mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
1da177e4 15#include "xfs_inode.h"
a4fbe6ab 16#include "xfs_dir2.h"
a844f451 17#include "xfs_ialloc.h"
1da177e4
LT
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
a4fbe6ab
DC
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
1da177e4 24#include "xfs_error.h"
1da177e4
LT
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
6d8b79cf 27#include "xfs_icache.h"
a31b1d3d 28#include "xfs_sysfs.h"
035e00ac 29#include "xfs_rmap_btree.h"
1946b91c 30#include "xfs_refcount_btree.h"
174edb0e 31#include "xfs_reflink.h"
ebf55872 32#include "xfs_extent_busy.h"
39353ff6 33#include "xfs_health.h"
0b1b213f 34
1da177e4 35
27174203
CH
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
af3b6382
DW
40void
41xfs_uuid_table_free(void)
42{
43 if (xfs_uuid_table_size == 0)
44 return;
45 kmem_free(xfs_uuid_table);
46 xfs_uuid_table = NULL;
47 xfs_uuid_table_size = 0;
48}
49
27174203
CH
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56 struct xfs_mount *mp)
57{
58 uuid_t *uuid = &mp->m_sb.sb_uuid;
59 int hole, i;
60
8f720d9f 61 /* Publish UUID in struct super_block */
85787090 62 uuid_copy(&mp->m_super->s_uuid, uuid);
8f720d9f 63
27174203
CH
64 if (mp->m_flags & XFS_MOUNT_NOUUID)
65 return 0;
66
d905fdaa
AG
67 if (uuid_is_null(uuid)) {
68 xfs_warn(mp, "Filesystem has null UUID - can't mount");
2451337d 69 return -EINVAL;
27174203
CH
70 }
71
72 mutex_lock(&xfs_uuid_table_mutex);
73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
d905fdaa 74 if (uuid_is_null(&xfs_uuid_table[i])) {
27174203
CH
75 hole = i;
76 continue;
77 }
78 if (uuid_equal(uuid, &xfs_uuid_table[i]))
79 goto out_duplicate;
80 }
81
82 if (hole < 0) {
83 xfs_uuid_table = kmem_realloc(xfs_uuid_table,
84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
707e0dda 85 0);
27174203
CH
86 hole = xfs_uuid_table_size++;
87 }
88 xfs_uuid_table[hole] = *uuid;
89 mutex_unlock(&xfs_uuid_table_mutex);
90
91 return 0;
92
93 out_duplicate:
94 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 96 return -EINVAL;
27174203
CH
97}
98
99STATIC void
100xfs_uuid_unmount(
101 struct xfs_mount *mp)
102{
103 uuid_t *uuid = &mp->m_sb.sb_uuid;
104 int i;
105
106 if (mp->m_flags & XFS_MOUNT_NOUUID)
107 return;
108
109 mutex_lock(&xfs_uuid_table_mutex);
110 for (i = 0; i < xfs_uuid_table_size; i++) {
d905fdaa 111 if (uuid_is_null(&xfs_uuid_table[i]))
27174203
CH
112 continue;
113 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114 continue;
115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116 break;
117 }
118 ASSERT(i < xfs_uuid_table_size);
119 mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
e176579e
DC
123STATIC void
124__xfs_free_perag(
125 struct rcu_head *head)
126{
127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129 ASSERT(atomic_read(&pag->pag_ref) == 0);
130 kmem_free(pag);
131}
132
1da177e4 133/*
e176579e 134 * Free up the per-ag resources associated with the mount structure.
1da177e4 135 */
c962fb79 136STATIC void
ff4f038c 137xfs_free_perag(
745f6919 138 xfs_mount_t *mp)
1da177e4 139{
1c1c6ebc
DC
140 xfs_agnumber_t agno;
141 struct xfs_perag *pag;
142
143 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
144 spin_lock(&mp->m_perag_lock);
145 pag = radix_tree_delete(&mp->m_perag_tree, agno);
146 spin_unlock(&mp->m_perag_lock);
e176579e 147 ASSERT(pag);
f83282a8 148 ASSERT(atomic_read(&pag->pag_ref) == 0);
9b247179 149 xfs_iunlink_destroy(pag);
6031e73a 150 xfs_buf_hash_destroy(pag);
1da06189 151 mutex_destroy(&pag->pag_ici_reclaim_lock);
e176579e 152 call_rcu(&pag->rcu_head, __xfs_free_perag);
1da177e4 153 }
1da177e4
LT
154}
155
4cc929ee
NS
156/*
157 * Check size of device based on the (data/realtime) block count.
158 * Note: this check is used by the growfs code as well as mount.
159 */
160int
161xfs_sb_validate_fsb_count(
162 xfs_sb_t *sbp,
c8ce540d 163 uint64_t nblocks)
4cc929ee
NS
164{
165 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
166 ASSERT(sbp->sb_blocklog >= BBSHIFT);
167
d5cf09ba 168 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 169 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 170 return -EFBIG;
4cc929ee
NS
171 return 0;
172}
1da177e4 173
1c1c6ebc 174int
c11e2c36 175xfs_initialize_perag(
c11e2c36 176 xfs_mount_t *mp,
1c1c6ebc
DC
177 xfs_agnumber_t agcount,
178 xfs_agnumber_t *maxagi)
1da177e4 179{
2d2194f6 180 xfs_agnumber_t index;
b20fe473 181 xfs_agnumber_t first_initialised = NULLAGNUMBER;
1da177e4 182 xfs_perag_t *pag;
8b26c582 183 int error = -ENOMEM;
1da177e4 184
1c1c6ebc
DC
185 /*
186 * Walk the current per-ag tree so we don't try to initialise AGs
187 * that already exist (growfs case). Allocate and insert all the
188 * AGs we don't find ready for initialisation.
