[PATCH] x86-64: Make noirqdebug_setup function non init to fix modpost warning
[linux-2.6-block.git] / include / asm-x86_64 / bitops.h
CommitLineData
1da177e4
LT
1#ifndef _X86_64_BITOPS_H
2#define _X86_64_BITOPS_H
3
4/*
5 * Copyright 1992, Linus Torvalds.
6 */
7
d167a518 8#include <asm/alternative.h>
1da177e4
LT
9
10#define ADDR (*(volatile long *) addr)
11
12/**
13 * set_bit - Atomically set a bit in memory
14 * @nr: the bit to set
15 * @addr: the address to start counting from
16 *
17 * This function is atomic and may not be reordered. See __set_bit()
18 * if you do not require the atomic guarantees.
19 * Note that @nr may be almost arbitrarily large; this function is not
20 * restricted to acting on a single-word quantity.
21 */
22static __inline__ void set_bit(int nr, volatile void * addr)
23{
24 __asm__ __volatile__( LOCK_PREFIX
25 "btsl %1,%0"
92934bcb 26 :"+m" (ADDR)
1da177e4
LT
27 :"dIr" (nr) : "memory");
28}
29
30/**
31 * __set_bit - Set a bit in memory
32 * @nr: the bit to set
33 * @addr: the address to start counting from
34 *
35 * Unlike set_bit(), this function is non-atomic and may be reordered.
36 * If it's called on the same region of memory simultaneously, the effect
37 * may be that only one operation succeeds.
38 */
39static __inline__ void __set_bit(int nr, volatile void * addr)
40{
41 __asm__ volatile(
42 "btsl %1,%0"
92934bcb 43 :"+m" (ADDR)
1da177e4
LT
44 :"dIr" (nr) : "memory");
45}
46
47/**
48 * clear_bit - Clears a bit in memory
49 * @nr: Bit to clear
50 * @addr: Address to start counting from
51 *
52 * clear_bit() is atomic and may not be reordered. However, it does
53 * not contain a memory barrier, so if it is used for locking purposes,
54 * you should call smp_mb__before_clear_bit() and/or smp_mb__after_clear_bit()
55 * in order to ensure changes are visible on other processors.
56 */
57static __inline__ void clear_bit(int nr, volatile void * addr)
58{
59 __asm__ __volatile__( LOCK_PREFIX
60 "btrl %1,%0"
92934bcb 61 :"+m" (ADDR)
1da177e4
LT
62 :"dIr" (nr));
63}
64
65static __inline__ void __clear_bit(int nr, volatile void * addr)
66{
67 __asm__ __volatile__(
68 "btrl %1,%0"
92934bcb 69 :"+m" (ADDR)
1da177e4
LT
70 :"dIr" (nr));
71}
72
73#define smp_mb__before_clear_bit() barrier()
74#define smp_mb__after_clear_bit() barrier()
75
76/**
77 * __change_bit - Toggle a bit in memory
78 * @nr: the bit to change
79 * @addr: the address to start counting from
80 *
81 * Unlike change_bit(), this function is non-atomic and may be reordered.
82 * If it's called on the same region of memory simultaneously, the effect
83 * may be that only one operation succeeds.
84 */
85static __inline__ void __change_bit(int nr, volatile void * addr)
86{
87 __asm__ __volatile__(
88 "btcl %1,%0"
92934bcb 89 :"+m" (ADDR)
1da177e4
LT
90 :"dIr" (nr));
91}
92
93/**
94 * change_bit - Toggle a bit in memory
95 * @nr: Bit to change
96 * @addr: Address to start counting from
97 *
98 * change_bit() is atomic and may not be reordered.
99 * Note that @nr may be almost arbitrarily large; this function is not
100 * restricted to acting on a single-word quantity.
101 */
102static __inline__ void change_bit(int nr, volatile void * addr)
103{
104 __asm__ __volatile__( LOCK_PREFIX
105 "btcl %1,%0"
92934bcb 106 :"+m" (ADDR)
1da177e4
LT
107 :"dIr" (nr));
108}
109
110/**
111 * test_and_set_bit - Set a bit and return its old value
112 * @nr: Bit to set
113 * @addr: Address to count from
114 *
115 * This operation is atomic and cannot be reordered.
116 * It also implies a memory barrier.
117 */
118static __inline__ int test_and_set_bit(int nr, volatile void * addr)
119{
120 int oldbit;
121
122 __asm__ __volatile__( LOCK_PREFIX
123 "btsl %2,%1\n\tsbbl %0,%0"
92934bcb 124 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
125 :"dIr" (nr) : "memory");
126 return oldbit;
127}
128
129/**
130 * __test_and_set_bit - Set a bit and return its old value
131 * @nr: Bit to set
132 * @addr: Address to count from
133 *
134 * This operation is non-atomic and can be reordered.
