data structure provided to the callback function.
1224 *
1225 * This function allows setting the callback function that is triggered once the
1226 * cipher operation completes.
1227 *
1228 * The callback function is registered with the ablkcipher_request handle and
0184cfe7 1229 * must comply with the following template::
f13ec330
SM
1230 *
1231 * void callback_function(struct crypto_async_request *req, int error)
1232 */
32e3983f
HX
1233static inline void ablkcipher_request_set_callback(
1234 struct ablkcipher_request *req,
3e3dc25f 1235 u32 flags, crypto_completion_t compl, void *data)
32e3983f 1236{
3e3dc25f 1237 req->base.complete = compl;
32e3983f
HX
1238 req->base.data = data;
1239 req->base.flags = flags;
1240}
1241
f13ec330
SM
1242/**
1243 * ablkcipher_request_set_crypt() - set data buffers
1244 * @req: request handle
1245 * @src: source scatter / gather list
1246 * @dst: destination scatter / gather list
1247 * @nbytes: number of bytes to process from @src
1248 * @iv: IV for the cipher operation which must comply with the IV size defined
1249 * by crypto_ablkcipher_ivsize
1250 *
1251 * This function allows setting of the source data and destination data
1252 * scatter / gather lists.
1253 *
1254 * For encryption, the source is treated as the plaintext and the
1255 * destination is the ciphertext. For a decryption operation, the use is
379dcfb4 1256 * reversed - the source is the ciphertext and the destination is the plaintext.
f13ec330 1257 */
32e3983f
HX
1258static inline void ablkcipher_request_set_crypt(
1259 struct ablkcipher_request *req,
1260 struct scatterlist *src, struct scatterlist *dst,
1261 unsigned int nbytes, void *iv)
1262{
1263 req->src = src;
1264 req->dst = dst;
1265 req->nbytes = nbytes;
1266 req->info = iv;
1267}
1268
58284f0d
SM
1269/**
1270 * DOC: Synchronous Block Cipher API
1271 *
1272 * The synchronous block cipher API is used with the ciphers of type
1273 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1274 *
1275 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1276 * used in multiple calls and in parallel, this info should not be changeable
1277 * (unless a lock is used). This applies, for example, to the symmetric key.
1278 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1279 * structure for synchronous blkcipher api. So, its the only state info that can
1280 * be kept for synchronous calls without using a big lock across a tfm.
1281 *
1282 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1283 * consisting of a template (a block chaining mode) and a single block cipher
1284 * primitive (e.g. AES).
1285 *
1286 * The plaintext data buffer and the ciphertext data buffer are pointed to
1287 * by using scatter/gather lists. The cipher operation is performed
1288 * on all segments of the provided scatter/gather lists.
1289 *
1290 * The kernel crypto API supports a cipher operation "in-place" which means that
1291 * the caller may provide the same scatter/gather list for the plaintext and
1292 * cipher text. After the completion of the cipher operation, the plaintext
1293 * data is replaced with the ciphertext data in case of an encryption and vice
1294 * versa for a decryption. The caller must ensure that the scatter/gather lists
1295 * for the output data point to sufficiently large buffers, i.e. multiples of
1296 * the block size of the cipher.
1297 */
1298
5cde0af2
HX
1299static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1300 struct crypto_tfm *tfm)
1301{
1302 return (struct crypto_blkcipher *)tfm;
1303}
1304
1305static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1306 struct crypto_tfm *tfm)
1307{
1308 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1309 return __crypto_blkcipher_cast(tfm);
1310}
1311
58284f0d
SM
1312/**
1313 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1314 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1315 * blkcipher cipher
1316 * @type: specifies the type of the cipher
1317 * @mask: specifies the mask for the cipher
1318 *
1319 * Allocate a cipher handle for a block cipher. The returned struct
1320 * crypto_blkcipher is the cipher handle that is required for any subsequent
1321 * API invocation for that block cipher.
1322 *
1323 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1324 * of an error, PTR_ERR() returns the error code.