189 */
190 for (index = 0; index < agcount; index++) {
191 pag = xfs_perag_get(mp, index);
192 if (pag) {
193 xfs_perag_put(pag);
194 continue;
195 }
fb3b504a 196
1c1c6ebc
DC
197 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
198 if (!pag)
b20fe473 199 goto out_unwind_new_pags;
fb3b504a
CH
200 pag->pag_agno = index;
201 pag->pag_mount = mp;
1a427ab0 202 spin_lock_init(&pag->pag_ici_lock);
69b491c2 203 mutex_init(&pag->pag_ici_reclaim_lock);
fb3b504a 204 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
6031e73a 205 if (xfs_buf_hash_init(pag))
b20fe473 206 goto out_free_pag;
ebf55872 207 init_waitqueue_head(&pag->pagb_wait);
ff23f4af
DW
208 spin_lock_init(&pag->pagb_lock);
209 pag->pagb_count = 0;
210 pag->pagb_tree = RB_ROOT;
fb3b504a 211
1c1c6ebc 212 if (radix_tree_preload(GFP_NOFS))
b20fe473 213 goto out_hash_destroy;
fb3b504a 214
1c1c6ebc
DC
215 spin_lock(&mp->m_perag_lock);
216 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
eb2e9994 217 WARN_ON_ONCE(1);
1c1c6ebc 218 spin_unlock(&mp->m_perag_lock);
8b26c582
DC
219 radix_tree_preload_end();
220 error = -EEXIST;
b20fe473 221 goto out_hash_destroy;
1c1c6ebc
DC
222 }
223 spin_unlock(&mp->m_perag_lock);
224 radix_tree_preload_end();
b20fe473
BD
225 /* first new pag is fully initialized */
226 if (first_initialised == NULLAGNUMBER)
227 first_initialised = index;
9b247179
DW
228 error = xfs_iunlink_init(pag);
229 if (error)
230 goto out_hash_destroy;
6772c1f1 231 spin_lock_init(&pag->pag_state_lock);
1c1c6ebc
DC
232 }
233
12c3f05c 234 index = xfs_set_inode_alloc(mp, agcount);
fb3b504a 235
1c1c6ebc
DC
236 if (maxagi)
237 *maxagi = index;
8018026e
DW
238
239 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
1c1c6ebc 240 return 0;
8b26c582 241
b20fe473 242out_hash_destroy:
6031e73a 243 xfs_buf_hash_destroy(pag);
b20fe473 244out_free_pag:
1da06189 245 mutex_destroy(&pag->pag_ici_reclaim_lock);
8b26c582 246 kmem_free(pag);
b20fe473
BD
247out_unwind_new_pags:
248 /* unwind any prior newly initialized pags */
249 for (index = first_initialised; index < agcount; index++) {
8b26c582 250 pag = radix_tree_delete(&mp->m_perag_tree, index);
b20fe473
BD
251 if (!pag)
252 break;
6031e73a 253 xfs_buf_hash_destroy(pag);
9b247179 254 xfs_iunlink_destroy(pag);
1da06189 255 mutex_destroy(&pag->pag_ici_reclaim_lock);
8b26c582
DC
256 kmem_free(pag);
257 }
258 return error;
1da177e4
LT
259}
260
1da177e4
LT
261/*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266int
ff55068c
DC
267xfs_readsb(
268 struct xfs_mount *mp,
269 int flags)
1da177e4
LT
270{
271 unsigned int sector_size;
04a1e6c5
DC
272 struct xfs_buf *bp;
273 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 274 int error;
af34e09d 275 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 276 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
277
278 ASSERT(mp->m_sb_bp == NULL);
279 ASSERT(mp->m_ddev_targp != NULL);
280
daba5427
ES
281 /*
282 * For the initial read, we must guess at the sector
283 * size based on the block device. It's enough to
284 * get the sb_sectsize out of the superblock and
285 * then reread with the proper length.
286 * We don't verify it yet, because it may not be complete.
287 */
288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289 buf_ops = NULL;
290
1da177e4 291 /*
c891c30a
BF
292 * Allocate a (locked) buffer to hold the superblock. This will be kept
293 * around at all times to optimize access to the superblock. Therefore,
294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295 * elevated.
1da177e4 296 */
26af6552 297reread:
ba372674 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
299 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300 buf_ops);
ba372674 301 if (error) {
eab4e633 302 if (loud)
e721f504 303 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 304 /* bad CRC means corrupted metadata */
2451337d
DC
305 if (error == -EFSBADCRC)
306 error = -EFSCORRUPTED;
ba372674 307 return error;
eab4e633 308 }
1da177e4
LT
309
310 /*
311 * Initialize the mount structure from the superblock.
1da177e4 312 */
556b8883 313 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
556b8883
DC
314
315 /*
316 * If we haven't validated the superblock, do so now before we try
317 * to check the sector size and reread the superblock appropriately.
318 */
319 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320 if (loud)
321 xfs_warn(mp, "Invalid superblock magic number");
2451337d 322 error = -EINVAL;
556b8883
DC
323 goto release_buf;
324 }
ff55068c 325
1da177e4
LT
326 /*
327 * We must be able to do sector-sized and sector-aligned IO.
328 */
04a1e6c5 329 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
330 if (loud)
331 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 332 sector_size, sbp->sb_sectsize);
2451337d 333 error = -ENOSYS;
26af6552 334 goto release_buf;
1da177e4
LT
335 }
336
daba5427 337 if (buf_ops == NULL) {
556b8883
DC
338 /*
339 * Re-read the superblock so the buffer is correctly sized,
340 * and properly verified.
341 */
1da177e4 342 xfs_buf_relse(bp);
04a1e6c5 343 sector_size = sbp->sb_sectsize;
daba5427 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 345 goto reread;
1da177e4
LT
346 }
347
5681ca40 348 xfs_reinit_percpu_counters(mp);
8d280b98 349
04a1e6c5
DC
350 /* no need to be quiet anymore, so reset the buf ops */
351 bp->b_ops = &xfs_sb_buf_ops;
352
1da177e4 353 mp->m_sb_bp = bp;
26af6552 354 xfs_buf_unlock(bp);
1da177e4
LT
355 return 0;
356
26af6552
DC
357release_buf:
358 xfs_buf_relse(bp);
1da177e4
LT
359 return error;
360}
361
1da177e4 362/*
0771fb45 363 * Update alignment values based on mount options and sb values
1da177e4 364 */
0771fb45 365STATIC int
7884bc86 366xfs_update_alignment(xfs_mount_t *mp)
1da177e4 367{
1da177e4 368 xfs_sb_t *sbp = &(mp->m_sb);
1da177e4 369
4249023a 370 if (mp->m_dalign) {
1da177e4
LT
371 /*
372 * If stripe unit and stripe width are not multiples
373 * of the fs blocksize turn off alignment.
