bpf: Prevent pointer mismatch in bpf_timer_init.
[linux-block.git] / include / linux / bpf_verifier.h
CommitLineData
25763b3c 1/* SPDX-License-Identifier: GPL-2.0-only */
58e2af8b 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
58e2af8b
JK
3 */
4#ifndef _LINUX_BPF_VERIFIER_H
5#define _LINUX_BPF_VERIFIER_H 1
6
7#include <linux/bpf.h> /* for enum bpf_reg_type */
22dc4a0f 8#include <linux/btf.h> /* for struct btf and btf_id() */
58e2af8b 9#include <linux/filter.h> /* for MAX_BPF_STACK */
f1174f77 10#include <linux/tnum.h>
58e2af8b 11
b03c9f9f
EC
12/* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
bb7f0f98 16#define BPF_MAX_VAR_OFF (1 << 29)
b03c9f9f
EC
17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
bb7f0f98 20#define BPF_MAX_VAR_SIZ (1 << 29)
48461135 21
8e9cd9ce
EC
22/* Liveness marks, used for registers and spilled-regs (in stack slots).
23 * Read marks propagate upwards until they find a write mark; they record that
24 * "one of this state's descendants read this reg" (and therefore the reg is
25 * relevant for states_equal() checks).
26 * Write marks collect downwards and do not propagate; they record that "the
27 * straight-line code that reached this state (from its parent) wrote this reg"
28 * (and therefore that reads propagated from this state or its descendants
29 * should not propagate to its parent).
30 * A state with a write mark can receive read marks; it just won't propagate
31 * them to its parent, since the write mark is a property, not of the state,
32 * but of the link between it and its parent. See mark_reg_read() and
33 * mark_stack_slot_read() in kernel/bpf/verifier.c.
34 */
dc503a8a
EC
35enum bpf_reg_liveness {
36 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
5327ed3d
JW
37 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
38 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
39 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
40 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
41 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
dc503a8a
EC
42};
43
58e2af8b 44struct bpf_reg_state {
679c782d 45 /* Ordering of fields matters. See states_equal() */
58e2af8b 46 enum bpf_reg_type type;
22dc4a0f
AN
47 /* Fixed part of pointer offset, pointer types only */
48 s32 off;
58e2af8b 49 union {
f1174f77 50 /* valid when type == PTR_TO_PACKET */
6d94e741 51 int range;
58e2af8b
JK
52
53 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
54 * PTR_TO_MAP_VALUE_OR_NULL
55 */
3e8ce298
AS
56 struct {
57 struct bpf_map *map_ptr;
58 /* To distinguish map lookups from outer map
59 * the map_uid is non-zero for registers
60 * pointing to inner maps.
61 */
62 u32 map_uid;
63 };
0962590e 64
22dc4a0f
AN
65 /* for PTR_TO_BTF_ID */
66 struct {
67 struct btf *btf;
68 u32 btf_id;
69 };
9e15db66 70
457f4436
AN
71 u32 mem_size; /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
72
0962590e 73 /* Max size from any of the above. */
22dc4a0f
AN
74 struct {
75 unsigned long raw1;
76 unsigned long raw2;
77 } raw;
69c087ba
YS
78
79 u32 subprogno; /* for PTR_TO_FUNC */
58e2af8b 80 };
f1174f77
EC
81 /* For PTR_TO_PACKET, used to find other pointers with the same variable
82 * offset, so they can share range knowledge.
83 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
84 * came from, when one is tested for != NULL.
457f4436
AN
85 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
86 * for the purpose of tracking that it's freed.
c64b7983
JS
87 * For PTR_TO_SOCKET this is used to share which pointers retain the
88 * same reference to the socket, to determine proper reference freeing.
f1174f77 89 */
d2a4dd37 90 u32 id;
1b986589
MKL
91 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
92 * from a pointer-cast helper, bpf_sk_fullsock() and
93 * bpf_tcp_sock().
