Merge tag 'for-5.15-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/kdave...
[linux-2.6-block.git] / fs / xfs / xfs_mount.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
1da177e4 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
1da177e4 15#include "xfs_inode.h"
a4fbe6ab 16#include "xfs_dir2.h"
a844f451 17#include "xfs_ialloc.h"
1da177e4
LT
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
a4fbe6ab
DC
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
1da177e4 24#include "xfs_error.h"
1da177e4
LT
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
6d8b79cf 27#include "xfs_icache.h"
a31b1d3d 28#include "xfs_sysfs.h"
035e00ac 29#include "xfs_rmap_btree.h"
1946b91c 30#include "xfs_refcount_btree.h"
174edb0e 31#include "xfs_reflink.h"
ebf55872 32#include "xfs_extent_busy.h"
39353ff6 33#include "xfs_health.h"
13eaec4b 34#include "xfs_trace.h"
9bbafc71 35#include "xfs_ag.h"
1da177e4 36
27174203
CH
37static DEFINE_MUTEX(xfs_uuid_table_mutex);
38static int xfs_uuid_table_size;
39static uuid_t *xfs_uuid_table;
40
af3b6382
DW
41void
42xfs_uuid_table_free(void)
43{
44 if (xfs_uuid_table_size == 0)
45 return;
46 kmem_free(xfs_uuid_table);
47 xfs_uuid_table = NULL;
48 xfs_uuid_table_size = 0;
49}
50
27174203
CH
51/*
52 * See if the UUID is unique among mounted XFS filesystems.
53 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
54 */
55STATIC int
56xfs_uuid_mount(
57 struct xfs_mount *mp)
58{
59 uuid_t *uuid = &mp->m_sb.sb_uuid;
60 int hole, i;
61
8f720d9f 62 /* Publish UUID in struct super_block */
85787090 63 uuid_copy(&mp->m_super->s_uuid, uuid);
8f720d9f 64
0560f31a 65 if (xfs_has_nouuid(mp))
27174203
CH
66 return 0;
67
d905fdaa
AG
68 if (uuid_is_null(uuid)) {
69 xfs_warn(mp, "Filesystem has null UUID - can't mount");
2451337d 70 return -EINVAL;
27174203
CH
71 }
72
73 mutex_lock(&xfs_uuid_table_mutex);
74 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
d905fdaa 75 if (uuid_is_null(&xfs_uuid_table[i])) {
27174203
CH
76 hole = i;
77 continue;
78 }
79 if (uuid_equal(uuid, &xfs_uuid_table[i]))
80 goto out_duplicate;
81 }
82
83 if (hole < 0) {
771915c4 84 xfs_uuid_table = krealloc(xfs_uuid_table,
27174203 85 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
771915c4 86 GFP_KERNEL | __GFP_NOFAIL);
27174203
CH
87 hole = xfs_uuid_table_size++;
88 }
89 xfs_uuid_table[hole] = *uuid;
90 mutex_unlock(&xfs_uuid_table_mutex);
91
92 return 0;
93
94 out_duplicate:
95 mutex_unlock(&xfs_uuid_table_mutex);
021000e5 96 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
2451337d 97 return -EINVAL;
27174203
CH
98}
99
100STATIC void
101xfs_uuid_unmount(
102 struct xfs_mount *mp)
103{
104 uuid_t *uuid = &mp->m_sb.sb_uuid;
105 int i;
106
0560f31a 107 if (xfs_has_nouuid(mp))
27174203
CH
108 return;
109
110 mutex_lock(&xfs_uuid_table_mutex);
111 for (i = 0; i < xfs_uuid_table_size; i++) {
d905fdaa 112 if (uuid_is_null(&xfs_uuid_table[i]))
27174203
CH
113 continue;
114 if (!uuid_equal(uuid, &xfs_uuid_table[i]))
115 continue;
116 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
117 break;
118 }
119 ASSERT(i < xfs_uuid_table_size);
120 mutex_unlock(&xfs_uuid_table_mutex);
121}
122
4cc929ee
NS
123/*
124 * Check size of device based on the (data/realtime) block count.
125 * Note: this check is used by the growfs code as well as mount.
126 */
127int
128xfs_sb_validate_fsb_count(
129 xfs_sb_t *sbp,
c8ce540d 130 uint64_t nblocks)
4cc929ee
NS
131{
132 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
133 ASSERT(sbp->sb_blocklog >= BBSHIFT);
134
d5cf09ba 135 /* Limited by ULONG_MAX of page cache index */
09cbfeaf 136 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
2451337d 137 return -EFBIG;
4cc929ee
NS
138 return 0;
139}
1da177e4 140
1da177e4
LT
141/*
142 * xfs_readsb
143 *
144 * Does the initial read of the superblock.
145 */
146int
ff55068c
DC
147xfs_readsb(
148 struct xfs_mount *mp,
149 int flags)
1da177e4
LT
150{
151 unsigned int sector_size;
04a1e6c5
DC
152 struct xfs_buf *bp;
153 struct xfs_sb *sbp = &mp->m_sb;
1da177e4 154 int error;
af34e09d 155 int loud = !(flags & XFS_MFSI_QUIET);
daba5427 156 const struct xfs_buf_ops *buf_ops;
1da177e4
LT
157
158 ASSERT(mp->m_sb_bp == NULL);
159 ASSERT(mp->m_ddev_targp != NULL);
160
daba5427
ES
161 /*
162 * For the initial read, we must guess at the sector
163 * size based on the block device. It's enough to
164 * get the sb_sectsize out of the superblock and
165 * then reread with the proper length.
166 * We don't verify it yet, because it may not be complete.
167 */
168 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
169 buf_ops = NULL;
170
1da177e4 171 /*
c891c30a
BF
172 * Allocate a (locked) buffer to hold the superblock. This will be kept
173 * around at all times to optimize access to the superblock. Therefore,
174 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
175 * elevated.
1da177e4 176 */
26af6552 177reread:
ba372674 178 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
c891c30a
BF
179 BTOBB(sector_size), XBF_NO_IOACCT, &bp,
180 buf_ops);
ba372674 181 if (error) {
eab4e633 182 if (loud)
e721f504 183 xfs_warn(mp, "SB validate failed with error %d.", error);
ac75a1f7 184 /* bad CRC means corrupted metadata */
2451337d
DC
185 if (error == -EFSBADCRC)
186 error = -EFSCORRUPTED;
ba372674 187 return error;
eab4e633 188 }
1da177e4
LT
189
190 /*
191 * Initialize the mount structure from the superblock.
1da177e4 192 */
3e6e8afd 193 xfs_sb_from_disk(sbp, bp->b_addr);
556b8883
DC
194
195 /*
196 * If we haven't validated the superblock, do so now before we try
197 * to check the sector size and reread the superblock appropriately.
