x86/pgtable: unify pagetable accessors, #3
[linux-block.git] / include / asm-x86 / pgtable_32.h
CommitLineData
1da177e4
LT
1#ifndef _I386_PGTABLE_H
2#define _I386_PGTABLE_H
3
1da177e4
LT
4
5/*
6 * The Linux memory management assumes a three-level page table setup. On
7 * the i386, we use that, but "fold" the mid level into the top-level page
8 * table, so that we physically have the same two-level page table as the
9 * i386 mmu expects.
10 *
11 * This file contains the functions and defines necessary to modify and use
12 * the i386 page table tree.
13 */
14#ifndef __ASSEMBLY__
15#include <asm/processor.h>
16#include <asm/fixmap.h>
17#include <linux/threads.h>
da181a8b 18#include <asm/paravirt.h>
1da177e4 19
1977f032 20#include <linux/bitops.h>
1da177e4
LT
21#include <linux/slab.h>
22#include <linux/list.h>
23#include <linux/spinlock.h>
24
8c65b4a6
TS
25struct mm_struct;
26struct vm_area_struct;
27
1da177e4
LT
28/*
29 * ZERO_PAGE is a global shared page that is always zero: used
30 * for zero-mapped memory areas etc..
31 */
32#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
33extern unsigned long empty_zero_page[1024];
34extern pgd_t swapper_pg_dir[1024];
e18b890b 35extern struct kmem_cache *pmd_cache;
1da177e4
LT
36extern spinlock_t pgd_lock;
37extern struct page *pgd_list;
f1d1a842 38void check_pgt_cache(void);
1da177e4 39
4ba9b9d0 40void pmd_ctor(struct kmem_cache *, void *);
1da177e4
LT
41void pgtable_cache_init(void);
42void paging_init(void);
43
f1d1a842 44
1da177e4
LT
45/*
46 * The Linux x86 paging architecture is 'compile-time dual-mode', it
47 * implements both the traditional 2-level x86 page tables and the
48 * newer 3-level PAE-mode page tables.
49 */
50#ifdef CONFIG_X86_PAE
51# include <asm/pgtable-3level-defs.h>
52# define PMD_SIZE (1UL << PMD_SHIFT)
53# define PMD_MASK (~(PMD_SIZE-1))
54#else
55# include <asm/pgtable-2level-defs.h>
56#endif
57
58#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
59#define PGDIR_MASK (~(PGDIR_SIZE-1))
60
1da177e4
LT
61#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
62#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
63
64#define TWOLEVEL_PGDIR_SHIFT 22
65#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
66#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
67
68/* Just any arbitrary offset to the start of the vmalloc VM area: the
69 * current 8MB value just means that there will be a 8MB "hole" after the
70 * physical memory until the kernel virtual memory starts. That means that
71 * any out-of-bounds memory accesses will hopefully be caught.
72 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
73 * area for the same reason. ;)
74 */
75#define VMALLOC_OFFSET (8*1024*1024)
8f0accc8 76#define VMALLOC_START (((unsigned long) high_memory + \
1da177e4
LT
77 2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
78#ifdef CONFIG_HIGHMEM
79# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
80#else
81# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
82#endif
83
1da177e4
LT
84/*
85 * Define this if things work differently on an i386 and an i486:
86 * it will (on an i486) warn about kernel memory accesses that are
e49332bd 87 * done without a 'access_ok(VERIFY_WRITE,..)'
1da177e4 88 */
e49332bd 89#undef TEST_ACCESS_OK
1da177e4
LT
90
91/* The boot page tables (all created as a single array) */
92extern unsigned long pg0[];
93
94#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
1da177e4 95
705e87c0
HD
96/* To avoid harmful races, pmd_none(x) should check only the lower when PAE */
97#define pmd_none(x) (!(unsigned long)pmd_val(x))
1da177e4 98#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
1da177e4
LT
99#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
100
101
102#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
103
104/*
105 * The following only work if pte_present() is true.
106 * Undefined behaviour if not..
107 */
92ac166f
IM
108static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
109static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
110static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_RW; }
111static inline int pte_huge(pte_t pte) { return pte_val(pte) & _PAGE_PSE; }
1da177e4
LT
112
113/*
114 * The following only works if pte_present() is not true.
