xfs: cancel pending CoW reservations when destroying inodes
[linux-block.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
a31b1d3d 44#include "xfs_sysfs.h"
035e00ac 45#include "xfs_rmap_btree.h"
1946b91c 46#include "xfs_refcount_btree.h"
0b1b213f 47
1da177e4 48
27174203
CH
49static DEFINE_MUTEX(xfs_uuid_table_mutex);
50static int xfs_uuid_table_size;
51static uuid_t *xfs_uuid_table;
52
af3b6382
DW
53void
54xfs_uuid_table_free(void)
55{
56 if (xfs_uuid_table_size == 0)
57 return;
58 kmem_free(xfs_uuid_table);
59 xfs_uuid_table = NULL;
60 xfs_uuid_table_size = 0;
61}
62
27174203
CH
63/*
64 * See if the UUID is unique among mounted XFS filesystems.
65 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
66 */
67STATIC int
68xfs_uuid_mount(
69 struct xfs_mount *mp)
70{
71 uuid_t *uuid = &mp->m_sb.sb_uuid;
72 int hole, i;
73
74 if (mp->m_flags & XFS_MOUNT_NOUUID)
75 return 0;
76
77 if (uuid_is_nil(uuid)) {
0b932ccc 78 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 79 return -EINVAL;
27174203
CH
80 }
81
82 mutex_lock(&xfs_uuid_table_mutex);
83 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
84 if (uuid_is_nil(&xfs_uuid_table[i])) {
85 hole = i;
86 continue;
87 }
88 if (uuid_equal(uuid, &xfs_uuid_table[i]))
89 goto out_duplicate;
90 }
91
92 if (hole < 0) {
93 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
94 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
27174203
CH
95 KM_SLEEP);
96 hole = xfs_uuid_table_size++;
97 }
98 xfs_uuid_table[hole] = *uuid;
99 mutex_unlock(&xfs_uuid_table_mutex);
100
101 return 0;
102
103 out_duplicate:
104 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 105 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 106 return -EINVAL;
27174203
CH
107}
108
109STATIC void
110xfs_uuid_unmount(
111 struct xfs_mount *mp)
112{
113 uuid_t *uuid = &mp->m_sb.sb_uuid;
114 int i;
115
116 if (mp->m_flags & XFS_MOUNT_NOUUID)
117 return;
118
119 mutex_lock(&xfs_uuid_table_mutex);
120 for (i = 0; i < xfs_uuid_table_size; i++) {
121 if (uuid_is_nil(&xfs_uuid_table[i]))
122 continue;
123 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
124 continue;
125 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
126 break;
127 }
128 ASSERT(i < xfs_uuid_table_size);
129 mutex_unlock(&xfs_uuid_table_mutex);
130}
131
132
e176579e
DC
133STATIC void
134__xfs_free_perag(
135 struct rcu_head *head)
136{
137 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
138
139 ASSERT(atomic_read(&pag->pag_ref) == 0);
140 kmem_free(pag);
141}
142
1da177e4 143/*
e176579e 144 * Free up the per-ag resources associated with the mount structure.
1da177e4 145 */
c962fb79 146STATIC void
ff4f038c 147xfs_free_perag(
745f6919 148 xfs_mount_t *mp)
1da177e4 149{
1c1c6ebc
DC
150 xfs_agnumber_t agno;
151 struct xfs_perag *pag;
152
153 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
154 spin_lock(&mp->m_perag_lock);
155 pag = radix_tree_delete(&mp->m_perag_tree, agno);
156 spin_unlock(&mp->m_perag_lock);
e176579e 157 ASSERT(pag);
f83282a8 158 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 159 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 160 }
1da177e4
LT
161}
162
4cc929ee
NS
163/*
164 * Check size of device based on the (data/realtime) block count.
165 * Note: this check is used by the growfs code as well as mount.
166 */
167int
168xfs_sb_validate_fsb_count(
169 xfs_sb_t *sbp,
170 __uint64_t nblocks)
171{
172 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
173 ASSERT(sbp->sb_blocklog >= BBSHIFT);
174
d5cf09ba 175 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 176 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 177 return -EFBIG;
4cc929ee
NS
178 return 0;
179}
1da177e4 180
1c1c6ebc 181int
c11e2c36 182xfs_initialize_perag(
c11e2c36 183 xfs_mount_t *mp,
1c1c6ebc
DC
184 xfs_agnumber_t agcount,
185 xfs_agnumber_t *maxagi)
1da177e4 186{
2d2194f6 187 xfs_agnumber_t index;
8b26c582 188 xfs_agnumber_t first_initialised = 0;
1da177e4 189 xfs_perag_t *pag;
8b26c582 190 int error = -ENOMEM;
1da177e4 191
1c1c6ebc
DC
192 /*
193 * Walk the current per-ag tree so we don't try to initialise AGs
194 * that already exist (growfs case). Allocate and insert all the
195 * AGs we don't find ready for initialisation.
