Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jack/linux-fs
[linux-2.6-block.git] / include / linux / crypto.h
CommitLineData
1da177e4
LT
1/*
2 * Scatterlist Cryptographic API.
3 *
4 * Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
5 * Copyright (c) 2002 David S. Miller (davem@redhat.com)
5cb1454b 6 * Copyright (c) 2005 Herbert Xu <herbert@gondor.apana.org.au>
1da177e4
LT
7 *
8 * Portions derived from Cryptoapi, by Alexander Kjeldaas <astor@fast.no>
18735dd8 9 * and Nettle, by Niels Möller.
1da177e4
LT
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the Free
13 * Software Foundation; either version 2 of the License, or (at your option)
14 * any later version.
15 *
16 */
17#ifndef _LINUX_CRYPTO_H
18#define _LINUX_CRYPTO_H
19
60063497 20#include <linux/atomic.h>
1da177e4 21#include <linux/kernel.h>
1da177e4 22#include <linux/list.h>
187f1882 23#include <linux/bug.h>
79911102 24#include <linux/slab.h>
1da177e4 25#include <linux/string.h>
79911102 26#include <linux/uaccess.h>
ada69a16 27#include <linux/completion.h>
1da177e4 28
5d26a105
KC
29/*
30 * Autoloaded crypto modules should only use a prefixed name to avoid allowing
31 * arbitrary modules to be loaded. Loading from userspace may still need the
32 * unprefixed names, so retains those aliases as well.
33 * This uses __MODULE_INFO directly instead of MODULE_ALIAS because pre-4.3
34 * gcc (e.g. avr32 toolchain) uses __LINE__ for uniqueness, and this macro
35 * expands twice on the same line. Instead, use a separate base name for the
36 * alias.
37 */
38#define MODULE_ALIAS_CRYPTO(name) \
39 __MODULE_INFO(alias, alias_userspace, name); \
40 __MODULE_INFO(alias, alias_crypto, "crypto-" name)
41
1da177e4
LT
42/*
43 * Algorithm masks and types.
44 */
2825982d 45#define CRYPTO_ALG_TYPE_MASK 0x0000000f
1da177e4 46#define CRYPTO_ALG_TYPE_CIPHER 0x00000001
004a403c
LH
47#define CRYPTO_ALG_TYPE_COMPRESS 0x00000002
48#define CRYPTO_ALG_TYPE_AEAD 0x00000003
055bcee3 49#define CRYPTO_ALG_TYPE_BLKCIPHER 0x00000004
332f8840 50#define CRYPTO_ALG_TYPE_ABLKCIPHER 0x00000005
4e6c3df4 51#define CRYPTO_ALG_TYPE_SKCIPHER 0x00000005
61da88e2 52#define CRYPTO_ALG_TYPE_GIVCIPHER 0x00000006
4e5f2c40 53#define CRYPTO_ALG_TYPE_KPP 0x00000008
2ebda74f 54#define CRYPTO_ALG_TYPE_ACOMPRESS 0x0000000a
1ab53a77 55#define CRYPTO_ALG_TYPE_SCOMPRESS 0x0000000b
17f0f4a4 56#define CRYPTO_ALG_TYPE_RNG 0x0000000c
3c339ab8 57#define CRYPTO_ALG_TYPE_AKCIPHER 0x0000000d
63044c4f
GC
58#define CRYPTO_ALG_TYPE_DIGEST 0x0000000e
59#define CRYPTO_ALG_TYPE_HASH 0x0000000e
60#define CRYPTO_ALG_TYPE_SHASH 0x0000000e
61#define CRYPTO_ALG_TYPE_AHASH 0x0000000f
055bcee3
HX
62
63#define CRYPTO_ALG_TYPE_HASH_MASK 0x0000000e
63044c4f 64#define CRYPTO_ALG_TYPE_AHASH_MASK 0x0000000e
332f8840 65#define CRYPTO_ALG_TYPE_BLKCIPHER_MASK 0x0000000c
1ab53a77 66#define CRYPTO_ALG_TYPE_ACOMPRESS_MASK 0x0000000e
1da177e4 67
2825982d 68#define CRYPTO_ALG_LARVAL 0x00000010
6bfd4809
HX
69#define CRYPTO_ALG_DEAD 0x00000020
70#define CRYPTO_ALG_DYING 0x00000040
f3f632d6 71#define CRYPTO_ALG_ASYNC 0x00000080
2825982d 72
6010439f
HX
73/*
74 * Set this bit if and only if the algorithm requires another algorithm of
75 * the same type to handle corner cases.
76 */
77#define CRYPTO_ALG_NEED_FALLBACK 0x00000100
78
ecfc4329
HX
79/*
80 * This bit is set for symmetric key ciphers that have already been wrapped
81 * with a generic IV generator to prevent them from being wrapped again.
82 */
83#define CRYPTO_ALG_GENIV 0x00000200
84
73d3864a
HX
85/*
86 * Set if the algorithm has passed automated run-time testing. Note that
87 * if there is no run-time testing for a given algorithm it is considered
88 * to have passed.
89 */
90
91#define CRYPTO_ALG_TESTED 0x00000400
92
64a947b1 93/*
864e0981 94 * Set if the algorithm is an instance that is built from templates.
64a947b1
SK
95 */
96#define CRYPTO_ALG_INSTANCE 0x00000800
97
d912bb76
NM
98/* Set this bit if the algorithm provided is hardware accelerated but
99 * not available to userspace via instruction set or so.
100 */
101#define CRYPTO_ALG_KERN_DRIVER_ONLY 0x00001000
102
06ca7f68
SM
103/*
104 * Mark a cipher as a service implementation only usable by another
105 * cipher and never by a normal user of the kernel crypto API
106 */
107#define CRYPTO_ALG_INTERNAL 0x00002000
108
a208fa8f
EB
109/*
110 * Set if the algorithm has a ->setkey() method but can be used without
111 * calling it first, i.e. there is a default key.
112 */
113#define CRYPTO_ALG_OPTIONAL_KEY 0x00004000
114
1da177e4
LT
115/*
116 * Transform masks and values (for crt_flags).
117 */
9fa68f62
EB
118#define CRYPTO_TFM_NEED_KEY 0x00000001
119
1da177e4
LT
120#define CRYPTO_TFM_REQ_MASK 0x000fff00
121#define CRYPTO_TFM_RES_MASK 0xfff00000
122
1da177e4 123#define CRYPTO_TFM_REQ_WEAK_KEY 0x00000100
64baf3cf 124#define CRYPTO_TFM_REQ_MAY_SLEEP 0x00000200
32e3983f 125#define CRYPTO_TFM_REQ_MAY_BACKLOG 0x00000400
1da177e4
LT
126#define CRYPTO_TFM_RES_WEAK_KEY 0x00100000
127#define CRYPTO_TFM_RES_BAD_KEY_LEN 0x00200000
128#define CRYPTO_TFM_RES_BAD_KEY_SCHED 0x00400000
129#define CRYPTO_TFM_RES_BAD_BLOCK_LEN 0x00800000
130#define CRYPTO_TFM_RES_BAD_FLAGS 0x01000000
131
132/*
133 * Miscellaneous stuff.
134 */
f437a3f4 135#define CRYPTO_MAX_ALG_NAME 128
1da177e4 136
79911102
HX
137/*
138 * The macro CRYPTO_MINALIGN_ATTR (along with the void * type in the actual
139 * declaration) is used to ensure that the crypto_tfm context structure is
140 * aligned correctly for the given architecture so that there are no alignment
141 * faults for C data types. In particular, this is required on platforms such
142 * as arm where pointers are 32-bit aligned but there are data types such as
143 * u64 which require 64-bit alignment.
144 */
79911102 145#define CRYPTO_MINALIGN ARCH_KMALLOC_MINALIGN
79911102 146
79911102 147#define CRYPTO_MINALIGN_ATTR __attribute__ ((__aligned__(CRYPTO_MINALIGN)))
79911102 148
1da177e4 149struct scatterlist;
32e3983f
HX
150struct crypto_ablkcipher;
151struct crypto_async_request;
5cde0af2 152struct crypto_blkcipher;
40725181 153struct crypto_tfm;
e853c3cf 154struct crypto_type;
61da88e2 155struct skcipher_givcrypt_request;
40725181 156
32e3983f
HX
157typedef void (*crypto_completion_t)(struct crypto_async_request *req, int err);
158
0d7f488f
SM
159/**
160 * DOC: Block Cipher Context Data Structures
161 *
162 * These data structures define the operating context for each block cipher
163 * type.
