crypto: tool: getstat: convert user space example to the new crypto_user_stat uapi
[linux-2.6-block.git] / include / crypto / skcipher.h
CommitLineData
61da88e2
HX
1/*
2 * Symmetric key ciphers.
3 *
7a7ffe65 4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
61da88e2
HX
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
10 *
11 */
12
13#ifndef _CRYPTO_SKCIPHER_H
14#define _CRYPTO_SKCIPHER_H
15
16#include <linux/crypto.h>
03bf712f
HX
17#include <linux/kernel.h>
18#include <linux/slab.h>
61da88e2 19
7a7ffe65
HX
20/**
21 * struct skcipher_request - Symmetric key cipher request
22 * @cryptlen: Number of bytes to encrypt or decrypt
23 * @iv: Initialisation Vector
24 * @src: Source SG list
25 * @dst: Destination SG list
26 * @base: Underlying async request request
27 * @__ctx: Start of private context data
28 */
29struct skcipher_request {
30 unsigned int cryptlen;
31
32 u8 *iv;
33
34 struct scatterlist *src;
35 struct scatterlist *dst;
36
37 struct crypto_async_request base;
38
39 void *__ctx[] CRYPTO_MINALIGN_ATTR;
40};
41
61da88e2
HX
42/**
43 * struct skcipher_givcrypt_request - Crypto request with IV generation
44 * @seq: Sequence number for IV generation
45 * @giv: Space for generated IV
46 * @creq: The crypto request itself
47 */
48struct skcipher_givcrypt_request {
49 u64 seq;
50 u8 *giv;
51
52 struct ablkcipher_request creq;
53};
54
7a7ffe65
HX
55struct crypto_skcipher {
56 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
57 unsigned int keylen);
58 int (*encrypt)(struct skcipher_request *req);
59 int (*decrypt)(struct skcipher_request *req);
60
61 unsigned int ivsize;
62 unsigned int reqsize;
973fb3fb 63 unsigned int keysize;
a1383cd8 64
7a7ffe65
HX
65 struct crypto_tfm base;
66};
67
b350bee5
KC
68struct crypto_sync_skcipher {
69 struct crypto_skcipher base;
70};
71
4e6c3df4
HX
72/**
73 * struct skcipher_alg - symmetric key cipher definition
74 * @min_keysize: Minimum key size supported by the transformation. This is the
75 * smallest key length supported by this transformation algorithm.
76 * This must be set to one of the pre-defined values as this is
77 * not hardware specific. Possible values for this field can be
78 * found via git grep "_MIN_KEY_SIZE" include/crypto/
79 * @max_keysize: Maximum key size supported by the transformation. This is the
80 * largest key length supported by this transformation algorithm.
81 * This must be set to one of the pre-defined values as this is
82 * not hardware specific. Possible values for this field can be
83 * found via git grep "_MAX_KEY_SIZE" include/crypto/
84 * @setkey: Set key for the transformation. This function is used to either
85 * program a supplied key into the hardware or store the key in the
86 * transformation context for programming it later. Note that this
87 * function does modify the transformation context. This function can
88 * be called multiple times during the existence of the transformation
89 * object, so one must make sure the key is properly reprogrammed into
90 * the hardware. This function is also responsible for checking the key
91 * length for validity. In case a software fallback was put in place in
92 * the @cra_init call, this function might need to use the fallback if
93 * the algorithm doesn't support all of the key sizes.
94 * @encrypt: Encrypt a scatterlist of blocks. This function is used to encrypt
95 * the supplied scatterlist containing the blocks of data. The crypto
96 * API consumer is responsible for aligning the entries of the
97 * scatterlist properly and making sure the chunks are correctly
98 * sized. In case a software fallback was put in place in the
99 * @cra_init call, this function might need to use the fallback if
100 * the algorithm doesn't support all of the key sizes. In case the
101 * key was stored in transformation context, the key might need to be
102 * re-programmed into the hardware in this function. This function
103 * shall not modify the transformation context, as this function may
104 * be called in parallel with the same transformation object.