196 */
197 for (index = 0; index < agcount; index++) {
198 pag = xfs_perag_get(mp, index);
199 if (pag) {
200 xfs_perag_put(pag);
201 continue;
202 }
8b26c582
DC
203 if (!first_initialised)
204 first_initialised = index;
fb3b504a 205
1c1c6ebc
DC
206 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
207 if (!pag)
8b26c582 208 goto out_unwind;
fb3b504a
CH
209 pag->pag_agno = index;
210 pag->pag_mount = mp;
1a427ab0 211 spin_lock_init(&pag->pag_ici_lock);
69b491c2 212 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 213 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
214 spin_lock_init(&pag->pag_buf_lock);
215 pag->pag_buf_tree = RB_ROOT;
fb3b504a 216
1c1c6ebc 217 if (radix_tree_preload(GFP_NOFS))
8b26c582 218 goto out_unwind;
fb3b504a 219
1c1c6ebc
DC
220 spin_lock(&mp->m_perag_lock);
221 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
222 BUG();
223 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
224 radix_tree_preload_end();
225 error = -EEXIST;
226 goto out_unwind;
1c1c6ebc
DC
227 }
228 spin_unlock(&mp->m_perag_lock);
229 radix_tree_preload_end();
230 }
231
12c3f05c 232 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 233
1c1c6ebc
DC
234 if (maxagi)
235 *maxagi = index;
8018026e
DW
236
237 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
1c1c6ebc 238 return 0;
8b26c582
DC
239
240out_unwind:
241 kmem_free(pag);
242 for (; index > first_initialised; index--) {
243 pag = radix_tree_delete(&mp->m_perag_tree, index);
244 kmem_free(pag);
245 }
246 return error;
1da177e4
LT
247}
248
1da177e4
LT
249/*
250 * xfs_readsb
251 *
252 * Does the initial read of the superblock.
253 */
254int
ff55068c
DC
255xfs_readsb(
256 struct xfs_mount *mp,
257 int flags)
1da177e4
LT
258{
259 unsigned int sector_size;
04a1e6c5
DC
260 struct xfs_buf *bp;
261 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 262 int error;
af34e09d 263 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 264 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
265
266 ASSERT(mp->m_sb_bp == NULL);
267 ASSERT(mp->m_ddev_targp != NULL);
268
daba5427
ES
269 /*
270 * For the initial read, we must guess at the sector
271 * size based on the block device. It's enough to
272 * get the sb_sectsize out of the superblock and
273 * then reread with the proper length.
274 * We don't verify it yet, because it may not be complete.
275 */
276 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
277 buf_ops = NULL;
278
1da177e4 279 /*
c891c30a
BF
280 * Allocate a (locked) buffer to hold the superblock. This will be kept
281 * around at all times to optimize access to the superblock. Therefore,
282 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
283 * elevated.
1da177e4 284 */
26af6552 285reread:
ba372674 286 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
287 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
288 buf_ops);
ba372674 289 if (error) {
eab4e633 290 if (loud)
e721f504 291 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 292 /* bad CRC means corrupted metadata */
2451337d
DC
293 if (error == -EFSBADCRC)
294 error = -EFSCORRUPTED;
ba372674 295 return error;
eab4e633 296 }
1da177e4
LT
297
298 /*
299 * Initialize the mount structure from the superblock.
1da177e4 300 */
556b8883 301 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
302
303 /*
304 * If we haven't validated the superblock, do so now before we try
305 * to check the sector size and reread the superblock appropriately.
306 */
307 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
308 if (loud)
309 xfs_warn(mp, "Invalid superblock magic number");
2451337d 310 error = -EINVAL;
556b8883
DC
311 goto release_buf;
312 }
ff55068c 313
1da177e4
LT
314 /*
315 * We must be able to do sector-sized and sector-aligned IO.
316 */
04a1e6c5 317 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
318 if (loud)
319 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 320 sector_size, sbp->sb_sectsize);
2451337d 321 error = -ENOSYS;
26af6552 322 goto release_buf;
1da177e4
LT
323 }
324
daba5427 325 if (buf_ops == NULL) {
556b8883
DC
326 /*
327 * Re-read the superblock so the buffer is correctly sized,
328 * and properly verified.
329 */
1da177e4 330 xfs_buf_relse(bp);
04a1e6c5 331 sector_size = sbp->sb_sectsize;
daba5427 332 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 333 goto reread;
1da177e4
LT
334 }
335
5681ca40 336 xfs_reinit_percpu_counters(mp);
8d280b98 337
04a1e6c5
DC
338 /* no need to be quiet anymore, so reset the buf ops */
339 bp->b_ops = &xfs_sb_buf_ops;
340
1da177e4 341 mp->m_sb_bp = bp;
26af6552 342 xfs_buf_unlock(bp);
1da177e4
LT
343 return 0;
344
26af6552
DC
345release_buf:
346 xfs_buf_relse(bp);
1da177e4
LT
347 return error;
348}
349
1da177e4 350/*
0771fb45 351 * Update alignment values based on mount options and sb values
1da177e4 352 */
0771fb45 353STATIC int
7884bc86 354xfs_update_alignment(xfs_mount_t *mp)
1da177e4 355{
1da177e4 356 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 357
4249023a 358 if (mp->m_dalign) {
1da177e4
LT
359 /*
360 * If stripe unit and stripe width are not multiples
361 * of the fs blocksize turn off alignment.
362 */
363 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
364 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
365 xfs_warn(mp,
366 "alignment check failed: sunit/swidth vs. blocksize(%d)",
367 sbp->sb_blocksize);
2451337d 368 return -EINVAL;
1da177e4
LT
369 } else {
370 /*
371 * Convert the stripe unit and width to FSBs.
