Merge branch 'for-6.5/splice' into for-6.5/block
[linux-block.git] / include / linux / bpf_verifier.h
CommitLineData
25763b3c 1/* SPDX-License-Identifier: GPL-2.0-only */
58e2af8b 2/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
58e2af8b
JK
3 */
4#ifndef _LINUX_BPF_VERIFIER_H
5#define _LINUX_BPF_VERIFIER_H 1
6
7#include <linux/bpf.h> /* for enum bpf_reg_type */
22dc4a0f 8#include <linux/btf.h> /* for struct btf and btf_id() */
58e2af8b 9#include <linux/filter.h> /* for MAX_BPF_STACK */
f1174f77 10#include <linux/tnum.h>
58e2af8b 11
b03c9f9f
EC
12/* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
bb7f0f98 16#define BPF_MAX_VAR_OFF (1 << 29)
b03c9f9f
EC
17/* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
bb7f0f98 20#define BPF_MAX_VAR_SIZ (1 << 29)
c25b2ae1 21/* size of type_str_buf in bpf_verifier. */
ef66c547 22#define TYPE_STR_BUF_LEN 128
48461135 23
8e9cd9ce
EC
24/* Liveness marks, used for registers and spilled-regs (in stack slots).
25 * Read marks propagate upwards until they find a write mark; they record that
26 * "one of this state's descendants read this reg" (and therefore the reg is
27 * relevant for states_equal() checks).
28 * Write marks collect downwards and do not propagate; they record that "the
29 * straight-line code that reached this state (from its parent) wrote this reg"
30 * (and therefore that reads propagated from this state or its descendants
31 * should not propagate to its parent).
32 * A state with a write mark can receive read marks; it just won't propagate
33 * them to its parent, since the write mark is a property, not of the state,
34 * but of the link between it and its parent. See mark_reg_read() and
35 * mark_stack_slot_read() in kernel/bpf/verifier.c.
36 */
dc503a8a
EC
37enum bpf_reg_liveness {
38 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
5327ed3d
JW
39 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
40 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
41 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
42 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
43 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
dc503a8a
EC
44};
45
6a3cd331
DM
46/* For every reg representing a map value or allocated object pointer,
47 * we consider the tuple of (ptr, id) for them to be unique in verifier
48 * context and conside them to not alias each other for the purposes of
49 * tracking lock state.
50 */
51struct bpf_active_lock {
52 /* This can either be reg->map_ptr or reg->btf. If ptr is NULL,
53 * there's no active lock held, and other fields have no
54 * meaning. If non-NULL, it indicates that a lock is held and
55 * id member has the reg->id of the register which can be >= 0.
56 */
57 void *ptr;
58 /* This will be reg->id */
59 u32 id;
60};
61
215bf496
AN
62#define ITER_PREFIX "bpf_iter_"
63
06accc87
AN
64enum bpf_iter_state {
65 BPF_ITER_STATE_INVALID, /* for non-first slot */
66 BPF_ITER_STATE_ACTIVE,
67 BPF_ITER_STATE_DRAINED,
68};
69
58e2af8b 70struct bpf_reg_state {
679c782d 71 /* Ordering of fields matters. See states_equal() */
58e2af8b 72 enum bpf_reg_type type;
22dc4a0f
AN
73 /* Fixed part of pointer offset, pointer types only */
74 s32 off;
58e2af8b 75 union {
f1174f77 76 /* valid when type == PTR_TO_PACKET */
6d94e741 77 int range;
58e2af8b
JK
78
79 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
80 * PTR_TO_MAP_VALUE_OR_NULL
81 */
3e8ce298
AS
82 struct {
83 struct bpf_map *map_ptr;
84 /* To distinguish map lookups from outer map
85 * the map_uid is non-zero for registers
86 * pointing to inner maps.
87 */
88 u32 map_uid;
89 };
0962590e 90
22dc4a0f
AN
91 /* for PTR_TO_BTF_ID */
92 struct {
93 struct btf *btf;
94 u32 btf_id;
95 };
9e15db66 96
f8064ab9
KKD
97 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
98 u32 mem_size;
99 u32 dynptr_id; /* for dynptr slices */
100 };
457f4436 101
97e03f52
JK
102 /* For dynptr stack slots */
103 struct {
104 enum bpf_dynptr_type type;
105 /* A dynptr is 16 bytes so it takes up 2 stack slots.