135 * If two examples of this operation race, one can appear to succeed
136 * but actually fail. You must protect multiple accesses with a lock.
137 */
138static __inline__ int __test_and_set_bit(int nr, volatile void * addr)
139{
140 int oldbit;
141
142 __asm__(
143 "btsl %2,%1\n\tsbbl %0,%0"
92934bcb 144 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
145 :"dIr" (nr));
146 return oldbit;
147}
148
149/**
150 * test_and_clear_bit - Clear a bit and return its old value
151 * @nr: Bit to clear
152 * @addr: Address to count from
153 *
154 * This operation is atomic and cannot be reordered.
155 * It also implies a memory barrier.
156 */
157static __inline__ int test_and_clear_bit(int nr, volatile void * addr)
158{
159 int oldbit;
160
161 __asm__ __volatile__( LOCK_PREFIX
162 "btrl %2,%1\n\tsbbl %0,%0"
92934bcb 163 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
164 :"dIr" (nr) : "memory");
165 return oldbit;
166}
167
168/**
169 * __test_and_clear_bit - Clear a bit and return its old value
170 * @nr: Bit to clear
171 * @addr: Address to count from
172 *
173 * This operation is non-atomic and can be reordered.
174 * If two examples of this operation race, one can appear to succeed
175 * but actually fail. You must protect multiple accesses with a lock.
176 */
177static __inline__ int __test_and_clear_bit(int nr, volatile void * addr)
178{
179 int oldbit;
180
181 __asm__(
182 "btrl %2,%1\n\tsbbl %0,%0"
92934bcb 183 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
184 :"dIr" (nr));
185 return oldbit;
186}
187
188/* WARNING: non atomic and it can be reordered! */
189static __inline__ int __test_and_change_bit(int nr, volatile void * addr)
190{
191 int oldbit;
192
193 __asm__ __volatile__(
194 "btcl %2,%1\n\tsbbl %0,%0"
92934bcb 195 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
196 :"dIr" (nr) : "memory");
197 return oldbit;
198}
199
200/**
201 * test_and_change_bit - Change a bit and return its old value
202 * @nr: Bit to change
203 * @addr: Address to count from
204 *
205 * This operation is atomic and cannot be reordered.
206 * It also implies a memory barrier.
207 */
208static __inline__ int test_and_change_bit(int nr, volatile void * addr)
209{
210 int oldbit;
211
212 __asm__ __volatile__( LOCK_PREFIX
213 "btcl %2,%1\n\tsbbl %0,%0"
92934bcb 214 :"=r" (oldbit),"+m" (ADDR)
1da177e4
LT
215 :"dIr" (nr) : "memory");
216 return oldbit;
217}
218
219#if 0 /* Fool kernel-doc since it doesn't do macros yet */
220/**
221 * test_bit - Determine whether a bit is set
222 * @nr: bit number to test
223 * @addr: Address to start counting from
224 */
225static int test_bit(int nr, const volatile void * addr);
226#endif
227
228static __inline__ int constant_test_bit(int nr, const volatile void * addr)
229{
230 return ((1UL << (nr & 31)) & (((const volatile unsigned int *) addr)[nr >> 5])) != 0;
231}
232
233static __inline__ int variable_test_bit(int nr, volatile const void * addr)
234{
235 int oldbit;
236
237 __asm__ __volatile__(
238 "btl %2,%1\n\tsbbl %0,%0"
239 :"=r" (oldbit)
240 :"m" (ADDR),"dIr" (nr));
241 return oldbit;
242}
243
244#define test_bit(nr,addr) \
245(__builtin_constant_p(nr) ? \
246 constant_test_bit((nr),(addr)) : \
247 variable_test_bit((nr),(addr)))
248
249#undef ADDR
250
251extern long find_first_zero_bit(const unsigned long * addr, unsigned long size);
252extern long find_next_zero_bit (const unsigned long * addr, long size, long offset);
253extern long find_first_bit(const unsigned long * addr, unsigned long size);
254extern long find_next_bit(const unsigned long * addr, long size, long offset);
255
256/* return index of first bet set in val or max when no bit is set */
257static inline unsigned long __scanbit(unsigned long val, unsigned long max)
258{
259 asm("bsfq %1,%0 ; cmovz %2,%0" : "=&r" (val) : "r" (val), "r" (max));
260 return val;
261}
262
263#define find_first_bit(addr,size) \
264((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
265 (__scanbit(*(unsigned long *)addr,(size))) : \
266 find_first_bit(addr,size)))
267
268#define find_next_bit(addr,size,off) \
269((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
270 ((off) + (__scanbit((*(unsigned long *)addr) >> (off),(size)-(off)))) : \
271 find_next_bit(addr,size,off)))
272
273#define find_first_zero_bit(addr,size) \
274((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
275 (__scanbit(~*(unsigned long *)addr,(size))) : \
276 find_first_zero_bit(addr,size)))
277
278#define find_next_zero_bit(addr,size,off) \
279((__builtin_constant_p(size) && (size) <= BITS_PER_LONG ? \
280 ((off)+(__scanbit(~(((*(unsigned long *)addr)) >> (off)),(size)-(off)))) : \
281 find_next_zero_bit(addr,size,off)))
282
283/*
284 * Find string of zero bits in a bitmap. -1 when not found.