372 */
373 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
374 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 375 xfs_warn(mp,
39a45d84
JL
376 "alignment check failed: sunit/swidth vs. agsize(%d)",
377 sbp->sb_agblocks);
2451337d 378 return -EINVAL;
1da177e4
LT
379 } else if (mp->m_dalign) {
380 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
381 } else {
39a45d84
JL
382 xfs_warn(mp,
383 "alignment check failed: sunit(%d) less than bsize(%d)",
384 mp->m_dalign, sbp->sb_blocksize);
2451337d 385 return -EINVAL;
1da177e4
LT
386 }
387 }
388
389 /*
390 * Update superblock with new values
391 * and log changes
392 */
62118709 393 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
394 if (sbp->sb_unit != mp->m_dalign) {
395 sbp->sb_unit = mp->m_dalign;
61e63ecb 396 mp->m_update_sb = true;
1da177e4
LT
397 }
398 if (sbp->sb_width != mp->m_swidth) {
399 sbp->sb_width = mp->m_swidth;
61e63ecb 400 mp->m_update_sb = true;
1da177e4 401 }
34d7f603
JL
402 } else {
403 xfs_warn(mp,
404 "cannot change alignment: superblock does not support data alignment");
2451337d 405 return -EINVAL;
1da177e4
LT
406 }
407 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 408 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
409 mp->m_dalign = sbp->sb_unit;
410 mp->m_swidth = sbp->sb_width;
411 }
412
0771fb45
ES
413 return 0;
414}
1da177e4 415
0771fb45
ES
416/*
417 * Set the maximum inode count for this filesystem
418 */
419STATIC void
420xfs_set_maxicount(xfs_mount_t *mp)
421{
422 xfs_sb_t *sbp = &(mp->m_sb);
423 __uint64_t icount;
1da177e4 424
0771fb45
ES
425 if (sbp->sb_imax_pct) {
426 /*
427 * Make sure the maximum inode count is a multiple
428 * of the units we allocate inodes in.
1da177e4 429 */
1da177e4
LT
430 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
431 do_div(icount, 100);
432 do_div(icount, mp->m_ialloc_blks);
433 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
434 sbp->sb_inopblog;
0771fb45 435 } else {
1da177e4 436 mp->m_maxicount = 0;
1da177e4 437 }
0771fb45
ES
438}
439
440/*
441 * Set the default minimum read and write sizes unless
442 * already specified in a mount option.
443 * We use smaller I/O sizes when the file system
444 * is being used for NFS service (wsync mount option).
445 */
446STATIC void
447xfs_set_rw_sizes(xfs_mount_t *mp)
448{
449 xfs_sb_t *sbp = &(mp->m_sb);
450 int readio_log, writeio_log;
1da177e4 451
1da177e4
LT
452 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
453 if (mp->m_flags & XFS_MOUNT_WSYNC) {
454 readio_log = XFS_WSYNC_READIO_LOG;
455 writeio_log = XFS_WSYNC_WRITEIO_LOG;
456 } else {
457 readio_log = XFS_READIO_LOG_LARGE;
458 writeio_log = XFS_WRITEIO_LOG_LARGE;
459 }
460 } else {
461 readio_log = mp->m_readio_log;
462 writeio_log = mp->m_writeio_log;
463 }
464
1da177e4
LT
465 if (sbp->sb_blocklog > readio_log) {
466 mp->m_readio_log = sbp->sb_blocklog;
467 } else {
468 mp->m_readio_log = readio_log;
469 }
470 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
471 if (sbp->sb_blocklog > writeio_log) {
472 mp->m_writeio_log = sbp->sb_blocklog;
473 } else {
474 mp->m_writeio_log = writeio_log;
475 }
476 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 477}
1da177e4 478
055388a3
DC
479/*
480 * precalculate the low space thresholds for dynamic speculative preallocation.
481 */
482void
483xfs_set_low_space_thresholds(
484 struct xfs_mount *mp)
485{
486 int i;
487
488 for (i = 0; i < XFS_LOWSP_MAX; i++) {
489 __uint64_t space = mp->m_sb.sb_dblocks;
490
491 do_div(space, 100);
492 mp->m_low_space[i] = space * (i + 1);
493 }
494}
495
496
0771fb45
ES
497/*
498 * Set whether we're using inode alignment.
499 */
500STATIC void
501xfs_set_inoalignment(xfs_mount_t *mp)
502{
62118709 503 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
504 mp->m_sb.sb_inoalignmt >=
505 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
506 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
507 else
508 mp->m_inoalign_mask = 0;
509 /*
510 * If we are using stripe alignment, check whether
511 * the stripe unit is a multiple of the inode alignment
512 */
513 if (mp->m_dalign && mp->m_inoalign_mask &&
514 !(mp->m_dalign & mp->m_inoalign_mask))
515 mp->m_sinoalign = mp->m_dalign;
516 else
517 mp->m_sinoalign = 0;
0771fb45
ES
518}
519
520/*
0471f62e 521 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
522 */
523STATIC int
ba372674
DC
524xfs_check_sizes(
525 struct xfs_mount *mp)
0771fb45 526{
ba372674 527 struct xfs_buf *bp;
0771fb45 528 xfs_daddr_t d;
ba372674 529 int error;
0771fb45 530
1da177e4
LT
531 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
532 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 533 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 534 return -EFBIG;
1da177e4 535 }
ba372674 536 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 537 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
538 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
539 if (error) {
0b932ccc 540 xfs_warn(mp, "last sector read failed");
ba372674 541 return error;
1da177e4 542 }
1922c949 543 xfs_buf_relse(bp);
1da177e4 544
ba372674
DC
545 if (mp->m_logdev_targp == mp->m_ddev_targp)
546 return 0;
547
548 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
549 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
550 xfs_warn(mp, "log size mismatch detected");
551 return -EFBIG;
552 }
553 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 554 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
555 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
556 if (error) {
557 xfs_warn(mp, "log device read failed");
558 return error;
0771fb45 559 }
ba372674 560 xfs_buf_relse(bp);
0771fb45
ES
561 return 0;
562}
563
7d095257
CH
564/*
565 * Clear the quotaflags in memory and in the superblock.
