xfs: xfs_quiesce_attr() should quiesce the log like unmount
[linux-block.git] / fs / xfs / xfs_sync.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_types.h"
fe4fa4b8 21#include "xfs_log.h"
f661f1e0 22#include "xfs_log_priv.h"
fe4fa4b8
DC
23#include "xfs_inum.h"
24#include "xfs_trans.h"
fd074841 25#include "xfs_trans_priv.h"
fe4fa4b8
DC
26#include "xfs_sb.h"
27#include "xfs_ag.h"
fe4fa4b8
DC
28#include "xfs_mount.h"
29#include "xfs_bmap_btree.h"
fe4fa4b8
DC
30#include "xfs_inode.h"
31#include "xfs_dinode.h"
32#include "xfs_error.h"
fe4fa4b8
DC
33#include "xfs_filestream.h"
34#include "xfs_vnodeops.h"
fe4fa4b8 35#include "xfs_inode_item.h"
7d095257 36#include "xfs_quota.h"
0b1b213f 37#include "xfs_trace.h"
1a387d3b 38#include "xfs_fsops.h"
fe4fa4b8 39
a167b17e
DC
40#include <linux/kthread.h>
41#include <linux/freezer.h>
42
78ae5256
DC
43/*
44 * The inode lookup is done in batches to keep the amount of lock traffic and
45 * radix tree lookups to a minimum. The batch size is a trade off between
46 * lookup reduction and stack usage. This is in the reclaim path, so we can't
47 * be too greedy.
48 */
49#define XFS_LOOKUP_BATCH 32
50
e13de955
DC
51STATIC int
52xfs_inode_ag_walk_grab(
53 struct xfs_inode *ip)
54{
55 struct inode *inode = VFS_I(ip);
56
1a3e8f3d
DC
57 ASSERT(rcu_read_lock_held());
58
59 /*
60 * check for stale RCU freed inode
61 *
62 * If the inode has been reallocated, it doesn't matter if it's not in
63 * the AG we are walking - we are walking for writeback, so if it
64 * passes all the "valid inode" checks and is dirty, then we'll write
65 * it back anyway. If it has been reallocated and still being
66 * initialised, the XFS_INEW check below will catch it.
67 */
68 spin_lock(&ip->i_flags_lock);
69 if (!ip->i_ino)
70 goto out_unlock_noent;
71
72 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
73 if (__xfs_iflags_test(ip, XFS_INEW | XFS_IRECLAIMABLE | XFS_IRECLAIM))
74 goto out_unlock_noent;
75 spin_unlock(&ip->i_flags_lock);
76
e13de955
DC
77 /* nothing to sync during shutdown */
78 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
79 return EFSCORRUPTED;
80
e13de955
DC
81 /* If we can't grab the inode, it must on it's way to reclaim. */
82 if (!igrab(inode))
83 return ENOENT;
84
85 if (is_bad_inode(inode)) {
86 IRELE(ip);
87 return ENOENT;
88 }
89
90 /* inode is valid */
91 return 0;
1a3e8f3d
DC
92
93out_unlock_noent:
94 spin_unlock(&ip->i_flags_lock);
95 return ENOENT;
e13de955
DC
96}
97
75f3cb13
DC
98STATIC int
99xfs_inode_ag_walk(
100 struct xfs_mount *mp,
5017e97d 101 struct xfs_perag *pag,
75f3cb13
DC
102 int (*execute)(struct xfs_inode *ip,
103 struct xfs_perag *pag, int flags),
65d0f205 104 int flags)
75f3cb13 105{
75f3cb13
DC
106 uint32_t first_index;
107 int last_error = 0;
108 int skipped;
65d0f205 109 int done;
78ae5256 110 int nr_found;
75f3cb13
DC
111
112restart:
65d0f205 113 done = 0;
75f3cb13
DC
114 skipped = 0;
115 first_index = 0;
78ae5256 116 nr_found = 0;
75f3cb13 117 do {
78ae5256 118 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 119 int error = 0;
78ae5256 120 int i;
75f3cb13 121
1a3e8f3d 122 rcu_read_lock();
65d0f205 123 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
124 (void **)batch, first_index,
125 XFS_LOOKUP_BATCH);
65d0f205 126 if (!nr_found) {
1a3e8f3d 127 rcu_read_unlock();
75f3cb13 128 break;
c8e20be0 129 }
75f3cb13 130
65d0f205 131 /*
78ae5256
DC
132 * Grab the inodes before we drop the lock. if we found
133 * nothing, nr == 0 and the loop will be skipped.
