Merge tag '6.4-rc-ksmbd-server-fixes' of git://git.samba.org/ksmbd
[linux-block.git] / fs / xfs / xfs_trans.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769 3 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
e98c414f 4 * Copyright (C) 2010 Red Hat, Inc.
7b718769 5 * All Rights Reserved.
1da177e4 6 */
1da177e4 7#include "xfs.h"
a844f451 8#include "xfs_fs.h"
70a9883c 9#include "xfs_shared.h"
239880ef
DC
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
1da177e4 13#include "xfs_mount.h"
efc27b52 14#include "xfs_extent_busy.h"
1da177e4 15#include "xfs_quota.h"
239880ef 16#include "xfs_trans.h"
a844f451 17#include "xfs_trans_priv.h"
239880ef 18#include "xfs_log.h"
0020a190 19#include "xfs_log_priv.h"
ed3b4d6c 20#include "xfs_trace.h"
a4fbe6ab 21#include "xfs_error.h"
f8f2835a 22#include "xfs_defer.h"
3a1af6c3 23#include "xfs_inode.h"
f2f7b9ff
DW
24#include "xfs_dquot_item.h"
25#include "xfs_dquot.h"
766aabd5 26#include "xfs_icache.h"
1da177e4 27
182696fb 28struct kmem_cache *xfs_trans_cache;
1da177e4 29
b872af2c
DW
30#if defined(CONFIG_TRACEPOINTS)
31static void
32xfs_trans_trace_reservations(
33 struct xfs_mount *mp)
34{
b872af2c
DW
35 struct xfs_trans_res *res;
36 struct xfs_trans_res *end_res;
37 int i;
38
39 res = (struct xfs_trans_res *)M_RES(mp);
40 end_res = (struct xfs_trans_res *)(M_RES(mp) + 1);
41 for (i = 0; res < end_res; i++, res++)
42 trace_xfs_trans_resv_calc(mp, i, res);
b872af2c
DW
43}
44#else
45# define xfs_trans_trace_reservations(mp)
46#endif
47
1da177e4
LT
48/*
49 * Initialize the precomputed transaction reservation values
50 * in the mount structure.
51 */
52void
53xfs_trans_init(
025101dc 54 struct xfs_mount *mp)
1da177e4 55{
3d3c8b52 56 xfs_trans_resv_calc(mp, M_RES(mp));
b872af2c 57 xfs_trans_trace_reservations(mp);
1da177e4
LT
58}
59
b1c1b5b6
DC
60/*
61 * Free the transaction structure. If there is more clean up
62 * to do when the structure is freed, add it here.
63 */
64STATIC void
65xfs_trans_free(
ed3b4d6c 66 struct xfs_trans *tp)
b1c1b5b6 67{
4ecbfe63
DC
68 xfs_extent_busy_sort(&tp->t_busy);
69 xfs_extent_busy_clear(tp->t_mountp, &tp->t_busy, false);
ed3b4d6c 70
ba18781b 71 trace_xfs_trans_free(tp, _RET_IP_);
756b1c34 72 xfs_trans_clear_context(tp);
253f4911 73 if (!(tp->t_flags & XFS_TRANS_NO_WRITECOUNT))
d9457dc0 74 sb_end_intwrite(tp->t_mountp->m_super);
b1c1b5b6 75 xfs_trans_free_dqinfo(tp);
182696fb 76 kmem_cache_free(xfs_trans_cache, tp);
b1c1b5b6
DC
77}
78
1da177e4
LT
79/*
80 * This is called to create a new transaction which will share the
81 * permanent log reservation of the given transaction. The remaining
82 * unused block and rt extent reservations are also inherited. This
83 * implies that the original transaction is no longer allowed to allocate
84 * blocks. Locks and log items, however, are no inherited. They must
85 * be added to the new transaction explicitly.
86 */
f8f2835a 87STATIC struct xfs_trans *
1da177e4 88xfs_trans_dup(
f8f2835a 89 struct xfs_trans *tp)
1da177e4 90{
f8f2835a 91 struct xfs_trans *ntp;
1da177e4 92
ba18781b
DC
93 trace_xfs_trans_dup(tp, _RET_IP_);
94
182696fb 95 ntp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
1da177e4
LT
96
97 /*
98 * Initialize the new transaction structure.
99 */
2a3c0acc 100 ntp->t_magic = XFS_TRANS_HEADER_MAGIC;
1da177e4 101 ntp->t_mountp = tp->t_mountp;
e98c414f 102 INIT_LIST_HEAD(&ntp->t_items);
ed3b4d6c 103 INIT_LIST_HEAD(&ntp->t_busy);
9d9e6233 104 INIT_LIST_HEAD(&ntp->t_dfops);
692b6cdd 105 ntp->t_highest_agno = NULLAGNUMBER;
1da177e4
LT
106
107 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 108 ASSERT(tp->t_ticket != NULL);
cfcbbbd0 109
d9457dc0
JK
110 ntp->t_flags = XFS_TRANS_PERM_LOG_RES |
111 (tp->t_flags & XFS_TRANS_RESERVE) |
f74681ba
BF
112 (tp->t_flags & XFS_TRANS_NO_WRITECOUNT) |
113 (tp->t_flags & XFS_TRANS_RES_FDBLKS);
d9457dc0 114 /* We gave our writer reference to the new transaction */
253f4911 115 tp->t_flags |= XFS_TRANS_NO_WRITECOUNT;
cc09c0dc 116 ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket);
3e78b9a4
BF
117
118 ASSERT(tp->t_blk_res >= tp->t_blk_res_used);
1da177e4
LT
119 ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used;
120 tp->t_blk_res = tp->t_blk_res_used;
3e78b9a4 121
1da177e4
LT
122 ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used;
123 tp->t_rtx_res = tp->t_rtx_res_used;
756b1c34
DC
124
125 xfs_trans_switch_context(tp, ntp);
e021a2e5 126
9d9e6233
BF
127 /* move deferred ops over to the new tp */
128 xfs_defer_move(ntp, tp);
1da177e4 129
7d095257 130 xfs_trans_dup_dqinfo(tp, ntp);
1da177e4
LT
131 return ntp;
132}
133
134/*
135 * This is called to reserve free disk blocks and log space for the
136 * given transaction. This must be done before allocating any resources
137 * within the transaction.
138 *
139 * This will return ENOSPC if there are not enough blocks available.
140 * It will sleep waiting for available log space.
141 * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which
142 * is used by long running transactions. If any one of the reservations
143 * fails then they will all be backed out.
144 *
145 * This does not do quota reservations. That typically is done by the
146 * caller afterwards.
147 */
253f4911 148static int
1da177e4 149xfs_trans_reserve(
3d3c8b52
JL
150 struct xfs_trans *tp,
151 struct xfs_trans_res *resp,
152 uint blocks,
153 uint rtextents)
1da177e4 154{
dd401770
DC
155 struct xfs_mount *mp = tp->t_mountp;
156 int error = 0;
157 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
1da177e4 158
1da177e4
LT
159 /*
160 * Attempt to reserve the needed disk blocks by decrementing
161 * the number needed from the number available. This will
162 * fail if the count would go below zero.
163 */
164 if (blocks > 0) {
dd401770 165 error = xfs_mod_fdblocks(mp, -((int64_t)blocks), rsvd);
756b1c34 166 if (error != 0)
2451337d 167 return -ENOSPC;
1da177e4
LT
168 tp->t_blk_res += blocks;
169 }
170
171 /*
172 * Reserve the log space needed for this transaction.
