Commit | Line | Data |
---|---|---|
0b61f8a4 | 1 | // SPDX-License-Identifier: GPL-2.0 |
1da177e4 | 2 | /* |
87c199c2 | 3 | * Copyright (c) 2000-2006 Silicon Graphics, Inc. |
7b718769 | 4 | * All Rights Reserved. |
1da177e4 | 5 | */ |
1da177e4 | 6 | #include "xfs.h" |
a844f451 | 7 | #include "xfs_fs.h" |
70a9883c | 8 | #include "xfs_shared.h" |
239880ef DC |
9 | #include "xfs_format.h" |
10 | #include "xfs_log_format.h" | |
11 | #include "xfs_trans_resv.h" | |
a844f451 | 12 | #include "xfs_bit.h" |
a844f451 | 13 | #include "xfs_sb.h" |
1da177e4 | 14 | #include "xfs_mount.h" |
50995582 | 15 | #include "xfs_defer.h" |
1da177e4 | 16 | #include "xfs_inode.h" |
239880ef | 17 | #include "xfs_trans.h" |
239880ef | 18 | #include "xfs_log.h" |
1da177e4 | 19 | #include "xfs_log_priv.h" |
1da177e4 | 20 | #include "xfs_log_recover.h" |
1da177e4 | 21 | #include "xfs_trans_priv.h" |
a4fbe6ab DC |
22 | #include "xfs_alloc.h" |
23 | #include "xfs_ialloc.h" | |
0b1b213f | 24 | #include "xfs_trace.h" |
33479e05 | 25 | #include "xfs_icache.h" |
a4fbe6ab | 26 | #include "xfs_error.h" |
60a4a222 | 27 | #include "xfs_buf_item.h" |
9bbafc71 | 28 | #include "xfs_ag.h" |
4bc61983 | 29 | #include "xfs_quota.h" |
7993f1a4 | 30 | #include "xfs_reflink.h" |
1da177e4 | 31 | |
fc06c6d0 DC |
32 | #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) |
33 | ||
9a8d2fdb MT |
34 | STATIC int |
35 | xlog_find_zeroed( | |
36 | struct xlog *, | |
37 | xfs_daddr_t *); | |
38 | STATIC int | |
39 | xlog_clear_stale_blocks( | |
40 | struct xlog *, | |
41 | xfs_lsn_t); | |
7088c413 BF |
42 | STATIC int |
43 | xlog_do_recovery_pass( | |
44 | struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *); | |
1da177e4 | 45 | |
1da177e4 LT |
46 | /* |
47 | * Sector aligned buffer routines for buffer create/read/write/access | |
48 | */ | |
49 | ||
ff30a622 | 50 | /* |
99c26595 BF |
51 | * Verify the log-relative block number and length in basic blocks are valid for |
52 | * an operation involving the given XFS log buffer. Returns true if the fields | |
53 | * are valid, false otherwise. | |
ff30a622 | 54 | */ |
99c26595 | 55 | static inline bool |
6e9b3dd8 | 56 | xlog_verify_bno( |
9a8d2fdb | 57 | struct xlog *log, |
99c26595 | 58 | xfs_daddr_t blk_no, |
ff30a622 AE |
59 | int bbcount) |
60 | { | |
99c26595 BF |
61 | if (blk_no < 0 || blk_no >= log->l_logBBsize) |
62 | return false; | |
63 | if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize) | |
64 | return false; | |
65 | return true; | |
ff30a622 AE |
66 | } |
67 | ||
36adecff | 68 | /* |
6ad5b325 CH |
69 | * Allocate a buffer to hold log data. The buffer needs to be able to map to |
70 | * a range of nbblks basic blocks at any valid offset within the log. | |
36adecff | 71 | */ |
6ad5b325 | 72 | static char * |
6e9b3dd8 | 73 | xlog_alloc_buffer( |
9a8d2fdb | 74 | struct xlog *log, |
3228149c | 75 | int nbblks) |
1da177e4 | 76 | { |
99c26595 BF |
77 | /* |
78 | * Pass log block 0 since we don't have an addr yet, buffer will be | |
79 | * verified on read. | |
80 | */ | |
a71895c5 | 81 | if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) { |
a0fa2b67 | 82 | xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", |
ff30a622 | 83 | nbblks); |
3228149c DC |
84 | return NULL; |
85 | } | |
1da177e4 | 86 | |
36adecff | 87 | /* |
6ad5b325 CH |
88 | * We do log I/O in units of log sectors (a power-of-2 multiple of the |
89 | * basic block size), so we round up the requested size to accommodate | |
90 | * the basic blocks required for complete log sectors. | |
36adecff | 91 | * |
6ad5b325 CH |
92 | * In addition, the buffer may be used for a non-sector-aligned block |
93 | * offset, in which case an I/O of the requested size could extend | |
94 | * beyond the end of the buffer. If the requested size is only 1 basic | |
95 | * block it will never straddle a sector boundary, so this won't be an | |
96 | * issue. Nor will this be a problem if the log I/O is done in basic | |
97 | * blocks (sector size 1). But otherwise we extend the buffer by one | |
98 | * extra log sector to ensure there's space to accommodate this | |
99 | * possibility. | |
36adecff | 100 | */ |
69ce58f0 AE |
101 | if (nbblks > 1 && log->l_sectBBsize > 1) |
102 | nbblks += log->l_sectBBsize; | |
103 | nbblks = round_up(nbblks, log->l_sectBBsize); | |
d634525d | 104 | return kvzalloc(BBTOB(nbblks), GFP_KERNEL | __GFP_RETRY_MAYFAIL); |
1da177e4 LT |
105 | } |
106 | ||
48389ef1 AE |
107 | /* |
108 | * Return the address of the start of the given block number's data | |
109 | * in a log buffer. The buffer covers a log sector-aligned region. | |
110 | */ | |
18ffb8c3 | 111 | static inline unsigned int |
076e6acb | 112 | xlog_align( |
9a8d2fdb | 113 | struct xlog *log, |
18ffb8c3 | 114 | xfs_daddr_t blk_no) |
076e6acb | 115 | { |
18ffb8c3 | 116 | return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1)); |
076e6acb CH |
117 | } |
118 | ||
6ad5b325 CH |
119 | static int |
120 | xlog_do_io( | |
121 | struct xlog *log, | |
122 | xfs_daddr_t blk_no, | |
123 | unsigned int nbblks, | |
124 | char *data, | |
d03025ae | 125 | enum req_op op) |
1da177e4 | 126 | { |
6ad5b325 | 127 | int error; |
1da177e4 | 128 | |
a71895c5 | 129 | if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) { |
99c26595 BF |
130 | xfs_warn(log->l_mp, |
131 | "Invalid log block/length (0x%llx, 0x%x) for buffer", | |
132 | blk_no, nbblks); | |
2451337d | 133 | return -EFSCORRUPTED; |
3228149c DC |
134 | } |
135 | ||
69ce58f0 AE |
136 | blk_no = round_down(blk_no, log->l_sectBBsize); |
137 | nbblks = round_up(nbblks, log->l_sectBBsize); | |
1da177e4 | 138 | ASSERT(nbblks > 0); |
1da177e4 | 139 | |
6ad5b325 CH |
140 | error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no, |
141 | BBTOB(nbblks), data, op); | |
2039a272 | 142 | if (error && !xlog_is_shutdown(log)) { |
6ad5b325 CH |
143 | xfs_alert(log->l_mp, |
144 | "log recovery %s I/O error at daddr 0x%llx len %d error %d", | |
145 | op == REQ_OP_WRITE ? "write" : "read", | |
146 | blk_no, nbblks, error); | |
147 | } | |
1da177e4 LT |
148 | return error; |
149 | } | |
150 | ||
076e6acb | 151 | STATIC int |
6ad5b325 | 152 | xlog_bread_noalign( |
9a8d2fdb | 153 | struct xlog *log, |
076e6acb CH |
154 | xfs_daddr_t blk_no, |
155 | int nbblks, | |
6ad5b325 | 156 | char *data) |
076e6acb | 157 | { |
6ad5b325 | 158 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
076e6acb CH |
159 | } |
160 | ||
44396476 | 161 | STATIC int |
6ad5b325 | 162 | xlog_bread( |
9a8d2fdb | 163 | struct xlog *log, |
6ad5b325 CH |
164 | xfs_daddr_t blk_no, |
165 | int nbblks, | |
166 | char *data, | |
167 | char **offset) | |
44396476 | 168 | { |
6ad5b325 | 169 | int error; |
44396476 | 170 | |
6ad5b325 CH |
171 | error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ); |
172 | if (!error) | |
173 | *offset = data + xlog_align(log, blk_no); | |
174 | return error; | |
44396476 DC |
175 | } |
176 | ||
ba0f32d4 | 177 | STATIC int |
1da177e4 | 178 | xlog_bwrite( |
9a8d2fdb | 179 | struct xlog *log, |
1da177e4 LT |
180 | xfs_daddr_t blk_no, |
181 | int nbblks, | |
6ad5b325 | 182 | char *data) |
1da177e4 | 183 | { |
6ad5b325 | 184 | return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE); |
1da177e4 LT |
185 | } |
186 | ||
1da177e4 LT |
187 | #ifdef DEBUG |
188 | /* | |
189 | * dump debug superblock and log record information | |
190 | */ | |
191 | STATIC void | |
192 | xlog_header_check_dump( | |
193 | xfs_mount_t *mp, | |
194 | xlog_rec_header_t *head) | |
195 | { | |
08e96e1a | 196 | xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", |
03daa57c | 197 | __func__, &mp->m_sb.sb_uuid, XLOG_FMT); |
08e96e1a | 198 | xfs_debug(mp, " log : uuid = %pU, fmt = %d", |
03daa57c | 199 | &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); |
1da177e4 LT |
200 | } |
201 | #else | |
202 | #define xlog_header_check_dump(mp, head) | |
203 | #endif | |
204 | ||
205 | /* | |
206 | * check log record header for recovery | |
207 | */ | |
208 | STATIC int | |
209 | xlog_header_check_recover( | |
210 | xfs_mount_t *mp, | |
211 | xlog_rec_header_t *head) | |
212 | { | |
69ef921b | 213 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
1da177e4 LT |
214 | |
215 | /* | |
216 | * IRIX doesn't write the h_fmt field and leaves it zeroed | |
217 | * (XLOG_FMT_UNKNOWN). This stops us from trying to recover | |
218 | * a dirty log created in IRIX. | |
219 | */ | |
a71895c5 | 220 | if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) { |
a0fa2b67 DC |
221 | xfs_warn(mp, |
222 | "dirty log written in incompatible format - can't recover"); | |
1da177e4 | 223 | xlog_header_check_dump(mp, head); |
2451337d | 224 | return -EFSCORRUPTED; |
a71895c5 DW |
225 | } |
226 | if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, | |
227 | &head->h_fs_uuid))) { | |
a0fa2b67 DC |
228 | xfs_warn(mp, |
229 | "dirty log entry has mismatched uuid - can't recover"); | |
1da177e4 | 230 | xlog_header_check_dump(mp, head); |
2451337d | 231 | return -EFSCORRUPTED; |
1da177e4 LT |
232 | } |
233 | return 0; | |
234 | } | |
235 | ||
236 | /* | |
237 | * read the head block of the log and check the header | |
238 | */ | |
239 | STATIC int | |
240 | xlog_header_check_mount( | |
241 | xfs_mount_t *mp, | |
242 | xlog_rec_header_t *head) | |
243 | { | |
69ef921b | 244 | ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); |
1da177e4 | 245 | |
d905fdaa | 246 | if (uuid_is_null(&head->h_fs_uuid)) { |
1da177e4 LT |
247 | /* |
248 | * IRIX doesn't write the h_fs_uuid or h_fmt fields. If | |
d905fdaa | 249 | * h_fs_uuid is null, we assume this log was last mounted |
1da177e4 LT |
250 | * by IRIX and continue. |
251 | */ | |
d905fdaa | 252 | xfs_warn(mp, "null uuid in log - IRIX style log"); |
a71895c5 DW |
253 | } else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid, |
254 | &head->h_fs_uuid))) { | |
a0fa2b67 | 255 | xfs_warn(mp, "log has mismatched uuid - can't recover"); |
1da177e4 | 256 | xlog_header_check_dump(mp, head); |
2451337d | 257 | return -EFSCORRUPTED; |
1da177e4 LT |
258 | } |
259 | return 0; | |
260 | } | |
261 | ||
1da177e4 LT |
262 | /* |
263 | * This routine finds (to an approximation) the first block in the physical | |
264 | * log which contains the given cycle. It uses a binary search algorithm. | |
265 | * Note that the algorithm can not be perfect because the disk will not | |
266 | * necessarily be perfect. | |
267 | */ | |
a8272ce0 | 268 | STATIC int |
1da177e4 | 269 | xlog_find_cycle_start( |
9a8d2fdb | 270 | struct xlog *log, |
6e9b3dd8 | 271 | char *buffer, |
1da177e4 LT |
272 | xfs_daddr_t first_blk, |
273 | xfs_daddr_t *last_blk, | |
274 | uint cycle) | |
275 | { | |
b2a922cd | 276 | char *offset; |
1da177e4 | 277 | xfs_daddr_t mid_blk; |
e3bb2e30 | 278 | xfs_daddr_t end_blk; |
1da177e4 LT |
279 | uint mid_cycle; |
280 | int error; | |
281 | ||
e3bb2e30 AE |
282 | end_blk = *last_blk; |
283 | mid_blk = BLK_AVG(first_blk, end_blk); | |
284 | while (mid_blk != first_blk && mid_blk != end_blk) { | |
6e9b3dd8 | 285 | error = xlog_bread(log, mid_blk, 1, buffer, &offset); |
076e6acb | 286 | if (error) |
1da177e4 | 287 | return error; |
03bea6fe | 288 | mid_cycle = xlog_get_cycle(offset); |
e3bb2e30 AE |
289 | if (mid_cycle == cycle) |
290 | end_blk = mid_blk; /* last_half_cycle == mid_cycle */ | |
291 | else | |
292 | first_blk = mid_blk; /* first_half_cycle == mid_cycle */ | |
293 | mid_blk = BLK_AVG(first_blk, end_blk); | |
1da177e4 | 294 | } |
e3bb2e30 AE |
295 | ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || |
296 | (mid_blk == end_blk && mid_blk-1 == first_blk)); | |
297 | ||
298 | *last_blk = end_blk; | |
1da177e4 LT |
299 | |
300 | return 0; | |
301 | } | |
302 | ||
303 | /* | |
3f943d85 AE |
304 | * Check that a range of blocks does not contain stop_on_cycle_no. |
305 | * Fill in *new_blk with the block offset where such a block is | |
306 | * found, or with -1 (an invalid block number) if there is no such | |
307 | * block in the range. The scan needs to occur from front to back | |
308 | * and the pointer into the region must be updated since a later | |
309 | * routine will need to perform another test. | |
1da177e4 LT |
310 | */ |
311 | STATIC int | |
312 | xlog_find_verify_cycle( | |
9a8d2fdb | 313 | struct xlog *log, |
1da177e4 LT |
314 | xfs_daddr_t start_blk, |
315 | int nbblks, | |
316 | uint stop_on_cycle_no, | |
317 | xfs_daddr_t *new_blk) | |
318 | { | |
319 | xfs_daddr_t i, j; | |
320 | uint cycle; | |
6e9b3dd8 | 321 | char *buffer; |
1da177e4 | 322 | xfs_daddr_t bufblks; |
b2a922cd | 323 | char *buf = NULL; |
1da177e4 LT |
324 | int error = 0; |
325 | ||
6881a229 AE |
326 | /* |
327 | * Greedily allocate a buffer big enough to handle the full | |
328 | * range of basic blocks we'll be examining. If that fails, | |
329 | * try a smaller size. We need to be able to read at least | |
330 | * a log sector, or we're out of luck. | |
331 | */ | |
8b010acb | 332 | bufblks = roundup_pow_of_two(nbblks); |
81158e0c DC |
333 | while (bufblks > log->l_logBBsize) |
334 | bufblks >>= 1; | |
6e9b3dd8 | 335 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
1da177e4 | 336 | bufblks >>= 1; |
69ce58f0 | 337 | if (bufblks < log->l_sectBBsize) |
2451337d | 338 | return -ENOMEM; |
1da177e4 LT |
339 | } |
340 | ||
341 | for (i = start_blk; i < start_blk + nbblks; i += bufblks) { | |
342 | int bcount; | |
343 | ||
344 | bcount = min(bufblks, (start_blk + nbblks - i)); | |
345 | ||
6e9b3dd8 | 346 | error = xlog_bread(log, i, bcount, buffer, &buf); |
076e6acb | 347 | if (error) |
1da177e4 LT |
348 | goto out; |
349 | ||
1da177e4 | 350 | for (j = 0; j < bcount; j++) { |
03bea6fe | 351 | cycle = xlog_get_cycle(buf); |
1da177e4 LT |
352 | if (cycle == stop_on_cycle_no) { |
353 | *new_blk = i+j; | |
354 | goto out; | |
355 | } | |
356 | ||
357 | buf += BBSIZE; | |
358 | } | |
359 | } | |
360 | ||
361 | *new_blk = -1; | |
362 | ||
363 | out: | |
49292576 | 364 | kvfree(buffer); |
1da177e4 LT |
365 | return error; |
366 | } | |
367 | ||
0c771b99 GX |
368 | static inline int |
369 | xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh) | |
370 | { | |
38c26bfd | 371 | if (xfs_has_logv2(log->l_mp)) { |
0c771b99 GX |
372 | int h_size = be32_to_cpu(rh->h_size); |
373 | ||
374 | if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) && | |
375 | h_size > XLOG_HEADER_CYCLE_SIZE) | |
376 | return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); | |
377 | } | |
378 | return 1; | |
379 | } | |
380 | ||
1da177e4 LT |
381 | /* |
382 | * Potentially backup over partial log record write. | |
383 | * | |
384 | * In the typical case, last_blk is the number of the block directly after | |
385 | * a good log record. Therefore, we subtract one to get the block number | |
386 | * of the last block in the given buffer. extra_bblks contains the number | |
387 | * of blocks we would have read on a previous read. This happens when the | |
388 | * last log record is split over the end of the physical log. | |
389 | * | |
390 | * extra_bblks is the number of blocks potentially verified on a previous | |
391 | * call to this routine. | |
392 | */ | |
393 | STATIC int | |
394 | xlog_find_verify_log_record( | |
9a8d2fdb | 395 | struct xlog *log, |
1da177e4 LT |
396 | xfs_daddr_t start_blk, |
397 | xfs_daddr_t *last_blk, | |
398 | int extra_bblks) | |
399 | { | |
400 | xfs_daddr_t i; | |
6e9b3dd8 | 401 | char *buffer; |
b2a922cd | 402 | char *offset = NULL; |
1da177e4 LT |
403 | xlog_rec_header_t *head = NULL; |
404 | int error = 0; | |
405 | int smallmem = 0; | |
406 | int num_blks = *last_blk - start_blk; | |
407 | int xhdrs; | |
408 | ||
409 | ASSERT(start_blk != 0 || *last_blk != start_blk); | |
410 | ||
6e9b3dd8 CH |
411 | buffer = xlog_alloc_buffer(log, num_blks); |
412 | if (!buffer) { | |
413 | buffer = xlog_alloc_buffer(log, 1); | |
414 | if (!buffer) | |
2451337d | 415 | return -ENOMEM; |
1da177e4 LT |
416 | smallmem = 1; |
417 | } else { | |
6e9b3dd8 | 418 | error = xlog_bread(log, start_blk, num_blks, buffer, &offset); |
076e6acb | 419 | if (error) |
1da177e4 | 420 | goto out; |
1da177e4 LT |
421 | offset += ((num_blks - 1) << BBSHIFT); |
422 | } | |
423 | ||
424 | for (i = (*last_blk) - 1; i >= 0; i--) { | |
425 | if (i < start_blk) { | |
426 | /* valid log record not found */ | |
a0fa2b67 DC |
427 | xfs_warn(log->l_mp, |
428 | "Log inconsistent (didn't find previous header)"); | |
1da177e4 | 429 | ASSERT(0); |
895e196f | 430 | error = -EFSCORRUPTED; |
1da177e4 LT |
431 | goto out; |
432 | } | |
433 | ||
434 | if (smallmem) { | |
6e9b3dd8 | 435 | error = xlog_bread(log, i, 1, buffer, &offset); |
076e6acb | 436 | if (error) |
1da177e4 | 437 | goto out; |
1da177e4 LT |
438 | } |
439 | ||
440 | head = (xlog_rec_header_t *)offset; | |
441 | ||
69ef921b | 442 | if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) |
1da177e4 LT |
443 | break; |
444 | ||
445 | if (!smallmem) | |
446 | offset -= BBSIZE; | |
447 | } | |
448 | ||
449 | /* | |
450 | * We hit the beginning of the physical log & still no header. Return | |
451 | * to caller. If caller can handle a return of -1, then this routine | |
452 | * will be called again for the end of the physical log. | |
453 | */ | |
454 | if (i == -1) { | |
2451337d | 455 | error = 1; |
1da177e4 LT |
456 | goto out; |
457 | } | |
458 | ||
459 | /* | |
460 | * We have the final block of the good log (the first block | |