164 */
165
32e3983f
HX
166struct crypto_async_request {
167 struct list_head list;
168 crypto_completion_t complete;
169 void *data;
170 struct crypto_tfm *tfm;
171
172 u32 flags;
173};
174
175struct ablkcipher_request {
176 struct crypto_async_request base;
177
178 unsigned int nbytes;
179
180 void *info;
181
182 struct scatterlist *src;
183 struct scatterlist *dst;
184
185 void *__ctx[] CRYPTO_MINALIGN_ATTR;
186};
187
5cde0af2
HX
188struct blkcipher_desc {
189 struct crypto_blkcipher *tfm;
190 void *info;
191 u32 flags;
192};
193
40725181
HX
194struct cipher_desc {
195 struct crypto_tfm *tfm;
6c2bb98b 196 void (*crfn)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
40725181
HX
197 unsigned int (*prfn)(const struct cipher_desc *desc, u8 *dst,
198 const u8 *src, unsigned int nbytes);
199 void *info;
200};
1da177e4 201
0d7f488f
SM
202/**
203 * DOC: Block Cipher Algorithm Definitions
204 *
205 * These data structures define modular crypto algorithm implementations,
206 * managed via crypto_register_alg() and crypto_unregister_alg().
207 */
208
209/**
210 * struct ablkcipher_alg - asynchronous block cipher definition
211 * @min_keysize: Minimum key size supported by the transformation. This is the
212 * smallest key length supported by this transformation algorithm.
213 * This must be set to one of the pre-defined values as this is
214 * not hardware specific. Possible values for this field can be
215 * found via git grep "_MIN_KEY_SIZE" include/crypto/
216 * @max_keysize: Maximum key size supported by the transformation. This is the
217 * largest key length supported by this transformation algorithm.
218 * This must be set to one of the pre-defined values as this is
219 * not hardware specific. Possible values for this field can be
220 * found via git grep "_MAX_KEY_SIZE" include/crypto/
221 * @setkey: Set key for the transformation. This function is used to either
222 * program a supplied key into the hardware or store the key in the
223 * transformation context for programming it later. Note that this
224 * function does modify the transformation context. This function can
225 * be called multiple times during the existence of the transformation
226 * object, so one must make sure the key is properly reprogrammed into
227 * the hardware. This function is also responsible for checking the key
228 * length for validity. In case a software fallback was put in place in
229 * the @cra_init call, this function might need to use the fallback if
230 * the algorithm doesn't support all of the key sizes.
231 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
232 * the supplied scatterlist containing the blocks of data. The crypto
233 * API consumer is responsible for aligning the entries of the
234 * scatterlist properly and making sure the chunks are correctly
235 * sized. In case a software fallback was put in place in the
236 * @cra_init call, this function might need to use the fallback if
237 * the algorithm doesn't support all of the key sizes. In case the
238 * key was stored in transformation context, the key might need to be
239 * re-programmed into the hardware in this function. This function
240 * shall not modify the transformation context, as this function may
241 * be called in parallel with the same transformation object.
242 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
243 * and the conditions are exactly the same.
244 * @givencrypt: Update the IV for encryption. With this function, a cipher
245 * implementation may provide the function on how to update the IV
246 * for encryption.
247 * @givdecrypt: Update the IV for decryption. This is the reverse of
248 * @givencrypt .
249 * @geniv: The transformation implementation may use an "IV generator" provided
250 * by the kernel crypto API. Several use cases have a predefined
251 * approach how IVs are to be updated. For such use cases, the kernel
252 * crypto API provides ready-to-use implementations that can be
253 * referenced with this variable.
254 * @ivsize: IV size applicable for transformation. The consumer must provide an
255 * IV of exactly that size to perform the encrypt or decrypt operation.
256 *
257 * All fields except @givencrypt , @givdecrypt , @geniv and @ivsize are
258 * mandatory and must be filled.
1da177e4 259 */
b5b7f088
HX
260struct ablkcipher_alg {
261 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
262 unsigned int keylen);
263 int (*encrypt)(struct ablkcipher_request *req);
264 int (*decrypt)(struct ablkcipher_request *req);
61da88e2
HX
265 int (*givencrypt)(struct skcipher_givcrypt_request *req);
266 int (*givdecrypt)(struct skcipher_givcrypt_request *req);
b5b7f088 267
23508e11
HX
268 const char *geniv;
269
b5b7f088
HX
270 unsigned int min_keysize;
271 unsigned int max_keysize;
272 unsigned int ivsize;
273};
274
0d7f488f
SM
275/**
276 * struct blkcipher_alg - synchronous block cipher definition
277 * @min_keysize: see struct ablkcipher_alg
278 * @max_keysize: see struct ablkcipher_alg
279 * @setkey: see struct ablkcipher_alg
280 * @encrypt: see struct ablkcipher_alg
281 * @decrypt: see struct ablkcipher_alg
282 * @geniv: see struct ablkcipher_alg
283 * @ivsize: see struct ablkcipher_alg
284 *
285 * All fields except @geniv and @ivsize are mandatory and must be filled.
286 */
5cde0af2
HX
287struct blkcipher_alg {
288 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
289 unsigned int keylen);
290 int (*encrypt)(struct blkcipher_desc *desc,
291 struct scatterlist *dst, struct scatterlist *src,
292 unsigned int nbytes);
293 int (*decrypt)(struct blkcipher_desc *desc,
294 struct scatterlist *dst, struct scatterlist *src,
295 unsigned int nbytes);
296
23508e11
HX
297 const char *geniv;
298
5cde0af2
HX
299 unsigned int min_keysize;
300 unsigned int max_keysize;
301 unsigned int ivsize;
302};
303
0d7f488f
SM
304/**
305 * struct cipher_alg - single-block symmetric ciphers definition
306 * @cia_min_keysize: Minimum key size supported by the transformation. This is
307 * the smallest key length supported by this transformation
308 * algorithm. This must be set to one of the pre-defined
309 * values as this is not hardware specific. Possible values
310 * for this field can be found via git grep "_MIN_KEY_SIZE"
311 * include/crypto/
312 * @cia_max_keysize: Maximum key size supported by the transformation. This is
313 * the largest key length supported by this transformation
314 * algorithm. This must be set to one of the pre-defined values
315 * as this is not hardware specific. Possible values for this
316 * field can be found via git grep "_MAX_KEY_SIZE"
317 * include/crypto/
318 * @cia_setkey: Set key for the transformation. This function is used to either
319 * program a supplied key into the hardware or store the key in the
320 * transformation context for programming it later. Note that this
321 * function does modify the transformation context. This function
322 * can be called multiple times during the existence of the
323 * transformation object, so one must make sure the key is properly
324 * reprogrammed into the hardware. This function is also
325 * responsible for checking the key length for validity.
326 * @cia_encrypt: Encrypt a single block. This function is used to encrypt a
327 * single block of data, which must be @cra_blocksize big. This
328 * always operates on a full @cra_blocksize and it is not possible
329 * to encrypt a block of smaller size. The supplied buffers must
330 * therefore also be at least of @cra_blocksize size. Both the
331 * input and output buffers are always aligned to @cra_alignmask.
332 * In case either of the input or output buffer supplied by user
333 * of the crypto API is not aligned to @cra_alignmask, the crypto
334 * API will re-align the buffers. The re-alignment means that a
335 * new buffer will be allocated, the data will be copied into the
336 * new buffer, then the processing will happen on the new buffer,
337 * then the data will be copied back into the original buffer and
338 * finally the new buffer will be freed. In case a software
339 * fallback was put in place in the @cra_init call, this function
340 * might need to use the fallback if the algorithm doesn't support
341 * all of the key sizes. In case the key was stored in
342 * transformation context, the key might need to be re-programmed
343 * into the hardware in this function. This function shall not
344 * modify the transformation context, as this function may be
345 * called in parallel with the same transformation object.
346 * @cia_decrypt: Decrypt a single block. This is a reverse counterpart to
347 * @cia_encrypt, and the conditions are exactly the same.
348 *
349 * All fields are mandatory and must be filled.
350 */
1da177e4
LT
351struct cipher_alg {
352 unsigned int cia_min_keysize;
353 unsigned int cia_max_keysize;
6c2bb98b 354 int (*cia_setkey)(struct crypto_tfm *tfm, const u8 *key,
560c06ae 355 unsigned int keylen);
6c2bb98b
HX
356 void (*cia_encrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
357 void (*cia_decrypt)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
358};
359
1da177e4 360struct compress_alg {
6c2bb98b
HX
361 int (*coa_compress)(struct crypto_tfm *tfm, const u8 *src,
362 unsigned int slen, u8 *dst, unsigned int *dlen);
363 int (*coa_decompress)(struct crypto_tfm *tfm, const u8 *src,
364 unsigned int slen, u8 *dst, unsigned int *dlen);
1da177e4
LT
365};
366
17f0f4a4 367
b5b7f088 368#define cra_ablkcipher cra_u.ablkcipher
5cde0af2 369#define cra_blkcipher cra_u.blkcipher
1da177e4 370#define cra_cipher cra_u.cipher
1da177e4
LT
371#define cra_compress cra_u.compress
372
0d7f488f
SM
373/**
374 * struct crypto_alg - definition of a cryptograpic cipher algorithm
375 * @cra_flags: Flags describing this transformation. See include/linux/crypto.h
376 * CRYPTO_ALG_* flags for the flags which go in here. Those are
377 * used for fine-tuning the description of the transformation
378 * algorithm.