173 */
3d3c8b52 174 if (resp->tr_logres > 0) {
9006fb91
CH
175 bool permanent = false;
176
3d3c8b52
JL
177 ASSERT(tp->t_log_res == 0 ||
178 tp->t_log_res == resp->tr_logres);
179 ASSERT(tp->t_log_count == 0 ||
180 tp->t_log_count == resp->tr_logcount);
9006fb91 181
3d3c8b52 182 if (resp->tr_logflags & XFS_TRANS_PERM_LOG_RES) {
1da177e4 183 tp->t_flags |= XFS_TRANS_PERM_LOG_RES;
9006fb91 184 permanent = true;
1da177e4
LT
185 } else {
186 ASSERT(tp->t_ticket == NULL);
187 ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
1da177e4
LT
188 }
189
9006fb91 190 if (tp->t_ticket != NULL) {
3d3c8b52 191 ASSERT(resp->tr_logflags & XFS_TRANS_PERM_LOG_RES);
dd401770 192 error = xfs_log_regrant(mp, tp->t_ticket);
9006fb91 193 } else {
c7610dce 194 error = xfs_log_reserve(mp, resp->tr_logres,
3d3c8b52 195 resp->tr_logcount,
c7610dce 196 &tp->t_ticket, permanent);
1da177e4 197 }
9006fb91
CH
198
199 if (error)
200 goto undo_blocks;
201
3d3c8b52
JL
202 tp->t_log_res = resp->tr_logres;
203 tp->t_log_count = resp->tr_logcount;
1da177e4
LT
204 }
205
206 /*
207 * Attempt to reserve the needed realtime extents by decrementing
208 * the number needed from the number available. This will
209 * fail if the count would go below zero.
210 */
211 if (rtextents > 0) {
dd401770 212 error = xfs_mod_frextents(mp, -((int64_t)rtextents));
1da177e4 213 if (error) {
2451337d 214 error = -ENOSPC;
1da177e4
LT
215 goto undo_log;
216 }
217 tp->t_rtx_res += rtextents;
218 }
219
220 return 0;
221
222 /*
223 * Error cases jump to one of these labels to undo any
224 * reservations which have already been performed.
225 */
226undo_log:
3d3c8b52 227 if (resp->tr_logres > 0) {
8b41e3f9 228 xfs_log_ticket_ungrant(mp->m_log, tp->t_ticket);
1da177e4
LT
229 tp->t_ticket = NULL;
230 tp->t_log_res = 0;
231 tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES;
232 }
233
234undo_blocks:
235 if (blocks > 0) {
dd401770 236 xfs_mod_fdblocks(mp, (int64_t)blocks, rsvd);
1da177e4
LT
237 tp->t_blk_res = 0;
238 }
59c1b082 239 return error;
1da177e4
LT
240}
241
253f4911
CH
242int
243xfs_trans_alloc(
244 struct xfs_mount *mp,
245 struct xfs_trans_res *resp,
246 uint blocks,
247 uint rtextents,
248 uint flags,
249 struct xfs_trans **tpp)
250{
251 struct xfs_trans *tp;
9febcda6 252 bool want_retry = true;
253f4911
CH
253 int error;
254
8683edb7
DC
255 /*
256 * Allocate the handle before we do our freeze accounting and setting up
257 * GFP_NOFS allocation context so that we avoid lockdep false positives
258 * by doing GFP_KERNEL allocations inside sb_start_intwrite().
259 */
9febcda6 260retry:
182696fb 261 tp = kmem_cache_zalloc(xfs_trans_cache, GFP_KERNEL | __GFP_NOFAIL);
253f4911
CH
262 if (!(flags & XFS_TRANS_NO_WRITECOUNT))
263 sb_start_intwrite(mp->m_super);
756b1c34 264 xfs_trans_set_context(tp);
253f4911 265
10ee2526
DW
266 /*
267 * Zero-reservation ("empty") transactions can't modify anything, so
268 * they're allowed to run while we're frozen.
269 */
270 WARN_ON(resp->tr_logres > 0 &&
271 mp->m_super->s_writers.frozen == SB_FREEZE_COMPLETE);
f74681ba 272 ASSERT(!(flags & XFS_TRANS_RES_FDBLKS) ||
38c26bfd 273 xfs_has_lazysbcount(mp));
253f4911 274
253f4911
CH
275 tp->t_magic = XFS_TRANS_HEADER_MAGIC;
276 tp->t_flags = flags;
277 tp->t_mountp = mp;
278 INIT_LIST_HEAD(&tp->t_items);
279 INIT_LIST_HEAD(&tp->t_busy);
9d9e6233 280 INIT_LIST_HEAD(&tp->t_dfops);
692b6cdd 281 tp->t_highest_agno = NULLAGNUMBER;
253f4911
CH
282
283 error = xfs_trans_reserve(tp, resp, blocks, rtextents);
9febcda6
DW
284 if (error == -ENOSPC && want_retry) {
285 xfs_trans_cancel(tp);
286
a1a7d05a
DW
287 /*
288 * We weren't able to reserve enough space for the transaction.
289 * Flush the other speculative space allocations to free space.
290 * Do not perform a synchronous scan because callers can hold
291 * other locks.
292 */
e8d04c2a 293 xfs_blockgc_flush_all(mp);
9febcda6
DW
294 want_retry = false;
295 goto retry;
a1a7d05a 296 }
253f4911
CH
297 if (error) {
298 xfs_trans_cancel(tp);
299 return error;
300 }
301
ba18781b
DC
302 trace_xfs_trans_alloc(tp, _RET_IP_);
303
253f4911
CH
304 *tpp = tp;
305 return 0;
306}
307
e89c0413
DW
308/*
309 * Create an empty transaction with no reservation. This is a defensive
b41b46c2
DC
310 * mechanism for routines that query metadata without actually modifying them --
311 * if the metadata being queried is somehow cross-linked (think a btree block
312 * pointer that points higher in the tree), we risk deadlock. However, blocks
313 * grabbed as part of a transaction can be re-grabbed. The verifiers will
314 * notice the corrupt block and the operation will fail back to userspace
315 * without deadlocking.
e89c0413 316 *
b41b46c2
DC
317 * Note the zero-length reservation; this transaction MUST be cancelled without
318 * any dirty data.
27fb5a72 319 *
b41b46c2
DC
320 * Callers should obtain freeze protection to avoid a conflict with fs freezing
321 * where we can be grabbing buffers at the same time that freeze is trying to
322 * drain the buffer LRU list.
e89c0413
DW
323 */
324int
325xfs_trans_alloc_empty(
326 struct xfs_mount *mp,
327 struct xfs_trans **tpp)
328{
329 struct xfs_trans_res resv = {0};
330
331 return xfs_trans_alloc(mp, &resv, 0, 0, XFS_TRANS_NO_WRITECOUNT, tpp);
332}
333
1da177e4
LT
334/*
335 * Record the indicated change to the given field for application
336 * to the file system's superblock when the transaction commits.
337 * For now, just store the change in the transaction structure.
338 *
339 * Mark the transaction structure to indicate that the superblock
340 * needs to be updated before committing.
92821e2b
DC
341 *
342 * Because we may not be keeping track of allocated/free inodes and
343 * used filesystem blocks in the superblock, we do not mark the
344 * superblock dirty in this transaction if we modify these fields.
345 * We still need to update the transaction deltas so that they get
346 * applied to the incore superblock, but we don't want them to
347 * cause the superblock to get locked and logged if these are the
348 * only fields in the superblock that the transaction modifies.
