xfs: add rmap btree stats infrastructure
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
1da177e4 1/*
7b718769
NS
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
1da177e4 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
3ab78df2 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
a4fbe6ab 31#include "xfs_dir2.h"
a844f451 32#include "xfs_ialloc.h"
1da177e4
LT
33#include "xfs_alloc.h"
34#include "xfs_rtalloc.h"
35#include "xfs_bmap.h"
a4fbe6ab
DC
36#include "xfs_trans.h"
37#include "xfs_trans_priv.h"
38#include "xfs_log.h"
1da177e4 39#include "xfs_error.h"
1da177e4
LT
40#include "xfs_quota.h"
41#include "xfs_fsops.h"
0b1b213f 42#include "xfs_trace.h"
6d8b79cf 43#include "xfs_icache.h"
a31b1d3d 44#include "xfs_sysfs.h"
0b1b213f 45
1da177e4 46
27174203
CH
47static DEFINE_MUTEX(xfs_uuid_table_mutex);
48static int xfs_uuid_table_size;
49static uuid_t *xfs_uuid_table;
50
af3b6382
DW
51void
52xfs_uuid_table_free(void)
53{
54 if (xfs_uuid_table_size == 0)
55 return;
56 kmem_free(xfs_uuid_table);
57 xfs_uuid_table = NULL;
58 xfs_uuid_table_size = 0;
59}
60
27174203
CH
61/*
62 * See if the UUID is unique among mounted XFS filesystems.
63 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
64 */
65STATIC int
66xfs_uuid_mount(
67 struct xfs_mount *mp)
68{
69 uuid_t *uuid = &mp->m_sb.sb_uuid;
70 int hole, i;
71
72 if (mp->m_flags & XFS_MOUNT_NOUUID)
73 return 0;
74
75 if (uuid_is_nil(uuid)) {
0b932ccc 76 xfs_warn(mp, "Filesystem has nil UUID - can't mount");
2451337d 77 return -EINVAL;
27174203
CH
78 }
79
80 mutex_lock(&xfs_uuid_table_mutex);
81 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
82 if (uuid_is_nil(&xfs_uuid_table[i])) {
83 hole = i;
84 continue;
85 }
86 if (uuid_equal(uuid, &xfs_uuid_table[i]))
87 goto out_duplicate;
88 }
89
90 if (hole < 0) {
91 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
92 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
27174203
CH
93 KM_SLEEP);
94 hole = xfs_uuid_table_size++;
95 }
96 xfs_uuid_table[hole] = *uuid;
97 mutex_unlock(&xfs_uuid_table_mutex);
98
99 return 0;
100
101 out_duplicate:
102 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 103 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 104 return -EINVAL;
27174203
CH
105}
106
107STATIC void
108xfs_uuid_unmount(
109 struct xfs_mount *mp)
110{
111 uuid_t *uuid = &mp->m_sb.sb_uuid;
112 int i;
113
114 if (mp->m_flags & XFS_MOUNT_NOUUID)
115 return;
116
117 mutex_lock(&xfs_uuid_table_mutex);
118 for (i = 0; i < xfs_uuid_table_size; i++) {
119 if (uuid_is_nil(&xfs_uuid_table[i]))
120 continue;
121 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
122 continue;
123 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
124 break;
125 }
126 ASSERT(i < xfs_uuid_table_size);
127 mutex_unlock(&xfs_uuid_table_mutex);
128}
129
130
e176579e
DC
131STATIC void
132__xfs_free_perag(
133 struct rcu_head *head)
134{
135 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
136
137 ASSERT(atomic_read(&pag->pag_ref) == 0);
138 kmem_free(pag);
139}
140
1da177e4 141/*
e176579e 142 * Free up the per-ag resources associated with the mount structure.
1da177e4 143 */
c962fb79 144STATIC void
ff4f038c 145xfs_free_perag(
745f6919 146 xfs_mount_t *mp)
1da177e4 147{
1c1c6ebc
DC
148 xfs_agnumber_t agno;
149 struct xfs_perag *pag;
150
151 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
152 spin_lock(&mp->m_perag_lock);
153 pag = radix_tree_delete(&mp->m_perag_tree, agno);
154 spin_unlock(&mp->m_perag_lock);
e176579e 155 ASSERT(pag);
f83282a8 156 ASSERT(atomic_read(&pag->pag_ref) == 0);
e176579e 157 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 158 }
1da177e4
LT
159}
160
4cc929ee
NS
161/*
162 * Check size of device based on the (data/realtime) block count.
163 * Note: this check is used by the growfs code as well as mount.
164 */
165int
166xfs_sb_validate_fsb_count(
167 xfs_sb_t *sbp,
168 __uint64_t nblocks)
169{
170 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
171 ASSERT(sbp->sb_blocklog >= BBSHIFT);
172
d5cf09ba 173 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 174 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 175 return -EFBIG;
4cc929ee
NS
176 return 0;
177}
1da177e4 178
1c1c6ebc 179int
c11e2c36 180xfs_initialize_perag(
c11e2c36 181 xfs_mount_t *mp,
1c1c6ebc
DC
182 xfs_agnumber_t agcount,
183 xfs_agnumber_t *maxagi)
1da177e4 184{
2d2194f6 185 xfs_agnumber_t index;
8b26c582 186 xfs_agnumber_t first_initialised = 0;
1da177e4 187 xfs_perag_t *pag;
8b26c582 188 int error = -ENOMEM;
1da177e4 189
1c1c6ebc
DC
190 /*
191 * Walk the current per-ag tree so we don't try to initialise AGs
192 * that already exist (growfs case). Allocate and insert all the
193 * AGs we don't find ready for initialisation.