379 * @cra_blocksize: Minimum block size of this transformation. The size in bytes
380 * of the smallest possible unit which can be transformed with
381 * this algorithm. The users must respect this value.
382 * In case of HASH transformation, it is possible for a smaller
383 * block than @cra_blocksize to be passed to the crypto API for
384 * transformation, in case of any other transformation type, an
385 * error will be returned upon any attempt to transform smaller
386 * than @cra_blocksize chunks.
387 * @cra_ctxsize: Size of the operational context of the transformation. This
388 * value informs the kernel crypto API about the memory size
389 * needed to be allocated for the transformation context.
390 * @cra_alignmask: Alignment mask for the input and output data buffer. The data
391 * buffer containing the input data for the algorithm must be
392 * aligned to this alignment mask. The data buffer for the
393 * output data must be aligned to this alignment mask. Note that
394 * the Crypto API will do the re-alignment in software, but
395 * only under special conditions and there is a performance hit.
396 * The re-alignment happens at these occasions for different
397 * @cra_u types: cipher -- For both input data and output data
398 * buffer; ahash -- For output hash destination buf; shash --
399 * For output hash destination buf.
400 * This is needed on hardware which is flawed by design and
401 * cannot pick data from arbitrary addresses.
402 * @cra_priority: Priority of this transformation implementation. In case
403 * multiple transformations with same @cra_name are available to
404 * the Crypto API, the kernel will use the one with highest
405 * @cra_priority.
406 * @cra_name: Generic name (usable by multiple implementations) of the
407 * transformation algorithm. This is the name of the transformation
408 * itself. This field is used by the kernel when looking up the
409 * providers of particular transformation.
410 * @cra_driver_name: Unique name of the transformation provider. This is the
411 * name of the provider of the transformation. This can be any
412 * arbitrary value, but in the usual case, this contains the
413 * name of the chip or provider and the name of the
414 * transformation algorithm.
415 * @cra_type: Type of the cryptographic transformation. This is a pointer to
416 * struct crypto_type, which implements callbacks common for all
12f7c14a 417 * transformation types. There are multiple options:
0d7f488f 418 * &crypto_blkcipher_type, &crypto_ablkcipher_type,
b0d955ba 419 * &crypto_ahash_type, &crypto_rng_type.
0d7f488f
SM
420 * This field might be empty. In that case, there are no common
421 * callbacks. This is the case for: cipher, compress, shash.
422 * @cra_u: Callbacks implementing the transformation. This is a union of
423 * multiple structures. Depending on the type of transformation selected
424 * by @cra_type and @cra_flags above, the associated structure must be
425 * filled with callbacks. This field might be empty. This is the case
426 * for ahash, shash.
427 * @cra_init: Initialize the cryptographic transformation object. This function
428 * is used to initialize the cryptographic transformation object.
429 * This function is called only once at the instantiation time, right
430 * after the transformation context was allocated. In case the
431 * cryptographic hardware has some special requirements which need to
432 * be handled by software, this function shall check for the precise
433 * requirement of the transformation and put any software fallbacks
434 * in place.
435 * @cra_exit: Deinitialize the cryptographic transformation object. This is a
436 * counterpart to @cra_init, used to remove various changes set in
437 * @cra_init.
438 * @cra_module: Owner of this transformation implementation. Set to THIS_MODULE
439 * @cra_list: internally used
440 * @cra_users: internally used
441 * @cra_refcnt: internally used
442 * @cra_destroy: internally used
443 *
444 * The struct crypto_alg describes a generic Crypto API algorithm and is common
445 * for all of the transformations. Any variable not documented here shall not
446 * be used by a cipher implementation as it is internal to the Crypto API.
447 */
1da177e4
LT
448struct crypto_alg {
449 struct list_head cra_list;
6bfd4809
HX
450 struct list_head cra_users;
451
1da177e4
LT
452 u32 cra_flags;
453 unsigned int cra_blocksize;
454 unsigned int cra_ctxsize;
95477377 455 unsigned int cra_alignmask;
5cb1454b
HX
456
457 int cra_priority;
ce8614a3 458 refcount_t cra_refcnt;
5cb1454b 459
d913ea0d
HX
460 char cra_name[CRYPTO_MAX_ALG_NAME];
461 char cra_driver_name[CRYPTO_MAX_ALG_NAME];
1da177e4 462
e853c3cf
HX
463 const struct crypto_type *cra_type;
464
1da177e4 465 union {
b5b7f088 466 struct ablkcipher_alg ablkcipher;
5cde0af2 467 struct blkcipher_alg blkcipher;
1da177e4 468 struct cipher_alg cipher;
1da177e4
LT
469 struct compress_alg compress;
470 } cra_u;
c7fc0599
HX
471
472 int (*cra_init)(struct crypto_tfm *tfm);
473 void (*cra_exit)(struct crypto_tfm *tfm);
6521f302 474 void (*cra_destroy)(struct crypto_alg *alg);
1da177e4
LT
475
476 struct module *cra_module;
edf18b91 477} CRYPTO_MINALIGN_ATTR;
1da177e4 478
ada69a16
GBY
479/*
480 * A helper struct for waiting for completion of async crypto ops
481 */
482struct crypto_wait {
483 struct completion completion;
484 int err;
485};
486
487/*
488 * Macro for declaring a crypto op async wait object on stack
489 */
490#define DECLARE_CRYPTO_WAIT(_wait) \
491 struct crypto_wait _wait = { \
492 COMPLETION_INITIALIZER_ONSTACK((_wait).completion), 0 }
493
494/*
495 * Async ops completion helper functioons
496 */
497void crypto_req_done(struct crypto_async_request *req, int err);
498
499static inline int crypto_wait_req(int err, struct crypto_wait *wait)
500{
501 switch (err) {
502 case -EINPROGRESS:
503 case -EBUSY:
504 wait_for_completion(&wait->completion);
505 reinit_completion(&wait->completion);
506 err = wait->err;
507 break;
508 };
509
510 return err;
511}
512
513static inline void crypto_init_wait(struct crypto_wait *wait)
514{
515 init_completion(&wait->completion);
516}
517
1da177e4
LT
518/*
519 * Algorithm registration interface.
520 */
521int crypto_register_alg(struct crypto_alg *alg);
522int crypto_unregister_alg(struct crypto_alg *alg);
4b004346
MB
523int crypto_register_algs(struct crypto_alg *algs, int count);
524int crypto_unregister_algs(struct crypto_alg *algs, int count);
1da177e4
LT
525
526/*
527 * Algorithm query interface.
528 */
fce32d70 529int crypto_has_alg(const char *name, u32 type, u32 mask);
1da177e4
LT
530
531/*
532 * Transforms: user-instantiated objects which encapsulate algorithms
6d7d684d
HX
533 * and core processing logic. Managed via crypto_alloc_*() and
534 * crypto_free_*(), as well as the various helpers below.
