attr: handle idmapped mounts
[linux-block.git] / fs / zonefs / super.c
CommitLineData
8dcc1a9d
DLM
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Simple file system for zoned block devices exposing zones as files.
4 *
5 * Copyright (C) 2019 Western Digital Corporation or its affiliates.
6 */
7#include <linux/module.h>
8#include <linux/fs.h>
9#include <linux/magic.h>
10#include <linux/iomap.h>
11#include <linux/init.h>
12#include <linux/slab.h>
13#include <linux/blkdev.h>
14#include <linux/statfs.h>
15#include <linux/writeback.h>
16#include <linux/quotaops.h>
17#include <linux/seq_file.h>
18#include <linux/parser.h>
19#include <linux/uio.h>
20#include <linux/mman.h>
21#include <linux/sched/mm.h>
22#include <linux/crc32.h>
02ef12a6 23#include <linux/task_io_accounting_ops.h>
8dcc1a9d
DLM
24
25#include "zonefs.h"
26
5498d5f9
JT
27static inline int zonefs_zone_mgmt(struct inode *inode,
28 enum req_opf op)
29{
30 struct zonefs_inode_info *zi = ZONEFS_I(inode);
31 int ret;
32
33 lockdep_assert_held(&zi->i_truncate_mutex);
34
35 ret = blkdev_zone_mgmt(inode->i_sb->s_bdev, op, zi->i_zsector,
36 zi->i_zone_size >> SECTOR_SHIFT, GFP_NOFS);
37 if (ret) {
38 zonefs_err(inode->i_sb,
39 "Zone management operation %s at %llu failed %d\n",
40 blk_op_str(op), zi->i_zsector, ret);
41 return ret;
42 }
43
44 return 0;
45}
46
b5c00e97
JT
47static inline void zonefs_i_size_write(struct inode *inode, loff_t isize)
48{
49 struct zonefs_inode_info *zi = ZONEFS_I(inode);
50
51 i_size_write(inode, isize);
52 /*
53 * A full zone is no longer open/active and does not need
54 * explicit closing.
55 */
56 if (isize >= zi->i_max_size)
57 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
58}
59
8dcc1a9d
DLM
60static int zonefs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
61 unsigned int flags, struct iomap *iomap,
62 struct iomap *srcmap)
63{
64 struct zonefs_inode_info *zi = ZONEFS_I(inode);
65 struct super_block *sb = inode->i_sb;
66 loff_t isize;
67
68 /* All I/Os should always be within the file maximum size */
69 if (WARN_ON_ONCE(offset + length > zi->i_max_size))
70 return -EIO;
71
72 /*
73 * Sequential zones can only accept direct writes. This is already
74 * checked when writes are issued, so warn if we see a page writeback
75 * operation.
76 */
77 if (WARN_ON_ONCE(zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
78 (flags & IOMAP_WRITE) && !(flags & IOMAP_DIRECT)))
79 return -EIO;
80
81 /*
82 * For conventional zones, all blocks are always mapped. For sequential
83 * zones, all blocks after always mapped below the inode size (zone
84 * write pointer) and unwriten beyond.
85 */
86 mutex_lock(&zi->i_truncate_mutex);
87 isize = i_size_read(inode);
88 if (offset >= isize)
89 iomap->type = IOMAP_UNWRITTEN;
90 else
91 iomap->type = IOMAP_MAPPED;
92 if (flags & IOMAP_WRITE)
93 length = zi->i_max_size - offset;
94 else
95 length = min(length, isize - offset);
96 mutex_unlock(&zi->i_truncate_mutex);
97
98 iomap->offset = ALIGN_DOWN(offset, sb->s_blocksize);
99 iomap->length = ALIGN(offset + length, sb->s_blocksize) - iomap->offset;
100 iomap->bdev = inode->i_sb->s_bdev;
101 iomap->addr = (zi->i_zsector << SECTOR_SHIFT) + iomap->offset;
102
103 return 0;
104}
105
106static const struct iomap_ops zonefs_iomap_ops = {
107 .iomap_begin = zonefs_iomap_begin,
108};
109
110static int zonefs_readpage(struct file *unused, struct page *page)
111{
112 return iomap_readpage(page, &zonefs_iomap_ops);
113}
114
9d24a13a 115static void zonefs_readahead(struct readahead_control *rac)
8dcc1a9d 116{
9d24a13a 117 iomap_readahead(rac, &zonefs_iomap_ops);
8dcc1a9d
DLM
118}
119
120/*
121 * Map blocks for page writeback. This is used only on conventional zone files,
122 * which implies that the page range can only be within the fixed inode size.
123 */
124static int zonefs_map_blocks(struct iomap_writepage_ctx *wpc,
125 struct inode *inode, loff_t offset)
126{
127 struct zonefs_inode_info *zi = ZONEFS_I(inode);
128
129 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
130 return -EIO;
131 if (WARN_ON_ONCE(offset >= i_size_read(inode)))
132 return -EIO;
133
134 /* If the mapping is already OK, nothing needs to be done */
135 if (offset >= wpc->iomap.offset &&
136 offset < wpc->iomap.offset + wpc->iomap.length)
137 return 0;
138
139 return zonefs_iomap_begin(inode, offset, zi->i_max_size - offset,
140 IOMAP_WRITE, &wpc->iomap, NULL);
141}
142
143static const struct iomap_writeback_ops zonefs_writeback_ops = {
144 .map_blocks = zonefs_map_blocks,
145};
146
147static int zonefs_writepage(struct page *page, struct writeback_control *wbc)
148{
149 struct iomap_writepage_ctx wpc = { };
150
151 return iomap_writepage(page, wbc, &wpc, &zonefs_writeback_ops);
152}
153
154static int zonefs_writepages(struct address_space *mapping,
155 struct writeback_control *wbc)
156{
157 struct iomap_writepage_ctx wpc = { };
158
159 return iomap_writepages(mapping, wbc, &wpc, &zonefs_writeback_ops);
160}
161
162static const struct address_space_operations zonefs_file_aops = {
163 .readpage = zonefs_readpage,
9d24a13a 164 .readahead = zonefs_readahead,
8dcc1a9d
DLM
165 .writepage = zonefs_writepage,
166 .writepages = zonefs_writepages,
167 .set_page_dirty = iomap_set_page_dirty,
168 .releasepage = iomap_releasepage,
169 .invalidatepage = iomap_invalidatepage,
170 .migratepage = iomap_migrate_page,
171 .is_partially_uptodate = iomap_is_partially_uptodate,
172 .error_remove_page = generic_error_remove_page,
173 .direct_IO = noop_direct_IO,
174};
175
176static void zonefs_update_stats(struct inode *inode, loff_t new_isize)
177{
178 struct super_block *sb = inode->i_sb;
179 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
180 loff_t old_isize = i_size_read(inode);
181 loff_t nr_blocks;
182
183 if (new_isize == old_isize)
184 return;
185
186 spin_lock(&sbi->s_lock);
187
188 /*
189 * This may be called for an update after an IO error.
190 * So beware of the values seen.
191 */
192 if (new_isize < old_isize) {
193 nr_blocks = (old_isize - new_isize) >> sb->s_blocksize_bits;
194 if (sbi->s_used_blocks > nr_blocks)
195 sbi->s_used_blocks -= nr_blocks;
196 else
197 sbi->s_used_blocks = 0;
198 } else {
199 sbi->s_used_blocks +=
200 (new_isize - old_isize) >> sb->s_blocksize_bits;
201 if (sbi->s_used_blocks > sbi->s_blocks)
202 sbi->s_used_blocks = sbi->s_blocks;
203 }
204
205 spin_unlock(&sbi->s_lock);
206}
207
208/*
209 * Check a zone condition and adjust its file inode access permissions for
210 * offline and readonly zones. Return the inode size corresponding to the
211 * amount of readable data in the zone.
212 */
213static loff_t zonefs_check_zone_condition(struct inode *inode,
ccf4ad7d
DLM
214 struct blk_zone *zone, bool warn,
215 bool mount)
8dcc1a9d
DLM
216{
217 struct zonefs_inode_info *zi = ZONEFS_I(inode);
218
219 switch (zone->cond) {
220 case BLK_ZONE_COND_OFFLINE:
221 /*
222 * Dead zone: make the inode immutable, disable all accesses
223 * and set the file size to 0 (zone wp set to zone start).