194 */
195 for (index = 0; index < agcount; index++) {
196 pag = xfs_perag_get(mp, index);
197 if (pag) {
198 xfs_perag_put(pag);
199 continue;
200 }
8b26c582
DC
201 if (!first_initialised)
202 first_initialised = index;
fb3b504a 203
1c1c6ebc
DC
204 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
205 if (!pag)
8b26c582 206 goto out_unwind;
fb3b504a
CH
207 pag->pag_agno = index;
208 pag->pag_mount = mp;
1a427ab0 209 spin_lock_init(&pag->pag_ici_lock);
69b491c2 210 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 211 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
74f75a0c
DC
212 spin_lock_init(&pag->pag_buf_lock);
213 pag->pag_buf_tree = RB_ROOT;
fb3b504a 214
1c1c6ebc 215 if (radix_tree_preload(GFP_NOFS))
8b26c582 216 goto out_unwind;
fb3b504a 217
1c1c6ebc
DC
218 spin_lock(&mp->m_perag_lock);
219 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
220 BUG();
221 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
222 radix_tree_preload_end();
223 error = -EEXIST;
224 goto out_unwind;
1c1c6ebc
DC
225 }
226 spin_unlock(&mp->m_perag_lock);
227 radix_tree_preload_end();
228 }
229
12c3f05c 230 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 231
1c1c6ebc
DC
232 if (maxagi)
233 *maxagi = index;
234 return 0;
8b26c582
DC
235
236out_unwind:
237 kmem_free(pag);
238 for (; index > first_initialised; index--) {
239 pag = radix_tree_delete(&mp->m_perag_tree, index);
240 kmem_free(pag);
241 }
242 return error;
1da177e4
LT
243}
244
1da177e4
LT
245/*
246 * xfs_readsb
247 *
248 * Does the initial read of the superblock.
249 */
250int
ff55068c
DC
251xfs_readsb(
252 struct xfs_mount *mp,
253 int flags)
1da177e4
LT
254{
255 unsigned int sector_size;
04a1e6c5
DC
256 struct xfs_buf *bp;
257 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 258 int error;
af34e09d 259 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 260 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
261
262 ASSERT(mp->m_sb_bp == NULL);
263 ASSERT(mp->m_ddev_targp != NULL);
264
daba5427
ES
265 /*
266 * For the initial read, we must guess at the sector
267 * size based on the block device. It's enough to
268 * get the sb_sectsize out of the superblock and
269 * then reread with the proper length.
270 * We don't verify it yet, because it may not be complete.
271 */
272 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
273 buf_ops = NULL;
274
1da177e4 275 /*
c891c30a
BF
276 * Allocate a (locked) buffer to hold the superblock. This will be kept
277 * around at all times to optimize access to the superblock. Therefore,
278 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
279 * elevated.
1da177e4 280 */
26af6552 281reread:
ba372674 282 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
283 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
284 buf_ops);
ba372674 285 if (error) {
eab4e633 286 if (loud)
e721f504 287 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 288 /* bad CRC means corrupted metadata */
2451337d
DC
289 if (error == -EFSBADCRC)
290 error = -EFSCORRUPTED;
ba372674 291 return error;
eab4e633 292 }
1da177e4
LT
293
294 /*
295 * Initialize the mount structure from the superblock.
1da177e4 296 */
556b8883 297 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
298
299 /*
300 * If we haven't validated the superblock, do so now before we try
301 * to check the sector size and reread the superblock appropriately.
302 */
303 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
304 if (loud)
305 xfs_warn(mp, "Invalid superblock magic number");
2451337d 306 error = -EINVAL;
556b8883
DC
307 goto release_buf;
308 }
ff55068c 309
1da177e4
LT
310 /*
311 * We must be able to do sector-sized and sector-aligned IO.
312 */
04a1e6c5 313 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
314 if (loud)
315 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 316 sector_size, sbp->sb_sectsize);
2451337d 317 error = -ENOSYS;
26af6552 318 goto release_buf;
1da177e4
LT
319 }
320
daba5427 321 if (buf_ops == NULL) {
556b8883
DC
322 /*
323 * Re-read the superblock so the buffer is correctly sized,
324 * and properly verified.
325 */
1da177e4 326 xfs_buf_relse(bp);
04a1e6c5 327 sector_size = sbp->sb_sectsize;
daba5427 328 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 329 goto reread;
1da177e4
LT
330 }
331
5681ca40 332 xfs_reinit_percpu_counters(mp);
8d280b98 333
04a1e6c5
DC
334 /* no need to be quiet anymore, so reset the buf ops */
335 bp->b_ops = &xfs_sb_buf_ops;
336
1da177e4 337 mp->m_sb_bp = bp;
26af6552 338 xfs_buf_unlock(bp);
1da177e4
LT
339 return 0;
340
26af6552
DC
341release_buf:
342 xfs_buf_relse(bp);
1da177e4
LT
343 return error;
344}
345
1da177e4 346/*
0771fb45 347 * Update alignment values based on mount options and sb values
1da177e4 348 */
0771fb45 349STATIC int
7884bc86 350xfs_update_alignment(xfs_mount_t *mp)
1da177e4 351{
1da177e4 352 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 353
4249023a 354 if (mp->m_dalign) {
1da177e4
LT
355 /*
356 * If stripe unit and stripe width are not multiples
357 * of the fs blocksize turn off alignment.
358 */
359 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
360 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
361 xfs_warn(mp,
362 "alignment check failed: sunit/swidth vs. blocksize(%d)",
363 sbp->sb_blocksize);
2451337d 364 return -EINVAL;
1da177e4
LT
365 } else {
366 /*
367 * Convert the stripe unit and width to FSBs.