115 */
92ac166f 116static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
1da177e4 117
1444d2da
IM
118static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); }
119static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); }
120static inline pte_t pte_wrprotect(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_RW); }
121static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY); }
122static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); }
123static inline pte_t pte_mkwrite(pte_t pte) { return __pte(pte_val(pte) | _PAGE_RW); }
124static inline pte_t pte_mkhuge(pte_t pte) { return __pte(pte_val(pte) | _PAGE_PSE); }
1da177e4
LT
125
126#ifdef CONFIG_X86_PAE
127# include <asm/pgtable-3level.h>
128#else
129# include <asm/pgtable-2level.h>
130#endif
131
da181a8b 132#ifndef CONFIG_PARAVIRT
789e6ac0
ZA
133/*
134 * Rules for using pte_update - it must be called after any PTE update which
135 * has not been done using the set_pte / clear_pte interfaces. It is used by
136 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
137 * updates should either be sets, clears, or set_pte_atomic for P->P
138 * transitions, which means this hook should only be called for user PTEs.
139 * This hook implies a P->P protection or access change has taken place, which
140 * requires a subsequent TLB flush. The notification can optionally be delayed
141 * until the TLB flush event by using the pte_update_defer form of the
142 * interface, but care must be taken to assure that the flush happens while
143 * still holding the same page table lock so that the shadow and primary pages
144 * do not become out of sync on SMP.
145 */
146#define pte_update(mm, addr, ptep) do { } while (0)
147#define pte_update_defer(mm, addr, ptep) do { } while (0)
da181a8b 148#endif
789e6ac0 149
9e5e3162
ZA
150/* local pte updates need not use xchg for locking */
151static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
152{
153 pte_t res = *ptep;
154
155 /* Pure native function needs no input for mm, addr */
156 native_pte_clear(NULL, 0, ptep);
157 return res;
158}
159
2965a0e6
RR
160/*
161 * We only update the dirty/accessed state if we set
162 * the dirty bit by hand in the kernel, since the hardware
163 * will do the accessed bit for us, and we don't want to
164 * race with other CPU's that might be updating the dirty
165 * bit at the same time.
166 */
167#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
168#define ptep_set_access_flags(vma, address, ptep, entry, dirty) \
8dab5241
BH
169({ \
170 int __changed = !pte_same(*(ptep), entry); \
171 if (__changed && dirty) { \
2965a0e6 172 (ptep)->pte_low = (entry).pte_low; \
dfbea0ad 173 pte_update_defer((vma)->vm_mm, (address), (ptep)); \
2965a0e6
RR
174 flush_tlb_page(vma, address); \
175 } \
8dab5241
BH
176 __changed; \
177})
2965a0e6 178
6049742d 179#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
0013572b 180#define ptep_test_and_clear_young(vma, addr, ptep) ({ \
d6f8bb13
HD
181 int __ret = 0; \
182 if (pte_young(*(ptep))) \
183 __ret = test_and_clear_bit(_PAGE_BIT_ACCESSED, \
184 &(ptep)->pte_low); \
185 if (__ret) \
186 pte_update((vma)->vm_mm, addr, ptep); \
187 __ret; \
0013572b 188})
25e4df5b 189
25e4df5b
ZA
190#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
191#define ptep_clear_flush_young(vma, address, ptep) \
192({ \
193 int __young; \
10a8d6ae 194 __young = ptep_test_and_clear_young((vma), (address), (ptep)); \
0013572b 195 if (__young) \
25e4df5b 196 flush_tlb_page(vma, address); \
25e4df5b
ZA
197 __young; \
198})
1da177e4 199
8ecb8950
ZA
200#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
201static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
202{
4cdd9c89 203 pte_t pte = native_ptep_get_and_clear(ptep);
8ecb8950
ZA
204 pte_update(mm, addr, ptep);
205 return pte;
206}
207
6049742d 208#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
a600388d
ZA
209static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full)
210{
211 pte_t pte;
212 if (full) {
9e5e3162
ZA
213 /*
214 * Full address destruction in progress; paravirt does not
215 * care about updates and native needs no locking
216 */
217 pte = native_local_ptep_get_and_clear(ptep);
a600388d
ZA
218 } else {
219 pte = ptep_get_and_clear(mm, addr, ptep);
220 }
221 return pte;
222}
223
6049742d 224#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1da177e4
LT
225static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
226{
227 clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
789e6ac0 228 pte_update(mm, addr, ptep);
1da177e4
LT
229}
230
d7271b14
ZA
231/*
232 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
233 *
234 * dst - pointer to pgd range anwhere on a pgd page
235 * src - ""
236 * count - the number of pgds to copy.
237 *
238 * dst and src can be on the same page, but the range must not overlap,
239 * and must not cross a page boundary.
240 */
241static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
242{
243 memcpy(dst, src, count * sizeof(pgd_t));
244}
245
1da177e4
LT
246/*
247 * Macro to mark a page protection value as "uncacheable". On processors which do not support
248 * it, this is a no-op.
249 */
250#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
251 ? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
252
253/*
254 * Conversion functions: convert a page and protection to a page entry,
255 * and a page entry and page directory to the page they refer to.