1da177e4
LT
349 */
350void
351xfs_trans_mod_sb(
352 xfs_trans_t *tp,
353 uint field,
20f4ebf2 354 int64_t delta)
1da177e4 355{
92821e2b
DC
356 uint32_t flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY);
357 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
358
359 switch (field) {
360 case XFS_TRANS_SB_ICOUNT:
361 tp->t_icount_delta += delta;
38c26bfd 362 if (xfs_has_lazysbcount(mp))
92821e2b 363 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
364 break;
365 case XFS_TRANS_SB_IFREE:
366 tp->t_ifree_delta += delta;
38c26bfd 367 if (xfs_has_lazysbcount(mp))
92821e2b 368 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
369 break;
370 case XFS_TRANS_SB_FDBLOCKS:
371 /*
3e78b9a4
BF
372 * Track the number of blocks allocated in the transaction.
373 * Make sure it does not exceed the number reserved. If so,
374 * shutdown as this can lead to accounting inconsistency.
1da177e4
LT
375 */
376 if (delta < 0) {
377 tp->t_blk_res_used += (uint)-delta;
3e78b9a4
BF
378 if (tp->t_blk_res_used > tp->t_blk_res)
379 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
f74681ba
BF
380 } else if (delta > 0 && (tp->t_flags & XFS_TRANS_RES_FDBLKS)) {
381 int64_t blkres_delta;
382
383 /*
384 * Return freed blocks directly to the reservation
385 * instead of the global pool, being careful not to
386 * overflow the trans counter. This is used to preserve
387 * reservation across chains of transaction rolls that
388 * repeatedly free and allocate blocks.
389 */
390 blkres_delta = min_t(int64_t, delta,
391 UINT_MAX - tp->t_blk_res);
392 tp->t_blk_res += blkres_delta;
393 delta -= blkres_delta;
1da177e4
LT
394 }
395 tp->t_fdblocks_delta += delta;
38c26bfd 396 if (xfs_has_lazysbcount(mp))
92821e2b 397 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
398 break;
399 case XFS_TRANS_SB_RES_FDBLOCKS:
400 /*
401 * The allocation has already been applied to the
402 * in-core superblock's counter. This should only
403 * be applied to the on-disk superblock.
404 */
1da177e4 405 tp->t_res_fdblocks_delta += delta;
38c26bfd 406 if (xfs_has_lazysbcount(mp))
92821e2b 407 flags &= ~XFS_TRANS_SB_DIRTY;
1da177e4
LT
408 break;
409 case XFS_TRANS_SB_FREXTENTS:
410 /*
411 * Track the number of blocks allocated in the
412 * transaction. Make sure it does not exceed the
413 * number reserved.
414 */
415 if (delta < 0) {
416 tp->t_rtx_res_used += (uint)-delta;
417 ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res);
418 }
419 tp->t_frextents_delta += delta;
420 break;
421 case XFS_TRANS_SB_RES_FREXTENTS:
422 /*
423 * The allocation has already been applied to the
c41564b5 424 * in-core superblock's counter. This should only
1da177e4
LT
425 * be applied to the on-disk superblock.
426 */
427 ASSERT(delta < 0);
428 tp->t_res_frextents_delta += delta;
429 break;
430 case XFS_TRANS_SB_DBLOCKS:
1da177e4
LT
431 tp->t_dblocks_delta += delta;
432 break;
433 case XFS_TRANS_SB_AGCOUNT:
434 ASSERT(delta > 0);
435 tp->t_agcount_delta += delta;
436 break;
437 case XFS_TRANS_SB_IMAXPCT:
438 tp->t_imaxpct_delta += delta;
439 break;
440 case XFS_TRANS_SB_REXTSIZE:
441 tp->t_rextsize_delta += delta;
442 break;
443 case XFS_TRANS_SB_RBMBLOCKS:
444 tp->t_rbmblocks_delta += delta;
445 break;
446 case XFS_TRANS_SB_RBLOCKS:
447 tp->t_rblocks_delta += delta;
448 break;
449 case XFS_TRANS_SB_REXTENTS:
450 tp->t_rextents_delta += delta;
451 break;
452 case XFS_TRANS_SB_REXTSLOG:
453 tp->t_rextslog_delta += delta;
454 break;
455 default:
456 ASSERT(0);
457 return;
458 }
459
210c6f1c 460 tp->t_flags |= flags;
1da177e4
LT
461}
462
463/*
464 * xfs_trans_apply_sb_deltas() is called from the commit code
465 * to bring the superblock buffer into the current transaction
466 * and modify it as requested by earlier calls to xfs_trans_mod_sb().
467 *
468 * For now we just look at each field allowed to change and change
469 * it if necessary.
470 */
471STATIC void
472xfs_trans_apply_sb_deltas(
473 xfs_trans_t *tp)
474{
ed67ebfd 475 struct xfs_dsb *sbp;
e8222613 476 struct xfs_buf *bp;
1da177e4
LT
477 int whole = 0;
478
cead0b10 479 bp = xfs_trans_getsb(tp);
3e6e8afd 480 sbp = bp->b_addr;
1da177e4 481
92821e2b
DC
482 /*
483 * Only update the superblock counters if we are logging them
484 */
38c26bfd 485 if (!xfs_has_lazysbcount((tp->t_mountp))) {
2bdf7cd0 486 if (tp->t_icount_delta)
413d57c9 487 be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta);
2bdf7cd0 488 if (tp->t_ifree_delta)
413d57c9 489 be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta);
2bdf7cd0 490 if (tp->t_fdblocks_delta)
413d57c9 491 be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta);
2bdf7cd0 492 if (tp->t_res_fdblocks_delta)
413d57c9 493 be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta);
1da177e4
LT
494 }
495
2229276c
DW
496 /*
497 * Updating frextents requires careful handling because it does not
498 * behave like the lazysb counters because we cannot rely on log
499 * recovery in older kenels to recompute the value from the rtbitmap.
500 * This means that the ondisk frextents must be consistent with the
501 * rtbitmap.
502 *
503 * Therefore, log the frextents change to the ondisk superblock and
504 * update the incore superblock so that future calls to xfs_log_sb
505 * write the correct value ondisk.
506 *
507 * Don't touch m_frextents because it includes incore reservations,
508 * and those are handled by the unreserve function.
509 */
510 if (tp->t_frextents_delta || tp->t_res_frextents_delta) {
511 struct xfs_mount *mp = tp->t_mountp;
512 int64_t rtxdelta;
513
514 rtxdelta = tp->t_frextents_delta + tp->t_res_frextents_delta;
515
516 spin_lock(&mp->m_sb_lock);
517 be64_add_cpu(&sbp->sb_frextents, rtxdelta);
518 mp->m_sb.sb_frextents += rtxdelta;
519 spin_unlock(&mp->m_sb_lock);
520 }
2bdf7cd0
CH
521
522 if (tp->t_dblocks_delta) {
413d57c9 523 be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta);
1da177e4
LT
524 whole = 1;
525 }
2bdf7cd0 526 if (tp->t_agcount_delta) {
413d57c9 527 be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta);
1da177e4
LT
528 whole = 1;
529 }
2bdf7cd0
CH
530 if (tp->t_imaxpct_delta) {
531 sbp->sb_imax_pct += tp->t_imaxpct_delta;
1da177e4
LT
532 whole = 1;
533 }
2bdf7cd0 534 if (tp->t_rextsize_delta) {
413d57c9 535 be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta);
1da177e4
LT
536 whole = 1;
537 }
2bdf7cd0 538 if (tp->t_rbmblocks_delta) {
413d57c9 539 be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta);
1da177e4
LT
540 whole = 1;
541 }
2bdf7cd0 542 if (tp->t_rblocks_delta) {
413d57c9 543 be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta);
1da177e4
LT
544 whole = 1;
545 }
2bdf7cd0 546 if (tp->t_rextents_delta) {
413d57c9 547 be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta);
1da177e4
LT
548 whole = 1;
549 }
2bdf7cd0
CH
550 if (tp->t_rextslog_delta) {
551 sbp->sb_rextslog += tp->t_rextslog_delta;
1da177e4
LT
552 whole = 1;
553 }
554
3443a3bc 555 xfs_trans_buf_set_type(tp, bp, XFS_BLFT_SB_BUF);
1da177e4
LT
556 if (whole)
557 /*
c41564b5 558 * Log the whole thing, the fields are noncontiguous.