94 *
95 * Consider the following where "sk" is a reference counted
96 * pointer returned from "sk = bpf_sk_lookup_tcp();":
97 *
98 * 1: sk = bpf_sk_lookup_tcp();
99 * 2: if (!sk) { return 0; }
100 * 3: fullsock = bpf_sk_fullsock(sk);
101 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
102 * 5: tp = bpf_tcp_sock(fullsock);
103 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
104 * 7: bpf_sk_release(sk);
105 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
106 *
107 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
108 * "tp" ptr should be invalidated also. In order to do that,
109 * the reg holding "fullsock" and "sk" need to remember
110 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
111 * such that the verifier can reset all regs which have
112 * ref_obj_id matching the sk_reg->id.
113 *
114 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
115 * sk_reg->id will stay as NULL-marking purpose only.
116 * After NULL-marking is done, sk_reg->id can be reset to 0.
117 *
118 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
119 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
120 *
121 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
122 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
123 * which is the same as sk_reg->ref_obj_id.
124 *
125 * From the verifier perspective, if sk, fullsock and tp
126 * are not NULL, they are the same ptr with different
127 * reg->type. In particular, bpf_sk_release(tp) is also
128 * allowed and has the same effect as bpf_sk_release(sk).
129 */
130 u32 ref_obj_id;
f1174f77
EC
131 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
132 * the actual value.
133 * For pointer types, this represents the variable part of the offset
134 * from the pointed-to object, and is shared with all bpf_reg_states
135 * with the same id as us.
136 */
137 struct tnum var_off;
d2a4dd37 138 /* Used to determine if any memory access using this register will
f1174f77
EC
139 * result in a bad access.
140 * These refer to the same value as var_off, not necessarily the actual
141 * contents of the register.
d2a4dd37 142 */
b03c9f9f
EC
143 s64 smin_value; /* minimum possible (s64)value */
144 s64 smax_value; /* maximum possible (s64)value */
145 u64 umin_value; /* minimum possible (u64)value */
146 u64 umax_value; /* maximum possible (u64)value */
3f50f132
JF
147 s32 s32_min_value; /* minimum possible (s32)value */
148 s32 s32_max_value; /* maximum possible (s32)value */
149 u32 u32_min_value; /* minimum possible (u32)value */
150 u32 u32_max_value; /* maximum possible (u32)value */
679c782d
EC
151 /* parentage chain for liveness checking */
152 struct bpf_reg_state *parent;
f4d7e40a
AS
153 /* Inside the callee two registers can be both PTR_TO_STACK like
154 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
155 * while another to the caller's stack. To differentiate them 'frameno'
156 * is used which is an index in bpf_verifier_state->frame[] array
157 * pointing to bpf_func_state.
f4d7e40a
AS
158 */
159 u32 frameno;
5327ed3d
JW
160 /* Tracks subreg definition. The stored value is the insn_idx of the
161 * writing insn. This is safe because subreg_def is used before any insn
162 * patching which only happens after main verification finished.
163 */
164 s32 subreg_def;
dc503a8a 165 enum bpf_reg_liveness live;
b5dc0163
AS
166 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
167 bool precise;
58e2af8b
JK
168};
169
170enum bpf_stack_slot_type {
171 STACK_INVALID, /* nothing was stored in this stack slot */
172 STACK_SPILL, /* register spilled into stack */
cc2b14d5
AS
173 STACK_MISC, /* BPF program wrote some data into this slot */
174 STACK_ZERO, /* BPF program wrote constant zero */
58e2af8b
JK
175};
176
177#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
178
638f5b90
AS
179struct bpf_stack_state {
180 struct bpf_reg_state spilled_ptr;
181 u8 slot_type[BPF_REG_SIZE];
182};
183
fd978bf7
JS
184struct bpf_reference_state {
185 /* Track each reference created with a unique id, even if the same
186 * instruction creates the reference multiple times (eg, via CALL).
187 */
188 int id;
189 /* Instruction where the allocation of this reference occurred. This
190 * is used purely to inform the user of a reference leak.
191 */
192 int insn_idx;
193};
194
58e2af8b
JK
195/* state of the program:
196 * type of all registers and stack info
197 */
f4d7e40a 198struct bpf_func_state {
58e2af8b 199 struct bpf_reg_state regs[MAX_BPF_REG];
f4d7e40a
AS
200 /* index of call instruction that called into this func */
201 int callsite;
202 /* stack frame number of this function state from pov of
203 * enclosing bpf_verifier_state.
204 * 0 = main function, 1 = first callee.
