Merge branch 'for-linus' from master.kernel.org:/pub/scm/linux/kernel/git/roland...
[linux-block.git] / include / asm-m32r / uaccess.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_M32R_UACCESS_H
2#define _ASM_M32R_UACCESS_H
3
4/*
5 * linux/include/asm-m32r/uaccess.h
6 *
7 * M32R version.
8 * Copyright (C) 2004 Hirokazu Takata <takata at linux-m32r.org>
9 */
10
11#undef UACCESS_DEBUG
12
13#ifdef UACCESS_DEBUG
14#define UAPRINTK(args...) printk(args)
15#else
16#define UAPRINTK(args...)
17#endif /* UACCESS_DEBUG */
18
19/*
20 * User space memory access functions
21 */
22#include <linux/config.h>
23#include <linux/errno.h>
24#include <linux/thread_info.h>
25#include <asm/page.h>
26
27#define VERIFY_READ 0
28#define VERIFY_WRITE 1
29
30/*
31 * The fs value determines whether argument validity checking should be
32 * performed or not. If get_fs() == USER_DS, checking is performed, with
33 * get_fs() == KERNEL_DS, checking is bypassed.
34 *
35 * For historical reasons, these macros are grossly misnamed.
36 */
37
38#define MAKE_MM_SEG(s) ((mm_segment_t) { (s) })
39
40#ifdef CONFIG_MMU
41#define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF)
42#define USER_DS MAKE_MM_SEG(PAGE_OFFSET)
43#else
44#define KERNEL_DS MAKE_MM_SEG(0xFFFFFFFF)
45#define USER_DS MAKE_MM_SEG(0xFFFFFFFF)
46#endif /* CONFIG_MMU */
47
48#define get_ds() (KERNEL_DS)
49#ifdef CONFIG_MMU
50#define get_fs() (current_thread_info()->addr_limit)
51#define set_fs(x) (current_thread_info()->addr_limit = (x))
52#else
53static inline mm_segment_t get_fs(void)
54{
55 return USER_DS;
56}
57
58static inline void set_fs(mm_segment_t s)
59{
60}
61#endif /* CONFIG_MMU */
62
63#define segment_eq(a,b) ((a).seg == (b).seg)
64
65#define __addr_ok(addr) \
66 ((unsigned long)(addr) < (current_thread_info()->addr_limit.seg))
67
68/*
69 * Test whether a block of memory is a valid user space address.
70 * Returns 0 if the range is valid, nonzero otherwise.
71 *
72 * This is equivalent to the following test:
73 * (u33)addr + (u33)size >= (u33)current->addr_limit.seg
74 *
75 * This needs 33-bit arithmetic. We have a carry...
76 */
77#define __range_ok(addr,size) ({ \
78 unsigned long flag, sum; \
79 __chk_user_ptr(addr); \
80 asm ( \
81 " cmpu %1, %1 ; clear cbit\n" \
82 " addx %1, %3 ; set cbit if overflow\n" \
83 " subx %0, %0\n" \
84 " cmpu %4, %1\n" \
85 " subx %0, %5\n" \
86 : "=&r"(flag), "=r"(sum) \
87 : "1"(addr), "r"((int)(size)), \
88 "r"(current_thread_info()->addr_limit.seg), "r"(0) \
89 : "cbit" ); \
90 flag; })
91
92/**
93 * access_ok: - Checks if a user space pointer is valid
94 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
95 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
96 * to write to a block, it is always safe to read from it.
97 * @addr: User space pointer to start of block to check
98 * @size: Size of block to check
99 *
100 * Context: User context only. This function may sleep.
101 *
102 * Checks if a pointer to a block of memory in user space is valid.
103 *
104 * Returns true (nonzero) if the memory block may be valid, false (zero)
105 * if it is definitely invalid.
106 *
107 * Note that, depending on architecture, this function probably just
108 * checks that the pointer is in the user space range - after calling
109 * this function, memory access functions may still return -EFAULT.
110 */
111#ifdef CONFIG_MMU
112#define access_ok(type,addr,size) (likely(__range_ok(addr,size) == 0))
113#else
114static inline int access_ok(int type, const void *addr, unsigned long size)
115{
116 extern unsigned long memory_start, memory_end;
117 unsigned long val = (unsigned long)addr;
118
119 return ((val >= memory_start) && ((val + size) < memory_end));
120}
121#endif /* CONFIG_MMU */
122
1da177e4
LT
123/*
124 * The exception table consists of pairs of addresses: the first is the
125 * address of an instruction that is allowed to fault, and the second is
126 * the address at which the program should continue. No registers are
127 * modified, so it is entirely up to the continuation code to figure out
128 * what to do.
