Merge tag 'rust-6.4' of https://github.com/Rust-for-Linux/linux
[linux-block.git] / fs / xfs / xfs_mount.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
1da177e4 15#include "xfs_inode.h"
a4fbe6ab 16#include "xfs_dir2.h"
a844f451 17#include "xfs_ialloc.h"
1da177e4
LT
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
a4fbe6ab
DC
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
b5f17bec 24#include "xfs_log_priv.h"
1da177e4 25#include "xfs_error.h"
1da177e4
LT
26#include "xfs_quota.h"
27#include "xfs_fsops.h"
6d8b79cf 28#include "xfs_icache.h"
a31b1d3d 29#include "xfs_sysfs.h"
035e00ac 30#include "xfs_rmap_btree.h"
1946b91c 31#include "xfs_refcount_btree.h"
174edb0e 32#include "xfs_reflink.h"
ebf55872 33#include "xfs_extent_busy.h"
39353ff6 34#include "xfs_health.h"
13eaec4b 35#include "xfs_trace.h"
9bbafc71 36#include "xfs_ag.h"
1da177e4 37
27174203
CH
38static DEFINE_MUTEX(xfs_uuid_table_mutex);
39static int xfs_uuid_table_size;
40static uuid_t *xfs_uuid_table;
41
af3b6382
DW
42void
43xfs_uuid_table_free(void)
44{
45 if (xfs_uuid_table_size == 0)
46 return;
47 kmem_free(xfs_uuid_table);
48 xfs_uuid_table = NULL;
49 xfs_uuid_table_size = 0;
50}
51
27174203
CH
52/*
53 * See if the UUID is unique among mounted XFS filesystems.
54 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
55 */
56STATIC int
57xfs_uuid_mount(
58 struct xfs_mount *mp)
59{
60 uuid_t *uuid = &mp->m_sb.sb_uuid;
61 int hole, i;
62
8f720d9f 63 /* Publish UUID in struct super_block */
85787090 64 uuid_copy(&mp->m_super->s_uuid, uuid);
8f720d9f 65
0560f31a 66 if (xfs_has_nouuid(mp))
27174203
CH
67 return 0;
68
d905fdaa
AG
69 if (uuid_is_null(uuid)) {
70 xfs_warn(mp, "Filesystem has null UUID - can't mount");
2451337d 71 return -EINVAL;
27174203
CH
72 }
73
74 mutex_lock(&xfs_uuid_table_mutex);
75 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
d905fdaa 76 if (uuid_is_null(&xfs_uuid_table[i])) {
27174203
CH
77 hole = i;
78 continue;
79 }
80 if (uuid_equal(uuid, &xfs_uuid_table[i]))
81 goto out_duplicate;
82 }
83
84 if (hole < 0) {
771915c4 85 xfs_uuid_table = krealloc(xfs_uuid_table,
27174203 86 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
771915c4 87 GFP_KERNEL | __GFP_NOFAIL);
27174203
CH
88 hole = xfs_uuid_table_size++;
89 }
90 xfs_uuid_table[hole] = *uuid;
91 mutex_unlock(&xfs_uuid_table_mutex);
92
93 return 0;
94
95 out_duplicate:
96 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 97 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 98 return -EINVAL;
27174203
CH
99}
100
101STATIC void
102xfs_uuid_unmount(
103 struct xfs_mount *mp)
104{
105 uuid_t *uuid = &mp->m_sb.sb_uuid;
106 int i;
107
0560f31a 108 if (xfs_has_nouuid(mp))
27174203
CH
109 return;
110
111 mutex_lock(&xfs_uuid_table_mutex);
112 for (i = 0; i < xfs_uuid_table_size; i++) {
d905fdaa 113 if (uuid_is_null(&xfs_uuid_table[i]))
27174203
CH
114 continue;
115 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
116 continue;
117 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
118 break;
119 }
120 ASSERT(i < xfs_uuid_table_size);
121 mutex_unlock(&xfs_uuid_table_mutex);
122}
123
4cc929ee
NS
124/*
125 * Check size of device based on the (data/realtime) block count.
126 * Note: this check is used by the growfs code as well as mount.
127 */
128int
129xfs_sb_validate_fsb_count(
130 xfs_sb_t *sbp,
c8ce540d 131 uint64_t nblocks)
4cc929ee
NS
132{
133 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
134 ASSERT(sbp->sb_blocklog >= BBSHIFT);
135
d5cf09ba 136 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 137 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 138 return -EFBIG;
4cc929ee
NS
139 return 0;
140}
1da177e4 141
1da177e4
LT
142/*
143 * xfs_readsb
144 *
145 * Does the initial read of the superblock.
146 */
147int
ff55068c
DC
148xfs_readsb(
149 struct xfs_mount *mp,
150 int flags)
1da177e4
LT
151{
152 unsigned int sector_size;
04a1e6c5
DC
153 struct xfs_buf *bp;
154 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 155 int error;
af34e09d 156 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 157 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
158
159 ASSERT(mp->m_sb_bp == NULL);
160 ASSERT(mp->m_ddev_targp != NULL);
161
daba5427
ES
162 /*
163 * For the initial read, we must guess at the sector
164 * size based on the block device. It's enough to
165 * get the sb_sectsize out of the superblock and
166 * then reread with the proper length.
167 * We don't verify it yet, because it may not be complete.
168 */
169 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
170 buf_ops = NULL;
171
1da177e4 172 /*
c891c30a
BF
173 * Allocate a (locked) buffer to hold the superblock. This will be kept
174 * around at all times to optimize access to the superblock. Therefore,
175 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
176 * elevated.
1da177e4 177 */
26af6552 178reread:
ba372674 179 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
180 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
181 buf_ops);
ba372674 182 if (error) {
eab4e633 183 if (loud)
e721f504 184 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 185 /* bad CRC means corrupted metadata */
2451337d
DC
186 if (error == -EFSBADCRC)
187 error = -EFSCORRUPTED;
ba372674 188 return error;
eab4e633 189 }
1da177e4
LT
190
191 /*
192 * Initialize the mount structure from the superblock.
1da177e4 193 */
3e6e8afd 194 xfs_sb_from_disk(sbp, bp->b_addr);
556b8883
DC
195
196 /*
197 * If we haven't validated the superblock, do so now before we try
198 * to check the sector size and reread the superblock appropriately.