1da177e4 559 */
ed67ebfd 560 xfs_trans_log_buf(tp, bp, 0, sizeof(struct xfs_dsb) - 1);
1da177e4
LT
561 else
562 /*
563 * Since all the modifiable fields are contiguous, we
564 * can get away with this.
565 */
ed67ebfd
CH
566 xfs_trans_log_buf(tp, bp, offsetof(struct xfs_dsb, sb_icount),
567 offsetof(struct xfs_dsb, sb_frextents) +
1da177e4 568 sizeof(sbp->sb_frextents) - 1);
1da177e4
LT
569}
570
571/*
dc3ffbb1
DC
572 * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations and
573 * apply superblock counter changes to the in-core superblock. The
45c34141
DC
574 * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT
575 * applied to the in-core superblock. The idea is that that has already been
576 * done.
1da177e4 577 *
45c34141
DC
578 * If we are not logging superblock counters, then the inode allocated/free and
579 * used block counts are not updated in the on disk superblock. In this case,
580 * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we
581 * still need to update the incore superblock with the changes.
f18c9a90
DC
582 *
583 * Deltas for the inode count are +/-64, hence we use a large batch size of 128
584 * so we don't need to take the counter lock on every update.
1da177e4 585 */
f18c9a90
DC
586#define XFS_ICOUNT_BATCH 128
587
71e330b5 588void
1da177e4 589xfs_trans_unreserve_and_mod_sb(
0bd5dded 590 struct xfs_trans *tp)
1da177e4 591{
0bd5dded
DC
592 struct xfs_mount *mp = tp->t_mountp;
593 bool rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0;
594 int64_t blkdelta = 0;
595 int64_t rtxdelta = 0;
596 int64_t idelta = 0;
597 int64_t ifreedelta = 0;
598 int error;
1da177e4 599
1b040712 600 /* calculate deltas */
45c34141
DC
601 if (tp->t_blk_res > 0)
602 blkdelta = tp->t_blk_res;
45c34141 603 if ((tp->t_fdblocks_delta != 0) &&
38c26bfd 604 (xfs_has_lazysbcount(mp) ||
45c34141
DC
605 (tp->t_flags & XFS_TRANS_SB_DIRTY)))
606 blkdelta += tp->t_fdblocks_delta;
607
45c34141
DC
608 if (tp->t_rtx_res > 0)
609 rtxdelta = tp->t_rtx_res;
45c34141
DC
610 if ((tp->t_frextents_delta != 0) &&
611 (tp->t_flags & XFS_TRANS_SB_DIRTY))
612 rtxdelta += tp->t_frextents_delta;
613
38c26bfd 614 if (xfs_has_lazysbcount(mp) ||
1b040712
CH
615 (tp->t_flags & XFS_TRANS_SB_DIRTY)) {
616 idelta = tp->t_icount_delta;
617 ifreedelta = tp->t_ifree_delta;
618 }
619
620 /* apply the per-cpu counters */
621 if (blkdelta) {
0d485ada 622 error = xfs_mod_fdblocks(mp, blkdelta, rsvd);
dc3ffbb1 623 ASSERT(!error);
1b040712
CH
624 }
625
5825bea0 626 if (idelta)
f18c9a90
DC
627 percpu_counter_add_batch(&mp->m_icount, idelta,
628 XFS_ICOUNT_BATCH);
1b040712 629
5825bea0 630 if (ifreedelta)
f18c9a90 631 percpu_counter_add(&mp->m_ifree, ifreedelta);
1b040712 632
2229276c
DW
633 if (rtxdelta) {
634 error = xfs_mod_frextents(mp, rtxdelta);
635 ASSERT(!error);
636 }
637
638 if (!(tp->t_flags & XFS_TRANS_SB_DIRTY))
0bd5dded
DC
639 return;
640
1b040712 641 /* apply remaining deltas */
0bd5dded 642 spin_lock(&mp->m_sb_lock);
6543990a
DC
643 mp->m_sb.sb_fdblocks += tp->t_fdblocks_delta + tp->t_res_fdblocks_delta;
644 mp->m_sb.sb_icount += idelta;
645 mp->m_sb.sb_ifree += ifreedelta;
2229276c
DW
646 /*
647 * Do not touch sb_frextents here because we are dealing with incore
648 * reservation. sb_frextents is not part of the lazy sb counters so it
649 * must be consistent with the ondisk rtbitmap and must never include
650 * incore reservations.
651 */
dc3ffbb1
DC
652 mp->m_sb.sb_dblocks += tp->t_dblocks_delta;
653 mp->m_sb.sb_agcount += tp->t_agcount_delta;
654 mp->m_sb.sb_imax_pct += tp->t_imaxpct_delta;
655 mp->m_sb.sb_rextsize += tp->t_rextsize_delta;
656 mp->m_sb.sb_rbmblocks += tp->t_rbmblocks_delta;
657 mp->m_sb.sb_rblocks += tp->t_rblocks_delta;
658 mp->m_sb.sb_rextents += tp->t_rextents_delta;
659 mp->m_sb.sb_rextslog += tp->t_rextslog_delta;
0bd5dded 660 spin_unlock(&mp->m_sb_lock);
1b040712 661
dc3ffbb1
DC
662 /*
663 * Debug checks outside of the spinlock so they don't lock up the
664 * machine if they fail.
665 */
666 ASSERT(mp->m_sb.sb_imax_pct >= 0);
667 ASSERT(mp->m_sb.sb_rextslog >= 0);
1b040712 668 return;
1da177e4
LT
669}
670
e6631f85 671/* Add the given log item to the transaction's list of log items. */
e98c414f
CH
672void
673xfs_trans_add_item(
674 struct xfs_trans *tp,
675 struct xfs_log_item *lip)
676{
d86142dd 677 ASSERT(lip->li_log == tp->t_mountp->m_log);
f65020a8 678 ASSERT(lip->li_ailp == tp->t_mountp->m_ail);
e6631f85
DC
679 ASSERT(list_empty(&lip->li_trans));
680 ASSERT(!test_bit(XFS_LI_DIRTY, &lip->li_flags));
e98c414f 681
e6631f85 682 list_add_tail(&lip->li_trans, &tp->t_items);
ba18781b 683 trace_xfs_trans_add_item(tp, _RET_IP_);
e98c414f
CH
684}
685
e98c414f 686/*
e6631f85
DC
687 * Unlink the log item from the transaction. the log item is no longer
688 * considered dirty in this transaction, as the linked transaction has
689 * finished, either by abort or commit completion.