224 */
225 if (warn)
226 zonefs_warn(inode->i_sb, "inode %lu: offline zone\n",
227 inode->i_ino);
228 inode->i_flags |= S_IMMUTABLE;
229 inode->i_mode &= ~0777;
230 zone->wp = zone->start;
231 return 0;
232 case BLK_ZONE_COND_READONLY:
ccf4ad7d
DLM
233 /*
234 * The write pointer of read-only zones is invalid. If such a
235 * zone is found during mount, the file size cannot be retrieved
236 * so we treat the zone as offline (mount == true case).
237 * Otherwise, keep the file size as it was when last updated
238 * so that the user can recover data. In both cases, writes are
239 * always disabled for the zone.
240 */
8dcc1a9d
DLM
241 if (warn)
242 zonefs_warn(inode->i_sb, "inode %lu: read-only zone\n",
243 inode->i_ino);
244 inode->i_flags |= S_IMMUTABLE;
ccf4ad7d
DLM
245 if (mount) {
246 zone->cond = BLK_ZONE_COND_OFFLINE;
247 inode->i_mode &= ~0777;
248 zone->wp = zone->start;
249 return 0;
250 }
8dcc1a9d 251 inode->i_mode &= ~0222;
ccf4ad7d 252 return i_size_read(inode);
8dcc1a9d
DLM
253 default:
254 if (zi->i_ztype == ZONEFS_ZTYPE_CNV)
255 return zi->i_max_size;
256 return (zone->wp - zone->start) << SECTOR_SHIFT;
257 }
258}
259
260struct zonefs_ioerr_data {
261 struct inode *inode;
262 bool write;
263};
264
265static int zonefs_io_error_cb(struct blk_zone *zone, unsigned int idx,
266 void *data)
267{
268 struct zonefs_ioerr_data *err = data;
269 struct inode *inode = err->inode;
270 struct zonefs_inode_info *zi = ZONEFS_I(inode);
271 struct super_block *sb = inode->i_sb;
272 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
273 loff_t isize, data_size;
274
275 /*
276 * Check the zone condition: if the zone is not "bad" (offline or
277 * read-only), read errors are simply signaled to the IO issuer as long
278 * as there is no inconsistency between the inode size and the amount of
279 * data writen in the zone (data_size).
280 */
ccf4ad7d 281 data_size = zonefs_check_zone_condition(inode, zone, true, false);
8dcc1a9d
DLM
282 isize = i_size_read(inode);
283 if (zone->cond != BLK_ZONE_COND_OFFLINE &&
284 zone->cond != BLK_ZONE_COND_READONLY &&
285 !err->write && isize == data_size)
286 return 0;
287
288 /*
289 * At this point, we detected either a bad zone or an inconsistency
290 * between the inode size and the amount of data written in the zone.
291 * For the latter case, the cause may be a write IO error or an external
292 * action on the device. Two error patterns exist:
293 * 1) The inode size is lower than the amount of data in the zone:
294 * a write operation partially failed and data was writen at the end
295 * of the file. This can happen in the case of a large direct IO
296 * needing several BIOs and/or write requests to be processed.
297 * 2) The inode size is larger than the amount of data in the zone:
298 * this can happen with a deferred write error with the use of the
299 * device side write cache after getting successful write IO
300 * completions. Other possibilities are (a) an external corruption,
301 * e.g. an application reset the zone directly, or (b) the device
302 * has a serious problem (e.g. firmware bug).
303 *
304 * In all cases, warn about inode size inconsistency and handle the
305 * IO error according to the zone condition and to the mount options.
306 */
307 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && isize != data_size)
308 zonefs_warn(sb, "inode %lu: invalid size %lld (should be %lld)\n",
309 inode->i_ino, isize, data_size);
310
311 /*
312 * First handle bad zones signaled by hardware. The mount options
313 * errors=zone-ro and errors=zone-offline result in changing the
314 * zone condition to read-only and offline respectively, as if the
315 * condition was signaled by the hardware.
316 */
317 if (zone->cond == BLK_ZONE_COND_OFFLINE ||
318 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL) {
319 zonefs_warn(sb, "inode %lu: read/write access disabled\n",
320 inode->i_ino);
321 if (zone->cond != BLK_ZONE_COND_OFFLINE) {
322 zone->cond = BLK_ZONE_COND_OFFLINE;
323 data_size = zonefs_check_zone_condition(inode, zone,
ccf4ad7d 324 false, false);
8dcc1a9d
DLM
325 }
326 } else if (zone->cond == BLK_ZONE_COND_READONLY ||
327 sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO) {
328 zonefs_warn(sb, "inode %lu: write access disabled\n",
329 inode->i_ino);
330 if (zone->cond != BLK_ZONE_COND_READONLY) {
331 zone->cond = BLK_ZONE_COND_READONLY;
332 data_size = zonefs_check_zone_condition(inode, zone,
ccf4ad7d 333 false, false);
8dcc1a9d
DLM
334 }
335 }
336
b5c00e97
JT
337 /*
338 * If the filesystem is mounted with the explicit-open mount option, we
339 * need to clear the ZONEFS_ZONE_OPEN flag if the zone transitioned to
340 * the read-only or offline condition, to avoid attempting an explicit
341 * close of the zone when the inode file is closed.
342 */
343 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) &&
344 (zone->cond == BLK_ZONE_COND_OFFLINE ||
345 zone->cond == BLK_ZONE_COND_READONLY))
346 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
347
8dcc1a9d
DLM
348 /*
349 * If error=remount-ro was specified, any error result in remounting
350 * the volume as read-only.
351 */
352 if ((sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO) && !sb_rdonly(sb)) {
353 zonefs_warn(sb, "remounting filesystem read-only\n");
354 sb->s_flags |= SB_RDONLY;
355 }
356
357 /*
358 * Update block usage stats and the inode size to prevent access to
359 * invalid data.
360 */
361 zonefs_update_stats(inode, data_size);
b5c00e97 362 zonefs_i_size_write(inode, data_size);
8dcc1a9d
DLM
363 zi->i_wpoffset = data_size;
364
365 return 0;
366}
367
368/*
369 * When an file IO error occurs, check the file zone to see if there is a change
370 * in the zone condition (e.g. offline or read-only). For a failed write to a
371 * sequential zone, the zone write pointer position must also be checked to
372 * eventually correct the file size and zonefs inode write pointer offset
373 * (which can be out of sync with the drive due to partial write failures).
374 */
48d546a8 375static void __zonefs_io_error(struct inode *inode, bool write)
8dcc1a9d
DLM
376{
377 struct zonefs_inode_info *zi = ZONEFS_I(inode);
378 struct super_block *sb = inode->i_sb;
379 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
380 unsigned int noio_flag;
381 unsigned int nr_zones =
e3c3155b 382 zi->i_zone_size >> (sbi->s_zone_sectors_shift + SECTOR_SHIFT);
8dcc1a9d
DLM
383 struct zonefs_ioerr_data err = {
384 .inode = inode,
385 .write = write,
386 };
387 int ret;
388
8dcc1a9d
DLM
389 /*
390 * Memory allocations in blkdev_report_zones() can trigger a memory
391 * reclaim which may in turn cause a recursion into zonefs as well as
392 * struct request allocations for the same device. The former case may
393 * end up in a deadlock on the inode truncate mutex, while the latter
394 * may prevent IO forward progress. Executing the report zones under
395 * the GFP_NOIO context avoids both problems.