374 */
375 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
376 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
39a45d84
JL
377 xfs_warn(mp,
378 "alignment check failed: sunit/swidth vs. blocksize(%d)",
379 sbp->sb_blocksize);
2451337d 380 return -EINVAL;
1da177e4
LT
381 } else {
382 /*
383 * Convert the stripe unit and width to FSBs.
384 */
385 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
386 if (mp->m_dalign && (sbp->sb_agblocks % mp->m_dalign)) {
53487786 387 xfs_warn(mp,
39a45d84
JL
388 "alignment check failed: sunit/swidth vs. agsize(%d)",
389 sbp->sb_agblocks);
2451337d 390 return -EINVAL;
1da177e4
LT
391 } else if (mp->m_dalign) {
392 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
393 } else {
39a45d84
JL
394 xfs_warn(mp,
395 "alignment check failed: sunit(%d) less than bsize(%d)",
396 mp->m_dalign, sbp->sb_blocksize);
2451337d 397 return -EINVAL;
1da177e4
LT
398 }
399 }
400
401 /*
402 * Update superblock with new values
403 * and log changes
404 */
62118709 405 if (xfs_sb_version_hasdalign(sbp)) {
1da177e4
LT
406 if (sbp->sb_unit != mp->m_dalign) {
407 sbp->sb_unit = mp->m_dalign;
61e63ecb 408 mp->m_update_sb = true;
1da177e4
LT
409 }
410 if (sbp->sb_width != mp->m_swidth) {
411 sbp->sb_width = mp->m_swidth;
61e63ecb 412 mp->m_update_sb = true;
1da177e4 413 }
34d7f603
JL
414 } else {
415 xfs_warn(mp,
416 "cannot change alignment: superblock does not support data alignment");
2451337d 417 return -EINVAL;
1da177e4
LT
418 }
419 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
62118709 420 xfs_sb_version_hasdalign(&mp->m_sb)) {
1da177e4
LT
421 mp->m_dalign = sbp->sb_unit;
422 mp->m_swidth = sbp->sb_width;
423 }
424
0771fb45
ES
425 return 0;
426}
1da177e4 427
0771fb45
ES
428/*
429 * Set the default minimum read and write sizes unless
430 * already specified in a mount option.
431 * We use smaller I/O sizes when the file system
432 * is being used for NFS service (wsync mount option).
433 */
434STATIC void
435xfs_set_rw_sizes(xfs_mount_t *mp)
436{
437 xfs_sb_t *sbp = &(mp->m_sb);
438 int readio_log, writeio_log;
1da177e4 439
1da177e4
LT
440 if (!(mp->m_flags & XFS_MOUNT_DFLT_IOSIZE)) {
441 if (mp->m_flags & XFS_MOUNT_WSYNC) {
442 readio_log = XFS_WSYNC_READIO_LOG;
443 writeio_log = XFS_WSYNC_WRITEIO_LOG;
444 } else {
445 readio_log = XFS_READIO_LOG_LARGE;
446 writeio_log = XFS_WRITEIO_LOG_LARGE;
447 }
448 } else {
449 readio_log = mp->m_readio_log;
450 writeio_log = mp->m_writeio_log;
451 }
452
1da177e4
LT
453 if (sbp->sb_blocklog > readio_log) {
454 mp->m_readio_log = sbp->sb_blocklog;
455 } else {
456 mp->m_readio_log = readio_log;
457 }
458 mp->m_readio_blocks = 1 << (mp->m_readio_log - sbp->sb_blocklog);
459 if (sbp->sb_blocklog > writeio_log) {
460 mp->m_writeio_log = sbp->sb_blocklog;
461 } else {
462 mp->m_writeio_log = writeio_log;
463 }
464 mp->m_writeio_blocks = 1 << (mp->m_writeio_log - sbp->sb_blocklog);
0771fb45 465}
1da177e4 466
055388a3
DC
467/*
468 * precalculate the low space thresholds for dynamic speculative preallocation.
469 */
470void
471xfs_set_low_space_thresholds(
472 struct xfs_mount *mp)
473{
474 int i;
475
476 for (i = 0; i < XFS_LOWSP_MAX; i++) {
c8ce540d 477 uint64_t space = mp->m_sb.sb_dblocks;
055388a3
DC
478
479 do_div(space, 100);
480 mp->m_low_space[i] = space * (i + 1);
481 }
482}
483
0771fb45 484/*
0471f62e 485 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
486 */
487STATIC int
ba372674
DC
488xfs_check_sizes(
489 struct xfs_mount *mp)
0771fb45 490{
ba372674 491 struct xfs_buf *bp;
0771fb45 492 xfs_daddr_t d;
ba372674 493 int error;
0771fb45 494
1da177e4
LT
495 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
496 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 497 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 498 return -EFBIG;
1da177e4 499 }
ba372674 500 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 501 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
502 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
503 if (error) {
0b932ccc 504 xfs_warn(mp, "last sector read failed");
ba372674 505 return error;
1da177e4 506 }
1922c949 507 xfs_buf_relse(bp);
1da177e4 508
ba372674
DC
509 if (mp->m_logdev_targp == mp->m_ddev_targp)
510 return 0;
511
512 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
513 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
514 xfs_warn(mp, "log size mismatch detected");
515 return -EFBIG;
516 }
517 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 518 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
519 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
520 if (error) {
521 xfs_warn(mp, "log device read failed");
522 return error;
0771fb45 523 }
ba372674 524 xfs_buf_relse(bp);
0771fb45
ES
525 return 0;
526}
527
7d095257
CH
528/*
529 * Clear the quotaflags in memory and in the superblock.