e98c414f
CH
690 */
691void
692xfs_trans_del_item(
693 struct xfs_log_item *lip)
694{
e6631f85
DC
695 clear_bit(XFS_LI_DIRTY, &lip->li_flags);
696 list_del_init(&lip->li_trans);
e98c414f
CH
697}
698
e6631f85 699/* Detach and unlock all of the items in a transaction */
195cd83d 700static void
e98c414f
CH
701xfs_trans_free_items(
702 struct xfs_trans *tp,
eacb24e7 703 bool abort)
e98c414f 704{
e6631f85 705 struct xfs_log_item *lip, *next;
e98c414f 706
ba18781b
DC
707 trace_xfs_trans_free_items(tp, _RET_IP_);
708
e6631f85
DC
709 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
710 xfs_trans_del_item(lip);
eacb24e7 711 if (abort)
22525c17 712 set_bit(XFS_LI_ABORTED, &lip->li_flags);
ddf92053
CH
713 if (lip->li_ops->iop_release)
714 lip->li_ops->iop_release(lip);
e98c414f
CH
715 }
716}
717
0e57f6a3
DC
718static inline void
719xfs_log_item_batch_insert(
720 struct xfs_ail *ailp,
1d8c95a3 721 struct xfs_ail_cursor *cur,
0e57f6a3
DC
722 struct xfs_log_item **log_items,
723 int nr_items,
724 xfs_lsn_t commit_lsn)
725{
726 int i;
727
57e80956
MW
728 spin_lock(&ailp->ail_lock);
729 /* xfs_trans_ail_update_bulk drops ailp->ail_lock */
1d8c95a3 730 xfs_trans_ail_update_bulk(ailp, cur, log_items, nr_items, commit_lsn);
0e57f6a3 731
904c17e6
DC
732 for (i = 0; i < nr_items; i++) {
733 struct xfs_log_item *lip = log_items[i];
734
e8b78db7
CH
735 if (lip->li_ops->iop_unpin)
736 lip->li_ops->iop_unpin(lip, 0);
904c17e6 737 }
0e57f6a3
DC
738}
739
740/*
741 * Bulk operation version of xfs_trans_committed that takes a log vector of
742 * items to insert into the AIL. This uses bulk AIL insertion techniques to
743 * minimise lock traffic.
e34a314c
DC
744 *
745 * If we are called with the aborted flag set, it is because a log write during
746 * a CIL checkpoint commit has failed. In this case, all the items in the
ddf92053 747 * checkpoint have already gone through iop_committed and iop_committing, which
e34a314c
DC
748 * means that checkpoint commit abort handling is treated exactly the same
749 * as an iclog write error even though we haven't started any IO yet. Hence in
904c17e6
DC
750 * this case all we need to do is iop_committed processing, followed by an
751 * iop_unpin(aborted) call.
1d8c95a3
DC
752 *
753 * The AIL cursor is used to optimise the insert process. If commit_lsn is not
754 * at the end of the AIL, the insert cursor avoids the need to walk
755 * the AIL to find the insertion point on every xfs_log_item_batch_insert()
756 * call. This saves a lot of needless list walking and is a net win, even
757 * though it slightly increases that amount of AIL lock traffic to set it up
758 * and tear it down.
0e57f6a3
DC
759 */
760void
761xfs_trans_committed_bulk(
762 struct xfs_ail *ailp,
16924853 763 struct list_head *lv_chain,
0e57f6a3 764 xfs_lsn_t commit_lsn,
d15cbf2f 765 bool aborted)
0e57f6a3
DC
766{
767#define LOG_ITEM_BATCH_SIZE 32
768 struct xfs_log_item *log_items[LOG_ITEM_BATCH_SIZE];
769 struct xfs_log_vec *lv;
1d8c95a3 770 struct xfs_ail_cursor cur;
0e57f6a3
DC
771 int i = 0;
772
57e80956 773 spin_lock(&ailp->ail_lock);
1d8c95a3 774 xfs_trans_ail_cursor_last(ailp, &cur, commit_lsn);
57e80956 775 spin_unlock(&ailp->ail_lock);
1d8c95a3 776
0e57f6a3 777 /* unpin all the log items */
16924853 778 list_for_each_entry(lv, lv_chain, lv_list) {
0e57f6a3
DC
779 struct xfs_log_item *lip = lv->lv_item;
780 xfs_lsn_t item_lsn;
781
782 if (aborted)
22525c17 783 set_bit(XFS_LI_ABORTED, &lip->li_flags);
9ce632a2
CH
784
785 if (lip->li_ops->flags & XFS_ITEM_RELEASE_WHEN_COMMITTED) {
786 lip->li_ops->iop_release(lip);
787 continue;
788 }
789
e8b78db7
CH
790 if (lip->li_ops->iop_committed)
791 item_lsn = lip->li_ops->iop_committed(lip, commit_lsn);
792 else
793 item_lsn = commit_lsn;
0e57f6a3 794
1316d4da 795 /* item_lsn of -1 means the item needs no further processing */
0e57f6a3
DC
796 if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0)
797 continue;
798
e34a314c
DC
799 /*
800 * if we are aborting the operation, no point in inserting the
801 * object into the AIL as we are in a shutdown situation.
802 */
803 if (aborted) {
8eda8721 804 ASSERT(xlog_is_shutdown(ailp->ail_log));
e8b78db7
CH
805 if (lip->li_ops->iop_unpin)
806 lip->li_ops->iop_unpin(lip, 1);
e34a314c
DC
807 continue;
808 }
809
0e57f6a3
DC
810 if (item_lsn != commit_lsn) {
811
812 /*
813 * Not a bulk update option due to unusual item_lsn.
814 * Push into AIL immediately, rechecking the lsn once
1d8c95a3
DC
815 * we have the ail lock. Then unpin the item. This does
816 * not affect the AIL cursor the bulk insert path is
817 * using.
0e57f6a3 818 */
57e80956 819 spin_lock(&ailp->ail_lock);
0e57f6a3
DC
820 if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0)
821 xfs_trans_ail_update(ailp, lip, item_lsn);
822 else
57e80956 823 spin_unlock(&ailp->ail_lock);
e8b78db7
CH
824 if (lip->li_ops->iop_unpin)
825 lip->li_ops->iop_unpin(lip, 0);
0e57f6a3
DC
826 continue;
827 }
828
829 /* Item is a candidate for bulk AIL insert. */
830 log_items[i++] = lv->lv_item;
831 if (i >= LOG_ITEM_BATCH_SIZE) {
1d8c95a3 832 xfs_log_item_batch_insert(ailp, &cur, log_items,
0e57f6a3
DC
833 LOG_ITEM_BATCH_SIZE, commit_lsn);
834 i = 0;
835 }
836 }
837
838 /* make sure we insert the remainder! */
839 if (i)
1d8c95a3
DC
840 xfs_log_item_batch_insert(ailp, &cur, log_items, i, commit_lsn);
841
57e80956 842 spin_lock(&ailp->ail_lock);
e4a1e29c 843 xfs_trans_ail_cursor_done(&cur);
57e80956 844 spin_unlock(&ailp->ail_lock);
0e57f6a3
DC
845}
846
fad743d7
DC
847/*
848 * Sort transaction items prior to running precommit operations. This will
849 * attempt to order the items such that they will always be locked in the same
850 * order. Items that have no sort function are moved to the end of the list
851 * and so are locked last.
852 *
853 * This may need refinement as different types of objects add sort functions.
854 *
855 * Function is more complex than it needs to be because we are comparing 64 bit
856 * values and the function only returns 32 bit values.
