[PATCH] uml: TLB operation batching
[linux-block.git] / include / asm-um / pgtable.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2000, 2001, 2002 Jeff Dike (jdike@karaya.com)
3 * Copyright 2003 PathScale, Inc.
4 * Derived from include/asm-i386/pgtable.h
5 * Licensed under the GPL
6 */
7
8#ifndef __UM_PGTABLE_H
9#define __UM_PGTABLE_H
10
11#include "linux/sched.h"
12#include "linux/linkage.h"
13#include "asm/processor.h"
14#include "asm/page.h"
15#include "asm/fixmap.h"
16
17#define _PAGE_PRESENT 0x001
18#define _PAGE_NEWPAGE 0x002
9b4ee40e 19#define _PAGE_NEWPROT 0x004
1da177e4
LT
20#define _PAGE_RW 0x020
21#define _PAGE_USER 0x040
22#define _PAGE_ACCESSED 0x080
23#define _PAGE_DIRTY 0x100
9b4ee40e
PBG
24/* If _PAGE_PRESENT is clear, we use these: */
25#define _PAGE_FILE 0x008 /* nonlinear file mapping, saved PTE; unset:swap */
26#define _PAGE_PROTNONE 0x010 /* if the user mapped it with PROT_NONE;
27 pte_present gives true */
1da177e4
LT
28
29#ifdef CONFIG_3_LEVEL_PGTABLES
30#include "asm/pgtable-3level.h"
31#else
32#include "asm/pgtable-2level.h"
33#endif
34
35extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
36
37extern void *um_virt_to_phys(struct task_struct *task, unsigned long virt,
38 pte_t *pte_out);
39
40/* zero page used for uninitialized stuff */
41extern unsigned long *empty_zero_page;
42
43#define pgtable_cache_init() do ; while (0)
44
45/*
46 * pgd entries used up by user/kernel:
47 */
48
49#define USER_PGD_PTRS (TASK_SIZE >> PGDIR_SHIFT)
50#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
51
52#ifndef __ASSEMBLY__
53/* Just any arbitrary offset to the start of the vmalloc VM area: the
54 * current 8MB value just means that there will be a 8MB "hole" after the
55 * physical memory until the kernel virtual memory starts. That means that
56 * any out-of-bounds memory accesses will hopefully be caught.
57 * The vmalloc() routines leaves a hole of 4kB between each vmalloced
58 * area for the same reason. ;)
59 */
60
61extern unsigned long end_iomem;
62
63#define VMALLOC_OFFSET (__va_space)
64#define VMALLOC_START ((end_iomem + VMALLOC_OFFSET) & ~(VMALLOC_OFFSET-1))
65
66#ifdef CONFIG_HIGHMEM
67# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
68#else
69# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
70#endif
71
72#define REGION_SHIFT (sizeof(pte_t) * 8 - 4)
73#define REGION_MASK (((unsigned long) 0xf) << REGION_SHIFT)
74
75#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
76#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
77#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
78
79#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
80#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
81#define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
82#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
83#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
84#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_DIRTY | _PAGE_ACCESSED)
85
86/*
87 * The i386 can't do page protection for execute, and considers that the same are read.
88 * Also, write permissions imply read permissions. This is the closest we can get..
89 */
90#define __P000 PAGE_NONE
91#define __P001 PAGE_READONLY
92#define __P010 PAGE_COPY
93#define __P011 PAGE_COPY
94#define __P100 PAGE_READONLY
95#define __P101 PAGE_READONLY
96#define __P110 PAGE_COPY
97#define __P111 PAGE_COPY
98
99#define __S000 PAGE_NONE
100#define __S001 PAGE_READONLY
101#define __S010 PAGE_SHARED
102#define __S011 PAGE_SHARED
103#define __S100 PAGE_READONLY
104#define __S101 PAGE_READONLY
105#define __S110 PAGE_SHARED
106#define __S111 PAGE_SHARED
107
108/*
109 * Define this if things work differently on an i386 and an i486:
110 * it will (on an i486) warn about kernel memory accesses that are
3d675548 111 * done without a 'access_ok(VERIFY_WRITE,..)'
1da177e4
LT
112 */
113#undef TEST_VERIFY_AREA
114
115/* page table for 0-4MB for everybody */
116extern unsigned long pg0[1024];
117
118/*
1da177e4
LT
119 * ZERO_PAGE is a global shared page that is always zero: used
120 * for zero-mapped memory areas etc..
