xfs: validate btree records on retrieval
[linux-block.git] / fs / xfs / xfs_rmap_item.c
CommitLineData
5880f2d7
DW
1/*
2 * Copyright (C) 2016 Oracle. All Rights Reserved.
3 *
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it would be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write the Free Software Foundation,
18 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
19 */
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_format.h"
23#include "xfs_log_format.h"
24#include "xfs_trans_resv.h"
9e88b5d8 25#include "xfs_bit.h"
b31c2bdc 26#include "xfs_shared.h"
5880f2d7 27#include "xfs_mount.h"
9c194644 28#include "xfs_defer.h"
5880f2d7
DW
29#include "xfs_trans.h"
30#include "xfs_trans_priv.h"
31#include "xfs_buf_item.h"
32#include "xfs_rmap_item.h"
33#include "xfs_log.h"
9c194644 34#include "xfs_rmap.h"
5880f2d7
DW
35
36
37kmem_zone_t *xfs_rui_zone;
38kmem_zone_t *xfs_rud_zone;
39
40static inline struct xfs_rui_log_item *RUI_ITEM(struct xfs_log_item *lip)
41{
42 return container_of(lip, struct xfs_rui_log_item, rui_item);
43}
44
45void
46xfs_rui_item_free(
47 struct xfs_rui_log_item *ruip)
48{
49 if (ruip->rui_format.rui_nextents > XFS_RUI_MAX_FAST_EXTENTS)
50 kmem_free(ruip);
51 else
52 kmem_zone_free(xfs_rui_zone, ruip);
53}
54
0612d116
DC
55/*
56 * Freeing the RUI requires that we remove it from the AIL if it has already
57 * been placed there. However, the RUI may not yet have been placed in the AIL
58 * when called by xfs_rui_release() from RUD processing due to the ordering of
59 * committed vs unpin operations in bulk insert operations. Hence the reference
60 * count to ensure only the last caller frees the RUI.
61 */
62void
63xfs_rui_release(
64 struct xfs_rui_log_item *ruip)
65{
66 ASSERT(atomic_read(&ruip->rui_refcount) > 0);
67 if (atomic_dec_and_test(&ruip->rui_refcount)) {
68 xfs_trans_ail_remove(&ruip->rui_item, SHUTDOWN_LOG_IO_ERROR);
69 xfs_rui_item_free(ruip);
70 }
71}
72
5880f2d7
DW
73STATIC void
74xfs_rui_item_size(
75 struct xfs_log_item *lip,
76 int *nvecs,
77 int *nbytes)
78{
cd00158c
DW
79 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
80
5880f2d7 81 *nvecs += 1;
cd00158c 82 *nbytes += xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents);
5880f2d7
DW
83}
84
85/*
86 * This is called to fill in the vector of log iovecs for the
87 * given rui log item. We use only 1 iovec, and we point that
88 * at the rui_log_format structure embedded in the rui item.
89 * It is at this point that we assert that all of the extent
90 * slots in the rui item have been filled.
91 */
92STATIC void
93xfs_rui_item_format(
94 struct xfs_log_item *lip,
95 struct xfs_log_vec *lv)
96{
97 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
98 struct xfs_log_iovec *vecp = NULL;
99
100 ASSERT(atomic_read(&ruip->rui_next_extent) ==
101 ruip->rui_format.rui_nextents);
102
103 ruip->rui_format.rui_type = XFS_LI_RUI;
104 ruip->rui_format.rui_size = 1;
105
106 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUI_FORMAT, &ruip->rui_format,
cd00158c 107 xfs_rui_log_format_sizeof(ruip->rui_format.rui_nextents));
5880f2d7
DW
108}
109
110/*
111 * Pinning has no meaning for an rui item, so just return.