105 * @decrypt: Decrypt a single block. This is a reverse counterpart to @encrypt
106 * and the conditions are exactly the same.
107 * @init: Initialize the cryptographic transformation object. This function
108 * is used to initialize the cryptographic transformation object.
109 * This function is called only once at the instantiation time, right
110 * after the transformation context was allocated. In case the
111 * cryptographic hardware has some special requirements which need to
112 * be handled by software, this function shall check for the precise
113 * requirement of the transformation and put any software fallbacks
114 * in place.
115 * @exit: Deinitialize the cryptographic transformation object. This is a
116 * counterpart to @init, used to remove various changes set in
117 * @init.
118 * @ivsize: IV size applicable for transformation. The consumer must provide an
119 * IV of exactly that size to perform the encrypt or decrypt operation.
120 * @chunksize: Equal to the block size except for stream ciphers such as
121 * CTR where it is set to the underlying block size.
c821f6ab
AB
122 * @walksize: Equal to the chunk size except in cases where the algorithm is
123 * considerably more efficient if it can operate on multiple chunks
124 * in parallel. Should be a multiple of chunksize.
5c562338 125 * @base: Definition of a generic crypto algorithm.
4e6c3df4
HX
126 *
127 * All fields except @ivsize are mandatory and must be filled.
128 */
129struct skcipher_alg {
130 int (*setkey)(struct crypto_skcipher *tfm, const u8 *key,
131 unsigned int keylen);
132 int (*encrypt)(struct skcipher_request *req);
133 int (*decrypt)(struct skcipher_request *req);
134 int (*init)(struct crypto_skcipher *tfm);
135 void (*exit)(struct crypto_skcipher *tfm);
136
137 unsigned int min_keysize;
138 unsigned int max_keysize;
139 unsigned int ivsize;
140 unsigned int chunksize;
c821f6ab 141 unsigned int walksize;
4e6c3df4
HX
142
143 struct crypto_alg base;
144};
145
b350bee5
KC
146#define MAX_SYNC_SKCIPHER_REQSIZE 384
147/*
148 * This performs a type-check against the "tfm" argument to make sure
149 * all users have the correct skcipher tfm for doing on-stack requests.
150 */
151#define SYNC_SKCIPHER_REQUEST_ON_STACK(name, tfm) \
152 char __##name##_desc[sizeof(struct skcipher_request) + \
153 MAX_SYNC_SKCIPHER_REQSIZE + \
154 (!(sizeof((struct crypto_sync_skcipher *)1 == \
155 (typeof(tfm))1))) \
156 ] CRYPTO_MINALIGN_ATTR; \
157 struct skcipher_request *name = (void *)__##name##_desc
158
7a7ffe65
HX
159/**
160 * DOC: Symmetric Key Cipher API
161 *
162 * Symmetric key cipher API is used with the ciphers of type
163 * CRYPTO_ALG_TYPE_SKCIPHER (listed as type "skcipher" in /proc/crypto).
164 *
165 * Asynchronous cipher operations imply that the function invocation for a
166 * cipher request returns immediately before the completion of the operation.
167 * The cipher request is scheduled as a separate kernel thread and therefore
168 * load-balanced on the different CPUs via the process scheduler. To allow
169 * the kernel crypto API to inform the caller about the completion of a cipher
170 * request, the caller must provide a callback function. That function is
171 * invoked with the cipher handle when the request completes.
172 *
173 * To support the asynchronous operation, additional information than just the
174 * cipher handle must be supplied to the kernel crypto API. That additional
175 * information is given by filling in the skcipher_request data structure.