530 */
531int
532xfs_mount_reset_sbqflags(
533 struct xfs_mount *mp)
534{
7d095257
CH
535 mp->m_qflags = 0;
536
61e63ecb 537 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
538 if (mp->m_sb.sb_qflags == 0)
539 return 0;
540 spin_lock(&mp->m_sb_lock);
541 mp->m_sb.sb_qflags = 0;
542 spin_unlock(&mp->m_sb_lock);
543
61e63ecb 544 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
545 return 0;
546
61e63ecb 547 return xfs_sync_sb(mp, false);
7d095257
CH
548}
549
c8ce540d 550uint64_t
d5db0f97
ES
551xfs_default_resblks(xfs_mount_t *mp)
552{
c8ce540d 553 uint64_t resblks;
d5db0f97
ES
554
555 /*
8babd8a2
DC
556 * We default to 5% or 8192 fsbs of space reserved, whichever is
557 * smaller. This is intended to cover concurrent allocation
558 * transactions when we initially hit enospc. These each require a 4
559 * block reservation. Hence by default we cover roughly 2000 concurrent
560 * allocation reservations.
d5db0f97
ES
561 */
562 resblks = mp->m_sb.sb_dblocks;
563 do_div(resblks, 20);
c8ce540d 564 resblks = min_t(uint64_t, resblks, 8192);
d5db0f97
ES
565 return resblks;
566}
567
2e9e6481
DW
568/* Ensure the summary counts are correct. */
569STATIC int
570xfs_check_summary_counts(
571 struct xfs_mount *mp)
572{
573 /*
574 * The AG0 superblock verifier rejects in-progress filesystems,
575 * so we should never see the flag set this far into mounting.
576 */
577 if (mp->m_sb.sb_inprogress) {
578 xfs_err(mp, "sb_inprogress set after log recovery??");
579 WARN_ON(1);
580 return -EFSCORRUPTED;
581 }
582
583 /*
584 * Now the log is mounted, we know if it was an unclean shutdown or
585 * not. If it was, with the first phase of recovery has completed, we
586 * have consistent AG blocks on disk. We have not recovered EFIs yet,
587 * but they are recovered transactionally in the second recovery phase
588 * later.
589 *
590 * If the log was clean when we mounted, we can check the summary
591 * counters. If any of them are obviously incorrect, we can recompute
592 * them from the AGF headers in the next step.
593 */
594 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
595 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
00d22a1c 596 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
2e9e6481 597 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
39353ff6 598 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
2e9e6481
DW
599
600 /*
601 * We can safely re-initialise incore superblock counters from the
602 * per-ag data. These may not be correct if the filesystem was not
603 * cleanly unmounted, so we waited for recovery to finish before doing
604 * this.
605 *
606 * If the filesystem was cleanly unmounted or the previous check did
607 * not flag anything weird, then we can trust the values in the
608 * superblock to be correct and we don't need to do anything here.
609 * Otherwise, recalculate the summary counters.
610 */
611 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
612 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
39353ff6 613 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
2e9e6481
DW
614 return 0;
615
616 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
617}
618
0771fb45 619/*
0771fb45
ES
620 * This function does the following on an initial mount of a file system:
621 * - reads the superblock from disk and init the mount struct
622 * - if we're a 32-bit kernel, do a size check on the superblock
623 * so we don't mount terabyte filesystems
624 * - init mount struct realtime fields
625 * - allocate inode hash table for fs
626 * - init directory manager
627 * - perform recovery and init the log manager
628 */
629int
630xfs_mountfs(
f0b2efad 631 struct xfs_mount *mp)
0771fb45 632{
f0b2efad
BF
633 struct xfs_sb *sbp = &(mp->m_sb);
634 struct xfs_inode *rip;
ef325959 635 struct xfs_ino_geometry *igeo = M_IGEO(mp);
c8ce540d 636 uint64_t resblks;
f0b2efad
BF
637 uint quotamount = 0;
638 uint quotaflags = 0;
639 int error = 0;
0771fb45 640
ff55068c 641 xfs_sb_mount_common(mp, sbp);
0771fb45 642
ee1c0908 643 /*
074e427b
DC
644 * Check for a mismatched features2 values. Older kernels read & wrote
645 * into the wrong sb offset for sb_features2 on some platforms due to
646 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
647 * which made older superblock reading/writing routines swap it as a
648 * 64-bit value.
ee1c0908 649 *
e6957ea4
ES
650 * For backwards compatibility, we make both slots equal.
651 *
074e427b
DC
652 * If we detect a mismatched field, we OR the set bits into the existing
653 * features2 field in case it has already been modified; we don't want
654 * to lose any features. We then update the bad location with the ORed
655 * value so that older kernels will see any features2 flags. The
656 * superblock writeback code ensures the new sb_features2 is copied to
657 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 658 */
e6957ea4 659 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 660 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 661 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 662 mp->m_update_sb = true;
e6957ea4
ES
663
664 /*
665 * Re-check for ATTR2 in case it was found in bad_features2
666 * slot.
667 */
7c12f296
TS
668 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
669 !(mp->m_flags & XFS_MOUNT_NOATTR2))
e6957ea4 670 mp->m_flags |= XFS_MOUNT_ATTR2;
7c12f296
TS
671 }
672
673 if (xfs_sb_version_hasattr2(&mp->m_sb) &&
674 (mp->m_flags & XFS_MOUNT_NOATTR2)) {
675 xfs_sb_version_removeattr2(&mp->m_sb);
61e63ecb 676 mp->m_update_sb = true;
e6957ea4 677
7c12f296
TS
678 /* update sb_versionnum for the clearing of the morebits */
679 if (!sbp->sb_features2)
61e63ecb 680 mp->m_update_sb = true;
ee1c0908
DC
681 }
682
263997a6
DC
683 /* always use v2 inodes by default now */
684 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
685 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
61e63ecb 686 mp->m_update_sb = true;
263997a6
DC
687 }
688
0771fb45
ES
689 /*
690 * Check if sb_agblocks is aligned at stripe boundary
691 * If sb_agblocks is NOT aligned turn off m_dalign since
692 * allocator alignment is within an ag, therefore ag has
693 * to be aligned at stripe boundary.