1da177e4 535 */
1da177e4 536
32e3983f
HX
537struct ablkcipher_tfm {
538 int (*setkey)(struct crypto_ablkcipher *tfm, const u8 *key,
539 unsigned int keylen);
540 int (*encrypt)(struct ablkcipher_request *req);
541 int (*decrypt)(struct ablkcipher_request *req);
61da88e2 542
ecfc4329
HX
543 struct crypto_ablkcipher *base;
544
32e3983f
HX
545 unsigned int ivsize;
546 unsigned int reqsize;
547};
548
5cde0af2
HX
549struct blkcipher_tfm {
550 void *iv;
551 int (*setkey)(struct crypto_tfm *tfm, const u8 *key,
552 unsigned int keylen);
553 int (*encrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
554 struct scatterlist *src, unsigned int nbytes);
555 int (*decrypt)(struct blkcipher_desc *desc, struct scatterlist *dst,
556 struct scatterlist *src, unsigned int nbytes);
557};
558
1da177e4 559struct cipher_tfm {
1da177e4
LT
560 int (*cit_setkey)(struct crypto_tfm *tfm,
561 const u8 *key, unsigned int keylen);
f28776a3
HX
562 void (*cit_encrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
563 void (*cit_decrypt_one)(struct crypto_tfm *tfm, u8 *dst, const u8 *src);
1da177e4
LT
564};
565
1da177e4
LT
566struct compress_tfm {
567 int (*cot_compress)(struct crypto_tfm *tfm,
568 const u8 *src, unsigned int slen,
569 u8 *dst, unsigned int *dlen);
570 int (*cot_decompress)(struct crypto_tfm *tfm,
571 const u8 *src, unsigned int slen,
572 u8 *dst, unsigned int *dlen);
573};
574
32e3983f 575#define crt_ablkcipher crt_u.ablkcipher
5cde0af2 576#define crt_blkcipher crt_u.blkcipher
1da177e4 577#define crt_cipher crt_u.cipher
1da177e4
LT
578#define crt_compress crt_u.compress
579
580struct crypto_tfm {
581
582 u32 crt_flags;
583
584 union {
32e3983f 585 struct ablkcipher_tfm ablkcipher;
5cde0af2 586 struct blkcipher_tfm blkcipher;
1da177e4 587 struct cipher_tfm cipher;
1da177e4
LT
588 struct compress_tfm compress;
589 } crt_u;
4a779486
HX
590
591 void (*exit)(struct crypto_tfm *tfm);
1da177e4
LT
592
593 struct crypto_alg *__crt_alg;
f10b7897 594
79911102 595 void *__crt_ctx[] CRYPTO_MINALIGN_ATTR;
1da177e4
LT
596};
597
32e3983f
HX
598struct crypto_ablkcipher {
599 struct crypto_tfm base;
600};
601
5cde0af2
HX
602struct crypto_blkcipher {
603 struct crypto_tfm base;
604};
605
78a1fe4f
HX
606struct crypto_cipher {
607 struct crypto_tfm base;
608};
609
610struct crypto_comp {
611 struct crypto_tfm base;
612};
613
2b8c19db
HX
614enum {
615 CRYPTOA_UNSPEC,
616 CRYPTOA_ALG,
ebc610e5 617 CRYPTOA_TYPE,
39e1ee01 618 CRYPTOA_U32,
ebc610e5 619 __CRYPTOA_MAX,
2b8c19db
HX
620};
621
ebc610e5
HX
622#define CRYPTOA_MAX (__CRYPTOA_MAX - 1)
623
39e1ee01
HX
624/* Maximum number of (rtattr) parameters for each template. */
625#define CRYPTO_MAX_ATTRS 32
626
2b8c19db
HX
627struct crypto_attr_alg {
628 char name[CRYPTO_MAX_ALG_NAME];
629};
630
ebc610e5
HX
631struct crypto_attr_type {
632 u32 type;
633 u32 mask;
634};
635
39e1ee01
HX
636struct crypto_attr_u32 {
637 u32 num;
638};
639
1da177e4
LT
640/*
641 * Transform user interface.
642 */
643
6d7d684d 644struct crypto_tfm *crypto_alloc_base(const char *alg_name, u32 type, u32 mask);
7b2cd92a
HX
645void crypto_destroy_tfm(void *mem, struct crypto_tfm *tfm);
646
647static inline void crypto_free_tfm(struct crypto_tfm *tfm)
648{
649 return crypto_destroy_tfm(tfm, tfm);
650}
1da177e4 651
da7f033d
HX
652int alg_test(const char *driver, const char *alg, u32 type, u32 mask);
653
1da177e4
LT
654/*
655 * Transform helpers which query the underlying algorithm.
656 */
657static inline const char *crypto_tfm_alg_name(struct crypto_tfm *tfm)
658{
659 return tfm->__crt_alg->cra_name;
660}
661
b14cdd67
ML
662static inline const char *crypto_tfm_alg_driver_name(struct crypto_tfm *tfm)
663{
664 return tfm->__crt_alg->cra_driver_name;
665}
666
667static inline int crypto_tfm_alg_priority(struct crypto_tfm *tfm)
668{
669 return tfm->__crt_alg->cra_priority;
670}
671
1da177e4
LT
672static inline u32 crypto_tfm_alg_type(struct crypto_tfm *tfm)
673{
674 return tfm->__crt_alg->cra_flags & CRYPTO_ALG_TYPE_MASK;
675}
676
1da177e4
LT
677static inline unsigned int crypto_tfm_alg_blocksize(struct crypto_tfm *tfm)
678{
679 return tfm->__crt_alg->cra_blocksize;
680}
681
fbdae9f3
HX
682static inline unsigned int crypto_tfm_alg_alignmask(struct crypto_tfm *tfm)
683{
684 return tfm->__crt_alg->cra_alignmask;
685}
686
f28776a3
HX
687static inline u32 crypto_tfm_get_flags(struct crypto_tfm *tfm)
688{
689 return tfm->crt_flags;
690}
691
692static inline void crypto_tfm_set_flags(struct crypto_tfm *tfm, u32 flags)
693{
694 tfm->crt_flags |= flags;
695}
696
697static inline void crypto_tfm_clear_flags(struct crypto_tfm *tfm, u32 flags)
698{
699 tfm->crt_flags &= ~flags;
700}
701
40725181
HX
702static inline void *crypto_tfm_ctx(struct crypto_tfm *tfm)
703{
f10b7897
HX
704 return tfm->__crt_ctx;
705}
706
707static inline unsigned int crypto_tfm_ctx_alignment(void)
708{
709 struct crypto_tfm *tfm;
710 return __alignof__(tfm->__crt_ctx);
40725181
HX
711}
712
1da177e4
LT
713/*
714 * API wrappers.
715 */
32e3983f
HX
716static inline struct crypto_ablkcipher *__crypto_ablkcipher_cast(
717 struct crypto_tfm *tfm)
718{
719 return (struct crypto_ablkcipher *)tfm;
720}
721
378f4f51 722static inline u32 crypto_skcipher_type(u32 type)
32e3983f 723{
ecfc4329 724 type &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
32e3983f 725 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
378f4f51
HX
726 return type;
727}
728
729static inline u32 crypto_skcipher_mask(u32 mask)
730{
ecfc4329 731 mask &= ~(CRYPTO_ALG_TYPE_MASK | CRYPTO_ALG_GENIV);
332f8840 732 mask |= CRYPTO_ALG_TYPE_BLKCIPHER_MASK;
378f4f51
HX
733 return mask;
734}
32e3983f 735
f13ec330
SM
736/**
737 * DOC: Asynchronous Block Cipher API
738 *
739 * Asynchronous block cipher API is used with the ciphers of type
740 * CRYPTO_ALG_TYPE_ABLKCIPHER (listed as type "ablkcipher" in /proc/crypto).
741 *
742 * Asynchronous cipher operations imply that the function invocation for a
743 * cipher request returns immediately before the completion of the operation.
744 * The cipher request is scheduled as a separate kernel thread and therefore
745 * load-balanced on the different CPUs via the process scheduler. To allow
746 * the kernel crypto API to inform the caller about the completion of a cipher
747 * request, the caller must provide a callback function. That function is
748 * invoked with the cipher handle when the request completes.
749 *
750 * To support the asynchronous operation, additional information than just the
751 * cipher handle must be supplied to the kernel crypto API. That additional
752 * information is given by filling in the ablkcipher_request data structure.
753 *
754 * For the asynchronous block cipher API, the state is maintained with the tfm
755 * cipher handle. A single tfm can be used across multiple calls and in
756 * parallel. For asynchronous block cipher calls, context data supplied and
757 * only used by the caller can be referenced the request data structure in
758 * addition to the IV used for the cipher request. The maintenance of such
759 * state information would be important for a crypto driver implementer to
760 * have, because when calling the callback function upon completion of the
761 * cipher operation, that callback function may need some information about
762 * which operation just finished if it invoked multiple in parallel. This
763 * state information is unused by the kernel crypto API.
764 */
765
32e3983f
HX
766static inline struct crypto_tfm *crypto_ablkcipher_tfm(
767 struct crypto_ablkcipher *tfm)
768{
769 return &tfm->base;
770}
771
f13ec330
SM
772/**
773 * crypto_free_ablkcipher() - zeroize and free cipher handle
774 * @tfm: cipher handle to be freed
775 */
32e3983f
HX
776static inline void crypto_free_ablkcipher(struct crypto_ablkcipher *tfm)
777{
778 crypto_free_tfm(crypto_ablkcipher_tfm(tfm));
779}
780
f13ec330
SM
781/**
782 * crypto_has_ablkcipher() - Search for the availability of an ablkcipher.
783 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
784 * ablkcipher
785 * @type: specifies the type of the cipher
786 * @mask: specifies the mask for the cipher
787 *
788 * Return: true when the ablkcipher is known to the kernel crypto API; false
789 * otherwise
790 */
32e3983f
HX
791static inline int crypto_has_ablkcipher(const char *alg_name, u32 type,
792 u32 mask)
793{
378f4f51
HX
794 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
795 crypto_skcipher_mask(mask));
32e3983f
HX
796}
797
798static inline struct ablkcipher_tfm *crypto_ablkcipher_crt(
799 struct crypto_ablkcipher *tfm)
800{
801 return &crypto_ablkcipher_tfm(tfm)->crt_ablkcipher;
802}
803
f13ec330
SM
804/**
805 * crypto_ablkcipher_ivsize() - obtain IV size
806 * @tfm: cipher handle
807 *
808 * The size of the IV for the ablkcipher referenced by the cipher handle is
809 * returned. This IV size may be zero if the cipher does not need an IV.