176 *
177 * For the symmetric key cipher API, the state is maintained with the tfm
178 * cipher handle. A single tfm can be used across multiple calls and in
179 * parallel. For asynchronous block cipher calls, context data supplied and
180 * only used by the caller can be referenced the request data structure in
181 * addition to the IV used for the cipher request. The maintenance of such
182 * state information would be important for a crypto driver implementer to
183 * have, because when calling the callback function upon completion of the
184 * cipher operation, that callback function may need some information about
185 * which operation just finished if it invoked multiple in parallel. This
186 * state information is unused by the kernel crypto API.
187 */
188
189static inline struct crypto_skcipher *__crypto_skcipher_cast(
190 struct crypto_tfm *tfm)
191{
192 return container_of(tfm, struct crypto_skcipher, base);
193}
194
195/**
196 * crypto_alloc_skcipher() - allocate symmetric key cipher handle
197 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
198 * skcipher cipher
199 * @type: specifies the type of the cipher
200 * @mask: specifies the mask for the cipher
201 *
202 * Allocate a cipher handle for an skcipher. The returned struct
203 * crypto_skcipher is the cipher handle that is required for any subsequent
204 * API invocation for that skcipher.
205 *
206 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
207 * of an error, PTR_ERR() returns the error code.
208 */
209struct crypto_skcipher *crypto_alloc_skcipher(const char *alg_name,
210 u32 type, u32 mask);
211
b350bee5
KC
212struct crypto_sync_skcipher *crypto_alloc_sync_skcipher(const char *alg_name,
213 u32 type, u32 mask);
214
7a7ffe65
HX
215static inline struct crypto_tfm *crypto_skcipher_tfm(
216 struct crypto_skcipher *tfm)
217{
218 return &tfm->base;
219}
220
221/**
222 * crypto_free_skcipher() - zeroize and free cipher handle
223 * @tfm: cipher handle to be freed
224 */
225static inline void crypto_free_skcipher(struct crypto_skcipher *tfm)
226{
227 crypto_destroy_tfm(tfm, crypto_skcipher_tfm(tfm));
228}
229
b350bee5
KC
230static inline void crypto_free_sync_skcipher(struct crypto_sync_skcipher *tfm)
231{
232 crypto_free_skcipher(&tfm->base);
233}
234
7a7ffe65
HX
235/**
236 * crypto_has_skcipher() - Search for the availability of an skcipher.
237 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
238 * skcipher
239 * @type: specifies the type of the cipher
240 * @mask: specifies the mask for the cipher
241 *
242 * Return: true when the skcipher is known to the kernel crypto API; false
243 * otherwise
244 */
245static inline int crypto_has_skcipher(const char *alg_name, u32 type,
246 u32 mask)
247{
248 return crypto_has_alg(alg_name, crypto_skcipher_type(type),
249 crypto_skcipher_mask(mask));
250}
251
4e6c3df4
HX
252/**
253 * crypto_has_skcipher2() - Search for the availability of an skcipher.
254 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
255 * skcipher
256 * @type: specifies the type of the skcipher
257 * @mask: specifies the mask for the skcipher
258 *
259 * Return: true when the skcipher is known to the kernel crypto API; false
260 * otherwise
261 */
262int crypto_has_skcipher2(const char *alg_name, u32 type, u32 mask);
263
a2d382a4
HX
264static inline const char *crypto_skcipher_driver_name(
265 struct crypto_skcipher *tfm)
266{
92b3cad3 267 return crypto_tfm_alg_driver_name(crypto_skcipher_tfm(tfm));
a2d382a4
HX
268}
269
4e6c3df4
HX
270static inline struct skcipher_alg *crypto_skcipher_alg(
271 struct crypto_skcipher *tfm)
272{
273 return container_of(crypto_skcipher_tfm(tfm)->__crt_alg,
274 struct skcipher_alg, base);
275}
276
277static inline unsigned int crypto_skcipher_alg_ivsize(struct skcipher_alg *alg)
278{
279 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
280 CRYPTO_ALG_TYPE_BLKCIPHER)
281 return alg->base.cra_blkcipher.ivsize;
282
283 if (alg->base.cra_ablkcipher.encrypt)
284 return alg->base.cra_ablkcipher.ivsize;
285
286 return alg->ivsize;
287}
288
7a7ffe65
HX
289/**
290 * crypto_skcipher_ivsize() - obtain IV size
291 * @tfm: cipher handle
292 *
293 * The size of the IV for the skcipher referenced by the cipher handle is
294 * returned. This IV size may be zero if the cipher does not need an IV.