106 * We need to track which slot is the first slot
107 * to protect against cases where the user may try to
108 * pass in an address starting at the second slot of the
109 * dynptr.
110 */
111 bool first_slot;
112 } dynptr;
113
06accc87
AN
114 /* For bpf_iter stack slots */
115 struct {
116 /* BTF container and BTF type ID describing
117 * struct bpf_iter_<type> of an iterator state
118 */
119 struct btf *btf;
120 u32 btf_id;
121 /* packing following two fields to fit iter state into 16 bytes */
122 enum bpf_iter_state state:2;
123 int depth:30;
124 } iter;
125
0962590e 126 /* Max size from any of the above. */
22dc4a0f
AN
127 struct {
128 unsigned long raw1;
129 unsigned long raw2;
130 } raw;
69c087ba
YS
131
132 u32 subprogno; /* for PTR_TO_FUNC */
58e2af8b 133 };
a73bf9f2
AN
134 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
135 * the actual value.
136 * For pointer types, this represents the variable part of the offset
137 * from the pointed-to object, and is shared with all bpf_reg_states
138 * with the same id as us.
139 */
140 struct tnum var_off;
141 /* Used to determine if any memory access using this register will
142 * result in a bad access.
143 * These refer to the same value as var_off, not necessarily the actual
144 * contents of the register.
145 */
146 s64 smin_value; /* minimum possible (s64)value */
147 s64 smax_value; /* maximum possible (s64)value */
148 u64 umin_value; /* minimum possible (u64)value */
149 u64 umax_value; /* maximum possible (u64)value */
150 s32 s32_min_value; /* minimum possible (s32)value */
151 s32 s32_max_value; /* maximum possible (s32)value */
152 u32 u32_min_value; /* minimum possible (u32)value */
153 u32 u32_max_value; /* maximum possible (u32)value */
f1174f77
EC
154 /* For PTR_TO_PACKET, used to find other pointers with the same variable
155 * offset, so they can share range knowledge.
156 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
157 * came from, when one is tested for != NULL.
457f4436
AN
158 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
159 * for the purpose of tracking that it's freed.
c64b7983
JS
160 * For PTR_TO_SOCKET this is used to share which pointers retain the
161 * same reference to the socket, to determine proper reference freeing.
bc34dee6
JK
162 * For stack slots that are dynptrs, this is used to track references to
163 * the dynptr to determine proper reference freeing.
06accc87
AN
164 * Similarly to dynptrs, we use ID to track "belonging" of a reference
165 * to a specific instance of bpf_iter.
f1174f77 166 */
d2a4dd37 167 u32 id;
1b986589
MKL
168 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
169 * from a pointer-cast helper, bpf_sk_fullsock() and
170 * bpf_tcp_sock().
171 *
172 * Consider the following where "sk" is a reference counted
173 * pointer returned from "sk = bpf_sk_lookup_tcp();":
174 *
175 * 1: sk = bpf_sk_lookup_tcp();
176 * 2: if (!sk) { return 0; }
177 * 3: fullsock = bpf_sk_fullsock(sk);
178 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
179 * 5: tp = bpf_tcp_sock(fullsock);
180 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
181 * 7: bpf_sk_release(sk);
182 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
183 *
184 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
185 * "tp" ptr should be invalidated also. In order to do that,
186 * the reg holding "fullsock" and "sk" need to remember
187 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
188 * such that the verifier can reset all regs which have
189 * ref_obj_id matching the sk_reg->id.
190 *
191 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
192 * sk_reg->id will stay as NULL-marking purpose only.
193 * After NULL-marking is done, sk_reg->id can be reset to 0.
194 *
195 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
196 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
197 *
198 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
199 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
200 * which is the same as sk_reg->ref_obj_id.
201 *
202 * From the verifier perspective, if sk, fullsock and tp
203 * are not NULL, they are the same ptr with different
204 * reg->type. In particular, bpf_sk_release(tp) is also
205 * allowed and has the same effect as bpf_sk_release(sk).