65d0f205 134 */
78ae5256
DC
135 for (i = 0; i < nr_found; i++) {
136 struct xfs_inode *ip = batch[i];
137
138 if (done || xfs_inode_ag_walk_grab(ip))
139 batch[i] = NULL;
140
141 /*
1a3e8f3d
DC
142 * Update the index for the next lookup. Catch
143 * overflows into the next AG range which can occur if
144 * we have inodes in the last block of the AG and we
145 * are currently pointing to the last inode.
146 *
147 * Because we may see inodes that are from the wrong AG
148 * due to RCU freeing and reallocation, only update the
149 * index if it lies in this AG. It was a race that lead
150 * us to see this inode, so another lookup from the
151 * same index will not find it again.
78ae5256 152 */
1a3e8f3d
DC
153 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
154 continue;
78ae5256
DC
155 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
156 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
157 done = 1;
e13de955 158 }
78ae5256
DC
159
160 /* unlock now we've grabbed the inodes. */
1a3e8f3d 161 rcu_read_unlock();
e13de955 162
78ae5256
DC
163 for (i = 0; i < nr_found; i++) {
164 if (!batch[i])
165 continue;
166 error = execute(batch[i], pag, flags);
167 IRELE(batch[i]);
168 if (error == EAGAIN) {
169 skipped++;
170 continue;
171 }
172 if (error && last_error != EFSCORRUPTED)
173 last_error = error;
75f3cb13 174 }
c8e20be0
DC
175
176 /* bail out if the filesystem is corrupted. */
75f3cb13
DC
177 if (error == EFSCORRUPTED)
178 break;
179
8daaa831
DC
180 cond_resched();
181
78ae5256 182 } while (nr_found && !done);
75f3cb13
DC
183
184 if (skipped) {
185 delay(1);
186 goto restart;
187 }
75f3cb13
DC
188 return last_error;
189}
190
fe588ed3 191int
75f3cb13
DC
192xfs_inode_ag_iterator(
193 struct xfs_mount *mp,
194 int (*execute)(struct xfs_inode *ip,
195 struct xfs_perag *pag, int flags),
65d0f205 196 int flags)
75f3cb13 197{
16fd5367 198 struct xfs_perag *pag;
75f3cb13
DC
199 int error = 0;
200 int last_error = 0;
201 xfs_agnumber_t ag;
202
16fd5367 203 ag = 0;
65d0f205
DC
204 while ((pag = xfs_perag_get(mp, ag))) {
205 ag = pag->pag_agno + 1;
206 error = xfs_inode_ag_walk(mp, pag, execute, flags);
5017e97d 207 xfs_perag_put(pag);
75f3cb13
DC
208 if (error) {
209 last_error = error;
210 if (error == EFSCORRUPTED)
211 break;
212 }
213 }
214 return XFS_ERROR(last_error);
215}
216
a7b339f1
DC
217/*
218 * Queue a new inode reclaim pass if there are reclaimable inodes and there
219 * isn't a reclaim pass already in progress. By default it runs every 5s based
5889608d 220 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
a7b339f1
DC
221 * tunable, but that can be done if this method proves to be ineffective or too
222 * aggressive.
223 */
224static void
5889608d 225xfs_reclaim_work_queue(
a7b339f1 226 struct xfs_mount *mp)
a167b17e 227{
a167b17e 228
a7b339f1
DC
229 rcu_read_lock();
230 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
5889608d 231 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
a7b339f1 232 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
a167b17e 233 }
a7b339f1
DC
234 rcu_read_unlock();
235}
a167b17e 236
a7b339f1
DC
237/*
238 * This is a fast pass over the inode cache to try to get reclaim moving on as
239 * many inodes as possible in a short period of time. It kicks itself every few
240 * seconds, as well as being kicked by the inode cache shrinker when memory
241 * goes low. It scans as quickly as possible avoiding locked inodes or those
242 * already being flushed, and once done schedules a future pass.