112 */
113STATIC void
114xfs_rui_item_pin(
115 struct xfs_log_item *lip)
116{
117}
118
119/*
120 * The unpin operation is the last place an RUI is manipulated in the log. It is
121 * either inserted in the AIL or aborted in the event of a log I/O error. In
122 * either case, the RUI transaction has been successfully committed to make it
123 * this far. Therefore, we expect whoever committed the RUI to either construct
124 * and commit the RUD or drop the RUD's reference in the event of error. Simply
125 * drop the log's RUI reference now that the log is done with it.
126 */
127STATIC void
128xfs_rui_item_unpin(
129 struct xfs_log_item *lip,
130 int remove)
131{
132 struct xfs_rui_log_item *ruip = RUI_ITEM(lip);
133
134 xfs_rui_release(ruip);
135}
136
137/*
138 * RUI items have no locking or pushing. However, since RUIs are pulled from
139 * the AIL when their corresponding RUDs are committed to disk, their situation
140 * is very similar to being pinned. Return XFS_ITEM_PINNED so that the caller
141 * will eventually flush the log. This should help in getting the RUI out of
142 * the AIL.
143 */
144STATIC uint
145xfs_rui_item_push(
146 struct xfs_log_item *lip,
147 struct list_head *buffer_list)
148{
149 return XFS_ITEM_PINNED;
150}
151
152/*
153 * The RUI has been either committed or aborted if the transaction has been
154 * cancelled. If the transaction was cancelled, an RUD isn't going to be
155 * constructed and thus we free the RUI here directly.
156 */
157STATIC void
158xfs_rui_item_unlock(
159 struct xfs_log_item *lip)
160{
22525c17 161 if (test_bit(XFS_LI_ABORTED, &lip->li_flags))
0612d116 162 xfs_rui_release(RUI_ITEM(lip));
5880f2d7
DW
163}
164
165/*
166 * The RUI is logged only once and cannot be moved in the log, so simply return
167 * the lsn at which it's been logged.
168 */
169STATIC xfs_lsn_t
170xfs_rui_item_committed(
171 struct xfs_log_item *lip,
172 xfs_lsn_t lsn)
173{
174 return lsn;
175}
176
177/*
178 * The RUI dependency tracking op doesn't do squat. It can't because
179 * it doesn't know where the free extent is coming from. The dependency
180 * tracking has to be handled by the "enclosing" metadata object. For
181 * example, for inodes, the inode is locked throughout the extent freeing
182 * so the dependency should be recorded there.
183 */
184STATIC void
185xfs_rui_item_committing(
186 struct xfs_log_item *lip,
187 xfs_lsn_t lsn)
188{
189}
190
191/*
192 * This is the ops vector shared by all rui log items.
193 */
194static const struct xfs_item_ops xfs_rui_item_ops = {
195 .iop_size = xfs_rui_item_size,
196 .iop_format = xfs_rui_item_format,
197 .iop_pin = xfs_rui_item_pin,
198 .iop_unpin = xfs_rui_item_unpin,
199 .iop_unlock = xfs_rui_item_unlock,
200 .iop_committed = xfs_rui_item_committed,
201 .iop_push = xfs_rui_item_push,
202 .iop_committing = xfs_rui_item_committing,
203};
204
205/*
206 * Allocate and initialize an rui item with the given number of extents.
207 */
208struct xfs_rui_log_item *
209xfs_rui_init(
210 struct xfs_mount *mp,
211 uint nextents)
212
213{
214 struct xfs_rui_log_item *ruip;
5880f2d7
DW
215
216 ASSERT(nextents > 0);
cd00158c
DW
217 if (nextents > XFS_RUI_MAX_FAST_EXTENTS)
218 ruip = kmem_zalloc(xfs_rui_log_item_sizeof(nextents), KM_SLEEP);
219 else
5880f2d7 220 ruip = kmem_zone_zalloc(xfs_rui_zone, KM_SLEEP);
5880f2d7
DW
221
222 xfs_log_item_init(mp, &ruip->rui_item, XFS_LI_RUI, &xfs_rui_item_ops);
223 ruip->rui_format.rui_nextents = nextents;
224 ruip->rui_format.rui_id = (uintptr_t)(void *)ruip;
225 atomic_set(&ruip->rui_next_extent, 0);
226 atomic_set(&ruip->rui_refcount, 2);
227
228 return ruip;
229}
230
231/*
232 * Copy an RUI format buffer from the given buf, and into the destination
233 * RUI format structure. The RUI/RUD items were designed not to need any
234 * special alignment handling.