198 */
199 if (sbp->sb_magicnum != XFS_SB_MAGIC) {
200 if (loud)
201 xfs_warn(mp, "Invalid superblock magic number");
2451337d 202 error = -EINVAL;
556b8883
DC
203 goto release_buf;
204 }
ff55068c 205
1da177e4
LT
206 /*
207 * We must be able to do sector-sized and sector-aligned IO.
208 */
04a1e6c5 209 if (sector_size > sbp->sb_sectsize) {
af34e09d
DC
210 if (loud)
211 xfs_warn(mp, "device supports %u byte sectors (not %u)",
04a1e6c5 212 sector_size, sbp->sb_sectsize);
2451337d 213 error = -ENOSYS;
26af6552 214 goto release_buf;
1da177e4
LT
215 }
216
daba5427 217 if (buf_ops == NULL) {
556b8883
DC
218 /*
219 * Re-read the superblock so the buffer is correctly sized,
220 * and properly verified.
221 */
1da177e4 222 xfs_buf_relse(bp);
04a1e6c5 223 sector_size = sbp->sb_sectsize;
daba5427 224 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
26af6552 225 goto reread;
1da177e4
LT
226 }
227
a1d86e8d 228 mp->m_features |= xfs_sb_version_to_features(sbp);
5681ca40 229 xfs_reinit_percpu_counters(mp);
8d280b98 230
04a1e6c5
DC
231 /* no need to be quiet anymore, so reset the buf ops */
232 bp->b_ops = &xfs_sb_buf_ops;
233
1da177e4 234 mp->m_sb_bp = bp;
26af6552 235 xfs_buf_unlock(bp);
1da177e4
LT
236 return 0;
237
26af6552
DC
238release_buf:
239 xfs_buf_relse(bp);
1da177e4
LT
240 return error;
241}
242
13eaec4b
DW
243/*
244 * If the sunit/swidth change would move the precomputed root inode value, we
245 * must reject the ondisk change because repair will stumble over that.
246 * However, we allow the mount to proceed because we never rejected this
247 * combination before. Returns true to update the sb, false otherwise.
248 */
249static inline int
250xfs_check_new_dalign(
251 struct xfs_mount *mp,
252 int new_dalign,
253 bool *update_sb)
254{
255 struct xfs_sb *sbp = &mp->m_sb;
256 xfs_ino_t calc_ino;
257
258 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
259 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
260
261 if (sbp->sb_rootino == calc_ino) {
262 *update_sb = true;
263 return 0;
264 }
265
266 xfs_warn(mp,
267"Cannot change stripe alignment; would require moving root inode.");
268
269 /*
270 * XXX: Next time we add a new incompat feature, this should start
271 * returning -EINVAL to fail the mount. Until then, spit out a warning
272 * that we're ignoring the administrator's instructions.
273 */
274 xfs_warn(mp, "Skipping superblock stripe alignment update.");
275 *update_sb = false;
276 return 0;
277}
278
1da177e4 279/*
4f5b1b3a
DW
280 * If we were provided with new sunit/swidth values as mount options, make sure
281 * that they pass basic alignment and superblock feature checks, and convert
282 * them into the same units (FSB) that everything else expects. This step
283 * /must/ be done before computing the inode geometry.
1da177e4 284 */
0771fb45 285STATIC int
4f5b1b3a
DW
286xfs_validate_new_dalign(
287 struct xfs_mount *mp)
1da177e4 288{
4f5b1b3a
DW
289 if (mp->m_dalign == 0)
290 return 0;
1da177e4 291
4f5b1b3a
DW
292 /*
293 * If stripe unit and stripe width are not multiples
294 * of the fs blocksize turn off alignment.
295 */
296 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
297 (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
298 xfs_warn(mp,
299 "alignment check failed: sunit/swidth vs. blocksize(%d)",
300 mp->m_sb.sb_blocksize);
301 return -EINVAL;
302 } else {
1da177e4 303 /*
4f5b1b3a 304 * Convert the stripe unit and width to FSBs.
1da177e4 305 */
4f5b1b3a
DW
306 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
307 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
39a45d84 308 xfs_warn(mp,
4f5b1b3a
DW
309 "alignment check failed: sunit/swidth vs. agsize(%d)",
310 mp->m_sb.sb_agblocks);
2451337d 311 return -EINVAL;
4f5b1b3a
DW
312 } else if (mp->m_dalign) {
313 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
34d7f603
JL
314 } else {
315 xfs_warn(mp,
4f5b1b3a
DW
316 "alignment check failed: sunit(%d) less than bsize(%d)",
317 mp->m_dalign, mp->m_sb.sb_blocksize);
2451337d 318 return -EINVAL;
1da177e4 319 }
4f5b1b3a
DW
320 }
321
38c26bfd 322 if (!xfs_has_dalign(mp)) {
4f5b1b3a
DW
323 xfs_warn(mp,
324"cannot change alignment: superblock does not support data alignment");
325 return -EINVAL;
326 }
327
328 return 0;
329}
330
331/* Update alignment values based on mount options and sb values. */
332STATIC int
333xfs_update_alignment(
334 struct xfs_mount *mp)
335{
336 struct xfs_sb *sbp = &mp->m_sb;
337
338 if (mp->m_dalign) {
13eaec4b
DW
339 bool update_sb;
340 int error;
341
4f5b1b3a
DW
342 if (sbp->sb_unit == mp->m_dalign &&
343 sbp->sb_width == mp->m_swidth)
344 return 0;
345
13eaec4b
DW
346 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
347 if (error || !update_sb)
348 return error;
349
4f5b1b3a
DW
350 sbp->sb_unit = mp->m_dalign;
351 sbp->sb_width = mp->m_swidth;
352 mp->m_update_sb = true;
0560f31a 353 } else if (!xfs_has_noalign(mp) && xfs_has_dalign(mp)) {
4f5b1b3a
DW
354 mp->m_dalign = sbp->sb_unit;
355 mp->m_swidth = sbp->sb_width;
1da177e4
LT
356 }
357
0771fb45
ES
358 return 0;
359}
1da177e4 360
055388a3
DC
361/*
362 * precalculate the low space thresholds for dynamic speculative preallocation.
363 */
364void
365xfs_set_low_space_thresholds(
366 struct xfs_mount *mp)
367{
65f03d86
DW
368 uint64_t dblocks = mp->m_sb.sb_dblocks;
369 uint64_t rtexts = mp->m_sb.sb_rextents;
370 int i;
055388a3 371
65f03d86
DW
372 do_div(dblocks, 100);
373 do_div(rtexts, 100);
055388a3 374
65f03d86
DW
375 for (i = 0; i < XFS_LOWSP_MAX; i++) {
376 mp->m_low_space[i] = dblocks * (i + 1);
377 mp->m_low_rtexts[i] = rtexts * (i + 1);
055388a3
DC
378 }
379}
380
0771fb45 381/*
0471f62e 382 * Check that the data (and log if separate) is an ok size.