285 */
286extern unsigned long
287find_next_zero_string(unsigned long *bitmap, long start, long nbits, int len);
288
289static inline void set_bit_string(unsigned long *bitmap, unsigned long i,
290 int len)
291{
292 unsigned long end = i + len;
293 while (i < end) {
294 __set_bit(i, bitmap);
295 i++;
296 }
297}
298
299static inline void __clear_bit_string(unsigned long *bitmap, unsigned long i,
300 int len)
301{
302 unsigned long end = i + len;
303 while (i < end) {
304 __clear_bit(i, bitmap);
305 i++;
306 }
307}
308
309/**
310 * ffz - find first zero in word.
311 * @word: The word to search
312 *
313 * Undefined if no zero exists, so code should check against ~0UL first.
314 */
315static __inline__ unsigned long ffz(unsigned long word)
316{
317 __asm__("bsfq %1,%0"
318 :"=r" (word)
319 :"r" (~word));
320 return word;
321}
322
323/**
324 * __ffs - find first bit in word.
325 * @word: The word to search
326 *
327 * Undefined if no bit exists, so code should check against 0 first.
328 */
329static __inline__ unsigned long __ffs(unsigned long word)
330{
331 __asm__("bsfq %1,%0"
332 :"=r" (word)
333 :"rm" (word));
334 return word;
335}
336
90933fc8
SH
337/*
338 * __fls: find last bit set.
339 * @word: The word to search
340 *
341 * Undefined if no zero exists, so code should check against ~0UL first.
342 */
343static __inline__ unsigned long __fls(unsigned long word)
344{
345 __asm__("bsrq %1,%0"
346 :"=r" (word)
347 :"rm" (word));
348 return word;
349}
350
1da177e4
LT
351#ifdef __KERNEL__
352
f33e2fba 353#include <asm-generic/bitops/sched.h>
1da177e4
LT
354
355/**
356 * ffs - find first bit set
357 * @x: the word to search
358 *
359 * This is defined the same way as
360 * the libc and compiler builtin ffs routines, therefore
361 * differs in spirit from the above ffz (man ffs).
362 */
363static __inline__ int ffs(int x)
364{
365 int r;
366
367 __asm__("bsfl %1,%0\n\t"
368 "cmovzl %2,%0"
369 : "=r" (r) : "rm" (x), "r" (-1));
370 return r+1;
371}
372
90933fc8
SH
373/**
374 * fls64 - find last bit set in 64 bit word
375 * @x: the word to search
376 *
377 * This is defined the same way as fls.
378 */
379static __inline__ int fls64(__u64 x)
380{
381 if (x == 0)
382 return 0;
383 return __fls(x) + 1;
384}
385
636dd2b7
SH
386/**
387 * fls - find last bit set
388 * @x: the word to search
389 *
390 * This is defined the same way as ffs.
391 */
392static __inline__ int fls(int x)
393{
394 int r;
395
396 __asm__("bsrl %1,%0\n\t"
397 "cmovzl %2,%0"
398 : "=&r" (r) : "rm" (x), "rm" (-1));
399 return r+1;
400}
401
0136611c
AK
402#define ARCH_HAS_FAST_MULTIPLIER 1
403
f33e2fba 404#include <asm-generic/bitops/hweight.h>
1da177e4
LT
405
406#endif /* __KERNEL__ */
407
408#ifdef __KERNEL__
409
f33e2fba
AM
410#include <asm-generic/bitops/ext2-non-atomic.h>
411
1da177e4
LT
412#define ext2_set_bit_atomic(lock,nr,addr) \
413 test_and_set_bit((nr),(unsigned long*)addr)
1da177e4
LT
414#define ext2_clear_bit_atomic(lock,nr,addr) \
415 test_and_clear_bit((nr),(unsigned long*)addr)
f33e2fba
AM
416
417#include <asm-generic/bitops/minix.h>
1da177e4 418
1da177e4
LT
419#endif /* __KERNEL__ */
420
421#endif /* _X86_64_BITOPS_H */