235 */
236int
237xfs_rui_copy_format(
238 struct xfs_log_iovec *buf,
239 struct xfs_rui_log_format *dst_rui_fmt)
240{
241 struct xfs_rui_log_format *src_rui_fmt;
242 uint len;
243
244 src_rui_fmt = buf->i_addr;
cd00158c 245 len = xfs_rui_log_format_sizeof(src_rui_fmt->rui_nextents);
5880f2d7
DW
246
247 if (buf->i_len != len)
248 return -EFSCORRUPTED;
249
cd00158c 250 memcpy(dst_rui_fmt, src_rui_fmt, len);
5880f2d7
DW
251 return 0;
252}
253
5880f2d7
DW
254static inline struct xfs_rud_log_item *RUD_ITEM(struct xfs_log_item *lip)
255{
256 return container_of(lip, struct xfs_rud_log_item, rud_item);
257}
258
5880f2d7
DW
259STATIC void
260xfs_rud_item_size(
261 struct xfs_log_item *lip,
262 int *nvecs,
263 int *nbytes)
264{
265 *nvecs += 1;
722e2517 266 *nbytes += sizeof(struct xfs_rud_log_format);
5880f2d7
DW
267}
268
269/*
270 * This is called to fill in the vector of log iovecs for the
271 * given rud log item. We use only 1 iovec, and we point that
272 * at the rud_log_format structure embedded in the rud item.
273 * It is at this point that we assert that all of the extent
274 * slots in the rud item have been filled.
275 */
276STATIC void
277xfs_rud_item_format(
278 struct xfs_log_item *lip,
279 struct xfs_log_vec *lv)
280{
281 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
282 struct xfs_log_iovec *vecp = NULL;
283
5880f2d7
DW
284 rudp->rud_format.rud_type = XFS_LI_RUD;
285 rudp->rud_format.rud_size = 1;
286
287 xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_RUD_FORMAT, &rudp->rud_format,
722e2517 288 sizeof(struct xfs_rud_log_format));
5880f2d7
DW
289}
290
291/*
292 * Pinning has no meaning for an rud item, so just return.
293 */
294STATIC void
295xfs_rud_item_pin(
296 struct xfs_log_item *lip)
297{
298}
299
300/*
301 * Since pinning has no meaning for an rud item, unpinning does
302 * not either.
303 */
304STATIC void
305xfs_rud_item_unpin(
306 struct xfs_log_item *lip,
307 int remove)
308{
309}
310
311/*
312 * There isn't much you can do to push on an rud item. It is simply stuck
313 * waiting for the log to be flushed to disk.
314 */
315STATIC uint
316xfs_rud_item_push(
317 struct xfs_log_item *lip,
318 struct list_head *buffer_list)
319{
320 return XFS_ITEM_PINNED;
321}
322
323/*
324 * The RUD is either committed or aborted if the transaction is cancelled. If
325 * the transaction is cancelled, drop our reference to the RUI and free the
326 * RUD.
327 */
328STATIC void
329xfs_rud_item_unlock(
330 struct xfs_log_item *lip)
331{
332 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
333
22525c17 334 if (test_bit(XFS_LI_ABORTED, &lip->li_flags)) {
5880f2d7 335 xfs_rui_release(rudp->rud_ruip);
722e2517 336 kmem_zone_free(xfs_rud_zone, rudp);
5880f2d7
DW
337 }
338}
339
340/*
341 * When the rud item is committed to disk, all we need to do is delete our
342 * reference to our partner rui item and then free ourselves. Since we're
343 * freeing ourselves we must return -1 to keep the transaction code from
344 * further referencing this item.