461 | * of the log record _before_ the head. So we check the uuid. | |
462 | */ | |
463 | if ((error = xlog_header_check_mount(log->l_mp, head))) | |
464 | goto out; | |
465 | ||
466 | /* | |
467 | * We may have found a log record header before we expected one. | |
468 | * last_blk will be the 1st block # with a given cycle #. We may end | |
469 | * up reading an entire log record. In this case, we don't want to | |
470 | * reset last_blk. Only when last_blk points in the middle of a log | |
471 | * record do we update last_blk. | |
472 | */ | |
0c771b99 | 473 | xhdrs = xlog_logrec_hblks(log, head); |
1da177e4 | 474 | |
b53e675d CH |
475 | if (*last_blk - i + extra_bblks != |
476 | BTOBB(be32_to_cpu(head->h_len)) + xhdrs) | |
1da177e4 LT |
477 | *last_blk = i; |
478 | ||
479 | out: | |
49292576 | 480 | kvfree(buffer); |
1da177e4 LT |
481 | return error; |
482 | } | |
483 | ||
484 | /* | |
485 | * Head is defined to be the point of the log where the next log write | |
0a94da24 | 486 | * could go. This means that incomplete LR writes at the end are |
1da177e4 LT |
487 | * eliminated when calculating the head. We aren't guaranteed that previous |
488 | * LR have complete transactions. We only know that a cycle number of | |
489 | * current cycle number -1 won't be present in the log if we start writing | |
490 | * from our current block number. | |
491 | * | |
492 | * last_blk contains the block number of the first block with a given | |
493 | * cycle number. | |
494 | * | |
495 | * Return: zero if normal, non-zero if error. | |
496 | */ | |
ba0f32d4 | 497 | STATIC int |
1da177e4 | 498 | xlog_find_head( |
9a8d2fdb | 499 | struct xlog *log, |
1da177e4 LT |
500 | xfs_daddr_t *return_head_blk) |
501 | { | |
6e9b3dd8 | 502 | char *buffer; |
b2a922cd | 503 | char *offset; |
1da177e4 LT |
504 | xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; |
505 | int num_scan_bblks; | |
506 | uint first_half_cycle, last_half_cycle; | |
507 | uint stop_on_cycle; | |
508 | int error, log_bbnum = log->l_logBBsize; | |
509 | ||
510 | /* Is the end of the log device zeroed? */ | |
2451337d DC |
511 | error = xlog_find_zeroed(log, &first_blk); |
512 | if (error < 0) { | |
513 | xfs_warn(log->l_mp, "empty log check failed"); | |
514 | return error; | |
515 | } | |
516 | if (error == 1) { | |
1da177e4 LT |
517 | *return_head_blk = first_blk; |
518 | ||
519 | /* Is the whole lot zeroed? */ | |
520 | if (!first_blk) { | |
521 | /* Linux XFS shouldn't generate totally zeroed logs - | |
522 | * mkfs etc write a dummy unmount record to a fresh | |
523 | * log so we can store the uuid in there | |
524 | */ | |
a0fa2b67 | 525 | xfs_warn(log->l_mp, "totally zeroed log"); |
1da177e4 LT |
526 | } |
527 | ||
528 | return 0; | |
1da177e4 LT |
529 | } |
530 | ||
531 | first_blk = 0; /* get cycle # of 1st block */ | |
6e9b3dd8 CH |
532 | buffer = xlog_alloc_buffer(log, 1); |
533 | if (!buffer) | |
2451337d | 534 | return -ENOMEM; |
076e6acb | 535 | |
6e9b3dd8 | 536 | error = xlog_bread(log, 0, 1, buffer, &offset); |
076e6acb | 537 | if (error) |
6e9b3dd8 | 538 | goto out_free_buffer; |
076e6acb | 539 | |
03bea6fe | 540 | first_half_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
541 | |
542 | last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ | |
6e9b3dd8 | 543 | error = xlog_bread(log, last_blk, 1, buffer, &offset); |
076e6acb | 544 | if (error) |
6e9b3dd8 | 545 | goto out_free_buffer; |
076e6acb | 546 | |
03bea6fe | 547 | last_half_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
548 | ASSERT(last_half_cycle != 0); |
549 | ||
550 | /* | |
551 | * If the 1st half cycle number is equal to the last half cycle number, | |
552 | * then the entire log is stamped with the same cycle number. In this | |
553 | * case, head_blk can't be set to zero (which makes sense). The below | |
554 | * math doesn't work out properly with head_blk equal to zero. Instead, | |
555 | * we set it to log_bbnum which is an invalid block number, but this | |
556 | * value makes the math correct. If head_blk doesn't changed through | |
557 | * all the tests below, *head_blk is set to zero at the very end rather | |
558 | * than log_bbnum. In a sense, log_bbnum and zero are the same block | |
559 | * in a circular file. | |
560 | */ | |
561 | if (first_half_cycle == last_half_cycle) { | |
562 | /* | |
563 | * In this case we believe that the entire log should have | |
564 | * cycle number last_half_cycle. We need to scan backwards | |
565 | * from the end verifying that there are no holes still | |
566 | * containing last_half_cycle - 1. If we find such a hole, | |
567 | * then the start of that hole will be the new head. The | |
568 | * simple case looks like | |
569 | * x | x ... | x - 1 | x | |
570 | * Another case that fits this picture would be | |
571 | * x | x + 1 | x ... | x | |
c41564b5 | 572 | * In this case the head really is somewhere at the end of the |
1da177e4 LT |
573 | * log, as one of the latest writes at the beginning was |
574 | * incomplete. | |
575 | * One more case is | |
576 | * x | x + 1 | x ... | x - 1 | x | |
577 | * This is really the combination of the above two cases, and | |
578 | * the head has to end up at the start of the x-1 hole at the | |
579 | * end of the log. | |
580 | * | |
581 | * In the 256k log case, we will read from the beginning to the | |
582 | * end of the log and search for cycle numbers equal to x-1. | |
583 | * We don't worry about the x+1 blocks that we encounter, | |
584 | * because we know that they cannot be the head since the log | |
585 | * started with x. | |
586 | */ | |
587 | head_blk = log_bbnum; | |
588 | stop_on_cycle = last_half_cycle - 1; | |
589 | } else { | |
590 | /* | |
591 | * In this case we want to find the first block with cycle | |
592 | * number matching last_half_cycle. We expect the log to be | |
593 | * some variation on | |
3f943d85 | 594 | * x + 1 ... | x ... | x |
1da177e4 LT |
595 | * The first block with cycle number x (last_half_cycle) will |
596 | * be where the new head belongs. First we do a binary search | |
597 | * for the first occurrence of last_half_cycle. The binary | |
598 | * search may not be totally accurate, so then we scan back | |
599 | * from there looking for occurrences of last_half_cycle before | |
600 | * us. If that backwards scan wraps around the beginning of | |
601 | * the log, then we look for occurrences of last_half_cycle - 1 | |
602 | * at the end of the log. The cases we're looking for look | |
603 | * like | |
3f943d85 AE |
604 | * v binary search stopped here |
605 | * x + 1 ... | x | x + 1 | x ... | x | |
606 | * ^ but we want to locate this spot | |
1da177e4 | 607 | * or |
1da177e4 | 608 | * <---------> less than scan distance |
3f943d85 AE |
609 | * x + 1 ... | x ... | x - 1 | x |
610 | * ^ we want to locate this spot | |
1da177e4 LT |
611 | */ |
612 | stop_on_cycle = last_half_cycle; | |
6e9b3dd8 CH |
613 | error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk, |
614 | last_half_cycle); | |
615 | if (error) | |
616 | goto out_free_buffer; | |
1da177e4 LT |
617 | } |
618 | ||
619 | /* | |
620 | * Now validate the answer. Scan back some number of maximum possible | |
621 | * blocks and make sure each one has the expected cycle number. The | |
622 | * maximum is determined by the total possible amount of buffering | |
623 | * in the in-core log. The following number can be made tighter if | |
624 | * we actually look at the block size of the filesystem. | |
625 | */ | |
9f2a4505 | 626 | num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log)); |
1da177e4 LT |
627 | if (head_blk >= num_scan_bblks) { |
628 | /* | |
629 | * We are guaranteed that the entire check can be performed | |
630 | * in one buffer. | |
631 | */ | |
632 | start_blk = head_blk - num_scan_bblks; | |
633 | if ((error = xlog_find_verify_cycle(log, | |
634 | start_blk, num_scan_bblks, | |
635 | stop_on_cycle, &new_blk))) | |
6e9b3dd8 | 636 | goto out_free_buffer; |
1da177e4 LT |
637 | if (new_blk != -1) |
638 | head_blk = new_blk; | |
639 | } else { /* need to read 2 parts of log */ | |
640 | /* | |
641 | * We are going to scan backwards in the log in two parts. | |
642 | * First we scan the physical end of the log. In this part | |
643 | * of the log, we are looking for blocks with cycle number | |
644 | * last_half_cycle - 1. | |
645 | * If we find one, then we know that the log starts there, as | |
646 | * we've found a hole that didn't get written in going around | |
647 | * the end of the physical log. The simple case for this is | |
648 | * x + 1 ... | x ... | x - 1 | x | |
649 | * <---------> less than scan distance | |
650 | * If all of the blocks at the end of the log have cycle number | |
651 | * last_half_cycle, then we check the blocks at the start of | |
652 | * the log looking for occurrences of last_half_cycle. If we | |
653 | * find one, then our current estimate for the location of the | |
654 | * first occurrence of last_half_cycle is wrong and we move | |
655 | * back to the hole we've found. This case looks like | |
656 | * x + 1 ... | x | x + 1 | x ... | |
657 | * ^ binary search stopped here | |
658 | * Another case we need to handle that only occurs in 256k | |
659 | * logs is | |
660 | * x + 1 ... | x ... | x+1 | x ... | |
661 | * ^ binary search stops here | |
662 | * In a 256k log, the scan at the end of the log will see the | |
663 | * x + 1 blocks. We need to skip past those since that is | |
664 | * certainly not the head of the log. By searching for | |
665 | * last_half_cycle-1 we accomplish that. | |
666 | */ | |
1da177e4 | 667 | ASSERT(head_blk <= INT_MAX && |
3f943d85 AE |
668 | (xfs_daddr_t) num_scan_bblks >= head_blk); |
669 | start_blk = log_bbnum - (num_scan_bblks - head_blk); | |
1da177e4 LT |
670 | if ((error = xlog_find_verify_cycle(log, start_blk, |
671 | num_scan_bblks - (int)head_blk, | |
672 | (stop_on_cycle - 1), &new_blk))) | |
6e9b3dd8 | 673 | goto out_free_buffer; |
1da177e4 LT |
674 | if (new_blk != -1) { |
675 | head_blk = new_blk; | |
9db127ed | 676 | goto validate_head; |
1da177e4 LT |
677 | } |
678 | ||
679 | /* | |
680 | * Scan beginning of log now. The last part of the physical | |
681 | * log is good. This scan needs to verify that it doesn't find | |
682 | * the last_half_cycle. | |
683 | */ | |
684 | start_blk = 0; | |
685 | ASSERT(head_blk <= INT_MAX); | |
686 | if ((error = xlog_find_verify_cycle(log, | |
687 | start_blk, (int)head_blk, | |
688 | stop_on_cycle, &new_blk))) | |
6e9b3dd8 | 689 | goto out_free_buffer; |
1da177e4 LT |
690 | if (new_blk != -1) |
691 | head_blk = new_blk; | |
692 | } | |
693 | ||
9db127ed | 694 | validate_head: |
1da177e4 LT |
695 | /* |
696 | * Now we need to make sure head_blk is not pointing to a block in | |
697 | * the middle of a log record. | |
698 | */ | |
699 | num_scan_bblks = XLOG_REC_SHIFT(log); | |
700 | if (head_blk >= num_scan_bblks) { | |
701 | start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ | |
702 | ||
703 | /* start ptr at last block ptr before head_blk */ | |
2451337d DC |
704 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
705 | if (error == 1) | |
706 | error = -EIO; | |
707 | if (error) | |
6e9b3dd8 | 708 | goto out_free_buffer; |
1da177e4 LT |
709 | } else { |
710 | start_blk = 0; | |
711 | ASSERT(head_blk <= INT_MAX); | |
2451337d DC |
712 | error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0); |
713 | if (error < 0) | |
6e9b3dd8 | 714 | goto out_free_buffer; |
2451337d | 715 | if (error == 1) { |
1da177e4 | 716 | /* We hit the beginning of the log during our search */ |
3f943d85 | 717 | start_blk = log_bbnum - (num_scan_bblks - head_blk); |
1da177e4 LT |
718 | new_blk = log_bbnum; |
719 | ASSERT(start_blk <= INT_MAX && | |
720 | (xfs_daddr_t) log_bbnum-start_blk >= 0); | |
721 | ASSERT(head_blk <= INT_MAX); | |
2451337d DC |
722 | error = xlog_find_verify_log_record(log, start_blk, |
723 | &new_blk, (int)head_blk); | |
724 | if (error == 1) | |
725 | error = -EIO; | |
726 | if (error) | |
6e9b3dd8 | 727 | goto out_free_buffer; |
1da177e4 LT |
728 | if (new_blk != log_bbnum) |
729 | head_blk = new_blk; | |
730 | } else if (error) | |
6e9b3dd8 | 731 | goto out_free_buffer; |
1da177e4 LT |
732 | } |
733 | ||
49292576 | 734 | kvfree(buffer); |
1da177e4 LT |
735 | if (head_blk == log_bbnum) |
736 | *return_head_blk = 0; | |
737 | else | |
738 | *return_head_blk = head_blk; | |
739 | /* | |
740 | * When returning here, we have a good block number. Bad block | |
741 | * means that during a previous crash, we didn't have a clean break | |
742 | * from cycle number N to cycle number N-1. In this case, we need | |
743 | * to find the first block with cycle number N-1. | |
744 | */ | |
745 | return 0; | |
746 | ||
6e9b3dd8 | 747 | out_free_buffer: |
49292576 | 748 | kvfree(buffer); |
1da177e4 | 749 | if (error) |
a0fa2b67 | 750 | xfs_warn(log->l_mp, "failed to find log head"); |
1da177e4 LT |
751 | return error; |
752 | } | |
753 | ||
eed6b462 BF |
754 | /* |
755 | * Seek backwards in the log for log record headers. | |
756 | * | |
757 | * Given a starting log block, walk backwards until we find the provided number | |
758 | * of records or hit the provided tail block. The return value is the number of | |
759 | * records encountered or a negative error code. The log block and buffer | |
760 | * pointer of the last record seen are returned in rblk and rhead respectively. | |
761 | */ | |
762 | STATIC int | |
763 | xlog_rseek_logrec_hdr( | |
764 | struct xlog *log, | |
765 | xfs_daddr_t head_blk, | |
766 | xfs_daddr_t tail_blk, | |
767 | int count, | |
6e9b3dd8 | 768 | char *buffer, |
eed6b462 BF |
769 | xfs_daddr_t *rblk, |
770 | struct xlog_rec_header **rhead, | |
771 | bool *wrapped) | |
772 | { | |
773 | int i; | |
774 | int error; | |
775 | int found = 0; | |
776 | char *offset = NULL; | |
777 | xfs_daddr_t end_blk; | |
778 | ||
779 | *wrapped = false; | |
780 | ||
781 | /* | |
782 | * Walk backwards from the head block until we hit the tail or the first | |
783 | * block in the log. | |
784 | */ | |
785 | end_blk = head_blk > tail_blk ? tail_blk : 0; | |
786 | for (i = (int) head_blk - 1; i >= end_blk; i--) { | |
6e9b3dd8 | 787 | error = xlog_bread(log, i, 1, buffer, &offset); |
eed6b462 BF |
788 | if (error) |
789 | goto out_error; | |
790 | ||
791 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
792 | *rblk = i; | |
793 | *rhead = (struct xlog_rec_header *) offset; | |
794 | if (++found == count) | |
795 | break; | |
796 | } | |
797 | } | |
798 | ||
799 | /* | |
800 | * If we haven't hit the tail block or the log record header count, | |
801 | * start looking again from the end of the physical log. Note that | |
802 | * callers can pass head == tail if the tail is not yet known. | |
803 | */ | |
804 | if (tail_blk >= head_blk && found != count) { | |
805 | for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) { | |
6e9b3dd8 | 806 | error = xlog_bread(log, i, 1, buffer, &offset); |
eed6b462 BF |
807 | if (error) |
808 | goto out_error; | |
809 | ||
810 | if (*(__be32 *)offset == | |
811 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
812 | *wrapped = true; | |
813 | *rblk = i; | |
814 | *rhead = (struct xlog_rec_header *) offset; | |
815 | if (++found == count) | |
816 | break; | |
817 | } | |
818 | } | |
819 | } | |
820 | ||
821 | return found; | |
822 | ||
823 | out_error: | |
824 | return error; | |
825 | } | |
826 | ||
7088c413 BF |
827 | /* |
828 | * Seek forward in the log for log record headers. | |
829 | * | |
830 | * Given head and tail blocks, walk forward from the tail block until we find | |
831 | * the provided number of records or hit the head block. The return value is the | |
832 | * number of records encountered or a negative error code. The log block and | |
833 | * buffer pointer of the last record seen are returned in rblk and rhead | |
834 | * respectively. | |
835 | */ | |
836 | STATIC int | |
837 | xlog_seek_logrec_hdr( | |
838 | struct xlog *log, | |
839 | xfs_daddr_t head_blk, | |
840 | xfs_daddr_t tail_blk, | |
841 | int count, | |
6e9b3dd8 | 842 | char *buffer, |
7088c413 BF |
843 | xfs_daddr_t *rblk, |
844 | struct xlog_rec_header **rhead, | |
845 | bool *wrapped) | |
846 | { | |
847 | int i; | |
848 | int error; | |
849 | int found = 0; | |
850 | char *offset = NULL; | |
851 | xfs_daddr_t end_blk; | |
852 | ||
853 | *wrapped = false; | |
854 | ||
855 | /* | |
856 | * Walk forward from the tail block until we hit the head or the last | |
857 | * block in the log. | |
858 | */ | |
859 | end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1; | |
860 | for (i = (int) tail_blk; i <= end_blk; i++) { | |
6e9b3dd8 | 861 | error = xlog_bread(log, i, 1, buffer, &offset); |
7088c413 BF |
862 | if (error) |
863 | goto out_error; | |
864 | ||
865 | if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
866 | *rblk = i; | |
867 | *rhead = (struct xlog_rec_header *) offset; | |
868 | if (++found == count) | |
869 | break; | |
870 | } | |
871 | } | |
872 | ||
873 | /* | |
874 | * If we haven't hit the head block or the log record header count, | |
875 | * start looking again from the start of the physical log. | |
876 | */ | |
877 | if (tail_blk > head_blk && found != count) { | |
878 | for (i = 0; i < (int) head_blk; i++) { | |
6e9b3dd8 | 879 | error = xlog_bread(log, i, 1, buffer, &offset); |
7088c413 BF |
880 | if (error) |
881 | goto out_error; | |