199 */
200 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
201 if (loud)
202 xfs_warn(mp, "Invalid superblock magic number");
2451337d 203 error = -EINVAL;
556b8883
DC
204 goto release_buf;
205 }
ff55068c 206
1da177e4
LT
207 /*
208 * We must be able to do sector-sized and sector-aligned IO.
209 */
04a1e6c5 210 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
211 if (loud)
212 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 213 sector_size, sbp->sb_sectsize);
2451337d 214 error = -ENOSYS;
26af6552 215 goto release_buf;
1da177e4
LT
216 }
217
daba5427 218 if (buf_ops == NULL) {
556b8883
DC
219 /*
220 * Re-read the superblock so the buffer is correctly sized,
221 * and properly verified.
222 */
1da177e4 223 xfs_buf_relse(bp);
04a1e6c5 224 sector_size = sbp->sb_sectsize;
daba5427 225 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 226 goto reread;
1da177e4
LT
227 }
228
a1d86e8d 229 mp->m_features |= xfs_sb_version_to_features(sbp);
5681ca40 230 xfs_reinit_percpu_counters(mp);
8d280b98 231
04a1e6c5
DC
232 /* no need to be quiet anymore, so reset the buf ops */
233 bp->b_ops = &xfs_sb_buf_ops;
234
1da177e4 235 mp->m_sb_bp = bp;
26af6552 236 xfs_buf_unlock(bp);
1da177e4
LT
237 return 0;
238
26af6552
DC
239release_buf:
240 xfs_buf_relse(bp);
1da177e4
LT
241 return error;
242}
243
13eaec4b
DW
244/*
245 * If the sunit/swidth change would move the precomputed root inode value, we
246 * must reject the ondisk change because repair will stumble over that.
247 * However, we allow the mount to proceed because we never rejected this
248 * combination before. Returns true to update the sb, false otherwise.
249 */
250static inline int
251xfs_check_new_dalign(
252 struct xfs_mount *mp,
253 int new_dalign,
254 bool *update_sb)
255{
256 struct xfs_sb *sbp = &mp->m_sb;
257 xfs_ino_t calc_ino;
258
259 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
260 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
261
262 if (sbp->sb_rootino == calc_ino) {
263 *update_sb = true;
264 return 0;
265 }
266
267 xfs_warn(mp,
268"Cannot change stripe alignment; would require moving root inode.");
269
270 /*
271 * XXX: Next time we add a new incompat feature, this should start
272 * returning -EINVAL to fail the mount. Until then, spit out a warning
273 * that we're ignoring the administrator's instructions.
274 */
275 xfs_warn(mp, "Skipping superblock stripe alignment update.");
276 *update_sb = false;
277 return 0;
278}
279
1da177e4 280/*
4f5b1b3a
DW
281 * If we were provided with new sunit/swidth values as mount options, make sure
282 * that they pass basic alignment and superblock feature checks, and convert
283 * them into the same units (FSB) that everything else expects. This step
284 * /must/ be done before computing the inode geometry.
1da177e4 285 */
0771fb45 286STATIC int
4f5b1b3a
DW
287xfs_validate_new_dalign(
288 struct xfs_mount *mp)
1da177e4 289{
4f5b1b3a
DW
290 if (mp->m_dalign == 0)
291 return 0;
1da177e4 292
4f5b1b3a
DW
293 /*
294 * If stripe unit and stripe width are not multiples
295 * of the fs blocksize turn off alignment.
296 */
297 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
298 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
299 xfs_warn(mp,
300 "alignment check failed: sunit/swidth vs. blocksize(%d)",
301 mp->m_sb.sb_blocksize);
302 return -EINVAL;
4f5b1b3a
DW
303 }
304
de94a2e1
ZH
305 /*
306 * Convert the stripe unit and width to FSBs.
307 */
308 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
309 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
310 xfs_warn(mp,
311 "alignment check failed: sunit/swidth vs. agsize(%d)",
312 mp->m_sb.sb_agblocks);
313 return -EINVAL;
314 }
315
316 if (!mp->m_dalign) {
317 xfs_warn(mp,
318 "alignment check failed: sunit(%d) less than bsize(%d)",
319 mp->m_dalign, mp->m_sb.sb_blocksize);
320 return -EINVAL;
321 }
322
323 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
324
38c26bfd 325 if (!xfs_has_dalign(mp)) {
4f5b1b3a
DW
326 xfs_warn(mp,
327"cannot change alignment: superblock does not support data alignment");
328 return -EINVAL;
329 }
330
331 return 0;
332}
333
334/* Update alignment values based on mount options and sb values. */
335STATIC int
336xfs_update_alignment(
337 struct xfs_mount *mp)
338{
339 struct xfs_sb *sbp = &mp->m_sb;
340
341 if (mp->m_dalign) {
13eaec4b
DW
342 bool update_sb;
343 int error;
344
4f5b1b3a
DW
345 if (sbp->sb_unit == mp->m_dalign &&
346 sbp->sb_width == mp->m_swidth)
347 return 0;
348
13eaec4b
DW
349 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
350 if (error || !update_sb)
351 return error;
352
4f5b1b3a
DW
353 sbp->sb_unit = mp->m_dalign;
354 sbp->sb_width = mp->m_swidth;
355 mp->m_update_sb = true;
0560f31a 356 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
4f5b1b3a
DW
357 mp->m_dalign = sbp->sb_unit;
358 mp->m_swidth = sbp->sb_width;
1da177e4
LT
359 }
360
0771fb45
ES
361 return 0;
362}
1da177e4 363
055388a3
DC
364/*
365 * precalculate the low space thresholds for dynamic speculative preallocation.