1325 */
5cde0af2
HX
1326static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1327 const char *alg_name, u32 type, u32 mask)
1328{
332f8840 1329 type &= ~CRYPTO_ALG_TYPE_MASK;
5cde0af2 1330 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1331 mask |= CRYPTO_ALG_TYPE_MASK;
5cde0af2
HX
1332
1333 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1334}
1335
1336static inline struct crypto_tfm *crypto_blkcipher_tfm(
1337 struct crypto_blkcipher *tfm)
1338{
1339 return &tfm->base;
1340}
1341
58284f0d
SM
1342/**
1343 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1344 * @tfm: cipher handle to be freed
1345 */
5cde0af2
HX
1346static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1347{
1348 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1349}
1350
58284f0d
SM
1351/**
1352 * crypto_has_blkcipher() - Search for the availability of a block cipher
1353 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1354 * block cipher
1355 * @type: specifies the type of the cipher
1356 * @mask: specifies the mask for the cipher
1357 *
1358 * Return: true when the block cipher is known to the kernel crypto API; false
1359 * otherwise
1360 */
fce32d70
HX
1361static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1362{
332f8840 1363 type &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70 1364 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1365 mask |= CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1366
1367 return crypto_has_alg(alg_name, type, mask);
1368}
1369
58284f0d
SM
1370/**
1371 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1372 * @tfm: cipher handle
1373 *
1374 * Return: The character string holding the name of the cipher
1375 */
5cde0af2
HX
1376static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1377{
1378 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1379}
1380
1381static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1382 struct crypto_blkcipher *tfm)
1383{
1384 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1385}
1386
1387static inline struct blkcipher_alg *crypto_blkcipher_alg(
1388 struct crypto_blkcipher *tfm)
1389{
1390 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1391}
1392
58284f0d
SM
1393/**
1394 * crypto_blkcipher_ivsize() - obtain IV size
1395 * @tfm: cipher handle
1396 *
1397 * The size of the IV for the block cipher referenced by the cipher handle is
1398 * returned. This IV size may be zero if the cipher does not need an IV.
1399 *
1400 * Return: IV size in bytes
1401 */
5cde0af2
HX
1402static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1403{
1404 return crypto_blkcipher_alg(tfm)->ivsize;
1405}
1406
58284f0d
SM
1407/**
1408 * crypto_blkcipher_blocksize() - obtain block size of cipher
1409 * @tfm: cipher handle
1410 *
1411 * The block size for the block cipher referenced with the cipher handle is
1412 * returned. The caller may use that information to allocate appropriate
1413 * memory for the data returned by the encryption or decryption operation.
1414 *
1415 * Return: block size of cipher
1416 */
5cde0af2
HX
1417static inline unsigned int crypto_blkcipher_blocksize(
1418 struct crypto_blkcipher *tfm)
1419{
1420 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1421}
1422
1423static inline unsigned int crypto_blkcipher_alignmask(
1424 struct crypto_blkcipher *tfm)
1425{
1426 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1427}
1428
1429static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1430{
1431 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1432}
1433
1434static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1435 u32 flags)
1436{
1437 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1438}
1439
1440static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1441 u32 flags)
1442{
1443 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1444}
1445
58284f0d
SM
1446/**
1447 * crypto_blkcipher_setkey() - set key for cipher
1448 * @tfm: cipher handle
1449 * @key: buffer holding the key
1450 * @keylen: length of the key in bytes
1451 *
1452 * The caller provided key is set for the block cipher referenced by the cipher
1453 * handle.
1454 *
1455 * Note, the key length determines the cipher type. Many block ciphers implement
1456 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1457 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1458 * is performed.
1459 *
1460 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1461 */
5cde0af2
HX
1462static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1463 const u8 *key, unsigned int keylen)
1464{
1465 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1466 key, keylen);
1467}
1468
58284f0d
SM
1469/**
1470 * crypto_blkcipher_encrypt() - encrypt plaintext
1471 * @desc: reference to the block cipher handle with meta data
1472 * @dst: scatter/gather list that is filled by the cipher operation with the
1473 * ciphertext
1474 * @src: scatter/gather list that holds the plaintext
1475 * @nbytes: number of bytes of the plaintext to encrypt.