882 | ||
883 | if (*(__be32 *)offset == | |
884 | cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { | |
885 | *wrapped = true; | |
886 | *rblk = i; | |
887 | *rhead = (struct xlog_rec_header *) offset; | |
888 | if (++found == count) | |
889 | break; | |
890 | } | |
891 | } | |
892 | } | |
893 | ||
894 | return found; | |
895 | ||
896 | out_error: | |
897 | return error; | |
898 | } | |
899 | ||
900 | /* | |
4a4f66ea BF |
901 | * Calculate distance from head to tail (i.e., unused space in the log). |
902 | */ | |
903 | static inline int | |
904 | xlog_tail_distance( | |
905 | struct xlog *log, | |
906 | xfs_daddr_t head_blk, | |
907 | xfs_daddr_t tail_blk) | |
908 | { | |
909 | if (head_blk < tail_blk) | |
910 | return tail_blk - head_blk; | |
911 | ||
912 | return tail_blk + (log->l_logBBsize - head_blk); | |
913 | } | |
914 | ||
915 | /* | |
916 | * Verify the log tail. This is particularly important when torn or incomplete | |
917 | * writes have been detected near the front of the log and the head has been | |
918 | * walked back accordingly. | |
919 | * | |
920 | * We also have to handle the case where the tail was pinned and the head | |
921 | * blocked behind the tail right before a crash. If the tail had been pushed | |
922 | * immediately prior to the crash and the subsequent checkpoint was only | |
923 | * partially written, it's possible it overwrote the last referenced tail in the | |
924 | * log with garbage. This is not a coherency problem because the tail must have | |
925 | * been pushed before it can be overwritten, but appears as log corruption to | |
926 | * recovery because we have no way to know the tail was updated if the | |
927 | * subsequent checkpoint didn't write successfully. | |
7088c413 | 928 | * |
4a4f66ea BF |
929 | * Therefore, CRC check the log from tail to head. If a failure occurs and the |
930 | * offending record is within max iclog bufs from the head, walk the tail | |
931 | * forward and retry until a valid tail is found or corruption is detected out | |
932 | * of the range of a possible overwrite. | |
7088c413 BF |
933 | */ |
934 | STATIC int | |
935 | xlog_verify_tail( | |
936 | struct xlog *log, | |
937 | xfs_daddr_t head_blk, | |
4a4f66ea BF |
938 | xfs_daddr_t *tail_blk, |
939 | int hsize) | |
7088c413 BF |
940 | { |
941 | struct xlog_rec_header *thead; | |
6e9b3dd8 | 942 | char *buffer; |
7088c413 | 943 | xfs_daddr_t first_bad; |
7088c413 BF |
944 | int error = 0; |
945 | bool wrapped; | |
4a4f66ea BF |
946 | xfs_daddr_t tmp_tail; |
947 | xfs_daddr_t orig_tail = *tail_blk; | |
7088c413 | 948 | |
6e9b3dd8 CH |
949 | buffer = xlog_alloc_buffer(log, 1); |
950 | if (!buffer) | |
7088c413 BF |
951 | return -ENOMEM; |
952 | ||
953 | /* | |
4a4f66ea BF |
954 | * Make sure the tail points to a record (returns positive count on |
955 | * success). | |
7088c413 | 956 | */ |
6e9b3dd8 | 957 | error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer, |
4a4f66ea BF |
958 | &tmp_tail, &thead, &wrapped); |
959 | if (error < 0) | |
7088c413 | 960 | goto out; |
4a4f66ea BF |
961 | if (*tail_blk != tmp_tail) |
962 | *tail_blk = tmp_tail; | |
7088c413 BF |
963 | |
964 | /* | |
4a4f66ea BF |
965 | * Run a CRC check from the tail to the head. We can't just check |
966 | * MAX_ICLOGS records past the tail because the tail may point to stale | |
967 | * blocks cleared during the search for the head/tail. These blocks are | |
968 | * overwritten with zero-length records and thus record count is not a | |
969 | * reliable indicator of the iclog state before a crash. | |
7088c413 | 970 | */ |
4a4f66ea BF |
971 | first_bad = 0; |
972 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, | |
7088c413 | 973 | XLOG_RECOVER_CRCPASS, &first_bad); |
a4c9b34d | 974 | while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
4a4f66ea BF |
975 | int tail_distance; |
976 | ||
977 | /* | |
978 | * Is corruption within range of the head? If so, retry from | |
979 | * the next record. Otherwise return an error. | |
980 | */ | |
981 | tail_distance = xlog_tail_distance(log, head_blk, first_bad); | |
982 | if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize)) | |
983 | break; | |
7088c413 | 984 | |
4a4f66ea | 985 | /* skip to the next record; returns positive count on success */ |
6e9b3dd8 CH |
986 | error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, |
987 | buffer, &tmp_tail, &thead, &wrapped); | |
4a4f66ea BF |
988 | if (error < 0) |
989 | goto out; | |
990 | ||
991 | *tail_blk = tmp_tail; | |
992 | first_bad = 0; | |
993 | error = xlog_do_recovery_pass(log, head_blk, *tail_blk, | |
994 | XLOG_RECOVER_CRCPASS, &first_bad); | |
995 | } | |
996 | ||
997 | if (!error && *tail_blk != orig_tail) | |
998 | xfs_warn(log->l_mp, | |
999 | "Tail block (0x%llx) overwrite detected. Updated to 0x%llx", | |
1000 | orig_tail, *tail_blk); | |
7088c413 | 1001 | out: |
49292576 | 1002 | kvfree(buffer); |
7088c413 BF |
1003 | return error; |
1004 | } | |
1005 | ||
1006 | /* | |
1007 | * Detect and trim torn writes from the head of the log. | |
1008 | * | |
1009 | * Storage without sector atomicity guarantees can result in torn writes in the | |
1010 | * log in the event of a crash. Our only means to detect this scenario is via | |
1011 | * CRC verification. While we can't always be certain that CRC verification | |
1012 | * failure is due to a torn write vs. an unrelated corruption, we do know that | |
1013 | * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at | |
1014 | * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of | |
1015 | * the log and treat failures in this range as torn writes as a matter of | |
1016 | * policy. In the event of CRC failure, the head is walked back to the last good | |
1017 | * record in the log and the tail is updated from that record and verified. | |
1018 | */ | |
1019 | STATIC int | |
1020 | xlog_verify_head( | |
1021 | struct xlog *log, | |
1022 | xfs_daddr_t *head_blk, /* in/out: unverified head */ | |
1023 | xfs_daddr_t *tail_blk, /* out: tail block */ | |
6e9b3dd8 | 1024 | char *buffer, |
7088c413 BF |
1025 | xfs_daddr_t *rhead_blk, /* start blk of last record */ |
1026 | struct xlog_rec_header **rhead, /* ptr to last record */ | |
1027 | bool *wrapped) /* last rec. wraps phys. log */ | |
1028 | { | |
1029 | struct xlog_rec_header *tmp_rhead; | |
6e9b3dd8 | 1030 | char *tmp_buffer; |
7088c413 BF |
1031 | xfs_daddr_t first_bad; |
1032 | xfs_daddr_t tmp_rhead_blk; | |
1033 | int found; | |
1034 | int error; | |
1035 | bool tmp_wrapped; | |
1036 | ||
1037 | /* | |
82ff6cc2 BF |
1038 | * Check the head of the log for torn writes. Search backwards from the |
1039 | * head until we hit the tail or the maximum number of log record I/Os | |
1040 | * that could have been in flight at one time. Use a temporary buffer so | |
6e9b3dd8 | 1041 | * we don't trash the rhead/buffer pointers from the caller. |
7088c413 | 1042 | */ |
6e9b3dd8 CH |
1043 | tmp_buffer = xlog_alloc_buffer(log, 1); |
1044 | if (!tmp_buffer) | |
7088c413 BF |
1045 | return -ENOMEM; |
1046 | error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk, | |
6e9b3dd8 CH |
1047 | XLOG_MAX_ICLOGS, tmp_buffer, |
1048 | &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped); | |
49292576 | 1049 | kvfree(tmp_buffer); |
7088c413 BF |
1050 | if (error < 0) |
1051 | return error; | |
1052 | ||
1053 | /* | |
1054 | * Now run a CRC verification pass over the records starting at the | |
1055 | * block found above to the current head. If a CRC failure occurs, the | |
1056 | * log block of the first bad record is saved in first_bad. | |
1057 | */ | |
1058 | error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk, | |
1059 | XLOG_RECOVER_CRCPASS, &first_bad); | |
a4c9b34d | 1060 | if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) { |
7088c413 BF |
1061 | /* |
1062 | * We've hit a potential torn write. Reset the error and warn | |
1063 | * about it. | |
1064 | */ | |
1065 | error = 0; | |
1066 | xfs_warn(log->l_mp, | |
1067 | "Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.", | |
1068 | first_bad, *head_blk); | |
1069 | ||
1070 | /* | |
1071 | * Get the header block and buffer pointer for the last good | |
1072 | * record before the bad record. | |
1073 | * | |
1074 | * Note that xlog_find_tail() clears the blocks at the new head | |
1075 | * (i.e., the records with invalid CRC) if the cycle number | |
b63da6c8 | 1076 | * matches the current cycle. |
7088c413 | 1077 | */ |
6e9b3dd8 CH |
1078 | found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, |
1079 | buffer, rhead_blk, rhead, wrapped); | |
7088c413 BF |
1080 | if (found < 0) |
1081 | return found; | |
1082 | if (found == 0) /* XXX: right thing to do here? */ | |
1083 | return -EIO; | |
1084 | ||
1085 | /* | |
1086 | * Reset the head block to the starting block of the first bad | |
1087 | * log record and set the tail block based on the last good | |
1088 | * record. | |
1089 | * | |
1090 | * Bail out if the updated head/tail match as this indicates | |
1091 | * possible corruption outside of the acceptable | |
1092 | * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair... | |
1093 | */ | |
1094 | *head_blk = first_bad; | |
1095 | *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn)); | |
1096 | if (*head_blk == *tail_blk) { | |
1097 | ASSERT(0); | |
1098 | return 0; | |
1099 | } | |
7088c413 | 1100 | } |
5297ac1f BF |
1101 | if (error) |
1102 | return error; | |
7088c413 | 1103 | |
4a4f66ea BF |
1104 | return xlog_verify_tail(log, *head_blk, tail_blk, |
1105 | be32_to_cpu((*rhead)->h_size)); | |
7088c413 BF |
1106 | } |
1107 | ||
0703a8e1 DC |
1108 | /* |
1109 | * We need to make sure we handle log wrapping properly, so we can't use the | |
1110 | * calculated logbno directly. Make sure it wraps to the correct bno inside the | |
1111 | * log. | |
1112 | * | |
1113 | * The log is limited to 32 bit sizes, so we use the appropriate modulus | |
1114 | * operation here and cast it back to a 64 bit daddr on return. | |
1115 | */ | |
1116 | static inline xfs_daddr_t | |
1117 | xlog_wrap_logbno( | |
1118 | struct xlog *log, | |
1119 | xfs_daddr_t bno) | |
1120 | { | |
1121 | int mod; | |
1122 | ||
1123 | div_s64_rem(bno, log->l_logBBsize, &mod); | |
1124 | return mod; | |
1125 | } | |
1126 | ||
65b99a08 BF |
1127 | /* |
1128 | * Check whether the head of the log points to an unmount record. In other | |
1129 | * words, determine whether the log is clean. If so, update the in-core state | |
1130 | * appropriately. | |
1131 | */ | |
1132 | static int | |
1133 | xlog_check_unmount_rec( | |
1134 | struct xlog *log, | |
1135 | xfs_daddr_t *head_blk, | |
1136 | xfs_daddr_t *tail_blk, | |
1137 | struct xlog_rec_header *rhead, | |
1138 | xfs_daddr_t rhead_blk, | |
6e9b3dd8 | 1139 | char *buffer, |
65b99a08 BF |
1140 | bool *clean) |
1141 | { | |
1142 | struct xlog_op_header *op_head; | |
1143 | xfs_daddr_t umount_data_blk; | |
1144 | xfs_daddr_t after_umount_blk; | |
1145 | int hblks; | |
1146 | int error; | |
1147 | char *offset; | |
1148 | ||
1149 | *clean = false; | |
1150 | ||
1151 | /* | |
1152 | * Look for unmount record. If we find it, then we know there was a | |
1153 | * clean unmount. Since 'i' could be the last block in the physical | |
1154 | * log, we convert to a log block before comparing to the head_blk. | |
1155 | * | |
1156 | * Save the current tail lsn to use to pass to xlog_clear_stale_blocks() | |
1157 | * below. We won't want to clear the unmount record if there is one, so | |
1158 | * we pass the lsn of the unmount record rather than the block after it. | |
1159 | */ | |
0c771b99 | 1160 | hblks = xlog_logrec_hblks(log, rhead); |
0703a8e1 DC |
1161 | after_umount_blk = xlog_wrap_logbno(log, |
1162 | rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len))); | |
1163 | ||
65b99a08 BF |
1164 | if (*head_blk == after_umount_blk && |
1165 | be32_to_cpu(rhead->h_num_logops) == 1) { | |
0703a8e1 | 1166 | umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks); |
6e9b3dd8 | 1167 | error = xlog_bread(log, umount_data_blk, 1, buffer, &offset); |
65b99a08 BF |
1168 | if (error) |
1169 | return error; | |
1170 | ||
1171 | op_head = (struct xlog_op_header *)offset; | |
1172 | if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { | |
1173 | /* | |
1174 | * Set tail and last sync so that newly written log | |
1175 | * records will point recovery to after the current | |
1176 | * unmount record. | |
1177 | */ | |
1178 | xlog_assign_atomic_lsn(&log->l_tail_lsn, | |
1179 | log->l_curr_cycle, after_umount_blk); | |
0dcd5a10 DC |
1180 | log->l_ailp->ail_head_lsn = |
1181 | atomic64_read(&log->l_tail_lsn); | |
65b99a08 BF |
1182 | *tail_blk = after_umount_blk; |
1183 | ||
1184 | *clean = true; | |
1185 | } | |
1186 | } | |
1187 | ||
1188 | return 0; | |
1189 | } | |
1190 | ||
717bc0eb BF |
1191 | static void |
1192 | xlog_set_state( | |
1193 | struct xlog *log, | |
1194 | xfs_daddr_t head_blk, | |
1195 | struct xlog_rec_header *rhead, | |
1196 | xfs_daddr_t rhead_blk, | |
1197 | bool bump_cycle) | |
1198 | { | |
1199 | /* | |
1200 | * Reset log values according to the state of the log when we | |
1201 | * crashed. In the case where head_blk == 0, we bump curr_cycle | |
1202 | * one because the next write starts a new cycle rather than | |
1203 | * continuing the cycle of the last good log record. At this | |
1204 | * point we have guaranteed that all partial log records have been | |
1205 | * accounted for. Therefore, we know that the last good log record | |
1206 | * written was complete and ended exactly on the end boundary | |
1207 | * of the physical log. | |
1208 | */ | |
1209 | log->l_prev_block = rhead_blk; | |
1210 | log->l_curr_block = (int)head_blk; | |
1211 | log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); | |
1212 | if (bump_cycle) | |
1213 | log->l_curr_cycle++; | |
1214 | atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); | |
0dcd5a10 | 1215 | log->l_ailp->ail_head_lsn = be64_to_cpu(rhead->h_lsn); |
717bc0eb BF |
1216 | } |
1217 | ||
1da177e4 LT |
1218 | /* |
1219 | * Find the sync block number or the tail of the log. | |
1220 | * | |
1221 | * This will be the block number of the last record to have its | |
1222 | * associated buffers synced to disk. Every log record header has | |
1223 | * a sync lsn embedded in it. LSNs hold block numbers, so it is easy | |
1224 | * to get a sync block number. The only concern is to figure out which | |
1225 | * log record header to believe. | |
1226 | * | |
1227 | * The following algorithm uses the log record header with the largest | |
1228 | * lsn. The entire log record does not need to be valid. We only care | |
1229 | * that the header is valid. | |
1230 | * | |
1231 | * We could speed up search by using current head_blk buffer, but it is not | |
1232 | * available. | |
1233 | */ | |
5d77c0dc | 1234 | STATIC int |
1da177e4 | 1235 | xlog_find_tail( |
9a8d2fdb | 1236 | struct xlog *log, |
1da177e4 | 1237 | xfs_daddr_t *head_blk, |
65be6054 | 1238 | xfs_daddr_t *tail_blk) |
1da177e4 LT |
1239 | { |
1240 | xlog_rec_header_t *rhead; | |
b2a922cd | 1241 | char *offset = NULL; |
6e9b3dd8 | 1242 | char *buffer; |
7088c413 | 1243 | int error; |
7088c413 | 1244 | xfs_daddr_t rhead_blk; |
1da177e4 | 1245 | xfs_lsn_t tail_lsn; |
eed6b462 | 1246 | bool wrapped = false; |
65b99a08 | 1247 | bool clean = false; |
1da177e4 LT |
1248 | |
1249 | /* | |
1250 | * Find previous log record | |
1251 | */ | |
1252 | if ((error = xlog_find_head(log, head_blk))) | |
1253 | return error; | |
82ff6cc2 | 1254 | ASSERT(*head_blk < INT_MAX); |
1da177e4 | 1255 | |
6e9b3dd8 CH |
1256 | buffer = xlog_alloc_buffer(log, 1); |
1257 | if (!buffer) | |
2451337d | 1258 | return -ENOMEM; |
1da177e4 | 1259 | if (*head_blk == 0) { /* special case */ |
6e9b3dd8 | 1260 | error = xlog_bread(log, 0, 1, buffer, &offset); |
076e6acb | 1261 | if (error) |
9db127ed | 1262 | goto done; |
076e6acb | 1263 | |
03bea6fe | 1264 | if (xlog_get_cycle(offset) == 0) { |
1da177e4 LT |
1265 | *tail_blk = 0; |
1266 | /* leave all other log inited values alone */ | |
9db127ed | 1267 | goto done; |
1da177e4 LT |
1268 | } |
1269 | } | |
1270 | ||
1271 | /* | |
82ff6cc2 BF |
1272 | * Search backwards through the log looking for the log record header |
1273 | * block. This wraps all the way back around to the head so something is | |
1274 | * seriously wrong if we can't find it. | |
1da177e4 | 1275 | */ |
6e9b3dd8 | 1276 | error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer, |
82ff6cc2 BF |
1277 | &rhead_blk, &rhead, &wrapped); |
1278 | if (error < 0) | |
050552cb | 1279 | goto done; |
82ff6cc2 BF |
1280 | if (!error) { |
1281 | xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); | |
050552cb DW |
1282 | error = -EFSCORRUPTED; |
1283 | goto done; | |
82ff6cc2 BF |
1284 | } |
1285 | *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); | |
1da177e4 LT |
1286 | |
1287 | /* | |
717bc0eb | 1288 | * Set the log state based on the current head record. |
1da177e4 | 1289 | */ |
717bc0eb | 1290 | xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped); |
65b99a08 | 1291 | tail_lsn = atomic64_read(&log->l_tail_lsn); |
1da177e4 LT |
1292 | |
1293 | /* | |
65b99a08 BF |
1294 | * Look for an unmount record at the head of the log. This sets the log |
1295 | * state to determine whether recovery is necessary. | |
1da177e4 | 1296 | */ |