206 */
207 u32 ref_obj_id;
679c782d
EC
208 /* parentage chain for liveness checking */
209 struct bpf_reg_state *parent;
f4d7e40a
AS
210 /* Inside the callee two registers can be both PTR_TO_STACK like
211 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
212 * while another to the caller's stack. To differentiate them 'frameno'
213 * is used which is an index in bpf_verifier_state->frame[] array
214 * pointing to bpf_func_state.
f4d7e40a
AS
215 */
216 u32 frameno;
5327ed3d
JW
217 /* Tracks subreg definition. The stored value is the insn_idx of the
218 * writing insn. This is safe because subreg_def is used before any insn
219 * patching which only happens after main verification finished.
220 */
221 s32 subreg_def;
dc503a8a 222 enum bpf_reg_liveness live;
b5dc0163
AS
223 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
224 bool precise;
58e2af8b
JK
225};
226
227enum bpf_stack_slot_type {
228 STACK_INVALID, /* nothing was stored in this stack slot */
229 STACK_SPILL, /* register spilled into stack */
cc2b14d5
AS
230 STACK_MISC, /* BPF program wrote some data into this slot */
231 STACK_ZERO, /* BPF program wrote constant zero */
97e03f52
JK
232 /* A dynptr is stored in this stack slot. The type of dynptr
233 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
234 */
235 STACK_DYNPTR,
06accc87 236 STACK_ITER,
58e2af8b
JK
237};
238
239#define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
06accc87 240
97e03f52
JK
241#define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
242#define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
58e2af8b 243
638f5b90
AS
244struct bpf_stack_state {
245 struct bpf_reg_state spilled_ptr;
246 u8 slot_type[BPF_REG_SIZE];
247};
248
fd978bf7
JS
249struct bpf_reference_state {
250 /* Track each reference created with a unique id, even if the same
251 * instruction creates the reference multiple times (eg, via CALL).
252 */
253 int id;
254 /* Instruction where the allocation of this reference occurred. This
255 * is used purely to inform the user of a reference leak.
256 */
257 int insn_idx;
9d9d00ac
KKD
258 /* There can be a case like:
259 * main (frame 0)
260 * cb (frame 1)
261 * func (frame 3)
262 * cb (frame 4)
263 * Hence for frame 4, if callback_ref just stored boolean, it would be
264 * impossible to distinguish nested callback refs. Hence store the
265 * frameno and compare that to callback_ref in check_reference_leak when
266 * exiting a callback function.
267 */
268 int callback_ref;
fd978bf7
JS
269};
270
58e2af8b
JK
271/* state of the program:
272 * type of all registers and stack info
273 */
f4d7e40a 274struct bpf_func_state {
58e2af8b 275 struct bpf_reg_state regs[MAX_BPF_REG];
f4d7e40a
AS
276 /* index of call instruction that called into this func */
277 int callsite;
278 /* stack frame number of this function state from pov of
279 * enclosing bpf_verifier_state.
280 * 0 = main function, 1 = first callee.
281 */
282 u32 frameno;
01f810ac 283 /* subprog number == index within subprog_info
f4d7e40a
AS
284 * zero == main subprog
285 */
286 u32 subprogno;
bfc6bb74
AS
287 /* Every bpf_timer_start will increment async_entry_cnt.
288 * It's used to distinguish:
289 * void foo(void) { for(;;); }
290 * void foo(void) { bpf_timer_set_callback(,foo); }
291 */
292 u32 async_entry_cnt;
293 bool in_callback_fn;
1bfe26fb 294 struct tnum callback_ret_range;
bfc6bb74 295 bool in_async_callback_fn;
f4d7e40a 296
fd978bf7
JS
297 /* The following fields should be last. See copy_func_state() */
298 int acquired_refs;
299 struct bpf_reference_state *refs;
638f5b90
AS
300 int allocated_stack;
301 struct bpf_stack_state *stack;
58e2af8b
JK
302};
303
b5dc0163
AS
304struct bpf_idx_pair {
305 u32 prev_idx;
306 u32 idx;
307};
308
c9e73e3d
LB
309struct bpf_id_pair {
310 u32 old;
311 u32 cur;
312};
313
f4d7e40a 314#define MAX_CALL_FRAMES 8
5dd9cdbc
EZ
315/* Maximum number of register states that can exist at once */
316#define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
f4d7e40a
AS
317struct bpf_verifier_state {
318 /* call stack tracking */
319 struct bpf_func_state *frame[MAX_CALL_FRAMES];
2589726d
AS
320 struct bpf_verifier_state *parent;
321 /*
322 * 'branches' field is the number of branches left to explore:
323 * 0 - all possible paths from this state reached bpf_exit or
324 * were safely pruned
325 * 1 - at least one path is being explored.