396 */
397 noio_flag = memalloc_noio_save();
398 ret = blkdev_report_zones(sb->s_bdev, zi->i_zsector, nr_zones,
399 zonefs_io_error_cb, &err);
400 if (ret != nr_zones)
401 zonefs_err(sb, "Get inode %lu zone information failed %d\n",
402 inode->i_ino, ret);
403 memalloc_noio_restore(noio_flag);
48d546a8 404}
8dcc1a9d 405
48d546a8
JT
406static void zonefs_io_error(struct inode *inode, bool write)
407{
408 struct zonefs_inode_info *zi = ZONEFS_I(inode);
409
410 mutex_lock(&zi->i_truncate_mutex);
411 __zonefs_io_error(inode, write);
8dcc1a9d
DLM
412 mutex_unlock(&zi->i_truncate_mutex);
413}
414
415static int zonefs_file_truncate(struct inode *inode, loff_t isize)
416{
417 struct zonefs_inode_info *zi = ZONEFS_I(inode);
418 loff_t old_isize;
419 enum req_opf op;
420 int ret = 0;
421
422 /*
423 * Only sequential zone files can be truncated and truncation is allowed
424 * only down to a 0 size, which is equivalent to a zone reset, and to
425 * the maximum file size, which is equivalent to a zone finish.
426 */
427 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
428 return -EPERM;
429
430 if (!isize)
431 op = REQ_OP_ZONE_RESET;
432 else if (isize == zi->i_max_size)
433 op = REQ_OP_ZONE_FINISH;
434 else
435 return -EPERM;
436
437 inode_dio_wait(inode);
438
439 /* Serialize against page faults */
440 down_write(&zi->i_mmap_sem);
441
442 /* Serialize against zonefs_iomap_begin() */
443 mutex_lock(&zi->i_truncate_mutex);
444
445 old_isize = i_size_read(inode);
446 if (isize == old_isize)
447 goto unlock;
448
5498d5f9
JT
449 ret = zonefs_zone_mgmt(inode, op);
450 if (ret)
8dcc1a9d 451 goto unlock;
8dcc1a9d 452
b5c00e97
JT
453 /*
454 * If the mount option ZONEFS_MNTOPT_EXPLICIT_OPEN is set,
455 * take care of open zones.
456 */
457 if (zi->i_flags & ZONEFS_ZONE_OPEN) {
458 /*
459 * Truncating a zone to EMPTY or FULL is the equivalent of
460 * closing the zone. For a truncation to 0, we need to
461 * re-open the zone to ensure new writes can be processed.
462 * For a truncation to the maximum file size, the zone is
463 * closed and writes cannot be accepted anymore, so clear
464 * the open flag.
465 */
466 if (!isize)
467 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
468 else
469 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
470 }
471
8dcc1a9d
DLM
472 zonefs_update_stats(inode, isize);
473 truncate_setsize(inode, isize);
474 zi->i_wpoffset = isize;
475
476unlock:
477 mutex_unlock(&zi->i_truncate_mutex);
478 up_write(&zi->i_mmap_sem);
479
480 return ret;
481}
482
483static int zonefs_inode_setattr(struct dentry *dentry, struct iattr *iattr)
484{
485 struct inode *inode = d_inode(dentry);
486 int ret;
487
488 if (unlikely(IS_IMMUTABLE(inode)))
489 return -EPERM;
490
2f221d6f 491 ret = setattr_prepare(&init_user_ns, dentry, iattr);
8dcc1a9d
DLM
492 if (ret)
493 return ret;
494
495 /*
496 * Since files and directories cannot be created nor deleted, do not
497 * allow setting any write attributes on the sub-directories grouping
498 * files by zone type.
499 */
500 if ((iattr->ia_valid & ATTR_MODE) && S_ISDIR(inode->i_mode) &&
501 (iattr->ia_mode & 0222))
502 return -EPERM;
503
504 if (((iattr->ia_valid & ATTR_UID) &&
505 !uid_eq(iattr->ia_uid, inode->i_uid)) ||
506 ((iattr->ia_valid & ATTR_GID) &&
507 !gid_eq(iattr->ia_gid, inode->i_gid))) {
508 ret = dquot_transfer(inode, iattr);
509 if (ret)
510 return ret;
511 }
512
513 if (iattr->ia_valid & ATTR_SIZE) {
514 ret = zonefs_file_truncate(inode, iattr->ia_size);
515 if (ret)
516 return ret;
517 }
518
2f221d6f 519 setattr_copy(&init_user_ns, inode, iattr);
8dcc1a9d
DLM
520
521 return 0;
522}
523
524static const struct inode_operations zonefs_file_inode_operations = {
525 .setattr = zonefs_inode_setattr,
526};
527
528static int zonefs_file_fsync(struct file *file, loff_t start, loff_t end,
529 int datasync)
530{
531 struct inode *inode = file_inode(file);
532 int ret = 0;
533
534 if (unlikely(IS_IMMUTABLE(inode)))
535 return -EPERM;
536
537 /*
538 * Since only direct writes are allowed in sequential files, page cache
539 * flush is needed only for conventional zone files.
540 */
541 if (ZONEFS_I(inode)->i_ztype == ZONEFS_ZTYPE_CNV)
542 ret = file_write_and_wait_range(file, start, end);
543 if (!ret)
9398554f 544 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL);
8dcc1a9d
DLM
545
546 if (ret)
547 zonefs_io_error(inode, true);
548
549 return ret;
550}
551
552static vm_fault_t zonefs_filemap_fault(struct vm_fault *vmf)
553{
554 struct zonefs_inode_info *zi = ZONEFS_I(file_inode(vmf->vma->vm_file));
555 vm_fault_t ret;
556
557 down_read(&zi->i_mmap_sem);
558 ret = filemap_fault(vmf);
559 up_read(&zi->i_mmap_sem);
560
561 return ret;
562}
563
564static vm_fault_t zonefs_filemap_page_mkwrite(struct vm_fault *vmf)
565{
566 struct inode *inode = file_inode(vmf->vma->vm_file);
567 struct zonefs_inode_info *zi = ZONEFS_I(inode);
568 vm_fault_t ret;
569
570 if (unlikely(IS_IMMUTABLE(inode)))
571 return VM_FAULT_SIGBUS;
572
573 /*
574 * Sanity check: only conventional zone files can have shared
575 * writeable mappings.
576 */
577 if (WARN_ON_ONCE(zi->i_ztype != ZONEFS_ZTYPE_CNV))
578 return VM_FAULT_NOPAGE;
579
580 sb_start_pagefault(inode->i_sb);
581 file_update_time(vmf->vma->vm_file);
582
583 /* Serialize against truncates */
584 down_read(&zi->i_mmap_sem);
585 ret = iomap_page_mkwrite(vmf, &zonefs_iomap_ops);
586 up_read(&zi->i_mmap_sem);
587
588 sb_end_pagefault(inode->i_sb);
589 return ret;
590}
591
592static const struct vm_operations_struct zonefs_file_vm_ops = {
593 .fault = zonefs_filemap_fault,
594 .map_pages = filemap_map_pages,
595 .page_mkwrite = zonefs_filemap_page_mkwrite,
596};
597
598static int zonefs_file_mmap(struct file *file, struct vm_area_struct *vma)
599{
600 /*
601 * Conventional zones accept random writes, so their files can support
602 * shared writable mappings. For sequential zone files, only read
603 * mappings are possible since there are no guarantees for write
604 * ordering between msync() and page cache writeback.
605 */
606 if (ZONEFS_I(file_inode(file))->i_ztype == ZONEFS_ZTYPE_SEQ &&
607 (vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
608 return -EINVAL;
609
610 file_accessed(file);
611 vma->vm_ops = &zonefs_file_vm_ops;
612
613 return 0;
614}
615
616static loff_t zonefs_file_llseek(struct file *file, loff_t offset, int whence)
617{
618 loff_t isize = i_size_read(file_inode(file));
619
620 /*
621 * Seeks are limited to below the zone size for conventional zones
622 * and below the zone write pointer for sequential zones. In both
623 * cases, this limit is the inode size.
624 */
625 return generic_file_llseek_size(file, offset, whence, isize, isize);
626}
627
628static int zonefs_file_write_dio_end_io(struct kiocb *iocb, ssize_t size,
629 int error, unsigned int flags)
630{
631 struct inode *inode = file_inode(iocb->ki_filp);
632 struct zonefs_inode_info *zi = ZONEFS_I(inode);
633
634 if (error) {
635 zonefs_io_error(inode, true);
636 return error;
637 }
638
639 if (size && zi->i_ztype != ZONEFS_ZTYPE_CNV) {
640 /*
641 * Note that we may be seeing completions out of order,
642 * but that is not a problem since a write completed
643 * successfully necessarily means that all preceding writes
644 * were also successful. So we can safely increase the inode
645 * size to the write end location.