65b99a08 | 1297 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead, |
6e9b3dd8 | 1298 | rhead_blk, buffer, &clean); |
65b99a08 BF |
1299 | if (error) |
1300 | goto done; | |
1da177e4 LT |
1301 | |
1302 | /* | |
7f6aff3a BF |
1303 | * Verify the log head if the log is not clean (e.g., we have anything |
1304 | * but an unmount record at the head). This uses CRC verification to | |
1305 | * detect and trim torn writes. If discovered, CRC failures are | |
1306 | * considered torn writes and the log head is trimmed accordingly. | |
1da177e4 | 1307 | * |
7f6aff3a BF |
1308 | * Note that we can only run CRC verification when the log is dirty |
1309 | * because there's no guarantee that the log data behind an unmount | |
1310 | * record is compatible with the current architecture. | |
1da177e4 | 1311 | */ |
7f6aff3a BF |
1312 | if (!clean) { |
1313 | xfs_daddr_t orig_head = *head_blk; | |
1da177e4 | 1314 | |
6e9b3dd8 | 1315 | error = xlog_verify_head(log, head_blk, tail_blk, buffer, |
7f6aff3a | 1316 | &rhead_blk, &rhead, &wrapped); |
076e6acb | 1317 | if (error) |
9db127ed | 1318 | goto done; |
076e6acb | 1319 | |
7f6aff3a BF |
1320 | /* update in-core state again if the head changed */ |
1321 | if (*head_blk != orig_head) { | |
1322 | xlog_set_state(log, *head_blk, rhead, rhead_blk, | |
1323 | wrapped); | |
1324 | tail_lsn = atomic64_read(&log->l_tail_lsn); | |
1325 | error = xlog_check_unmount_rec(log, head_blk, tail_blk, | |
6e9b3dd8 | 1326 | rhead, rhead_blk, buffer, |
7f6aff3a BF |
1327 | &clean); |
1328 | if (error) | |
1329 | goto done; | |
1da177e4 LT |
1330 | } |
1331 | } | |
1332 | ||
65b99a08 BF |
1333 | /* |
1334 | * Note that the unmount was clean. If the unmount was not clean, we | |
1335 | * need to know this to rebuild the superblock counters from the perag | |
1336 | * headers if we have a filesystem using non-persistent counters. | |
1337 | */ | |
1338 | if (clean) | |
ca57120d | 1339 | xfs_set_clean(log->l_mp); |
1da177e4 LT |
1340 | |
1341 | /* | |
1342 | * Make sure that there are no blocks in front of the head | |
1343 | * with the same cycle number as the head. This can happen | |
1344 | * because we allow multiple outstanding log writes concurrently, | |
1345 | * and the later writes might make it out before earlier ones. | |
1346 | * | |
1347 | * We use the lsn from before modifying it so that we'll never | |
1348 | * overwrite the unmount record after a clean unmount. | |
1349 | * | |
1350 | * Do this only if we are going to recover the filesystem | |
1351 | * | |
1352 | * NOTE: This used to say "if (!readonly)" | |
1353 | * However on Linux, we can & do recover a read-only filesystem. | |
1354 | * We only skip recovery if NORECOVERY is specified on mount, | |
1355 | * in which case we would not be here. | |
1356 | * | |
1357 | * But... if the -device- itself is readonly, just skip this. | |
1358 | * We can't recover this device anyway, so it won't matter. | |
1359 | */ | |
2d15d2c0 | 1360 | if (!xfs_readonly_buftarg(log->l_targ)) |
1da177e4 | 1361 | error = xlog_clear_stale_blocks(log, tail_lsn); |
1da177e4 | 1362 | |
9db127ed | 1363 | done: |
49292576 | 1364 | kvfree(buffer); |
1da177e4 LT |
1365 | |
1366 | if (error) | |
a0fa2b67 | 1367 | xfs_warn(log->l_mp, "failed to locate log tail"); |
1da177e4 LT |
1368 | return error; |
1369 | } | |
1370 | ||
1371 | /* | |
1372 | * Is the log zeroed at all? | |
1373 | * | |
1374 | * The last binary search should be changed to perform an X block read | |
1375 | * once X becomes small enough. You can then search linearly through | |
1376 | * the X blocks. This will cut down on the number of reads we need to do. | |
1377 | * | |
1378 | * If the log is partially zeroed, this routine will pass back the blkno | |
1379 | * of the first block with cycle number 0. It won't have a complete LR | |
1380 | * preceding it. | |
1381 | * | |
1382 | * Return: | |
1383 | * 0 => the log is completely written to | |
2451337d DC |
1384 | * 1 => use *blk_no as the first block of the log |
1385 | * <0 => error has occurred | |
1da177e4 | 1386 | */ |
a8272ce0 | 1387 | STATIC int |
1da177e4 | 1388 | xlog_find_zeroed( |
9a8d2fdb | 1389 | struct xlog *log, |
1da177e4 LT |
1390 | xfs_daddr_t *blk_no) |
1391 | { | |
6e9b3dd8 | 1392 | char *buffer; |
b2a922cd | 1393 | char *offset; |
1da177e4 LT |
1394 | uint first_cycle, last_cycle; |
1395 | xfs_daddr_t new_blk, last_blk, start_blk; | |
1396 | xfs_daddr_t num_scan_bblks; | |
1397 | int error, log_bbnum = log->l_logBBsize; | |
49292576 | 1398 | int ret = 1; |
1da177e4 | 1399 | |
6fdf8ccc NS |
1400 | *blk_no = 0; |
1401 | ||
1da177e4 | 1402 | /* check totally zeroed log */ |
6e9b3dd8 CH |
1403 | buffer = xlog_alloc_buffer(log, 1); |
1404 | if (!buffer) | |
2451337d | 1405 | return -ENOMEM; |
6e9b3dd8 | 1406 | error = xlog_bread(log, 0, 1, buffer, &offset); |
076e6acb | 1407 | if (error) |
6e9b3dd8 | 1408 | goto out_free_buffer; |
076e6acb | 1409 | |
03bea6fe | 1410 | first_cycle = xlog_get_cycle(offset); |
1da177e4 LT |
1411 | if (first_cycle == 0) { /* completely zeroed log */ |
1412 | *blk_no = 0; | |
49292576 | 1413 | goto out_free_buffer; |
1da177e4 LT |
1414 | } |
1415 | ||
1416 | /* check partially zeroed log */ | |
6e9b3dd8 | 1417 | error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset); |
076e6acb | 1418 | if (error) |
6e9b3dd8 | 1419 | goto out_free_buffer; |
076e6acb | 1420 | |
03bea6fe | 1421 | last_cycle = xlog_get_cycle(offset); |
1da177e4 | 1422 | if (last_cycle != 0) { /* log completely written to */ |
49292576 DC |
1423 | ret = 0; |
1424 | goto out_free_buffer; | |
1da177e4 LT |
1425 | } |
1426 | ||
1427 | /* we have a partially zeroed log */ | |
1428 | last_blk = log_bbnum-1; | |
6e9b3dd8 CH |
1429 | error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0); |
1430 | if (error) | |
1431 | goto out_free_buffer; | |
1da177e4 LT |
1432 | |
1433 | /* | |
1434 | * Validate the answer. Because there is no way to guarantee that | |
1435 | * the entire log is made up of log records which are the same size, | |
1436 | * we scan over the defined maximum blocks. At this point, the maximum | |
1437 | * is not chosen to mean anything special. XXXmiken | |
1438 | */ | |
1439 | num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); | |
1440 | ASSERT(num_scan_bblks <= INT_MAX); | |
1441 | ||
1442 | if (last_blk < num_scan_bblks) | |
1443 | num_scan_bblks = last_blk; | |
1444 | start_blk = last_blk - num_scan_bblks; | |
1445 | ||
1446 | /* | |
1447 | * We search for any instances of cycle number 0 that occur before | |
1448 | * our current estimate of the head. What we're trying to detect is | |
1449 | * 1 ... | 0 | 1 | 0... | |
1450 | * ^ binary search ends here | |
1451 | */ | |
1452 | if ((error = xlog_find_verify_cycle(log, start_blk, | |
1453 | (int)num_scan_bblks, 0, &new_blk))) | |
6e9b3dd8 | 1454 | goto out_free_buffer; |
1da177e4 LT |
1455 | if (new_blk != -1) |
1456 | last_blk = new_blk; | |
1457 | ||
1458 | /* | |
1459 | * Potentially backup over partial log record write. We don't need | |
1460 | * to search the end of the log because we know it is zero. | |
1461 | */ | |
2451337d DC |
1462 | error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0); |
1463 | if (error == 1) | |
1464 | error = -EIO; | |
1465 | if (error) | |
6e9b3dd8 | 1466 | goto out_free_buffer; |
1da177e4 LT |
1467 | |
1468 | *blk_no = last_blk; | |
6e9b3dd8 | 1469 | out_free_buffer: |
49292576 | 1470 | kvfree(buffer); |
1da177e4 LT |
1471 | if (error) |
1472 | return error; | |
49292576 | 1473 | return ret; |
1da177e4 LT |
1474 | } |
1475 | ||
1476 | /* | |
1477 | * These are simple subroutines used by xlog_clear_stale_blocks() below | |
1478 | * to initialize a buffer full of empty log record headers and write | |
1479 | * them into the log. | |
1480 | */ | |
1481 | STATIC void | |
1482 | xlog_add_record( | |
9a8d2fdb | 1483 | struct xlog *log, |
b2a922cd | 1484 | char *buf, |
1da177e4 LT |
1485 | int cycle, |
1486 | int block, | |
1487 | int tail_cycle, | |
1488 | int tail_block) | |
1489 | { | |
1490 | xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; | |
1491 | ||
1492 | memset(buf, 0, BBSIZE); | |
b53e675d CH |
1493 | recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); |
1494 | recp->h_cycle = cpu_to_be32(cycle); | |
1495 | recp->h_version = cpu_to_be32( | |
38c26bfd | 1496 | xfs_has_logv2(log->l_mp) ? 2 : 1); |
b53e675d CH |
1497 | recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); |
1498 | recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); | |
1499 | recp->h_fmt = cpu_to_be32(XLOG_FMT); | |
1da177e4 LT |
1500 | memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); |
1501 | } | |
1502 | ||
1503 | STATIC int | |
1504 | xlog_write_log_records( | |
9a8d2fdb | 1505 | struct xlog *log, |
1da177e4 LT |
1506 | int cycle, |
1507 | int start_block, | |
1508 | int blocks, | |
1509 | int tail_cycle, | |
1510 | int tail_block) | |
1511 | { | |
b2a922cd | 1512 | char *offset; |
6e9b3dd8 | 1513 | char *buffer; |
1da177e4 | 1514 | int balign, ealign; |
69ce58f0 | 1515 | int sectbb = log->l_sectBBsize; |
1da177e4 LT |
1516 | int end_block = start_block + blocks; |
1517 | int bufblks; | |
1518 | int error = 0; | |
1519 | int i, j = 0; | |
1520 | ||
6881a229 AE |
1521 | /* |
1522 | * Greedily allocate a buffer big enough to handle the full | |
1523 | * range of basic blocks to be written. If that fails, try | |
1524 | * a smaller size. We need to be able to write at least a | |
1525 | * log sector, or we're out of luck. | |
1526 | */ | |
8b010acb | 1527 | bufblks = roundup_pow_of_two(blocks); |
81158e0c DC |
1528 | while (bufblks > log->l_logBBsize) |
1529 | bufblks >>= 1; | |
6e9b3dd8 | 1530 | while (!(buffer = xlog_alloc_buffer(log, bufblks))) { |
1da177e4 | 1531 | bufblks >>= 1; |
69ce58f0 | 1532 | if (bufblks < sectbb) |
2451337d | 1533 | return -ENOMEM; |
1da177e4 LT |
1534 | } |
1535 | ||
1536 | /* We may need to do a read at the start to fill in part of | |
1537 | * the buffer in the starting sector not covered by the first | |
1538 | * write below. | |
1539 | */ | |
5c17f533 | 1540 | balign = round_down(start_block, sectbb); |
1da177e4 | 1541 | if (balign != start_block) { |
6e9b3dd8 | 1542 | error = xlog_bread_noalign(log, start_block, 1, buffer); |
076e6acb | 1543 | if (error) |
6e9b3dd8 | 1544 | goto out_free_buffer; |
076e6acb | 1545 | |
1da177e4 LT |
1546 | j = start_block - balign; |
1547 | } | |
1548 | ||
1549 | for (i = start_block; i < end_block; i += bufblks) { | |
1550 | int bcount, endcount; | |
1551 | ||
1552 | bcount = min(bufblks, end_block - start_block); | |
1553 | endcount = bcount - j; | |
1554 | ||
1555 | /* We may need to do a read at the end to fill in part of | |
1556 | * the buffer in the final sector not covered by the write. | |
1557 | * If this is the same sector as the above read, skip it. | |
1558 | */ | |
5c17f533 | 1559 | ealign = round_down(end_block, sectbb); |
1da177e4 | 1560 | if (j == 0 && (start_block + endcount > ealign)) { |
6ad5b325 | 1561 | error = xlog_bread_noalign(log, ealign, sectbb, |
6e9b3dd8 | 1562 | buffer + BBTOB(ealign - start_block)); |
076e6acb CH |
1563 | if (error) |
1564 | break; | |
1565 | ||
1da177e4 LT |
1566 | } |
1567 | ||
6e9b3dd8 | 1568 | offset = buffer + xlog_align(log, start_block); |
1da177e4 LT |
1569 | for (; j < endcount; j++) { |
1570 | xlog_add_record(log, offset, cycle, i+j, | |
1571 | tail_cycle, tail_block); | |
1572 | offset += BBSIZE; | |
1573 | } | |
6e9b3dd8 | 1574 | error = xlog_bwrite(log, start_block, endcount, buffer); |
1da177e4 LT |
1575 | if (error) |
1576 | break; | |
1577 | start_block += endcount; | |
1578 | j = 0; | |
1579 | } | |
076e6acb | 1580 | |
6e9b3dd8 | 1581 | out_free_buffer: |
49292576 | 1582 | kvfree(buffer); |
1da177e4 LT |
1583 | return error; |
1584 | } | |
1585 | ||
1586 | /* | |
1587 | * This routine is called to blow away any incomplete log writes out | |
1588 | * in front of the log head. We do this so that we won't become confused | |
1589 | * if we come up, write only a little bit more, and then crash again. | |
1590 | * If we leave the partial log records out there, this situation could | |
1591 | * cause us to think those partial writes are valid blocks since they | |
1592 | * have the current cycle number. We get rid of them by overwriting them | |
1593 | * with empty log records with the old cycle number rather than the | |
1594 | * current one. | |
1595 | * | |
1596 | * The tail lsn is passed in rather than taken from | |
1597 | * the log so that we will not write over the unmount record after a | |
1598 | * clean unmount in a 512 block log. Doing so would leave the log without | |
1599 | * any valid log records in it until a new one was written. If we crashed | |
1600 | * during that time we would not be able to recover. | |
1601 | */ | |
1602 | STATIC int | |
1603 | xlog_clear_stale_blocks( | |
9a8d2fdb | 1604 | struct xlog *log, |
1da177e4 LT |
1605 | xfs_lsn_t tail_lsn) |
1606 | { | |
1607 | int tail_cycle, head_cycle; | |
1608 | int tail_block, head_block; | |
1609 | int tail_distance, max_distance; | |
1610 | int distance; | |
1611 | int error; | |
1612 | ||
1613 | tail_cycle = CYCLE_LSN(tail_lsn); | |
1614 | tail_block = BLOCK_LSN(tail_lsn); | |
1615 | head_cycle = log->l_curr_cycle; | |
1616 | head_block = log->l_curr_block; | |
1617 | ||
1618 | /* | |
1619 | * Figure out the distance between the new head of the log | |
1620 | * and the tail. We want to write over any blocks beyond the | |
1621 | * head that we may have written just before the crash, but | |
1622 | * we don't want to overwrite the tail of the log. | |
1623 | */ | |
1624 | if (head_cycle == tail_cycle) { | |
1625 | /* | |
1626 | * The tail is behind the head in the physical log, | |
1627 | * so the distance from the head to the tail is the | |
1628 | * distance from the head to the end of the log plus | |
1629 | * the distance from the beginning of the log to the | |
1630 | * tail. | |
1631 | */ | |
a71895c5 DW |
1632 | if (XFS_IS_CORRUPT(log->l_mp, |
1633 | head_block < tail_block || | |
1634 | head_block >= log->l_logBBsize)) | |
2451337d | 1635 | return -EFSCORRUPTED; |
1da177e4 LT |
1636 | tail_distance = tail_block + (log->l_logBBsize - head_block); |
1637 | } else { | |
1638 | /* | |
1639 | * The head is behind the tail in the physical log, | |
1640 | * so the distance from the head to the tail is just | |
1641 | * the tail block minus the head block. | |
1642 | */ | |
a71895c5 DW |
1643 | if (XFS_IS_CORRUPT(log->l_mp, |
1644 | head_block >= tail_block || | |
1645 | head_cycle != tail_cycle + 1)) | |
2451337d | 1646 | return -EFSCORRUPTED; |
1da177e4 LT |
1647 | tail_distance = tail_block - head_block; |
1648 | } | |
1649 | ||
1650 | /* | |
1651 | * If the head is right up against the tail, we can't clear | |
1652 | * anything. | |
1653 | */ | |
1654 | if (tail_distance <= 0) { | |
1655 | ASSERT(tail_distance == 0); | |
1656 | return 0; | |
1657 | } | |
1658 | ||
1659 | max_distance = XLOG_TOTAL_REC_SHIFT(log); | |
1660 | /* | |
1661 | * Take the smaller of the maximum amount of outstanding I/O | |
1662 | * we could have and the distance to the tail to clear out. | |
1663 | * We take the smaller so that we don't overwrite the tail and | |
1664 | * we don't waste all day writing from the head to the tail | |
1665 | * for no reason. | |
1666 | */ | |
9bb54cb5 | 1667 | max_distance = min(max_distance, tail_distance); |
1da177e4 LT |
1668 | |
1669 | if ((head_block + max_distance) <= log->l_logBBsize) { | |
1670 | /* | |
1671 | * We can stomp all the blocks we need to without | |
1672 | * wrapping around the end of the log. Just do it | |
1673 | * in a single write. Use the cycle number of the | |
1674 | * current cycle minus one so that the log will look like: | |
1675 | * n ... | n - 1 ... | |
1676 | */ | |
1677 | error = xlog_write_log_records(log, (head_cycle - 1), | |
1678 | head_block, max_distance, tail_cycle, | |
1679 | tail_block); | |
1680 | if (error) | |
1681 | return error; | |
1682 | } else { | |
1683 | /* | |
1684 | * We need to wrap around the end of the physical log in | |
1685 | * order to clear all the blocks. Do it in two separate | |
1686 | * I/Os. The first write should be from the head to the | |
1687 | * end of the physical log, and it should use the current | |
1688 | * cycle number minus one just like above. | |
1689 | */ | |
1690 | distance = log->l_logBBsize - head_block; | |
1691 | error = xlog_write_log_records(log, (head_cycle - 1), | |
1692 | head_block, distance, tail_cycle, | |
1693 | tail_block); | |
1694 | ||
1695 | if (error) | |
1696 | return error; | |
1697 | ||
1698 | /* | |
1699 | * Now write the blocks at the start of the physical log. | |
1700 | * This writes the remainder of the blocks we want to clear. | |
1701 | * It uses the current cycle number since we're now on the | |
1702 | * same cycle as the head so that we get: | |
1703 | * n ... n ... | n - 1 ... | |
1704 | * ^^^^^ blocks we're writing | |
1705 | */ | |
1706 | distance = max_distance - (log->l_logBBsize - head_block); | |
1707 | error = xlog_write_log_records(log, head_cycle, 0, distance, | |
1708 | tail_cycle, tail_block); | |
1709 | if (error) | |
1710 | return error; | |
1711 | } | |
1712 | ||
1713 | return 0; | |
1714 | } | |
1715 | ||
154c733a DW |
1716 | /* |
1717 | * Release the recovered intent item in the AIL that matches the given intent | |