205 */
206 u32 frameno;
01f810ac 207 /* subprog number == index within subprog_info
f4d7e40a
AS
208 * zero == main subprog
209 */
210 u32 subprogno;
211
fd978bf7
JS
212 /* The following fields should be last. See copy_func_state() */
213 int acquired_refs;
214 struct bpf_reference_state *refs;
638f5b90 215 int allocated_stack;
69c087ba 216 bool in_callback_fn;
638f5b90 217 struct bpf_stack_state *stack;
58e2af8b
JK
218};
219
b5dc0163
AS
220struct bpf_idx_pair {
221 u32 prev_idx;
222 u32 idx;
223};
224
c9e73e3d
LB
225struct bpf_id_pair {
226 u32 old;
227 u32 cur;
228};
229
230/* Maximum number of register states that can exist at once */
231#define BPF_ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
f4d7e40a
AS
232#define MAX_CALL_FRAMES 8
233struct bpf_verifier_state {
234 /* call stack tracking */
235 struct bpf_func_state *frame[MAX_CALL_FRAMES];
2589726d
AS
236 struct bpf_verifier_state *parent;
237 /*
238 * 'branches' field is the number of branches left to explore:
239 * 0 - all possible paths from this state reached bpf_exit or
240 * were safely pruned
241 * 1 - at least one path is being explored.
242 * This state hasn't reached bpf_exit
243 * 2 - at least two paths are being explored.
244 * This state is an immediate parent of two children.
245 * One is fallthrough branch with branches==1 and another
246 * state is pushed into stack (to be explored later) also with
247 * branches==1. The parent of this state has branches==1.
248 * The verifier state tree connected via 'parent' pointer looks like:
249 * 1
250 * 1
251 * 2 -> 1 (first 'if' pushed into stack)
252 * 1
253 * 2 -> 1 (second 'if' pushed into stack)
254 * 1
255 * 1
256 * 1 bpf_exit.
257 *
258 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
259 * and the verifier state tree will look:
260 * 1
261 * 1
262 * 2 -> 1 (first 'if' pushed into stack)
263 * 1
264 * 1 -> 1 (second 'if' pushed into stack)
265 * 0
266 * 0
267 * 0 bpf_exit.
268 * After pop_stack() the do_check() will resume at second 'if'.
269 *
270 * If is_state_visited() sees a state with branches > 0 it means
271 * there is a loop. If such state is exactly equal to the current state
272 * it's an infinite loop. Note states_equal() checks for states
273 * equvalency, so two states being 'states_equal' does not mean
274 * infinite loop. The exact comparison is provided by
275 * states_maybe_looping() function. It's a stronger pre-check and
276 * much faster than states_equal().
277 *
278 * This algorithm may not find all possible infinite loops or
279 * loop iteration count may be too high.
280 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
281 */
282 u32 branches;
dc2a4ebc 283 u32 insn_idx;
f4d7e40a 284 u32 curframe;
d83525ca 285 u32 active_spin_lock;
979d63d5 286 bool speculative;
b5dc0163
AS
287
288 /* first and last insn idx of this verifier state */
289 u32 first_insn_idx;
290 u32 last_insn_idx;
291 /* jmp history recorded from first to last.
292 * backtracking is using it to go from last to first.
293 * For most states jmp_history_cnt is [0-3].
294 * For loops can go up to ~40.