646 */
647 mutex_lock(&zi->i_truncate_mutex);
648 if (i_size_read(inode) < iocb->ki_pos + size) {
649 zonefs_update_stats(inode, iocb->ki_pos + size);
b5c00e97 650 zonefs_i_size_write(inode, iocb->ki_pos + size);
8dcc1a9d
DLM
651 }
652 mutex_unlock(&zi->i_truncate_mutex);
653 }
654
655 return 0;
656}
657
658static const struct iomap_dio_ops zonefs_write_dio_ops = {
659 .end_io = zonefs_file_write_dio_end_io,
660};
661
02ef12a6
JT
662static ssize_t zonefs_file_dio_append(struct kiocb *iocb, struct iov_iter *from)
663{
664 struct inode *inode = file_inode(iocb->ki_filp);
665 struct zonefs_inode_info *zi = ZONEFS_I(inode);
666 struct block_device *bdev = inode->i_sb->s_bdev;
667 unsigned int max;
668 struct bio *bio;
669 ssize_t size;
670 int nr_pages;
671 ssize_t ret;
672
02ef12a6
JT
673 max = queue_max_zone_append_sectors(bdev_get_queue(bdev));
674 max = ALIGN_DOWN(max << SECTOR_SHIFT, inode->i_sb->s_blocksize);
675 iov_iter_truncate(from, max);
676
89ee7237
JT
677 nr_pages = iov_iter_npages(from, BIO_MAX_PAGES);
678 if (!nr_pages)
679 return 0;
680
02ef12a6
JT
681 bio = bio_alloc_bioset(GFP_NOFS, nr_pages, &fs_bio_set);
682 if (!bio)
683 return -ENOMEM;
684
685 bio_set_dev(bio, bdev);
686 bio->bi_iter.bi_sector = zi->i_zsector;
687 bio->bi_write_hint = iocb->ki_hint;
688 bio->bi_ioprio = iocb->ki_ioprio;
689 bio->bi_opf = REQ_OP_ZONE_APPEND | REQ_SYNC | REQ_IDLE;
690 if (iocb->ki_flags & IOCB_DSYNC)
691 bio->bi_opf |= REQ_FUA;
692
693 ret = bio_iov_iter_get_pages(bio, from);
6bea0225
DLM
694 if (unlikely(ret))
695 goto out_release;
696
02ef12a6 697 size = bio->bi_iter.bi_size;
6bea0225 698 task_io_account_write(size);
02ef12a6
JT
699
700 if (iocb->ki_flags & IOCB_HIPRI)
701 bio_set_polled(bio, iocb);
702
703 ret = submit_bio_wait(bio);
704
6bea0225
DLM
705 zonefs_file_write_dio_end_io(iocb, size, ret, 0);
706
707out_release:
708 bio_release_pages(bio, false);
02ef12a6
JT
709 bio_put(bio);
710
02ef12a6
JT
711 if (ret >= 0) {
712 iocb->ki_pos += size;
713 return size;
714 }
715
716 return ret;
717}
718
8dcc1a9d
DLM
719/*
720 * Handle direct writes. For sequential zone files, this is the only possible
721 * write path. For these files, check that the user is issuing writes
722 * sequentially from the end of the file. This code assumes that the block layer
723 * delivers write requests to the device in sequential order. This is always the
724 * case if a block IO scheduler implementing the ELEVATOR_F_ZBD_SEQ_WRITE
725 * elevator feature is being used (e.g. mq-deadline). The block layer always
726 * automatically select such an elevator for zoned block devices during the
727 * device initialization.
728 */
729static ssize_t zonefs_file_dio_write(struct kiocb *iocb, struct iov_iter *from)
730{
731 struct inode *inode = file_inode(iocb->ki_filp);
732 struct zonefs_inode_info *zi = ZONEFS_I(inode);
733 struct super_block *sb = inode->i_sb;
02ef12a6
JT
734 bool sync = is_sync_kiocb(iocb);
735 bool append = false;
8dcc1a9d
DLM
736 size_t count;
737 ssize_t ret;
738
739 /*
7c69eb84 740 * For async direct IOs to sequential zone files, refuse IOCB_NOWAIT
8dcc1a9d
DLM
741 * as this can cause write reordering (e.g. the first aio gets EAGAIN
742 * on the inode lock but the second goes through but is now unaligned).
743 */
02ef12a6 744 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ && !sync &&
7c69eb84
CH
745 (iocb->ki_flags & IOCB_NOWAIT))
746 return -EOPNOTSUPP;
8dcc1a9d
DLM
747
748 if (iocb->ki_flags & IOCB_NOWAIT) {
749 if (!inode_trylock(inode))
750 return -EAGAIN;
751 } else {
752 inode_lock(inode);
753 }
754
755 ret = generic_write_checks(iocb, from);
756 if (ret <= 0)
757 goto inode_unlock;
758
759 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
760 count = iov_iter_count(from);
761
762 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
763 ret = -EINVAL;
764 goto inode_unlock;
765 }
766
767 /* Enforce sequential writes (append only) in sequential zones */
02ef12a6
JT
768 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ) {
769 mutex_lock(&zi->i_truncate_mutex);
770 if (iocb->ki_pos != zi->i_wpoffset) {
771 mutex_unlock(&zi->i_truncate_mutex);
772 ret = -EINVAL;
773 goto inode_unlock;
774 }
8dcc1a9d 775 mutex_unlock(&zi->i_truncate_mutex);
02ef12a6 776 append = sync;
8dcc1a9d 777 }
8dcc1a9d 778
02ef12a6
JT
779 if (append)
780 ret = zonefs_file_dio_append(iocb, from);
781 else
782 ret = iomap_dio_rw(iocb, from, &zonefs_iomap_ops,
783 &zonefs_write_dio_ops, sync);
8dcc1a9d
DLM
784 if (zi->i_ztype == ZONEFS_ZTYPE_SEQ &&
785 (ret > 0 || ret == -EIOCBQUEUED)) {
786 if (ret > 0)
787 count = ret;
788 mutex_lock(&zi->i_truncate_mutex);
789 zi->i_wpoffset += count;
790 mutex_unlock(&zi->i_truncate_mutex);
791 }
792
793inode_unlock:
794 inode_unlock(inode);
795
796 return ret;
797}
798
799static ssize_t zonefs_file_buffered_write(struct kiocb *iocb,
800 struct iov_iter *from)
801{
802 struct inode *inode = file_inode(iocb->ki_filp);
803 struct zonefs_inode_info *zi = ZONEFS_I(inode);
804 ssize_t ret;
805
806 /*
807 * Direct IO writes are mandatory for sequential zone files so that the
808 * write IO issuing order is preserved.