129 *
130 * All the routines below use bits of fixup code that are out of line
131 * with the main instruction path. This means when everything is well,
132 * we don't even have to jump over them. Further, they do not intrude
133 * on our cache or tlb entries.
134 */
135
136struct exception_table_entry
137{
138 unsigned long insn, fixup;
139};
140
141extern int fixup_exception(struct pt_regs *regs);
142
143/*
144 * These are the main single-value transfer routines. They automatically
145 * use the right size if we just have the right pointer type.
146 *
147 * This gets kind of ugly. We want to return _two_ values in "get_user()"
148 * and yet we don't want to do any pointers, because that is too much
149 * of a performance impact. Thus we have a few rather ugly macros here,
150 * and hide all the uglyness from the user.
151 *
152 * The "__xxx" versions of the user access functions are versions that
153 * do not verify the address space, that must have been done previously
154 * with a separate "access_ok()" call (this is used when we do multiple
155 * accesses to the same area of user memory).
156 */
157
158extern void __get_user_1(void);
159extern void __get_user_2(void);
160extern void __get_user_4(void);
161
162#ifndef MODULE
163#define __get_user_x(size,ret,x,ptr) \
164 __asm__ __volatile__( \
165 " mv r0, %0\n" \
166 " mv r1, %1\n" \
167 " bl __get_user_" #size "\n" \
168 " mv %0, r0\n" \
169 " mv %1, r1\n" \
170 : "=r"(ret), "=r"(x) \
171 : "0"(ptr) \
172 : "r0", "r1", "r14" )
173#else /* MODULE */
174/*
175 * Use "jl" instead of "bl" for MODULE
176 */
177#define __get_user_x(size,ret,x,ptr) \
178 __asm__ __volatile__( \
179 " mv r0, %0\n" \
180 " mv r1, %1\n" \
181 " seth lr, #high(__get_user_" #size ")\n" \
182 " or3 lr, lr, #low(__get_user_" #size ")\n" \
183 " jl lr\n" \
184 " mv %0, r0\n" \
185 " mv %1, r1\n" \
186 : "=r"(ret), "=r"(x) \
187 : "0"(ptr) \
188 : "r0", "r1", "r14" )
189#endif
190
191/* Careful: we have to cast the result to the type of the pointer for sign
192 reasons */
193/**
194 * get_user: - Get a simple variable from user space.
195 * @x: Variable to store result.
196 * @ptr: Source address, in user space.
197 *
198 * Context: User context only. This function may sleep.
199 *
200 * This macro copies a single simple variable from user space to kernel
201 * space. It supports simple types like char and int, but not larger
202 * data types like structures or arrays.
203 *
204 * @ptr must have pointer-to-simple-variable type, and the result of
205 * dereferencing @ptr must be assignable to @x without a cast.
206 *
207 * Returns zero on success, or -EFAULT on error.
208 * On error, the variable @x is set to zero.
209 */
210#define get_user(x,ptr) \
a880948b
AV
211({ int __ret_gu; \
212 unsigned long __val_gu; \
1da177e4
LT
213 __chk_user_ptr(ptr); \
214 switch(sizeof (*(ptr))) { \
215 case 1: __get_user_x(1,__ret_gu,__val_gu,ptr); break; \
216 case 2: __get_user_x(2,__ret_gu,__val_gu,ptr); break; \
217 case 4: __get_user_x(4,__ret_gu,__val_gu,ptr); break; \
218 default: __get_user_x(X,__ret_gu,__val_gu,ptr); break; \
219 } \
220 (x) = (__typeof__(*(ptr)))__val_gu; \
221 __ret_gu; \
222})
223
224extern void __put_user_bad(void);
225
226/**
227 * put_user: - Write a simple value into user space.
228 * @x: Value to copy to user space.
229 * @ptr: Destination address, in user space.
230 *
231 * Context: User context only. This function may sleep.
232 *
233 * This macro copies a single simple value from kernel space to user
234 * space. It supports simple types like char and int, but not larger
235 * data types like structures or arrays.
236 *
237 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
238 * to the result of dereferencing @ptr.
239 *
240 * Returns zero on success, or -EFAULT on error.
241 */
242#define put_user(x,ptr) \
243 __put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
244
245
246/**
247 * __get_user: - Get a simple variable from user space, with less checking.