243 */
33c7a2bc 244void
a7b339f1
DC
245xfs_reclaim_worker(
246 struct work_struct *work)
247{
248 struct xfs_mount *mp = container_of(to_delayed_work(work),
249 struct xfs_mount, m_reclaim_work);
250
251 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
5889608d 252 xfs_reclaim_work_queue(mp);
a7b339f1
DC
253}
254
bc990f5c
CH
255void
256__xfs_inode_set_reclaim_tag(
257 struct xfs_perag *pag,
258 struct xfs_inode *ip)
259{
260 radix_tree_tag_set(&pag->pag_ici_root,
261 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino),
262 XFS_ICI_RECLAIM_TAG);
16fd5367
DC
263
264 if (!pag->pag_ici_reclaimable) {
265 /* propagate the reclaim tag up into the perag radix tree */
266 spin_lock(&ip->i_mount->m_perag_lock);
267 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
268 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
269 XFS_ICI_RECLAIM_TAG);
270 spin_unlock(&ip->i_mount->m_perag_lock);
a7b339f1
DC
271
272 /* schedule periodic background inode reclaim */
5889608d 273 xfs_reclaim_work_queue(ip->i_mount);
a7b339f1 274
16fd5367
DC
275 trace_xfs_perag_set_reclaim(ip->i_mount, pag->pag_agno,
276 -1, _RET_IP_);
277 }
9bf729c0 278 pag->pag_ici_reclaimable++;
bc990f5c
CH
279}
280
11654513
DC
281/*
282 * We set the inode flag atomically with the radix tree tag.
283 * Once we get tag lookups on the radix tree, this inode flag
284 * can go away.
285 */
396beb85
DC
286void
287xfs_inode_set_reclaim_tag(
288 xfs_inode_t *ip)
289{
5017e97d
DC
290 struct xfs_mount *mp = ip->i_mount;
291 struct xfs_perag *pag;
396beb85 292
5017e97d 293 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1a427ab0 294 spin_lock(&pag->pag_ici_lock);
396beb85 295 spin_lock(&ip->i_flags_lock);
bc990f5c 296 __xfs_inode_set_reclaim_tag(pag, ip);
11654513 297 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
396beb85 298 spin_unlock(&ip->i_flags_lock);
1a427ab0 299 spin_unlock(&pag->pag_ici_lock);
5017e97d 300 xfs_perag_put(pag);
396beb85
DC
301}
302
081003ff
JW
303STATIC void
304__xfs_inode_clear_reclaim(
396beb85
DC
305 xfs_perag_t *pag,
306 xfs_inode_t *ip)
307{
9bf729c0 308 pag->pag_ici_reclaimable--;
16fd5367
DC
309 if (!pag->pag_ici_reclaimable) {
310 /* clear the reclaim tag from the perag radix tree */
311 spin_lock(&ip->i_mount->m_perag_lock);
312 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
313 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
314 XFS_ICI_RECLAIM_TAG);
315 spin_unlock(&ip->i_mount->m_perag_lock);
316 trace_xfs_perag_clear_reclaim(ip->i_mount, pag->pag_agno,
317 -1, _RET_IP_);
318 }
396beb85
DC
319}
320
081003ff
JW
321void
322__xfs_inode_clear_reclaim_tag(
323 xfs_mount_t *mp,
324 xfs_perag_t *pag,
325 xfs_inode_t *ip)
326{
327 radix_tree_tag_clear(&pag->pag_ici_root,
328 XFS_INO_TO_AGINO(mp, ip->i_ino), XFS_ICI_RECLAIM_TAG);
329 __xfs_inode_clear_reclaim(pag, ip);
330}
331
e3a20c0b
DC
332/*
333 * Grab the inode for reclaim exclusively.
334 * Return 0 if we grabbed it, non-zero otherwise.