809 */
810 if (zi->i_ztype != ZONEFS_ZTYPE_CNV)
811 return -EIO;
812
813 if (iocb->ki_flags & IOCB_NOWAIT) {
814 if (!inode_trylock(inode))
815 return -EAGAIN;
816 } else {
817 inode_lock(inode);
818 }
819
820 ret = generic_write_checks(iocb, from);
821 if (ret <= 0)
822 goto inode_unlock;
823
824 iov_iter_truncate(from, zi->i_max_size - iocb->ki_pos);
825
826 ret = iomap_file_buffered_write(iocb, from, &zonefs_iomap_ops);
827 if (ret > 0)
828 iocb->ki_pos += ret;
829 else if (ret == -EIO)
830 zonefs_io_error(inode, true);
831
832inode_unlock:
833 inode_unlock(inode);
834 if (ret > 0)
835 ret = generic_write_sync(iocb, ret);
836
837 return ret;
838}
839
840static ssize_t zonefs_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
841{
842 struct inode *inode = file_inode(iocb->ki_filp);
843
844 if (unlikely(IS_IMMUTABLE(inode)))
845 return -EPERM;
846
847 if (sb_rdonly(inode->i_sb))
848 return -EROFS;
849
850 /* Write operations beyond the zone size are not allowed */
851 if (iocb->ki_pos >= ZONEFS_I(inode)->i_max_size)
852 return -EFBIG;
853
60263d58
CH
854 if (iocb->ki_flags & IOCB_DIRECT) {
855 ssize_t ret = zonefs_file_dio_write(iocb, from);
856 if (ret != -ENOTBLK)
857 return ret;
858 }
8dcc1a9d
DLM
859
860 return zonefs_file_buffered_write(iocb, from);
861}
862
863static int zonefs_file_read_dio_end_io(struct kiocb *iocb, ssize_t size,
864 int error, unsigned int flags)
865{
866 if (error) {
867 zonefs_io_error(file_inode(iocb->ki_filp), false);
868 return error;
869 }
870
871 return 0;
872}
873
874static const struct iomap_dio_ops zonefs_read_dio_ops = {
875 .end_io = zonefs_file_read_dio_end_io,
876};
877
878static ssize_t zonefs_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
879{
880 struct inode *inode = file_inode(iocb->ki_filp);
881 struct zonefs_inode_info *zi = ZONEFS_I(inode);
882 struct super_block *sb = inode->i_sb;
883 loff_t isize;
884 ssize_t ret;
885
886 /* Offline zones cannot be read */
887 if (unlikely(IS_IMMUTABLE(inode) && !(inode->i_mode & 0777)))
888 return -EPERM;
889
890 if (iocb->ki_pos >= zi->i_max_size)
891 return 0;
892
893 if (iocb->ki_flags & IOCB_NOWAIT) {
894 if (!inode_trylock_shared(inode))
895 return -EAGAIN;
896 } else {
897 inode_lock_shared(inode);
898 }
899
900 /* Limit read operations to written data */
901 mutex_lock(&zi->i_truncate_mutex);
902 isize = i_size_read(inode);
903 if (iocb->ki_pos >= isize) {
904 mutex_unlock(&zi->i_truncate_mutex);
905 ret = 0;
906 goto inode_unlock;
907 }
908 iov_iter_truncate(to, isize - iocb->ki_pos);
909 mutex_unlock(&zi->i_truncate_mutex);
910
911 if (iocb->ki_flags & IOCB_DIRECT) {
912 size_t count = iov_iter_count(to);
913
914 if ((iocb->ki_pos | count) & (sb->s_blocksize - 1)) {
915 ret = -EINVAL;
916 goto inode_unlock;
917 }
918 file_accessed(iocb->ki_filp);
919 ret = iomap_dio_rw(iocb, to, &zonefs_iomap_ops,
920 &zonefs_read_dio_ops, is_sync_kiocb(iocb));
921 } else {
922 ret = generic_file_read_iter(iocb, to);
923 if (ret == -EIO)
924 zonefs_io_error(inode, false);
925 }
926
927inode_unlock:
928 inode_unlock_shared(inode);
929
930 return ret;
931}
932
b5c00e97
JT
933static inline bool zonefs_file_use_exp_open(struct inode *inode, struct file *file)
934{
935 struct zonefs_inode_info *zi = ZONEFS_I(inode);
936 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
937
938 if (!(sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN))
939 return false;
940
941 if (zi->i_ztype != ZONEFS_ZTYPE_SEQ)
942 return false;
943
944 if (!(file->f_mode & FMODE_WRITE))
945 return false;
946
947 return true;
948}
949
950static int zonefs_open_zone(struct inode *inode)
951{
952 struct zonefs_inode_info *zi = ZONEFS_I(inode);
953 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
954 int ret = 0;
955
956 mutex_lock(&zi->i_truncate_mutex);
957
958 zi->i_wr_refcnt++;
959 if (zi->i_wr_refcnt == 1) {
960
961 if (atomic_inc_return(&sbi->s_open_zones) > sbi->s_max_open_zones) {
962 atomic_dec(&sbi->s_open_zones);
963 ret = -EBUSY;
964 goto unlock;
965 }
966
967 if (i_size_read(inode) < zi->i_max_size) {
968 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_OPEN);
969 if (ret) {
970 zi->i_wr_refcnt--;
971 atomic_dec(&sbi->s_open_zones);
972 goto unlock;
973 }
974 zi->i_flags |= ZONEFS_ZONE_OPEN;
975 }
976 }
977
978unlock:
979 mutex_unlock(&zi->i_truncate_mutex);
980
981 return ret;
982}
983
984static int zonefs_file_open(struct inode *inode, struct file *file)
985{
986 int ret;
987
988 ret = generic_file_open(inode, file);
989 if (ret)
990 return ret;
991
992 if (zonefs_file_use_exp_open(inode, file))
993 return zonefs_open_zone(inode);
994
995 return 0;
996}
997
998static void zonefs_close_zone(struct inode *inode)
999{
1000 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1001 int ret = 0;
1002
1003 mutex_lock(&zi->i_truncate_mutex);
1004 zi->i_wr_refcnt--;
1005 if (!zi->i_wr_refcnt) {
1006 struct zonefs_sb_info *sbi = ZONEFS_SB(inode->i_sb);
1007 struct super_block *sb = inode->i_sb;
1008
1009 /*
1010 * If the file zone is full, it is not open anymore and we only
1011 * need to decrement the open count.
1012 */
1013 if (!(zi->i_flags & ZONEFS_ZONE_OPEN))
1014 goto dec;
1015
1016 ret = zonefs_zone_mgmt(inode, REQ_OP_ZONE_CLOSE);
1017 if (ret) {
1018 __zonefs_io_error(inode, false);
1019 /*
1020 * Leaving zones explicitly open may lead to a state
1021 * where most zones cannot be written (zone resources
1022 * exhausted). So take preventive action by remounting
1023 * read-only.
1024 */
1025 if (zi->i_flags & ZONEFS_ZONE_OPEN &&
1026 !(sb->s_flags & SB_RDONLY)) {
1027 zonefs_warn(sb, "closing zone failed, remounting filesystem read-only\n");
1028 sb->s_flags |= SB_RDONLY;
1029 }
1030 }
1031 zi->i_flags &= ~ZONEFS_ZONE_OPEN;
1032dec:
1033 atomic_dec(&sbi->s_open_zones);
1034 }
1035 mutex_unlock(&zi->i_truncate_mutex);
1036}
1037
1038static int zonefs_file_release(struct inode *inode, struct file *file)
1039{
1040 /*
1041 * If we explicitly open a zone we must close it again as well, but the
1042 * zone management operation can fail (either due to an IO error or as
1043 * the zone has gone offline or read-only). Make sure we don't fail the
1044 * close(2) for user-space.
1045 */
1046 if (zonefs_file_use_exp_open(inode, file))
1047 zonefs_close_zone(inode);
1048
1049 return 0;
1050}
1051
8dcc1a9d 1052static const struct file_operations zonefs_file_operations = {
b5c00e97
JT
1053 .open = zonefs_file_open,
1054 .release = zonefs_file_release,
8dcc1a9d
DLM
1055 .fsync = zonefs_file_fsync,
1056 .mmap = zonefs_file_mmap,
1057 .llseek = zonefs_file_llseek,
1058 .read_iter = zonefs_file_read_iter,
1059 .write_iter = zonefs_file_write_iter,
1060 .splice_read = generic_file_splice_read,
1061 .splice_write = iter_file_splice_write,
1062 .iopoll = iomap_dio_iopoll,
1063};
1064
1065static struct kmem_cache *zonefs_inode_cachep;
1066
1067static struct inode *zonefs_alloc_inode(struct super_block *sb)
1068{
1069 struct zonefs_inode_info *zi;
1070
1071 zi = kmem_cache_alloc(zonefs_inode_cachep, GFP_KERNEL);
1072 if (!zi)
1073 return NULL;
1074
1075 inode_init_once(&zi->i_vnode);
1076 mutex_init(&zi->i_truncate_mutex);
1077 init_rwsem(&zi->i_mmap_sem);
b5c00e97 1078 zi->i_wr_refcnt = 0;
8dcc1a9d
DLM
1079
1080 return &zi->i_vnode;
1081}
1082
1083static void zonefs_free_inode(struct inode *inode)
1084{
1085 kmem_cache_free(zonefs_inode_cachep, ZONEFS_I(inode));
1086}
1087
1088/*
1089 * File system stat.