0771fb45
ES
383 */
384STATIC int
ba372674
DC
385xfs_check_sizes(
386 struct xfs_mount *mp)
0771fb45 387{
ba372674 388 struct xfs_buf *bp;
0771fb45 389 xfs_daddr_t d;
ba372674 390 int error;
0771fb45 391
1da177e4
LT
392 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
393 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
0b932ccc 394 xfs_warn(mp, "filesystem size mismatch detected");
2451337d 395 return -EFBIG;
1da177e4 396 }
ba372674 397 error = xfs_buf_read_uncached(mp->m_ddev_targp,
1922c949 398 d - XFS_FSS_TO_BB(mp, 1),
ba372674
DC
399 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
400 if (error) {
0b932ccc 401 xfs_warn(mp, "last sector read failed");
ba372674 402 return error;
1da177e4 403 }
1922c949 404 xfs_buf_relse(bp);
1da177e4 405
ba372674
DC
406 if (mp->m_logdev_targp == mp->m_ddev_targp)
407 return 0;
408
409 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
410 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
411 xfs_warn(mp, "log size mismatch detected");
412 return -EFBIG;
413 }
414 error = xfs_buf_read_uncached(mp->m_logdev_targp,
1922c949 415 d - XFS_FSB_TO_BB(mp, 1),
ba372674
DC
416 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
417 if (error) {
418 xfs_warn(mp, "log device read failed");
419 return error;
0771fb45 420 }
ba372674 421 xfs_buf_relse(bp);
0771fb45
ES
422 return 0;
423}
424
7d095257
CH
425/*
426 * Clear the quotaflags in memory and in the superblock.
427 */
428int
429xfs_mount_reset_sbqflags(
430 struct xfs_mount *mp)
431{
7d095257
CH
432 mp->m_qflags = 0;
433
61e63ecb 434 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
7d095257
CH
435 if (mp->m_sb.sb_qflags == 0)
436 return 0;
437 spin_lock(&mp->m_sb_lock);
438 mp->m_sb.sb_qflags = 0;
439 spin_unlock(&mp->m_sb_lock);
440
61e63ecb 441 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
7d095257
CH
442 return 0;
443
61e63ecb 444 return xfs_sync_sb(mp, false);
7d095257
CH
445}
446
c8ce540d 447uint64_t
d5db0f97
ES
448xfs_default_resblks(xfs_mount_t *mp)
449{
c8ce540d 450 uint64_t resblks;
d5db0f97
ES
451
452 /*
8babd8a2
DC
453 * We default to 5% or 8192 fsbs of space reserved, whichever is
454 * smaller. This is intended to cover concurrent allocation
455 * transactions when we initially hit enospc. These each require a 4
456 * block reservation. Hence by default we cover roughly 2000 concurrent
457 * allocation reservations.
d5db0f97
ES
458 */
459 resblks = mp->m_sb.sb_dblocks;
460 do_div(resblks, 20);
c8ce540d 461 resblks = min_t(uint64_t, resblks, 8192);
d5db0f97
ES
462 return resblks;
463}
464
2e9e6481
DW
465/* Ensure the summary counts are correct. */
466STATIC int
467xfs_check_summary_counts(
468 struct xfs_mount *mp)
469{
470 /*
471 * The AG0 superblock verifier rejects in-progress filesystems,
472 * so we should never see the flag set this far into mounting.
473 */
474 if (mp->m_sb.sb_inprogress) {
475 xfs_err(mp, "sb_inprogress set after log recovery??");
476 WARN_ON(1);
477 return -EFSCORRUPTED;
478 }
479
480 /*
481 * Now the log is mounted, we know if it was an unclean shutdown or
482 * not. If it was, with the first phase of recovery has completed, we
483 * have consistent AG blocks on disk. We have not recovered EFIs yet,
484 * but they are recovered transactionally in the second recovery phase
485 * later.
486 *
487 * If the log was clean when we mounted, we can check the summary
488 * counters. If any of them are obviously incorrect, we can recompute
489 * them from the AGF headers in the next step.
490 */
2e973b2c 491 if (xfs_is_clean(mp) &&
2e9e6481 492 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
00d22a1c 493 !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
2e9e6481 494 mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
39353ff6 495 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
2e9e6481
DW
496
497 /*
498 * We can safely re-initialise incore superblock counters from the
499 * per-ag data. These may not be correct if the filesystem was not
500 * cleanly unmounted, so we waited for recovery to finish before doing
501 * this.
502 *
503 * If the filesystem was cleanly unmounted or the previous check did
504 * not flag anything weird, then we can trust the values in the
505 * superblock to be correct and we don't need to do anything here.
506 * Otherwise, recalculate the summary counters.
507 */
2e973b2c 508 if ((!xfs_has_lazysbcount(mp) || xfs_is_clean(mp)) &&
39353ff6 509 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
2e9e6481
DW
510 return 0;
511
512 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
513}
514
d336f7eb
DW
515/*
516 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
517 * internal inode structures can be sitting in the CIL and AIL at this point,
518 * so we need to unpin them, write them back and/or reclaim them before unmount
ab23a776
DC
519 * can proceed. In other words, callers are required to have inactivated all
520 * inodes.
d336f7eb
DW
521 *
522 * An inode cluster that has been freed can have its buffer still pinned in
523 * memory because the transaction is still sitting in a iclog. The stale inodes
524 * on that buffer will be pinned to the buffer until the transaction hits the
525 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
526 * may never see the pinned buffer, so nothing will push out the iclog and
527 * unpin the buffer.
528 *
529 * Hence we need to force the log to unpin everything first. However, log
530 * forces don't wait for the discards they issue to complete, so we have to
531 * explicitly wait for them to complete here as well.
532 *
533 * Then we can tell the world we are unmounting so that error handling knows
534 * that the filesystem is going away and we should error out anything that we
535 * have been retrying in the background. This will prevent never-ending
536 * retries in AIL pushing from hanging the unmount.
537 *
538 * Finally, we can push the AIL to clean all the remaining dirty objects, then
539 * reclaim the remaining inodes that are still in memory at this point in time.