566 */
567int
568xfs_mount_reset_sbqflags(
569 struct xfs_mount *mp)
570{
7d095257
CH
571 mp->m_qflags = 0;
572
61e63ecb 573 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
574 if (mp->m_sb.sb_qflags == 0)
575 return 0;
576 spin_lock(&mp->m_sb_lock);
577 mp->m_sb.sb_qflags = 0;
578 spin_unlock(&mp->m_sb_lock);
579
61e63ecb 580 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
581 return 0;
582
61e63ecb 583 return xfs_sync_sb(mp, false);
7d095257
CH
584}
585
d5db0f97
ES
586__uint64_t
587xfs_default_resblks(xfs_mount_t *mp)
588{
589 __uint64_t resblks;
590
591 /*
8babd8a2
DC
592 * We default to 5% or 8192 fsbs of space reserved, whichever is
593 * smaller. This is intended to cover concurrent allocation
594 * transactions when we initially hit enospc. These each require a 4
595 * block reservation. Hence by default we cover roughly 2000 concurrent
596 * allocation reservations.
d5db0f97
ES
597 */
598 resblks = mp->m_sb.sb_dblocks;
599 do_div(resblks, 20);
8babd8a2 600 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
601 return resblks;
602}
603
0771fb45 604/*
0771fb45
ES
605 * This function does the following on an initial mount of a file system:
606 * - reads the superblock from disk and init the mount struct
607 * - if we're a 32-bit kernel, do a size check on the superblock
608 * so we don't mount terabyte filesystems
609 * - init mount struct realtime fields
610 * - allocate inode hash table for fs
611 * - init directory manager
612 * - perform recovery and init the log manager
613 */
614int
615xfs_mountfs(
f0b2efad 616 struct xfs_mount *mp)
0771fb45 617{
f0b2efad
BF
618 struct xfs_sb *sbp = &(mp->m_sb);
619 struct xfs_inode *rip;
620 __uint64_t resblks;
621 uint quotamount = 0;
622 uint quotaflags = 0;
623 int error = 0;
0771fb45 624
ff55068c 625 xfs_sb_mount_common(mp, sbp);
0771fb45 626
ee1c0908 627 /*
074e427b
DC
628 * Check for a mismatched features2 values. Older kernels read & wrote
629 * into the wrong sb offset for sb_features2 on some platforms due to
630 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
631 * which made older superblock reading/writing routines swap it as a
632 * 64-bit value.
ee1c0908 633 *
e6957ea4
ES
634 * For backwards compatibility, we make both slots equal.
635 *
074e427b
DC
636 * If we detect a mismatched field, we OR the set bits into the existing
637 * features2 field in case it has already been modified; we don't want
638 * to lose any features. We then update the bad location with the ORed
639 * value so that older kernels will see any features2 flags. The
640 * superblock writeback code ensures the new sb_features2 is copied to
641 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 642 */
e6957ea4 643 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 644 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 645 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 646 mp->m_update_sb = true;
e6957ea4
ES
647
648 /*
649 * Re-check for ATTR2 in case it was found in bad_features2
650 * slot.
651 */
7c12f296
TS
652 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
653 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 654 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
655 }
656
657 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
658 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
659 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 660 mp->m_update_sb = true;
e6957ea4 661
7c12f296
TS
662 /* update sb_versionnum for the clearing of the morebits */
663 if (!sbp->sb_features2)
61e63ecb 664 mp->m_update_sb = true;
ee1c0908
DC
665 }
666
263997a6
DC
667 /* always use v2 inodes by default now */
668 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
669 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 670 mp->m_update_sb = true;
263997a6
DC
671 }
672
0771fb45
ES
673 /*
674 * Check if sb_agblocks is aligned at stripe boundary
675 * If sb_agblocks is NOT aligned turn off m_dalign since
676 * allocator alignment is within an ag, therefore ag has
677 * to be aligned at stripe boundary.
678 */
7884bc86 679 error = xfs_update_alignment(mp);
0771fb45 680 if (error)
f9057e3d 681 goto out;
0771fb45
ES
682
683 xfs_alloc_compute_maxlevels(mp);
684 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
685 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
686 xfs_ialloc_compute_maxlevels(mp);
035e00ac 687 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 688 xfs_refcountbt_compute_maxlevels(mp);
0771fb45
ES
689
690 xfs_set_maxicount(mp);
691
e6b3bb78
CM
692 /* enable fail_at_unmount as default */
693 mp->m_fail_unmount = 1;
694
a31b1d3d 695 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
696 if (error)
697 goto out;
1da177e4 698
225e4635
BD
699 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
700 &mp->m_kobj, "stats");
a31b1d3d
BF
701 if (error)
702 goto out_remove_sysfs;
703
192852be 704 error = xfs_error_sysfs_init(mp);
225e4635
BD
705 if (error)
706 goto out_del_stats;
707
192852be
CM
708
709 error = xfs_uuid_mount(mp);
710 if (error)
711 goto out_remove_error_sysfs;
712
0771fb45
ES
713 /*
714 * Set the minimum read and write sizes
715 */
716 xfs_set_rw_sizes(mp);
717
055388a3
DC
718 /* set the low space thresholds for dynamic preallocation */
719 xfs_set_low_space_thresholds(mp);
720
0771fb45
ES
721 /*
722 * Set the inode cluster size.