366 */
367void
368xfs_set_low_space_thresholds(
369 struct xfs_mount *mp)
370{
65f03d86
DW
371 uint64_t dblocks = mp->m_sb.sb_dblocks;
372 uint64_t rtexts = mp->m_sb.sb_rextents;
373 int i;
055388a3 374
65f03d86
DW
375 do_div(dblocks, 100);
376 do_div(rtexts, 100);
055388a3 377
65f03d86
DW
378 for (i = 0; i < XFS_LOWSP_MAX; i++) {
379 mp->m_low_space[i] = dblocks * (i + 1);
380 mp->m_low_rtexts[i] = rtexts * (i + 1);
055388a3
DC
381 }
382}
383
0771fb45 384/*
0471f62e 385 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
386 */
387STATIC int
ba372674
DC
388xfs_check_sizes(
389 struct xfs_mount *mp)
0771fb45 390{
ba372674 391 struct xfs_buf *bp;
0771fb45 392 xfs_daddr_t d;
ba372674 393 int error;
0771fb45 394
1da177e4
LT
395 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
396 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 397 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 398 return -EFBIG;
1da177e4 399 }
ba372674 400 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 401 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
402 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
403 if (error) {
0b932ccc 404 xfs_warn(mp, "last sector read failed");
ba372674 405 return error;
1da177e4 406 }
1922c949 407 xfs_buf_relse(bp);
1da177e4 408
ba372674
DC
409 if (mp->m_logdev_targp == mp->m_ddev_targp)
410 return 0;
411
412 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
413 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
414 xfs_warn(mp, "log size mismatch detected");
415 return -EFBIG;
416 }
417 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 418 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
419 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
420 if (error) {
421 xfs_warn(mp, "log device read failed");
422 return error;
0771fb45 423 }
ba372674 424 xfs_buf_relse(bp);
0771fb45
ES
425 return 0;
426}
427
7d095257
CH
428/*
429 * Clear the quotaflags in memory and in the superblock.
430 */
431int
432xfs_mount_reset_sbqflags(
433 struct xfs_mount *mp)
434{
7d095257
CH
435 mp->m_qflags = 0;
436
61e63ecb 437 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
438 if (mp->m_sb.sb_qflags == 0)
439 return 0;
440 spin_lock(&mp->m_sb_lock);
441 mp->m_sb.sb_qflags = 0;
442 spin_unlock(&mp->m_sb_lock);
443
61e63ecb 444 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
445 return 0;
446
61e63ecb 447 return xfs_sync_sb(mp, false);
7d095257
CH
448}
449
c8ce540d 450uint64_t
d5db0f97
ES
451xfs_default_resblks(xfs_mount_t *mp)
452{
c8ce540d 453 uint64_t resblks;
d5db0f97
ES
454
455 /*
8babd8a2
DC
456 * We default to 5% or 8192 fsbs of space reserved, whichever is
457 * smaller. This is intended to cover concurrent allocation
458 * transactions when we initially hit enospc. These each require a 4
459 * block reservation. Hence by default we cover roughly 2000 concurrent
460 * allocation reservations.
d5db0f97
ES
461 */
462 resblks = mp->m_sb.sb_dblocks;
463 do_div(resblks, 20);
c8ce540d 464 resblks = min_t(uint64_t, resblks, 8192);
d5db0f97
ES
465 return resblks;
466}
467
2e9e6481
DW
468/* Ensure the summary counts are correct. */
469STATIC int
470xfs_check_summary_counts(
471 struct xfs_mount *mp)
472{
5a605fd6
DW
473 int error = 0;
474
2e9e6481
DW
475 /*
476 * The AG0 superblock verifier rejects in-progress filesystems,
477 * so we should never see the flag set this far into mounting.
478 */
479 if (mp->m_sb.sb_inprogress) {
480 xfs_err(mp, "sb_inprogress set after log recovery??");
481 WARN_ON(1);
482 return -EFSCORRUPTED;
483 }
484
485 /*
486 * Now the log is mounted, we know if it was an unclean shutdown or
487 * not. If it was, with the first phase of recovery has completed, we
488 * have consistent AG blocks on disk. We have not recovered EFIs yet,
489 * but they are recovered transactionally in the second recovery phase
490 * later.
491 *
492 * If the log was clean when we mounted, we can check the summary
493 * counters. If any of them are obviously incorrect, we can recompute
494 * them from the AGF headers in the next step.
495 */
2e973b2c 496 if (xfs_is_clean(mp) &&
2e9e6481 497 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
00d22a1c 498 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
2e9e6481 499 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
39353ff6 500 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
2e9e6481
DW
501
502 /*
503 * We can safely re-initialise incore superblock counters from the
504 * per-ag data. These may not be correct if the filesystem was not
505 * cleanly unmounted, so we waited for recovery to finish before doing
506 * this.
507 *
508 * If the filesystem was cleanly unmounted or the previous check did
509 * not flag anything weird, then we can trust the values in the
510 * superblock to be correct and we don't need to do anything here.
511 * Otherwise, recalculate the summary counters.
512 */
5a605fd6
DW
513 if ((xfs_has_lazysbcount(mp) && !xfs_is_clean(mp)) ||
514 xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) {
515 error = xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
516 if (error)
517 return error;
518 }
519
520 /*
521 * Older kernels misused sb_frextents to reflect both incore
522 * reservations made by running transactions and the actual count of
523 * free rt extents in the ondisk metadata. Transactions committed
524 * during runtime can therefore contain a superblock update that
525 * undercounts the number of free rt extents tracked in the rt bitmap.
526 * A clean unmount record will have the correct frextents value since
527 * there can be no other transactions running at that point.
528 *
529 * If we're mounting the rt volume after recovering the log, recompute
530 * frextents from the rtbitmap file to fix the inconsistency.
531 */
532 if (xfs_has_realtime(mp) && !xfs_is_clean(mp)) {
533 error = xfs_rtalloc_reinit_frextents(mp);
534 if (error)
535 return error;
536 }
2e9e6481 537
5a605fd6 538 return 0;
2e9e6481
DW
539}
540
59f6ab40
LL
541static void
542xfs_unmount_check(
543 struct xfs_mount *mp)
544{
545 if (xfs_is_shutdown(mp))
546 return;
547
548 if (percpu_counter_sum(&mp->m_ifree) >
549 percpu_counter_sum(&mp->m_icount)) {
550 xfs_alert(mp, "ifree/icount mismatch at unmount");
551 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
552 }
553}
554
d336f7eb
DW
555/*
556 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
557 * internal inode structures can be sitting in the CIL and AIL at this point,
558 * so we need to unpin them, write them back and/or reclaim them before unmount
ab23a776
DC
559 * can proceed. In other words, callers are required to have inactivated all
560 * inodes.
d336f7eb
DW
561 *
562 * An inode cluster that has been freed can have its buffer still pinned in
563 * memory because the transaction is still sitting in a iclog. The stale inodes
564 * on that buffer will be pinned to the buffer until the transaction hits the
565 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
566 * may never see the pinned buffer, so nothing will push out the iclog and
567 * unpin the buffer.
568 *
569 * Hence we need to force the log to unpin everything first. However, log
570 * forces don't wait for the discards they issue to complete, so we have to
571 * explicitly wait for them to complete here as well.