326 * This state hasn't reached bpf_exit
327 * 2 - at least two paths are being explored.
328 * This state is an immediate parent of two children.
329 * One is fallthrough branch with branches==1 and another
330 * state is pushed into stack (to be explored later) also with
331 * branches==1. The parent of this state has branches==1.
332 * The verifier state tree connected via 'parent' pointer looks like:
333 * 1
334 * 1
335 * 2 -> 1 (first 'if' pushed into stack)
336 * 1
337 * 2 -> 1 (second 'if' pushed into stack)
338 * 1
339 * 1
340 * 1 bpf_exit.
341 *
342 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
343 * and the verifier state tree will look:
344 * 1
345 * 1
346 * 2 -> 1 (first 'if' pushed into stack)
347 * 1
348 * 1 -> 1 (second 'if' pushed into stack)
349 * 0
350 * 0
351 * 0 bpf_exit.
352 * After pop_stack() the do_check() will resume at second 'if'.
353 *
354 * If is_state_visited() sees a state with branches > 0 it means
355 * there is a loop. If such state is exactly equal to the current state
356 * it's an infinite loop. Note states_equal() checks for states
6dbdc9f3 357 * equivalency, so two states being 'states_equal' does not mean
2589726d
AS
358 * infinite loop. The exact comparison is provided by
359 * states_maybe_looping() function. It's a stronger pre-check and
360 * much faster than states_equal().
361 *
362 * This algorithm may not find all possible infinite loops or
363 * loop iteration count may be too high.
364 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
365 */
366 u32 branches;
dc2a4ebc 367 u32 insn_idx;
f4d7e40a 368 u32 curframe;
6a3cd331
DM
369
370 struct bpf_active_lock active_lock;
979d63d5 371 bool speculative;
9bb00b28 372 bool active_rcu_lock;
b5dc0163
AS
373
374 /* first and last insn idx of this verifier state */
375 u32 first_insn_idx;
376 u32 last_insn_idx;
377 /* jmp history recorded from first to last.
378 * backtracking is using it to go from last to first.
379 * For most states jmp_history_cnt is [0-3].
380 * For loops can go up to ~40.
381 */
382 struct bpf_idx_pair *jmp_history;
383 u32 jmp_history_cnt;
f4d7e40a
AS
384};
385
f3709f69
JS
386#define bpf_get_spilled_reg(slot, frame) \
387 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
388 (frame->stack[slot].slot_type[0] == STACK_SPILL)) \
389 ? &frame->stack[slot].spilled_ptr : NULL)
390
391/* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
392#define bpf_for_each_spilled_reg(iter, frame, reg) \
393 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame); \
394 iter < frame->allocated_stack / BPF_REG_SIZE; \
395 iter++, reg = bpf_get_spilled_reg(iter, frame))
396
b239da34
KKD
397/* Invoke __expr over regsiters in __vst, setting __state and __reg */
398#define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
399 ({ \
400 struct bpf_verifier_state *___vstate = __vst; \
401 int ___i, ___j; \
402 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \
403 struct bpf_reg_state *___regs; \
404 __state = ___vstate->frame[___i]; \
405 ___regs = __state->regs; \
406 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \
407 __reg = &___regs[___j]; \
408 (void)(__expr); \
409 } \
410 bpf_for_each_spilled_reg(___j, __state, __reg) { \
411 if (!__reg) \
412 continue; \
413 (void)(__expr); \
414 } \
415 } \
416 })
417
58e2af8b
JK
418/* linked list of verifier states used to prune search */
419struct bpf_verifier_state_list {
420 struct bpf_verifier_state state;
421 struct bpf_verifier_state_list *next;
9f4686c4 422 int miss_cnt, hit_cnt;
58e2af8b
JK
423};
424
1ade2371 425struct bpf_loop_inline_state {