121 */
1da177e4
LT
122
123#define ZERO_PAGE(vaddr) virt_to_page(empty_zero_page)
124
125/* number of bits that fit into a memory pointer */
126#define BITS_PER_PTR (8*sizeof(unsigned long))
127
128/* to align the pointer to a pointer address */
129#define PTR_MASK (~(sizeof(void*)-1))
130
131/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
132/* 64-bit machines, beware! SRB. */
133#define SIZEOF_PTR_LOG2 3
134
135/* to find an entry in a page-table */
136#define PAGE_PTR(address) \
137((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
138
139#define pte_clear(mm,addr,xp) pte_set_val(*(xp), (phys_t) 0, __pgprot(_PAGE_NEWPAGE))
140
141#define pmd_none(x) (!(pmd_val(x) & ~_PAGE_NEWPAGE))
142#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
143#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
144#define pmd_clear(xp) do { pmd_val(*(xp)) = _PAGE_NEWPAGE; } while (0)
145
146#define pmd_newpage(x) (pmd_val(x) & _PAGE_NEWPAGE)
147#define pmd_mkuptodate(x) (pmd_val(x) &= ~_PAGE_NEWPAGE)
148
149#define pud_newpage(x) (pud_val(x) & _PAGE_NEWPAGE)
150#define pud_mkuptodate(x) (pud_val(x) &= ~_PAGE_NEWPAGE)
151
152#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
153
154#define pmd_page(pmd) phys_to_page(pmd_val(pmd) & PAGE_MASK)
155
156#define pte_address(x) (__va(pte_val(x) & PAGE_MASK))
157#define mk_phys(a, r) ((a) + (((unsigned long) r) << REGION_SHIFT))
158#define phys_addr(p) ((p) & ~REGION_MASK)
159
160/*
161 * The following only work if pte_present() is true.
162 * Undefined behaviour if not..
163 */
164static inline int pte_user(pte_t pte)
165{
166 return((pte_get_bits(pte, _PAGE_USER)) &&
167 !(pte_get_bits(pte, _PAGE_PROTNONE)));
168}
169
170static inline int pte_read(pte_t pte)
171{
172 return((pte_get_bits(pte, _PAGE_USER)) &&
173 !(pte_get_bits(pte, _PAGE_PROTNONE)));
174}
175
176static inline int pte_exec(pte_t pte){
177 return((pte_get_bits(pte, _PAGE_USER)) &&
178 !(pte_get_bits(pte, _PAGE_PROTNONE)));
179}
180
181static inline int pte_write(pte_t pte)
182{
183 return((pte_get_bits(pte, _PAGE_RW)) &&
184 !(pte_get_bits(pte, _PAGE_PROTNONE)));
185}
186
187/*
188 * The following only works if pte_present() is not true.
189 */
190static inline int pte_file(pte_t pte)
191{
192 return pte_get_bits(pte, _PAGE_FILE);
193}
194
195static inline int pte_dirty(pte_t pte)
196{
197 return pte_get_bits(pte, _PAGE_DIRTY);
198}
199
200static inline int pte_young(pte_t pte)
201{
202 return pte_get_bits(pte, _PAGE_ACCESSED);
203}
204
205static inline int pte_newpage(pte_t pte)
206{
207 return pte_get_bits(pte, _PAGE_NEWPAGE);
208}
209
210static inline int pte_newprot(pte_t pte)
211{
212 return(pte_present(pte) && (pte_get_bits(pte, _PAGE_NEWPROT)));
213}
214
215static inline pte_t pte_rdprotect(pte_t pte)
216{
217 pte_clear_bits(pte, _PAGE_USER);
218 return(pte_mknewprot(pte));
219}
220
221static inline pte_t pte_exprotect(pte_t pte)
222{
223 pte_clear_bits(pte, _PAGE_USER);
224 return(pte_mknewprot(pte));
225}
226
227static inline pte_t pte_mkclean(pte_t pte)
228{
229 pte_clear_bits(pte, _PAGE_DIRTY);
230 return(pte);
231}
232
233static inline pte_t pte_mkold(pte_t pte)
234{
235 pte_clear_bits(pte, _PAGE_ACCESSED);
236 return(pte);
237}
238
239static inline pte_t pte_wrprotect(pte_t pte)
240{
241 pte_clear_bits(pte, _PAGE_RW);
242 return(pte_mknewprot(pte));
243}
244
245static inline pte_t pte_mkread(pte_t pte)
246{
247 pte_set_bits(pte, _PAGE_RW);
248 return(pte_mknewprot(pte));
249}
250
251static inline pte_t pte_mkexec(pte_t pte)
252{
253 pte_set_bits(pte, _PAGE_USER);
254 return(pte_mknewprot(pte));
255}
256
257static inline pte_t pte_mkdirty(pte_t pte)
258{
259 pte_set_bits(pte, _PAGE_DIRTY);
260 return(pte);
261}
262