248 * @x: Variable to store result.
249 * @ptr: Source address, in user space.
250 *
251 * Context: User context only. This function may sleep.
252 *
253 * This macro copies a single simple variable from user space to kernel
254 * space. It supports simple types like char and int, but not larger
255 * data types like structures or arrays.
256 *
257 * @ptr must have pointer-to-simple-variable type, and the result of
258 * dereferencing @ptr must be assignable to @x without a cast.
259 *
260 * Caller must check the pointer with access_ok() before calling this
261 * function.
262 *
263 * Returns zero on success, or -EFAULT on error.
264 * On error, the variable @x is set to zero.
265 */
266#define __get_user(x,ptr) \
267 __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
268
269
270/**
271 * __put_user: - Write a simple value into user space, with less checking.
272 * @x: Value to copy to user space.
273 * @ptr: Destination address, in user space.
274 *
275 * Context: User context only. This function may sleep.
276 *
277 * This macro copies a single simple value from kernel space to user
278 * space. It supports simple types like char and int, but not larger
279 * data types like structures or arrays.
280 *
281 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
282 * to the result of dereferencing @ptr.
283 *
284 * Caller must check the pointer with access_ok() before calling this
285 * function.
286 *
287 * Returns zero on success, or -EFAULT on error.
288 */
289#define __put_user(x,ptr) \
290 __put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
291
292#define __put_user_nocheck(x,ptr,size) \
293({ \
294 long __pu_err; \
295 __put_user_size((x),(ptr),(size),__pu_err); \
296 __pu_err; \
297})
298
299
300#define __put_user_check(x,ptr,size) \
301({ \
302 long __pu_err = -EFAULT; \
303 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
304 might_sleep(); \
305 if (access_ok(VERIFY_WRITE,__pu_addr,size)) \
306 __put_user_size((x),__pu_addr,(size),__pu_err); \
307 __pu_err; \
308})
309
310#if defined(__LITTLE_ENDIAN__)
311#define __put_user_u64(x, addr, err) \
312 __asm__ __volatile__( \
313 " .fillinsn\n" \
314 "1: st %L1,@%2\n" \
315 " .fillinsn\n" \
316 "2: st %H1,@(4,%2)\n" \
317 " .fillinsn\n" \
318 "3:\n" \
319 ".section .fixup,\"ax\"\n" \
320 " .balign 4\n" \
321 "4: ldi %0,%3\n" \
322 " seth r14,#high(3b)\n" \
323 " or3 r14,r14,#low(3b)\n" \
324 " jmp r14\n" \
325 ".previous\n" \
326 ".section __ex_table,\"a\"\n" \
327 " .balign 4\n" \
328 " .long 1b,4b\n" \
329 " .long 2b,4b\n" \
330 ".previous" \
331 : "=r"(err) \
332 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
333 : "r14", "memory")
334
335#elif defined(__BIG_ENDIAN__)
336#define __put_user_u64(x, addr, err) \
337 __asm__ __volatile__( \
338 " .fillinsn\n" \
339 "1: st %H1,@%2\n" \
340 " .fillinsn\n" \
341 "2: st %L1,@(4,%2)\n" \
342 " .fillinsn\n" \
343 "3:\n" \
344 ".section .fixup,\"ax\"\n" \
345 " .balign 4\n" \
346 "4: ldi %0,%3\n" \
347 " seth r14,#high(3b)\n" \
348 " or3 r14,r14,#low(3b)\n" \
349 " jmp r14\n" \
350 ".previous\n" \
351 ".section __ex_table,\"a\"\n" \
352 " .balign 4\n" \
353 " .long 1b,4b\n" \
354 " .long 2b,4b\n" \
355 ".previous" \
356 : "=r"(err) \
357 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
358 : "r14", "memory")
359#else
360#error no endian defined
361#endif
362
363#define __put_user_size(x,ptr,size,retval) \
364do { \
365 retval = 0; \
366 __chk_user_ptr(ptr); \
367 switch (size) { \
368 case 1: __put_user_asm(x,ptr,retval,"b"); break; \
369 case 2: __put_user_asm(x,ptr,retval,"h"); break; \
370 case 4: __put_user_asm(x,ptr,retval,""); break; \
371 case 8: __put_user_u64((__typeof__(*ptr))(x),ptr,retval); break;\
372 default: __put_user_bad(); \
373 } \
374} while (0)
375
376struct __large_struct { unsigned long buf[100]; };
377#define __m(x) (*(struct __large_struct *)(x))
378
379/*
380 * Tell gcc we read from memory instead of writing: this is because
381 * we do not write to any memory gcc knows about, so there are no
382 * aliasing issues.