1476 *
1477 * Encrypt plaintext data using the IV set by the caller with a preceding
1478 * call of crypto_blkcipher_set_iv.
1479 *
1480 * The blkcipher_desc data structure must be filled by the caller and can
1481 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1482 * with the block cipher handle; desc.flags is filled with either
1483 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1484 *
1485 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1486 */
5cde0af2
HX
1487static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1488 struct scatterlist *dst,
1489 struct scatterlist *src,
1490 unsigned int nbytes)
1491{
1492 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1493 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1494}
1495
58284f0d
SM
1496/**
1497 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1498 * @desc: reference to the block cipher handle with meta data
1499 * @dst: scatter/gather list that is filled by the cipher operation with the
1500 * ciphertext
1501 * @src: scatter/gather list that holds the plaintext
1502 * @nbytes: number of bytes of the plaintext to encrypt.
1503 *
1504 * Encrypt plaintext data with the use of an IV that is solely used for this
1505 * cipher operation. Any previously set IV is not used.
1506 *
1507 * The blkcipher_desc data structure must be filled by the caller and can
1508 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1509 * with the block cipher handle; desc.info is filled with the IV to be used for
1510 * the current operation; desc.flags is filled with either
1511 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1512 *
1513 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1514 */
5cde0af2
HX
1515static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1516 struct scatterlist *dst,
1517 struct scatterlist *src,
1518 unsigned int nbytes)
1519{
1520 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1521}
1522
58284f0d
SM
1523/**
1524 * crypto_blkcipher_decrypt() - decrypt ciphertext
1525 * @desc: reference to the block cipher handle with meta data
1526 * @dst: scatter/gather list that is filled by the cipher operation with the
1527 * plaintext
1528 * @src: scatter/gather list that holds the ciphertext
1529 * @nbytes: number of bytes of the ciphertext to decrypt.
1530 *
1531 * Decrypt ciphertext data using the IV set by the caller with a preceding
1532 * call of crypto_blkcipher_set_iv.
1533 *
1534 * The blkcipher_desc data structure must be filled by the caller as documented
1535 * for the crypto_blkcipher_encrypt call above.
1536 *
1537 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1538 *
1539 */
5cde0af2
HX
1540static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1541 struct scatterlist *dst,
1542 struct scatterlist *src,
1543 unsigned int nbytes)
1544{
1545 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1546 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1547}
1548
58284f0d
SM
1549/**
1550 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1551 * @desc: reference to the block cipher handle with meta data
1552 * @dst: scatter/gather list that is filled by the cipher operation with the
1553 * plaintext
1554 * @src: scatter/gather list that holds the ciphertext
1555 * @nbytes: number of bytes of the ciphertext to decrypt.
1556 *
1557 * Decrypt ciphertext data with the use of an IV that is solely used for this
1558 * cipher operation. Any previously set IV is not used.
1559 *
1560 * The blkcipher_desc data structure must be filled by the caller as documented
1561 * for the crypto_blkcipher_encrypt_iv call above.
1562 *
1563 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1564 */
5cde0af2
HX
1565static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1566 struct scatterlist *dst,
1567 struct scatterlist *src,
1568 unsigned int nbytes)
1569{
1570 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1571}
1572
58284f0d
SM
1573/**
1574 * crypto_blkcipher_set_iv() - set IV for cipher
1575 * @tfm: cipher handle
1576 * @src: buffer holding the IV
1577 * @len: length of the IV in bytes
1578 *
1579 * The caller provided IV is set for the block cipher referenced by the cipher
1580 * handle.