572 *
573 * Then we can tell the world we are unmounting so that error handling knows
574 * that the filesystem is going away and we should error out anything that we
575 * have been retrying in the background. This will prevent never-ending
576 * retries in AIL pushing from hanging the unmount.
577 *
578 * Finally, we can push the AIL to clean all the remaining dirty objects, then
579 * reclaim the remaining inodes that are still in memory at this point in time.
580 */
581static void
582xfs_unmount_flush_inodes(
583 struct xfs_mount *mp)
584{
585 xfs_log_force(mp, XFS_LOG_SYNC);
586 xfs_extent_busy_wait_all(mp);
587 flush_workqueue(xfs_discard_wq);
588
2e973b2c 589 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
d336f7eb
DW
590
591 xfs_ail_push_all_sync(mp->m_ail);
ab23a776 592 xfs_inodegc_stop(mp);
d336f7eb
DW
593 cancel_delayed_work_sync(&mp->m_reclaim_work);
594 xfs_reclaim_inodes(mp);
595 xfs_health_unmount(mp);
596}
597
b2941046
DC
598static void
599xfs_mount_setup_inode_geom(
600 struct xfs_mount *mp)
601{
602 struct xfs_ino_geometry *igeo = M_IGEO(mp);
603
604 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
605 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
606
607 xfs_ialloc_setup_geometry(mp);
608}
609
b74e15d7
DW
610/* Compute maximum possible height for per-AG btree types for this fs. */
611static inline void
612xfs_agbtree_compute_maxlevels(
613 struct xfs_mount *mp)
614{
615 unsigned int levels;
616
617 levels = max(mp->m_alloc_maxlevels, M_IGEO(mp)->inobt_maxlevels);
618 levels = max(levels, mp->m_rmap_maxlevels);
619 mp->m_agbtree_maxlevels = max(levels, mp->m_refc_maxlevels);
620}
621
0771fb45 622/*
0771fb45
ES
623 * This function does the following on an initial mount of a file system:
624 * - reads the superblock from disk and init the mount struct
625 * - if we're a 32-bit kernel, do a size check on the superblock
626 * so we don't mount terabyte filesystems
627 * - init mount struct realtime fields
628 * - allocate inode hash table for fs
629 * - init directory manager
630 * - perform recovery and init the log manager
631 */
632int
633xfs_mountfs(
f0b2efad 634 struct xfs_mount *mp)
0771fb45 635{
f0b2efad
BF
636 struct xfs_sb *sbp = &(mp->m_sb);
637 struct xfs_inode *rip;
ef325959 638 struct xfs_ino_geometry *igeo = M_IGEO(mp);
c8ce540d 639 uint64_t resblks;
f0b2efad
BF
640 uint quotamount = 0;
641 uint quotaflags = 0;
642 int error = 0;
0771fb45 643
ff55068c 644 xfs_sb_mount_common(mp, sbp);
0771fb45 645
ee1c0908 646 /*
074e427b
DC
647 * Check for a mismatched features2 values. Older kernels read & wrote
648 * into the wrong sb offset for sb_features2 on some platforms due to
649 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
650 * which made older superblock reading/writing routines swap it as a
651 * 64-bit value.
ee1c0908 652 *
e6957ea4
ES
653 * For backwards compatibility, we make both slots equal.
654 *
074e427b
DC
655 * If we detect a mismatched field, we OR the set bits into the existing
656 * features2 field in case it has already been modified; we don't want
657 * to lose any features. We then update the bad location with the ORed
658 * value so that older kernels will see any features2 flags. The
659 * superblock writeback code ensures the new sb_features2 is copied to
660 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 661 */
e6957ea4 662 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 663 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 664 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 665 mp->m_update_sb = true;
7c12f296
TS
666 }
667
ee1c0908 668
263997a6
DC
669 /* always use v2 inodes by default now */
670 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
671 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
38c26bfd 672 mp->m_features |= XFS_FEAT_NLINK;
61e63ecb 673 mp->m_update_sb = true;
263997a6
DC
674 }
675
0771fb45 676 /*
4f5b1b3a
DW
677 * If we were given new sunit/swidth options, do some basic validation
678 * checks and convert the incore dalign and swidth values to the
679 * same units (FSB) that everything else uses. This /must/ happen
680 * before computing the inode geometry.
0771fb45 681 */
4f5b1b3a 682 error = xfs_validate_new_dalign(mp);
0771fb45 683 if (error)
f9057e3d 684 goto out;
0771fb45
ES
685
686 xfs_alloc_compute_maxlevels(mp);
687 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
688 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
b2941046 689 xfs_mount_setup_inode_geom(mp);
035e00ac 690 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 691 xfs_refcountbt_compute_maxlevels(mp);
0771fb45 692
b74e15d7
DW
693 xfs_agbtree_compute_maxlevels(mp);
694
4f5b1b3a
DW
695 /*
696 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
697 * is NOT aligned turn off m_dalign since allocator alignment is within
698 * an ag, therefore ag has to be aligned at stripe boundary. Note that
699 * we must compute the free space and rmap btree geometry before doing
700 * this.
701 */
702 error = xfs_update_alignment(mp);
703 if (error)
704 goto out;
705
e6b3bb78 706 /* enable fail_at_unmount as default */
749f24f3 707 mp->m_fail_unmount = true;
e6b3bb78 708
e1d3d218
IK
709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
710 NULL, mp->m_super->s_id);
27174203
CH
711 if (error)
712 goto out;
1da177e4 713
225e4635
BD
714 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
715 &mp->m_kobj, "stats");
a31b1d3d
BF
716 if (error)
717 goto out_remove_sysfs;
718
192852be 719 error = xfs_error_sysfs_init(mp);
225e4635
BD
720 if (error)
721 goto out_del_stats;
722
31965ef3
DW
723 error = xfs_errortag_init(mp);
724 if (error)
725 goto out_remove_error_sysfs;
192852be
CM
726
727 error = xfs_uuid_mount(mp);
728 if (error)
31965ef3 729 goto out_remove_errortag;
192852be 730
0771fb45 731 /*
2fcddee8
CH
732 * Update the preferred write size based on the information from the
733 * on-disk superblock.