383 */
384#define __put_user_asm(x, addr, err, itype) \
385 __asm__ __volatile__( \
386 " .fillinsn\n" \
387 "1: st"itype" %1,@%2\n" \
388 " .fillinsn\n" \
389 "2:\n" \
390 ".section .fixup,\"ax\"\n" \
391 " .balign 4\n" \
392 "3: ldi %0,%3\n" \
393 " seth r14,#high(2b)\n" \
394 " or3 r14,r14,#low(2b)\n" \
395 " jmp r14\n" \
396 ".previous\n" \
397 ".section __ex_table,\"a\"\n" \
398 " .balign 4\n" \
399 " .long 1b,3b\n" \
400 ".previous" \
401 : "=r"(err) \
402 : "r"(x), "r"(addr), "i"(-EFAULT), "0"(err) \
403 : "r14", "memory")
404
405#define __get_user_nocheck(x,ptr,size) \
406({ \
a880948b
AV
407 long __gu_err; \
408 unsigned long __gu_val; \
1da177e4
LT
409 __get_user_size(__gu_val,(ptr),(size),__gu_err); \
410 (x) = (__typeof__(*(ptr)))__gu_val; \
411 __gu_err; \
412})
413
414extern long __get_user_bad(void);
415
416#define __get_user_size(x,ptr,size,retval) \
417do { \
418 retval = 0; \
419 __chk_user_ptr(ptr); \
420 switch (size) { \
421 case 1: __get_user_asm(x,ptr,retval,"ub"); break; \
422 case 2: __get_user_asm(x,ptr,retval,"uh"); break; \
423 case 4: __get_user_asm(x,ptr,retval,""); break; \
424 default: (x) = __get_user_bad(); \
425 } \
426} while (0)
427
428#define __get_user_asm(x, addr, err, itype) \
429 __asm__ __volatile__( \
430 " .fillinsn\n" \
431 "1: ld"itype" %1,@%2\n" \
432 " .fillinsn\n" \
433 "2:\n" \
434 ".section .fixup,\"ax\"\n" \
435 " .balign 4\n" \
436 "3: ldi %0,%3\n" \
437 " seth r14,#high(2b)\n" \
438 " or3 r14,r14,#low(2b)\n" \
439 " jmp r14\n" \
440 ".previous\n" \
441 ".section __ex_table,\"a\"\n" \
442 " .balign 4\n" \
443 " .long 1b,3b\n" \
444 ".previous" \
445 : "=r"(err), "=&r"(x) \
446 : "r"(addr), "i"(-EFAULT), "0"(err) \
447 : "r14", "memory")
448
449/*
450 * Here we special-case 1, 2 and 4-byte copy_*_user invocations. On a fault
451 * we return the initial request size (1, 2 or 4), as copy_*_user should do.
452 * If a store crosses a page boundary and gets a fault, the m32r will not write
453 * anything, so this is accurate.