295 */
296 struct bpf_idx_pair *jmp_history;
297 u32 jmp_history_cnt;
f4d7e40a
AS
298};
299
f3709f69
JS
300#define bpf_get_spilled_reg(slot, frame) \
301 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
302 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
303 ? &frame->stack[slot].spilled_ptr : NULL)
304
305/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
306#define bpf_for_each_spilled_reg(iter, frame, reg) \
307 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
308 iter < frame->allocated_stack / BPF_REG_SIZE; \
309 iter++, reg = bpf_get_spilled_reg(iter, frame))
310
58e2af8b
JK
311/* linked list of verifier states used to prune search */
312struct bpf_verifier_state_list {
313 struct bpf_verifier_state state;
314 struct bpf_verifier_state_list *next;
9f4686c4 315 int miss_cnt, hit_cnt;
58e2af8b
JK
316};
317
979d63d5 318/* Possible states for alu_state member. */
801c6058
DB
319#define BPF_ALU_SANITIZE_SRC (1U << 0)
320#define BPF_ALU_SANITIZE_DST (1U << 1)
979d63d5 321#define BPF_ALU_NEG_VALUE (1U << 2)
d3bd7413 322#define BPF_ALU_NON_POINTER (1U << 3)
801c6058 323#define BPF_ALU_IMMEDIATE (1U << 4)
979d63d5
DB
324#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
325 BPF_ALU_SANITIZE_DST)
326
58e2af8b 327struct bpf_insn_aux_data {
81ed18ab
AS
328 union {
329 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
d2e4c1e6 330 unsigned long map_ptr_state; /* pointer/poison value for maps */
1c2a088a 331 s32 call_imm; /* saved imm field of call insn */
979d63d5 332 u32 alu_limit; /* limit for add/sub register with pointer */
d8eca5bb
DB
333 struct {
334 u32 map_index; /* index into used_maps[] */
335 u32 map_off; /* offset from value base address */
336 };
4976b718
HL
337 struct {
338 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
339 union {
22dc4a0f
AN
340 struct {
341 struct btf *btf;
342 u32 btf_id; /* btf_id for struct typed var */
343 };
4976b718
HL
344 u32 mem_size; /* mem_size for non-struct typed var */
345 };
346 } btf_var;
81ed18ab 347 };
d2e4c1e6 348 u64 map_key_state; /* constant (32 bit) key tracking for maps */
23994631 349 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
af86ca4e 350 int sanitize_stack_off; /* stack slot to be cleared */
51c39bb1 351 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
5327ed3d 352 bool zext_dst; /* this insn zero extends dst reg */
979d63d5 353 u8 alu_state; /* used in combination with alu_limit */
51c39bb1
AS
354
355 /* below fields are initialized once */
9e4c24e7 356 unsigned int orig_idx; /* original instruction index */
51c39bb1 357 bool prune_point;
58e2af8b
JK
358};
359
360#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
541c3bad 361#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
58e2af8b 362
a2a7d570
JK
363#define BPF_VERIFIER_TMP_LOG_SIZE 1024
364
b9193c1b 365struct bpf_verifier_log {
e7bf8249 366 u32 level;
a2a7d570 367 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
e7bf8249
JK
368 char __user *ubuf;
369 u32 len_used;
370 u32 len_total;
371};
372
b9193c1b 373static inline bool bpf_verifier_log_full(const struct bpf_verifier_log *log)
e7bf8249
JK
374{
375 return log->len_used >= log->len_total - 1;
376}
377
06ee7115
AS
378#define BPF_LOG_LEVEL1 1
379#define BPF_LOG_LEVEL2 2
380#define BPF_LOG_STATS 4
381#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
382#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS)
8580ac94 383#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
06ee7115 384
77d2e05a
MKL
385static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
386{
efc68158
THJ
387 return log &&
388 ((log->level && log->ubuf && !bpf_verifier_log_full(log)) ||
389 log->level == BPF_LOG_KERNEL);
77d2e05a
MKL
390}
391
cc8b0b92
AS
392#define BPF_MAX_SUBPROGS 256
393
9c8105bd 394struct bpf_subprog_info {
8c1b6e69 395 /* 'start' has to be the first field otherwise find_subprog() won't work */
9c8105bd 396 u32 start; /* insn idx of function entry point */
c454a46b 397 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
9c8105bd 398 u16 stack_depth; /* max. stack depth used by this function */
7f6e4312 399 bool has_tail_call;
ebf7d1f5 400 bool tail_call_reachable;
09b28d76 401 bool has_ld_abs;
9c8105bd
JW
402};
403
58e2af8b
JK
404/* single container for all structs
405 * one verifier_env per bpf_check() call
406 */
407struct bpf_verifier_env {
c08435ec
DB
408 u32 insn_idx;
409 u32 prev_insn_idx;
58e2af8b 410 struct bpf_prog *prog; /* eBPF program being verified */
00176a34 411 const struct bpf_verifier_ops *ops;
58e2af8b