857 */
858static int
859xfs_trans_precommit_sort(
860 void *unused_arg,
861 const struct list_head *a,
862 const struct list_head *b)
863{
864 struct xfs_log_item *lia = container_of(a,
865 struct xfs_log_item, li_trans);
866 struct xfs_log_item *lib = container_of(b,
867 struct xfs_log_item, li_trans);
868 int64_t diff;
869
870 /*
871 * If both items are non-sortable, leave them alone. If only one is
872 * sortable, move the non-sortable item towards the end of the list.
873 */
874 if (!lia->li_ops->iop_sort && !lib->li_ops->iop_sort)
875 return 0;
876 if (!lia->li_ops->iop_sort)
877 return 1;
878 if (!lib->li_ops->iop_sort)
879 return -1;
880
881 diff = lia->li_ops->iop_sort(lia) - lib->li_ops->iop_sort(lib);
882 if (diff < 0)
883 return -1;
884 if (diff > 0)
885 return 1;
886 return 0;
887}
888
889/*
890 * Run transaction precommit functions.
891 *
892 * If there is an error in any of the callouts, then stop immediately and
893 * trigger a shutdown to abort the transaction. There is no recovery possible
894 * from errors at this point as the transaction is dirty....
895 */
896static int
897xfs_trans_run_precommits(
898 struct xfs_trans *tp)
899{
900 struct xfs_mount *mp = tp->t_mountp;
901 struct xfs_log_item *lip, *n;
902 int error = 0;
903
904 /*
905 * Sort the item list to avoid ABBA deadlocks with other transactions
906 * running precommit operations that lock multiple shared items such as
907 * inode cluster buffers.
908 */
909 list_sort(NULL, &tp->t_items, xfs_trans_precommit_sort);
910
911 /*
912 * Precommit operations can remove the log item from the transaction
913 * if the log item exists purely to delay modifications until they
914 * can be ordered against other operations. Hence we have to use
915 * list_for_each_entry_safe() here.
916 */
917 list_for_each_entry_safe(lip, n, &tp->t_items, li_trans) {
918 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
919 continue;
920 if (lip->li_ops->iop_precommit) {
921 error = lip->li_ops->iop_precommit(tp, lip);
922 if (error)
923 break;
924 }
925 }
926 if (error)
927 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
928 return error;
929}
930
0924378a 931/*
b1037058 932 * Commit the given transaction to the log.
0924378a
DC
933 *
934 * XFS disk error handling mechanism is not based on a typical
935 * transaction abort mechanism. Logically after the filesystem
936 * gets marked 'SHUTDOWN', we can't let any new transactions
937 * be durable - ie. committed to disk - because some metadata might
938 * be inconsistent. In such cases, this returns an error, and the
939 * caller may assume that all locked objects joined to the transaction
940 * have already been unlocked as if the commit had succeeded.
941 * Do not reference the transaction structure after this call.
942 */
70393313
CH
943static int
944__xfs_trans_commit(
a3ccd2ca 945 struct xfs_trans *tp,
70393313 946 bool regrant)
0924378a 947{
a3ccd2ca 948 struct xfs_mount *mp = tp->t_mountp;
3c4cb76b 949 struct xlog *log = mp->m_log;
5f9b4b0d 950 xfs_csn_t commit_seq = 0;
a3ccd2ca 951 int error = 0;
0924378a 952 int sync = tp->t_flags & XFS_TRANS_SYNC;
0924378a 953
ba18781b
DC
954 trace_xfs_trans_commit(tp, _RET_IP_);
955
fad743d7
DC
956 error = xfs_trans_run_precommits(tp);
957 if (error) {
958 if (tp->t_flags & XFS_TRANS_PERM_LOG_RES)
959 xfs_defer_cancel(tp);
960 goto out_unreserve;
961 }
962
98719051
BF
963 /*
964 * Finish deferred items on final commit. Only permanent transactions
965 * should ever have deferred ops.
966 */
9d9e6233 967 WARN_ON_ONCE(!list_empty(&tp->t_dfops) &&
98719051
BF
968 !(tp->t_flags & XFS_TRANS_PERM_LOG_RES));
969 if (!regrant && (tp->t_flags & XFS_TRANS_PERM_LOG_RES)) {
b277c37f 970 error = xfs_defer_finish_noroll(&tp);
9b1f4e98 971 if (error)
e021a2e5 972 goto out_unreserve;
e021a2e5
BF
973 }
974
0924378a
DC
975 /*
976 * If there is nothing to be logged by the transaction,
977 * then unlock all of the items associated with the
978 * transaction and free the transaction structure.
979 * Also make sure to return any reserved blocks to
980 * the free pool.
981 */
a3ccd2ca
CH
982 if (!(tp->t_flags & XFS_TRANS_DIRTY))
983 goto out_unreserve;
984
3c4cb76b
DC
985 /*
986 * We must check against log shutdown here because we cannot abort log
987 * items and leave them dirty, inconsistent and unpinned in memory while
988 * the log is active. This leaves them open to being written back to
989 * disk, and that will lead to on-disk corruption.
990 */
991 if (xlog_is_shutdown(log)) {
2451337d 992 error = -EIO;
a3ccd2ca 993 goto out_unreserve;
0924378a 994 }
a3ccd2ca 995
0924378a
DC
996 ASSERT(tp->t_ticket != NULL);
997
998 /*
999 * If we need to update the superblock, then do it now.
1000 */
1001 if (tp->t_flags & XFS_TRANS_SB_DIRTY)
1002 xfs_trans_apply_sb_deltas(tp);
1003 xfs_trans_apply_dquot_deltas(tp);
1004
3c4cb76b 1005 xlog_cil_commit(log, tp, &commit_seq, regrant);
1da177e4 1006
0244b960
CH
1007 xfs_trans_free(tp);
1008
1da177e4
LT
1009 /*
1010 * If the transaction needs to be synchronous, then force the
1011 * log out now and wait for it.
1012 */
1013 if (sync) {
5f9b4b0d 1014 error = xfs_log_force_seq(mp, commit_seq, XFS_LOG_SYNC, NULL);
ff6d6af2 1015 XFS_STATS_INC(mp, xs_trans_sync);
1da177e4 1016 } else {
ff6d6af2 1017 XFS_STATS_INC(mp, xs_trans_async);
1da177e4
LT
1018 }
1019
a3ccd2ca
CH
1020 return error;
1021
1022out_unreserve:
1023 xfs_trans_unreserve_and_mod_sb(tp);
1024
1025 /*
1026 * It is indeed possible for the transaction to be not dirty but
1027 * the dqinfo portion to be. All that means is that we have some
1028 * (non-persistent) quota reservations that need to be unreserved.
1029 */
1030 xfs_trans_unreserve_and_mod_dquots(tp);
1031 if (tp->t_ticket) {
3c4cb76b
DC
1032 if (regrant && !xlog_is_shutdown(log))
1033 xfs_log_ticket_regrant(log, tp->t_ticket);
8b41e3f9 1034 else
3c4cb76b 1035 xfs_log_ticket_ungrant(log, tp->t_ticket);
ba18781b 1036 tp->t_ticket = NULL;
a3ccd2ca 1037 }
195cd83d 1038 xfs_trans_free_items(tp, !!error);
a3ccd2ca
CH
1039 xfs_trans_free(tp);
1040
ff6d6af2 1041 XFS_STATS_INC(mp, xs_trans_empty);
a3ccd2ca 1042 return error;
1da177e4
LT
1043}
1044
70393313
CH
1045int
1046xfs_trans_commit(
1047 struct xfs_trans *tp)
1048{
1049 return __xfs_trans_commit(tp, false);
1050}
1051
1da177e4 1052/*
3c4cb76b
DC
1053 * Unlock all of the transaction's items and free the transaction. If the
1054 * transaction is dirty, we must shut down the filesystem because there is no
1055 * way to restore them to their previous state.