f16214c1
MB
426 unsigned int initialized:1; /* set to true upon first entry */
427 unsigned int fit_for_inline:1; /* true if callback function is the same
428 * at each call and flags are always zero
429 */
1ade2371
EZ
430 u32 callback_subprogno; /* valid when fit_for_inline is true */
431};
432
979d63d5 433/* Possible states for alu_state member. */
801c6058
DB
434#define BPF_ALU_SANITIZE_SRC (1U << 0)
435#define BPF_ALU_SANITIZE_DST (1U << 1)
979d63d5 436#define BPF_ALU_NEG_VALUE (1U << 2)
d3bd7413 437#define BPF_ALU_NON_POINTER (1U << 3)
801c6058 438#define BPF_ALU_IMMEDIATE (1U << 4)
979d63d5
DB
439#define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
440 BPF_ALU_SANITIZE_DST)
441
58e2af8b 442struct bpf_insn_aux_data {
81ed18ab
AS
443 union {
444 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
d2e4c1e6 445 unsigned long map_ptr_state; /* pointer/poison value for maps */
1c2a088a 446 s32 call_imm; /* saved imm field of call insn */
979d63d5 447 u32 alu_limit; /* limit for add/sub register with pointer */
d8eca5bb
DB
448 struct {
449 u32 map_index; /* index into used_maps[] */
450 u32 map_off; /* offset from value base address */
451 };
4976b718
HL
452 struct {
453 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
454 union {
22dc4a0f
AN
455 struct {
456 struct btf *btf;
457 u32 btf_id; /* btf_id for struct typed var */
458 };
4976b718
HL
459 u32 mem_size; /* mem_size for non-struct typed var */
460 };
461 } btf_var;
1ade2371
EZ
462 /* if instruction is a call to bpf_loop this field tracks
463 * the state of the relevant registers to make decision about inlining
464 */
465 struct bpf_loop_inline_state loop_inline_state;
81ed18ab 466 };
d2dcc67d
DM
467 union {
468 /* remember the size of type passed to bpf_obj_new to rewrite R1 */
469 u64 obj_new_size;
470 /* remember the offset of node field within type to rewrite */
471 u64 insert_off;
472 };
958cf2e2 473 struct btf_struct_meta *kptr_struct_meta;
d2e4c1e6 474 u64 map_key_state; /* constant (32 bit) key tracking for maps */
23994631 475 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
51c39bb1 476 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
2039f26f 477 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
5327ed3d 478 bool zext_dst; /* this insn zero extends dst reg */
9bb00b28 479 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
06accc87 480 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
979d63d5 481 u8 alu_state; /* used in combination with alu_limit */
51c39bb1
AS
482
483 /* below fields are initialized once */
9e4c24e7 484 unsigned int orig_idx; /* original instruction index */
bffdeaa8 485 bool jmp_point;
4b5ce570
AN
486 bool prune_point;
487 /* ensure we check state equivalence and save state checkpoint and
488 * this instruction, regardless of any heuristics
489 */
490 bool force_checkpoint;
58e2af8b
JK
491};
492
493#define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
541c3bad 494#define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
58e2af8b 495
a2a7d570
JK
496#define BPF_VERIFIER_TMP_LOG_SIZE 1024
497
b9193c1b 498struct bpf_verifier_log {
12166409
AN
499 /* Logical start and end positions of a "log window" of the verifier log.
500 * start_pos == 0 means we haven't truncated anything.
501 * Once truncation starts to happen, start_pos + len_total == end_pos,
502 * except during log reset situations, in which (end_pos - start_pos)
503 * might get smaller than len_total (see bpf_vlog_reset()).
504 * Generally, (end_pos - start_pos) gives number of useful data in
505 * user log buffer.