1090 */
1091static int zonefs_statfs(struct dentry *dentry, struct kstatfs *buf)
1092{
1093 struct super_block *sb = dentry->d_sb;
1094 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1095 enum zonefs_ztype t;
1096 u64 fsid;
1097
1098 buf->f_type = ZONEFS_MAGIC;
1099 buf->f_bsize = sb->s_blocksize;
1100 buf->f_namelen = ZONEFS_NAME_MAX;
1101
1102 spin_lock(&sbi->s_lock);
1103
1104 buf->f_blocks = sbi->s_blocks;
1105 if (WARN_ON(sbi->s_used_blocks > sbi->s_blocks))
1106 buf->f_bfree = 0;
1107 else
1108 buf->f_bfree = buf->f_blocks - sbi->s_used_blocks;
1109 buf->f_bavail = buf->f_bfree;
1110
1111 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1112 if (sbi->s_nr_files[t])
1113 buf->f_files += sbi->s_nr_files[t] + 1;
1114 }
1115 buf->f_ffree = 0;
1116
1117 spin_unlock(&sbi->s_lock);
1118
1119 fsid = le64_to_cpup((void *)sbi->s_uuid.b) ^
1120 le64_to_cpup((void *)sbi->s_uuid.b + sizeof(u64));
6d1349c7 1121 buf->f_fsid = u64_to_fsid(fsid);
8dcc1a9d
DLM
1122
1123 return 0;
1124}
1125
1126enum {
1127 Opt_errors_ro, Opt_errors_zro, Opt_errors_zol, Opt_errors_repair,
b5c00e97 1128 Opt_explicit_open, Opt_err,
8dcc1a9d
DLM
1129};
1130
1131static const match_table_t tokens = {
1132 { Opt_errors_ro, "errors=remount-ro"},
1133 { Opt_errors_zro, "errors=zone-ro"},
1134 { Opt_errors_zol, "errors=zone-offline"},
1135 { Opt_errors_repair, "errors=repair"},
b5c00e97 1136 { Opt_explicit_open, "explicit-open" },
8dcc1a9d
DLM
1137 { Opt_err, NULL}
1138};
1139
1140static int zonefs_parse_options(struct super_block *sb, char *options)
1141{
1142 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1143 substring_t args[MAX_OPT_ARGS];
1144 char *p;
1145
1146 if (!options)
1147 return 0;
1148
1149 while ((p = strsep(&options, ",")) != NULL) {
1150 int token;
1151
1152 if (!*p)
1153 continue;
1154
1155 token = match_token(p, tokens, args);
1156 switch (token) {
1157 case Opt_errors_ro:
1158 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1159 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_RO;
1160 break;
1161 case Opt_errors_zro:
1162 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1163 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZRO;
1164 break;
1165 case Opt_errors_zol:
1166 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1167 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_ZOL;
1168 break;
1169 case Opt_errors_repair:
1170 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_ERRORS_MASK;
1171 sbi->s_mount_opts |= ZONEFS_MNTOPT_ERRORS_REPAIR;
1172 break;
b5c00e97
JT
1173 case Opt_explicit_open:
1174 sbi->s_mount_opts |= ZONEFS_MNTOPT_EXPLICIT_OPEN;
1175 break;
8dcc1a9d
DLM
1176 default:
1177 return -EINVAL;
1178 }
1179 }
1180
1181 return 0;
1182}
1183
1184static int zonefs_show_options(struct seq_file *seq, struct dentry *root)
1185{
1186 struct zonefs_sb_info *sbi = ZONEFS_SB(root->d_sb);
1187
1188 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_RO)
1189 seq_puts(seq, ",errors=remount-ro");
1190 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZRO)
1191 seq_puts(seq, ",errors=zone-ro");
1192 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_ZOL)
1193 seq_puts(seq, ",errors=zone-offline");
1194 if (sbi->s_mount_opts & ZONEFS_MNTOPT_ERRORS_REPAIR)
1195 seq_puts(seq, ",errors=repair");
1196
1197 return 0;
1198}
1199
1200static int zonefs_remount(struct super_block *sb, int *flags, char *data)
1201{
1202 sync_filesystem(sb);
1203
1204 return zonefs_parse_options(sb, data);
1205}
1206
1207static const struct super_operations zonefs_sops = {
1208 .alloc_inode = zonefs_alloc_inode,
1209 .free_inode = zonefs_free_inode,
1210 .statfs = zonefs_statfs,
1211 .remount_fs = zonefs_remount,
1212 .show_options = zonefs_show_options,
1213};
1214
1215static const struct inode_operations zonefs_dir_inode_operations = {
1216 .lookup = simple_lookup,
1217 .setattr = zonefs_inode_setattr,
1218};
1219
1220static void zonefs_init_dir_inode(struct inode *parent, struct inode *inode,
1221 enum zonefs_ztype type)
1222{
1223 struct super_block *sb = parent->i_sb;
1224
1225 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk) + type + 1;
21cb47be 1226 inode_init_owner(&init_user_ns, inode, parent, S_IFDIR | 0555);
8dcc1a9d
DLM
1227 inode->i_op = &zonefs_dir_inode_operations;
1228 inode->i_fop = &simple_dir_operations;
1229 set_nlink(inode, 2);
1230 inc_nlink(parent);
1231}
1232
1233static void zonefs_init_file_inode(struct inode *inode, struct blk_zone *zone,
1234 enum zonefs_ztype type)
1235{
1236 struct super_block *sb = inode->i_sb;
1237 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1238 struct zonefs_inode_info *zi = ZONEFS_I(inode);
1239
1240 inode->i_ino = zone->start >> sbi->s_zone_sectors_shift;
1241 inode->i_mode = S_IFREG | sbi->s_perm;
1242
1243 zi->i_ztype = type;
1244 zi->i_zsector = zone->start;
e3c3155b
JT
1245 zi->i_zone_size = zone->len << SECTOR_SHIFT;
1246
8dcc1a9d 1247 zi->i_max_size = min_t(loff_t, MAX_LFS_FILESIZE,
e3c3155b 1248 zone->capacity << SECTOR_SHIFT);
ccf4ad7d 1249 zi->i_wpoffset = zonefs_check_zone_condition(inode, zone, true, true);
8dcc1a9d
DLM
1250
1251 inode->i_uid = sbi->s_uid;
1252 inode->i_gid = sbi->s_gid;
1253 inode->i_size = zi->i_wpoffset;
e3c3155b 1254 inode->i_blocks = zi->i_max_size >> SECTOR_SHIFT;
8dcc1a9d
DLM
1255
1256 inode->i_op = &zonefs_file_inode_operations;
1257 inode->i_fop = &zonefs_file_operations;
1258 inode->i_mapping->a_ops = &zonefs_file_aops;
1259
1260 sb->s_maxbytes = max(zi->i_max_size, sb->s_maxbytes);
1261 sbi->s_blocks += zi->i_max_size >> sb->s_blocksize_bits;
1262 sbi->s_used_blocks += zi->i_wpoffset >> sb->s_blocksize_bits;
1263}
1264
1265static struct dentry *zonefs_create_inode(struct dentry *parent,
1266 const char *name, struct blk_zone *zone,
1267 enum zonefs_ztype type)
1268{
1269 struct inode *dir = d_inode(parent);
1270 struct dentry *dentry;
1271 struct inode *inode;
1272
1273 dentry = d_alloc_name(parent, name);
1274 if (!dentry)
1275 return NULL;
1276
1277 inode = new_inode(parent->d_sb);
1278 if (!inode)
1279 goto dput;
1280
1281 inode->i_ctime = inode->i_mtime = inode->i_atime = dir->i_ctime;
1282 if (zone)
1283 zonefs_init_file_inode(inode, zone, type);
1284 else
1285 zonefs_init_dir_inode(dir, inode, type);
1286 d_add(dentry, inode);
1287 dir->i_size++;
1288
1289 return dentry;
1290
1291dput:
1292 dput(dentry);
1293
1294 return NULL;
1295}
1296
1297struct zonefs_zone_data {
1298 struct super_block *sb;
1299 unsigned int nr_zones[ZONEFS_ZTYPE_MAX];
1300 struct blk_zone *zones;
1301};
1302
1303/*
1304 * Create a zone group and populate it with zone files.