1da177e4 1056 *
3c4cb76b
DC
1057 * If the transaction has made a log reservation, make sure to release it as
1058 * well.
1059 *
1060 * This is a high level function (equivalent to xfs_trans_commit()) and so can
1061 * be called after the transaction has effectively been aborted due to the mount
1062 * being shut down. However, if the mount has not been shut down and the
1063 * transaction is dirty we will shut the mount down and, in doing so, that
1064 * guarantees that the log is shut down, too. Hence we don't need to be as
1065 * careful with shutdown state and dirty items here as we need to be in
1066 * xfs_trans_commit().
1da177e4
LT
1067 */
1068void
1069xfs_trans_cancel(
4906e215 1070 struct xfs_trans *tp)
1da177e4 1071{
4906e215 1072 struct xfs_mount *mp = tp->t_mountp;
3c4cb76b 1073 struct xlog *log = mp->m_log;
4906e215 1074 bool dirty = (tp->t_flags & XFS_TRANS_DIRTY);
1da177e4 1075
ba18781b
DC
1076 trace_xfs_trans_cancel(tp, _RET_IP_);
1077
47a6df7c
DW
1078 /*
1079 * It's never valid to cancel a transaction with deferred ops attached,
1080 * because the transaction is effectively dirty. Complain about this
55d5c3a3
DC
1081 * loudly before freeing the in-memory defer items and shutting down the
1082 * filesystem.
47a6df7c
DW
1083 */
1084 if (!list_empty(&tp->t_dfops)) {
47a6df7c
DW
1085 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1086 dirty = true;
9e28a242 1087 xfs_defer_cancel(tp);
47a6df7c 1088 }
e021a2e5 1089
1da177e4 1090 /*
3c4cb76b
DC
1091 * See if the caller is relying on us to shut down the filesystem. We
1092 * only want an error report if there isn't already a shutdown in
1093 * progress, so we only need to check against the mount shutdown state
1094 * here.
1da177e4 1095 */
75c8c50f 1096 if (dirty && !xfs_is_shutdown(mp)) {
0733af21 1097 XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp);
7d04a335 1098 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
60a204f0 1099 }
1da177e4 1100#ifdef DEBUG
3c4cb76b
DC
1101 /* Log items need to be consistent until the log is shut down. */
1102 if (!dirty && !xlog_is_shutdown(log)) {
e6631f85 1103 struct xfs_log_item *lip;
e98c414f 1104
e6631f85 1105 list_for_each_entry(lip, &tp->t_items, li_trans)
d6b8fc6c 1106 ASSERT(!xlog_item_is_intent_done(lip));
1da177e4
LT
1107 }
1108#endif
1109 xfs_trans_unreserve_and_mod_sb(tp);
7d095257 1110 xfs_trans_unreserve_and_mod_dquots(tp);
1da177e4 1111
ba18781b 1112 if (tp->t_ticket) {
3c4cb76b 1113 xfs_log_ticket_ungrant(log, tp->t_ticket);
ba18781b
DC
1114 tp->t_ticket = NULL;
1115 }
1da177e4 1116
195cd83d 1117 xfs_trans_free_items(tp, dirty);
1da177e4
LT
1118 xfs_trans_free(tp);
1119}
1120
322ff6b8
NS
1121/*
1122 * Roll from one trans in the sequence of PERMANENT transactions to
1123 * the next: permanent transactions are only flushed out when
70393313 1124 * committed with xfs_trans_commit(), but we still want as soon
322ff6b8
NS
1125 * as possible to let chunks of it go to the log. So we commit the
1126 * chunk we've been working on and get a new transaction to continue.
1127 */
1128int
254133f5 1129xfs_trans_roll(
411350df 1130 struct xfs_trans **tpp)
322ff6b8 1131{
411350df 1132 struct xfs_trans *trans = *tpp;
3d3c8b52 1133 struct xfs_trans_res tres;
322ff6b8
NS
1134 int error;
1135
ba18781b
DC
1136 trace_xfs_trans_roll(trans, _RET_IP_);
1137
322ff6b8
NS
1138 /*
1139 * Copy the critical parameters from one trans to the next.
1140 */
3d3c8b52
JL
1141 tres.tr_logres = trans->t_log_res;
1142 tres.tr_logcount = trans->t_log_count;
411350df 1143
322ff6b8
NS
1144 *tpp = xfs_trans_dup(trans);
1145
1146 /*
1147 * Commit the current transaction.
1148 * If this commit failed, then it'd just unlock those items that
1149 * are not marked ihold. That also means that a filesystem shutdown
1150 * is in progress. The caller takes the responsibility to cancel
1151 * the duplicate transaction that gets returned.
1152 */
70393313 1153 error = __xfs_trans_commit(trans, true);
322ff6b8 1154 if (error)
d99831ff 1155 return error;
322ff6b8 1156
322ff6b8 1157 /*
411350df 1158 * Reserve space in the log for the next transaction.
322ff6b8
NS
1159 * This also pushes items in the "AIL", the list of logged items,
1160 * out to disk if they are taking up space at the tail of the log
1161 * that we want to use. This requires that either nothing be locked
1162 * across this call, or that anything that is locked be logged in
1163 * the prior and the next transactions.
1164 */
3d3c8b52 1165 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
411350df 1166 return xfs_trans_reserve(*tpp, &tres, 0, 0);
322ff6b8 1167}
3a1af6c3
DW
1168
1169/*
1170 * Allocate an transaction, lock and join the inode to it, and reserve quota.
1171 *
1172 * The caller must ensure that the on-disk dquots attached to this inode have
1173 * already been allocated and initialized. The caller is responsible for
1174 * releasing ILOCK_EXCL if a new transaction is returned.
1175 */
1176int
1177xfs_trans_alloc_inode(
1178 struct xfs_inode *ip,
1179 struct xfs_trans_res *resv,
1180 unsigned int dblocks,
3de4eb10 1181 unsigned int rblocks,
3a1af6c3
DW
1182 bool force,
1183 struct xfs_trans **tpp)
1184{
1185 struct xfs_trans *tp;
1186 struct xfs_mount *mp = ip->i_mount;
766aabd5 1187 bool retried = false;
3a1af6c3
DW
1188 int error;
1189
766aabd5 1190retry:
3de4eb10
DW
1191 error = xfs_trans_alloc(mp, resv, dblocks,
1192 rblocks / mp->m_sb.sb_rextsize,
3a1af6c3
DW
1193 force ? XFS_TRANS_RESERVE : 0, &tp);
1194 if (error)
1195 return error;
1196
1197 xfs_ilock(ip, XFS_ILOCK_EXCL);
1198 xfs_trans_ijoin(tp, ip, 0);
1199
1200 error = xfs_qm_dqattach_locked(ip, false);
1201 if (error) {
1202 /* Caller should have allocated the dquots! */
1203 ASSERT(error != -ENOENT);
1204 goto out_cancel;
1205 }
1206
3de4eb10 1207 error = xfs_trans_reserve_quota_nblks(tp, ip, dblocks, rblocks, force);
766aabd5
DW
1208 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1209 xfs_trans_cancel(tp);
1210 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1211 xfs_blockgc_free_quota(ip, 0);
1212 retried = true;
1213 goto retry;
1214 }
3a1af6c3
DW
1215 if (error)
1216 goto out_cancel;
1217
1218 *tpp = tp;
1219 return 0;
1220
1221out_cancel:
1222 xfs_trans_cancel(tp);
1223 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1224 return error;
1225}
f2f7b9ff
DW
1226
1227/*
1228 * Allocate an transaction in preparation for inode creation by reserving quota
1229 * against the given dquots. Callers are not required to hold any inode locks.