1718 | * type and intent id. | |
1719 | */ | |
1720 | void | |
1721 | xlog_recover_release_intent( | |
03f7767c DW |
1722 | struct xlog *log, |
1723 | unsigned short intent_type, | |
1724 | uint64_t intent_id) | |
154c733a | 1725 | { |
03f7767c DW |
1726 | struct xfs_defer_pending *dfp, *n; |
1727 | ||
1728 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { | |
1729 | struct xfs_log_item *lip = dfp->dfp_intent; | |
154c733a | 1730 | |
154c733a DW |
1731 | if (lip->li_type != intent_type) |
1732 | continue; | |
1733 | if (!lip->li_ops->iop_match(lip, intent_id)) | |
1734 | continue; | |
1735 | ||
03f7767c | 1736 | ASSERT(xlog_item_is_intent(lip)); |
154c733a | 1737 | |
03f7767c DW |
1738 | xfs_defer_cancel_recovery(log->l_mp, dfp); |
1739 | } | |
154c733a DW |
1740 | } |
1741 | ||
4bc61983 DW |
1742 | int |
1743 | xlog_recover_iget( | |
1744 | struct xfs_mount *mp, | |
1745 | xfs_ino_t ino, | |
1746 | struct xfs_inode **ipp) | |
1747 | { | |
1748 | int error; | |
1749 | ||
1750 | error = xfs_iget(mp, NULL, ino, 0, 0, ipp); | |
1751 | if (error) | |
1752 | return error; | |
1753 | ||
1754 | error = xfs_qm_dqattach(*ipp); | |
1755 | if (error) { | |
1756 | xfs_irele(*ipp); | |
1757 | return error; | |
1758 | } | |
1759 | ||
1760 | if (VFS_I(*ipp)->i_nlink == 0) | |
1761 | xfs_iflags_set(*ipp, XFS_IRECOVERY); | |
1762 | ||
1763 | return 0; | |
1764 | } | |
1765 | ||
14f19991 DW |
1766 | /* |
1767 | * Get an inode so that we can recover a log operation. | |
1768 | * | |
1769 | * Log intent items that target inodes effectively contain a file handle. | |
1770 | * Check that the generation number matches the intent item like we do for | |
1771 | * other file handles. Log intent items defined after this validation weakness | |
1772 | * was identified must use this function. | |
1773 | */ | |
1774 | int | |
1775 | xlog_recover_iget_handle( | |
1776 | struct xfs_mount *mp, | |
1777 | xfs_ino_t ino, | |
1778 | uint32_t gen, | |
1779 | struct xfs_inode **ipp) | |
1780 | { | |
1781 | struct xfs_inode *ip; | |
1782 | int error; | |
1783 | ||
1784 | error = xlog_recover_iget(mp, ino, &ip); | |
1785 | if (error) | |
1786 | return error; | |
1787 | ||
1788 | if (VFS_I(ip)->i_generation != gen) { | |
1789 | xfs_irele(ip); | |
1790 | return -EFSCORRUPTED; | |
1791 | } | |
1792 | ||
1793 | *ipp = ip; | |
1794 | return 0; | |
1795 | } | |
1796 | ||
1da177e4 LT |
1797 | /****************************************************************************** |
1798 | * | |
1799 | * Log recover routines | |
1800 | * | |
1801 | ****************************************************************************** | |
1802 | */ | |
86ffa471 DW |
1803 | static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = { |
1804 | &xlog_buf_item_ops, | |
1805 | &xlog_inode_item_ops, | |
1806 | &xlog_dquot_item_ops, | |
1807 | &xlog_quotaoff_item_ops, | |
1808 | &xlog_icreate_item_ops, | |
1809 | &xlog_efi_item_ops, | |
1810 | &xlog_efd_item_ops, | |
1811 | &xlog_rui_item_ops, | |
1812 | &xlog_rud_item_ops, | |
1813 | &xlog_cui_item_ops, | |
1814 | &xlog_cud_item_ops, | |
1815 | &xlog_bui_item_ops, | |
1816 | &xlog_bud_item_ops, | |
fd920008 AH |
1817 | &xlog_attri_item_ops, |
1818 | &xlog_attrd_item_ops, | |
6c08f434 DW |
1819 | &xlog_xmi_item_ops, |
1820 | &xlog_xmd_item_ops, | |
4c8900bb DW |
1821 | &xlog_rtefi_item_ops, |
1822 | &xlog_rtefd_item_ops, | |
9e823fc2 DW |
1823 | &xlog_rtrui_item_ops, |
1824 | &xlog_rtrud_item_ops, | |
fd930067 DW |
1825 | &xlog_rtcui_item_ops, |
1826 | &xlog_rtcud_item_ops, | |
86ffa471 DW |
1827 | }; |
1828 | ||
1829 | static const struct xlog_recover_item_ops * | |
1830 | xlog_find_item_ops( | |
1831 | struct xlog_recover_item *item) | |
1832 | { | |
1833 | unsigned int i; | |
1834 | ||
1835 | for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++) | |
1836 | if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type) | |
1837 | return xlog_recover_item_ops[i]; | |
1838 | ||
1839 | return NULL; | |
1840 | } | |
1da177e4 | 1841 | |
f0a76953 | 1842 | /* |
a775ad77 DC |
1843 | * Sort the log items in the transaction. |
1844 | * | |
1845 | * The ordering constraints are defined by the inode allocation and unlink | |
1846 | * behaviour. The rules are: | |
1847 | * | |
1848 | * 1. Every item is only logged once in a given transaction. Hence it | |
1849 | * represents the last logged state of the item. Hence ordering is | |
1850 | * dependent on the order in which operations need to be performed so | |
1851 | * required initial conditions are always met. | |
1852 | * | |
1853 | * 2. Cancelled buffers are recorded in pass 1 in a separate table and | |
1854 | * there's nothing to replay from them so we can simply cull them | |
1855 | * from the transaction. However, we can't do that until after we've | |
1856 | * replayed all the other items because they may be dependent on the | |
1857 | * cancelled buffer and replaying the cancelled buffer can remove it | |
77bfe1b1 | 1858 | * form the cancelled buffer table. Hence they have to be done last. |
a775ad77 DC |
1859 | * |
1860 | * 3. Inode allocation buffers must be replayed before inode items that | |
28c8e41a DC |
1861 | * read the buffer and replay changes into it. For filesystems using the |
1862 | * ICREATE transactions, this means XFS_LI_ICREATE objects need to get | |
1863 | * treated the same as inode allocation buffers as they create and | |
1864 | * initialise the buffers directly. | |
a775ad77 DC |
1865 | * |
1866 | * 4. Inode unlink buffers must be replayed after inode items are replayed. | |
1867 | * This ensures that inodes are completely flushed to the inode buffer | |
1868 | * in a "free" state before we remove the unlinked inode list pointer. | |
1869 | * | |
1870 | * Hence the ordering needs to be inode allocation buffers first, inode items | |
1871 | * second, inode unlink buffers third and cancelled buffers last. | |
1872 | * | |
1873 | * But there's a problem with that - we can't tell an inode allocation buffer | |
1874 | * apart from a regular buffer, so we can't separate them. We can, however, | |
1875 | * tell an inode unlink buffer from the others, and so we can separate them out | |
1876 | * from all the other buffers and move them to last. | |
1877 | * | |
1878 | * Hence, 4 lists, in order from head to tail: | |
28c8e41a DC |
1879 | * - buffer_list for all buffers except cancelled/inode unlink buffers |
1880 | * - item_list for all non-buffer items | |
1881 | * - inode_buffer_list for inode unlink buffers | |
1882 | * - cancel_list for the cancelled buffers | |
1883 | * | |
1884 | * Note that we add objects to the tail of the lists so that first-to-last | |
1885 | * ordering is preserved within the lists. Adding objects to the head of the | |
1886 | * list means when we traverse from the head we walk them in last-to-first | |
1887 | * order. For cancelled buffers and inode unlink buffers this doesn't matter, | |
1888 | * but for all other items there may be specific ordering that we need to | |
1889 | * preserve. | |
f0a76953 | 1890 | */ |
1da177e4 LT |
1891 | STATIC int |
1892 | xlog_recover_reorder_trans( | |
ad223e60 MT |
1893 | struct xlog *log, |
1894 | struct xlog_recover *trans, | |
9abbc539 | 1895 | int pass) |
1da177e4 | 1896 | { |
35f4521f | 1897 | struct xlog_recover_item *item, *n; |
2a84108f | 1898 | int error = 0; |
f0a76953 | 1899 | LIST_HEAD(sort_list); |
a775ad77 DC |
1900 | LIST_HEAD(cancel_list); |
1901 | LIST_HEAD(buffer_list); | |
1902 | LIST_HEAD(inode_buffer_list); | |
5ce70b77 | 1903 | LIST_HEAD(item_list); |
f0a76953 DC |
1904 | |
1905 | list_splice_init(&trans->r_itemq, &sort_list); | |
1906 | list_for_each_entry_safe(item, n, &sort_list, ri_list) { | |
86ffa471 | 1907 | enum xlog_recover_reorder fate = XLOG_REORDER_ITEM_LIST; |
1da177e4 | 1908 | |
86ffa471 DW |
1909 | item->ri_ops = xlog_find_item_ops(item); |
1910 | if (!item->ri_ops) { | |
a0fa2b67 | 1911 | xfs_warn(log->l_mp, |
0d2d35a3 DW |
1912 | "%s: unrecognized type of log operation (%d)", |
1913 | __func__, ITEM_TYPE(item)); | |
1da177e4 | 1914 | ASSERT(0); |
2a84108f MT |
1915 | /* |
1916 | * return the remaining items back to the transaction | |
1917 | * item list so they can be freed in caller. | |
1918 | */ | |
1919 | if (!list_empty(&sort_list)) | |
1920 | list_splice_init(&sort_list, &trans->r_itemq); | |
86ffa471 DW |
1921 | error = -EFSCORRUPTED; |
1922 | break; | |
1923 | } | |
1924 | ||
1925 | if (item->ri_ops->reorder) | |
1926 | fate = item->ri_ops->reorder(item); | |
1927 | ||
1928 | switch (fate) { | |
1929 | case XLOG_REORDER_BUFFER_LIST: | |
1930 | list_move_tail(&item->ri_list, &buffer_list); | |
1931 | break; | |
1932 | case XLOG_REORDER_CANCEL_LIST: | |
1933 | trace_xfs_log_recover_item_reorder_head(log, | |
1934 | trans, item, pass); | |
1935 | list_move(&item->ri_list, &cancel_list); | |
1936 | break; | |
1937 | case XLOG_REORDER_INODE_BUFFER_LIST: | |
1938 | list_move(&item->ri_list, &inode_buffer_list); | |
1939 | break; | |
1940 | case XLOG_REORDER_ITEM_LIST: | |
1941 | trace_xfs_log_recover_item_reorder_tail(log, | |
1942 | trans, item, pass); | |
1943 | list_move_tail(&item->ri_list, &item_list); | |
1944 | break; | |
1da177e4 | 1945 | } |
f0a76953 | 1946 | } |
86ffa471 | 1947 | |
f0a76953 | 1948 | ASSERT(list_empty(&sort_list)); |
a775ad77 DC |
1949 | if (!list_empty(&buffer_list)) |
1950 | list_splice(&buffer_list, &trans->r_itemq); | |
5ce70b77 CH |
1951 | if (!list_empty(&item_list)) |
1952 | list_splice_tail(&item_list, &trans->r_itemq); | |
a775ad77 DC |
1953 | if (!list_empty(&inode_buffer_list)) |
1954 | list_splice_tail(&inode_buffer_list, &trans->r_itemq); | |
1955 | if (!list_empty(&cancel_list)) | |
1956 | list_splice_tail(&cancel_list, &trans->r_itemq); | |
2a84108f | 1957 | return error; |
1da177e4 LT |
1958 | } |
1959 | ||
8ea5682d | 1960 | void |
7d4894b4 CH |
1961 | xlog_buf_readahead( |
1962 | struct xlog *log, | |
1963 | xfs_daddr_t blkno, | |
1964 | uint len, | |
1965 | const struct xfs_buf_ops *ops) | |
1966 | { | |
1967 | if (!xlog_is_buffer_cancelled(log, blkno, len)) | |
1968 | xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops); | |
1969 | } | |
1970 | ||
03f7767c DW |
1971 | /* |
1972 | * Create a deferred work structure for resuming and tracking the progress of a | |
1973 | * log intent item that was found during recovery. | |
1974 | */ | |
1975 | void | |
1976 | xlog_recover_intent_item( | |
1977 | struct xlog *log, | |
1978 | struct xfs_log_item *lip, | |
1979 | xfs_lsn_t lsn, | |
dc22af64 | 1980 | const struct xfs_defer_op_type *ops) |
03f7767c DW |
1981 | { |
1982 | ASSERT(xlog_item_is_intent(lip)); | |
1983 | ||
dc22af64 | 1984 | xfs_defer_start_recovery(lip, &log->r_dfops, ops); |
03f7767c DW |
1985 | |
1986 | /* | |
1987 | * Insert the intent into the AIL directly and drop one reference so | |
1988 | * that finishing or canceling the work will drop the other. | |
1989 | */ | |
1990 | xfs_trans_ail_insert(log->l_ailp, lip, lsn); | |
1991 | lip->li_ops->iop_unpin(lip, 0); | |
1992 | } | |
1993 | ||
00574da1 ZYW |
1994 | STATIC int |
1995 | xlog_recover_items_pass2( | |
1996 | struct xlog *log, | |
1997 | struct xlog_recover *trans, | |
1998 | struct list_head *buffer_list, | |
1999 | struct list_head *item_list) | |
2000 | { | |
2001 | struct xlog_recover_item *item; | |
2002 | int error = 0; | |
2003 | ||
2004 | list_for_each_entry(item, item_list, ri_list) { | |
2565a11b DW |
2005 | trace_xfs_log_recover_item_recover(log, trans, item, |
2006 | XLOG_RECOVER_PASS2); | |
2007 | ||
2008 | if (item->ri_ops->commit_pass2) | |
2009 | error = item->ri_ops->commit_pass2(log, buffer_list, | |
2010 | item, trans->r_lsn); | |
00574da1 ZYW |
2011 | if (error) |
2012 | return error; | |
2013 | } | |
2014 | ||
2015 | return error; | |
2016 | } | |
2017 | ||
d0450948 CH |
2018 | /* |
2019 | * Perform the transaction. | |
2020 | * | |
2021 | * If the transaction modifies a buffer or inode, do it now. Otherwise, | |
2022 | * EFIs and EFDs get queued up by adding entries into the AIL for them. | |
2023 | */ | |
1da177e4 LT |
2024 | STATIC int |
2025 | xlog_recover_commit_trans( | |
ad223e60 | 2026 | struct xlog *log, |
d0450948 | 2027 | struct xlog_recover *trans, |
12818d24 BF |
2028 | int pass, |
2029 | struct list_head *buffer_list) | |
1da177e4 | 2030 | { |
00574da1 | 2031 | int error = 0; |
00574da1 ZYW |
2032 | int items_queued = 0; |
2033 | struct xlog_recover_item *item; | |
2034 | struct xlog_recover_item *next; | |
00574da1 ZYW |
2035 | LIST_HEAD (ra_list); |
2036 | LIST_HEAD (done_list); | |
2037 | ||
2038 | #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 | |
1da177e4 | 2039 | |
39775431 | 2040 | hlist_del_init(&trans->r_list); |
d0450948 CH |
2041 | |
2042 | error = xlog_recover_reorder_trans(log, trans, pass); | |
2043 | if (error) | |
1da177e4 | 2044 | return error; |
d0450948 | 2045 | |
00574da1 | 2046 | list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { |
3304a4fa DW |
2047 | trace_xfs_log_recover_item_recover(log, trans, item, pass); |
2048 | ||
43ff2122 CH |
2049 | switch (pass) { |
2050 | case XLOG_RECOVER_PASS1: | |
3304a4fa DW |
2051 | if (item->ri_ops->commit_pass1) |
2052 | error = item->ri_ops->commit_pass1(log, item); | |
43ff2122 CH |
2053 | break; |
2054 | case XLOG_RECOVER_PASS2: | |
8ea5682d DW |
2055 | if (item->ri_ops->ra_pass2) |
2056 | item->ri_ops->ra_pass2(log, item); | |
00574da1 ZYW |
2057 | list_move_tail(&item->ri_list, &ra_list); |
2058 | items_queued++; | |
2059 | if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { | |
2060 | error = xlog_recover_items_pass2(log, trans, | |
12818d24 | 2061 | buffer_list, &ra_list); |
00574da1 ZYW |
2062 | list_splice_tail_init(&ra_list, &done_list); |
2063 | items_queued = 0; | |
2064 | } | |
2065 | ||
43ff2122 CH |
2066 | break; |
2067 | default: | |
2068 | ASSERT(0); | |
2069 | } | |
2070 | ||
d0450948 | 2071 | if (error) |
43ff2122 | 2072 | goto out; |
d0450948 CH |
2073 | } |
2074 | ||
00574da1 ZYW |
2075 | out: |
2076 | if (!list_empty(&ra_list)) { | |
2077 | if (!error) | |
2078 | error = xlog_recover_items_pass2(log, trans, | |
12818d24 | 2079 | buffer_list, &ra_list); |
00574da1 ZYW |
2080 | list_splice_tail_init(&ra_list, &done_list); |
2081 | } | |
2082 | ||
2083 | if (!list_empty(&done_list)) | |
2084 | list_splice_init(&done_list, &trans->r_itemq); | |
2085 | ||
12818d24 | 2086 | return error; |
1da177e4 LT |
2087 | } |
2088 | ||
76560669 DC |
2089 | STATIC void |
2090 | xlog_recover_add_item( | |
2091 | struct list_head *head) | |
2092 | { | |
35f4521f | 2093 | struct xlog_recover_item *item; |
76560669 | 2094 | |
10634530 DC |
2095 | item = kzalloc(sizeof(struct xlog_recover_item), |
2096 | GFP_KERNEL | __GFP_NOFAIL); | |
76560669 DC |
2097 | INIT_LIST_HEAD(&item->ri_list); |
2098 | list_add_tail(&item->ri_list, head); | |
2099 | } | |
2100 | ||
1da177e4 | 2101 | STATIC int |
76560669 DC |
2102 | xlog_recover_add_to_cont_trans( |
2103 | struct xlog *log, | |
2104 | struct xlog_recover *trans, | |
b2a922cd | 2105 | char *dp, |
76560669 | 2106 | int len) |
1da177e4 | 2107 | { |
35f4521f | 2108 | struct xlog_recover_item *item; |
b2a922cd | 2109 | char *ptr, *old_ptr; |
76560669 DC |
2110 | int old_len; |
2111 | ||
89cebc84 BF |
2112 | /* |
2113 | * If the transaction is empty, the header was split across this and the | |
2114 | * previous record. Copy the rest of the header. | |
2115 | */ | |
76560669 | 2116 | if (list_empty(&trans->r_itemq)) { |
848ccfc8 | 2117 | ASSERT(len <= sizeof(struct xfs_trans_header)); |
89cebc84 BF |
2118 | if (len > sizeof(struct xfs_trans_header)) { |
2119 | xfs_warn(log->l_mp, "%s: bad header length", __func__); | |
895e196f | 2120 | return -EFSCORRUPTED; |
89cebc84 BF |
2121 | } |
2122 | ||
76560669 | 2123 | xlog_recover_add_item(&trans->r_itemq); |
b2a922cd | 2124 | ptr = (char *)&trans->r_theader + |
89cebc84 | 2125 | sizeof(struct xfs_trans_header) - len; |
76560669 DC |
2126 | memcpy(ptr, dp, len); |
2127 | return 0; | |
2128 | } | |
89cebc84 | 2129 | |
76560669 | 2130 | /* take the tail entry */ |
35f4521f DW |
2131 | item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, |
2132 | ri_list); | |
76560669 DC |
2133 | |
2134 | old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; | |
2135 | old_len = item->ri_buf[item->ri_cnt-1].i_len; | |
2136 | ||
590b9d57 | 2137 | ptr = kvrealloc(old_ptr, len + old_len, GFP_KERNEL); |
de2860f4 DC |
2138 | if (!ptr) |
2139 | return -ENOMEM; | |
76560669 DC |
2140 | memcpy(&ptr[old_len], dp, len); |
2141 | item->ri_buf[item->ri_cnt-1].i_len += len; | |
2142 | item->ri_buf[item->ri_cnt-1].i_addr = ptr; | |
2143 | trace_xfs_log_recover_item_add_cont(log, trans, item, 0); | |
1da177e4 LT |
2144 | return 0; |
2145 | } | |
2146 | ||
76560669 DC |
2147 | /* |
2148 | * The next region to add is the start of a new region. It could be | |
2149 | * a whole region or it could be the first part of a new region. Because | |
2150 | * of this, the assumption here is that the type and size fields of all | |
2151 | * format structures fit into the first 32 bits of the structure. | |
2152 | * | |
2153 | * This works because all regions must be 32 bit aligned. Therefore, we | |
2154 | * either have both fields or we have neither field. In the case we have | |
2155 | * neither field, the data part of the region is zero length. We only have | |