810 *
811 * Return: IV size in bytes
812 */
32e3983f
HX
813static inline unsigned int crypto_ablkcipher_ivsize(
814 struct crypto_ablkcipher *tfm)
815{
816 return crypto_ablkcipher_crt(tfm)->ivsize;
817}
818
f13ec330
SM
819/**
820 * crypto_ablkcipher_blocksize() - obtain block size of cipher
821 * @tfm: cipher handle
822 *
823 * The block size for the ablkcipher referenced with the cipher handle is
824 * returned. The caller may use that information to allocate appropriate
825 * memory for the data returned by the encryption or decryption operation
826 *
827 * Return: block size of cipher
828 */
32e3983f
HX
829static inline unsigned int crypto_ablkcipher_blocksize(
830 struct crypto_ablkcipher *tfm)
831{
832 return crypto_tfm_alg_blocksize(crypto_ablkcipher_tfm(tfm));
833}
834
835static inline unsigned int crypto_ablkcipher_alignmask(
836 struct crypto_ablkcipher *tfm)
837{
838 return crypto_tfm_alg_alignmask(crypto_ablkcipher_tfm(tfm));
839}
840
841static inline u32 crypto_ablkcipher_get_flags(struct crypto_ablkcipher *tfm)
842{
843 return crypto_tfm_get_flags(crypto_ablkcipher_tfm(tfm));
844}
845
846static inline void crypto_ablkcipher_set_flags(struct crypto_ablkcipher *tfm,
847 u32 flags)
848{
849 crypto_tfm_set_flags(crypto_ablkcipher_tfm(tfm), flags);
850}
851
852static inline void crypto_ablkcipher_clear_flags(struct crypto_ablkcipher *tfm,
853 u32 flags)
854{
855 crypto_tfm_clear_flags(crypto_ablkcipher_tfm(tfm), flags);
856}
857
f13ec330
SM
858/**
859 * crypto_ablkcipher_setkey() - set key for cipher
860 * @tfm: cipher handle
861 * @key: buffer holding the key
862 * @keylen: length of the key in bytes
863 *
864 * The caller provided key is set for the ablkcipher referenced by the cipher
865 * handle.
866 *
867 * Note, the key length determines the cipher type. Many block ciphers implement
868 * different cipher modes depending on the key size, such as AES-128 vs AES-192
869 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
870 * is performed.
871 *
872 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
873 */
32e3983f
HX
874static inline int crypto_ablkcipher_setkey(struct crypto_ablkcipher *tfm,
875 const u8 *key, unsigned int keylen)
876{
ecfc4329
HX
877 struct ablkcipher_tfm *crt = crypto_ablkcipher_crt(tfm);
878
879 return crt->setkey(crt->base, key, keylen);
32e3983f
HX
880}
881
f13ec330
SM
882/**
883 * crypto_ablkcipher_reqtfm() - obtain cipher handle from request
884 * @req: ablkcipher_request out of which the cipher handle is to be obtained
885 *
886 * Return the crypto_ablkcipher handle when furnishing an ablkcipher_request
887 * data structure.
888 *
889 * Return: crypto_ablkcipher handle
890 */
32e3983f
HX
891static inline struct crypto_ablkcipher *crypto_ablkcipher_reqtfm(
892 struct ablkcipher_request *req)
893{
894 return __crypto_ablkcipher_cast(req->base.tfm);
895}
896
f13ec330
SM
897/**
898 * crypto_ablkcipher_encrypt() - encrypt plaintext
899 * @req: reference to the ablkcipher_request handle that holds all information
900 * needed to perform the cipher operation
901 *
902 * Encrypt plaintext data using the ablkcipher_request handle. That data
903 * structure and how it is filled with data is discussed with the
904 * ablkcipher_request_* functions.
905 *
906 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
907 */
32e3983f
HX
908static inline int crypto_ablkcipher_encrypt(struct ablkcipher_request *req)
909{
910 struct ablkcipher_tfm *crt =
911 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
912 return crt->encrypt(req);
913}
914
f13ec330
SM
915/**
916 * crypto_ablkcipher_decrypt() - decrypt ciphertext
917 * @req: reference to the ablkcipher_request handle that holds all information
918 * needed to perform the cipher operation
919 *
920 * Decrypt ciphertext data using the ablkcipher_request handle. That data
921 * structure and how it is filled with data is discussed with the
922 * ablkcipher_request_* functions.
923 *
924 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
925 */
32e3983f
HX
926static inline int crypto_ablkcipher_decrypt(struct ablkcipher_request *req)
927{
928 struct ablkcipher_tfm *crt =
929 crypto_ablkcipher_crt(crypto_ablkcipher_reqtfm(req));
930 return crt->decrypt(req);
931}
932
f13ec330
SM
933/**
934 * DOC: Asynchronous Cipher Request Handle
935 *
936 * The ablkcipher_request data structure contains all pointers to data
937 * required for the asynchronous cipher operation. This includes the cipher
938 * handle (which can be used by multiple ablkcipher_request instances), pointer
939 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
940 * as a handle to the ablkcipher_request_* API calls in a similar way as
941 * ablkcipher handle to the crypto_ablkcipher_* API calls.
942 */
943
944/**
945 * crypto_ablkcipher_reqsize() - obtain size of the request data structure
946 * @tfm: cipher handle
947 *
948 * Return: number of bytes
949 */
b16c3a2e
HX
950static inline unsigned int crypto_ablkcipher_reqsize(
951 struct crypto_ablkcipher *tfm)
32e3983f
HX
952{
953 return crypto_ablkcipher_crt(tfm)->reqsize;
954}
955
f13ec330
SM
956/**
957 * ablkcipher_request_set_tfm() - update cipher handle reference in request
958 * @req: request handle to be modified
959 * @tfm: cipher handle that shall be added to the request handle
960 *
961 * Allow the caller to replace the existing ablkcipher handle in the request
962 * data structure with a different one.
963 */
e196d625
HX
964static inline void ablkcipher_request_set_tfm(
965 struct ablkcipher_request *req, struct crypto_ablkcipher *tfm)
966{
ecfc4329 967 req->base.tfm = crypto_ablkcipher_tfm(crypto_ablkcipher_crt(tfm)->base);
e196d625
HX
968}
969
b5b7f088
HX
970static inline struct ablkcipher_request *ablkcipher_request_cast(
971 struct crypto_async_request *req)
972{
973 return container_of(req, struct ablkcipher_request, base);
974}
975
f13ec330
SM
976/**
977 * ablkcipher_request_alloc() - allocate request data structure
978 * @tfm: cipher handle to be registered with the request
979 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
980 *
981 * Allocate the request data structure that must be used with the ablkcipher
982 * encrypt and decrypt API calls. During the allocation, the provided ablkcipher
983 * handle is registered in the request data structure.
984 *
6eae29e7 985 * Return: allocated request handle in case of success, or NULL if out of memory
f13ec330 986 */
32e3983f
HX
987static inline struct ablkcipher_request *ablkcipher_request_alloc(
988 struct crypto_ablkcipher *tfm, gfp_t gfp)
989{
990 struct ablkcipher_request *req;
991
992 req = kmalloc(sizeof(struct ablkcipher_request) +
993 crypto_ablkcipher_reqsize(tfm), gfp);
994
995 if (likely(req))
e196d625 996 ablkcipher_request_set_tfm(req, tfm);
32e3983f
HX
997
998 return req;
999}
1000
f13ec330
SM
1001/**
1002 * ablkcipher_request_free() - zeroize and free request data structure
1003 * @req: request data structure cipher handle to be freed
1004 */
32e3983f
HX
1005static inline void ablkcipher_request_free(struct ablkcipher_request *req)
1006{
aef73cfc 1007 kzfree(req);
32e3983f
HX
1008}
1009
f13ec330
SM
1010/**
1011 * ablkcipher_request_set_callback() - set asynchronous callback function
1012 * @req: request handle
1013 * @flags: specify zero or an ORing of the flags
0184cfe7 1014 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
f13ec330
SM
1015 * increase the wait queue beyond the initial maximum size;
1016 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
1017 * @compl: callback function pointer to be registered with the request handle
1018 * @data: The data pointer refers to memory that is not used by the kernel
1019 * crypto API, but provided to the callback function for it to use. Here,
1020 * the caller can provide a reference to memory the callback function can
1021 * operate on. As the callback function is invoked asynchronously to the
1022 * related functionality, it may need to access data structures of the
1023 * related functionality which can be referenced using this pointer. The
1024 * callback function can access the memory via the "data" field in the
1025 * crypto_async_request data structure provided to the callback function.
1026 *
1027 * This function allows setting the callback function that is triggered once the
1028 * cipher operation completes.