454 */
455
456
457/*
458 * Copy To/From Userspace
459 */
460
461/* Generic arbitrary sized copy. */
462/* Return the number of bytes NOT copied. */
463#define __copy_user(to,from,size) \
464do { \
465 unsigned long __dst, __src, __c; \
466 __asm__ __volatile__ ( \
467 " mv r14, %0\n" \
468 " or r14, %1\n" \
469 " beq %0, %1, 9f\n" \
470 " beqz %2, 9f\n" \
471 " and3 r14, r14, #3\n" \
472 " bnez r14, 2f\n" \
473 " and3 %2, %2, #3\n" \
474 " beqz %3, 2f\n" \
475 " addi %0, #-4 ; word_copy \n" \
476 " .fillinsn\n" \
477 "0: ld r14, @%1+\n" \
478 " addi %3, #-1\n" \
479 " .fillinsn\n" \
480 "1: st r14, @+%0\n" \
481 " bnez %3, 0b\n" \
482 " beqz %2, 9f\n" \
483 " addi %0, #4\n" \
484 " .fillinsn\n" \
485 "2: ldb r14, @%1 ; byte_copy \n" \
486 " .fillinsn\n" \
487 "3: stb r14, @%0\n" \
488 " addi %1, #1\n" \
489 " addi %2, #-1\n" \
490 " addi %0, #1\n" \
491 " bnez %2, 2b\n" \
492 " .fillinsn\n" \
493 "9:\n" \
494 ".section .fixup,\"ax\"\n" \
495 " .balign 4\n" \
496 "5: addi %3, #1\n" \
497 " addi %1, #-4\n" \
498 " .fillinsn\n" \
499 "6: slli %3, #2\n" \
500 " add %2, %3\n" \
501 " addi %0, #4\n" \
502 " .fillinsn\n" \
503 "7: seth r14, #high(9b)\n" \
504 " or3 r14, r14, #low(9b)\n" \
505 " jmp r14\n" \
506 ".previous\n" \
507 ".section __ex_table,\"a\"\n" \
508 " .balign 4\n" \
509 " .long 0b,6b\n" \
510 " .long 1b,5b\n" \
511 " .long 2b,9b\n" \
512 " .long 3b,9b\n" \
513 ".previous\n" \
514 : "=&r"(__dst), "=&r"(__src), "=&r"(size), "=&r"(__c) \
515 : "0"(to), "1"(from), "2"(size), "3"(size / 4) \
516 : "r14", "memory"); \
517} while (0)
518
519#define __copy_user_zeroing(to,from,size) \
520do { \
521 unsigned long __dst, __src, __c; \
522 __asm__ __volatile__ ( \
523 " mv r14, %0\n" \
524 " or r14, %1\n" \
525 " beq %0, %1, 9f\n" \
526 " beqz %2, 9f\n" \
527 " and3 r14, r14, #3\n" \
528 " bnez r14, 2f\n" \
529 " and3 %2, %2, #3\n" \
530 " beqz %3, 2f\n" \
531 " addi %0, #-4 ; word_copy \n" \
532 " .fillinsn\n" \
533 "0: ld r14, @%1+\n" \
534 " addi %3, #-1\n" \
535 " .fillinsn\n" \
536 "1: st r14, @+%0\n" \
537 " bnez %3, 0b\n" \
538 " beqz %2, 9f\n" \
539 " addi %0, #4\n" \
540 " .fillinsn\n" \
541 "2: ldb r14, @%1 ; byte_copy \n" \
542 " .fillinsn\n" \
543 "3: stb r14, @%0\n" \
544 " addi %1, #1\n" \
545 " addi %2, #-1\n" \
546 " addi %0, #1\n" \
547 " bnez %2, 2b\n" \
548 " .fillinsn\n" \
549 "9:\n" \
550 ".section .fixup,\"ax\"\n" \
551 " .balign 4\n" \
552 "5: addi %3, #1\n" \
553 " addi %1, #-4\n" \
554 " .fillinsn\n" \
555 "6: slli %3, #2\n" \
556 " add %2, %3\n" \
557 " addi %0, #4\n" \
558 " .fillinsn\n" \
559 "7: ldi r14, #0 ; store zero \n" \
560 " .fillinsn\n" \
561 "8: addi %2, #-1\n" \
562 " stb r14, @%0 ; ACE? \n" \
563 " addi %0, #1\n" \
564 " bnez %2, 8b\n" \
565 " seth r14, #high(9b)\n" \
566 " or3 r14, r14, #low(9b)\n" \
567 " jmp r14\n" \
568 ".previous\n" \
569 ".section __ex_table,\"a\"\n" \
570 " .balign 4\n" \
571 " .long 0b,6b\n" \
572 " .long 1b,5b\n" \
573 " .long 2b,7b\n" \
574 " .long 3b,7b\n" \
575 ".previous\n" \
576 : "=&r"(__dst), "=&r"(__src), "=&r"(size), "=&r"(__c) \
577 : "0"(to), "1"(from), "2"(size), "3"(size / 4) \
578 : "r14", "memory"); \
579} while (0)
580
581
582/* We let the __ versions of copy_from/to_user inline, because they're often
583 * used in fast paths and have only a small space overhead.
584 */
585static inline unsigned long __generic_copy_from_user_nocheck(void *to,
586 const void __user *from, unsigned long n)
587{
588 __copy_user_zeroing(to,from,n);
589 return n;
590}
591
592static inline unsigned long __generic_copy_to_user_nocheck(void __user *to,
593 const void *from, unsigned long n)
594{
595 __copy_user(to,from,n);
596 return n;
597}
598
a880948b
AV
599unsigned long __generic_copy_to_user(void __user *, const void *, unsigned long);
600unsigned long __generic_copy_from_user(void *, const void __user *, unsigned long);
1da177e4
LT
601
602/**
603 * __copy_to_user: - Copy a block of data into user space, with less checking.