723 * This may still be overridden by the file system
724 * block size if it is larger than the chosen cluster size.
8f80587b
DC
725 *
726 * For v5 filesystems, scale the cluster size with the inode size to
727 * keep a constant ratio of inode per cluster buffer, but only if mkfs
728 * has set the inode alignment value appropriately for larger cluster
729 * sizes.
0771fb45
ES
730 */
731 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
732 if (xfs_sb_version_hascrc(&mp->m_sb)) {
733 int new_size = mp->m_inode_cluster_size;
734
735 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
736 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
737 mp->m_inode_cluster_size = new_size;
8f80587b 738 }
0771fb45 739
e5376fc1
BF
740 /*
741 * If enabled, sparse inode chunk alignment is expected to match the
742 * cluster size. Full inode chunk alignment must match the chunk size,
743 * but that is checked on sb read verification...
744 */
745 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
746 mp->m_sb.sb_spino_align !=
747 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
748 xfs_warn(mp,
749 "Sparse inode block alignment (%u) must match cluster size (%llu).",
750 mp->m_sb.sb_spino_align,
751 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
752 error = -EINVAL;
753 goto out_remove_uuid;
754 }
755
0771fb45
ES
756 /*
757 * Set inode alignment fields
758 */
759 xfs_set_inoalignment(mp);
760
761 /*
c2bfbc9b 762 * Check that the data (and log if separate) is an ok size.
0771fb45 763 */
4249023a 764 error = xfs_check_sizes(mp);
0771fb45 765 if (error)
f9057e3d 766 goto out_remove_uuid;
0771fb45 767
1da177e4
LT
768 /*
769 * Initialize realtime fields in the mount structure
770 */
0771fb45
ES
771 error = xfs_rtmount_init(mp);
772 if (error) {
0b932ccc 773 xfs_warn(mp, "RT mount failed");
f9057e3d 774 goto out_remove_uuid;
1da177e4
LT
775 }
776
1da177e4
LT
777 /*
778 * Copies the low order bits of the timestamp and the randomly
779 * set "sequence" number out of a UUID.
780 */
781 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
782
1da177e4
LT
783 mp->m_dmevmask = 0; /* not persistent; set after each mount */
784
0650b554
DC
785 error = xfs_da_mount(mp);
786 if (error) {
787 xfs_warn(mp, "Failed dir/attr init: %d", error);
788 goto out_remove_uuid;
789 }
1da177e4
LT
790
791 /*
792 * Initialize the precomputed transaction reservations values.
793 */
794 xfs_trans_init(mp);
795
1da177e4
LT
796 /*
797 * Allocate and initialize the per-ag data.
798 */
1c1c6ebc 799 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 800 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
801 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
802 if (error) {
0b932ccc 803 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 804 goto out_free_dir;
1c1c6ebc 805 }
1da177e4 806
f9057e3d 807 if (!sbp->sb_logblocks) {
0b932ccc 808 xfs_warn(mp, "no log defined");
f9057e3d 809 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 810 error = -EFSCORRUPTED;
f9057e3d
CH
811 goto out_free_perag;
812 }
813
1da177e4 814 /*
f0b2efad
BF
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
1da177e4 818 */
f9057e3d
CH
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
0b932ccc 823 xfs_warn(mp, "log mount failed");
d4f3512b 824 goto out_fail_wait;
1da177e4
LT
825 }
826
92821e2b
DC
827 /*
828 * Now the log is mounted, we know if it was an unclean shutdown or
829 * not. If it was, with the first phase of recovery has completed, we
830 * have consistent AG blocks on disk. We have not recovered EFIs yet,
831 * but they are recovered transactionally in the second recovery phase
832 * later.
833 *
834 * Hence we can safely re-initialise incore superblock counters from
835 * the per-ag data. These may not be correct if the filesystem was not
836 * cleanly unmounted, so we need to wait for recovery to finish before
837 * doing this.
838 *
839 * If the filesystem was cleanly unmounted, then we can trust the
840 * values in the superblock to be correct and we don't need to do
841 * anything here.
842 *
843 * If we are currently making the filesystem, the initialisation will
844 * fail as the perag data is in an undefined state.
845 */
92821e2b
DC
846 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
847 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
848 !mp->m_sb.sb_inprogress) {
849 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 850 if (error)
6eee8972 851 goto out_log_dealloc;
92821e2b 852 }
f9057e3d 853
1da177e4
LT
854 /*
855 * Get and sanity-check the root inode.
856 * Save the pointer to it in the mount structure.
857 */
7b6259e7 858 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 859 if (error) {
0b932ccc 860 xfs_warn(mp, "failed to read root inode");
f9057e3d 861 goto out_log_dealloc;
1da177e4
LT
862 }
863
864 ASSERT(rip != NULL);
1da177e4 865
c19b3b05 866 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 867 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 868 (unsigned long long)rip->i_ino);
1da177e4
LT
869 xfs_iunlock(rip, XFS_ILOCK_EXCL);
870 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
871 mp);
2451337d 872 error = -EFSCORRUPTED;
f9057e3d 873 goto out_rele_rip;
1da177e4
LT
874 }
875 mp->m_rootip = rip; /* save it */
876
877 xfs_iunlock(rip, XFS_ILOCK_EXCL);
878
879 /*
880 * Initialize realtime inode pointers in the mount structure
881 */
0771fb45
ES
882 error = xfs_rtmount_inodes(mp);
883 if (error) {
1da177e4
LT
884 /*
885 * Free up the root inode.