1581 */
5cde0af2
HX
1582static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1583 const u8 *src, unsigned int len)
1584{
1585 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1586}
1587
58284f0d
SM
1588/**
1589 * crypto_blkcipher_get_iv() - obtain IV from cipher
1590 * @tfm: cipher handle
1591 * @dst: buffer filled with the IV
1592 * @len: length of the buffer dst
1593 *
1594 * The caller can obtain the IV set for the block cipher referenced by the
1595 * cipher handle and store it into the user-provided buffer. If the buffer
1596 * has an insufficient space, the IV is truncated to fit the buffer.
1597 */
5cde0af2
HX
1598static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1599 u8 *dst, unsigned int len)
1600{
1601 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1602}
1603
16e61030
SM
1604/**
1605 * DOC: Single Block Cipher API
1606 *
1607 * The single block cipher API is used with the ciphers of type
1608 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1609 *
1610 * Using the single block cipher API calls, operations with the basic cipher
1611 * primitive can be implemented. These cipher primitives exclude any block
1612 * chaining operations including IV handling.
1613 *
1614 * The purpose of this single block cipher API is to support the implementation
1615 * of templates or other concepts that only need to perform the cipher operation
1616 * on one block at a time. Templates invoke the underlying cipher primitive
1617 * block-wise and process either the input or the output data of these cipher
1618 * operations.
1619 */
1620
f28776a3
HX
1621static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1622{
1623 return (struct crypto_cipher *)tfm;
1624}
1625
1626static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1627{
1628 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1629 return __crypto_cipher_cast(tfm);
1630}
1631
16e61030
SM
1632/**
1633 * crypto_alloc_cipher() - allocate single block cipher handle
1634 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1635 * single block cipher
1636 * @type: specifies the type of the cipher
1637 * @mask: specifies the mask for the cipher
1638 *
1639 * Allocate a cipher handle for a single block cipher. The returned struct
1640 * crypto_cipher is the cipher handle that is required for any subsequent API
1641 * invocation for that single block cipher.
1642 *
1643 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1644 * of an error, PTR_ERR() returns the error code.
1645 */
f28776a3
HX
1646static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1647 u32 type, u32 mask)
1648{
1649 type &= ~CRYPTO_ALG_TYPE_MASK;
1650 type |= CRYPTO_ALG_TYPE_CIPHER;
1651 mask |= CRYPTO_ALG_TYPE_MASK;
1652
1653 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1654}
1655
1656static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1657{
78a1fe4f 1658 return &tfm->base;
f28776a3
HX
1659}
1660
16e61030
SM
1661/**
1662 * crypto_free_cipher() - zeroize and free the single block cipher handle
1663 * @tfm: cipher handle to be freed
1664 */
f28776a3
HX
1665static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1666{
1667 crypto_free_tfm(crypto_cipher_tfm(tfm));
1668}
1669
16e61030
SM
1670/**
1671 * crypto_has_cipher() - Search for the availability of a single block cipher
1672 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1673 * single block cipher
1674 * @type: specifies the type of the cipher
1675 * @mask: specifies the mask for the cipher
1676 *
1677 * Return: true when the single block cipher is known to the kernel crypto API;
1678 * false otherwise
1679 */
fce32d70
HX
1680static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1681{
1682 type &= ~CRYPTO_ALG_TYPE_MASK;
1683 type |= CRYPTO_ALG_TYPE_CIPHER;
1684 mask |= CRYPTO_ALG_TYPE_MASK;
1685
1686 return crypto_has_alg(alg_name, type, mask);
1687}
1688
f28776a3
HX
1689static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1690{
1691 return &crypto_cipher_tfm(tfm)->crt_cipher;
1692}
1693
16e61030
SM
1694/**
1695 * crypto_cipher_blocksize() - obtain block size for cipher
1696 * @tfm: cipher handle
1697 *
1698 * The block size for the single block cipher referenced with the cipher handle
1699 * tfm is returned. The caller may use that information to allocate appropriate
1700 * memory for the data returned by the encryption or decryption operation
1701 *
1702 * Return: block size of cipher
1703 */
f28776a3
HX
1704static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1705{
1706 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1707}
1708
1709static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1710{
1711 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1712}
1713
1714static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1715{
1716 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1717}
1718
1719static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1720 u32 flags)
1721{
1722 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1723}
1724
1725static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1726 u32 flags)
1727{
1728 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1729}
1730
16e61030
SM
1731/**
1732 * crypto_cipher_setkey() - set key for cipher
1733 * @tfm: cipher handle
1734 * @key: buffer holding the key
1735 * @keylen: length of the key in bytes
1736 *
1737 * The caller provided key is set for the single block cipher referenced by the
1738 * cipher handle.