368 */
369 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
370 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 371 xfs_warn(mp,
39a45d84
JL
372 "alignment check failed: sunit/swidth vs. agsize(%d)",
373 sbp->sb_agblocks);
2451337d 374 return -EINVAL;
1da177e4
LT
375 } else if (mp->m_dalign) {
376 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
377 } else {
39a45d84
JL
378 xfs_warn(mp,
379 "alignment check failed: sunit(%d) less than bsize(%d)",
380 mp->m_dalign, sbp->sb_blocksize);
2451337d 381 return -EINVAL;
1da177e4
LT
382 }
383 }
384
385 /*
386 * Update superblock with new values
387 * and log changes
388 */
62118709 389 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
390 if (sbp->sb_unit != mp->m_dalign) {
391 sbp->sb_unit = mp->m_dalign;
61e63ecb 392 mp->m_update_sb = true;
1da177e4
LT
393 }
394 if (sbp->sb_width != mp->m_swidth) {
395 sbp->sb_width = mp->m_swidth;
61e63ecb 396 mp->m_update_sb = true;
1da177e4 397 }
34d7f603
JL
398 } else {
399 xfs_warn(mp,
400 "cannot change alignment: superblock does not support data alignment");
2451337d 401 return -EINVAL;
1da177e4
LT
402 }
403 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 404 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
405 mp->m_dalign = sbp->sb_unit;
406 mp->m_swidth = sbp->sb_width;
407 }
408
0771fb45
ES
409 return 0;
410}
1da177e4 411
0771fb45
ES
412/*
413 * Set the maximum inode count for this filesystem
414 */
415STATIC void
416xfs_set_maxicount(xfs_mount_t *mp)
417{
418 xfs_sb_t *sbp = &(mp->m_sb);
419 __uint64_t icount;
1da177e4 420
0771fb45
ES
421 if (sbp->sb_imax_pct) {
422 /*
423 * Make sure the maximum inode count is a multiple
424 * of the units we allocate inodes in.
1da177e4 425 */
1da177e4
LT
426 icount = sbp->sb_dblocks * sbp->sb_imax_pct;
427 do_div(icount, 100);
428 do_div(icount, mp->m_ialloc_blks);
429 mp->m_maxicount = (icount * mp->m_ialloc_blks) <<
430 sbp->sb_inopblog;
0771fb45 431 } else {
1da177e4 432 mp->m_maxicount = 0;
1da177e4 433 }
0771fb45
ES
434}
435
436/*
437 * Set the default minimum read and write sizes unless
438 * already specified in a mount option.
439 * We use smaller I/O sizes when the file system
440 * is being used for NFS service (wsync mount option).
441 */
442STATIC void
443xfs_set_rw_sizes(xfs_mount_t *mp)
444{
445 xfs_sb_t *sbp = &(mp->m_sb);
446 int readio_log, writeio_log;
1da177e4 447
1da177e4
LT
448 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
449 if (mp->m_flags & XFS_MOUNT_WSYNC) {
450 readio_log = XFS_WSYNC_READIO_LOG;
451 writeio_log = XFS_WSYNC_WRITEIO_LOG;
452 } else {
453 readio_log = XFS_READIO_LOG_LARGE;
454 writeio_log = XFS_WRITEIO_LOG_LARGE;
455 }
456 } else {
457 readio_log = mp->m_readio_log;
458 writeio_log = mp->m_writeio_log;
459 }
460
1da177e4
LT
461 if (sbp->sb_blocklog > readio_log) {
462 mp->m_readio_log = sbp->sb_blocklog;
463 } else {
464 mp->m_readio_log = readio_log;
465 }
466 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
467 if (sbp->sb_blocklog > writeio_log) {
468 mp->m_writeio_log = sbp->sb_blocklog;
469 } else {
470 mp->m_writeio_log = writeio_log;
471 }
472 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 473}
1da177e4 474
055388a3
DC
475/*
476 * precalculate the low space thresholds for dynamic speculative preallocation.
477 */
478void
479xfs_set_low_space_thresholds(
480 struct xfs_mount *mp)
481{
482 int i;
483
484 for (i = 0; i < XFS_LOWSP_MAX; i++) {
485 __uint64_t space = mp->m_sb.sb_dblocks;
486
487 do_div(space, 100);
488 mp->m_low_space[i] = space * (i + 1);
489 }
490}
491
492
0771fb45
ES
493/*
494 * Set whether we're using inode alignment.
495 */
496STATIC void
497xfs_set_inoalignment(xfs_mount_t *mp)
498{
62118709 499 if (xfs_sb_version_hasalign(&mp->m_sb) &&
1da177e4
LT
500 mp->m_sb.sb_inoalignmt >=
501 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
502 mp->m_inoalign_mask = mp->m_sb.sb_inoalignmt - 1;
503 else
504 mp->m_inoalign_mask = 0;
505 /*
506 * If we are using stripe alignment, check whether
507 * the stripe unit is a multiple of the inode alignment
508 */
509 if (mp->m_dalign && mp->m_inoalign_mask &&
510 !(mp->m_dalign & mp->m_inoalign_mask))
511 mp->m_sinoalign = mp->m_dalign;
512 else
513 mp->m_sinoalign = 0;
0771fb45
ES
514}
515
516/*
0471f62e 517 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
518 */
519STATIC int
ba372674
DC
520xfs_check_sizes(
521 struct xfs_mount *mp)
0771fb45 522{
ba372674 523 struct xfs_buf *bp;
0771fb45 524 xfs_daddr_t d;
ba372674 525 int error;
0771fb45 526
1da177e4
LT
527 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
528 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 529 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 530 return -EFBIG;
1da177e4 531 }
ba372674 532 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 533 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
534 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
535 if (error) {
0b932ccc 536 xfs_warn(mp, "last sector read failed");
ba372674 537 return error;
1da177e4 538 }
1922c949 539 xfs_buf_relse(bp);
1da177e4 540
ba372674
DC
541 if (mp->m_logdev_targp == mp->m_ddev_targp)
542 return 0;
543
544 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
545 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
546 xfs_warn(mp, "log size mismatch detected");
547 return -EFBIG;
548 }
549 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 550 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
551 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
552 if (error) {
553 xfs_warn(mp, "log device read failed");
554 return error;
0771fb45 555 }
ba372674 556 xfs_buf_relse(bp);
0771fb45
ES
557 return 0;
558}
559
7d095257
CH
560/*
561 * Clear the quotaflags in memory and in the superblock.