886 */
0b932ccc 887 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 888 goto out_rele_rip;
1da177e4
LT
889 }
890
891 /*
7884bc86
CH
892 * If this is a read-only mount defer the superblock updates until
893 * the next remount into writeable mode. Otherwise we would never
894 * perform the update e.g. for the root filesystem.
1da177e4 895 */
61e63ecb
DC
896 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
897 error = xfs_sync_sb(mp, false);
e5720eec 898 if (error) {
0b932ccc 899 xfs_warn(mp, "failed to write sb changes");
b93b6e43 900 goto out_rtunmount;
e5720eec
DC
901 }
902 }
1da177e4
LT
903
904 /*
905 * Initialise the XFS quota management subsystem for this mount
906 */
7d095257
CH
907 if (XFS_IS_QUOTA_RUNNING(mp)) {
908 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
909 if (error)
910 goto out_rtunmount;
911 } else {
912 ASSERT(!XFS_IS_QUOTA_ON(mp));
913
914 /*
915 * If a file system had quotas running earlier, but decided to
916 * mount without -o uquota/pquota/gquota options, revoke the
917 * quotachecked license.
918 */
919 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 920 xfs_notice(mp, "resetting quota flags");
7d095257
CH
921 error = xfs_mount_reset_sbqflags(mp);
922 if (error)
a70a4fa5 923 goto out_rtunmount;
7d095257
CH
924 }
925 }
1da177e4 926
17c12bcd
DW
927 /*
928 * During the second phase of log recovery, we need iget and
929 * iput to behave like they do for an active filesystem.
930 * xfs_fs_drop_inode needs to be able to prevent the deletion
931 * of inodes before we're done replaying log items on those
932 * inodes.
933 */
934 mp->m_super->s_flags |= MS_ACTIVE;
935
1da177e4 936 /*
f0b2efad
BF
937 * Finish recovering the file system. This part needed to be delayed
938 * until after the root and real-time bitmap inodes were consistently
939 * read in.
1da177e4 940 */
4249023a 941 error = xfs_log_mount_finish(mp);
1da177e4 942 if (error) {
0b932ccc 943 xfs_warn(mp, "log mount finish failed");
b93b6e43 944 goto out_rtunmount;
1da177e4
LT
945 }
946
ddeb14f4
DC
947 /*
948 * Now the log is fully replayed, we can transition to full read-only
949 * mode for read-only mounts. This will sync all the metadata and clean
950 * the log so that the recovery we just performed does not have to be
951 * replayed again on the next mount.
952 *
953 * We use the same quiesce mechanism as the rw->ro remount, as they are
954 * semantically identical operations.
955 */
956 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
957 XFS_MOUNT_RDONLY) {
958 xfs_quiesce_attr(mp);
959 }
960
1da177e4
LT
961 /*
962 * Complete the quota initialisation, post-log-replay component.
963 */
7d095257
CH
964 if (quotamount) {
965 ASSERT(mp->m_qflags == 0);
966 mp->m_qflags = quotaflags;
967
968 xfs_qm_mount_quotas(mp);
969 }
970
84e1e99f
DC
971 /*
972 * Now we are mounted, reserve a small amount of unused space for
973 * privileged transactions. This is needed so that transaction
974 * space required for critical operations can dip into this pool
975 * when at ENOSPC. This is needed for operations like create with
976 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
977 * are not allowed to use this reserved space.
8babd8a2
DC
978 *
979 * This may drive us straight to ENOSPC on mount, but that implies
980 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 981 */
d5db0f97
ES
982 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
983 resblks = xfs_default_resblks(mp);
984 error = xfs_reserve_blocks(mp, &resblks, NULL);
985 if (error)
0b932ccc
DC
986 xfs_warn(mp,
987 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 988 }
84e1e99f 989
1da177e4
LT
990 return 0;
991
b93b6e43
CH
992 out_rtunmount:
993 xfs_rtunmount_inodes(mp);
f9057e3d 994 out_rele_rip:
43355099 995 IRELE(rip);
0ae120f8
BF
996 cancel_delayed_work_sync(&mp->m_reclaim_work);
997 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 998 out_log_dealloc:
e6b3bb78 999 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 1000 xfs_log_mount_cancel(mp);
d4f3512b
DC
1001 out_fail_wait:
1002 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1003 xfs_wait_buftarg(mp->m_logdev_targp);
1004 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1005 out_free_perag:
ff4f038c 1006 xfs_free_perag(mp);
0650b554
DC
1007 out_free_dir:
1008 xfs_da_unmount(mp);
f9057e3d 1009 out_remove_uuid:
27174203 1010 xfs_uuid_unmount(mp);
192852be
CM
1011 out_remove_error_sysfs:
1012 xfs_error_sysfs_del(mp);
225e4635
BD
1013 out_del_stats:
1014 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
1015 out_remove_sysfs:
1016 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1017 out:
1da177e4
LT
1018 return error;
1019}
1020
1021/*
1da177e4
LT
1022 * This flushes out the inodes,dquots and the superblock, unmounts the
1023 * log and makes sure that incore structures are freed.