2156 | * a log_op_header and can throw away the header since a new one will appear | |
2157 | * later. If we have at least 4 bytes, then we can determine how many regions | |
2158 | * will appear in the current log item. | |
2159 | */ | |
2160 | STATIC int | |
2161 | xlog_recover_add_to_trans( | |
2162 | struct xlog *log, | |
2163 | struct xlog_recover *trans, | |
b2a922cd | 2164 | char *dp, |
76560669 DC |
2165 | int len) |
2166 | { | |
06b11321 | 2167 | struct xfs_inode_log_format *in_f; /* any will do */ |
35f4521f | 2168 | struct xlog_recover_item *item; |
b2a922cd | 2169 | char *ptr; |
76560669 DC |
2170 | |
2171 | if (!len) | |
2172 | return 0; | |
2173 | if (list_empty(&trans->r_itemq)) { | |
2174 | /* we need to catch log corruptions here */ | |
2175 | if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { | |
2176 | xfs_warn(log->l_mp, "%s: bad header magic number", | |
2177 | __func__); | |
2178 | ASSERT(0); | |
895e196f | 2179 | return -EFSCORRUPTED; |
76560669 | 2180 | } |
89cebc84 BF |
2181 | |
2182 | if (len > sizeof(struct xfs_trans_header)) { | |
2183 | xfs_warn(log->l_mp, "%s: bad header length", __func__); | |
2184 | ASSERT(0); | |
895e196f | 2185 | return -EFSCORRUPTED; |
89cebc84 BF |
2186 | } |
2187 | ||
2188 | /* | |
2189 | * The transaction header can be arbitrarily split across op | |
2190 | * records. If we don't have the whole thing here, copy what we | |
2191 | * do have and handle the rest in the next record. | |
2192 | */ | |
2193 | if (len == sizeof(struct xfs_trans_header)) | |
76560669 DC |
2194 | xlog_recover_add_item(&trans->r_itemq); |
2195 | memcpy(&trans->r_theader, dp, len); | |
2196 | return 0; | |
2197 | } | |
2198 | ||
f078d4ea | 2199 | ptr = xlog_kvmalloc(len); |
76560669 | 2200 | memcpy(ptr, dp, len); |
06b11321 | 2201 | in_f = (struct xfs_inode_log_format *)ptr; |
76560669 DC |
2202 | |
2203 | /* take the tail entry */ | |
35f4521f DW |
2204 | item = list_entry(trans->r_itemq.prev, struct xlog_recover_item, |
2205 | ri_list); | |
76560669 DC |
2206 | if (item->ri_total != 0 && |
2207 | item->ri_total == item->ri_cnt) { | |
2208 | /* tail item is in use, get a new one */ | |
2209 | xlog_recover_add_item(&trans->r_itemq); | |
2210 | item = list_entry(trans->r_itemq.prev, | |
35f4521f | 2211 | struct xlog_recover_item, ri_list); |
76560669 DC |
2212 | } |
2213 | ||
2214 | if (item->ri_total == 0) { /* first region to be added */ | |
2215 | if (in_f->ilf_size == 0 || | |
2216 | in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { | |
2217 | xfs_warn(log->l_mp, | |
2218 | "bad number of regions (%d) in inode log format", | |
2219 | in_f->ilf_size); | |
2220 | ASSERT(0); | |
49292576 | 2221 | kvfree(ptr); |
895e196f | 2222 | return -EFSCORRUPTED; |
76560669 DC |
2223 | } |
2224 | ||
2225 | item->ri_total = in_f->ilf_size; | |
10634530 DC |
2226 | item->ri_buf = kzalloc(item->ri_total * sizeof(xfs_log_iovec_t), |
2227 | GFP_KERNEL | __GFP_NOFAIL); | |
76560669 | 2228 | } |
d6abecb8 DW |
2229 | |
2230 | if (item->ri_total <= item->ri_cnt) { | |
2231 | xfs_warn(log->l_mp, | |
2232 | "log item region count (%d) overflowed size (%d)", | |
2233 | item->ri_cnt, item->ri_total); | |
2234 | ASSERT(0); | |
49292576 | 2235 | kvfree(ptr); |
d6abecb8 DW |
2236 | return -EFSCORRUPTED; |
2237 | } | |
2238 | ||
76560669 DC |
2239 | /* Description region is ri_buf[0] */ |
2240 | item->ri_buf[item->ri_cnt].i_addr = ptr; | |
2241 | item->ri_buf[item->ri_cnt].i_len = len; | |
2242 | item->ri_cnt++; | |
2243 | trace_xfs_log_recover_item_add(log, trans, item, 0); | |
2244 | return 0; | |
2245 | } | |
b818cca1 | 2246 | |
76560669 DC |
2247 | /* |
2248 | * Free up any resources allocated by the transaction | |
2249 | * | |
2250 | * Remember that EFIs, EFDs, and IUNLINKs are handled later. | |
2251 | */ | |
2252 | STATIC void | |
2253 | xlog_recover_free_trans( | |
2254 | struct xlog_recover *trans) | |
2255 | { | |
35f4521f | 2256 | struct xlog_recover_item *item, *n; |
76560669 DC |
2257 | int i; |
2258 | ||
39775431 BF |
2259 | hlist_del_init(&trans->r_list); |
2260 | ||
76560669 DC |
2261 | list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { |
2262 | /* Free the regions in the item. */ | |
2263 | list_del(&item->ri_list); | |
2264 | for (i = 0; i < item->ri_cnt; i++) | |
49292576 | 2265 | kvfree(item->ri_buf[i].i_addr); |
76560669 | 2266 | /* Free the item itself */ |
d4c75a1b DC |
2267 | kfree(item->ri_buf); |
2268 | kfree(item); | |
76560669 DC |
2269 | } |
2270 | /* Free the transaction recover structure */ | |
d4c75a1b | 2271 | kfree(trans); |
76560669 DC |
2272 | } |
2273 | ||
e9131e50 DC |
2274 | /* |
2275 | * On error or completion, trans is freed. | |
2276 | */ | |
1da177e4 | 2277 | STATIC int |
eeb11688 DC |
2278 | xlog_recovery_process_trans( |
2279 | struct xlog *log, | |
2280 | struct xlog_recover *trans, | |
b2a922cd | 2281 | char *dp, |
eeb11688 DC |
2282 | unsigned int len, |
2283 | unsigned int flags, | |
12818d24 BF |
2284 | int pass, |
2285 | struct list_head *buffer_list) | |
1da177e4 | 2286 | { |
e9131e50 DC |
2287 | int error = 0; |
2288 | bool freeit = false; | |
eeb11688 DC |
2289 | |
2290 | /* mask off ophdr transaction container flags */ | |
2291 | flags &= ~XLOG_END_TRANS; | |
2292 | if (flags & XLOG_WAS_CONT_TRANS) | |
2293 | flags &= ~XLOG_CONTINUE_TRANS; | |
2294 | ||
88b863db DC |
2295 | /* |
2296 | * Callees must not free the trans structure. We'll decide if we need to | |
2297 | * free it or not based on the operation being done and it's result. | |
2298 | */ | |
eeb11688 DC |
2299 | switch (flags) { |
2300 | /* expected flag values */ | |
2301 | case 0: | |
2302 | case XLOG_CONTINUE_TRANS: | |
2303 | error = xlog_recover_add_to_trans(log, trans, dp, len); | |
2304 | break; | |
2305 | case XLOG_WAS_CONT_TRANS: | |
2306 | error = xlog_recover_add_to_cont_trans(log, trans, dp, len); | |
2307 | break; | |
2308 | case XLOG_COMMIT_TRANS: | |
12818d24 BF |
2309 | error = xlog_recover_commit_trans(log, trans, pass, |
2310 | buffer_list); | |
88b863db DC |
2311 | /* success or fail, we are now done with this transaction. */ |
2312 | freeit = true; | |
eeb11688 DC |
2313 | break; |
2314 | ||
2315 | /* unexpected flag values */ | |
2316 | case XLOG_UNMOUNT_TRANS: | |
e9131e50 | 2317 | /* just skip trans */ |
eeb11688 | 2318 | xfs_warn(log->l_mp, "%s: Unmount LR", __func__); |
e9131e50 | 2319 | freeit = true; |
eeb11688 DC |
2320 | break; |
2321 | case XLOG_START_TRANS: | |
eeb11688 DC |
2322 | default: |
2323 | xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); | |
2324 | ASSERT(0); | |
895e196f | 2325 | error = -EFSCORRUPTED; |
eeb11688 DC |
2326 | break; |
2327 | } | |
e9131e50 DC |
2328 | if (error || freeit) |
2329 | xlog_recover_free_trans(trans); | |
eeb11688 DC |
2330 | return error; |
2331 | } | |
2332 | ||
b818cca1 DC |
2333 | /* |
2334 | * Lookup the transaction recovery structure associated with the ID in the | |
2335 | * current ophdr. If the transaction doesn't exist and the start flag is set in | |
2336 | * the ophdr, then allocate a new transaction for future ID matches to find. | |
2337 | * Either way, return what we found during the lookup - an existing transaction | |
2338 | * or nothing. | |
2339 | */ | |
eeb11688 DC |
2340 | STATIC struct xlog_recover * |
2341 | xlog_recover_ophdr_to_trans( | |
2342 | struct hlist_head rhash[], | |
2343 | struct xlog_rec_header *rhead, | |
2344 | struct xlog_op_header *ohead) | |
2345 | { | |
2346 | struct xlog_recover *trans; | |
2347 | xlog_tid_t tid; | |
2348 | struct hlist_head *rhp; | |
2349 | ||
2350 | tid = be32_to_cpu(ohead->oh_tid); | |
2351 | rhp = &rhash[XLOG_RHASH(tid)]; | |
b818cca1 DC |
2352 | hlist_for_each_entry(trans, rhp, r_list) { |
2353 | if (trans->r_log_tid == tid) | |
2354 | return trans; | |
2355 | } | |
eeb11688 DC |
2356 | |
2357 | /* | |
b818cca1 DC |
2358 | * skip over non-start transaction headers - we could be |
2359 | * processing slack space before the next transaction starts | |
2360 | */ | |
2361 | if (!(ohead->oh_flags & XLOG_START_TRANS)) | |
2362 | return NULL; | |
2363 | ||
2364 | ASSERT(be32_to_cpu(ohead->oh_len) == 0); | |
2365 | ||
2366 | /* | |
2367 | * This is a new transaction so allocate a new recovery container to | |
2368 | * hold the recovery ops that will follow. | |
2369 | */ | |
10634530 | 2370 | trans = kzalloc(sizeof(struct xlog_recover), GFP_KERNEL | __GFP_NOFAIL); |
b818cca1 DC |
2371 | trans->r_log_tid = tid; |
2372 | trans->r_lsn = be64_to_cpu(rhead->h_lsn); | |
2373 | INIT_LIST_HEAD(&trans->r_itemq); | |
2374 | INIT_HLIST_NODE(&trans->r_list); | |
2375 | hlist_add_head(&trans->r_list, rhp); | |
2376 | ||
2377 | /* | |
2378 | * Nothing more to do for this ophdr. Items to be added to this new | |
2379 | * transaction will be in subsequent ophdr containers. | |
eeb11688 | 2380 | */ |
eeb11688 DC |
2381 | return NULL; |
2382 | } | |
2383 | ||
2384 | STATIC int | |
2385 | xlog_recover_process_ophdr( | |
2386 | struct xlog *log, | |
2387 | struct hlist_head rhash[], | |
2388 | struct xlog_rec_header *rhead, | |
2389 | struct xlog_op_header *ohead, | |
b2a922cd CH |
2390 | char *dp, |
2391 | char *end, | |
12818d24 BF |
2392 | int pass, |
2393 | struct list_head *buffer_list) | |
eeb11688 DC |
2394 | { |
2395 | struct xlog_recover *trans; | |
eeb11688 | 2396 | unsigned int len; |
12818d24 | 2397 | int error; |
eeb11688 DC |
2398 | |
2399 | /* Do we understand who wrote this op? */ | |
2400 | if (ohead->oh_clientid != XFS_TRANSACTION && | |
2401 | ohead->oh_clientid != XFS_LOG) { | |
2402 | xfs_warn(log->l_mp, "%s: bad clientid 0x%x", | |
2403 | __func__, ohead->oh_clientid); | |
2404 | ASSERT(0); | |
895e196f | 2405 | return -EFSCORRUPTED; |
eeb11688 DC |
2406 | } |
2407 | ||
2408 | /* | |
2409 | * Check the ophdr contains all the data it is supposed to contain. | |
2410 | */ | |
2411 | len = be32_to_cpu(ohead->oh_len); | |
2412 | if (dp + len > end) { | |
2413 | xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len); | |
2414 | WARN_ON(1); | |
895e196f | 2415 | return -EFSCORRUPTED; |
eeb11688 DC |
2416 | } |
2417 | ||
2418 | trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead); | |
2419 | if (!trans) { | |
2420 | /* nothing to do, so skip over this ophdr */ | |
2421 | return 0; | |
2422 | } | |
2423 | ||
12818d24 BF |
2424 | /* |
2425 | * The recovered buffer queue is drained only once we know that all | |
2426 | * recovery items for the current LSN have been processed. This is | |
2427 | * required because: | |
2428 | * | |
2429 | * - Buffer write submission updates the metadata LSN of the buffer. | |
2430 | * - Log recovery skips items with a metadata LSN >= the current LSN of | |
2431 | * the recovery item. | |
2432 | * - Separate recovery items against the same metadata buffer can share | |
2433 | * a current LSN. I.e., consider that the LSN of a recovery item is | |
2434 | * defined as the starting LSN of the first record in which its | |
2435 | * transaction appears, that a record can hold multiple transactions, | |
2436 | * and/or that a transaction can span multiple records. | |
2437 | * | |
2438 | * In other words, we are allowed to submit a buffer from log recovery | |
2439 | * once per current LSN. Otherwise, we may incorrectly skip recovery | |
2440 | * items and cause corruption. | |
2441 | * | |
2442 | * We don't know up front whether buffers are updated multiple times per | |
2443 | * LSN. Therefore, track the current LSN of each commit log record as it | |
2444 | * is processed and drain the queue when it changes. Use commit records | |
2445 | * because they are ordered correctly by the logging code. | |
2446 | */ | |
2447 | if (log->l_recovery_lsn != trans->r_lsn && | |
2448 | ohead->oh_flags & XLOG_COMMIT_TRANS) { | |
2449 | error = xfs_buf_delwri_submit(buffer_list); | |
2450 | if (error) | |
2451 | return error; | |
2452 | log->l_recovery_lsn = trans->r_lsn; | |
2453 | } | |
2454 | ||
e9131e50 | 2455 | return xlog_recovery_process_trans(log, trans, dp, len, |
12818d24 | 2456 | ohead->oh_flags, pass, buffer_list); |
1da177e4 LT |
2457 | } |
2458 | ||
2459 | /* | |
2460 | * There are two valid states of the r_state field. 0 indicates that the | |
2461 | * transaction structure is in a normal state. We have either seen the | |
2462 | * start of the transaction or the last operation we added was not a partial | |
2463 | * operation. If the last operation we added to the transaction was a | |
2464 | * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. | |
2465 | * | |
2466 | * NOTE: skip LRs with 0 data length. | |
2467 | */ | |
2468 | STATIC int | |
2469 | xlog_recover_process_data( | |
9a8d2fdb | 2470 | struct xlog *log, |
f0a76953 | 2471 | struct hlist_head rhash[], |
9a8d2fdb | 2472 | struct xlog_rec_header *rhead, |
b2a922cd | 2473 | char *dp, |
12818d24 BF |
2474 | int pass, |
2475 | struct list_head *buffer_list) | |
1da177e4 | 2476 | { |
eeb11688 | 2477 | struct xlog_op_header *ohead; |
b2a922cd | 2478 | char *end; |
1da177e4 | 2479 | int num_logops; |
1da177e4 | 2480 | int error; |
1da177e4 | 2481 | |
eeb11688 | 2482 | end = dp + be32_to_cpu(rhead->h_len); |
b53e675d | 2483 | num_logops = be32_to_cpu(rhead->h_num_logops); |
1da177e4 LT |
2484 | |
2485 | /* check the log format matches our own - else we can't recover */ | |
2486 | if (xlog_header_check_recover(log->l_mp, rhead)) | |
2451337d | 2487 | return -EIO; |
1da177e4 | 2488 | |
5cd9cee9 | 2489 | trace_xfs_log_recover_record(log, rhead, pass); |
eeb11688 DC |
2490 | while ((dp < end) && num_logops) { |
2491 | ||
2492 | ohead = (struct xlog_op_header *)dp; | |
2493 | dp += sizeof(*ohead); | |
fb63435b | 2494 | if (dp > end) { |
2495 | xfs_warn(log->l_mp, "%s: op header overrun", __func__); | |
2496 | return -EFSCORRUPTED; | |
2497 | } | |
eeb11688 DC |
2498 | |
2499 | /* errors will abort recovery */ | |
2500 | error = xlog_recover_process_ophdr(log, rhash, rhead, ohead, | |
12818d24 | 2501 | dp, end, pass, buffer_list); |
eeb11688 DC |
2502 | if (error) |
2503 | return error; | |
2504 | ||
67fcb7bf | 2505 | dp += be32_to_cpu(ohead->oh_len); |
1da177e4 LT |
2506 | num_logops--; |
2507 | } | |
2508 | return 0; | |
2509 | } | |
2510 | ||
50995582 DW |
2511 | /* Take all the collected deferred ops and finish them in order. */ |
2512 | static int | |
2513 | xlog_finish_defer_ops( | |
e6fff81e DW |
2514 | struct xfs_mount *mp, |
2515 | struct list_head *capture_list) | |
50995582 | 2516 | { |
e6fff81e | 2517 | struct xfs_defer_capture *dfc, *next; |
50995582 | 2518 | struct xfs_trans *tp; |
e6fff81e | 2519 | int error = 0; |
50995582 | 2520 | |
e6fff81e | 2521 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { |
929b92f6 | 2522 | struct xfs_trans_res resv; |
512edfac | 2523 | struct xfs_defer_resources dres; |
929b92f6 DW |
2524 | |
2525 | /* | |
2526 | * Create a new transaction reservation from the captured | |
2527 | * information. Set logcount to 1 to force the new transaction | |
2528 | * to regrant every roll so that we can make forward progress | |
2529 | * in recovery no matter how full the log might be. | |
2530 | */ | |
2531 | resv.tr_logres = dfc->dfc_logres; | |
2532 | resv.tr_logcount = 1; | |
2533 | resv.tr_logflags = XFS_TRANS_PERM_LOG_RES; | |
2534 | ||
2535 | error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres, | |
2536 | dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp); | |
4e6b8270 | 2537 | if (error) { |
b5f17bec | 2538 | xlog_force_shutdown(mp->m_log, SHUTDOWN_LOG_IO_ERROR); |
e6fff81e | 2539 | return error; |
4e6b8270 | 2540 | } |
50995582 | 2541 | |
e6fff81e DW |
2542 | /* |
2543 | * Transfer to this new transaction all the dfops we captured | |
2544 | * from recovering a single intent item. | |
2545 | */ | |
2546 | list_del_init(&dfc->dfc_list); | |
512edfac | 2547 | xfs_defer_ops_continue(dfc, tp, &dres); |
e6fff81e | 2548 | error = xfs_trans_commit(tp); |
512edfac | 2549 | xfs_defer_resources_rele(&dres); |
e6fff81e DW |
2550 | if (error) |
2551 | return error; | |
2552 | } | |
2553 | ||
2554 | ASSERT(list_empty(capture_list)); | |
2555 | return 0; | |
50995582 DW |
2556 | } |
2557 | ||
e6fff81e DW |
2558 | /* Release all the captured defer ops and capture structures in this list. */ |
2559 | static void | |
2560 | xlog_abort_defer_ops( | |
2561 | struct xfs_mount *mp, | |
2562 | struct list_head *capture_list) | |
2563 | { | |
2564 | struct xfs_defer_capture *dfc; | |
2565 | struct xfs_defer_capture *next; | |
2566 | ||
2567 | list_for_each_entry_safe(dfc, next, capture_list, dfc_list) { | |
2568 | list_del_init(&dfc->dfc_list); | |
f8f9d952 | 2569 | xfs_defer_ops_capture_abort(mp, dfc); |
e6fff81e DW |
2570 | } |
2571 | } | |
ab9c81ef | 2572 | |
1da177e4 | 2573 | /* |
dc42375d | 2574 | * When this is called, all of the log intent items which did not have |
ab9c81ef DC |
2575 | * corresponding log done items should be in the AIL. What we do now is update |
2576 | * the data structures associated with each one. | |
1da177e4 | 2577 | * |
ab9c81ef DC |
2578 | * Since we process the log intent items in normal transactions, they will be |
2579 | * removed at some point after the commit. This prevents us from just walking | |
2580 | * down the list processing each one. We'll use a flag in the intent item to | |
2581 | * skip those that we've already processed and use the AIL iteration mechanism's | |
2582 | * generation count to try to speed this up at least a bit. | |
1da177e4 | 2583 | * |