562 */
563int
564xfs_mount_reset_sbqflags(
565 struct xfs_mount *mp)
566{
7d095257
CH
567 mp->m_qflags = 0;
568
61e63ecb 569 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
570 if (mp->m_sb.sb_qflags == 0)
571 return 0;
572 spin_lock(&mp->m_sb_lock);
573 mp->m_sb.sb_qflags = 0;
574 spin_unlock(&mp->m_sb_lock);
575
61e63ecb 576 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
577 return 0;
578
61e63ecb 579 return xfs_sync_sb(mp, false);
7d095257
CH
580}
581
d5db0f97
ES
582__uint64_t
583xfs_default_resblks(xfs_mount_t *mp)
584{
585 __uint64_t resblks;
586
587 /*
8babd8a2
DC
588 * We default to 5% or 8192 fsbs of space reserved, whichever is
589 * smaller. This is intended to cover concurrent allocation
590 * transactions when we initially hit enospc. These each require a 4
591 * block reservation. Hence by default we cover roughly 2000 concurrent
592 * allocation reservations.
d5db0f97
ES
593 */
594 resblks = mp->m_sb.sb_dblocks;
595 do_div(resblks, 20);
8babd8a2 596 resblks = min_t(__uint64_t, resblks, 8192);
d5db0f97
ES
597 return resblks;
598}
599
0771fb45 600/*
0771fb45
ES
601 * This function does the following on an initial mount of a file system:
602 * - reads the superblock from disk and init the mount struct
603 * - if we're a 32-bit kernel, do a size check on the superblock
604 * so we don't mount terabyte filesystems
605 * - init mount struct realtime fields
606 * - allocate inode hash table for fs
607 * - init directory manager
608 * - perform recovery and init the log manager
609 */
610int
611xfs_mountfs(
f0b2efad 612 struct xfs_mount *mp)
0771fb45 613{
f0b2efad
BF
614 struct xfs_sb *sbp = &(mp->m_sb);
615 struct xfs_inode *rip;
616 __uint64_t resblks;
617 uint quotamount = 0;
618 uint quotaflags = 0;
619 int error = 0;
0771fb45 620
ff55068c 621 xfs_sb_mount_common(mp, sbp);
0771fb45 622
ee1c0908 623 /*
074e427b
DC
624 * Check for a mismatched features2 values. Older kernels read & wrote
625 * into the wrong sb offset for sb_features2 on some platforms due to
626 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
627 * which made older superblock reading/writing routines swap it as a
628 * 64-bit value.
ee1c0908 629 *
e6957ea4
ES
630 * For backwards compatibility, we make both slots equal.
631 *
074e427b
DC
632 * If we detect a mismatched field, we OR the set bits into the existing
633 * features2 field in case it has already been modified; we don't want
634 * to lose any features. We then update the bad location with the ORed
635 * value so that older kernels will see any features2 flags. The
636 * superblock writeback code ensures the new sb_features2 is copied to
637 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 638 */
e6957ea4 639 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 640 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 641 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 642 mp->m_update_sb = true;
e6957ea4
ES
643
644 /*
645 * Re-check for ATTR2 in case it was found in bad_features2
646 * slot.
647 */
7c12f296
TS
648 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
649 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 650 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
651 }
652
653 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
654 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
655 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 656 mp->m_update_sb = true;
e6957ea4 657
7c12f296
TS
658 /* update sb_versionnum for the clearing of the morebits */
659 if (!sbp->sb_features2)
61e63ecb 660 mp->m_update_sb = true;
ee1c0908
DC
661 }
662
263997a6
DC
663 /* always use v2 inodes by default now */
664 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
665 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 666 mp->m_update_sb = true;
263997a6
DC
667 }
668
0771fb45
ES
669 /*
670 * Check if sb_agblocks is aligned at stripe boundary
671 * If sb_agblocks is NOT aligned turn off m_dalign since
672 * allocator alignment is within an ag, therefore ag has
673 * to be aligned at stripe boundary.
674 */
7884bc86 675 error = xfs_update_alignment(mp);
0771fb45 676 if (error)
f9057e3d 677 goto out;
0771fb45
ES
678
679 xfs_alloc_compute_maxlevels(mp);
680 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
681 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
682 xfs_ialloc_compute_maxlevels(mp);
683
684 xfs_set_maxicount(mp);
685
e6b3bb78
CM
686 /* enable fail_at_unmount as default */
687 mp->m_fail_unmount = 1;
688
a31b1d3d 689 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
690 if (error)
691 goto out;
1da177e4 692
225e4635
BD
693 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
694 &mp->m_kobj, "stats");
a31b1d3d
BF
695 if (error)
696 goto out_remove_sysfs;
697
192852be 698 error = xfs_error_sysfs_init(mp);
225e4635
BD
699 if (error)
700 goto out_del_stats;
701
192852be
CM
702
703 error = xfs_uuid_mount(mp);
704 if (error)
705 goto out_remove_error_sysfs;
706
0771fb45
ES
707 /*
708 * Set the minimum read and write sizes
709 */
710 xfs_set_rw_sizes(mp);
711
055388a3
DC
712 /* set the low space thresholds for dynamic preallocation */
713 xfs_set_low_space_thresholds(mp);
714
0771fb45
ES
715 /*
716 * Set the inode cluster size.