295 *
296 * Return: IV size in bytes
297 */
298static inline unsigned int crypto_skcipher_ivsize(struct crypto_skcipher *tfm)
299{
300 return tfm->ivsize;
301}
302
b350bee5
KC
303static inline unsigned int crypto_sync_skcipher_ivsize(
304 struct crypto_sync_skcipher *tfm)
305{
306 return crypto_skcipher_ivsize(&tfm->base);
307}
308
4e6c3df4
HX
309static inline unsigned int crypto_skcipher_alg_chunksize(
310 struct skcipher_alg *alg)
311{
312 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
313 CRYPTO_ALG_TYPE_BLKCIPHER)
314 return alg->base.cra_blocksize;
315
316 if (alg->base.cra_ablkcipher.encrypt)
317 return alg->base.cra_blocksize;
318
319 return alg->chunksize;
320}
321
c821f6ab
AB
322static inline unsigned int crypto_skcipher_alg_walksize(
323 struct skcipher_alg *alg)
324{
325 if ((alg->base.cra_flags & CRYPTO_ALG_TYPE_MASK) ==
326 CRYPTO_ALG_TYPE_BLKCIPHER)
327 return alg->base.cra_blocksize;
328
329 if (alg->base.cra_ablkcipher.encrypt)
330 return alg->base.cra_blocksize;
331
332 return alg->walksize;
333}
334
4e6c3df4
HX
335/**
336 * crypto_skcipher_chunksize() - obtain chunk size
337 * @tfm: cipher handle
338 *
339 * The block size is set to one for ciphers such as CTR. However,
340 * you still need to provide incremental updates in multiples of
341 * the underlying block size as the IV does not have sub-block
342 * granularity. This is known in this API as the chunk size.
343 *
344 * Return: chunk size in bytes
345 */
346static inline unsigned int crypto_skcipher_chunksize(
347 struct crypto_skcipher *tfm)
348{
349 return crypto_skcipher_alg_chunksize(crypto_skcipher_alg(tfm));
350}
351
c821f6ab
AB
352/**
353 * crypto_skcipher_walksize() - obtain walk size
354 * @tfm: cipher handle
355 *
356 * In some cases, algorithms can only perform optimally when operating on
357 * multiple blocks in parallel. This is reflected by the walksize, which
358 * must be a multiple of the chunksize (or equal if the concern does not
359 * apply)
360 *
361 * Return: walk size in bytes
362 */
363static inline unsigned int crypto_skcipher_walksize(
364 struct crypto_skcipher *tfm)
365{
366 return crypto_skcipher_alg_walksize(crypto_skcipher_alg(tfm));
367}
368
7a7ffe65
HX
369/**
370 * crypto_skcipher_blocksize() - obtain block size of cipher
371 * @tfm: cipher handle
372 *
373 * The block size for the skcipher referenced with the cipher handle is
374 * returned. The caller may use that information to allocate appropriate
375 * memory for the data returned by the encryption or decryption operation
376 *
377 * Return: block size of cipher
378 */
379static inline unsigned int crypto_skcipher_blocksize(
380 struct crypto_skcipher *tfm)
381{
382 return crypto_tfm_alg_blocksize(crypto_skcipher_tfm(tfm));
383}
384
b350bee5
KC
385static inline unsigned int crypto_sync_skcipher_blocksize(
386 struct crypto_sync_skcipher *tfm)
387{
388 return crypto_skcipher_blocksize(&tfm->base);
389}
390
7a7ffe65
HX
391static inline unsigned int crypto_skcipher_alignmask(
392 struct crypto_skcipher *tfm)
393{
394 return crypto_tfm_alg_alignmask(crypto_skcipher_tfm(tfm));
395}
396
397static inline u32 crypto_skcipher_get_flags(struct crypto_skcipher *tfm)
398{
399 return crypto_tfm_get_flags(crypto_skcipher_tfm(tfm));
400}
401
402static inline void crypto_skcipher_set_flags(struct crypto_skcipher *tfm,
403 u32 flags)
404{
405 crypto_tfm_set_flags(crypto_skcipher_tfm(tfm), flags);
406}
407
408static inline void crypto_skcipher_clear_flags(struct crypto_skcipher *tfm,
409 u32 flags)
410{
411 crypto_tfm_clear_flags(crypto_skcipher_tfm(tfm), flags);
412}
413
b350bee5