0771fb45 734 */
2fcddee8
CH
735 mp->m_allocsize_log =
736 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
737 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
0771fb45 738
055388a3
DC
739 /* set the low space thresholds for dynamic preallocation */
740 xfs_set_low_space_thresholds(mp);
741
e5376fc1
BF
742 /*
743 * If enabled, sparse inode chunk alignment is expected to match the
744 * cluster size. Full inode chunk alignment must match the chunk size,
745 * but that is checked on sb read verification...
746 */
38c26bfd 747 if (xfs_has_sparseinodes(mp) &&
e5376fc1 748 mp->m_sb.sb_spino_align !=
490d451f 749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
e5376fc1
BF
750 xfs_warn(mp,
751 "Sparse inode block alignment (%u) must match cluster size (%llu).",
752 mp->m_sb.sb_spino_align,
490d451f 753 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
e5376fc1
BF
754 error = -EINVAL;
755 goto out_remove_uuid;
756 }
757
0771fb45 758 /*
c2bfbc9b 759 * Check that the data (and log if separate) is an ok size.
0771fb45 760 */
4249023a 761 error = xfs_check_sizes(mp);
0771fb45 762 if (error)
f9057e3d 763 goto out_remove_uuid;
0771fb45 764
1da177e4
LT
765 /*
766 * Initialize realtime fields in the mount structure
767 */
0771fb45
ES
768 error = xfs_rtmount_init(mp);
769 if (error) {
0b932ccc 770 xfs_warn(mp, "RT mount failed");
f9057e3d 771 goto out_remove_uuid;
1da177e4
LT
772 }
773
1da177e4
LT
774 /*
775 * Copies the low order bits of the timestamp and the randomly
776 * set "sequence" number out of a UUID.
777 */
cb0ba6cc
CH
778 mp->m_fixedfsid[0] =
779 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
780 get_unaligned_be16(&sbp->sb_uuid.b[4]);
781 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
1da177e4 782
0650b554
DC
783 error = xfs_da_mount(mp);
784 if (error) {
785 xfs_warn(mp, "Failed dir/attr init: %d", error);
786 goto out_remove_uuid;
787 }
1da177e4
LT
788
789 /*
790 * Initialize the precomputed transaction reservations values.
791 */
792 xfs_trans_init(mp);
793
1da177e4
LT
794 /*
795 * Allocate and initialize the per-ag data.
796 */
0800169e
DC
797 error = xfs_initialize_perag(mp, sbp->sb_agcount, mp->m_sb.sb_dblocks,
798 &mp->m_maxagi);
1c1c6ebc 799 if (error) {
0b932ccc 800 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 801 goto out_free_dir;
1c1c6ebc 802 }
1da177e4 803
a71895c5 804 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
0b932ccc 805 xfs_warn(mp, "no log defined");
2451337d 806 error = -EFSCORRUPTED;
f9057e3d
CH
807 goto out_free_perag;
808 }
809
40b1de00
DW
810 error = xfs_inodegc_register_shrinker(mp);
811 if (error)
812 goto out_fail_wait;
813
1da177e4 814 /*
f0b2efad
BF
815 * Log's mount-time initialization. The first part of recovery can place
816 * some items on the AIL, to be handled when recovery is finished or
817 * cancelled.
1da177e4 818 */
f9057e3d
CH
819 error = xfs_log_mount(mp, mp->m_logdev_targp,
820 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
821 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
822 if (error) {
0b932ccc 823 xfs_warn(mp, "log mount failed");
40b1de00 824 goto out_inodegc_shrinker;
1da177e4
LT
825 }
826
ab23a776
DC
827 /* Enable background inode inactivation workers. */
828 xfs_inodegc_start(mp);
6f649091 829 xfs_blockgc_start(mp);
ab23a776 830
e23b55d5
DC
831 /*
832 * Now that we've recovered any pending superblock feature bit
833 * additions, we can finish setting up the attr2 behaviour for the
0560f31a
DC
834 * mount. The noattr2 option overrides the superblock flag, so only
835 * check the superblock feature flag if the mount option is not set.
e23b55d5 836 */
0560f31a
DC
837 if (xfs_has_noattr2(mp)) {
838 mp->m_features &= ~XFS_FEAT_ATTR2;
839 } else if (!xfs_has_attr2(mp) &&
840 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
841 mp->m_features |= XFS_FEAT_ATTR2;
842 }
e23b55d5 843
1da177e4
LT
844 /*
845 * Get and sanity-check the root inode.
846 * Save the pointer to it in the mount structure.
847 */
541b5acc
DC
848 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
849 XFS_ILOCK_EXCL, &rip);
1da177e4 850 if (error) {
541b5acc
DC
851 xfs_warn(mp,
852 "Failed to read root inode 0x%llx, error %d",
853 sbp->sb_rootino, -error);
f9057e3d 854 goto out_log_dealloc;
1da177e4
LT
855 }
856
857 ASSERT(rip != NULL);
1da177e4 858
a71895c5 859 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 860 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 861 (unsigned long long)rip->i_ino);
1da177e4 862 xfs_iunlock(rip, XFS_ILOCK_EXCL);
2451337d 863 error = -EFSCORRUPTED;
f9057e3d 864 goto out_rele_rip;
1da177e4
LT
865 }
866 mp->m_rootip = rip; /* save it */
867
868 xfs_iunlock(rip, XFS_ILOCK_EXCL);
869
870 /*
871 * Initialize realtime inode pointers in the mount structure
872 */
0771fb45
ES
873 error = xfs_rtmount_inodes(mp);
874 if (error) {
1da177e4
LT
875 /*
876 * Free up the root inode.
877 */
0b932ccc 878 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 879 goto out_rele_rip;
1da177e4
LT
880 }
881
5a605fd6
DW
882 /* Make sure the summary counts are ok. */
883 error = xfs_check_summary_counts(mp);
884 if (error)
885 goto out_rtunmount;
886
1da177e4 887 /*
7884bc86
CH
888 * If this is a read-only mount defer the superblock updates until
889 * the next remount into writeable mode. Otherwise we would never
890 * perform the update e.g. for the root filesystem.
1da177e4 891 */
2e973b2c 892 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
61e63ecb 893 error = xfs_sync_sb(mp, false);
e5720eec 894 if (error) {
0b932ccc 895 xfs_warn(mp, "failed to write sb changes");
b93b6e43 896 goto out_rtunmount;
e5720eec
DC
897 }
898 }
1da177e4
LT
899
900 /*
901 * Initialise the XFS quota management subsystem for this mount
902 */
149e53af 903 if (XFS_IS_QUOTA_ON(mp)) {
7d095257
CH
904 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
905 if (error)
906 goto out_rtunmount;
907 } else {
7d095257
CH
908 /*
909 * If a file system had quotas running earlier, but decided to
910 * mount without -o uquota/pquota/gquota options, revoke the
911 * quotachecked license.