1029 *
1030 * The callback function is registered with the ablkcipher_request handle and
0184cfe7 1031 * must comply with the following template::
f13ec330
SM
1032 *
1033 * void callback_function(struct crypto_async_request *req, int error)
1034 */
32e3983f
HX
1035static inline void ablkcipher_request_set_callback(
1036 struct ablkcipher_request *req,
3e3dc25f 1037 u32 flags, crypto_completion_t compl, void *data)
32e3983f 1038{
3e3dc25f 1039 req->base.complete = compl;
32e3983f
HX
1040 req->base.data = data;
1041 req->base.flags = flags;
1042}
1043
f13ec330
SM
1044/**
1045 * ablkcipher_request_set_crypt() - set data buffers
1046 * @req: request handle
1047 * @src: source scatter / gather list
1048 * @dst: destination scatter / gather list
1049 * @nbytes: number of bytes to process from @src
1050 * @iv: IV for the cipher operation which must comply with the IV size defined
1051 * by crypto_ablkcipher_ivsize
1052 *
1053 * This function allows setting of the source data and destination data
1054 * scatter / gather lists.
1055 *
1056 * For encryption, the source is treated as the plaintext and the
1057 * destination is the ciphertext. For a decryption operation, the use is
379dcfb4 1058 * reversed - the source is the ciphertext and the destination is the plaintext.
f13ec330 1059 */
32e3983f
HX
1060static inline void ablkcipher_request_set_crypt(
1061 struct ablkcipher_request *req,
1062 struct scatterlist *src, struct scatterlist *dst,
1063 unsigned int nbytes, void *iv)
1064{
1065 req->src = src;
1066 req->dst = dst;
1067 req->nbytes = nbytes;
1068 req->info = iv;
1069}
1070
58284f0d
SM
1071/**
1072 * DOC: Synchronous Block Cipher API
1073 *
1074 * The synchronous block cipher API is used with the ciphers of type
1075 * CRYPTO_ALG_TYPE_BLKCIPHER (listed as type "blkcipher" in /proc/crypto)
1076 *
1077 * Synchronous calls, have a context in the tfm. But since a single tfm can be
1078 * used in multiple calls and in parallel, this info should not be changeable
1079 * (unless a lock is used). This applies, for example, to the symmetric key.
1080 * However, the IV is changeable, so there is an iv field in blkcipher_tfm
1081 * structure for synchronous blkcipher api. So, its the only state info that can
1082 * be kept for synchronous calls without using a big lock across a tfm.
1083 *
1084 * The block cipher API allows the use of a complete cipher, i.e. a cipher
1085 * consisting of a template (a block chaining mode) and a single block cipher
1086 * primitive (e.g. AES).
1087 *
1088 * The plaintext data buffer and the ciphertext data buffer are pointed to
1089 * by using scatter/gather lists. The cipher operation is performed
1090 * on all segments of the provided scatter/gather lists.
1091 *
1092 * The kernel crypto API supports a cipher operation "in-place" which means that
1093 * the caller may provide the same scatter/gather list for the plaintext and
1094 * cipher text. After the completion of the cipher operation, the plaintext
1095 * data is replaced with the ciphertext data in case of an encryption and vice
1096 * versa for a decryption. The caller must ensure that the scatter/gather lists
1097 * for the output data point to sufficiently large buffers, i.e. multiples of
1098 * the block size of the cipher.
1099 */
1100
5cde0af2
HX
1101static inline struct crypto_blkcipher *__crypto_blkcipher_cast(
1102 struct crypto_tfm *tfm)
1103{
1104 return (struct crypto_blkcipher *)tfm;
1105}
1106
1107static inline struct crypto_blkcipher *crypto_blkcipher_cast(
1108 struct crypto_tfm *tfm)
1109{
1110 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_BLKCIPHER);
1111 return __crypto_blkcipher_cast(tfm);
1112}
1113
58284f0d
SM
1114/**
1115 * crypto_alloc_blkcipher() - allocate synchronous block cipher handle
1116 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1117 * blkcipher cipher
1118 * @type: specifies the type of the cipher
1119 * @mask: specifies the mask for the cipher
1120 *
1121 * Allocate a cipher handle for a block cipher. The returned struct
1122 * crypto_blkcipher is the cipher handle that is required for any subsequent
1123 * API invocation for that block cipher.
1124 *
1125 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1126 * of an error, PTR_ERR() returns the error code.
1127 */
5cde0af2
HX
1128static inline struct crypto_blkcipher *crypto_alloc_blkcipher(
1129 const char *alg_name, u32 type, u32 mask)
1130{
332f8840 1131 type &= ~CRYPTO_ALG_TYPE_MASK;
5cde0af2 1132 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1133 mask |= CRYPTO_ALG_TYPE_MASK;
5cde0af2
HX
1134
1135 return __crypto_blkcipher_cast(crypto_alloc_base(alg_name, type, mask));
1136}
1137
1138static inline struct crypto_tfm *crypto_blkcipher_tfm(
1139 struct crypto_blkcipher *tfm)
1140{
1141 return &tfm->base;
1142}
1143
58284f0d
SM
1144/**
1145 * crypto_free_blkcipher() - zeroize and free the block cipher handle
1146 * @tfm: cipher handle to be freed
1147 */
5cde0af2
HX
1148static inline void crypto_free_blkcipher(struct crypto_blkcipher *tfm)
1149{
1150 crypto_free_tfm(crypto_blkcipher_tfm(tfm));
1151}
1152
58284f0d
SM
1153/**
1154 * crypto_has_blkcipher() - Search for the availability of a block cipher
1155 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1156 * block cipher
1157 * @type: specifies the type of the cipher
1158 * @mask: specifies the mask for the cipher
1159 *
1160 * Return: true when the block cipher is known to the kernel crypto API; false
1161 * otherwise
1162 */
fce32d70
HX
1163static inline int crypto_has_blkcipher(const char *alg_name, u32 type, u32 mask)
1164{
332f8840 1165 type &= ~CRYPTO_ALG_TYPE_MASK;
fce32d70 1166 type |= CRYPTO_ALG_TYPE_BLKCIPHER;
332f8840 1167 mask |= CRYPTO_ALG_TYPE_MASK;
fce32d70
HX
1168
1169 return crypto_has_alg(alg_name, type, mask);
1170}
1171
58284f0d
SM
1172/**
1173 * crypto_blkcipher_name() - return the name / cra_name from the cipher handle
1174 * @tfm: cipher handle
1175 *
1176 * Return: The character string holding the name of the cipher
1177 */
5cde0af2
HX
1178static inline const char *crypto_blkcipher_name(struct crypto_blkcipher *tfm)
1179{
1180 return crypto_tfm_alg_name(crypto_blkcipher_tfm(tfm));
1181}
1182
1183static inline struct blkcipher_tfm *crypto_blkcipher_crt(
1184 struct crypto_blkcipher *tfm)
1185{
1186 return &crypto_blkcipher_tfm(tfm)->crt_blkcipher;
1187}
1188
1189static inline struct blkcipher_alg *crypto_blkcipher_alg(
1190 struct crypto_blkcipher *tfm)
1191{
1192 return &crypto_blkcipher_tfm(tfm)->__crt_alg->cra_blkcipher;
1193}
1194
58284f0d
SM
1195/**
1196 * crypto_blkcipher_ivsize() - obtain IV size
1197 * @tfm: cipher handle
1198 *
1199 * The size of the IV for the block cipher referenced by the cipher handle is
1200 * returned. This IV size may be zero if the cipher does not need an IV.
1201 *
1202 * Return: IV size in bytes
1203 */
5cde0af2
HX
1204static inline unsigned int crypto_blkcipher_ivsize(struct crypto_blkcipher *tfm)
1205{
1206 return crypto_blkcipher_alg(tfm)->ivsize;
1207}
1208
58284f0d
SM
1209/**
1210 * crypto_blkcipher_blocksize() - obtain block size of cipher
1211 * @tfm: cipher handle
1212 *
1213 * The block size for the block cipher referenced with the cipher handle is
1214 * returned. The caller may use that information to allocate appropriate
1215 * memory for the data returned by the encryption or decryption operation.
1216 *
1217 * Return: block size of cipher
1218 */
5cde0af2
HX
1219static inline unsigned int crypto_blkcipher_blocksize(
1220 struct crypto_blkcipher *tfm)
1221{
1222 return crypto_tfm_alg_blocksize(crypto_blkcipher_tfm(tfm));
1223}
1224
1225static inline unsigned int crypto_blkcipher_alignmask(
1226 struct crypto_blkcipher *tfm)
1227{
1228 return crypto_tfm_alg_alignmask(crypto_blkcipher_tfm(tfm));
1229}
1230
1231static inline u32 crypto_blkcipher_get_flags(struct crypto_blkcipher *tfm)
1232{
1233 return crypto_tfm_get_flags(crypto_blkcipher_tfm(tfm));
1234}
1235
1236static inline void crypto_blkcipher_set_flags(struct crypto_blkcipher *tfm,
1237 u32 flags)
1238{
1239 crypto_tfm_set_flags(crypto_blkcipher_tfm(tfm), flags);
1240}
1241
1242static inline void crypto_blkcipher_clear_flags(struct crypto_blkcipher *tfm,
1243 u32 flags)
1244{
1245 crypto_tfm_clear_flags(crypto_blkcipher_tfm(tfm), flags);
1246}
1247
58284f0d
SM
1248/**
1249 * crypto_blkcipher_setkey() - set key for cipher
1250 * @tfm: cipher handle
1251 * @key: buffer holding the key
1252 * @keylen: length of the key in bytes
1253 *
1254 * The caller provided key is set for the block cipher referenced by the cipher
1255 * handle.