717 * This may still be overridden by the file system
718 * block size if it is larger than the chosen cluster size.
8f80587b
DC
719 *
720 * For v5 filesystems, scale the cluster size with the inode size to
721 * keep a constant ratio of inode per cluster buffer, but only if mkfs
722 * has set the inode alignment value appropriately for larger cluster
723 * sizes.
0771fb45
ES
724 */
725 mp->m_inode_cluster_size = XFS_INODE_BIG_CLUSTER_SIZE;
8f80587b
DC
726 if (xfs_sb_version_hascrc(&mp->m_sb)) {
727 int new_size = mp->m_inode_cluster_size;
728
729 new_size *= mp->m_sb.sb_inodesize / XFS_DINODE_MIN_SIZE;
730 if (mp->m_sb.sb_inoalignmt >= XFS_B_TO_FSBT(mp, new_size))
731 mp->m_inode_cluster_size = new_size;
8f80587b 732 }
0771fb45 733
e5376fc1
BF
734 /*
735 * If enabled, sparse inode chunk alignment is expected to match the
736 * cluster size. Full inode chunk alignment must match the chunk size,
737 * but that is checked on sb read verification...
738 */
739 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
740 mp->m_sb.sb_spino_align !=
741 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size)) {
742 xfs_warn(mp,
743 "Sparse inode block alignment (%u) must match cluster size (%llu).",
744 mp->m_sb.sb_spino_align,
745 XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size));
746 error = -EINVAL;
747 goto out_remove_uuid;
748 }
749
0771fb45
ES
750 /*
751 * Set inode alignment fields
752 */
753 xfs_set_inoalignment(mp);
754
755 /*
c2bfbc9b 756 * Check that the data (and log if separate) is an ok size.
0771fb45 757 */
4249023a 758 error = xfs_check_sizes(mp);
0771fb45 759 if (error)
f9057e3d 760 goto out_remove_uuid;
0771fb45 761
1da177e4
LT
762 /*
763 * Initialize realtime fields in the mount structure
764 */
0771fb45
ES
765 error = xfs_rtmount_init(mp);
766 if (error) {
0b932ccc 767 xfs_warn(mp, "RT mount failed");
f9057e3d 768 goto out_remove_uuid;
1da177e4
LT
769 }
770
1da177e4
LT
771 /*
772 * Copies the low order bits of the timestamp and the randomly
773 * set "sequence" number out of a UUID.
774 */
775 uuid_getnodeuniq(&sbp->sb_uuid, mp->m_fixedfsid);
776
1da177e4
LT
777 mp->m_dmevmask = 0; /* not persistent; set after each mount */
778
0650b554
DC
779 error = xfs_da_mount(mp);
780 if (error) {
781 xfs_warn(mp, "Failed dir/attr init: %d", error);
782 goto out_remove_uuid;
783 }
1da177e4
LT
784
785 /*
786 * Initialize the precomputed transaction reservations values.
787 */
788 xfs_trans_init(mp);
789
1da177e4
LT
790 /*
791 * Allocate and initialize the per-ag data.
792 */
1c1c6ebc 793 spin_lock_init(&mp->m_perag_lock);
9b98b6f3 794 INIT_RADIX_TREE(&mp->m_perag_tree, GFP_ATOMIC);
1c1c6ebc
DC
795 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
796 if (error) {
0b932ccc 797 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 798 goto out_free_dir;
1c1c6ebc 799 }
1da177e4 800
f9057e3d 801 if (!sbp->sb_logblocks) {
0b932ccc 802 xfs_warn(mp, "no log defined");
f9057e3d 803 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 804 error = -EFSCORRUPTED;
f9057e3d
CH
805 goto out_free_perag;
806 }
807
1da177e4 808 /*
f0b2efad
BF
809 * Log's mount-time initialization. The first part of recovery can place
810 * some items on the AIL, to be handled when recovery is finished or
811 * cancelled.
1da177e4 812 */
f9057e3d
CH
813 error = xfs_log_mount(mp, mp->m_logdev_targp,
814 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
815 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
816 if (error) {
0b932ccc 817 xfs_warn(mp, "log mount failed");
d4f3512b 818 goto out_fail_wait;
1da177e4
LT
819 }
820
92821e2b
DC
821 /*
822 * Now the log is mounted, we know if it was an unclean shutdown or
823 * not. If it was, with the first phase of recovery has completed, we
824 * have consistent AG blocks on disk. We have not recovered EFIs yet,
825 * but they are recovered transactionally in the second recovery phase
826 * later.
827 *
828 * Hence we can safely re-initialise incore superblock counters from
829 * the per-ag data. These may not be correct if the filesystem was not
830 * cleanly unmounted, so we need to wait for recovery to finish before
831 * doing this.
832 *
833 * If the filesystem was cleanly unmounted, then we can trust the
834 * values in the superblock to be correct and we don't need to do
835 * anything here.
836 *
837 * If we are currently making the filesystem, the initialisation will
838 * fail as the perag data is in an undefined state.
839 */
92821e2b
DC
840 if (xfs_sb_version_haslazysbcount(&mp->m_sb) &&
841 !XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
842 !mp->m_sb.sb_inprogress) {
843 error = xfs_initialize_perag_data(mp, sbp->sb_agcount);
f9057e3d 844 if (error)
6eee8972 845 goto out_log_dealloc;
92821e2b 846 }
f9057e3d 847
1da177e4
LT
848 /*
849 * Get and sanity-check the root inode.
850 * Save the pointer to it in the mount structure.