912 */
913 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 914 xfs_notice(mp, "resetting quota flags");
7d095257
CH
915 error = xfs_mount_reset_sbqflags(mp);
916 if (error)
a70a4fa5 917 goto out_rtunmount;
7d095257
CH
918 }
919 }
1da177e4
LT
920
921 /*
f0b2efad
BF
922 * Finish recovering the file system. This part needed to be delayed
923 * until after the root and real-time bitmap inodes were consistently
81ed9475
DW
924 * read in. Temporarily create per-AG space reservations for metadata
925 * btree shape changes because space freeing transactions (for inode
926 * inactivation) require the per-AG reservation in lieu of reserving
927 * blocks.
1da177e4 928 */
81ed9475
DW
929 error = xfs_fs_reserve_ag_blocks(mp);
930 if (error && error == -ENOSPC)
931 xfs_warn(mp,
932 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
4249023a 933 error = xfs_log_mount_finish(mp);
81ed9475 934 xfs_fs_unreserve_ag_blocks(mp);
1da177e4 935 if (error) {
0b932ccc 936 xfs_warn(mp, "log mount finish failed");
b93b6e43 937 goto out_rtunmount;
1da177e4
LT
938 }
939
ddeb14f4
DC
940 /*
941 * Now the log is fully replayed, we can transition to full read-only
942 * mode for read-only mounts. This will sync all the metadata and clean
943 * the log so that the recovery we just performed does not have to be
944 * replayed again on the next mount.
945 *
946 * We use the same quiesce mechanism as the rw->ro remount, as they are
947 * semantically identical operations.
948 */
2e973b2c 949 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
ea2064da 950 xfs_log_clean(mp);
ddeb14f4 951
1da177e4
LT
952 /*
953 * Complete the quota initialisation, post-log-replay component.
954 */
7d095257
CH
955 if (quotamount) {
956 ASSERT(mp->m_qflags == 0);
957 mp->m_qflags = quotaflags;
958
959 xfs_qm_mount_quotas(mp);
960 }
961
84e1e99f
DC
962 /*
963 * Now we are mounted, reserve a small amount of unused space for
964 * privileged transactions. This is needed so that transaction
965 * space required for critical operations can dip into this pool
966 * when at ENOSPC. This is needed for operations like create with
967 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
968 * are not allowed to use this reserved space.
8babd8a2
DC
969 *
970 * This may drive us straight to ENOSPC on mount, but that implies
971 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 972 */
2e973b2c 973 if (!xfs_is_readonly(mp)) {
d5db0f97
ES
974 resblks = xfs_default_resblks(mp);
975 error = xfs_reserve_blocks(mp, &resblks, NULL);
976 if (error)
0b932ccc
DC
977 xfs_warn(mp,
978 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e 979
84d69619
DW
980 /* Reserve AG blocks for future btree expansion. */
981 error = xfs_fs_reserve_ag_blocks(mp);
982 if (error && error != -ENOSPC)
983 goto out_agresv;
d5db0f97 984 }
84e1e99f 985
1da177e4
LT
986 return 0;
987
84d69619
DW
988 out_agresv:
989 xfs_fs_unreserve_ag_blocks(mp);
174edb0e 990 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
991 out_rtunmount:
992 xfs_rtunmount_inodes(mp);
f9057e3d 993 out_rele_rip:
44a8736b 994 xfs_irele(rip);
77aff8c7
DW
995 /* Clean out dquots that might be in memory after quotacheck. */
996 xfs_qm_unmount(mp);
ab23a776
DC
997
998 /*
999 * Inactivate all inodes that might still be in memory after a log
1000 * intent recovery failure so that reclaim can free them. Metadata
1001 * inodes and the root directory shouldn't need inactivation, but the
1002 * mount failed for some reason, so pull down all the state and flee.
1003 */
1004 xfs_inodegc_flush(mp);
1005
2d1d1da3 1006 /*
d336f7eb 1007 * Flush all inode reclamation work and flush the log.
2d1d1da3
DW
1008 * We have to do this /after/ rtunmount and qm_unmount because those
1009 * two will have scheduled delayed reclaim for the rt/quota inodes.
1010 *
1011 * This is slightly different from the unmountfs call sequence
1012 * because we could be tearing down a partially set up mount. In
1013 * particular, if log_mount_finish fails we bail out without calling
1014 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1015 * quota inodes.
1016 */
d336f7eb 1017 xfs_unmount_flush_inodes(mp);
f9057e3d 1018 out_log_dealloc:
f0b2efad 1019 xfs_log_mount_cancel(mp);
40b1de00
DW
1020 out_inodegc_shrinker:
1021 unregister_shrinker(&mp->m_inodegc_shrinker);
d4f3512b
DC
1022 out_fail_wait:
1023 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
10fb9ac1
BF
1024 xfs_buftarg_drain(mp->m_logdev_targp);
1025 xfs_buftarg_drain(mp->m_ddev_targp);
f9057e3d 1026 out_free_perag:
ff4f038c 1027 xfs_free_perag(mp);
0650b554
DC
1028 out_free_dir:
1029 xfs_da_unmount(mp);
f9057e3d 1030 out_remove_uuid:
27174203 1031 xfs_uuid_unmount(mp);
31965ef3
DW
1032 out_remove_errortag:
1033 xfs_errortag_del(mp);
192852be
CM
1034 out_remove_error_sysfs:
1035 xfs_error_sysfs_del(mp);
225e4635
BD
1036 out_del_stats:
1037 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
1038 out_remove_sysfs:
1039 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1040 out:
1da177e4
LT
1041 return error;
1042}
1043
1044/*
1da177e4
LT
1045 * This flushes out the inodes,dquots and the superblock, unmounts the
1046 * log and makes sure that incore structures are freed.
1047 */
41b5c2e7
CH
1048void
1049xfs_unmountfs(
1050 struct xfs_mount *mp)
1da177e4 1051{
c8ce540d 1052 uint64_t resblks;
41b5c2e7 1053 int error;
1da177e4 1054
ab23a776
DC
1055 /*
1056 * Perform all on-disk metadata updates required to inactivate inodes
1057 * that the VFS evicted earlier in the unmount process. Freeing inodes
1058 * and discarding CoW fork preallocations can cause shape changes to
1059 * the free inode and refcount btrees, respectively, so we must finish
1060 * this before we discard the metadata space reservations. Metadata
1061 * inodes and the root directory do not require inactivation.