540 */
541static void
542xfs_unmount_flush_inodes(
543 struct xfs_mount *mp)
544{
545 xfs_log_force(mp, XFS_LOG_SYNC);
546 xfs_extent_busy_wait_all(mp);
547 flush_workqueue(xfs_discard_wq);
548
2e973b2c 549 set_bit(XFS_OPSTATE_UNMOUNTING, &mp->m_opstate);
d336f7eb
DW
550
551 xfs_ail_push_all_sync(mp->m_ail);
ab23a776 552 xfs_inodegc_stop(mp);
d336f7eb
DW
553 cancel_delayed_work_sync(&mp->m_reclaim_work);
554 xfs_reclaim_inodes(mp);
555 xfs_health_unmount(mp);
556}
557
b2941046
DC
558static void
559xfs_mount_setup_inode_geom(
560 struct xfs_mount *mp)
561{
562 struct xfs_ino_geometry *igeo = M_IGEO(mp);
563
564 igeo->attr_fork_offset = xfs_bmap_compute_attr_offset(mp);
565 ASSERT(igeo->attr_fork_offset < XFS_LITINO(mp));
566
567 xfs_ialloc_setup_geometry(mp);
568}
569
0771fb45 570/*
0771fb45
ES
571 * This function does the following on an initial mount of a file system:
572 * - reads the superblock from disk and init the mount struct
573 * - if we're a 32-bit kernel, do a size check on the superblock
574 * so we don't mount terabyte filesystems
575 * - init mount struct realtime fields
576 * - allocate inode hash table for fs
577 * - init directory manager
578 * - perform recovery and init the log manager
579 */
580int
581xfs_mountfs(
f0b2efad 582 struct xfs_mount *mp)
0771fb45 583{
f0b2efad
BF
584 struct xfs_sb *sbp = &(mp->m_sb);
585 struct xfs_inode *rip;
ef325959 586 struct xfs_ino_geometry *igeo = M_IGEO(mp);
c8ce540d 587 uint64_t resblks;
f0b2efad
BF
588 uint quotamount = 0;
589 uint quotaflags = 0;
590 int error = 0;
0771fb45 591
ff55068c 592 xfs_sb_mount_common(mp, sbp);
0771fb45 593
ee1c0908 594 /*
074e427b
DC
595 * Check for a mismatched features2 values. Older kernels read & wrote
596 * into the wrong sb offset for sb_features2 on some platforms due to
597 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
598 * which made older superblock reading/writing routines swap it as a
599 * 64-bit value.
ee1c0908 600 *
e6957ea4
ES
601 * For backwards compatibility, we make both slots equal.
602 *
074e427b
DC
603 * If we detect a mismatched field, we OR the set bits into the existing
604 * features2 field in case it has already been modified; we don't want
605 * to lose any features. We then update the bad location with the ORed
606 * value so that older kernels will see any features2 flags. The
607 * superblock writeback code ensures the new sb_features2 is copied to
608 * sb_bad_features2 before it is logged or written to disk.
ee1c0908 609 */
e6957ea4 610 if (xfs_sb_has_mismatched_features2(sbp)) {
0b932ccc 611 xfs_warn(mp, "correcting sb_features alignment problem");
ee1c0908 612 sbp->sb_features2 |= sbp->sb_bad_features2;
61e63ecb 613 mp->m_update_sb = true;
7c12f296
TS
614 }
615
ee1c0908 616
263997a6
DC
617 /* always use v2 inodes by default now */
618 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
619 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
38c26bfd 620 mp->m_features |= XFS_FEAT_NLINK;
61e63ecb 621 mp->m_update_sb = true;
263997a6
DC
622 }
623
0771fb45 624 /*
4f5b1b3a
DW
625 * If we were given new sunit/swidth options, do some basic validation
626 * checks and convert the incore dalign and swidth values to the
627 * same units (FSB) that everything else uses. This /must/ happen
628 * before computing the inode geometry.
0771fb45 629 */
4f5b1b3a 630 error = xfs_validate_new_dalign(mp);
0771fb45 631 if (error)
f9057e3d 632 goto out;
0771fb45
ES
633
634 xfs_alloc_compute_maxlevels(mp);
635 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
636 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
b2941046 637 xfs_mount_setup_inode_geom(mp);
035e00ac 638 xfs_rmapbt_compute_maxlevels(mp);
1946b91c 639 xfs_refcountbt_compute_maxlevels(mp);
0771fb45 640
4f5b1b3a
DW
641 /*
642 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks
643 * is NOT aligned turn off m_dalign since allocator alignment is within
644 * an ag, therefore ag has to be aligned at stripe boundary. Note that
645 * we must compute the free space and rmap btree geometry before doing
646 * this.
647 */
648 error = xfs_update_alignment(mp);
649 if (error)
650 goto out;
651
e6b3bb78 652 /* enable fail_at_unmount as default */
749f24f3 653 mp->m_fail_unmount = true;
e6b3bb78 654
e1d3d218
IK
655 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
656 NULL, mp->m_super->s_id);
27174203
CH
657 if (error)
658 goto out;
1da177e4 659
225e4635
BD
660 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
661 &mp->m_kobj, "stats");
a31b1d3d
BF
662 if (error)
663 goto out_remove_sysfs;
664
192852be 665 error = xfs_error_sysfs_init(mp);
225e4635
BD
666 if (error)
667 goto out_del_stats;
668
31965ef3
DW
669 error = xfs_errortag_init(mp);
670 if (error)
671 goto out_remove_error_sysfs;
192852be
CM
672
673 error = xfs_uuid_mount(mp);
674 if (error)
31965ef3 675 goto out_remove_errortag;
192852be 676
0771fb45 677 /*
2fcddee8
CH
678 * Update the preferred write size based on the information from the
679 * on-disk superblock.
0771fb45 680 */
2fcddee8
CH
681 mp->m_allocsize_log =
682 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
683 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
0771fb45 684
055388a3
DC
685 /* set the low space thresholds for dynamic preallocation */
686 xfs_set_low_space_thresholds(mp);
687
e5376fc1
BF
688 /*
689 * If enabled, sparse inode chunk alignment is expected to match the
690 * cluster size. Full inode chunk alignment must match the chunk size,
691 * but that is checked on sb read verification...
692 */
38c26bfd 693 if (xfs_has_sparseinodes(mp) &&
e5376fc1 694 mp->m_sb.sb_spino_align !=
490d451f 695 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
e5376fc1
BF
696 xfs_warn(mp,
697 "Sparse inode block alignment (%u) must match cluster size (%llu).",
698 mp->m_sb.sb_spino_align,
490d451f 699 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
e5376fc1
BF
700 error = -EINVAL;
701 goto out_remove_uuid;
702 }
703
0771fb45 704 /*
c2bfbc9b 705 * Check that the data (and log if separate) is an ok size.