1024 */
41b5c2e7
CH
1025void
1026xfs_unmountfs(
1027 struct xfs_mount *mp)
1da177e4 1028{
41b5c2e7
CH
1029 __uint64_t resblks;
1030 int error;
1da177e4 1031
579b62fa
BF
1032 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1033
7d095257 1034 xfs_qm_unmount_quotas(mp);
b93b6e43 1035 xfs_rtunmount_inodes(mp);
77508ec8
CH
1036 IRELE(mp->m_rootip);
1037
641c56fb
DC
1038 /*
1039 * We can potentially deadlock here if we have an inode cluster
9da096fd 1040 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1041 * the transaction is still sitting in a iclog. The stale inodes
1042 * on that buffer will have their flush locks held until the
1043 * transaction hits the disk and the callbacks run. the inode
1044 * flush takes the flush lock unconditionally and with nothing to
1045 * push out the iclog we will never get that unlocked. hence we
1046 * need to force the log first.
1047 */
a14a348b 1048 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1049
e6b3bb78
CM
1050 /*
1051 * We now need to tell the world we are unmounting. This will allow
1052 * us to detect that the filesystem is going away and we should error
1053 * out anything that we have been retrying in the background. This will
1054 * prevent neverending retries in AIL pushing from hanging the unmount.
1055 */
1056 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1057
c854363e 1058 /*
211e4d43
CH
1059 * Flush all pending changes from the AIL.
1060 */
1061 xfs_ail_push_all_sync(mp->m_ail);
1062
1063 /*
1064 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1065 * inodes and none should be pinned or locked, but use synchronous
1066 * reclaim just to be sure. We can stop background inode reclaim
1067 * here as well if it is still running.
c854363e 1068 */
7e18530b 1069 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1070 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1071
7d095257 1072 xfs_qm_unmount(mp);
a357a121 1073
84e1e99f
DC
1074 /*
1075 * Unreserve any blocks we have so that when we unmount we don't account
1076 * the reserved free space as used. This is really only necessary for
1077 * lazy superblock counting because it trusts the incore superblock
9da096fd 1078 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1079 *
1080 * We don't bother correcting this elsewhere for lazy superblock
1081 * counting because on mount of an unclean filesystem we reconstruct the
1082 * correct counter value and this is irrelevant.
1083 *
1084 * For non-lazy counter filesystems, this doesn't matter at all because
1085 * we only every apply deltas to the superblock and hence the incore
1086 * value does not matter....
1087 */
1088 resblks = 0;
714082bc
DC
1089 error = xfs_reserve_blocks(mp, &resblks, NULL);
1090 if (error)
0b932ccc 1091 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1092 "Freespace may not be correct on next mount.");
1093
adab0f67 1094 error = xfs_log_sbcount(mp);
e5720eec 1095 if (error)
0b932ccc 1096 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1097 "Freespace may not be correct on next mount.");
87c7bec7 1098
225e4635 1099
21b699c8 1100 xfs_log_unmount(mp);
0650b554 1101 xfs_da_unmount(mp);
27174203 1102 xfs_uuid_unmount(mp);
1da177e4 1103
1550d0b0 1104#if defined(DEBUG)
0ce4cfd4 1105 xfs_errortag_clearall(mp, 0);
1da177e4 1106#endif
ff4f038c 1107 xfs_free_perag(mp);
a31b1d3d 1108
192852be 1109 xfs_error_sysfs_del(mp);
225e4635 1110 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1111 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1112}
1113
91ee575f
BF
1114/*
1115 * Determine whether modifications can proceed. The caller specifies the minimum
1116 * freeze level for which modifications should not be allowed. This allows
1117 * certain operations to proceed while the freeze sequence is in progress, if
1118 * necessary.
1119 */
1120bool
1121xfs_fs_writable(
1122 struct xfs_mount *mp,
1123 int level)
92821e2b 1124{
91ee575f
BF
1125 ASSERT(level > SB_UNFROZEN);
1126 if ((mp->m_super->s_writers.frozen >= level) ||
1127 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1128 return false;
1129
1130 return true;
92821e2b
DC
1131}
1132
1133/*
b2ce3974
AE
1134 * xfs_log_sbcount
1135 *
adab0f67 1136 * Sync the superblock counters to disk.
b2ce3974 1137 *
91ee575f
BF
1138 * Note this code can be called during the process of freezing, so we use the
1139 * transaction allocator that does not block when the transaction subsystem is
1140 * in its frozen state.
92821e2b
DC
1141 */
1142int
adab0f67 1143xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1144{
91ee575f
BF
1145 /* allow this to proceed during the freeze sequence... */
1146 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1147 return 0;
1148
92821e2b
DC
1149 /*
1150 * we don't need to do this if we are updating the superblock
1151 * counters on every modification.
1152 */
1153 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1154 return 0;
1155
61e63ecb 1156 return xfs_sync_sb(mp, true);
92821e2b
DC
1157}
1158
8c1903d3
DC
1159/*
1160 * Deltas for the inode count are +/-64, hence we use a large batch size
1161 * of 128 so we don't need to take the counter lock on every update.
1162 */
1163#define XFS_ICOUNT_BATCH 128
501ab323
DC
1164int
1165xfs_mod_icount(
1166 struct xfs_mount *mp,
1167 int64_t delta)
1168{
8c1903d3
DC
1169 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1170 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1171 ASSERT(0);
1172 percpu_counter_add(&mp->m_icount, -delta);
1173 return -EINVAL;
1174 }
1175 return 0;
1176}
1177
e88b64ea
DC
1178int
1179xfs_mod_ifree(
1180 struct xfs_mount *mp,
1181 int64_t delta)
1182{
1183 percpu_counter_add(&mp->m_ifree, delta);
1184 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1185 ASSERT(0);
1186 percpu_counter_add(&mp->m_ifree, -delta);
1187 return -EINVAL;
1188 }
1189 return 0;
1190}
0d485ada 1191
8c1903d3
DC
1192/*
1193 * Deltas for the block count can vary from 1 to very large, but lock contention
1194 * only occurs on frequent small block count updates such as in the delayed
1195 * allocation path for buffered writes (page a time updates). Hence we set
1196 * a large batch count (1024) to minimise global counter updates except when
1197 * we get near to ENOSPC and we have to be very accurate with our updates.