694 */
7884bc86 695 error = xfs_update_alignment(mp);
0771fb45 696 if (error)
f9057e3d 697 goto out;
0771fb45
ES
698
699 xfs_alloc_compute_maxlevels(mp);
700 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
701 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
494dba7b 702 xfs_ialloc_setup_geometry(mp);
035e00ac 703 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 704 xfs_refcountbt_compute_maxlevels(mp);
0771fb45 705
e6b3bb78 706 /* enable fail_at_unmount as default */
749f24f3 707 mp->m_fail_unmount = true;
e6b3bb78 708
a31b1d3d 709 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, NULL, mp->m_fsname);
27174203
CH
710 if (error)
711 goto out;
1da177e4 712
225e4635
BD
713 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
714 &mp->m_kobj, "stats");
a31b1d3d
BF
715 if (error)
716 goto out_remove_sysfs;
717
192852be 718 error = xfs_error_sysfs_init(mp);
225e4635
BD
719 if (error)
720 goto out_del_stats;
721
31965ef3
DW
722 error = xfs_errortag_init(mp);
723 if (error)
724 goto out_remove_error_sysfs;
192852be
CM
725
726 error = xfs_uuid_mount(mp);
727 if (error)
31965ef3 728 goto out_remove_errortag;
192852be 729
0771fb45
ES
730 /*
731 * Set the minimum read and write sizes
732 */
733 xfs_set_rw_sizes(mp);
734
055388a3
DC
735 /* set the low space thresholds for dynamic preallocation */
736 xfs_set_low_space_thresholds(mp);
737
e5376fc1
BF
738 /*
739 * If enabled, sparse inode chunk alignment is expected to match the
740 * cluster size. Full inode chunk alignment must match the chunk size,
741 * but that is checked on sb read verification...
742 */
743 if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
744 mp->m_sb.sb_spino_align !=
490d451f 745 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
e5376fc1
BF
746 xfs_warn(mp,
747 "Sparse inode block alignment (%u) must match cluster size (%llu).",
748 mp->m_sb.sb_spino_align,
490d451f 749 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
e5376fc1
BF
750 error = -EINVAL;
751 goto out_remove_uuid;
752 }
753
0771fb45 754 /*
c2bfbc9b 755 * Check that the data (and log if separate) is an ok size.
0771fb45 756 */
4249023a 757 error = xfs_check_sizes(mp);
0771fb45 758 if (error)
f9057e3d 759 goto out_remove_uuid;
0771fb45 760
1da177e4
LT
761 /*
762 * Initialize realtime fields in the mount structure
763 */
0771fb45
ES
764 error = xfs_rtmount_init(mp);
765 if (error) {
0b932ccc 766 xfs_warn(mp, "RT mount failed");
f9057e3d 767 goto out_remove_uuid;
1da177e4
LT
768 }
769
1da177e4
LT
770 /*
771 * Copies the low order bits of the timestamp and the randomly
772 * set "sequence" number out of a UUID.
773 */
cb0ba6cc
CH
774 mp->m_fixedfsid[0] =
775 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
776 get_unaligned_be16(&sbp->sb_uuid.b[4]);
777 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
1da177e4 778
0650b554
DC
779 error = xfs_da_mount(mp);
780 if (error) {
781 xfs_warn(mp, "Failed dir/attr init: %d", error);
782 goto out_remove_uuid;
783 }
1da177e4
LT
784
785 /*
786 * Initialize the precomputed transaction reservations values.
787 */
788 xfs_trans_init(mp);
789
1da177e4
LT
790 /*
791 * Allocate and initialize the per-ag data.
792 */
1c1c6ebc
DC
793 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
794 if (error) {
0b932ccc 795 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 796 goto out_free_dir;
1c1c6ebc 797 }
1da177e4 798
f9057e3d 799 if (!sbp->sb_logblocks) {
0b932ccc 800 xfs_warn(mp, "no log defined");
f9057e3d 801 XFS_ERROR_REPORT("xfs_mountfs", XFS_ERRLEVEL_LOW, mp);
2451337d 802 error = -EFSCORRUPTED;
f9057e3d
CH
803 goto out_free_perag;
804 }
805
1da177e4 806 /*
f0b2efad
BF
807 * Log's mount-time initialization. The first part of recovery can place
808 * some items on the AIL, to be handled when recovery is finished or
809 * cancelled.
1da177e4 810 */
f9057e3d
CH
811 error = xfs_log_mount(mp, mp->m_logdev_targp,
812 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
813 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
814 if (error) {
0b932ccc 815 xfs_warn(mp, "log mount failed");
d4f3512b 816 goto out_fail_wait;
1da177e4
LT
817 }
818
2e9e6481
DW
819 /* Make sure the summary counts are ok. */
820 error = xfs_check_summary_counts(mp);
821 if (error)
822 goto out_log_dealloc;
f9057e3d 823
1da177e4
LT
824 /*
825 * Get and sanity-check the root inode.
826 * Save the pointer to it in the mount structure.
827 */
541b5acc
DC
828 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
829 XFS_ILOCK_EXCL, &rip);
1da177e4 830 if (error) {
541b5acc
DC
831 xfs_warn(mp,
832 "Failed to read root inode 0x%llx, error %d",
833 sbp->sb_rootino, -error);
f9057e3d 834 goto out_log_dealloc;
1da177e4
LT
835 }
836
837 ASSERT(rip != NULL);
1da177e4 838
c19b3b05 839 if (unlikely(!S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 840 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 841 (unsigned long long)rip->i_ino);
1da177e4
LT
842 xfs_iunlock(rip, XFS_ILOCK_EXCL);
843 XFS_ERROR_REPORT("xfs_mountfs_int(2)", XFS_ERRLEVEL_LOW,
844 mp);
2451337d 845 error = -EFSCORRUPTED;
f9057e3d 846 goto out_rele_rip;
1da177e4
LT
847 }
848 mp->m_rootip = rip; /* save it */
849
850 xfs_iunlock(rip, XFS_ILOCK_EXCL);
851
852 /*
853 * Initialize realtime inode pointers in the mount structure
854 */
0771fb45
ES
855 error = xfs_rtmount_inodes(mp);
856 if (error) {
1da177e4
LT
857 /*
858 * Free up the root inode.
859 */
0b932ccc 860 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 861 goto out_rele_rip;
1da177e4
LT
862 }
863
864 /*
7884bc86
CH
865 * If this is a read-only mount defer the superblock updates until
866 * the next remount into writeable mode. Otherwise we would never
867 * perform the update e.g. for the root filesystem.
1da177e4 868 */
61e63ecb
DC
869 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
870 error = xfs_sync_sb(mp, false);
e5720eec 871 if (error) {
0b932ccc 872 xfs_warn(mp, "failed to write sb changes");
b93b6e43 873 goto out_rtunmount;
e5720eec
DC
874 }
875 }
1da177e4
LT
876
877 /*
878 * Initialise the XFS quota management subsystem for this mount
879 */
7d095257
CH
880 if (XFS_IS_QUOTA_RUNNING(mp)) {
881 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
882 if (error)
883 goto out_rtunmount;
884 } else {
885 ASSERT(!XFS_IS_QUOTA_ON(mp));
886
887 /*
888 * If a file system had quotas running earlier, but decided to
889 * mount without -o uquota/pquota/gquota options, revoke the
890 * quotachecked license.