335 */
336STATIC int
337xfs_reclaim_inode_grab(
338 struct xfs_inode *ip,
339 int flags)
340{
1a3e8f3d
DC
341 ASSERT(rcu_read_lock_held());
342
343 /* quick check for stale RCU freed inode */
344 if (!ip->i_ino)
345 return 1;
e3a20c0b
DC
346
347 /*
474fce06
CH
348 * If we are asked for non-blocking operation, do unlocked checks to
349 * see if the inode already is being flushed or in reclaim to avoid
350 * lock traffic.
e3a20c0b
DC
351 */
352 if ((flags & SYNC_TRYLOCK) &&
474fce06 353 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 354 return 1;
e3a20c0b
DC
355
356 /*
357 * The radix tree lock here protects a thread in xfs_iget from racing
358 * with us starting reclaim on the inode. Once we have the
359 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
360 *
361 * Due to RCU lookup, we may find inodes that have been freed and only
362 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
363 * aren't candidates for reclaim at all, so we must check the
364 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
365 */
366 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
367 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
368 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
369 /* not a reclaim candidate. */
e3a20c0b
DC
370 spin_unlock(&ip->i_flags_lock);
371 return 1;
372 }
373 __xfs_iflags_set(ip, XFS_IRECLAIM);
374 spin_unlock(&ip->i_flags_lock);
375 return 0;
376}
377
777df5af 378/*
8a48088f
CH
379 * Inodes in different states need to be treated differently. The following
380 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
381 *
382 * inode state iflush ret required action
383 * --------------- ---------- ---------------
384 * bad - reclaim
385 * shutdown EIO unpin and reclaim
386 * clean, unpinned 0 reclaim
387 * stale, unpinned 0 reclaim
c854363e
DC
388 * clean, pinned(*) 0 requeue
389 * stale, pinned EAGAIN requeue
8a48088f
CH
390 * dirty, async - requeue
391 * dirty, sync 0 reclaim
777df5af
DC
392 *
393 * (*) dgc: I don't think the clean, pinned state is possible but it gets
394 * handled anyway given the order of checks implemented.
395 *
c854363e
DC
396 * Also, because we get the flush lock first, we know that any inode that has
397 * been flushed delwri has had the flush completed by the time we check that
8a48088f 398 * the inode is clean.
c854363e 399 *
8a48088f
CH
400 * Note that because the inode is flushed delayed write by AIL pushing, the
401 * flush lock may already be held here and waiting on it can result in very
402 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
403 * the caller should push the AIL first before trying to reclaim inodes to
404 * minimise the amount of time spent waiting. For background relaim, we only
405 * bother to reclaim clean inodes anyway.
c854363e 406 *
777df5af
DC
407 * Hence the order of actions after gaining the locks should be:
408 * bad => reclaim
409 * shutdown => unpin and reclaim
8a48088f 410 * pinned, async => requeue
c854363e 411 * pinned, sync => unpin
777df5af
DC
412 * stale => reclaim
413 * clean => reclaim
8a48088f 414 * dirty, async => requeue
c854363e 415 * dirty, sync => flush, wait and reclaim
777df5af 416 */
75f3cb13 417STATIC int
c8e20be0 418xfs_reclaim_inode(
75f3cb13
DC
419 struct xfs_inode *ip,
420 struct xfs_perag *pag,
c8e20be0 421 int sync_mode)
fce08f2f 422{
4c46819a
CH
423 struct xfs_buf *bp = NULL;
424 int error;
777df5af 425
1bfd8d04
DC
426restart:
427 error = 0;
c8e20be0 428 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
429 if (!xfs_iflock_nowait(ip)) {
430 if (!(sync_mode & SYNC_WAIT))
431 goto out;
432 xfs_iflock(ip);
433 }
7a3be02b 434
777df5af
DC
435 if (is_bad_inode(VFS_I(ip)))
436 goto reclaim;
437 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
438 xfs_iunpin_wait(ip);
04913fdd 439 xfs_iflush_abort(ip, false);
777df5af
DC
440 goto reclaim;
441 }
c854363e 442 if (xfs_ipincount(ip)) {
8a48088f
CH
443 if (!(sync_mode & SYNC_WAIT))
444 goto out_ifunlock;
777df5af 445 xfs_iunpin_wait(ip);
c854363e 446 }
777df5af
DC
447 if (xfs_iflags_test(ip, XFS_ISTALE))
448 goto reclaim;
449 if (xfs_inode_clean(ip))
450 goto reclaim;
451
8a48088f
CH
452 /*
453 * Never flush out dirty data during non-blocking reclaim, as it would
454 * just contend with AIL pushing trying to do the same job.
455 */
456 if (!(sync_mode & SYNC_WAIT))
457 goto out_ifunlock;
458
1bfd8d04
DC
459 /*
460 * Now we have an inode that needs flushing.