345 */
346STATIC xfs_lsn_t
347xfs_rud_item_committed(
348 struct xfs_log_item *lip,
349 xfs_lsn_t lsn)
350{
351 struct xfs_rud_log_item *rudp = RUD_ITEM(lip);
352
353 /*
354 * Drop the RUI reference regardless of whether the RUD has been
355 * aborted. Once the RUD transaction is constructed, it is the sole
356 * responsibility of the RUD to release the RUI (even if the RUI is
357 * aborted due to log I/O error).
358 */
359 xfs_rui_release(rudp->rud_ruip);
722e2517 360 kmem_zone_free(xfs_rud_zone, rudp);
5880f2d7
DW
361
362 return (xfs_lsn_t)-1;
363}
364
365/*
366 * The RUD dependency tracking op doesn't do squat. It can't because
367 * it doesn't know where the free extent is coming from. The dependency
368 * tracking has to be handled by the "enclosing" metadata object. For
369 * example, for inodes, the inode is locked throughout the extent freeing
370 * so the dependency should be recorded there.
371 */
372STATIC void
373xfs_rud_item_committing(
374 struct xfs_log_item *lip,
375 xfs_lsn_t lsn)
376{
377}
378
379/*
380 * This is the ops vector shared by all rud log items.
381 */
382static const struct xfs_item_ops xfs_rud_item_ops = {
383 .iop_size = xfs_rud_item_size,
384 .iop_format = xfs_rud_item_format,
385 .iop_pin = xfs_rud_item_pin,
386 .iop_unpin = xfs_rud_item_unpin,
387 .iop_unlock = xfs_rud_item_unlock,
388 .iop_committed = xfs_rud_item_committed,
389 .iop_push = xfs_rud_item_push,
390 .iop_committing = xfs_rud_item_committing,
391};
392
393/*
394 * Allocate and initialize an rud item with the given number of extents.
395 */
396struct xfs_rud_log_item *
397xfs_rud_init(
398 struct xfs_mount *mp,
722e2517 399 struct xfs_rui_log_item *ruip)
5880f2d7
DW
400
401{
402 struct xfs_rud_log_item *rudp;
5880f2d7 403
722e2517 404 rudp = kmem_zone_zalloc(xfs_rud_zone, KM_SLEEP);
5880f2d7
DW
405 xfs_log_item_init(mp, &rudp->rud_item, XFS_LI_RUD, &xfs_rud_item_ops);
406 rudp->rud_ruip = ruip;
5880f2d7
DW
407 rudp->rud_format.rud_rui_id = ruip->rui_format.rui_id;
408
409 return rudp;
410}
9e88b5d8
DW
411
412/*
413 * Process an rmap update intent item that was recovered from the log.
414 * We need to update the rmapbt.
415 */
416int
417xfs_rui_recover(
418 struct xfs_mount *mp,
419 struct xfs_rui_log_item *ruip)
420{
421 int i;
422 int error = 0;
423 struct xfs_map_extent *rmap;
424 xfs_fsblock_t startblock_fsb;
425 bool op_ok;
9c194644
DW
426 struct xfs_rud_log_item *rudp;
427 enum xfs_rmap_intent_type type;
428 int whichfork;
429 xfs_exntst_t state;
430 struct xfs_trans *tp;
431 struct xfs_btree_cur *rcur = NULL;
9e88b5d8
DW
432
433 ASSERT(!test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags));
434
435 /*
436 * First check the validity of the extents described by the
437 * RUI. If any are bad, then assume that all are bad and
438 * just toss the RUI.