JK
412 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
413 int stack_size; /* number of states to be processed */
e07b98d9 414 bool strict_alignment; /* perform strict pointer alignment checks */
10d274e8 415 bool test_state_freq; /* test verifier with different pruning frequency */
638f5b90 416 struct bpf_verifier_state *cur_state; /* current verifier state */
58e2af8b 417 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
9f4686c4 418 struct bpf_verifier_state_list *free_list;
58e2af8b 419 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
541c3bad 420 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
58e2af8b 421 u32 used_map_cnt; /* number of used maps */
541c3bad 422 u32 used_btf_cnt; /* number of used BTF objects */
58e2af8b
JK
423 u32 id_gen; /* used to generate unique reg IDs */
424 bool allow_ptr_leaks;
01f810ac 425 bool allow_uninit_stack;
41c48f3a 426 bool allow_ptr_to_map_access;
2c78ee89
AS
427 bool bpf_capable;
428 bool bypass_spec_v1;
429 bool bypass_spec_v4;
58e2af8b
JK
430 bool seen_direct_write;
431 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
d9762e84 432 const struct bpf_line_info *prev_linfo;
b9193c1b 433 struct bpf_verifier_log log;
9c8105bd 434 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
c9e73e3d 435 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
7df737e9
AS
436 struct {
437 int *insn_state;
438 int *insn_stack;
439 int cur_stack;
440 } cfg;
51c39bb1 441 u32 pass_cnt; /* number of times do_check() was called */
cc8b0b92 442 u32 subprog_cnt;
06ee7115 443 /* number of instructions analyzed by the verifier */
2589726d
AS
444 u32 prev_insn_processed, insn_processed;
445 /* number of jmps, calls, exits analyzed so far */
446 u32 prev_jmps_processed, jmps_processed;
06ee7115
AS
447 /* total verification time */
448 u64 verification_time;
449 /* maximum number of verifier states kept in 'branching' instructions */
450 u32 max_states_per_insn;
451 /* total number of allocated verifier states */
452 u32 total_states;
453 /* some states are freed during program analysis.
454 * this is peak number of states. this number dominates kernel
455 * memory consumption during verification
456 */
457 u32 peak_states;
458 /* longest register parentage chain walked for liveness marking */
459 u32 longest_mark_read_walk;
387544bf 460 bpfptr_t fd_array;
58e2af8b
JK
461};
462
be2d04d1
MM
463__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
464 const char *fmt, va_list args);
430e68d1
QM
465__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
466 const char *fmt, ...);
9e15db66
AS
467__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
468 const char *fmt, ...);
430e68d1 469
fd978bf7 470static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
638f5b90 471{
f4d7e40a
AS
472 struct bpf_verifier_state *cur = env->cur_state;
473
fd978bf7
JS
474 return cur->frame[cur->curframe];
475}
476
477static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
478{
479 return cur_func(env)->regs;
638f5b90
AS
480}
481
a40a2632 482int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
cae1927c
JK
483int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
484 int insn_idx, int prev_insn_idx);
c941ce9c 485int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
08ca90af
JK
486void
487bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
488 struct bpf_insn *insn);
489void
490bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
ab3f0063 491
51c39bb1
AS
492int check_ctx_reg(struct bpf_verifier_env *env,
493 const struct bpf_reg_state *reg, int regno);
e5069b9c
DB
494int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
495 u32 regno, u32 mem_size);
51c39bb1 496
f7b12b6f
THJ
497/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
498static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
22dc4a0f 499 struct btf *btf, u32 btf_id)
f7b12b6f 500{
22dc4a0f
AN
501 if (tgt_prog)
502 return ((u64)tgt_prog->aux->id << 32) | btf_id;
503 else
504 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
f7b12b6f
THJ
505}
506
441e8c66
THJ
507/* unpack the IDs from the key as constructed above */
508static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
509{
510 if (obj_id)
511 *obj_id = key >> 32;
512 if (btf_id)
513 *btf_id = key & 0x7FFFFFFF;
514}
515
f7b12b6f
THJ
516int bpf_check_attach_target(struct bpf_verifier_log *log,
517 const struct bpf_prog *prog,
518 const struct bpf_prog *tgt_prog,
519 u32 btf_id,
520 struct bpf_attach_target_info *tgt_info);
521
58e2af8b 522#endif /* _LINUX_BPF_VERIFIER_H */