506 */
507 u64 start_pos;
508 u64 end_pos;
e7bf8249 509 char __user *ubuf;
12166409 510 u32 level;
e7bf8249 511 u32 len_total;
fa1c7d5c 512 u32 len_max;
12166409 513 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
e7bf8249
JK
514};
515
06ee7115
AS
516#define BPF_LOG_LEVEL1 1
517#define BPF_LOG_LEVEL2 2
518#define BPF_LOG_STATS 4
12166409 519#define BPF_LOG_FIXED 8
06ee7115 520#define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
12166409 521#define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
8580ac94 522#define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
2e576648
CL
523#define BPF_LOG_MIN_ALIGNMENT 8U
524#define BPF_LOG_ALIGNMENT 40U
06ee7115 525
77d2e05a
MKL
526static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
527{
fa1c7d5c 528 return log && log->level;
77d2e05a
MKL
529}
530
cc8b0b92
AS
531#define BPF_MAX_SUBPROGS 256
532
9c8105bd 533struct bpf_subprog_info {
8c1b6e69 534 /* 'start' has to be the first field otherwise find_subprog() won't work */
9c8105bd 535 u32 start; /* insn idx of function entry point */
c454a46b 536 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
9c8105bd 537 u16 stack_depth; /* max. stack depth used by this function */
7f6e4312 538 bool has_tail_call;
ebf7d1f5 539 bool tail_call_reachable;
09b28d76 540 bool has_ld_abs;
7ddc80a4 541 bool is_async_cb;
9c8105bd
JW
542};
543
58e2af8b
JK
544/* single container for all structs
545 * one verifier_env per bpf_check() call
546 */
547struct bpf_verifier_env {
c08435ec
DB
548 u32 insn_idx;
549 u32 prev_insn_idx;
58e2af8b 550 struct bpf_prog *prog; /* eBPF program being verified */
00176a34 551 const struct bpf_verifier_ops *ops;
58e2af8b
JK
552 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
553 int stack_size; /* number of states to be processed */
e07b98d9 554 bool strict_alignment; /* perform strict pointer alignment checks */
10d274e8 555 bool test_state_freq; /* test verifier with different pruning frequency */
638f5b90 556 struct bpf_verifier_state *cur_state; /* current verifier state */
58e2af8b 557 struct bpf_verifier_state_list **explored_states; /* search pruning optimization */
9f4686c4 558 struct bpf_verifier_state_list *free_list;
58e2af8b 559 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
541c3bad 560 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
58e2af8b 561 u32 used_map_cnt; /* number of used maps */
541c3bad 562 u32 used_btf_cnt; /* number of used BTF objects */
58e2af8b 563 u32 id_gen; /* used to generate unique reg IDs */
e042aa53 564 bool explore_alu_limits;
58e2af8b 565 bool allow_ptr_leaks;
01f810ac 566 bool allow_uninit_stack;
2c78ee89
AS
567 bool bpf_capable;
568 bool bypass_spec_v1;
569 bool bypass_spec_v4;
58e2af8b
JK
570 bool seen_direct_write;
571 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
d9762e84 572 const struct bpf_line_info *prev_linfo;
b9193c1b 573 struct bpf_verifier_log log;
9c8105bd 574 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 1];
c9e73e3d 575 struct bpf_id_pair idmap_scratch[BPF_ID_MAP_SIZE];
7df737e9
AS
576 struct {
577 int *insn_state;
578 int *insn_stack;
579 int cur_stack;
580 } cfg;
51c39bb1 581 u32 pass_cnt; /* number of times do_check() was called */
cc8b0b92 582 u32 subprog_cnt;
06ee7115 583 /* number of instructions analyzed by the verifier */
2589726d
AS
584 u32 prev_insn_processed, insn_processed;
585 /* number of jmps, calls, exits analyzed so far */
586 u32 prev_jmps_processed, jmps_processed;
06ee7115
AS
587 /* total verification time */
588 u64 verification_time;
589 /* maximum number of verifier states kept in 'branching' instructions */
590 u32 max_states_per_insn;
591 /* total number of allocated verifier states */
592 u32 total_states;
593 /* some states are freed during program analysis.