1062 */
1063 xfs_inodegc_flush(mp);
1064
c9a6526f 1065 xfs_blockgc_stop(mp);
84d69619 1066 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1067 xfs_qm_unmount_quotas(mp);
b93b6e43 1068 xfs_rtunmount_inodes(mp);
44a8736b 1069 xfs_irele(mp->m_rootip);
77508ec8 1070
d336f7eb 1071 xfs_unmount_flush_inodes(mp);
1da177e4 1072
7d095257 1073 xfs_qm_unmount(mp);
a357a121 1074
84e1e99f
DC
1075 /*
1076 * Unreserve any blocks we have so that when we unmount we don't account
1077 * the reserved free space as used. This is really only necessary for
1078 * lazy superblock counting because it trusts the incore superblock
9da096fd 1079 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1080 *
1081 * We don't bother correcting this elsewhere for lazy superblock
1082 * counting because on mount of an unclean filesystem we reconstruct the
1083 * correct counter value and this is irrelevant.
1084 *
1085 * For non-lazy counter filesystems, this doesn't matter at all because
1086 * we only every apply deltas to the superblock and hence the incore
1087 * value does not matter....
1088 */
1089 resblks = 0;
714082bc
DC
1090 error = xfs_reserve_blocks(mp, &resblks, NULL);
1091 if (error)
0b932ccc 1092 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc 1093 "Freespace may not be correct on next mount.");
59f6ab40 1094 xfs_unmount_check(mp);
714082bc 1095
21b699c8 1096 xfs_log_unmount(mp);
0650b554 1097 xfs_da_unmount(mp);
27174203 1098 xfs_uuid_unmount(mp);
1da177e4 1099
1550d0b0 1100#if defined(DEBUG)
31965ef3 1101 xfs_errortag_clearall(mp);
1da177e4 1102#endif
40b1de00 1103 unregister_shrinker(&mp->m_inodegc_shrinker);
ff4f038c 1104 xfs_free_perag(mp);
a31b1d3d 1105
31965ef3 1106 xfs_errortag_del(mp);
192852be 1107 xfs_error_sysfs_del(mp);
225e4635 1108 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1109 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1110}
1111
91ee575f
BF
1112/*
1113 * Determine whether modifications can proceed. The caller specifies the minimum
1114 * freeze level for which modifications should not be allowed. This allows
1115 * certain operations to proceed while the freeze sequence is in progress, if
1116 * necessary.
1117 */
1118bool
1119xfs_fs_writable(
1120 struct xfs_mount *mp,
1121 int level)
92821e2b 1122{
91ee575f
BF
1123 ASSERT(level > SB_UNFROZEN);
1124 if ((mp->m_super->s_writers.frozen >= level) ||
75c8c50f 1125 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
91ee575f
BF
1126 return false;
1127
1128 return true;
92821e2b
DC
1129}
1130
2229276c 1131/* Adjust m_fdblocks or m_frextents. */
0d485ada 1132int
2229276c 1133xfs_mod_freecounter(
0d485ada 1134 struct xfs_mount *mp,
2229276c 1135 struct percpu_counter *counter,
0d485ada
DC
1136 int64_t delta,
1137 bool rsvd)
1138{
1139 int64_t lcounter;
1140 long long res_used;
2229276c 1141 uint64_t set_aside = 0;
0d485ada 1142 s32 batch;
2229276c
DW
1143 bool has_resv_pool;
1144
1145 ASSERT(counter == &mp->m_fdblocks || counter == &mp->m_frextents);
1146 has_resv_pool = (counter == &mp->m_fdblocks);
1147 if (rsvd)
1148 ASSERT(has_resv_pool);
0d485ada
DC
1149
1150 if (delta > 0) {
1151 /*
1152 * If the reserve pool is depleted, put blocks back into it
1153 * first. Most of the time the pool is full.
1154 */
2229276c
DW
1155 if (likely(!has_resv_pool ||
1156 mp->m_resblks == mp->m_resblks_avail)) {
1157 percpu_counter_add(counter, delta);
0d485ada
DC
1158 return 0;
1159 }
1160
1161 spin_lock(&mp->m_sb_lock);
1162 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1163
1164 if (res_used > delta) {
1165 mp->m_resblks_avail += delta;
1166 } else {
1167 delta -= res_used;
1168 mp->m_resblks_avail = mp->m_resblks;
2229276c 1169 percpu_counter_add(counter, delta);
0d485ada
DC
1170 }
1171 spin_unlock(&mp->m_sb_lock);
1172 return 0;
1173 }
1174
1175 /*
1176 * Taking blocks away, need to be more accurate the closer we
1177 * are to zero.
1178 *
0d485ada
DC
1179 * If the counter has a value of less than 2 * max batch size,
1180 * then make everything serialise as we are real close to
1181 * ENOSPC.
1182 */
2229276c 1183 if (__percpu_counter_compare(counter, 2 * XFS_FDBLOCKS_BATCH,
8c1903d3 1184 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1185 batch = 1;
1186 else
8c1903d3 1187 batch = XFS_FDBLOCKS_BATCH;
0d485ada 1188
fd43cf60
BF
1189 /*
1190 * Set aside allocbt blocks because these blocks are tracked as free
1191 * space but not available for allocation. Technically this means that a
1192 * single reservation cannot consume all remaining free space, but the
1193 * ratio of allocbt blocks to usable free blocks should be rather small.
1194 * The tradeoff without this is that filesystems that maintain high
1195 * perag block reservations can over reserve physical block availability
1196 * and fail physical allocation, which leads to much more serious
1197 * problems (i.e. transaction abort, pagecache discards, etc.) than
1198 * slightly premature -ENOSPC.
1199 */
2229276c
DW
1200 if (has_resv_pool)
1201 set_aside = xfs_fdblocks_unavailable(mp);
1202 percpu_counter_add_batch(counter, delta, batch);
1203 if (__percpu_counter_compare(counter, set_aside,
8c1903d3 1204 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1205 /* we had space! */
1206 return 0;
1207 }
1208
1209 /*
1210 * lock up the sb for dipping into reserves before releasing the space
1211 * that took us to ENOSPC.