ab9c81ef DC |
2584 | * When we start, we know that the intents are the only things in the AIL. As we |
2585 | * process them, however, other items are added to the AIL. Hence we know we | |
2586 | * have started recovery on all the pending intents when we find an non-intent | |
2587 | * item in the AIL. | |
1da177e4 | 2588 | */ |
3c1e2bbe | 2589 | STATIC int |
dc42375d | 2590 | xlog_recover_process_intents( |
03f7767c | 2591 | struct xlog *log) |
1da177e4 | 2592 | { |
e6fff81e | 2593 | LIST_HEAD(capture_list); |
03f7767c DW |
2594 | struct xfs_defer_pending *dfp, *n; |
2595 | int error = 0; | |
7bf7a193 | 2596 | #if defined(DEBUG) || defined(XFS_WARN) |
03f7767c | 2597 | xfs_lsn_t last_lsn; |
1da177e4 | 2598 | |
dc42375d | 2599 | last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block); |
7bf7a193 | 2600 | #endif |
97cf7967 | 2601 | |
03f7767c | 2602 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { |
db7ccc0b | 2603 | ASSERT(xlog_item_is_intent(dfp->dfp_intent)); |
1da177e4 LT |
2604 | |
2605 | /* | |
dc42375d DW |
2606 | * We should never see a redo item with a LSN higher than |
2607 | * the last transaction we found in the log at the start | |
2608 | * of recovery. | |
1da177e4 | 2609 | */ |
db7ccc0b | 2610 | ASSERT(XFS_LSN_CMP(last_lsn, dfp->dfp_intent->li_lsn) >= 0); |
1da177e4 | 2611 | |
50995582 DW |
2612 | /* |
2613 | * NOTE: If your intent processing routine can create more | |
e6fff81e DW |
2614 | * deferred ops, you /must/ attach them to the capture list in |
2615 | * the recover routine or else those subsequent intents will be | |
50995582 | 2616 | * replayed in the wrong order! |
97cf7967 DW |
2617 | * |
2618 | * The recovery function can free the log item, so we must not | |
db7ccc0b DW |
2619 | * access dfp->dfp_intent after it returns. It must dispose of |
2620 | * @dfp if it returns 0. | |
50995582 | 2621 | */ |
db7ccc0b DW |
2622 | error = xfs_defer_finish_recovery(log->l_mp, dfp, |
2623 | &capture_list); | |
2624 | if (error) | |
e6fff81e | 2625 | break; |
03f7767c | 2626 | } |
e6fff81e DW |
2627 | if (error) |
2628 | goto err; | |
50995582 | 2629 | |
e6fff81e DW |
2630 | error = xlog_finish_defer_ops(log->l_mp, &capture_list); |
2631 | if (error) | |
2632 | goto err; | |
2633 | ||
2634 | return 0; | |
2635 | err: | |
2636 | xlog_abort_defer_ops(log->l_mp, &capture_list); | |
3c1e2bbe | 2637 | return error; |
1da177e4 LT |
2638 | } |
2639 | ||
f0b2efad | 2640 | /* |
ab9c81ef DC |
2641 | * A cancel occurs when the mount has failed and we're bailing out. Release all |
2642 | * pending log intent items that we haven't started recovery on so they don't | |
2643 | * pin the AIL. | |
f0b2efad | 2644 | */ |
a7a9250e | 2645 | STATIC void |
dc42375d | 2646 | xlog_recover_cancel_intents( |
03f7767c | 2647 | struct xlog *log) |
f0b2efad | 2648 | { |
03f7767c | 2649 | struct xfs_defer_pending *dfp, *n; |
f0b2efad | 2650 | |
03f7767c DW |
2651 | list_for_each_entry_safe(dfp, n, &log->r_dfops, dfp_list) { |
2652 | ASSERT(xlog_item_is_intent(dfp->dfp_intent)); | |
f0b2efad | 2653 | |
03f7767c DW |
2654 | xfs_defer_cancel_recovery(log->l_mp, dfp); |
2655 | } | |
f0b2efad BF |
2656 | } |
2657 | ||
deb4cd8b | 2658 | /* |
e5f1a514 DW |
2659 | * Transfer ownership of the recovered pending work to the recovery transaction |
2660 | * and try to finish the work. If there is more work to be done, the dfp will | |
2661 | * remain attached to the transaction. If not, the dfp is freed. | |
deb4cd8b | 2662 | */ |
e5f1a514 DW |
2663 | int |
2664 | xlog_recover_finish_intent( | |
deb4cd8b DW |
2665 | struct xfs_trans *tp, |
2666 | struct xfs_defer_pending *dfp) | |
2667 | { | |
e5f1a514 DW |
2668 | int error; |
2669 | ||
2670 | list_move(&dfp->dfp_list, &tp->t_dfops); | |
2671 | error = xfs_defer_finish_one(tp, dfp); | |
2672 | if (error == -EAGAIN) | |
2673 | return 0; | |
2674 | return error; | |
deb4cd8b DW |
2675 | } |
2676 | ||
1da177e4 LT |
2677 | /* |
2678 | * This routine performs a transaction to null out a bad inode pointer | |
2679 | * in an agi unlinked inode hash bucket. | |
2680 | */ | |
2681 | STATIC void | |
2682 | xlog_recover_clear_agi_bucket( | |
61021deb DC |
2683 | struct xfs_perag *pag, |
2684 | int bucket) | |
1da177e4 | 2685 | { |
e9c4d8bf | 2686 | struct xfs_mount *mp = pag_mount(pag); |
61021deb DC |
2687 | struct xfs_trans *tp; |
2688 | struct xfs_agi *agi; | |
2689 | struct xfs_buf *agibp; | |
2690 | int offset; | |
2691 | int error; | |
1da177e4 | 2692 | |
253f4911 | 2693 | error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp); |
e5720eec | 2694 | if (error) |
253f4911 | 2695 | goto out_error; |
1da177e4 | 2696 | |
549d3c9a | 2697 | error = xfs_read_agi(pag, tp, 0, &agibp); |
5e1be0fb | 2698 | if (error) |
e5720eec | 2699 | goto out_abort; |
1da177e4 | 2700 | |
370c782b | 2701 | agi = agibp->b_addr; |
16259e7d | 2702 | agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); |
1da177e4 LT |
2703 | offset = offsetof(xfs_agi_t, agi_unlinked) + |
2704 | (sizeof(xfs_agino_t) * bucket); | |
2705 | xfs_trans_log_buf(tp, agibp, offset, | |
2706 | (offset + sizeof(xfs_agino_t) - 1)); | |
2707 | ||
70393313 | 2708 | error = xfs_trans_commit(tp); |
e5720eec DC |
2709 | if (error) |
2710 | goto out_error; | |
2711 | return; | |
2712 | ||
2713 | out_abort: | |
4906e215 | 2714 | xfs_trans_cancel(tp); |
e5720eec | 2715 | out_error: |
61021deb | 2716 | xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, |
e9c4d8bf | 2717 | pag_agno(pag)); |
e5720eec | 2718 | return; |
1da177e4 LT |
2719 | } |
2720 | ||
04755d2e DC |
2721 | static int |
2722 | xlog_recover_iunlink_bucket( | |
2723 | struct xfs_perag *pag, | |
2724 | struct xfs_agi *agi, | |
2725 | int bucket) | |
23fac50f | 2726 | { |
e9c4d8bf | 2727 | struct xfs_mount *mp = pag_mount(pag); |
2fd26cc0 | 2728 | struct xfs_inode *prev_ip = NULL; |
04755d2e | 2729 | struct xfs_inode *ip; |
2fd26cc0 DC |
2730 | xfs_agino_t prev_agino, agino; |
2731 | int error = 0; | |
23fac50f | 2732 | |
04755d2e DC |
2733 | agino = be32_to_cpu(agi->agi_unlinked[bucket]); |
2734 | while (agino != NULLAGINO) { | |
6abd82ab CH |
2735 | error = xfs_iget(mp, NULL, xfs_agino_to_ino(pag, agino), 0, 0, |
2736 | &ip); | |
04755d2e | 2737 | if (error) |
2fd26cc0 | 2738 | break; |
23fac50f | 2739 | |
04755d2e DC |
2740 | ASSERT(VFS_I(ip)->i_nlink == 0); |
2741 | ASSERT(VFS_I(ip)->i_mode != 0); | |
2742 | xfs_iflags_clear(ip, XFS_IRECOVERY); | |
2743 | agino = ip->i_next_unlinked; | |
23fac50f | 2744 | |
2fd26cc0 DC |
2745 | if (prev_ip) { |
2746 | ip->i_prev_unlinked = prev_agino; | |
2747 | xfs_irele(prev_ip); | |
23fac50f | 2748 | |
2fd26cc0 DC |
2749 | /* |
2750 | * Ensure the inode is removed from the unlinked list | |
2751 | * before we continue so that it won't race with | |
2752 | * building the in-memory list here. This could be | |
2753 | * serialised with the agibp lock, but that just | |
2754 | * serialises via lockstepping and it's much simpler | |
2755 | * just to flush the inodegc queue and wait for it to | |
2756 | * complete. | |
2757 | */ | |
d4d12c02 DC |
2758 | error = xfs_inodegc_flush(mp); |
2759 | if (error) | |
2760 | break; | |
2fd26cc0 | 2761 | } |
23fac50f | 2762 | |
2fd26cc0 DC |
2763 | prev_agino = agino; |
2764 | prev_ip = ip; | |
04755d2e | 2765 | } |
2fd26cc0 DC |
2766 | |
2767 | if (prev_ip) { | |
d4d12c02 DC |
2768 | int error2; |
2769 | ||
2fd26cc0 DC |
2770 | ip->i_prev_unlinked = prev_agino; |
2771 | xfs_irele(prev_ip); | |
d4d12c02 DC |
2772 | |
2773 | error2 = xfs_inodegc_flush(mp); | |
2774 | if (error2 && !error) | |
2775 | return error2; | |
2fd26cc0 | 2776 | } |
2fd26cc0 | 2777 | return error; |
23fac50f CH |
2778 | } |
2779 | ||
1da177e4 | 2780 | /* |
8ab39f11 | 2781 | * Recover AGI unlinked lists |
1da177e4 | 2782 | * |
8ab39f11 DC |
2783 | * This is called during recovery to process any inodes which we unlinked but |
2784 | * not freed when the system crashed. These inodes will be on the lists in the | |
2785 | * AGI blocks. What we do here is scan all the AGIs and fully truncate and free | |
2786 | * any inodes found on the lists. Each inode is removed from the lists when it | |
2787 | * has been fully truncated and is freed. The freeing of the inode and its | |
2788 | * removal from the list must be atomic. | |
2789 | * | |
2790 | * If everything we touch in the agi processing loop is already in memory, this | |
2791 | * loop can hold the cpu for a long time. It runs without lock contention, | |
2792 | * memory allocation contention, the need wait for IO, etc, and so will run | |
2793 | * until we either run out of inodes to process, run low on memory or we run out | |
2794 | * of log space. | |
2795 | * | |
2796 | * This behaviour is bad for latency on single CPU and non-preemptible kernels, | |
bd24a4f5 | 2797 | * and can prevent other filesystem work (such as CIL pushes) from running. This |
8ab39f11 DC |
2798 | * can lead to deadlocks if the recovery process runs out of log reservation |
2799 | * space. Hence we need to yield the CPU when there is other kernel work | |
2800 | * scheduled on this CPU to ensure other scheduled work can run without undue | |
2801 | * latency. | |
1da177e4 | 2802 | */ |
04755d2e DC |
2803 | static void |
2804 | xlog_recover_iunlink_ag( | |
2805 | struct xfs_perag *pag) | |
1da177e4 | 2806 | { |
934933c3 DC |
2807 | struct xfs_agi *agi; |
2808 | struct xfs_buf *agibp; | |
934933c3 DC |
2809 | int bucket; |
2810 | int error; | |
1da177e4 | 2811 | |
549d3c9a | 2812 | error = xfs_read_agi(pag, NULL, 0, &agibp); |
04755d2e DC |
2813 | if (error) { |
2814 | /* | |
2815 | * AGI is b0rked. Don't process it. | |
2816 | * | |
2817 | * We should probably mark the filesystem as corrupt after we've | |
2818 | * recovered all the ag's we can.... | |
2819 | */ | |
2820 | return; | |
2821 | } | |
2822 | ||
2823 | /* | |
2824 | * Unlock the buffer so that it can be acquired in the normal course of | |
2825 | * the transaction to truncate and free each inode. Because we are not | |
2826 | * racing with anyone else here for the AGI buffer, we don't even need | |
2827 | * to hold it locked to read the initial unlinked bucket entries out of | |
2828 | * the buffer. We keep buffer reference though, so that it stays pinned | |
2829 | * in memory while we need the buffer. | |
2830 | */ | |
2831 | agi = agibp->b_addr; | |
2832 | xfs_buf_unlock(agibp); | |
2833 | ||
2834 | for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { | |
2835 | error = xlog_recover_iunlink_bucket(pag, agi, bucket); | |
5e1be0fb CH |
2836 | if (error) { |
2837 | /* | |
04755d2e DC |
2838 | * Bucket is unrecoverable, so only a repair scan can |
2839 | * free the remaining unlinked inodes. Just empty the | |
2840 | * bucket and remaining inodes on it unreferenced and | |
2841 | * unfreeable. | |
5e1be0fb | 2842 | */ |
04755d2e | 2843 | xlog_recover_clear_agi_bucket(pag, bucket); |
1da177e4 | 2844 | } |
1da177e4 | 2845 | } |
ab23a776 | 2846 | |
04755d2e DC |
2847 | xfs_buf_rele(agibp); |
2848 | } | |
2849 | ||
2850 | static void | |
2851 | xlog_recover_process_iunlinks( | |
2852 | struct xlog *log) | |
2853 | { | |
86437e6a | 2854 | struct xfs_perag *pag = NULL; |
04755d2e | 2855 | |
86437e6a | 2856 | while ((pag = xfs_perag_next(log->l_mp, pag))) |
04755d2e | 2857 | xlog_recover_iunlink_ag(pag); |
1da177e4 LT |
2858 | } |
2859 | ||
91083269 | 2860 | STATIC void |
1da177e4 | 2861 | xlog_unpack_data( |
9a8d2fdb | 2862 | struct xlog_rec_header *rhead, |
b2a922cd | 2863 | char *dp, |
9a8d2fdb | 2864 | struct xlog *log) |
1da177e4 LT |
2865 | { |
2866 | int i, j, k; | |
1da177e4 | 2867 | |
b53e675d | 2868 | for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && |
1da177e4 | 2869 | i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { |
b53e675d | 2870 | *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; |
1da177e4 LT |
2871 | dp += BBSIZE; |
2872 | } | |
2873 | ||
38c26bfd | 2874 | if (xfs_has_logv2(log->l_mp)) { |
b28708d6 | 2875 | xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; |
b53e675d | 2876 | for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { |
1da177e4 LT |
2877 | j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); |
2878 | k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); | |
b53e675d | 2879 | *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; |
1da177e4 LT |
2880 | dp += BBSIZE; |
2881 | } | |
2882 | } | |
1da177e4 LT |
2883 | } |
2884 | ||
9d94901f | 2885 | /* |
b94fb2d1 | 2886 | * CRC check, unpack and process a log record. |
9d94901f BF |
2887 | */ |
2888 | STATIC int | |
2889 | xlog_recover_process( | |
2890 | struct xlog *log, | |
2891 | struct hlist_head rhash[], | |
2892 | struct xlog_rec_header *rhead, | |
2893 | char *dp, | |
12818d24 BF |
2894 | int pass, |
2895 | struct list_head *buffer_list) | |
9d94901f | 2896 | { |
cae028df | 2897 | __le32 old_crc = rhead->h_crc; |
b94fb2d1 BF |
2898 | __le32 crc; |
2899 | ||
6528250b BF |
2900 | crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); |
2901 | ||
b94fb2d1 | 2902 | /* |
6528250b BF |
2903 | * Nothing else to do if this is a CRC verification pass. Just return |
2904 | * if this a record with a non-zero crc. Unfortunately, mkfs always | |
cae028df | 2905 | * sets old_crc to 0 so we must consider this valid even on v5 supers. |
6528250b BF |
2906 | * Otherwise, return EFSBADCRC on failure so the callers up the stack |
2907 | * know precisely what failed. | |
2908 | */ | |
2909 | if (pass == XLOG_RECOVER_CRCPASS) { | |
cae028df | 2910 | if (old_crc && crc != old_crc) |
6528250b BF |
2911 | return -EFSBADCRC; |
2912 | return 0; | |
2913 | } | |
2914 | ||
2915 | /* | |
2916 | * We're in the normal recovery path. Issue a warning if and only if the | |
2917 | * CRC in the header is non-zero. This is an advisory warning and the | |
2918 | * zero CRC check prevents warnings from being emitted when upgrading | |
2919 | * the kernel from one that does not add CRCs by default. | |
b94fb2d1 | 2920 | */ |
cae028df | 2921 | if (crc != old_crc) { |
38c26bfd | 2922 | if (old_crc || xfs_has_crc(log->l_mp)) { |
b94fb2d1 BF |
2923 | xfs_alert(log->l_mp, |
2924 | "log record CRC mismatch: found 0x%x, expected 0x%x.", | |
cae028df | 2925 | le32_to_cpu(old_crc), |
b94fb2d1 BF |
2926 | le32_to_cpu(crc)); |
2927 | xfs_hex_dump(dp, 32); | |
2928 | } | |
2929 | ||
2930 | /* | |
2931 | * If the filesystem is CRC enabled, this mismatch becomes a | |
2932 | * fatal log corruption failure. | |
2933 | */ | |
38c26bfd | 2934 | if (xfs_has_crc(log->l_mp)) { |
a5155b87 | 2935 | XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp); |
b94fb2d1 | 2936 | return -EFSCORRUPTED; |
a5155b87 | 2937 | } |
b94fb2d1 | 2938 | } |
9d94901f | 2939 | |
91083269 | 2940 | xlog_unpack_data(rhead, dp, log); |
9d94901f | 2941 | |
12818d24 BF |
2942 | return xlog_recover_process_data(log, rhash, rhead, dp, pass, |
2943 | buffer_list); | |
9d94901f BF |
2944 | } |
2945 | ||
1da177e4 LT |
2946 | STATIC int |
2947 | xlog_valid_rec_header( | |
9a8d2fdb MT |
2948 | struct xlog *log, |
2949 | struct xlog_rec_header *rhead, | |
f692d09e GX |
2950 | xfs_daddr_t blkno, |
2951 | int bufsize) | |
1da177e4 LT |
2952 | { |
2953 | int hlen; | |
2954 | ||
a71895c5 DW |
2955 | if (XFS_IS_CORRUPT(log->l_mp, |
2956 | rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) | |
2451337d | 2957 | return -EFSCORRUPTED; |
a71895c5 DW |
2958 | if (XFS_IS_CORRUPT(log->l_mp, |
2959 | (!rhead->h_version || | |
2960 | (be32_to_cpu(rhead->h_version) & | |
2961 | (~XLOG_VERSION_OKBITS))))) { | |
a0fa2b67 | 2962 | xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", |
34a622b2 | 2963 | __func__, be32_to_cpu(rhead->h_version)); |
895e196f | 2964 | return -EFSCORRUPTED; |
1da177e4 LT |
2965 | } |
2966 | ||
f692d09e GX |
2967 | /* |
2968 | * LR body must have data (or it wouldn't have been written) | |
2969 | * and h_len must not be greater than LR buffer size. | |
2970 | */ | |
b53e675d | 2971 | hlen = be32_to_cpu(rhead->h_len); |
f692d09e | 2972 | if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize)) |
2451337d | 2973 | return -EFSCORRUPTED; |
f692d09e | 2974 | |
a71895c5 DW |
2975 | if (XFS_IS_CORRUPT(log->l_mp, |
2976 | blkno > log->l_logBBsize || blkno > INT_MAX)) | |
2451337d | 2977 | return -EFSCORRUPTED; |
1da177e4 LT |
2978 | return 0; |
2979 | } | |
2980 | ||
2981 | /* | |
2982 | * Read the log from tail to head and process the log records found. | |
2983 | * Handle the two cases where the tail and head are in the same cycle | |
2984 | * and where the active portion of the log wraps around the end of | |
2985 | * the physical log separately. The pass parameter is passed through | |
2986 | * to the routines called to process the data and is not looked at | |
2987 | * here. | |
2988 | */ | |
2989 | STATIC int | |
2990 | xlog_do_recovery_pass( | |
9a8d2fdb | 2991 | struct xlog *log, |
1da177e4 LT |
2992 | xfs_daddr_t head_blk, |
2993 | xfs_daddr_t tail_blk, | |
d7f37692 BF |
2994 | int pass, |
2995 | xfs_daddr_t *first_bad) /* out: first bad log rec */ | |
1da177e4 LT |
2996 | { |
2997 | xlog_rec_header_t *rhead; | |
284f1c2c | 2998 | xfs_daddr_t blk_no, rblk_no; |
d7f37692 | 2999 | xfs_daddr_t rhead_blk; |
b2a922cd | 3000 | char *offset; |
6ad5b325 | 3001 | char *hbp, *dbp; |
a70f9fe5 | 3002 | int error = 0, h_size, h_len; |
12818d24 | 3003 | int error2 = 0; |
1da177e4 | 3004 | int bblks, split_bblks; |