439 */
440 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
e127fafd 441 rmap = &ruip->rui_format.rui_extents[i];
9e88b5d8
DW
442 startblock_fsb = XFS_BB_TO_FSB(mp,
443 XFS_FSB_TO_DADDR(mp, rmap->me_startblock));
444 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
445 case XFS_RMAP_EXTENT_MAP:
0e07c039 446 case XFS_RMAP_EXTENT_MAP_SHARED:
9e88b5d8 447 case XFS_RMAP_EXTENT_UNMAP:
0e07c039 448 case XFS_RMAP_EXTENT_UNMAP_SHARED:
9e88b5d8 449 case XFS_RMAP_EXTENT_CONVERT:
0e07c039 450 case XFS_RMAP_EXTENT_CONVERT_SHARED:
9e88b5d8
DW
451 case XFS_RMAP_EXTENT_ALLOC:
452 case XFS_RMAP_EXTENT_FREE:
453 op_ok = true;
454 break;
455 default:
456 op_ok = false;
457 break;
458 }
e127fafd
DW
459 if (!op_ok || startblock_fsb == 0 ||
460 rmap->me_len == 0 ||
461 startblock_fsb >= mp->m_sb.sb_dblocks ||
462 rmap->me_len >= mp->m_sb.sb_agblocks ||
9e88b5d8
DW
463 (rmap->me_flags & ~XFS_RMAP_EXTENT_FLAGS)) {
464 /*
465 * This will pull the RUI from the AIL and
466 * free the memory associated with it.
467 */
468 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
469 xfs_rui_release(ruip);
470 return -EIO;
471 }
472 }
473
b31c2bdc
DW
474 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
475 mp->m_rmap_maxlevels, 0, XFS_TRANS_RESERVE, &tp);
9c194644
DW
476 if (error)
477 return error;
722e2517 478 rudp = xfs_trans_get_rud(tp, ruip);
9c194644
DW
479
480 for (i = 0; i < ruip->rui_format.rui_nextents; i++) {
e127fafd 481 rmap = &ruip->rui_format.rui_extents[i];
9c194644
DW
482 state = (rmap->me_flags & XFS_RMAP_EXTENT_UNWRITTEN) ?
483 XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
484 whichfork = (rmap->me_flags & XFS_RMAP_EXTENT_ATTR_FORK) ?
485 XFS_ATTR_FORK : XFS_DATA_FORK;
486 switch (rmap->me_flags & XFS_RMAP_EXTENT_TYPE_MASK) {
487 case XFS_RMAP_EXTENT_MAP:
488 type = XFS_RMAP_MAP;
489 break;
ceeb9c83
DW
490 case XFS_RMAP_EXTENT_MAP_SHARED:
491 type = XFS_RMAP_MAP_SHARED;
492 break;
9c194644
DW
493 case XFS_RMAP_EXTENT_UNMAP:
494 type = XFS_RMAP_UNMAP;
495 break;
ceeb9c83
DW
496 case XFS_RMAP_EXTENT_UNMAP_SHARED:
497 type = XFS_RMAP_UNMAP_SHARED;
498 break;
9c194644
DW
499 case XFS_RMAP_EXTENT_CONVERT:
500 type = XFS_RMAP_CONVERT;
501 break;
3f165b33
DW
502 case XFS_RMAP_EXTENT_CONVERT_SHARED:
503 type = XFS_RMAP_CONVERT_SHARED;
504 break;
9c194644
DW
505 case XFS_RMAP_EXTENT_ALLOC:
506 type = XFS_RMAP_ALLOC;
507 break;
508 case XFS_RMAP_EXTENT_FREE:
509 type = XFS_RMAP_FREE;
510 break;
511 default:
512 error = -EFSCORRUPTED;
513 goto abort_error;
514 }
515 error = xfs_trans_log_finish_rmap_update(tp, rudp, type,
516 rmap->me_owner, whichfork,
517 rmap->me_startoff, rmap->me_startblock,
518 rmap->me_len, state, &rcur);
519 if (error)
520 goto abort_error;
521
522 }
523
524 xfs_rmap_finish_one_cleanup(tp, rcur, error);
9e88b5d8 525 set_bit(XFS_RUI_RECOVERED, &ruip->rui_flags);
9c194644
DW
526 error = xfs_trans_commit(tp);
527 return error;
528
529abort_error:
530 xfs_rmap_finish_one_cleanup(tp, rcur, error);
531 xfs_trans_cancel(tp);
9e88b5d8
DW
532 return error;
533}