594 * this is peak number of states. this number dominates kernel
595 * memory consumption during verification
596 */
597 u32 peak_states;
598 /* longest register parentage chain walked for liveness marking */
599 u32 longest_mark_read_walk;
387544bf 600 bpfptr_t fd_array;
0f55f9ed
CL
601
602 /* bit mask to keep track of whether a register has been accessed
603 * since the last time the function state was printed
604 */
605 u32 scratched_regs;
606 /* Same as scratched_regs but for stack slots */
607 u64 scratched_stack_slots;
12166409 608 u64 prev_log_pos, prev_insn_print_pos;
c25b2ae1
HL
609 /* buffer used in reg_type_str() to generate reg_type string */
610 char type_str_buf[TYPE_STR_BUF_LEN];
58e2af8b
JK
611};
612
be2d04d1
MM
613__printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
614 const char *fmt, va_list args);
430e68d1
QM
615__printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
616 const char *fmt, ...);
9e15db66
AS
617__printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
618 const char *fmt, ...);
bdcab414
AN
619int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
620 char __user *log_buf, u32 log_size);
12166409 621void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
bdcab414 622int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
430e68d1 623
fd978bf7 624static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
638f5b90 625{
f4d7e40a
AS
626 struct bpf_verifier_state *cur = env->cur_state;
627
fd978bf7
JS
628 return cur->frame[cur->curframe];
629}
630
631static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
632{
633 return cur_func(env)->regs;
638f5b90
AS
634}
635
a40a2632 636int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
cae1927c
JK
637int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
638 int insn_idx, int prev_insn_idx);
c941ce9c 639int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
08ca90af
JK
640void
641bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
642 struct bpf_insn *insn);
643void
644bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
ab3f0063 645
be80a1d3
DB
646int check_ptr_off_reg(struct bpf_verifier_env *env,
647 const struct bpf_reg_state *reg, int regno);
25b35dd2
KKD
648int check_func_arg_reg_off(struct bpf_verifier_env *env,
649 const struct bpf_reg_state *reg, int regno,
8f14852e 650 enum bpf_arg_type arg_type);
e5069b9c
DB
651int check_mem_reg(struct bpf_verifier_env *env, struct bpf_reg_state *reg,
652 u32 regno, u32 mem_size);
51c39bb1 653
f7b12b6f
THJ
654/* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
655static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
22dc4a0f 656 struct btf *btf, u32 btf_id)
f7b12b6f 657{
22dc4a0f
AN
658 if (tgt_prog)
659 return ((u64)tgt_prog->aux->id << 32) | btf_id;
660 else
661 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
f7b12b6f
THJ
662}
663
441e8c66
THJ
664/* unpack the IDs from the key as constructed above */
665static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
666{
667 if (obj_id)
668 *obj_id = key >> 32;
669 if (btf_id)
670 *btf_id = key & 0x7FFFFFFF;
671}
672
f7b12b6f
THJ
673int bpf_check_attach_target(struct bpf_verifier_log *log,
674 const struct bpf_prog *prog,
675 const struct bpf_prog *tgt_prog,
676 u32 btf_id,
677 struct bpf_attach_target_info *tgt_info);
2357672c
KKD
678void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
679
eb1f7f71
BT
680int mark_chain_precision(struct bpf_verifier_env *env, int regno);
681
d639b9d1
HL
682#define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
683
684/* extract base type from bpf_{arg, return, reg}_type. */
685static inline u32 base_type(u32 type)
686{
687 return type & BPF_BASE_TYPE_MASK;
688}
689
690/* extract flags from an extended type. See bpf_type_flag in bpf.h. */
691static inline u32 type_flag(u32 type)
692{
693 return type & ~BPF_BASE_TYPE_MASK;
694}
f7b12b6f 695
4a9c7bbe 696/* only use after check_attach_btf_id() */
271de525 697static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
5c073f26 698{
4a9c7bbe
MKL
699 return prog->type == BPF_PROG_TYPE_EXT ?
700 prog->aux->dst_prog->type : prog->type;
5c073f26
KKD
701}
702
271de525
MKL
703static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
704{
705 switch (resolve_prog_type(prog)) {
706 case BPF_PROG_TYPE_TRACING:
707 return prog->expected_attach_type != BPF_TRACE_ITER;
708 case BPF_PROG_TYPE_STRUCT_OPS:
709 case BPF_PROG_TYPE_LSM:
710 return false;
711 default:
712 return true;
713 }
714}
715
fca1aa75 716#define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED)
3f00c523
DV
717
718static inline bool bpf_type_has_unsafe_modifiers(u32 type)
719{
720 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
721}
722
58e2af8b 723#endif /* _LINUX_BPF_VERIFIER_H */