263static inline pte_t pte_mkyoung(pte_t pte)
264{
265 pte_set_bits(pte, _PAGE_ACCESSED);
266 return(pte);
267}
268
269static inline pte_t pte_mkwrite(pte_t pte)
270{
271 pte_set_bits(pte, _PAGE_RW);
272 return(pte_mknewprot(pte));
273}
274
275static inline pte_t pte_mkuptodate(pte_t pte)
276{
277 pte_clear_bits(pte, _PAGE_NEWPAGE);
278 if(pte_present(pte))
279 pte_clear_bits(pte, _PAGE_NEWPROT);
280 return(pte);
281}
282
283extern phys_t page_to_phys(struct page *page);
284
285/*
286 * Conversion functions: convert a page and protection to a page entry,
287 * and a page entry and page directory to the page they refer to.
288 */
289
290extern pte_t mk_pte(struct page *page, pgprot_t pgprot);
291
292static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
293{
294 pte_set_val(pte, (pte_val(pte) & _PAGE_CHG_MASK), newprot);
295 if(pte_present(pte)) pte = pte_mknewpage(pte_mknewprot(pte));
296 return pte;
297}
298
299#define pmd_page_kernel(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
300
301/*
302 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
303 *
304 * this macro returns the index of the entry in the pgd page which would
305 * control the given virtual address
306 */
307#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
308
309#define pgd_index_k(addr) pgd_index(addr)
310
311/*
312 * pgd_offset() returns a (pgd_t *)
313 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
314 */
315#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
316
317/*
318 * a shortcut which implies the use of the kernel's pgd, instead
319 * of a process's
320 */
321#define pgd_offset_k(address) pgd_offset(&init_mm, address)
322
323/*
324 * the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
325 *
326 * this macro returns the index of the entry in the pmd page which would
327 * control the given virtual address
328 */
329#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
330
331/*
332 * the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
333 *
334 * this macro returns the index of the entry in the pte page which would
335 * control the given virtual address
336 */
337#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
338#define pte_offset_kernel(dir, address) \
339 ((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
340#define pte_offset_map(dir, address) \
341 ((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
342#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
343#define pte_unmap(pte) do { } while (0)
344#define pte_unmap_nested(pte) do { } while (0)
345
346#define update_mmu_cache(vma,address,pte) do ; while (0)
347
348/* Encode and de-code a swap entry */
349#define __swp_type(x) (((x).val >> 4) & 0x3f)
350#define __swp_offset(x) ((x).val >> 11)
351
352#define __swp_entry(type, offset) \
353 ((swp_entry_t) { ((type) << 4) | ((offset) << 11) })
354#define __pte_to_swp_entry(pte) \
355 ((swp_entry_t) { pte_val(pte_mkuptodate(pte)) })
356#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
357
358#define kern_addr_valid(addr) (1)
359
360#include <asm-generic/pgtable.h>
361
362#include <asm-generic/pgtable-nopud.h>
363
364#endif
365#endif
366
367extern struct page *phys_to_page(const unsigned long phys);
368extern struct page *__virt_to_page(const unsigned long virt);
369#define virt_to_page(addr) __virt_to_page((const unsigned long) addr)
370
371/*
372 * Overrides for Emacs so that we follow Linus's tabbing style.
373 * Emacs will notice this stuff at the end of the file and automatically
374 * adjust the settings for this buffer only. This must remain at the end
375 * of the file.
376 * ---------------------------------------------------------------------------
377 * Local variables:
378 * c-file-style: "linux"
379 * End:
380 */