891 */
892 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 893 xfs_notice(mp, "resetting quota flags");
7d095257
CH
894 error = xfs_mount_reset_sbqflags(mp);
895 if (error)
a70a4fa5 896 goto out_rtunmount;
7d095257
CH
897 }
898 }
1da177e4
LT
899
900 /*
f0b2efad
BF
901 * Finish recovering the file system. This part needed to be delayed
902 * until after the root and real-time bitmap inodes were consistently
903 * read in.
1da177e4 904 */
4249023a 905 error = xfs_log_mount_finish(mp);
1da177e4 906 if (error) {
0b932ccc 907 xfs_warn(mp, "log mount finish failed");
b93b6e43 908 goto out_rtunmount;
1da177e4
LT
909 }
910
ddeb14f4
DC
911 /*
912 * Now the log is fully replayed, we can transition to full read-only
913 * mode for read-only mounts. This will sync all the metadata and clean
914 * the log so that the recovery we just performed does not have to be
915 * replayed again on the next mount.
916 *
917 * We use the same quiesce mechanism as the rw->ro remount, as they are
918 * semantically identical operations.
919 */
920 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
921 XFS_MOUNT_RDONLY) {
922 xfs_quiesce_attr(mp);
923 }
924
1da177e4
LT
925 /*
926 * Complete the quota initialisation, post-log-replay component.
927 */
7d095257
CH
928 if (quotamount) {
929 ASSERT(mp->m_qflags == 0);
930 mp->m_qflags = quotaflags;
931
932 xfs_qm_mount_quotas(mp);
933 }
934
84e1e99f
DC
935 /*
936 * Now we are mounted, reserve a small amount of unused space for
937 * privileged transactions. This is needed so that transaction
938 * space required for critical operations can dip into this pool
939 * when at ENOSPC. This is needed for operations like create with
940 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
941 * are not allowed to use this reserved space.
8babd8a2
DC
942 *
943 * This may drive us straight to ENOSPC on mount, but that implies
944 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 945 */
d5db0f97
ES
946 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
947 resblks = xfs_default_resblks(mp);
948 error = xfs_reserve_blocks(mp, &resblks, NULL);
949 if (error)
0b932ccc
DC
950 xfs_warn(mp,
951 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e
DW
952
953 /* Recover any CoW blocks that never got remapped. */
954 error = xfs_reflink_recover_cow(mp);
955 if (error) {
956 xfs_err(mp,
957 "Error %d recovering leftover CoW allocations.", error);
958 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
959 goto out_quota;
960 }
84d69619
DW
961
962 /* Reserve AG blocks for future btree expansion. */
963 error = xfs_fs_reserve_ag_blocks(mp);
964 if (error && error != -ENOSPC)
965 goto out_agresv;
d5db0f97 966 }
84e1e99f 967
1da177e4
LT
968 return 0;
969
84d69619
DW
970 out_agresv:
971 xfs_fs_unreserve_ag_blocks(mp);
174edb0e
DW
972 out_quota:
973 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
974 out_rtunmount:
975 xfs_rtunmount_inodes(mp);
f9057e3d 976 out_rele_rip:
44a8736b 977 xfs_irele(rip);
77aff8c7
DW
978 /* Clean out dquots that might be in memory after quotacheck. */
979 xfs_qm_unmount(mp);
2d1d1da3
DW
980 /*
981 * Cancel all delayed reclaim work and reclaim the inodes directly.
982 * We have to do this /after/ rtunmount and qm_unmount because those
983 * two will have scheduled delayed reclaim for the rt/quota inodes.
984 *
985 * This is slightly different from the unmountfs call sequence
986 * because we could be tearing down a partially set up mount. In
987 * particular, if log_mount_finish fails we bail out without calling
988 * qm_unmount_quotas and therefore rely on qm_unmount to release the
989 * quota inodes.
990 */
991 cancel_delayed_work_sync(&mp->m_reclaim_work);
992 xfs_reclaim_inodes(mp, SYNC_WAIT);
519841c2 993 xfs_health_unmount(mp);
f9057e3d 994 out_log_dealloc:
e6b3bb78 995 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
f0b2efad 996 xfs_log_mount_cancel(mp);
d4f3512b
DC
997 out_fail_wait:
998 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
999 xfs_wait_buftarg(mp->m_logdev_targp);
1000 xfs_wait_buftarg(mp->m_ddev_targp);
f9057e3d 1001 out_free_perag:
ff4f038c 1002 xfs_free_perag(mp);
0650b554
DC
1003 out_free_dir:
1004 xfs_da_unmount(mp);
f9057e3d 1005 out_remove_uuid:
27174203 1006 xfs_uuid_unmount(mp);
31965ef3
DW
1007 out_remove_errortag:
1008 xfs_errortag_del(mp);
192852be
CM
1009 out_remove_error_sysfs:
1010 xfs_error_sysfs_del(mp);
225e4635
BD
1011 out_del_stats:
1012 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
1013 out_remove_sysfs:
1014 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 1015 out:
1da177e4
LT
1016 return error;
1017}
1018
1019/*
1da177e4
LT
1020 * This flushes out the inodes,dquots and the superblock, unmounts the
1021 * log and makes sure that incore structures are freed.
1022 */
41b5c2e7
CH
1023void
1024xfs_unmountfs(
1025 struct xfs_mount *mp)
1da177e4 1026{
c8ce540d 1027 uint64_t resblks;
41b5c2e7 1028 int error;
1da177e4 1029
ed30dcbd 1030 xfs_stop_block_reaping(mp);
84d69619 1031 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1032 xfs_qm_unmount_quotas(mp);
b93b6e43 1033 xfs_rtunmount_inodes(mp);
44a8736b 1034 xfs_irele(mp->m_rootip);
77508ec8 1035
641c56fb
DC
1036 /*
1037 * We can potentially deadlock here if we have an inode cluster
9da096fd 1038 * that has been freed has its buffer still pinned in memory because
641c56fb
DC
1039 * the transaction is still sitting in a iclog. The stale inodes
1040 * on that buffer will have their flush locks held until the
1041 * transaction hits the disk and the callbacks run. the inode
1042 * flush takes the flush lock unconditionally and with nothing to
1043 * push out the iclog we will never get that unlocked. hence we
1044 * need to force the log first.