1305 */
1306static int zonefs_create_zgroup(struct zonefs_zone_data *zd,
1307 enum zonefs_ztype type)
1308{
1309 struct super_block *sb = zd->sb;
1310 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1311 struct blk_zone *zone, *next, *end;
1312 const char *zgroup_name;
1313 char *file_name;
1314 struct dentry *dir;
1315 unsigned int n = 0;
01b2651c 1316 int ret;
8dcc1a9d
DLM
1317
1318 /* If the group is empty, there is nothing to do */
1319 if (!zd->nr_zones[type])
1320 return 0;
1321
1322 file_name = kmalloc(ZONEFS_NAME_MAX, GFP_KERNEL);
1323 if (!file_name)
1324 return -ENOMEM;
1325
1326 if (type == ZONEFS_ZTYPE_CNV)
1327 zgroup_name = "cnv";
1328 else
1329 zgroup_name = "seq";
1330
1331 dir = zonefs_create_inode(sb->s_root, zgroup_name, NULL, type);
01b2651c
DLM
1332 if (!dir) {
1333 ret = -ENOMEM;
8dcc1a9d 1334 goto free;
01b2651c 1335 }
8dcc1a9d
DLM
1336
1337 /*
1338 * The first zone contains the super block: skip it.
1339 */
1340 end = zd->zones + blkdev_nr_zones(sb->s_bdev->bd_disk);
1341 for (zone = &zd->zones[1]; zone < end; zone = next) {
1342
1343 next = zone + 1;
1344 if (zonefs_zone_type(zone) != type)
1345 continue;
1346
1347 /*
1348 * For conventional zones, contiguous zones can be aggregated
1349 * together to form larger files. Note that this overwrites the
1350 * length of the first zone of the set of contiguous zones
1351 * aggregated together. If one offline or read-only zone is
1352 * found, assume that all zones aggregated have the same
1353 * condition.
1354 */
1355 if (type == ZONEFS_ZTYPE_CNV &&
1356 (sbi->s_features & ZONEFS_F_AGGRCNV)) {
1357 for (; next < end; next++) {
1358 if (zonefs_zone_type(next) != type)
1359 break;
1360 zone->len += next->len;
e3c3155b 1361 zone->capacity += next->capacity;
8dcc1a9d
DLM
1362 if (next->cond == BLK_ZONE_COND_READONLY &&
1363 zone->cond != BLK_ZONE_COND_OFFLINE)
1364 zone->cond = BLK_ZONE_COND_READONLY;
1365 else if (next->cond == BLK_ZONE_COND_OFFLINE)
1366 zone->cond = BLK_ZONE_COND_OFFLINE;
1367 }
e3c3155b
JT
1368 if (zone->capacity != zone->len) {
1369 zonefs_err(sb, "Invalid conventional zone capacity\n");
1370 ret = -EINVAL;
1371 goto free;
1372 }
8dcc1a9d
DLM
1373 }
1374
1375 /*
1376 * Use the file number within its group as file name.
1377 */
1378 snprintf(file_name, ZONEFS_NAME_MAX - 1, "%u", n);
01b2651c
DLM
1379 if (!zonefs_create_inode(dir, file_name, zone, type)) {
1380 ret = -ENOMEM;
8dcc1a9d 1381 goto free;
01b2651c 1382 }
8dcc1a9d
DLM
1383
1384 n++;
1385 }
1386
1387 zonefs_info(sb, "Zone group \"%s\" has %u file%s\n",
1388 zgroup_name, n, n > 1 ? "s" : "");
1389
1390 sbi->s_nr_files[type] = n;
1391 ret = 0;
1392
1393free:
1394 kfree(file_name);
1395
1396 return ret;
1397}
1398
1399static int zonefs_get_zone_info_cb(struct blk_zone *zone, unsigned int idx,
1400 void *data)
1401{
1402 struct zonefs_zone_data *zd = data;
1403
1404 /*
1405 * Count the number of usable zones: the first zone at index 0 contains
1406 * the super block and is ignored.
1407 */
1408 switch (zone->type) {
1409 case BLK_ZONE_TYPE_CONVENTIONAL:
1410 zone->wp = zone->start + zone->len;
1411 if (idx)
1412 zd->nr_zones[ZONEFS_ZTYPE_CNV]++;
1413 break;
1414 case BLK_ZONE_TYPE_SEQWRITE_REQ:
1415 case BLK_ZONE_TYPE_SEQWRITE_PREF:
1416 if (idx)
1417 zd->nr_zones[ZONEFS_ZTYPE_SEQ]++;
1418 break;
1419 default:
1420 zonefs_err(zd->sb, "Unsupported zone type 0x%x\n",
1421 zone->type);
1422 return -EIO;
1423 }
1424
1425 memcpy(&zd->zones[idx], zone, sizeof(struct blk_zone));
1426
1427 return 0;
1428}
1429
1430static int zonefs_get_zone_info(struct zonefs_zone_data *zd)
1431{
1432 struct block_device *bdev = zd->sb->s_bdev;
1433 int ret;
1434
1435 zd->zones = kvcalloc(blkdev_nr_zones(bdev->bd_disk),
1436 sizeof(struct blk_zone), GFP_KERNEL);
1437 if (!zd->zones)
1438 return -ENOMEM;
1439
1440 /* Get zones information from the device */
1441 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES,
1442 zonefs_get_zone_info_cb, zd);
1443 if (ret < 0) {
1444 zonefs_err(zd->sb, "Zone report failed %d\n", ret);
1445 return ret;
1446 }
1447
1448 if (ret != blkdev_nr_zones(bdev->bd_disk)) {
1449 zonefs_err(zd->sb, "Invalid zone report (%d/%u zones)\n",
1450 ret, blkdev_nr_zones(bdev->bd_disk));
1451 return -EIO;
1452 }
1453
1454 return 0;
1455}
1456
1457static inline void zonefs_cleanup_zone_info(struct zonefs_zone_data *zd)
1458{
1459 kvfree(zd->zones);
1460}
1461
1462/*
1463 * Read super block information from the device.
1464 */
1465static int zonefs_read_super(struct super_block *sb)
1466{
1467 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1468 struct zonefs_super *super;
1469 u32 crc, stored_crc;
1470 struct page *page;
1471 struct bio_vec bio_vec;
1472 struct bio bio;
1473 int ret;
1474
1475 page = alloc_page(GFP_KERNEL);
1476 if (!page)
1477 return -ENOMEM;
1478
1479 bio_init(&bio, &bio_vec, 1);
1480 bio.bi_iter.bi_sector = 0;
1481 bio.bi_opf = REQ_OP_READ;
1482 bio_set_dev(&bio, sb->s_bdev);
1483 bio_add_page(&bio, page, PAGE_SIZE, 0);
1484
1485 ret = submit_bio_wait(&bio);
1486 if (ret)
1487 goto free_page;
1488
1489 super = kmap(page);
1490
1491 ret = -EINVAL;
1492 if (le32_to_cpu(super->s_magic) != ZONEFS_MAGIC)
1493 goto unmap;
1494
1495 stored_crc = le32_to_cpu(super->s_crc);
1496 super->s_crc = 0;
1497 crc = crc32(~0U, (unsigned char *)super, sizeof(struct zonefs_super));
1498 if (crc != stored_crc) {
1499 zonefs_err(sb, "Invalid checksum (Expected 0x%08x, got 0x%08x)",
1500 crc, stored_crc);
1501 goto unmap;
1502 }
1503
1504 sbi->s_features = le64_to_cpu(super->s_features);
1505 if (sbi->s_features & ~ZONEFS_F_DEFINED_FEATURES) {
1506 zonefs_err(sb, "Unknown features set 0x%llx\n",
1507 sbi->s_features);
1508 goto unmap;
1509 }
1510
1511 if (sbi->s_features & ZONEFS_F_UID) {
1512 sbi->s_uid = make_kuid(current_user_ns(),
1513 le32_to_cpu(super->s_uid));
1514 if (!uid_valid(sbi->s_uid)) {
1515 zonefs_err(sb, "Invalid UID feature\n");
1516 goto unmap;
1517 }
1518 }
1519
1520 if (sbi->s_features & ZONEFS_F_GID) {
1521 sbi->s_gid = make_kgid(current_user_ns(),
1522 le32_to_cpu(super->s_gid));
1523 if (!gid_valid(sbi->s_gid)) {
1524 zonefs_err(sb, "Invalid GID feature\n");
1525 goto unmap;
1526 }
1527 }
1528
1529 if (sbi->s_features & ZONEFS_F_PERM)
1530 sbi->s_perm = le32_to_cpu(super->s_perm);
1531
1532 if (memchr_inv(super->s_reserved, 0, sizeof(super->s_reserved))) {
1533 zonefs_err(sb, "Reserved area is being used\n");
1534 goto unmap;
1535 }
1536
568776f9 1537 import_uuid(&sbi->s_uuid, super->s_uuid);
8dcc1a9d
DLM
1538 ret = 0;
1539
1540unmap:
1541 kunmap(page);
1542free_page:
1543 __free_page(page);
1544
1545 return ret;
1546}
1547
1548/*
1549 * Check that the device is zoned. If it is, get the list of zones and create
1550 * sub-directories and files according to the device zone configuration and
1551 * format options.