0771fb45 706 */
4249023a 707 error = xfs_check_sizes(mp);
0771fb45 708 if (error)
f9057e3d 709 goto out_remove_uuid;
0771fb45 710
1da177e4
LT
711 /*
712 * Initialize realtime fields in the mount structure
713 */
0771fb45
ES
714 error = xfs_rtmount_init(mp);
715 if (error) {
0b932ccc 716 xfs_warn(mp, "RT mount failed");
f9057e3d 717 goto out_remove_uuid;
1da177e4
LT
718 }
719
1da177e4
LT
720 /*
721 * Copies the low order bits of the timestamp and the randomly
722 * set "sequence" number out of a UUID.
723 */
cb0ba6cc
CH
724 mp->m_fixedfsid[0] =
725 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
726 get_unaligned_be16(&sbp->sb_uuid.b[4]);
727 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
1da177e4 728
0650b554
DC
729 error = xfs_da_mount(mp);
730 if (error) {
731 xfs_warn(mp, "Failed dir/attr init: %d", error);
732 goto out_remove_uuid;
733 }
1da177e4
LT
734
735 /*
736 * Initialize the precomputed transaction reservations values.
737 */
738 xfs_trans_init(mp);
739
1da177e4
LT
740 /*
741 * Allocate and initialize the per-ag data.
742 */
1c1c6ebc
DC
743 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
744 if (error) {
0b932ccc 745 xfs_warn(mp, "Failed per-ag init: %d", error);
0650b554 746 goto out_free_dir;
1c1c6ebc 747 }
1da177e4 748
a71895c5 749 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
0b932ccc 750 xfs_warn(mp, "no log defined");
2451337d 751 error = -EFSCORRUPTED;
f9057e3d
CH
752 goto out_free_perag;
753 }
754
40b1de00
DW
755 error = xfs_inodegc_register_shrinker(mp);
756 if (error)
757 goto out_fail_wait;
758
1da177e4 759 /*
f0b2efad
BF
760 * Log's mount-time initialization. The first part of recovery can place
761 * some items on the AIL, to be handled when recovery is finished or
762 * cancelled.
1da177e4 763 */
f9057e3d
CH
764 error = xfs_log_mount(mp, mp->m_logdev_targp,
765 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
766 XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
767 if (error) {
0b932ccc 768 xfs_warn(mp, "log mount failed");
40b1de00 769 goto out_inodegc_shrinker;
1da177e4
LT
770 }
771
2e9e6481
DW
772 /* Make sure the summary counts are ok. */
773 error = xfs_check_summary_counts(mp);
774 if (error)
775 goto out_log_dealloc;
f9057e3d 776
ab23a776
DC
777 /* Enable background inode inactivation workers. */
778 xfs_inodegc_start(mp);
6f649091 779 xfs_blockgc_start(mp);
ab23a776 780
e23b55d5
DC
781 /*
782 * Now that we've recovered any pending superblock feature bit
783 * additions, we can finish setting up the attr2 behaviour for the
0560f31a
DC
784 * mount. The noattr2 option overrides the superblock flag, so only
785 * check the superblock feature flag if the mount option is not set.
e23b55d5 786 */
0560f31a
DC
787 if (xfs_has_noattr2(mp)) {
788 mp->m_features &= ~XFS_FEAT_ATTR2;
789 } else if (!xfs_has_attr2(mp) &&
790 (mp->m_sb.sb_features2 & XFS_SB_VERSION2_ATTR2BIT)) {
791 mp->m_features |= XFS_FEAT_ATTR2;
792 }
e23b55d5 793
1da177e4
LT
794 /*
795 * Get and sanity-check the root inode.
796 * Save the pointer to it in the mount structure.
797 */
541b5acc
DC
798 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
799 XFS_ILOCK_EXCL, &rip);
1da177e4 800 if (error) {
541b5acc
DC
801 xfs_warn(mp,
802 "Failed to read root inode 0x%llx, error %d",
803 sbp->sb_rootino, -error);
f9057e3d 804 goto out_log_dealloc;
1da177e4
LT
805 }
806
807 ASSERT(rip != NULL);
1da177e4 808
a71895c5 809 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
0b932ccc 810 xfs_warn(mp, "corrupted root inode %llu: not a directory",
b6574520 811 (unsigned long long)rip->i_ino);
1da177e4 812 xfs_iunlock(rip, XFS_ILOCK_EXCL);
2451337d 813 error = -EFSCORRUPTED;
f9057e3d 814 goto out_rele_rip;
1da177e4
LT
815 }
816 mp->m_rootip = rip; /* save it */
817
818 xfs_iunlock(rip, XFS_ILOCK_EXCL);
819
820 /*
821 * Initialize realtime inode pointers in the mount structure
822 */
0771fb45
ES
823 error = xfs_rtmount_inodes(mp);
824 if (error) {
1da177e4
LT
825 /*
826 * Free up the root inode.
827 */
0b932ccc 828 xfs_warn(mp, "failed to read RT inodes");
f9057e3d 829 goto out_rele_rip;
1da177e4
LT
830 }
831
832 /*
7884bc86
CH
833 * If this is a read-only mount defer the superblock updates until
834 * the next remount into writeable mode. Otherwise we would never
835 * perform the update e.g. for the root filesystem.
1da177e4 836 */
2e973b2c 837 if (mp->m_update_sb && !xfs_is_readonly(mp)) {
61e63ecb 838 error = xfs_sync_sb(mp, false);
e5720eec 839 if (error) {
0b932ccc 840 xfs_warn(mp, "failed to write sb changes");
b93b6e43 841 goto out_rtunmount;
e5720eec
DC
842 }
843 }
1da177e4
LT
844
845 /*
846 * Initialise the XFS quota management subsystem for this mount
847 */
149e53af 848 if (XFS_IS_QUOTA_ON(mp)) {
7d095257
CH
849 error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
850 if (error)
851 goto out_rtunmount;
852 } else {
7d095257
CH
853 /*
854 * If a file system had quotas running earlier, but decided to
855 * mount without -o uquota/pquota/gquota options, revoke the
856 * quotachecked license.
857 */
858 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
0b932ccc 859 xfs_notice(mp, "resetting quota flags");
7d095257
CH
860 error = xfs_mount_reset_sbqflags(mp);
861 if (error)
a70a4fa5 862 goto out_rtunmount;
7d095257
CH
863 }
864 }
1da177e4
LT
865
866 /*
f0b2efad
BF
867 * Finish recovering the file system. This part needed to be delayed
868 * until after the root and real-time bitmap inodes were consistently
81ed9475
DW
869 * read in. Temporarily create per-AG space reservations for metadata
870 * btree shape changes because space freeing transactions (for inode
871 * inactivation) require the per-AG reservation in lieu of reserving
872 * blocks.