851 */
7b6259e7 852 error = xfs_iget(mp, NULL, sbp->sb_rootino, 0, XFS_ILOCK_EXCL, &rip);
1da177e4 853 if (error) {
0b932ccc 854 xfs_warn(mp, "failed to read root inode");
f9057e3d 855 goto out_log_dealloc;
1da177e4
LT
856 }
857
858 ASSERT(rip != NULL);
1da177e4 859
c19b3b05 860 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 861 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 862 (unsigned long long)rip->i_ino);
1da177e4
LT
863 xfs_iunlock(rip, XFS_ILOCK_EXCL);
864 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
865 mp);
2451337d 866 error = -EFSCORRUPTED;
f9057e3d 867 goto out_rele_rip;
1da177e4
LT
868 }
869 mp->m_rootip = rip; /* save it */
870
871 xfs_iunlock(rip, XFS_ILOCK_EXCL);
872
873 /*
874 * Initialize realtime inode pointers in the mount structure
875 */
0771fb45
ES
876 error = xfs_rtmount_inodes(mp);
877 if (error) {
1da177e4
LT
878 /*
879 * Free up the root inode.
880 */
0b932ccc 881 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 882 goto out_rele_rip;
1da177e4
LT
883 }
884
885 /*
7884bc86
CH
886 * If this is a read-only mount defer the superblock updates until
887 * the next remount into writeable mode. Otherwise we would never
888 * perform the update e.g. for the root filesystem.
1da177e4 889 */
61e63ecb
DC
890 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
891 error = xfs_sync_sb(mp, false);
e5720eec 892 if (error) {
0b932ccc 893 xfs_warn(mp, "failed to write sb changes");
b93b6e43 894 goto out_rtunmount;
e5720eec
DC
895 }
896 }
1da177e4
LT
897
898 /*
899 * Initialise the XFS quota management subsystem for this mount
900 */
7d095257
CH
901 if (XFS_IS_QUOTA_RUNNING(mp)) {
902 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
903 if (error)
904 goto out_rtunmount;
905 } else {
906 ASSERT(!XFS_IS_QUOTA_ON(mp));
907
908 /*
909 * If a file system had quotas running earlier, but decided to
910 * mount without -o uquota/pquota/gquota options, revoke the
911 * quotachecked license.
912 */
913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 914 xfs_notice(mp, "resetting quota flags");
7d095257
CH
915 error = xfs_mount_reset_sbqflags(mp);
916 if (error)
a70a4fa5 917 goto out_rtunmount;
7d095257
CH
918 }
919 }
1da177e4
LT
920
921 /*
f0b2efad
BF
922 * Finish recovering the file system. This part needed to be delayed
923 * until after the root and real-time bitmap inodes were consistently
924 * read in.
1da177e4 925 */
4249023a 926 error = xfs_log_mount_finish(mp);
1da177e4 927 if (error) {
0b932ccc 928 xfs_warn(mp, "log mount finish failed");
b93b6e43 929 goto out_rtunmount;
1da177e4
LT
930 }
931
932 /*
933 * Complete the quota initialisation, post-log-replay component.
934 */
7d095257
CH
935 if (quotamount) {
936 ASSERT(mp->m_qflags == 0);
937 mp->m_qflags = quotaflags;
938
939 xfs_qm_mount_quotas(mp);
940 }
941
84e1e99f
DC
942 /*
943 * Now we are mounted, reserve a small amount of unused space for
944 * privileged transactions. This is needed so that transaction
945 * space required for critical operations can dip into this pool
946 * when at ENOSPC. This is needed for operations like create with
947 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
948 * are not allowed to use this reserved space.
8babd8a2
DC
949 *
950 * This may drive us straight to ENOSPC on mount, but that implies
951 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 952 */
d5db0f97
ES
953 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
954 resblks = xfs_default_resblks(mp);
955 error = xfs_reserve_blocks(mp, &resblks, NULL);
956 if (error)
0b932ccc
DC
957 xfs_warn(mp,
958 "Unable to allocate reserve blocks. Continuing without reserve pool.");
d5db0f97 959 }
84e1e99f 960
1da177e4
LT
961 return 0;
962
b93b6e43
CH
963 out_rtunmount:
964 xfs_rtunmount_inodes(mp);
f9057e3d 965 out_rele_rip:
43355099 966 IRELE(rip);
0ae120f8
BF
967 cancel_delayed_work_sync(&mp->m_reclaim_work);
968 xfs_reclaim_inodes(mp, SYNC_WAIT);
f9057e3d 969 out_log_dealloc:
e6b3bb78 970 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 971 xfs_log_mount_cancel(mp);
d4f3512b
DC
972 out_fail_wait:
973 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
974 xfs_wait_buftarg(mp->m_logdev_targp);
975 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 976 out_free_perag:
ff4f038c 977 xfs_free_perag(mp);
0650b554
DC
978 out_free_dir:
979 xfs_da_unmount(mp);
f9057e3d 980 out_remove_uuid:
27174203 981 xfs_uuid_unmount(mp);
192852be
CM
982 out_remove_error_sysfs:
983 xfs_error_sysfs_del(mp);
225e4635
BD
984 out_del_stats:
985 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
986 out_remove_sysfs:
987 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 988 out:
1da177e4
LT
989 return error;
990}
991
992/*
1da177e4
LT
993 * This flushes out the inodes,dquots and the superblock, unmounts the
994 * log and makes sure that incore structures are freed.