256 */
257
258#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
1da177e4
LT
259
260static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
261{
262 pte.pte_low &= _PAGE_CHG_MASK;
263 pte.pte_low |= pgprot_val(newprot);
264#ifdef CONFIG_X86_PAE
265 /*
266 * Chop off the NX bit (if present), and add the NX portion of
267 * the newprot (if present):
268 */
269 pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
270 pte.pte_high |= (pgprot_val(newprot) >> 32) & \
271 (__supported_pte_mask >> 32);
272#endif
273 return pte;
274}
275
1da177e4
LT
276#define pmd_large(pmd) \
277((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
278
279/*
280 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
281 *
282 * this macro returns the index of the entry in the pgd page which would
283 * control the given virtual address
284 */
285#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
286#define pgd_index_k(addr) pgd_index(addr)
287
288/*
289 * pgd_offset() returns a (pgd_t *)
290 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
291 */
292#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
293
294/*
295 * a shortcut which implies the use of the kernel's pgd, instead
296 * of a process's
297 */
298#define pgd_offset_k(address) pgd_offset(&init_mm, address)
299
300/*
301 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
302 *
303 * this macro returns the index of the entry in the pmd page which would
304 * control the given virtual address
305 */
306#define pmd_index(address) \
307 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
308
309/*
310 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
311 *
312 * this macro returns the index of the entry in the pte page which would
313 * control the given virtual address
314 */
315#define pte_index(address) \
316 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
317#define pte_offset_kernel(dir, address) \
46a82b2d 318 ((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(address))
1da177e4 319
ca140fda
PBG
320#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
321
46a82b2d 322#define pmd_page_vaddr(pmd) \
ca140fda
PBG
323 ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
324
1da177e4
LT
325/*
326 * Helper function that returns the kernel pagetable entry controlling
327 * the virtual address 'address'. NULL means no pagetable entry present.
328 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
329 * as a pte too.
330 */
331extern pte_t *lookup_address(unsigned long address);
332
333/*
334 * Make a given kernel text page executable/non-executable.
335 * Returns the previous executability setting of that page (which
336 * is used to restore the previous state). Used by the SMP bootup code.
337 * NOTE: this is an __init function for security reasons.
338 */
339#ifdef CONFIG_X86_PAE
340 extern int set_kernel_exec(unsigned long vaddr, int enable);
341#else
342 static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
343#endif
344
1da177e4 345#if defined(CONFIG_HIGHPTE)
a27fe809 346#define pte_offset_map(dir, address) \
ce6234b5 347 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
a27fe809 348#define pte_offset_map_nested(dir, address) \
ce6234b5 349 ((pte_t *)kmap_atomic_pte(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
1da177e4
LT
350#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
351#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
352#else
353#define pte_offset_map(dir, address) \
354 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
355#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
356#define pte_unmap(pte) do { } while (0)
357#define pte_unmap_nested(pte) do { } while (0)
358#endif
359
23002d88
ZA
360/* Clear a kernel PTE and flush it from the TLB */
361#define kpte_clear_flush(ptep, vaddr) \
362do { \
363 pte_clear(&init_mm, vaddr, ptep); \
364 __flush_tlb_one(vaddr); \
365} while (0)
366
1da177e4
LT
367/*
368 * The i386 doesn't have any external MMU info: the kernel page
369 * tables contain all the necessary information.
1da177e4
LT
370 */
371#define update_mmu_cache(vma,address,pte) do { } while (0)
b239fb25
JF
372
373void native_pagetable_setup_start(pgd_t *base);
374void native_pagetable_setup_done(pgd_t *base);
375
376#ifndef CONFIG_PARAVIRT
377static inline void paravirt_pagetable_setup_start(pgd_t *base)
378{
379 native_pagetable_setup_start(base);
380}
381
382static inline void paravirt_pagetable_setup_done(pgd_t *base)
383{
384 native_pagetable_setup_done(base);
385}
386#endif /* !CONFIG_PARAVIRT */
387
1da177e4
LT
388#endif /* !__ASSEMBLY__ */
389
4757d7d8
TG
390/*
391 * kern_addr_valid() is (1) for FLATMEM and (0) for
392 * SPARSEMEM and DISCONTIGMEM
393 */
05b79bdc 394#ifdef CONFIG_FLATMEM
1da177e4 395#define kern_addr_valid(addr) (1)
4757d7d8
TG
396#else
397#define kern_addr_valid(kaddr) (0)
398#endif
1da177e4 399
1da177e4
LT
400#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
401 remap_pfn_range(vma, vaddr, pfn, size, prot)
402
1da177e4
LT
403#include <asm-generic/pgtable.h>
404
405#endif /* _I386_PGTABLE_H */