1198 */
1199#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1200int
1201xfs_mod_fdblocks(
1202 struct xfs_mount *mp,
1203 int64_t delta,
1204 bool rsvd)
1205{
1206 int64_t lcounter;
1207 long long res_used;
1208 s32 batch;
1209
1210 if (delta > 0) {
1211 /*
1212 * If the reserve pool is depleted, put blocks back into it
1213 * first. Most of the time the pool is full.
1214 */
1215 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1216 percpu_counter_add(&mp->m_fdblocks, delta);
1217 return 0;
1218 }
1219
1220 spin_lock(&mp->m_sb_lock);
1221 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1222
1223 if (res_used > delta) {
1224 mp->m_resblks_avail += delta;
1225 } else {
1226 delta -= res_used;
1227 mp->m_resblks_avail = mp->m_resblks;
1228 percpu_counter_add(&mp->m_fdblocks, delta);
1229 }
1230 spin_unlock(&mp->m_sb_lock);
1231 return 0;
1232 }
1233
1234 /*
1235 * Taking blocks away, need to be more accurate the closer we
1236 * are to zero.
1237 *
0d485ada
DC
1238 * If the counter has a value of less than 2 * max batch size,
1239 * then make everything serialise as we are real close to
1240 * ENOSPC.
1241 */
8c1903d3
DC
1242 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1243 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1244 batch = 1;
1245 else
8c1903d3 1246 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1247
1248 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
52548852 1249 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
8c1903d3 1250 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1251 /* we had space! */
1252 return 0;
1253 }
1254
1255 /*
1256 * lock up the sb for dipping into reserves before releasing the space
1257 * that took us to ENOSPC.
1258 */
1259 spin_lock(&mp->m_sb_lock);
1260 percpu_counter_add(&mp->m_fdblocks, -delta);
1261 if (!rsvd)
1262 goto fdblocks_enospc;
1263
1264 lcounter = (long long)mp->m_resblks_avail + delta;
1265 if (lcounter >= 0) {
1266 mp->m_resblks_avail = lcounter;
1267 spin_unlock(&mp->m_sb_lock);
1268 return 0;
1269 }
1270 printk_once(KERN_WARNING
1271 "Filesystem \"%s\": reserve blocks depleted! "
1272 "Consider increasing reserve pool size.",
1273 mp->m_fsname);
1274fdblocks_enospc:
1275 spin_unlock(&mp->m_sb_lock);
1276 return -ENOSPC;
1277}
1278
bab98bbe
DC
1279int
1280xfs_mod_frextents(
1281 struct xfs_mount *mp,
1282 int64_t delta)
1283{
1284 int64_t lcounter;
1285 int ret = 0;
1286
1287 spin_lock(&mp->m_sb_lock);
1288 lcounter = mp->m_sb.sb_frextents + delta;
1289 if (lcounter < 0)
1290 ret = -ENOSPC;
1291 else
1292 mp->m_sb.sb_frextents = lcounter;
1293 spin_unlock(&mp->m_sb_lock);
1294 return ret;
1295}
1296
1da177e4
LT
1297/*
1298 * xfs_getsb() is called to obtain the buffer for the superblock.
1299 * The buffer is returned locked and read in from disk.
1300 * The buffer should be released with a call to xfs_brelse().
1301 *
1302 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1303 * the superblock buffer if it can be locked without sleeping.
1304 * If it can't then we'll return NULL.
1305 */
0c842ad4 1306struct xfs_buf *
1da177e4 1307xfs_getsb(
0c842ad4
CH
1308 struct xfs_mount *mp,
1309 int flags)
1da177e4 1310{
0c842ad4 1311 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1312
0c842ad4
CH
1313 if (!xfs_buf_trylock(bp)) {
1314 if (flags & XBF_TRYLOCK)
1da177e4 1315 return NULL;
0c842ad4 1316 xfs_buf_lock(bp);
1da177e4 1317 }
0c842ad4 1318
72790aa1 1319 xfs_buf_hold(bp);
b0388bf1 1320 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1321 return bp;
1da177e4
LT
1322}
1323
1324/*
1325 * Used to free the superblock along various error paths.
1326 */
1327void
1328xfs_freesb(
26af6552 1329 struct xfs_mount *mp)
1da177e4 1330{
26af6552 1331 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1332
26af6552 1333 xfs_buf_lock(bp);
1da177e4 1334 mp->m_sb_bp = NULL;
26af6552 1335 xfs_buf_relse(bp);
1da177e4
LT
1336}
1337
dda35b8f
CH
1338/*
1339 * If the underlying (data/log/rt) device is readonly, there are some
1340 * operations that cannot proceed.
1341 */
1342int
1343xfs_dev_is_read_only(
1344 struct xfs_mount *mp,
1345 char *message)
1346{
1347 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1348 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1349 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1350 xfs_notice(mp, "%s required on read-only device.", message);
1351 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1352 return -EROFS;
dda35b8f
CH
1353 }
1354 return 0;
1355}