995 */
41b5c2e7
CH
996void
997xfs_unmountfs(
998 struct xfs_mount *mp)
1da177e4 999{
41b5c2e7
CH
1000 __uint64_t resblks;
1001 int error;
1da177e4 1002
579b62fa
BF
1003 cancel_delayed_work_sync(&mp->m_eofblocks_work);
1004
7d095257 1005 xfs_qm_unmount_quotas(mp);
b93b6e43 1006 xfs_rtunmount_inodes(mp);
77508ec8
CH
1007 IRELE(mp->m_rootip);
1008
641c56fb
DC
1009 /*
1010 * We can potentially deadlock here if we have an inode cluster
9da096fd 1011 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1012 * the transaction is still sitting in a iclog. The stale inodes
1013 * on that buffer will have their flush locks held until the
1014 * transaction hits the disk and the callbacks run. the inode
1015 * flush takes the flush lock unconditionally and with nothing to
1016 * push out the iclog we will never get that unlocked. hence we
1017 * need to force the log first.
1018 */
a14a348b 1019 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1020
e6b3bb78
CM
1021 /*
1022 * We now need to tell the world we are unmounting. This will allow
1023 * us to detect that the filesystem is going away and we should error
1024 * out anything that we have been retrying in the background. This will
1025 * prevent neverending retries in AIL pushing from hanging the unmount.
1026 */
1027 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1028
c854363e 1029 /*
211e4d43
CH
1030 * Flush all pending changes from the AIL.
1031 */
1032 xfs_ail_push_all_sync(mp->m_ail);
1033
1034 /*
1035 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1036 * inodes and none should be pinned or locked, but use synchronous
1037 * reclaim just to be sure. We can stop background inode reclaim
1038 * here as well if it is still running.
c854363e 1039 */
7e18530b 1040 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1041 xfs_reclaim_inodes(mp, SYNC_WAIT);
1da177e4 1042
7d095257 1043 xfs_qm_unmount(mp);
a357a121 1044
84e1e99f
DC
1045 /*
1046 * Unreserve any blocks we have so that when we unmount we don't account
1047 * the reserved free space as used. This is really only necessary for
1048 * lazy superblock counting because it trusts the incore superblock
9da096fd 1049 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1050 *
1051 * We don't bother correcting this elsewhere for lazy superblock
1052 * counting because on mount of an unclean filesystem we reconstruct the
1053 * correct counter value and this is irrelevant.
1054 *
1055 * For non-lazy counter filesystems, this doesn't matter at all because
1056 * we only every apply deltas to the superblock and hence the incore
1057 * value does not matter....
1058 */
1059 resblks = 0;
714082bc
DC
1060 error = xfs_reserve_blocks(mp, &resblks, NULL);
1061 if (error)
0b932ccc 1062 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1063 "Freespace may not be correct on next mount.");
1064
adab0f67 1065 error = xfs_log_sbcount(mp);
e5720eec 1066 if (error)
0b932ccc 1067 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1068 "Freespace may not be correct on next mount.");
87c7bec7 1069
225e4635 1070
21b699c8 1071 xfs_log_unmount(mp);
0650b554 1072 xfs_da_unmount(mp);
27174203 1073 xfs_uuid_unmount(mp);
1da177e4 1074
1550d0b0 1075#if defined(DEBUG)
0ce4cfd4 1076 xfs_errortag_clearall(mp, 0);
1da177e4 1077#endif
ff4f038c 1078 xfs_free_perag(mp);
a31b1d3d 1079
192852be 1080 xfs_error_sysfs_del(mp);
225e4635 1081 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1082 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1083}
1084
91ee575f
BF
1085/*
1086 * Determine whether modifications can proceed. The caller specifies the minimum
1087 * freeze level for which modifications should not be allowed. This allows
1088 * certain operations to proceed while the freeze sequence is in progress, if
1089 * necessary.
1090 */
1091bool
1092xfs_fs_writable(
1093 struct xfs_mount *mp,
1094 int level)
92821e2b 1095{
91ee575f
BF
1096 ASSERT(level > SB_UNFROZEN);
1097 if ((mp->m_super->s_writers.frozen >= level) ||
1098 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1099 return false;
1100
1101 return true;
92821e2b
DC
1102}
1103
1104/*
b2ce3974
AE
1105 * xfs_log_sbcount
1106 *
adab0f67 1107 * Sync the superblock counters to disk.
b2ce3974 1108 *
91ee575f
BF
1109 * Note this code can be called during the process of freezing, so we use the
1110 * transaction allocator that does not block when the transaction subsystem is
1111 * in its frozen state.
92821e2b
DC
1112 */
1113int
adab0f67 1114xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1115{
91ee575f
BF
1116 /* allow this to proceed during the freeze sequence... */
1117 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1118 return 0;
1119
92821e2b
DC
1120 /*
1121 * we don't need to do this if we are updating the superblock
1122 * counters on every modification.
1123 */
1124 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1125 return 0;
1126
61e63ecb 1127 return xfs_sync_sb(mp, true);
92821e2b
DC
1128}
1129
8c1903d3
DC
1130/*
1131 * Deltas for the inode count are +/-64, hence we use a large batch size
1132 * of 128 so we don't need to take the counter lock on every update.
1133 */
1134#define XFS_ICOUNT_BATCH 128
501ab323
DC
1135int
1136xfs_mod_icount(
1137 struct xfs_mount *mp,
1138 int64_t delta)
1139{
8c1903d3
DC
1140 __percpu_counter_add(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
1141 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1142 ASSERT(0);
1143 percpu_counter_add(&mp->m_icount, -delta);
1144 return -EINVAL;
1145 }
1146 return 0;
1147}
1148
e88b64ea
DC
1149int
1150xfs_mod_ifree(
1151 struct xfs_mount *mp,
1152 int64_t delta)
1153{
1154 percpu_counter_add(&mp->m_ifree, delta);
1155 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1156 ASSERT(0);
1157 percpu_counter_add(&mp->m_ifree, -delta);
1158 return -EINVAL;
1159 }
1160 return 0;
1161}
0d485ada 1162
8c1903d3
DC
1163/*
1164 * Deltas for the block count can vary from 1 to very large, but lock contention
1165 * only occurs on frequent small block count updates such as in the delayed
1166 * allocation path for buffered writes (page a time updates). Hence we set
1167 * a large batch count (1024) to minimise global counter updates except when
1168 * we get near to ENOSPC and we have to be very accurate with our updates.