1da177e4 873 */
81ed9475
DW
874 error = xfs_fs_reserve_ag_blocks(mp);
875 if (error && error == -ENOSPC)
876 xfs_warn(mp,
877 "ENOSPC reserving per-AG metadata pool, log recovery may fail.");
4249023a 878 error = xfs_log_mount_finish(mp);
81ed9475 879 xfs_fs_unreserve_ag_blocks(mp);
1da177e4 880 if (error) {
0b932ccc 881 xfs_warn(mp, "log mount finish failed");
b93b6e43 882 goto out_rtunmount;
1da177e4
LT
883 }
884
ddeb14f4
DC
885 /*
886 * Now the log is fully replayed, we can transition to full read-only
887 * mode for read-only mounts. This will sync all the metadata and clean
888 * the log so that the recovery we just performed does not have to be
889 * replayed again on the next mount.
890 *
891 * We use the same quiesce mechanism as the rw->ro remount, as they are
892 * semantically identical operations.
893 */
2e973b2c 894 if (xfs_is_readonly(mp) && !xfs_has_norecovery(mp))
ea2064da 895 xfs_log_clean(mp);
ddeb14f4 896
1da177e4
LT
897 /*
898 * Complete the quota initialisation, post-log-replay component.
899 */
7d095257
CH
900 if (quotamount) {
901 ASSERT(mp->m_qflags == 0);
902 mp->m_qflags = quotaflags;
903
904 xfs_qm_mount_quotas(mp);
905 }
906
84e1e99f
DC
907 /*
908 * Now we are mounted, reserve a small amount of unused space for
909 * privileged transactions. This is needed so that transaction
910 * space required for critical operations can dip into this pool
911 * when at ENOSPC. This is needed for operations like create with
912 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
913 * are not allowed to use this reserved space.
8babd8a2
DC
914 *
915 * This may drive us straight to ENOSPC on mount, but that implies
916 * we were already there on the last unmount. Warn if this occurs.
84e1e99f 917 */
2e973b2c 918 if (!xfs_is_readonly(mp)) {
d5db0f97
ES
919 resblks = xfs_default_resblks(mp);
920 error = xfs_reserve_blocks(mp, &resblks, NULL);
921 if (error)
0b932ccc
DC
922 xfs_warn(mp,
923 "Unable to allocate reserve blocks. Continuing without reserve pool.");
174edb0e
DW
924
925 /* Recover any CoW blocks that never got remapped. */
926 error = xfs_reflink_recover_cow(mp);
927 if (error) {
928 xfs_err(mp,
929 "Error %d recovering leftover CoW allocations.", error);
930 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
931 goto out_quota;
932 }
84d69619
DW
933
934 /* Reserve AG blocks for future btree expansion. */
935 error = xfs_fs_reserve_ag_blocks(mp);
936 if (error && error != -ENOSPC)
937 goto out_agresv;
d5db0f97 938 }
84e1e99f 939
1da177e4
LT
940 return 0;
941
84d69619
DW
942 out_agresv:
943 xfs_fs_unreserve_ag_blocks(mp);
174edb0e
DW
944 out_quota:
945 xfs_qm_unmount_quotas(mp);
b93b6e43
CH
946 out_rtunmount:
947 xfs_rtunmount_inodes(mp);
f9057e3d 948 out_rele_rip:
44a8736b 949 xfs_irele(rip);
77aff8c7
DW
950 /* Clean out dquots that might be in memory after quotacheck. */
951 xfs_qm_unmount(mp);
ab23a776
DC
952
953 /*
954 * Inactivate all inodes that might still be in memory after a log
955 * intent recovery failure so that reclaim can free them. Metadata
956 * inodes and the root directory shouldn't need inactivation, but the
957 * mount failed for some reason, so pull down all the state and flee.
958 */
959 xfs_inodegc_flush(mp);
960
2d1d1da3 961 /*
d336f7eb 962 * Flush all inode reclamation work and flush the log.
2d1d1da3
DW
963 * We have to do this /after/ rtunmount and qm_unmount because those
964 * two will have scheduled delayed reclaim for the rt/quota inodes.
965 *
966 * This is slightly different from the unmountfs call sequence
967 * because we could be tearing down a partially set up mount. In
968 * particular, if log_mount_finish fails we bail out without calling
969 * qm_unmount_quotas and therefore rely on qm_unmount to release the
970 * quota inodes.
971 */
d336f7eb 972 xfs_unmount_flush_inodes(mp);
f9057e3d 973 out_log_dealloc:
f0b2efad 974 xfs_log_mount_cancel(mp);
40b1de00
DW
975 out_inodegc_shrinker:
976 unregister_shrinker(&mp->m_inodegc_shrinker);
d4f3512b
DC
977 out_fail_wait:
978 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
10fb9ac1
BF
979 xfs_buftarg_drain(mp->m_logdev_targp);
980 xfs_buftarg_drain(mp->m_ddev_targp);
f9057e3d 981 out_free_perag:
ff4f038c 982 xfs_free_perag(mp);
0650b554
DC
983 out_free_dir:
984 xfs_da_unmount(mp);
f9057e3d 985 out_remove_uuid:
27174203 986 xfs_uuid_unmount(mp);
31965ef3
DW
987 out_remove_errortag:
988 xfs_errortag_del(mp);
192852be
CM
989 out_remove_error_sysfs:
990 xfs_error_sysfs_del(mp);
225e4635
BD
991 out_del_stats:
992 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d
BF
993 out_remove_sysfs:
994 xfs_sysfs_del(&mp->m_kobj);
f9057e3d 995 out:
1da177e4
LT
996 return error;
997}
998
999/*
1da177e4
LT
1000 * This flushes out the inodes,dquots and the superblock, unmounts the
1001 * log and makes sure that incore structures are freed.
1002 */
41b5c2e7
CH
1003void
1004xfs_unmountfs(
1005 struct xfs_mount *mp)
1da177e4 1006{
c8ce540d 1007 uint64_t resblks;
41b5c2e7 1008 int error;
1da177e4 1009
ab23a776
DC
1010 /*
1011 * Perform all on-disk metadata updates required to inactivate inodes
1012 * that the VFS evicted earlier in the unmount process. Freeing inodes
1013 * and discarding CoW fork preallocations can cause shape changes to
1014 * the free inode and refcount btrees, respectively, so we must finish
1015 * this before we discard the metadata space reservations. Metadata
1016 * inodes and the root directory do not require inactivation.