461 *
4c46819a 462 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 463 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 464 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
465 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
466 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
467 *
468 * As xfs_ifree_cluser() must gather all inodes that are active in the
469 * cache to mark them stale, if we hit this case we don't actually want
470 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
471 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
472 * inode, back off and try again. Hopefully the next pass through will
473 * see the stale flag set on the inode.
1bfd8d04 474 */
4c46819a 475 error = xfs_iflush(ip, &bp);
8a48088f
CH
476 if (error == EAGAIN) {
477 xfs_iunlock(ip, XFS_ILOCK_EXCL);
478 /* backoff longer than in xfs_ifree_cluster */
479 delay(2);
480 goto restart;
c854363e 481 }
c854363e 482
4c46819a
CH
483 if (!error) {
484 error = xfs_bwrite(bp);
485 xfs_buf_relse(bp);
486 }
487
488 xfs_iflock(ip);
777df5af
DC
489reclaim:
490 xfs_ifunlock(ip);
c8e20be0 491 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
492
493 XFS_STATS_INC(xs_ig_reclaims);
494 /*
495 * Remove the inode from the per-AG radix tree.
496 *
497 * Because radix_tree_delete won't complain even if the item was never
498 * added to the tree assert that it's been there before to catch
499 * problems with the inode life time early on.
500 */
1a427ab0 501 spin_lock(&pag->pag_ici_lock);
2f11feab
DC
502 if (!radix_tree_delete(&pag->pag_ici_root,
503 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino)))
504 ASSERT(0);
081003ff 505 __xfs_inode_clear_reclaim(pag, ip);
1a427ab0 506 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
507
508 /*
509 * Here we do an (almost) spurious inode lock in order to coordinate
510 * with inode cache radix tree lookups. This is because the lookup
511 * can reference the inodes in the cache without taking references.
512 *
513 * We make that OK here by ensuring that we wait until the inode is
ad637a10 514 * unlocked after the lookup before we go ahead and free it.
2f11feab 515 */
ad637a10 516 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 517 xfs_qm_dqdetach(ip);
ad637a10 518 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab
DC
519
520 xfs_inode_free(ip);
ad637a10 521 return error;
8a48088f
CH
522
523out_ifunlock:
524 xfs_ifunlock(ip);
525out:
526 xfs_iflags_clear(ip, XFS_IRECLAIM);
527 xfs_iunlock(ip, XFS_ILOCK_EXCL);
528 /*
529 * We could return EAGAIN here to make reclaim rescan the inode tree in
530 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
531 * waiting for IO to complete and the reclaim work never goes back to
532 * the idle state. Instead, return 0 to let the next scheduled
533 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
534 */
535 return 0;
7a3be02b
DC
536}
537
65d0f205
DC
538/*
539 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
540 * corrupted, we still want to try to reclaim all the inodes. If we don't,
541 * then a shut down during filesystem unmount reclaim walk leak all the
542 * unreclaimed inodes.
543 */
544int
545xfs_reclaim_inodes_ag(
546 struct xfs_mount *mp,
547 int flags,
548 int *nr_to_scan)
549{
550 struct xfs_perag *pag;
551 int error = 0;
552 int last_error = 0;
553 xfs_agnumber_t ag;
69b491c2
DC
554 int trylock = flags & SYNC_TRYLOCK;
555 int skipped;
65d0f205 556
69b491c2 557restart:
65d0f205 558 ag = 0;
69b491c2 559 skipped = 0;
65d0f205
DC
560 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
561 unsigned long first_index = 0;
562 int done = 0;
e3a20c0b 563 int nr_found = 0;
65d0f205
DC
564
565 ag = pag->pag_agno + 1;
566
69b491c2
DC
567 if (trylock) {
568 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
569 skipped++;
f83282a8 570 xfs_perag_put(pag);
69b491c2
DC
571 continue;
572 }
573 first_index = pag->pag_ici_reclaim_cursor;
574 } else
575 mutex_lock(&pag->pag_ici_reclaim_lock);
576
65d0f205 577 do {
e3a20c0b
DC
578 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
579 int i;
65d0f205 580
1a3e8f3d 581 rcu_read_lock();
e3a20c0b
DC
582 nr_found = radix_tree_gang_lookup_tag(
583 &pag->pag_ici_root,
584 (void **)batch, first_index,
585 XFS_LOOKUP_BATCH,
65d0f205
DC
586 XFS_ICI_RECLAIM_TAG);
587 if (!nr_found) {
b2232219 588 done = 1;
1a3e8f3d 589 rcu_read_unlock();
65d0f205
DC
590 break;
591 }
592
593 /*
e3a20c0b
DC
594 * Grab the inodes before we drop the lock. if we found
595 * nothing, nr == 0 and the loop will be skipped.