1230 */
1231int
1232xfs_trans_alloc_icreate(
1233 struct xfs_mount *mp,
1234 struct xfs_trans_res *resv,
1235 struct xfs_dquot *udqp,
1236 struct xfs_dquot *gdqp,
1237 struct xfs_dquot *pdqp,
1238 unsigned int dblocks,
1239 struct xfs_trans **tpp)
1240{
1241 struct xfs_trans *tp;
c237dd7c 1242 bool retried = false;
f2f7b9ff
DW
1243 int error;
1244
c237dd7c 1245retry:
f2f7b9ff
DW
1246 error = xfs_trans_alloc(mp, resv, dblocks, 0, 0, &tp);
1247 if (error)
1248 return error;
1249
1250 error = xfs_trans_reserve_quota_icreate(tp, udqp, gdqp, pdqp, dblocks);
c237dd7c
DW
1251 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1252 xfs_trans_cancel(tp);
1253 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1254 retried = true;
1255 goto retry;
1256 }
f2f7b9ff
DW
1257 if (error) {
1258 xfs_trans_cancel(tp);
1259 return error;
1260 }
1261
1262 *tpp = tp;
1263 return 0;
1264}
7317a03d
DW
1265
1266/*
1267 * Allocate an transaction, lock and join the inode to it, and reserve quota
1268 * in preparation for inode attribute changes that include uid, gid, or prid
1269 * changes.
1270 *
1271 * The caller must ensure that the on-disk dquots attached to this inode have
1272 * already been allocated and initialized. The ILOCK will be dropped when the
1273 * transaction is committed or cancelled.
1274 */
1275int
1276xfs_trans_alloc_ichange(
1277 struct xfs_inode *ip,
758303d1
DW
1278 struct xfs_dquot *new_udqp,
1279 struct xfs_dquot *new_gdqp,
1280 struct xfs_dquot *new_pdqp,
7317a03d
DW
1281 bool force,
1282 struct xfs_trans **tpp)
1283{
1284 struct xfs_trans *tp;
1285 struct xfs_mount *mp = ip->i_mount;
758303d1
DW
1286 struct xfs_dquot *udqp;
1287 struct xfs_dquot *gdqp;
1288 struct xfs_dquot *pdqp;
1289 bool retried = false;
7317a03d
DW
1290 int error;
1291
758303d1 1292retry:
7317a03d
DW
1293 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ichange, 0, 0, 0, &tp);
1294 if (error)
1295 return error;
1296
1297 xfs_ilock(ip, XFS_ILOCK_EXCL);
1298 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1299
1300 error = xfs_qm_dqattach_locked(ip, false);
1301 if (error) {
1302 /* Caller should have allocated the dquots! */
1303 ASSERT(error != -ENOENT);
1304 goto out_cancel;
1305 }
1306
1307 /*
1308 * For each quota type, skip quota reservations if the inode's dquots
1309 * now match the ones that came from the caller, or the caller didn't
758303d1
DW
1310 * pass one in. The inode's dquots can change if we drop the ILOCK to
1311 * perform a blockgc scan, so we must preserve the caller's arguments.
7317a03d 1312 */
758303d1
DW
1313 udqp = (new_udqp != ip->i_udquot) ? new_udqp : NULL;
1314 gdqp = (new_gdqp != ip->i_gdquot) ? new_gdqp : NULL;
1315 pdqp = (new_pdqp != ip->i_pdquot) ? new_pdqp : NULL;
7317a03d 1316 if (udqp || gdqp || pdqp) {
5c615f0f
DW
1317 unsigned int qflags = XFS_QMOPT_RES_REGBLKS;
1318
1319 if (force)
1320 qflags |= XFS_QMOPT_FORCE_RES;
1321
1322 /*
1323 * Reserve enough quota to handle blocks on disk and reserved
1324 * for a delayed allocation. We'll actually transfer the
1325 * delalloc reservation between dquots at chown time, even
1326 * though that part is only semi-transactional.
1327 */
1328 error = xfs_trans_reserve_quota_bydquots(tp, mp, udqp, gdqp,
6e73a545 1329 pdqp, ip->i_nblocks + ip->i_delayed_blks,
5c615f0f 1330 1, qflags);
758303d1
DW
1331 if ((error == -EDQUOT || error == -ENOSPC) && !retried) {
1332 xfs_trans_cancel(tp);
1333 xfs_blockgc_free_dquots(mp, udqp, gdqp, pdqp, 0);
1334 retried = true;
1335 goto retry;
1336 }
7317a03d
DW
1337 if (error)
1338 goto out_cancel;
1339 }
1340
1341 *tpp = tp;
1342 return 0;
1343
1344out_cancel:
1345 xfs_trans_cancel(tp);
1346 return error;
1347}
871b9316
DW
1348
1349/*
1350 * Allocate an transaction, lock and join the directory and child inodes to it,
1351 * and reserve quota for a directory update. If there isn't sufficient space,
1352 * @dblocks will be set to zero for a reservationless directory update and
1353 * @nospace_error will be set to a negative errno describing the space
1354 * constraint we hit.
1355 *
1356 * The caller must ensure that the on-disk dquots attached to this inode have
1357 * already been allocated and initialized. The ILOCKs will be dropped when the
1358 * transaction is committed or cancelled.
1359 */
1360int
1361xfs_trans_alloc_dir(
1362 struct xfs_inode *dp,
1363 struct xfs_trans_res *resv,
1364 struct xfs_inode *ip,
1365 unsigned int *dblocks,
1366 struct xfs_trans **tpp,
1367 int *nospace_error)
1368{
1369 struct xfs_trans *tp;
1370 struct xfs_mount *mp = ip->i_mount;
1371 unsigned int resblks;
1372 bool retried = false;
1373 int error;
1374
1375retry:
1376 *nospace_error = 0;
1377 resblks = *dblocks;
1378 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1379 if (error == -ENOSPC) {
1380 *nospace_error = error;
1381 resblks = 0;
1382 error = xfs_trans_alloc(mp, resv, resblks, 0, 0, &tp);
1383 }
1384 if (error)
1385 return error;
1386
1387 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
1388
1389 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1390 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1391
1392 error = xfs_qm_dqattach_locked(dp, false);
1393 if (error) {
1394 /* Caller should have allocated the dquots! */
1395 ASSERT(error != -ENOENT);
1396 goto out_cancel;
1397 }
1398
1399 error = xfs_qm_dqattach_locked(ip, false);
1400 if (error) {
1401 /* Caller should have allocated the dquots! */
1402 ASSERT(error != -ENOENT);
1403 goto out_cancel;
1404 }
1405
1406 if (resblks == 0)
1407 goto done;
1408
1409 error = xfs_trans_reserve_quota_nblks(tp, dp, resblks, 0, false);
1410 if (error == -EDQUOT || error == -ENOSPC) {
1411 if (!retried) {
1412 xfs_trans_cancel(tp);
1413 xfs_blockgc_free_quota(dp, 0);
1414 retried = true;
1415 goto retry;
1416 }
1417
1418 *nospace_error = error;
1419 resblks = 0;
1420 error = 0;
1421 }
1422 if (error)
1423 goto out_cancel;
1424
1425done:
1426 *tpp = tp;
1427 *dblocks = resblks;
1428 return 0;
1429
1430out_cancel:
1431 xfs_trans_cancel(tp);
1432 return error;
1433}