1017 */
1018 xfs_inodegc_flush(mp);
1019
c9a6526f 1020 xfs_blockgc_stop(mp);
84d69619 1021 xfs_fs_unreserve_ag_blocks(mp);
7d095257 1022 xfs_qm_unmount_quotas(mp);
b93b6e43 1023 xfs_rtunmount_inodes(mp);
44a8736b 1024 xfs_irele(mp->m_rootip);
77508ec8 1025
d336f7eb 1026 xfs_unmount_flush_inodes(mp);
1da177e4 1027
7d095257 1028 xfs_qm_unmount(mp);
a357a121 1029
84e1e99f
DC
1030 /*
1031 * Unreserve any blocks we have so that when we unmount we don't account
1032 * the reserved free space as used. This is really only necessary for
1033 * lazy superblock counting because it trusts the incore superblock
9da096fd 1034 * counters to be absolutely correct on clean unmount.
84e1e99f
DC
1035 *
1036 * We don't bother correcting this elsewhere for lazy superblock
1037 * counting because on mount of an unclean filesystem we reconstruct the
1038 * correct counter value and this is irrelevant.
1039 *
1040 * For non-lazy counter filesystems, this doesn't matter at all because
1041 * we only every apply deltas to the superblock and hence the incore
1042 * value does not matter....
1043 */
1044 resblks = 0;
714082bc
DC
1045 error = xfs_reserve_blocks(mp, &resblks, NULL);
1046 if (error)
0b932ccc 1047 xfs_warn(mp, "Unable to free reserved block pool. "
714082bc
DC
1048 "Freespace may not be correct on next mount.");
1049
21b699c8 1050 xfs_log_unmount(mp);
0650b554 1051 xfs_da_unmount(mp);
27174203 1052 xfs_uuid_unmount(mp);
1da177e4 1053
1550d0b0 1054#if defined(DEBUG)
31965ef3 1055 xfs_errortag_clearall(mp);
1da177e4 1056#endif
40b1de00 1057 unregister_shrinker(&mp->m_inodegc_shrinker);
ff4f038c 1058 xfs_free_perag(mp);
a31b1d3d 1059
31965ef3 1060 xfs_errortag_del(mp);
192852be 1061 xfs_error_sysfs_del(mp);
225e4635 1062 xfs_sysfs_del(&mp->m_stats.xs_kobj);
a31b1d3d 1063 xfs_sysfs_del(&mp->m_kobj);
1da177e4
LT
1064}
1065
91ee575f
BF
1066/*
1067 * Determine whether modifications can proceed. The caller specifies the minimum
1068 * freeze level for which modifications should not be allowed. This allows
1069 * certain operations to proceed while the freeze sequence is in progress, if
1070 * necessary.
1071 */
1072bool
1073xfs_fs_writable(
1074 struct xfs_mount *mp,
1075 int level)
92821e2b 1076{
91ee575f
BF
1077 ASSERT(level > SB_UNFROZEN);
1078 if ((mp->m_super->s_writers.frozen >= level) ||
75c8c50f 1079 xfs_is_shutdown(mp) || xfs_is_readonly(mp))
91ee575f
BF
1080 return false;
1081
1082 return true;
92821e2b
DC
1083}
1084
0d485ada
DC
1085int
1086xfs_mod_fdblocks(
1087 struct xfs_mount *mp,
1088 int64_t delta,
1089 bool rsvd)
1090{
1091 int64_t lcounter;
1092 long long res_used;
1093 s32 batch;
fd43cf60 1094 uint64_t set_aside;
0d485ada
DC
1095
1096 if (delta > 0) {
1097 /*
1098 * If the reserve pool is depleted, put blocks back into it
1099 * first. Most of the time the pool is full.
1100 */
1101 if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1102 percpu_counter_add(&mp->m_fdblocks, delta);
1103 return 0;
1104 }
1105
1106 spin_lock(&mp->m_sb_lock);
1107 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1108
1109 if (res_used > delta) {
1110 mp->m_resblks_avail += delta;
1111 } else {
1112 delta -= res_used;
1113 mp->m_resblks_avail = mp->m_resblks;
1114 percpu_counter_add(&mp->m_fdblocks, delta);
1115 }
1116 spin_unlock(&mp->m_sb_lock);
1117 return 0;
1118 }
1119
1120 /*
1121 * Taking blocks away, need to be more accurate the closer we
1122 * are to zero.
1123 *
0d485ada
DC
1124 * If the counter has a value of less than 2 * max batch size,
1125 * then make everything serialise as we are real close to
1126 * ENOSPC.
1127 */
8c1903d3
DC
1128 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1129 XFS_FDBLOCKS_BATCH) < 0)
0d485ada
DC
1130 batch = 1;
1131 else
8c1903d3 1132 batch = XFS_FDBLOCKS_BATCH;
0d485ada 1133
fd43cf60
BF
1134 /*
1135 * Set aside allocbt blocks because these blocks are tracked as free
1136 * space but not available for allocation. Technically this means that a
1137 * single reservation cannot consume all remaining free space, but the
1138 * ratio of allocbt blocks to usable free blocks should be rather small.
1139 * The tradeoff without this is that filesystems that maintain high
1140 * perag block reservations can over reserve physical block availability
1141 * and fail physical allocation, which leads to much more serious
1142 * problems (i.e. transaction abort, pagecache discards, etc.) than
1143 * slightly premature -ENOSPC.
1144 */
1145 set_aside = mp->m_alloc_set_aside + atomic64_read(&mp->m_allocbt_blks);
104b4e51 1146 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
fd43cf60 1147 if (__percpu_counter_compare(&mp->m_fdblocks, set_aside,
8c1903d3 1148 XFS_FDBLOCKS_BATCH) >= 0) {
0d485ada
DC
1149 /* we had space! */
1150 return 0;
1151 }
1152
1153 /*
1154 * lock up the sb for dipping into reserves before releasing the space
1155 * that took us to ENOSPC.
1156 */
1157 spin_lock(&mp->m_sb_lock);
1158 percpu_counter_add(&mp->m_fdblocks, -delta);
1159 if (!rsvd)
1160 goto fdblocks_enospc;
1161
1162 lcounter = (long long)mp->m_resblks_avail + delta;
1163 if (lcounter >= 0) {
1164 mp->m_resblks_avail = lcounter;
1165 spin_unlock(&mp->m_sb_lock);
1166 return 0;
1167 }
ec43f6da
ES
1168 xfs_warn_once(mp,
1169"Reserve blocks depleted! Consider increasing reserve pool size.");
1170
0d485ada
DC
1171fdblocks_enospc:
1172 spin_unlock(&mp->m_sb_lock);
1173 return -ENOSPC;
1174}
1175
bab98bbe
DC
1176int
1177xfs_mod_frextents(
1178 struct xfs_mount *mp,
1179 int64_t delta)
1180{
1181 int64_t lcounter;
1182 int ret = 0;
1183
1184 spin_lock(&mp->m_sb_lock);
1185 lcounter = mp->m_sb.sb_frextents + delta;
1186 if (lcounter < 0)
1187 ret = -ENOSPC;
1188 else
1189 mp->m_sb.sb_frextents = lcounter;
1190 spin_unlock(&mp->m_sb_lock);
1191 return ret;
1192}
1193
1da177e4
LT
1194/*
1195 * Used to free the superblock along various error paths.