1739 *
1740 * Note, the key length determines the cipher type. Many block ciphers implement
1741 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1742 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1743 * is performed.
1744 *
1745 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1746 */
7226bc87
HX
1747static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1748 const u8 *key, unsigned int keylen)
1749{
1750 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1751 key, keylen);
1752}
1753
16e61030
SM
1754/**
1755 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1756 * @tfm: cipher handle
1757 * @dst: points to the buffer that will be filled with the ciphertext
1758 * @src: buffer holding the plaintext to be encrypted
1759 *
1760 * Invoke the encryption operation of one block. The caller must ensure that
1761 * the plaintext and ciphertext buffers are at least one block in size.
1762 */
f28776a3
HX
1763static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1764 u8 *dst, const u8 *src)
1765{
1766 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1767 dst, src);
1768}
1769
16e61030
SM
1770/**
1771 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1772 * @tfm: cipher handle
1773 * @dst: points to the buffer that will be filled with the plaintext
1774 * @src: buffer holding the ciphertext to be decrypted
1775 *
1776 * Invoke the decryption operation of one block. The caller must ensure that
1777 * the plaintext and ciphertext buffers are at least one block in size.
1778 */
f28776a3
HX
1779static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1780 u8 *dst, const u8 *src)
1781{
1782 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1783 dst, src);
1784}
1785
fce32d70
HX
1786static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1787{
1788 return (struct crypto_comp *)tfm;
1789}
1790
1791static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1792{
1793 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1794 CRYPTO_ALG_TYPE_MASK);
1795 return __crypto_comp_cast(tfm);
1796}
1797
1798static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1799 u32 type, u32 mask)
1800{
1801 type &= ~CRYPTO_ALG_TYPE_MASK;
1802 type |= CRYPTO_ALG_TYPE_COMPRESS;
1803 mask |= CRYPTO_ALG_TYPE_MASK;
1804
1805 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1806}
1807
1808static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1809{
78a1fe4f 1810 return &tfm->base;
fce32d70
HX
1811}
1812
1813static inline void crypto_free_comp(struct crypto_comp *tfm)
1814{
1815 crypto_free_tfm(crypto_comp_tfm(tfm));
1816}
1817
1818static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1819{
1820 type &= ~CRYPTO_ALG_TYPE_MASK;
1821 type |= CRYPTO_ALG_TYPE_COMPRESS;
1822 mask |= CRYPTO_ALG_TYPE_MASK;
1823
1824 return crypto_has_alg(alg_name, type, mask);
1825}
1826
e4d5b79c
HX
1827static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1828{
1829 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1830}
1831
fce32d70
HX
1832static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1833{
1834 return &crypto_comp_tfm(tfm)->crt_compress;
1835}
1836
1837static inline int crypto_comp_compress(struct crypto_comp *tfm,
1da177e4
LT
1838 const u8 *src, unsigned int slen,
1839 u8 *dst, unsigned int *dlen)
1840{
78a1fe4f
HX
1841 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1842 src, slen, dst, dlen);
1da177e4
LT
1843}
1844
fce32d70 1845static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1da177e4
LT
1846 const u8 *src, unsigned int slen,
1847 u8 *dst, unsigned int *dlen)
1848{
78a1fe4f
HX
1849 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1850 src, slen, dst, dlen);
1da177e4
LT
1851}
1852
1da177e4
LT
1853#endif /* _LINUX_CRYPTO_H */
1854