1169 */
1170#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1171int
1172xfs_mod_fdblocks(
1173 struct xfs_mount *mp,
1174 int64_t delta,
1175 bool rsvd)
1176{
1177 int64_t lcounter;
1178 long long res_used;
1179 s32 batch;
1180
1181 if (delta > 0) {
1182 /*
1183 * If the reserve pool is depleted, put blocks back into it
1184 * first. Most of the time the pool is full.
1185 */
1186 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1187 percpu_counter_add(&mp->m_fdblocks, delta);
1188 return 0;
1189 }
1190
1191 spin_lock(&mp->m_sb_lock);
1192 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1193
1194 if (res_used > delta) {
1195 mp->m_resblks_avail += delta;
1196 } else {
1197 delta -= res_used;
1198 mp->m_resblks_avail = mp->m_resblks;
1199 percpu_counter_add(&mp->m_fdblocks, delta);
1200 }
1201 spin_unlock(&mp->m_sb_lock);
1202 return 0;
1203 }
1204
1205 /*
1206 * Taking blocks away, need to be more accurate the closer we
1207 * are to zero.
1208 *
0d485ada
DC
1209 * If the counter has a value of less than 2 * max batch size,
1210 * then make everything serialise as we are real close to
1211 * ENOSPC.
1212 */
8c1903d3
DC
1213 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1214 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1215 batch = 1;
1216 else
8c1903d3 1217 batch = XFS_FDBLOCKS_BATCH;
0d485ada
DC
1218
1219 __percpu_counter_add(&mp->m_fdblocks, delta, batch);
8c1903d3
DC
1220 if (__percpu_counter_compare(&mp->m_fdblocks, XFS_ALLOC_SET_ASIDE(mp),
1221 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1222 /* we had space! */
1223 return 0;
1224 }
1225
1226 /*
1227 * lock up the sb for dipping into reserves before releasing the space
1228 * that took us to ENOSPC.
1229 */
1230 spin_lock(&mp->m_sb_lock);
1231 percpu_counter_add(&mp->m_fdblocks, -delta);
1232 if (!rsvd)
1233 goto fdblocks_enospc;
1234
1235 lcounter = (long long)mp->m_resblks_avail + delta;
1236 if (lcounter >= 0) {
1237 mp->m_resblks_avail = lcounter;
1238 spin_unlock(&mp->m_sb_lock);
1239 return 0;
1240 }
1241 printk_once(KERN_WARNING
1242 "Filesystem \"%s\": reserve blocks depleted! "
1243 "Consider increasing reserve pool size.",
1244 mp->m_fsname);
1245fdblocks_enospc:
1246 spin_unlock(&mp->m_sb_lock);
1247 return -ENOSPC;
1248}
1249
bab98bbe
DC
1250int
1251xfs_mod_frextents(
1252 struct xfs_mount *mp,
1253 int64_t delta)
1254{
1255 int64_t lcounter;
1256 int ret = 0;
1257
1258 spin_lock(&mp->m_sb_lock);
1259 lcounter = mp->m_sb.sb_frextents + delta;
1260 if (lcounter < 0)
1261 ret = -ENOSPC;
1262 else
1263 mp->m_sb.sb_frextents = lcounter;
1264 spin_unlock(&mp->m_sb_lock);
1265 return ret;
1266}
1267
1da177e4
LT
1268/*
1269 * xfs_getsb() is called to obtain the buffer for the superblock.
1270 * The buffer is returned locked and read in from disk.
1271 * The buffer should be released with a call to xfs_brelse().
1272 *
1273 * If the flags parameter is BUF_TRYLOCK, then we'll only return
1274 * the superblock buffer if it can be locked without sleeping.
1275 * If it can't then we'll return NULL.
1276 */
0c842ad4 1277struct xfs_buf *
1da177e4 1278xfs_getsb(
0c842ad4
CH
1279 struct xfs_mount *mp,
1280 int flags)
1da177e4 1281{
0c842ad4 1282 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1283
0c842ad4
CH
1284 if (!xfs_buf_trylock(bp)) {
1285 if (flags & XBF_TRYLOCK)
1da177e4 1286 return NULL;
0c842ad4 1287 xfs_buf_lock(bp);
1da177e4 1288 }
0c842ad4 1289
72790aa1 1290 xfs_buf_hold(bp);
b0388bf1 1291 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1292 return bp;
1da177e4
LT
1293}
1294
1295/*
1296 * Used to free the superblock along various error paths.
1297 */
1298void
1299xfs_freesb(
26af6552 1300 struct xfs_mount *mp)
1da177e4 1301{
26af6552 1302 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1303
26af6552 1304 xfs_buf_lock(bp);
1da177e4 1305 mp->m_sb_bp = NULL;
26af6552 1306 xfs_buf_relse(bp);
1da177e4
LT
1307}
1308
dda35b8f
CH
1309/*
1310 * If the underlying (data/log/rt) device is readonly, there are some
1311 * operations that cannot proceed.
1312 */
1313int
1314xfs_dev_is_read_only(
1315 struct xfs_mount *mp,
1316 char *message)
1317{
1318 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1319 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1320 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1321 xfs_notice(mp, "%s required on read-only device.", message);
1322 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1323 return -EROFS;
dda35b8f
CH
1324 }
1325 return 0;
1326}