KC
414static inline u32 crypto_sync_skcipher_get_flags(
415 struct crypto_sync_skcipher *tfm)
416{
417 return crypto_skcipher_get_flags(&tfm->base);
418}
419
420static inline void crypto_sync_skcipher_set_flags(
421 struct crypto_sync_skcipher *tfm, u32 flags)
422{
423 crypto_skcipher_set_flags(&tfm->base, flags);
424}
425
426static inline void crypto_sync_skcipher_clear_flags(
427 struct crypto_sync_skcipher *tfm, u32 flags)
428{
429 crypto_skcipher_clear_flags(&tfm->base, flags);
430}
431
7a7ffe65
HX
432/**
433 * crypto_skcipher_setkey() - set key for cipher
434 * @tfm: cipher handle
435 * @key: buffer holding the key
436 * @keylen: length of the key in bytes
437 *
438 * The caller provided key is set for the skcipher referenced by the cipher
439 * handle.
440 *
441 * Note, the key length determines the cipher type. Many block ciphers implement
442 * different cipher modes depending on the key size, such as AES-128 vs AES-192
443 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
444 * is performed.
445 *
446 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
447 */
448static inline int crypto_skcipher_setkey(struct crypto_skcipher *tfm,
449 const u8 *key, unsigned int keylen)
450{
451 return tfm->setkey(tfm, key, keylen);
452}
453
b350bee5
KC
454static inline int crypto_sync_skcipher_setkey(struct crypto_sync_skcipher *tfm,
455 const u8 *key, unsigned int keylen)
456{
457 return crypto_skcipher_setkey(&tfm->base, key, keylen);
458}
459
973fb3fb
HX
460static inline unsigned int crypto_skcipher_default_keysize(
461 struct crypto_skcipher *tfm)
462{
463 return tfm->keysize;
a1383cd8
HX
464}
465
7a7ffe65
HX
466/**
467 * crypto_skcipher_reqtfm() - obtain cipher handle from request
468 * @req: skcipher_request out of which the cipher handle is to be obtained
469 *
470 * Return the crypto_skcipher handle when furnishing an skcipher_request
471 * data structure.
472 *
473 * Return: crypto_skcipher handle
474 */
475static inline struct crypto_skcipher *crypto_skcipher_reqtfm(
476 struct skcipher_request *req)
477{
478 return __crypto_skcipher_cast(req->base.tfm);
479}
480
b350bee5
KC
481static inline struct crypto_sync_skcipher *crypto_sync_skcipher_reqtfm(
482 struct skcipher_request *req)
483{
484 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
485
486 return container_of(tfm, struct crypto_sync_skcipher, base);
487}
488
cac5818c
CL
489static inline void crypto_stat_skcipher_encrypt(struct skcipher_request *req,
490 int ret, struct crypto_alg *alg)
491{
492#ifdef CONFIG_CRYPTO_STATS
493 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
6e8e72cd 494 atomic64_inc(&alg->cipher_err_cnt);
cac5818c 495 } else {
6e8e72cd 496 atomic64_inc(&alg->encrypt_cnt);
cac5818c
CL
497 atomic64_add(req->cryptlen, &alg->encrypt_tlen);
498 }
499#endif
500}
501
502static inline void crypto_stat_skcipher_decrypt(struct skcipher_request *req,
503 int ret, struct crypto_alg *alg)
504{
505#ifdef CONFIG_CRYPTO_STATS
506 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
6e8e72cd 507 atomic64_inc(&alg->cipher_err_cnt);
cac5818c 508 } else {
6e8e72cd 509 atomic64_inc(&alg->decrypt_cnt);
cac5818c
CL
510 atomic64_add(req->cryptlen, &alg->decrypt_tlen);
511 }
512#endif
513}
514
7a7ffe65
HX
515/**
516 * crypto_skcipher_encrypt() - encrypt plaintext
517 * @req: reference to the skcipher_request handle that holds all information
518 * needed to perform the cipher operation
519 *
520 * Encrypt plaintext data using the skcipher_request handle. That data
521 * structure and how it is filled with data is discussed with the
522 * skcipher_request_* functions.