1196 */
1197void
1198xfs_freesb(
26af6552 1199 struct xfs_mount *mp)
1da177e4 1200{
26af6552 1201 struct xfs_buf *bp = mp->m_sb_bp;
1da177e4 1202
26af6552 1203 xfs_buf_lock(bp);
1da177e4 1204 mp->m_sb_bp = NULL;
26af6552 1205 xfs_buf_relse(bp);
1da177e4
LT
1206}
1207
dda35b8f
CH
1208/*
1209 * If the underlying (data/log/rt) device is readonly, there are some
1210 * operations that cannot proceed.
1211 */
1212int
1213xfs_dev_is_read_only(
1214 struct xfs_mount *mp,
1215 char *message)
1216{
1217 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1218 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1219 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
0b932ccc
DC
1220 xfs_notice(mp, "%s required on read-only device.", message);
1221 xfs_notice(mp, "write access unavailable, cannot proceed.");
2451337d 1222 return -EROFS;
dda35b8f
CH
1223 }
1224 return 0;
1225}
f467cad9
DW
1226
1227/* Force the summary counters to be recalculated at next mount. */
1228void
1229xfs_force_summary_recalc(
1230 struct xfs_mount *mp)
1231{
38c26bfd 1232 if (!xfs_has_lazysbcount(mp))
f467cad9
DW
1233 return;
1234
39353ff6 1235 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
f467cad9 1236}
9fe82b8c 1237
908ce71e
DW
1238/*
1239 * Enable a log incompat feature flag in the primary superblock. The caller
1240 * cannot have any other transactions in progress.
1241 */
1242int
1243xfs_add_incompat_log_feature(
1244 struct xfs_mount *mp,
1245 uint32_t feature)
1246{
1247 struct xfs_dsb *dsb;
1248 int error;
1249
1250 ASSERT(hweight32(feature) == 1);
1251 ASSERT(!(feature & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
1252
1253 /*
1254 * Force the log to disk and kick the background AIL thread to reduce
1255 * the chances that the bwrite will stall waiting for the AIL to unpin
1256 * the primary superblock buffer. This isn't a data integrity
1257 * operation, so we don't need a synchronous push.
1258 */
1259 error = xfs_log_force(mp, XFS_LOG_SYNC);
1260 if (error)
1261 return error;
1262 xfs_ail_push_all(mp->m_ail);
1263
1264 /*
1265 * Lock the primary superblock buffer to serialize all callers that
1266 * are trying to set feature bits.
1267 */
1268 xfs_buf_lock(mp->m_sb_bp);
1269 xfs_buf_hold(mp->m_sb_bp);
1270
75c8c50f 1271 if (xfs_is_shutdown(mp)) {
908ce71e
DW
1272 error = -EIO;
1273 goto rele;
1274 }
1275
1276 if (xfs_sb_has_incompat_log_feature(&mp->m_sb, feature))
1277 goto rele;
1278
1279 /*
1280 * Write the primary superblock to disk immediately, because we need
1281 * the log_incompat bit to be set in the primary super now to protect
1282 * the log items that we're going to commit later.
1283 */
1284 dsb = mp->m_sb_bp->b_addr;
1285 xfs_sb_to_disk(dsb, &mp->m_sb);
1286 dsb->sb_features_log_incompat |= cpu_to_be32(feature);
1287 error = xfs_bwrite(mp->m_sb_bp);
1288 if (error)
1289 goto shutdown;
1290
1291 /*
1292 * Add the feature bits to the incore superblock before we unlock the
1293 * buffer.
1294 */
1295 xfs_sb_add_incompat_log_features(&mp->m_sb, feature);
1296 xfs_buf_relse(mp->m_sb_bp);
1297
1298 /* Log the superblock to disk. */
1299 return xfs_sync_sb(mp, false);
1300shutdown:
1301 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1302rele:
1303 xfs_buf_relse(mp->m_sb_bp);
1304 return error;
1305}
1306
1307/*
1308 * Clear all the log incompat flags from the superblock.
1309 *
1310 * The caller cannot be in a transaction, must ensure that the log does not
1311 * contain any log items protected by any log incompat bit, and must ensure
1312 * that there are no other threads that depend on the state of the log incompat
1313 * feature flags in the primary super.
1314 *
1315 * Returns true if the superblock is dirty.
1316 */
1317bool
1318xfs_clear_incompat_log_features(
1319 struct xfs_mount *mp)
1320{
1321 bool ret = false;
1322
ebd9027d 1323 if (!xfs_has_crc(mp) ||
908ce71e
DW
1324 !xfs_sb_has_incompat_log_feature(&mp->m_sb,
1325 XFS_SB_FEAT_INCOMPAT_LOG_ALL) ||
75c8c50f 1326 xfs_is_shutdown(mp))
908ce71e
DW
1327 return false;
1328
1329 /*
1330 * Update the incore superblock. We synchronize on the primary super
1331 * buffer lock to be consistent with the add function, though at least
1332 * in theory this shouldn't be necessary.
1333 */
1334 xfs_buf_lock(mp->m_sb_bp);
1335 xfs_buf_hold(mp->m_sb_bp);
1336
1337 if (xfs_sb_has_incompat_log_feature(&mp->m_sb,
1338 XFS_SB_FEAT_INCOMPAT_LOG_ALL)) {
1339 xfs_info(mp, "Clearing log incompat feature flags.");
1340 xfs_sb_remove_incompat_log_features(&mp->m_sb);
1341 ret = true;
1342 }
1343
1344 xfs_buf_relse(mp->m_sb_bp);
1345 return ret;
1346}
1347
9fe82b8c
DW
1348/*
1349 * Update the in-core delayed block counter.
1350 *
1351 * We prefer to update the counter without having to take a spinlock for every
1352 * counter update (i.e. batching). Each change to delayed allocation
1353 * reservations can change can easily exceed the default percpu counter
1354 * batching, so we use a larger batch factor here.
1355 *
1356 * Note that we don't currently have any callers requiring fast summation
1357 * (e.g. percpu_counter_read) so we can use a big batch value here.
1358 */
1359#define XFS_DELALLOC_BATCH (4096)
1360void
1361xfs_mod_delalloc(
1362 struct xfs_mount *mp,
1363 int64_t delta)
1364{
1365 percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1366 XFS_DELALLOC_BATCH);
1367}