65d0f205 596 */
e3a20c0b
DC
597 for (i = 0; i < nr_found; i++) {
598 struct xfs_inode *ip = batch[i];
599
600 if (done || xfs_reclaim_inode_grab(ip, flags))
601 batch[i] = NULL;
602
603 /*
604 * Update the index for the next lookup. Catch
605 * overflows into the next AG range which can
606 * occur if we have inodes in the last block of
607 * the AG and we are currently pointing to the
608 * last inode.
1a3e8f3d
DC
609 *
610 * Because we may see inodes that are from the
611 * wrong AG due to RCU freeing and
612 * reallocation, only update the index if it
613 * lies in this AG. It was a race that lead us
614 * to see this inode, so another lookup from
615 * the same index will not find it again.
e3a20c0b 616 */
1a3e8f3d
DC
617 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
618 pag->pag_agno)
619 continue;
e3a20c0b
DC
620 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
621 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
622 done = 1;
623 }
65d0f205 624
e3a20c0b 625 /* unlock now we've grabbed the inodes. */
1a3e8f3d 626 rcu_read_unlock();
e3a20c0b
DC
627
628 for (i = 0; i < nr_found; i++) {
629 if (!batch[i])
630 continue;
631 error = xfs_reclaim_inode(batch[i], pag, flags);
632 if (error && last_error != EFSCORRUPTED)
633 last_error = error;
634 }
635
636 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 637
8daaa831
DC
638 cond_resched();
639
e3a20c0b 640 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 641
69b491c2
DC
642 if (trylock && !done)
643 pag->pag_ici_reclaim_cursor = first_index;
644 else
645 pag->pag_ici_reclaim_cursor = 0;
646 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
647 xfs_perag_put(pag);
648 }
69b491c2
DC
649
650 /*
651 * if we skipped any AG, and we still have scan count remaining, do
652 * another pass this time using blocking reclaim semantics (i.e
653 * waiting on the reclaim locks and ignoring the reclaim cursors). This
654 * ensure that when we get more reclaimers than AGs we block rather
655 * than spin trying to execute reclaim.
656 */
8daaa831 657 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
658 trylock = 0;
659 goto restart;
660 }
65d0f205
DC
661 return XFS_ERROR(last_error);
662}
663
7a3be02b
DC
664int
665xfs_reclaim_inodes(
666 xfs_mount_t *mp,
7a3be02b
DC
667 int mode)
668{
65d0f205
DC
669 int nr_to_scan = INT_MAX;
670
671 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
672}
673
674/*
8daaa831 675 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
676 *
677 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 678 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
679 * reclaim of inodes. That means if we come across dirty inodes, we wait for
680 * them to be cleaned, which we hope will not be very long due to the
681 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 682 */
8daaa831
DC
683void
684xfs_reclaim_inodes_nr(
685 struct xfs_mount *mp,
686 int nr_to_scan)
9bf729c0 687{
8daaa831 688 /* kick background reclaimer and push the AIL */
5889608d 689 xfs_reclaim_work_queue(mp);
8daaa831 690 xfs_ail_push_all(mp->m_ail);
a7b339f1 691
8daaa831
DC
692 xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
693}
9bf729c0 694
8daaa831
DC
695/*
696 * Return the number of reclaimable inodes in the filesystem for
697 * the shrinker to determine how much to reclaim.
698 */
699int
700xfs_reclaim_inodes_count(
701 struct xfs_mount *mp)
702{
703 struct xfs_perag *pag;
704 xfs_agnumber_t ag = 0;
705 int reclaimable = 0;
9bf729c0 706
65d0f205
DC
707 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
708 ag = pag->pag_agno + 1;
70e60ce7
DC
709 reclaimable += pag->pag_ici_reclaimable;
710 xfs_perag_put(pag);
9bf729c0 711 }
9bf729c0
DC
712 return reclaimable;
713}
714