604 * @to: Destination address, in user space.
605 * @from: Source address, in kernel space.
606 * @n: Number of bytes to copy.
607 *
608 * Context: User context only. This function may sleep.
609 *
610 * Copy data from kernel space to user space. Caller must check
611 * the specified block with access_ok() before calling this function.
612 *
613 * Returns number of bytes that could not be copied.
614 * On success, this will be zero.
615 */
616#define __copy_to_user(to,from,n) \
617 __generic_copy_to_user_nocheck((to),(from),(n))
618
619#define __copy_to_user_inatomic __copy_to_user
620#define __copy_from_user_inatomic __copy_from_user
621
622/**
623 * copy_to_user: - Copy a block of data into user space.
624 * @to: Destination address, in user space.
625 * @from: Source address, in kernel space.
626 * @n: Number of bytes to copy.
627 *
628 * Context: User context only. This function may sleep.
629 *
630 * Copy data from kernel space to user space.
631 *
632 * Returns number of bytes that could not be copied.
633 * On success, this will be zero.
634 */
635#define copy_to_user(to,from,n) \
636({ \
637 might_sleep(); \
638 __generic_copy_to_user((to),(from),(n)); \
639})
640
641/**
642 * __copy_from_user: - Copy a block of data from user space, with less checking. * @to: Destination address, in kernel space.
643 * @from: Source address, in user space.
644 * @n: Number of bytes to copy.
645 *
646 * Context: User context only. This function may sleep.
647 *
648 * Copy data from user space to kernel space. Caller must check
649 * the specified block with access_ok() before calling this function.
650 *
651 * Returns number of bytes that could not be copied.
652 * On success, this will be zero.
653 *
654 * If some data could not be copied, this function will pad the copied
655 * data to the requested size using zero bytes.
656 */
657#define __copy_from_user(to,from,n) \
658 __generic_copy_from_user_nocheck((to),(from),(n))
659
660/**
661 * copy_from_user: - Copy a block of data from user space.
662 * @to: Destination address, in kernel space.
663 * @from: Source address, in user space.
664 * @n: Number of bytes to copy.
665 *
666 * Context: User context only. This function may sleep.
667 *
668 * Copy data from user space to kernel space.
669 *
670 * Returns number of bytes that could not be copied.
671 * On success, this will be zero.
672 *
673 * If some data could not be copied, this function will pad the copied
674 * data to the requested size using zero bytes.
675 */
676#define copy_from_user(to,from,n) \
677({ \
678 might_sleep(); \
679__generic_copy_from_user((to),(from),(n)); \
680})
681
682long __must_check strncpy_from_user(char *dst, const char __user *src,
683 long count);
684long __must_check __strncpy_from_user(char *dst,
685 const char __user *src, long count);
686
687/**
688 * __clear_user: - Zero a block of memory in user space, with less checking.
689 * @to: Destination address, in user space.
690 * @n: Number of bytes to zero.
691 *
692 * Zero a block of memory in user space. Caller must check
693 * the specified block with access_ok() before calling this function.
694 *
695 * Returns number of bytes that could not be cleared.
696 * On success, this will be zero.
697 */
698unsigned long __clear_user(void __user *mem, unsigned long len);
699
700/**
701 * clear_user: - Zero a block of memory in user space.
702 * @to: Destination address, in user space.
703 * @n: Number of bytes to zero.
704 *
705 * Zero a block of memory in user space. Caller must check
706 * the specified block with access_ok() before calling this function.
707 *
708 * Returns number of bytes that could not be cleared.
709 * On success, this will be zero.
710 */
711unsigned long clear_user(void __user *mem, unsigned long len);
712
713/**
714 * strlen_user: - Get the size of a string in user space.
715 * @str: The string to measure.
716 *
717 * Context: User context only. This function may sleep.
718 *
719 * Get the size of a NUL-terminated string in user space.
720 *
721 * Returns the size of the string INCLUDING the terminating NUL.
722 * On exception, returns 0.
723 *
724 * If there is a limit on the length of a valid string, you may wish to
725 * consider using strnlen_user() instead.
726 */
727#define strlen_user(str) strnlen_user(str, ~0UL >> 1)
728long strnlen_user(const char __user *str, long n);
729
730#endif /* _ASM_M32R_UACCESS_H */