1256 *
1257 * Note, the key length determines the cipher type. Many block ciphers implement
1258 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1259 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1260 * is performed.
1261 *
1262 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1263 */
5cde0af2
HX
1264static inline int crypto_blkcipher_setkey(struct crypto_blkcipher *tfm,
1265 const u8 *key, unsigned int keylen)
1266{
1267 return crypto_blkcipher_crt(tfm)->setkey(crypto_blkcipher_tfm(tfm),
1268 key, keylen);
1269}
1270
58284f0d
SM
1271/**
1272 * crypto_blkcipher_encrypt() - encrypt plaintext
1273 * @desc: reference to the block cipher handle with meta data
1274 * @dst: scatter/gather list that is filled by the cipher operation with the
1275 * ciphertext
1276 * @src: scatter/gather list that holds the plaintext
1277 * @nbytes: number of bytes of the plaintext to encrypt.
1278 *
1279 * Encrypt plaintext data using the IV set by the caller with a preceding
1280 * call of crypto_blkcipher_set_iv.
1281 *
1282 * The blkcipher_desc data structure must be filled by the caller and can
1283 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1284 * with the block cipher handle; desc.flags is filled with either
1285 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1286 *
1287 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1288 */
5cde0af2
HX
1289static inline int crypto_blkcipher_encrypt(struct blkcipher_desc *desc,
1290 struct scatterlist *dst,
1291 struct scatterlist *src,
1292 unsigned int nbytes)
1293{
1294 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1295 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1296}
1297
58284f0d
SM
1298/**
1299 * crypto_blkcipher_encrypt_iv() - encrypt plaintext with dedicated IV
1300 * @desc: reference to the block cipher handle with meta data
1301 * @dst: scatter/gather list that is filled by the cipher operation with the
1302 * ciphertext
1303 * @src: scatter/gather list that holds the plaintext
1304 * @nbytes: number of bytes of the plaintext to encrypt.
1305 *
1306 * Encrypt plaintext data with the use of an IV that is solely used for this
1307 * cipher operation. Any previously set IV is not used.
1308 *
1309 * The blkcipher_desc data structure must be filled by the caller and can
1310 * reside on the stack. The caller must fill desc as follows: desc.tfm is filled
1311 * with the block cipher handle; desc.info is filled with the IV to be used for
1312 * the current operation; desc.flags is filled with either
1313 * CRYPTO_TFM_REQ_MAY_SLEEP or 0.
1314 *
1315 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1316 */
5cde0af2
HX
1317static inline int crypto_blkcipher_encrypt_iv(struct blkcipher_desc *desc,
1318 struct scatterlist *dst,
1319 struct scatterlist *src,
1320 unsigned int nbytes)
1321{
1322 return crypto_blkcipher_crt(desc->tfm)->encrypt(desc, dst, src, nbytes);
1323}
1324
58284f0d
SM
1325/**
1326 * crypto_blkcipher_decrypt() - decrypt ciphertext
1327 * @desc: reference to the block cipher handle with meta data
1328 * @dst: scatter/gather list that is filled by the cipher operation with the
1329 * plaintext
1330 * @src: scatter/gather list that holds the ciphertext
1331 * @nbytes: number of bytes of the ciphertext to decrypt.
1332 *
1333 * Decrypt ciphertext data using the IV set by the caller with a preceding
1334 * call of crypto_blkcipher_set_iv.
1335 *
1336 * The blkcipher_desc data structure must be filled by the caller as documented
1337 * for the crypto_blkcipher_encrypt call above.
1338 *
1339 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1340 *
1341 */
5cde0af2
HX
1342static inline int crypto_blkcipher_decrypt(struct blkcipher_desc *desc,
1343 struct scatterlist *dst,
1344 struct scatterlist *src,
1345 unsigned int nbytes)
1346{
1347 desc->info = crypto_blkcipher_crt(desc->tfm)->iv;
1348 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1349}
1350
58284f0d
SM
1351/**
1352 * crypto_blkcipher_decrypt_iv() - decrypt ciphertext with dedicated IV
1353 * @desc: reference to the block cipher handle with meta data
1354 * @dst: scatter/gather list that is filled by the cipher operation with the
1355 * plaintext
1356 * @src: scatter/gather list that holds the ciphertext
1357 * @nbytes: number of bytes of the ciphertext to decrypt.
1358 *
1359 * Decrypt ciphertext data with the use of an IV that is solely used for this
1360 * cipher operation. Any previously set IV is not used.
1361 *
1362 * The blkcipher_desc data structure must be filled by the caller as documented
1363 * for the crypto_blkcipher_encrypt_iv call above.
1364 *
1365 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
1366 */
5cde0af2
HX
1367static inline int crypto_blkcipher_decrypt_iv(struct blkcipher_desc *desc,
1368 struct scatterlist *dst,
1369 struct scatterlist *src,
1370 unsigned int nbytes)
1371{
1372 return crypto_blkcipher_crt(desc->tfm)->decrypt(desc, dst, src, nbytes);
1373}
1374
58284f0d
SM
1375/**
1376 * crypto_blkcipher_set_iv() - set IV for cipher
1377 * @tfm: cipher handle
1378 * @src: buffer holding the IV
1379 * @len: length of the IV in bytes
1380 *
1381 * The caller provided IV is set for the block cipher referenced by the cipher
1382 * handle.
1383 */
5cde0af2
HX
1384static inline void crypto_blkcipher_set_iv(struct crypto_blkcipher *tfm,
1385 const u8 *src, unsigned int len)
1386{
1387 memcpy(crypto_blkcipher_crt(tfm)->iv, src, len);
1388}
1389
58284f0d
SM
1390/**
1391 * crypto_blkcipher_get_iv() - obtain IV from cipher
1392 * @tfm: cipher handle
1393 * @dst: buffer filled with the IV
1394 * @len: length of the buffer dst
1395 *
1396 * The caller can obtain the IV set for the block cipher referenced by the
1397 * cipher handle and store it into the user-provided buffer. If the buffer
1398 * has an insufficient space, the IV is truncated to fit the buffer.
1399 */
5cde0af2
HX
1400static inline void crypto_blkcipher_get_iv(struct crypto_blkcipher *tfm,
1401 u8 *dst, unsigned int len)
1402{
1403 memcpy(dst, crypto_blkcipher_crt(tfm)->iv, len);
1404}
1405
16e61030
SM
1406/**
1407 * DOC: Single Block Cipher API
1408 *
1409 * The single block cipher API is used with the ciphers of type
1410 * CRYPTO_ALG_TYPE_CIPHER (listed as type "cipher" in /proc/crypto).
1411 *
1412 * Using the single block cipher API calls, operations with the basic cipher
1413 * primitive can be implemented. These cipher primitives exclude any block
1414 * chaining operations including IV handling.
1415 *
1416 * The purpose of this single block cipher API is to support the implementation
1417 * of templates or other concepts that only need to perform the cipher operation
1418 * on one block at a time. Templates invoke the underlying cipher primitive
1419 * block-wise and process either the input or the output data of these cipher
1420 * operations.
1421 */
1422
f28776a3
HX
1423static inline struct crypto_cipher *__crypto_cipher_cast(struct crypto_tfm *tfm)
1424{
1425 return (struct crypto_cipher *)tfm;
1426}
1427
1428static inline struct crypto_cipher *crypto_cipher_cast(struct crypto_tfm *tfm)
1429{
1430 BUG_ON(crypto_tfm_alg_type(tfm) != CRYPTO_ALG_TYPE_CIPHER);
1431 return __crypto_cipher_cast(tfm);
1432}
1433
16e61030
SM
1434/**
1435 * crypto_alloc_cipher() - allocate single block cipher handle
1436 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1437 * single block cipher
1438 * @type: specifies the type of the cipher
1439 * @mask: specifies the mask for the cipher
1440 *
1441 * Allocate a cipher handle for a single block cipher. The returned struct
1442 * crypto_cipher is the cipher handle that is required for any subsequent API
1443 * invocation for that single block cipher.
1444 *
1445 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
1446 * of an error, PTR_ERR() returns the error code.