1212 */
1213 spin_lock(&mp->m_sb_lock);
2229276c
DW
1214 percpu_counter_add(counter, -delta);
1215 if (!has_resv_pool || !rsvd)
0d485ada
DC
1216 goto fdblocks_enospc;
1217
1218 lcounter = (long long)mp->m_resblks_avail + delta;
1219 if (lcounter >= 0) {
1220 mp->m_resblks_avail = lcounter;
1221 spin_unlock(&mp->m_sb_lock);
1222 return 0;
1223 }
ec43f6da
ES
1224 xfs_warn_once(mp,
1225"Reserve blocks depleted! Consider increasing reserve pool size.");
1226
0d485ada
DC
1227fdblocks_enospc:
1228 spin_unlock(&mp->m_sb_lock);
1229 return -ENOSPC;
1230}
1231
1da177e4
LT
1232/*
1233 * Used to free the superblock along various error paths.
1234 */
1235void
1236xfs_freesb(
26af6552 1237 struct xfs_mount *mp)
1da177e4 1238{
26af6552 1239 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1240
26af6552 1241 xfs_buf_lock(bp);
1da177e4 1242 mp->m_sb_bp = NULL;
26af6552 1243 xfs_buf_relse(bp);
1da177e4
LT
1244}
1245
dda35b8f
CH
1246/*
1247 * If the underlying (data/log/rt) device is readonly, there are some
1248 * operations that cannot proceed.
1249 */
1250int
1251xfs_dev_is_read_only(
1252 struct xfs_mount *mp,
1253 char *message)
1254{
1255 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1256 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1257 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1258 xfs_notice(mp, "%s required on read-only device.", message);
1259 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1260 return -EROFS;
dda35b8f
CH
1261 }
1262 return 0;
1263}
f467cad9
DW
1264
1265/* Force the summary counters to be recalculated at next mount. */
1266void
1267xfs_force_summary_recalc(
1268 struct xfs_mount *mp)
1269{
38c26bfd 1270 if (!xfs_has_lazysbcount(mp))
f467cad9
DW
1271 return;
1272
39353ff6 1273 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
f467cad9 1274}
9fe82b8c 1275
908ce71e
DW
1276/*
1277 * Enable a log incompat feature flag in the primary superblock. The caller
1278 * cannot have any other transactions in progress.
1279 */
1280int
1281xfs_add_incompat_log_feature(
1282 struct xfs_mount *mp,
1283 uint32_t feature)
1284{
1285 struct xfs_dsb *dsb;
1286 int error;
1287
1288 ASSERT(hweight32(feature) == 1);
1289 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1290
1291 /*
1292 * Force the log to disk and kick the background AIL thread to reduce
1293 * the chances that the bwrite will stall waiting for the AIL to unpin
1294 * the primary superblock buffer. This isn't a data integrity
1295 * operation, so we don't need a synchronous push.
1296 */
1297 error = xfs_log_force(mp, XFS_LOG_SYNC);
1298 if (error)
1299 return error;
1300 xfs_ail_push_all(mp->m_ail);
1301
1302 /*
1303 * Lock the primary superblock buffer to serialize all callers that
1304 * are trying to set feature bits.
1305 */
1306 xfs_buf_lock(mp->m_sb_bp);
1307 xfs_buf_hold(mp->m_sb_bp);
1308
75c8c50f 1309 if (xfs_is_shutdown(mp)) {
908ce71e
DW
1310 error = -EIO;
1311 goto rele;
1312 }
1313
1314 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1315 goto rele;
1316
1317 /*
1318 * Write the primary superblock to disk immediately, because we need
1319 * the log_incompat bit to be set in the primary super now to protect
1320 * the log items that we're going to commit later.
1321 */
1322 dsb = mp->m_sb_bp->b_addr;
1323 xfs_sb_to_disk(dsb, &mp->m_sb);
1324 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1325 error = xfs_bwrite(mp->m_sb_bp);
1326 if (error)
1327 goto shutdown;
1328
1329 /*
1330 * Add the feature bits to the incore superblock before we unlock the
1331 * buffer.
1332 */
1333 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1334 xfs_buf_relse(mp->m_sb_bp);
1335
1336 /* Log the superblock to disk. */
1337 return xfs_sync_sb(mp, false);
1338shutdown:
1339 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1340rele:
1341 xfs_buf_relse(mp->m_sb_bp);
1342 return error;
1343}
1344
1345/*
1346 * Clear all the log incompat flags from the superblock.
1347 *
1348 * The caller cannot be in a transaction, must ensure that the log does not
1349 * contain any log items protected by any log incompat bit, and must ensure
1350 * that there are no other threads that depend on the state of the log incompat
1351 * feature flags in the primary super.
1352 *
1353 * Returns true if the superblock is dirty.
1354 */
1355bool
1356xfs_clear_incompat_log_features(
1357 struct xfs_mount *mp)
1358{
1359 bool ret = false;
1360
ebd9027d 1361 if (!xfs_has_crc(mp) ||
908ce71e
DW
1362 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1363 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
75c8c50f 1364 xfs_is_shutdown(mp))
908ce71e
DW
1365 return false;
1366
1367 /*
1368 * Update the incore superblock. We synchronize on the primary super
1369 * buffer lock to be consistent with the add function, though at least
1370 * in theory this shouldn't be necessary.
1371 */
1372 xfs_buf_lock(mp->m_sb_bp);
1373 xfs_buf_hold(mp->m_sb_bp);
1374
1375 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1376 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
908ce71e
DW
1377 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1378 ret = true;
1379 }
1380
1381 xfs_buf_relse(mp->m_sb_bp);
1382 return ret;
1383}
1384
9fe82b8c
DW
1385/*
1386 * Update the in-core delayed block counter.
1387 *
1388 * We prefer to update the counter without having to take a spinlock for every
1389 * counter update (i.e. batching). Each change to delayed allocation
1390 * reservations can change can easily exceed the default percpu counter
1391 * batching, so we use a larger batch factor here.
1392 *
1393 * Note that we don't currently have any callers requiring fast summation
1394 * (e.g. percpu_counter_read) so we can use a big batch value here.
1395 */
1396#define XFS_DELALLOC_BATCH (4096)
1397void
1398xfs_mod_delalloc(
1399 struct xfs_mount *mp,
1400 int64_t delta)
1401{
1402 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1403 XFS_DELALLOC_BATCH);
1404}