523 *
524 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
525 */
526static inline int crypto_skcipher_encrypt(struct skcipher_request *req)
527{
528 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
cac5818c 529 int ret;
7a7ffe65 530
f8d33fac 531 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
cac5818c
CL
532 ret = -ENOKEY;
533 else
534 ret = tfm->encrypt(req);
535 crypto_stat_skcipher_encrypt(req, ret, tfm->base.__crt_alg);
536 return ret;
7a7ffe65
HX
537}
538
539/**
540 * crypto_skcipher_decrypt() - decrypt ciphertext
541 * @req: reference to the skcipher_request handle that holds all information
542 * needed to perform the cipher operation
543 *
544 * Decrypt ciphertext data using the skcipher_request handle. That data
545 * structure and how it is filled with data is discussed with the
546 * skcipher_request_* functions.
547 *
548 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
549 */
550static inline int crypto_skcipher_decrypt(struct skcipher_request *req)
551{
552 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
cac5818c 553 int ret;
7a7ffe65 554
f8d33fac 555 if (crypto_skcipher_get_flags(tfm) & CRYPTO_TFM_NEED_KEY)
cac5818c
CL
556 ret = -ENOKEY;
557 else
558 ret = tfm->decrypt(req);
559 crypto_stat_skcipher_decrypt(req, ret, tfm->base.__crt_alg);
560 return ret;
7a7ffe65
HX
561}
562
563/**
564 * DOC: Symmetric Key Cipher Request Handle
565 *
566 * The skcipher_request data structure contains all pointers to data
567 * required for the symmetric key cipher operation. This includes the cipher
568 * handle (which can be used by multiple skcipher_request instances), pointer
569 * to plaintext and ciphertext, asynchronous callback function, etc. It acts
570 * as a handle to the skcipher_request_* API calls in a similar way as
571 * skcipher handle to the crypto_skcipher_* API calls.
572 */
573
574/**
575 * crypto_skcipher_reqsize() - obtain size of the request data structure
576 * @tfm: cipher handle
577 *
578 * Return: number of bytes
579 */
580static inline unsigned int crypto_skcipher_reqsize(struct crypto_skcipher *tfm)
581{
582 return tfm->reqsize;
583}
584
585/**
586 * skcipher_request_set_tfm() - update cipher handle reference in request
587 * @req: request handle to be modified
588 * @tfm: cipher handle that shall be added to the request handle
589 *
590 * Allow the caller to replace the existing skcipher handle in the request
591 * data structure with a different one.
592 */
593static inline void skcipher_request_set_tfm(struct skcipher_request *req,
594 struct crypto_skcipher *tfm)
595{
596 req->base.tfm = crypto_skcipher_tfm(tfm);
597}
598
b350bee5
KC
599static inline void skcipher_request_set_sync_tfm(struct skcipher_request *req,
600 struct crypto_sync_skcipher *tfm)
601{
602 skcipher_request_set_tfm(req, &tfm->base);
603}
604
7a7ffe65
HX
605static inline struct skcipher_request *skcipher_request_cast(
606 struct crypto_async_request *req)
607{
608 return container_of(req, struct skcipher_request, base);
609}
610
611/**
612 * skcipher_request_alloc() - allocate request data structure
613 * @tfm: cipher handle to be registered with the request
614 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
615 *
616 * Allocate the request data structure that must be used with the skcipher
617 * encrypt and decrypt API calls. During the allocation, the provided skcipher
618 * handle is registered in the request data structure.