1045 */
a14a348b 1046 xfs_log_force(mp, XFS_LOG_SYNC);
c854363e 1047
ebf55872
CH
1048 /*
1049 * Wait for all busy extents to be freed, including completion of
1050 * any discard operation.
1051 */
1052 xfs_extent_busy_wait_all(mp);
4560e78f 1053 flush_workqueue(xfs_discard_wq);
ebf55872 1054
e6b3bb78
CM
1055 /*
1056 * We now need to tell the world we are unmounting. This will allow
1057 * us to detect that the filesystem is going away and we should error
1058 * out anything that we have been retrying in the background. This will
1059 * prevent neverending retries in AIL pushing from hanging the unmount.
1060 */
1061 mp->m_flags |= XFS_MOUNT_UNMOUNTING;
1062
c854363e 1063 /*
211e4d43
CH
1064 * Flush all pending changes from the AIL.
1065 */
1066 xfs_ail_push_all_sync(mp->m_ail);
1067
1068 /*
1069 * And reclaim all inodes. At this point there should be no dirty
7e18530b
DC
1070 * inodes and none should be pinned or locked, but use synchronous
1071 * reclaim just to be sure. We can stop background inode reclaim
1072 * here as well if it is still running.
c854363e 1073 */
7e18530b 1074 cancel_delayed_work_sync(&mp->m_reclaim_work);
c854363e 1075 xfs_reclaim_inodes(mp, SYNC_WAIT);
519841c2 1076 xfs_health_unmount(mp);
1da177e4 1077
7d095257 1078 xfs_qm_unmount(mp);
a357a121 1079
84e1e99f
DC
1080 /*
1081 * Unreserve any blocks we have so that when we unmount we don't account
1082 * the reserved free space as used. This is really only necessary for
1083 * lazy superblock counting because it trusts the incore superblock
9da096fd 1084 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1085 *
1086 * We don't bother correcting this elsewhere for lazy superblock
1087 * counting because on mount of an unclean filesystem we reconstruct the
1088 * correct counter value and this is irrelevant.
1089 *
1090 * For non-lazy counter filesystems, this doesn't matter at all because
1091 * we only every apply deltas to the superblock and hence the incore
1092 * value does not matter....
1093 */
1094 resblks = 0;
714082bc
DC
1095 error = xfs_reserve_blocks(mp, &resblks, NULL);
1096 if (error)
0b932ccc 1097 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1098 "Freespace may not be correct on next mount.");
1099
adab0f67 1100 error = xfs_log_sbcount(mp);
e5720eec 1101 if (error)
0b932ccc 1102 xfs_warn(mp, "Unable to update superblock counters. "
e5720eec 1103 "Freespace may not be correct on next mount.");
87c7bec7 1104
225e4635 1105
21b699c8 1106 xfs_log_unmount(mp);
0650b554 1107 xfs_da_unmount(mp);
27174203 1108 xfs_uuid_unmount(mp);
1da177e4 1109
1550d0b0 1110#if defined(DEBUG)
31965ef3 1111 xfs_errortag_clearall(mp);
1da177e4 1112#endif
ff4f038c 1113 xfs_free_perag(mp);
a31b1d3d 1114
31965ef3 1115 xfs_errortag_del(mp);
192852be 1116 xfs_error_sysfs_del(mp);
225e4635 1117 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1118 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1119}
1120
91ee575f
BF
1121/*
1122 * Determine whether modifications can proceed. The caller specifies the minimum
1123 * freeze level for which modifications should not be allowed. This allows
1124 * certain operations to proceed while the freeze sequence is in progress, if
1125 * necessary.
1126 */
1127bool
1128xfs_fs_writable(
1129 struct xfs_mount *mp,
1130 int level)
92821e2b 1131{
91ee575f
BF
1132 ASSERT(level > SB_UNFROZEN);
1133 if ((mp->m_super->s_writers.frozen >= level) ||
1134 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1135 return false;
1136
1137 return true;
92821e2b
DC
1138}
1139
1140/*
b2ce3974
AE
1141 * xfs_log_sbcount
1142 *
adab0f67 1143 * Sync the superblock counters to disk.
b2ce3974 1144 *
91ee575f
BF
1145 * Note this code can be called during the process of freezing, so we use the
1146 * transaction allocator that does not block when the transaction subsystem is
1147 * in its frozen state.
92821e2b
DC
1148 */
1149int
adab0f67 1150xfs_log_sbcount(xfs_mount_t *mp)
92821e2b 1151{
91ee575f
BF
1152 /* allow this to proceed during the freeze sequence... */
1153 if (!xfs_fs_writable(mp, SB_FREEZE_COMPLETE))
92821e2b
DC
1154 return 0;
1155
92821e2b
DC
1156 /*
1157 * we don't need to do this if we are updating the superblock
1158 * counters on every modification.
1159 */
1160 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1161 return 0;
1162
61e63ecb 1163 return xfs_sync_sb(mp, true);
92821e2b
DC
1164}
1165
8c1903d3
DC
1166/*
1167 * Deltas for the inode count are +/-64, hence we use a large batch size
1168 * of 128 so we don't need to take the counter lock on every update.
1169 */
1170#define XFS_ICOUNT_BATCH 128
501ab323
DC
1171int
1172xfs_mod_icount(
1173 struct xfs_mount *mp,
1174 int64_t delta)
1175{
104b4e51 1176 percpu_counter_add_batch(&mp->m_icount, delta, XFS_ICOUNT_BATCH);
8c1903d3 1177 if (__percpu_counter_compare(&mp->m_icount, 0, XFS_ICOUNT_BATCH) < 0) {
501ab323
DC
1178 ASSERT(0);
1179 percpu_counter_add(&mp->m_icount, -delta);
1180 return -EINVAL;
1181 }
1182 return 0;
1183}
1184
e88b64ea
DC
1185int
1186xfs_mod_ifree(
1187 struct xfs_mount *mp,
1188 int64_t delta)
1189{
1190 percpu_counter_add(&mp->m_ifree, delta);
1191 if (percpu_counter_compare(&mp->m_ifree, 0) < 0) {
1192 ASSERT(0);
1193 percpu_counter_add(&mp->m_ifree, -delta);
1194 return -EINVAL;
1195 }
1196 return 0;
1197}
0d485ada 1198
8c1903d3
DC
1199/*
1200 * Deltas for the block count can vary from 1 to very large, but lock contention
1201 * only occurs on frequent small block count updates such as in the delayed
1202 * allocation path for buffered writes (page a time updates). Hence we set
1203 * a large batch count (1024) to minimise global counter updates except when
1204 * we get near to ENOSPC and we have to be very accurate with our updates.