1447 */
f28776a3
HX
1448static inline struct crypto_cipher *crypto_alloc_cipher(const char *alg_name,
1449 u32 type, u32 mask)
1450{
1451 type &= ~CRYPTO_ALG_TYPE_MASK;
1452 type |= CRYPTO_ALG_TYPE_CIPHER;
1453 mask |= CRYPTO_ALG_TYPE_MASK;
1454
1455 return __crypto_cipher_cast(crypto_alloc_base(alg_name, type, mask));
1456}
1457
1458static inline struct crypto_tfm *crypto_cipher_tfm(struct crypto_cipher *tfm)
1459{
78a1fe4f 1460 return &tfm->base;
f28776a3
HX
1461}
1462
16e61030
SM
1463/**
1464 * crypto_free_cipher() - zeroize and free the single block cipher handle
1465 * @tfm: cipher handle to be freed
1466 */
f28776a3
HX
1467static inline void crypto_free_cipher(struct crypto_cipher *tfm)
1468{
1469 crypto_free_tfm(crypto_cipher_tfm(tfm));
1470}
1471
16e61030
SM
1472/**
1473 * crypto_has_cipher() - Search for the availability of a single block cipher
1474 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
1475 * single block cipher
1476 * @type: specifies the type of the cipher
1477 * @mask: specifies the mask for the cipher
1478 *
1479 * Return: true when the single block cipher is known to the kernel crypto API;
1480 * false otherwise
1481 */
fce32d70
HX
1482static inline int crypto_has_cipher(const char *alg_name, u32 type, u32 mask)
1483{
1484 type &= ~CRYPTO_ALG_TYPE_MASK;
1485 type |= CRYPTO_ALG_TYPE_CIPHER;
1486 mask |= CRYPTO_ALG_TYPE_MASK;
1487
1488 return crypto_has_alg(alg_name, type, mask);
1489}
1490
f28776a3
HX
1491static inline struct cipher_tfm *crypto_cipher_crt(struct crypto_cipher *tfm)
1492{
1493 return &crypto_cipher_tfm(tfm)->crt_cipher;
1494}
1495
16e61030
SM
1496/**
1497 * crypto_cipher_blocksize() - obtain block size for cipher
1498 * @tfm: cipher handle
1499 *
1500 * The block size for the single block cipher referenced with the cipher handle
1501 * tfm is returned. The caller may use that information to allocate appropriate
1502 * memory for the data returned by the encryption or decryption operation
1503 *
1504 * Return: block size of cipher
1505 */
f28776a3
HX
1506static inline unsigned int crypto_cipher_blocksize(struct crypto_cipher *tfm)
1507{
1508 return crypto_tfm_alg_blocksize(crypto_cipher_tfm(tfm));
1509}
1510
1511static inline unsigned int crypto_cipher_alignmask(struct crypto_cipher *tfm)
1512{
1513 return crypto_tfm_alg_alignmask(crypto_cipher_tfm(tfm));
1514}
1515
1516static inline u32 crypto_cipher_get_flags(struct crypto_cipher *tfm)
1517{
1518 return crypto_tfm_get_flags(crypto_cipher_tfm(tfm));
1519}
1520
1521static inline void crypto_cipher_set_flags(struct crypto_cipher *tfm,
1522 u32 flags)
1523{
1524 crypto_tfm_set_flags(crypto_cipher_tfm(tfm), flags);
1525}
1526
1527static inline void crypto_cipher_clear_flags(struct crypto_cipher *tfm,
1528 u32 flags)
1529{
1530 crypto_tfm_clear_flags(crypto_cipher_tfm(tfm), flags);
1531}
1532
16e61030
SM
1533/**
1534 * crypto_cipher_setkey() - set key for cipher
1535 * @tfm: cipher handle
1536 * @key: buffer holding the key
1537 * @keylen: length of the key in bytes
1538 *
1539 * The caller provided key is set for the single block cipher referenced by the
1540 * cipher handle.
1541 *
1542 * Note, the key length determines the cipher type. Many block ciphers implement
1543 * different cipher modes depending on the key size, such as AES-128 vs AES-192
1544 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
1545 * is performed.
1546 *
1547 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
1548 */
7226bc87
HX
1549static inline int crypto_cipher_setkey(struct crypto_cipher *tfm,
1550 const u8 *key, unsigned int keylen)
1551{
1552 return crypto_cipher_crt(tfm)->cit_setkey(crypto_cipher_tfm(tfm),
1553 key, keylen);
1554}
1555
16e61030
SM
1556/**
1557 * crypto_cipher_encrypt_one() - encrypt one block of plaintext
1558 * @tfm: cipher handle
1559 * @dst: points to the buffer that will be filled with the ciphertext
1560 * @src: buffer holding the plaintext to be encrypted
1561 *
1562 * Invoke the encryption operation of one block. The caller must ensure that
1563 * the plaintext and ciphertext buffers are at least one block in size.
1564 */
f28776a3
HX
1565static inline void crypto_cipher_encrypt_one(struct crypto_cipher *tfm,
1566 u8 *dst, const u8 *src)
1567{
1568 crypto_cipher_crt(tfm)->cit_encrypt_one(crypto_cipher_tfm(tfm),
1569 dst, src);
1570}
1571
16e61030
SM
1572/**
1573 * crypto_cipher_decrypt_one() - decrypt one block of ciphertext
1574 * @tfm: cipher handle
1575 * @dst: points to the buffer that will be filled with the plaintext
1576 * @src: buffer holding the ciphertext to be decrypted
1577 *
1578 * Invoke the decryption operation of one block. The caller must ensure that
1579 * the plaintext and ciphertext buffers are at least one block in size.
1580 */
f28776a3
HX
1581static inline void crypto_cipher_decrypt_one(struct crypto_cipher *tfm,
1582 u8 *dst, const u8 *src)
1583{
1584 crypto_cipher_crt(tfm)->cit_decrypt_one(crypto_cipher_tfm(tfm),
1585 dst, src);
1586}
1587
fce32d70
HX
1588static inline struct crypto_comp *__crypto_comp_cast(struct crypto_tfm *tfm)
1589{
1590 return (struct crypto_comp *)tfm;
1591}
1592
1593static inline struct crypto_comp *crypto_comp_cast(struct crypto_tfm *tfm)
1594{
1595 BUG_ON((crypto_tfm_alg_type(tfm) ^ CRYPTO_ALG_TYPE_COMPRESS) &
1596 CRYPTO_ALG_TYPE_MASK);
1597 return __crypto_comp_cast(tfm);
1598}
1599
1600static inline struct crypto_comp *crypto_alloc_comp(const char *alg_name,
1601 u32 type, u32 mask)
1602{
1603 type &= ~CRYPTO_ALG_TYPE_MASK;
1604 type |= CRYPTO_ALG_TYPE_COMPRESS;
1605 mask |= CRYPTO_ALG_TYPE_MASK;
1606
1607 return __crypto_comp_cast(crypto_alloc_base(alg_name, type, mask));
1608}
1609
1610static inline struct crypto_tfm *crypto_comp_tfm(struct crypto_comp *tfm)
1611{
78a1fe4f 1612 return &tfm->base;
fce32d70
HX
1613}
1614
1615static inline void crypto_free_comp(struct crypto_comp *tfm)
1616{
1617 crypto_free_tfm(crypto_comp_tfm(tfm));
1618}
1619
1620static inline int crypto_has_comp(const char *alg_name, u32 type, u32 mask)
1621{
1622 type &= ~CRYPTO_ALG_TYPE_MASK;
1623 type |= CRYPTO_ALG_TYPE_COMPRESS;
1624 mask |= CRYPTO_ALG_TYPE_MASK;
1625
1626 return crypto_has_alg(alg_name, type, mask);
1627}
1628
e4d5b79c
HX
1629static inline const char *crypto_comp_name(struct crypto_comp *tfm)
1630{
1631 return crypto_tfm_alg_name(crypto_comp_tfm(tfm));
1632}
1633
fce32d70
HX
1634static inline struct compress_tfm *crypto_comp_crt(struct crypto_comp *tfm)
1635{
1636 return &crypto_comp_tfm(tfm)->crt_compress;
1637}
1638
1639static inline int crypto_comp_compress(struct crypto_comp *tfm,
1da177e4
LT
1640 const u8 *src, unsigned int slen,
1641 u8 *dst, unsigned int *dlen)
1642{
78a1fe4f
HX
1643 return crypto_comp_crt(tfm)->cot_compress(crypto_comp_tfm(tfm),
1644 src, slen, dst, dlen);
1da177e4
LT
1645}
1646
fce32d70 1647static inline int crypto_comp_decompress(struct crypto_comp *tfm,
1da177e4
LT
1648 const u8 *src, unsigned int slen,
1649 u8 *dst, unsigned int *dlen)
1650{
78a1fe4f
HX
1651 return crypto_comp_crt(tfm)->cot_decompress(crypto_comp_tfm(tfm),
1652 src, slen, dst, dlen);
1da177e4
LT
1653}
1654
1da177e4
LT
1655#endif /* _LINUX_CRYPTO_H */
1656