1552 */
1553static int zonefs_fill_super(struct super_block *sb, void *data, int silent)
1554{
1555 struct zonefs_zone_data zd;
1556 struct zonefs_sb_info *sbi;
1557 struct inode *inode;
1558 enum zonefs_ztype t;
1559 int ret;
1560
1561 if (!bdev_is_zoned(sb->s_bdev)) {
1562 zonefs_err(sb, "Not a zoned block device\n");
1563 return -EINVAL;
1564 }
1565
1566 /*
1567 * Initialize super block information: the maximum file size is updated
1568 * when the zone files are created so that the format option
1569 * ZONEFS_F_AGGRCNV which increases the maximum file size of a file
1570 * beyond the zone size is taken into account.
1571 */
1572 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
1573 if (!sbi)
1574 return -ENOMEM;
1575
1576 spin_lock_init(&sbi->s_lock);
1577 sb->s_fs_info = sbi;
1578 sb->s_magic = ZONEFS_MAGIC;
1579 sb->s_maxbytes = 0;
1580 sb->s_op = &zonefs_sops;
1581 sb->s_time_gran = 1;
1582
1583 /*
1584 * The block size is set to the device physical sector size to ensure
1585 * that write operations on 512e devices (512B logical block and 4KB
1586 * physical block) are always aligned to the device physical blocks,
1587 * as mandated by the ZBC/ZAC specifications.
1588 */
1589 sb_set_blocksize(sb, bdev_physical_block_size(sb->s_bdev));
1590 sbi->s_zone_sectors_shift = ilog2(bdev_zone_sectors(sb->s_bdev));
1591 sbi->s_uid = GLOBAL_ROOT_UID;
1592 sbi->s_gid = GLOBAL_ROOT_GID;
1593 sbi->s_perm = 0640;
1594 sbi->s_mount_opts = ZONEFS_MNTOPT_ERRORS_RO;
b5c00e97
JT
1595 sbi->s_max_open_zones = bdev_max_open_zones(sb->s_bdev);
1596 atomic_set(&sbi->s_open_zones, 0);
1597 if (!sbi->s_max_open_zones &&
1598 sbi->s_mount_opts & ZONEFS_MNTOPT_EXPLICIT_OPEN) {
1599 zonefs_info(sb, "No open zones limit. Ignoring explicit_open mount option\n");
1600 sbi->s_mount_opts &= ~ZONEFS_MNTOPT_EXPLICIT_OPEN;
1601 }
8dcc1a9d
DLM
1602
1603 ret = zonefs_read_super(sb);
1604 if (ret)
1605 return ret;
1606
1607 ret = zonefs_parse_options(sb, data);
1608 if (ret)
1609 return ret;
1610
1611 memset(&zd, 0, sizeof(struct zonefs_zone_data));
1612 zd.sb = sb;
1613 ret = zonefs_get_zone_info(&zd);
1614 if (ret)
1615 goto cleanup;
1616
1617 zonefs_info(sb, "Mounting %u zones",
1618 blkdev_nr_zones(sb->s_bdev->bd_disk));
1619
1620 /* Create root directory inode */
1621 ret = -ENOMEM;
1622 inode = new_inode(sb);
1623 if (!inode)
1624 goto cleanup;
1625
1626 inode->i_ino = blkdev_nr_zones(sb->s_bdev->bd_disk);
1627 inode->i_mode = S_IFDIR | 0555;
1628 inode->i_ctime = inode->i_mtime = inode->i_atime = current_time(inode);
1629 inode->i_op = &zonefs_dir_inode_operations;
1630 inode->i_fop = &simple_dir_operations;
1631 set_nlink(inode, 2);
1632
1633 sb->s_root = d_make_root(inode);
1634 if (!sb->s_root)
1635 goto cleanup;
1636
1637 /* Create and populate files in zone groups directories */
1638 for (t = 0; t < ZONEFS_ZTYPE_MAX; t++) {
1639 ret = zonefs_create_zgroup(&zd, t);
1640 if (ret)
1641 break;
1642 }
1643
1644cleanup:
1645 zonefs_cleanup_zone_info(&zd);
1646
1647 return ret;
1648}
1649
1650static struct dentry *zonefs_mount(struct file_system_type *fs_type,
1651 int flags, const char *dev_name, void *data)
1652{
1653 return mount_bdev(fs_type, flags, dev_name, data, zonefs_fill_super);
1654}
1655
1656static void zonefs_kill_super(struct super_block *sb)
1657{
1658 struct zonefs_sb_info *sbi = ZONEFS_SB(sb);
1659
1660 if (sb->s_root)
1661 d_genocide(sb->s_root);
1662 kill_block_super(sb);
1663 kfree(sbi);
1664}
1665
1666/*
1667 * File system definition and registration.
1668 */
1669static struct file_system_type zonefs_type = {
1670 .owner = THIS_MODULE,
1671 .name = "zonefs",
1672 .mount = zonefs_mount,
1673 .kill_sb = zonefs_kill_super,
1674 .fs_flags = FS_REQUIRES_DEV,
1675};
1676
1677static int __init zonefs_init_inodecache(void)
1678{
1679 zonefs_inode_cachep = kmem_cache_create("zonefs_inode_cache",
1680 sizeof(struct zonefs_inode_info), 0,
1681 (SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD | SLAB_ACCOUNT),
1682 NULL);
1683 if (zonefs_inode_cachep == NULL)
1684 return -ENOMEM;
1685 return 0;
1686}
1687
1688static void zonefs_destroy_inodecache(void)
1689{
1690 /*
1691 * Make sure all delayed rcu free inodes are flushed before we
1692 * destroy the inode cache.
1693 */
1694 rcu_barrier();
1695 kmem_cache_destroy(zonefs_inode_cachep);
1696}
1697
1698static int __init zonefs_init(void)
1699{
1700 int ret;
1701
1702 BUILD_BUG_ON(sizeof(struct zonefs_super) != ZONEFS_SUPER_SIZE);
1703
1704 ret = zonefs_init_inodecache();
1705 if (ret)
1706 return ret;
1707
1708 ret = register_filesystem(&zonefs_type);
1709 if (ret) {
1710 zonefs_destroy_inodecache();
1711 return ret;
1712 }
1713
1714 return 0;
1715}
1716
1717static void __exit zonefs_exit(void)
1718{
1719 zonefs_destroy_inodecache();
1720 unregister_filesystem(&zonefs_type);
1721}
1722
1723MODULE_AUTHOR("Damien Le Moal");
1724MODULE_DESCRIPTION("Zone file system for zoned block devices");
1725MODULE_LICENSE("GPL");
1726module_init(zonefs_init);
1727module_exit(zonefs_exit);