1205 */
1206#define XFS_FDBLOCKS_BATCH 1024
0d485ada
DC
1207int
1208xfs_mod_fdblocks(
1209 struct xfs_mount *mp,
1210 int64_t delta,
1211 bool rsvd)
1212{
1213 int64_t lcounter;
1214 long long res_used;
1215 s32 batch;
1216
1217 if (delta > 0) {
1218 /*
1219 * If the reserve pool is depleted, put blocks back into it
1220 * first. Most of the time the pool is full.
1221 */
1222 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1223 percpu_counter_add(&mp->m_fdblocks, delta);
1224 return 0;
1225 }
1226
1227 spin_lock(&mp->m_sb_lock);
1228 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1229
1230 if (res_used > delta) {
1231 mp->m_resblks_avail += delta;
1232 } else {
1233 delta -= res_used;
1234 mp->m_resblks_avail = mp->m_resblks;
1235 percpu_counter_add(&mp->m_fdblocks, delta);
1236 }
1237 spin_unlock(&mp->m_sb_lock);
1238 return 0;
1239 }
1240
1241 /*
1242 * Taking blocks away, need to be more accurate the closer we
1243 * are to zero.
1244 *
0d485ada
DC
1245 * If the counter has a value of less than 2 * max batch size,
1246 * then make everything serialise as we are real close to
1247 * ENOSPC.
1248 */
8c1903d3
DC
1249 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1250 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1251 batch = 1;
1252 else
8c1903d3 1253 batch = XFS_FDBLOCKS_BATCH;
0d485ada 1254
104b4e51 1255 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
52548852 1256 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
8c1903d3 1257 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1258 /* we had space! */
1259 return 0;
1260 }
1261
1262 /*
1263 * lock up the sb for dipping into reserves before releasing the space
1264 * that took us to ENOSPC.
1265 */
1266 spin_lock(&mp->m_sb_lock);
1267 percpu_counter_add(&mp->m_fdblocks, -delta);
1268 if (!rsvd)
1269 goto fdblocks_enospc;
1270
1271 lcounter = (long long)mp->m_resblks_avail + delta;
1272 if (lcounter >= 0) {
1273 mp->m_resblks_avail = lcounter;
1274 spin_unlock(&mp->m_sb_lock);
1275 return 0;
1276 }
1277 printk_once(KERN_WARNING
1278 "Filesystem \"%s\": reserve blocks depleted! "
1279 "Consider increasing reserve pool size.",
1280 mp->m_fsname);
1281fdblocks_enospc:
1282 spin_unlock(&mp->m_sb_lock);
1283 return -ENOSPC;
1284}
1285
bab98bbe
DC
1286int
1287xfs_mod_frextents(
1288 struct xfs_mount *mp,
1289 int64_t delta)
1290{
1291 int64_t lcounter;
1292 int ret = 0;
1293
1294 spin_lock(&mp->m_sb_lock);
1295 lcounter = mp->m_sb.sb_frextents + delta;
1296 if (lcounter < 0)
1297 ret = -ENOSPC;
1298 else
1299 mp->m_sb.sb_frextents = lcounter;
1300 spin_unlock(&mp->m_sb_lock);
1301 return ret;
1302}
1303
1da177e4
LT
1304/*
1305 * xfs_getsb() is called to obtain the buffer for the superblock.
1306 * The buffer is returned locked and read in from disk.
1307 * The buffer should be released with a call to xfs_brelse().
1da177e4 1308 */
0c842ad4 1309struct xfs_buf *
1da177e4 1310xfs_getsb(
8c9ce2f7 1311 struct xfs_mount *mp)
1da177e4 1312{
0c842ad4 1313 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1314
8c9ce2f7 1315 xfs_buf_lock(bp);
72790aa1 1316 xfs_buf_hold(bp);
b0388bf1 1317 ASSERT(bp->b_flags & XBF_DONE);
014c2544 1318 return bp;
1da177e4
LT
1319}
1320
1321/*
1322 * Used to free the superblock along various error paths.
1323 */
1324void
1325xfs_freesb(
26af6552 1326 struct xfs_mount *mp)
1da177e4 1327{
26af6552 1328 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1329
26af6552 1330 xfs_buf_lock(bp);
1da177e4 1331 mp->m_sb_bp = NULL;
26af6552 1332 xfs_buf_relse(bp);
1da177e4
LT
1333}
1334
dda35b8f
CH
1335/*
1336 * If the underlying (data/log/rt) device is readonly, there are some
1337 * operations that cannot proceed.
1338 */
1339int
1340xfs_dev_is_read_only(
1341 struct xfs_mount *mp,
1342 char *message)
1343{
1344 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1345 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1346 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1347 xfs_notice(mp, "%s required on read-only device.", message);
1348 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1349 return -EROFS;
dda35b8f
CH
1350 }
1351 return 0;
1352}
f467cad9
DW
1353
1354/* Force the summary counters to be recalculated at next mount. */
1355void
1356xfs_force_summary_recalc(
1357 struct xfs_mount *mp)
1358{
1359 if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1360 return;
1361
39353ff6 1362 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
f467cad9 1363}
9fe82b8c
DW
1364
1365/*
1366 * Update the in-core delayed block counter.
1367 *
1368 * We prefer to update the counter without having to take a spinlock for every
1369 * counter update (i.e. batching). Each change to delayed allocation
1370 * reservations can change can easily exceed the default percpu counter
1371 * batching, so we use a larger batch factor here.
1372 *
1373 * Note that we don't currently have any callers requiring fast summation
1374 * (e.g. percpu_counter_read) so we can use a big batch value here.
1375 */
1376#define XFS_DELALLOC_BATCH (4096)
1377void
1378xfs_mod_delalloc(
1379 struct xfs_mount *mp,
1380 int64_t delta)
1381{
1382 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1383 XFS_DELALLOC_BATCH);
1384}