619 *
6eae29e7 620 * Return: allocated request handle in case of success, or NULL if out of memory
7a7ffe65
HX
621 */
622static inline struct skcipher_request *skcipher_request_alloc(
623 struct crypto_skcipher *tfm, gfp_t gfp)
624{
625 struct skcipher_request *req;
626
627 req = kmalloc(sizeof(struct skcipher_request) +
628 crypto_skcipher_reqsize(tfm), gfp);
629
630 if (likely(req))
631 skcipher_request_set_tfm(req, tfm);
632
633 return req;
634}
635
636/**
637 * skcipher_request_free() - zeroize and free request data structure
638 * @req: request data structure cipher handle to be freed
639 */
640static inline void skcipher_request_free(struct skcipher_request *req)
641{
642 kzfree(req);
643}
644
1aaa753d
HX
645static inline void skcipher_request_zero(struct skcipher_request *req)
646{
647 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
648
649 memzero_explicit(req, sizeof(*req) + crypto_skcipher_reqsize(tfm));
650}
651
7a7ffe65
HX
652/**
653 * skcipher_request_set_callback() - set asynchronous callback function
654 * @req: request handle
655 * @flags: specify zero or an ORing of the flags
0184cfe7 656 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
7a7ffe65
HX
657 * increase the wait queue beyond the initial maximum size;
658 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
659 * @compl: callback function pointer to be registered with the request handle
660 * @data: The data pointer refers to memory that is not used by the kernel
661 * crypto API, but provided to the callback function for it to use. Here,
662 * the caller can provide a reference to memory the callback function can
663 * operate on. As the callback function is invoked asynchronously to the
664 * related functionality, it may need to access data structures of the
665 * related functionality which can be referenced using this pointer. The
666 * callback function can access the memory via the "data" field in the
667 * crypto_async_request data structure provided to the callback function.
668 *
669 * This function allows setting the callback function that is triggered once the
670 * cipher operation completes.
671 *
672 * The callback function is registered with the skcipher_request handle and
0184cfe7 673 * must comply with the following template::
7a7ffe65
HX
674 *
675 * void callback_function(struct crypto_async_request *req, int error)
676 */
677static inline void skcipher_request_set_callback(struct skcipher_request *req,
678 u32 flags,
679 crypto_completion_t compl,
680 void *data)
681{
682 req->base.complete = compl;
683 req->base.data = data;
684 req->base.flags = flags;
685}
686
687/**
688 * skcipher_request_set_crypt() - set data buffers
689 * @req: request handle
690 * @src: source scatter / gather list
691 * @dst: destination scatter / gather list
692 * @cryptlen: number of bytes to process from @src
693 * @iv: IV for the cipher operation which must comply with the IV size defined
694 * by crypto_skcipher_ivsize
695 *
696 * This function allows setting of the source data and destination data
697 * scatter / gather lists.
698 *
699 * For encryption, the source is treated as the plaintext and the
700 * destination is the ciphertext. For a decryption operation, the use is
701 * reversed - the source is the ciphertext and the destination is the plaintext.
702 */
703static inline void skcipher_request_set_crypt(
704 struct skcipher_request *req,
705 struct scatterlist *src, struct scatterlist *dst,
706 unsigned int cryptlen, void *iv)
707{
708 req->src = src;
709 req->dst = dst;
710 req->cryptlen = cryptlen;
711 req->iv = iv;
712}
713
61da88e2
HX
714#endif /* _CRYPTO_SKCIPHER_H */
715