45cf9760 | 3005 | int hblks = 1, split_hblks, wrapped_hblks; |
39775431 | 3006 | int i; |
f0a76953 | 3007 | struct hlist_head rhash[XLOG_RHASH_SIZE]; |
12818d24 | 3008 | LIST_HEAD (buffer_list); |
1da177e4 LT |
3009 | |
3010 | ASSERT(head_blk != tail_blk); | |
a4c9b34d | 3011 | blk_no = rhead_blk = tail_blk; |
1da177e4 | 3012 | |
39775431 BF |
3013 | for (i = 0; i < XLOG_RHASH_SIZE; i++) |
3014 | INIT_HLIST_HEAD(&rhash[i]); | |
3015 | ||
67a841f9 CH |
3016 | hbp = xlog_alloc_buffer(log, hblks); |
3017 | if (!hbp) | |
3018 | return -ENOMEM; | |
3019 | ||
1da177e4 LT |
3020 | /* |
3021 | * Read the header of the tail block and get the iclog buffer size from | |
3022 | * h_size. Use this to tell how many sectors make up the log header. | |
3023 | */ | |
38c26bfd | 3024 | if (xfs_has_logv2(log->l_mp)) { |
1da177e4 LT |
3025 | /* |
3026 | * When using variable length iclogs, read first sector of | |
3027 | * iclog header and extract the header size from it. Get a | |
3028 | * new hbp that is the correct size. | |
3029 | */ | |
076e6acb CH |
3030 | error = xlog_bread(log, tail_blk, 1, hbp, &offset); |
3031 | if (error) | |
1da177e4 | 3032 | goto bread_err1; |
076e6acb | 3033 | |
1da177e4 | 3034 | rhead = (xlog_rec_header_t *)offset; |
a70f9fe5 BF |
3035 | |
3036 | /* | |
3037 | * xfsprogs has a bug where record length is based on lsunit but | |
3038 | * h_size (iclog size) is hardcoded to 32k. Now that we | |
3039 | * unconditionally CRC verify the unmount record, this means the | |
3040 | * log buffer can be too small for the record and cause an | |
3041 | * overrun. | |
3042 | * | |
3043 | * Detect this condition here. Use lsunit for the buffer size as | |
3044 | * long as this looks like the mkfs case. Otherwise, return an | |
3045 | * error to avoid a buffer overrun. | |
3046 | */ | |
b53e675d | 3047 | h_size = be32_to_cpu(rhead->h_size); |
a70f9fe5 | 3048 | h_len = be32_to_cpu(rhead->h_len); |
f692d09e GX |
3049 | if (h_len > h_size && h_len <= log->l_mp->m_logbsize && |
3050 | rhead->h_num_logops == cpu_to_be32(1)) { | |
3051 | xfs_warn(log->l_mp, | |
a70f9fe5 | 3052 | "invalid iclog size (%d bytes), using lsunit (%d bytes)", |
f692d09e GX |
3053 | h_size, log->l_mp->m_logbsize); |
3054 | h_size = log->l_mp->m_logbsize; | |
a70f9fe5 BF |
3055 | } |
3056 | ||
f692d09e GX |
3057 | error = xlog_valid_rec_header(log, rhead, tail_blk, h_size); |
3058 | if (error) | |
3059 | goto bread_err1; | |
3060 | ||
45cf9760 CH |
3061 | /* |
3062 | * This open codes xlog_logrec_hblks so that we can reuse the | |
3063 | * fixed up h_size value calculated above. Without that we'd | |
3064 | * still allocate the buffer based on the incorrect on-disk | |
3065 | * size. | |
3066 | */ | |
3067 | if (h_size > XLOG_HEADER_CYCLE_SIZE && | |
3068 | (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) { | |
3069 | hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE); | |
3070 | if (hblks > 1) { | |
3071 | kvfree(hbp); | |
3072 | hbp = xlog_alloc_buffer(log, hblks); | |
67a841f9 CH |
3073 | if (!hbp) |
3074 | return -ENOMEM; | |
45cf9760 | 3075 | } |
1da177e4 LT |
3076 | } |
3077 | } else { | |
69ce58f0 | 3078 | ASSERT(log->l_sectBBsize == 1); |
1da177e4 LT |
3079 | h_size = XLOG_BIG_RECORD_BSIZE; |
3080 | } | |
3081 | ||
6e9b3dd8 | 3082 | dbp = xlog_alloc_buffer(log, BTOBB(h_size)); |
1da177e4 | 3083 | if (!dbp) { |
49292576 | 3084 | kvfree(hbp); |
2451337d | 3085 | return -ENOMEM; |
1da177e4 LT |
3086 | } |
3087 | ||
3088 | memset(rhash, 0, sizeof(rhash)); | |
970fd3f0 | 3089 | if (tail_blk > head_blk) { |
1da177e4 LT |
3090 | /* |
3091 | * Perform recovery around the end of the physical log. | |
3092 | * When the head is not on the same cycle number as the tail, | |
970fd3f0 | 3093 | * we can't do a sequential recovery. |
1da177e4 | 3094 | */ |
1da177e4 LT |
3095 | while (blk_no < log->l_logBBsize) { |
3096 | /* | |
3097 | * Check for header wrapping around physical end-of-log | |
3098 | */ | |
6ad5b325 | 3099 | offset = hbp; |
1da177e4 LT |
3100 | split_hblks = 0; |
3101 | wrapped_hblks = 0; | |
3102 | if (blk_no + hblks <= log->l_logBBsize) { | |
3103 | /* Read header in one read */ | |
076e6acb CH |
3104 | error = xlog_bread(log, blk_no, hblks, hbp, |
3105 | &offset); | |
1da177e4 LT |
3106 | if (error) |
3107 | goto bread_err2; | |
1da177e4 LT |
3108 | } else { |
3109 | /* This LR is split across physical log end */ | |
3110 | if (blk_no != log->l_logBBsize) { | |
3111 | /* some data before physical log end */ | |
3112 | ASSERT(blk_no <= INT_MAX); | |
3113 | split_hblks = log->l_logBBsize - (int)blk_no; | |
3114 | ASSERT(split_hblks > 0); | |
076e6acb CH |
3115 | error = xlog_bread(log, blk_no, |
3116 | split_hblks, hbp, | |
3117 | &offset); | |
3118 | if (error) | |
1da177e4 | 3119 | goto bread_err2; |
1da177e4 | 3120 | } |
076e6acb | 3121 | |
1da177e4 LT |
3122 | /* |
3123 | * Note: this black magic still works with | |
3124 | * large sector sizes (non-512) only because: | |
3125 | * - we increased the buffer size originally | |
3126 | * by 1 sector giving us enough extra space | |
3127 | * for the second read; | |
3128 | * - the log start is guaranteed to be sector | |
3129 | * aligned; | |
3130 | * - we read the log end (LR header start) | |
3131 | * _first_, then the log start (LR header end) | |
3132 | * - order is important. | |
3133 | */ | |
234f56ac | 3134 | wrapped_hblks = hblks - split_hblks; |
6ad5b325 CH |
3135 | error = xlog_bread_noalign(log, 0, |
3136 | wrapped_hblks, | |
44396476 | 3137 | offset + BBTOB(split_hblks)); |
1da177e4 LT |
3138 | if (error) |
3139 | goto bread_err2; | |
1da177e4 LT |
3140 | } |
3141 | rhead = (xlog_rec_header_t *)offset; | |
3142 | error = xlog_valid_rec_header(log, rhead, | |
f692d09e | 3143 | split_hblks ? blk_no : 0, h_size); |
1da177e4 LT |
3144 | if (error) |
3145 | goto bread_err2; | |
3146 | ||
b53e675d | 3147 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); |
1da177e4 LT |
3148 | blk_no += hblks; |
3149 | ||
284f1c2c BF |
3150 | /* |
3151 | * Read the log record data in multiple reads if it | |
3152 | * wraps around the end of the log. Note that if the | |
3153 | * header already wrapped, blk_no could point past the | |
3154 | * end of the log. The record data is contiguous in | |
3155 | * that case. | |
3156 | */ | |
3157 | if (blk_no + bblks <= log->l_logBBsize || | |
3158 | blk_no >= log->l_logBBsize) { | |
0703a8e1 | 3159 | rblk_no = xlog_wrap_logbno(log, blk_no); |
284f1c2c | 3160 | error = xlog_bread(log, rblk_no, bblks, dbp, |
076e6acb | 3161 | &offset); |
1da177e4 LT |
3162 | if (error) |
3163 | goto bread_err2; | |
1da177e4 LT |
3164 | } else { |
3165 | /* This log record is split across the | |
3166 | * physical end of log */ | |
6ad5b325 | 3167 | offset = dbp; |
1da177e4 LT |
3168 | split_bblks = 0; |
3169 | if (blk_no != log->l_logBBsize) { | |
3170 | /* some data is before the physical | |
3171 | * end of log */ | |
3172 | ASSERT(!wrapped_hblks); | |
3173 | ASSERT(blk_no <= INT_MAX); | |
3174 | split_bblks = | |
3175 | log->l_logBBsize - (int)blk_no; | |
3176 | ASSERT(split_bblks > 0); | |
076e6acb CH |
3177 | error = xlog_bread(log, blk_no, |
3178 | split_bblks, dbp, | |
3179 | &offset); | |
3180 | if (error) | |
1da177e4 | 3181 | goto bread_err2; |
1da177e4 | 3182 | } |
076e6acb | 3183 | |
1da177e4 LT |
3184 | /* |
3185 | * Note: this black magic still works with | |
3186 | * large sector sizes (non-512) only because: | |
3187 | * - we increased the buffer size originally | |
3188 | * by 1 sector giving us enough extra space | |
3189 | * for the second read; | |
3190 | * - the log start is guaranteed to be sector | |
3191 | * aligned; | |
3192 | * - we read the log end (LR header start) | |
3193 | * _first_, then the log start (LR header end) | |
3194 | * - order is important. | |
3195 | */ | |
6ad5b325 CH |
3196 | error = xlog_bread_noalign(log, 0, |
3197 | bblks - split_bblks, | |
44396476 | 3198 | offset + BBTOB(split_bblks)); |
076e6acb CH |
3199 | if (error) |
3200 | goto bread_err2; | |
1da177e4 | 3201 | } |
0e446be4 | 3202 | |
9d94901f | 3203 | error = xlog_recover_process(log, rhash, rhead, offset, |
12818d24 | 3204 | pass, &buffer_list); |
0e446be4 | 3205 | if (error) |
1da177e4 | 3206 | goto bread_err2; |
d7f37692 | 3207 | |
1da177e4 | 3208 | blk_no += bblks; |
d7f37692 | 3209 | rhead_blk = blk_no; |
1da177e4 LT |
3210 | } |
3211 | ||
3212 | ASSERT(blk_no >= log->l_logBBsize); | |
3213 | blk_no -= log->l_logBBsize; | |
d7f37692 | 3214 | rhead_blk = blk_no; |
970fd3f0 | 3215 | } |
1da177e4 | 3216 | |
970fd3f0 ES |
3217 | /* read first part of physical log */ |
3218 | while (blk_no < head_blk) { | |
3219 | error = xlog_bread(log, blk_no, hblks, hbp, &offset); | |
3220 | if (error) | |
3221 | goto bread_err2; | |
076e6acb | 3222 | |
970fd3f0 | 3223 | rhead = (xlog_rec_header_t *)offset; |
f692d09e | 3224 | error = xlog_valid_rec_header(log, rhead, blk_no, h_size); |
970fd3f0 ES |
3225 | if (error) |
3226 | goto bread_err2; | |
076e6acb | 3227 | |
970fd3f0 ES |
3228 | /* blocks in data section */ |
3229 | bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); | |
3230 | error = xlog_bread(log, blk_no+hblks, bblks, dbp, | |
3231 | &offset); | |
3232 | if (error) | |
3233 | goto bread_err2; | |
076e6acb | 3234 | |
12818d24 BF |
3235 | error = xlog_recover_process(log, rhash, rhead, offset, pass, |
3236 | &buffer_list); | |
970fd3f0 ES |
3237 | if (error) |
3238 | goto bread_err2; | |
d7f37692 | 3239 | |
970fd3f0 | 3240 | blk_no += bblks + hblks; |
d7f37692 | 3241 | rhead_blk = blk_no; |
1da177e4 LT |
3242 | } |
3243 | ||
3244 | bread_err2: | |
49292576 | 3245 | kvfree(dbp); |
1da177e4 | 3246 | bread_err1: |
49292576 | 3247 | kvfree(hbp); |
d7f37692 | 3248 | |
12818d24 | 3249 | /* |
e4c3b72a | 3250 | * Submit buffers that have been dirtied by the last record recovered. |
12818d24 | 3251 | */ |
e4c3b72a LL |
3252 | if (!list_empty(&buffer_list)) { |
3253 | if (error) { | |
3254 | /* | |
3255 | * If there has been an item recovery error then we | |
3256 | * cannot allow partial checkpoint writeback to | |
3257 | * occur. We might have multiple checkpoints with the | |
3258 | * same start LSN in this buffer list, and partial | |
3259 | * writeback of a checkpoint in this situation can | |
3260 | * prevent future recovery of all the changes in the | |
3261 | * checkpoints at this start LSN. | |
3262 | * | |
3263 | * Note: Shutting down the filesystem will result in the | |
3264 | * delwri submission marking all the buffers stale, | |
3265 | * completing them and cleaning up _XBF_LOGRECOVERY | |
3266 | * state without doing any IO. | |
3267 | */ | |
3268 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); | |
3269 | } | |
12818d24 | 3270 | error2 = xfs_buf_delwri_submit(&buffer_list); |
e4c3b72a | 3271 | } |
12818d24 | 3272 | |
d7f37692 BF |
3273 | if (error && first_bad) |
3274 | *first_bad = rhead_blk; | |
3275 | ||
39775431 BF |
3276 | /* |
3277 | * Transactions are freed at commit time but transactions without commit | |
3278 | * records on disk are never committed. Free any that may be left in the | |
3279 | * hash table. | |
3280 | */ | |
3281 | for (i = 0; i < XLOG_RHASH_SIZE; i++) { | |
3282 | struct hlist_node *tmp; | |
3283 | struct xlog_recover *trans; | |
3284 | ||
3285 | hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list) | |
3286 | xlog_recover_free_trans(trans); | |
3287 | } | |
3288 | ||
12818d24 | 3289 | return error ? error : error2; |
1da177e4 LT |
3290 | } |
3291 | ||
3292 | /* | |
3293 | * Do the recovery of the log. We actually do this in two phases. | |
3294 | * The two passes are necessary in order to implement the function | |
3295 | * of cancelling a record written into the log. The first pass | |
3296 | * determines those things which have been cancelled, and the | |
3297 | * second pass replays log items normally except for those which | |
3298 | * have been cancelled. The handling of the replay and cancellations | |
3299 | * takes place in the log item type specific routines. | |
3300 | * | |
3301 | * The table of items which have cancel records in the log is allocated | |
3302 | * and freed at this level, since only here do we know when all of | |
3303 | * the log recovery has been completed. | |
3304 | */ | |
3305 | STATIC int | |
3306 | xlog_do_log_recovery( | |
9a8d2fdb | 3307 | struct xlog *log, |
1da177e4 LT |
3308 | xfs_daddr_t head_blk, |
3309 | xfs_daddr_t tail_blk) | |
3310 | { | |
27232349 | 3311 | int error; |
1da177e4 LT |
3312 | |
3313 | ASSERT(head_blk != tail_blk); | |
3314 | ||
3315 | /* | |
3316 | * First do a pass to find all of the cancelled buf log items. | |
3317 | * Store them in the buf_cancel_table for use in the second pass. | |
3318 | */ | |
910bbdf2 DW |
3319 | error = xlog_alloc_buf_cancel_table(log); |
3320 | if (error) | |
3321 | return error; | |
d5689eaa | 3322 | |
1da177e4 | 3323 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, |
d7f37692 | 3324 | XLOG_RECOVER_PASS1, NULL); |
27232349 DW |
3325 | if (error != 0) |
3326 | goto out_cancel; | |
3327 | ||
1da177e4 LT |
3328 | /* |
3329 | * Then do a second pass to actually recover the items in the log. | |
3330 | * When it is complete free the table of buf cancel items. | |
3331 | */ | |
3332 | error = xlog_do_recovery_pass(log, head_blk, tail_blk, | |
d7f37692 | 3333 | XLOG_RECOVER_PASS2, NULL); |
27232349 DW |
3334 | if (!error) |
3335 | xlog_check_buf_cancel_table(log); | |
3336 | out_cancel: | |
3337 | xlog_free_buf_cancel_table(log); | |
1da177e4 LT |
3338 | return error; |
3339 | } | |
3340 | ||
3341 | /* | |
3342 | * Do the actual recovery | |
3343 | */ | |
3344 | STATIC int | |
3345 | xlog_do_recover( | |
b3f8e08c CH |
3346 | struct xlog *log, |
3347 | xfs_daddr_t head_blk, | |
3348 | xfs_daddr_t tail_blk) | |
1da177e4 | 3349 | { |
b3f8e08c CH |
3350 | struct xfs_mount *mp = log->l_mp; |
3351 | struct xfs_buf *bp = mp->m_sb_bp; | |
3352 | struct xfs_sb *sbp = &mp->m_sb; | |
3353 | int error; | |
1da177e4 | 3354 | |
e67d3d42 BF |
3355 | trace_xfs_log_recover(log, head_blk, tail_blk); |
3356 | ||
1da177e4 LT |
3357 | /* |
3358 | * First replay the images in the log. | |
3359 | */ | |
3360 | error = xlog_do_log_recovery(log, head_blk, tail_blk); | |
43ff2122 | 3361 | if (error) |
1da177e4 | 3362 | return error; |
1da177e4 | 3363 | |
2039a272 | 3364 | if (xlog_is_shutdown(log)) |
2451337d | 3365 | return -EIO; |
1da177e4 LT |
3366 | |
3367 | /* | |
3368 | * We now update the tail_lsn since much of the recovery has completed | |
0dcd5a10 DC |
3369 | * and there may be space available to use. If there were no extent or |
3370 | * iunlinks, we can free up the entire log. This was set in | |
3371 | * xlog_find_tail to be the lsn of the last known good LR on disk. If | |
3372 | * there are extent frees or iunlinks they will have some entries in the | |
3373 | * AIL; so we look at the AIL to determine how to set the tail_lsn. | |
1da177e4 | 3374 | */ |
0dcd5a10 | 3375 | xfs_ail_assign_tail_lsn(log->l_ailp); |
1da177e4 LT |
3376 | |
3377 | /* | |
b3f8e08c CH |
3378 | * Now that we've finished replaying all buffer and inode updates, |
3379 | * re-read the superblock and reverify it. | |
1da177e4 | 3380 | */ |
b3f8e08c CH |
3381 | xfs_buf_lock(bp); |
3382 | xfs_buf_hold(bp); | |
efc5f7a9 | 3383 | error = _xfs_buf_read(bp); |
d64e31a2 | 3384 | if (error) { |
2039a272 | 3385 | if (!xlog_is_shutdown(log)) { |
cdbcf82b | 3386 | xfs_buf_ioerror_alert(bp, __this_address); |
595bff75 DC |
3387 | ASSERT(0); |
3388 | } | |
1da177e4 LT |
3389 | xfs_buf_relse(bp); |
3390 | return error; | |
3391 | } | |
3392 | ||
3393 | /* Convert superblock from on-disk format */ | |
3e6e8afd | 3394 | xfs_sb_from_disk(sbp, bp->b_addr); |
1da177e4 LT |
3395 | xfs_buf_relse(bp); |
3396 | ||
a798011c | 3397 | /* re-initialise in-core superblock and geometry structures */ |
a1d86e8d | 3398 | mp->m_features |= xfs_sb_version_to_features(sbp); |
a798011c | 3399 | xfs_reinit_percpu_counters(mp); |
5478eead | 3400 | |
1da177e4 | 3401 | /* Normal transactions can now occur */ |
e1d06e5f | 3402 | clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate); |
1da177e4 LT |
3403 | return 0; |
3404 | } | |
3405 | ||
3406 | /* | |
3407 | * Perform recovery and re-initialize some log variables in xlog_find_tail. | |
3408 | * | |
3409 | * Return error or zero. | |
3410 | */ | |
3411 | int | |
3412 | xlog_recover( | |
9a8d2fdb | 3413 | struct xlog *log) |
1da177e4 LT |
3414 | { |
3415 | xfs_daddr_t head_blk, tail_blk; | |
3416 | int error; | |
3417 | ||
3418 | /* find the tail of the log */ | |
a45086e2 BF |
3419 | error = xlog_find_tail(log, &head_blk, &tail_blk); |
3420 | if (error) | |
1da177e4 LT |
3421 | return error; |
3422 | ||
a45086e2 BF |
3423 | /* |
3424 | * The superblock was read before the log was available and thus the LSN | |
3425 | * could not be verified. Check the superblock LSN against the current | |
3426 | * LSN now that it's known. | |
3427 | */ | |
38c26bfd | 3428 | if (xfs_has_crc(log->l_mp) && |
a45086e2 BF |
3429 | !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn)) |
3430 | return -EINVAL; | |
3431 | ||
1da177e4 LT |
3432 | if (tail_blk != head_blk) { |
3433 | /* There used to be a comment here: | |
3434 | * | |
3435 | * disallow recovery on read-only mounts. note -- mount | |
3436 | * checks for ENOSPC and turns it into an intelligent | |
3437 | * error message. | |
3438 | * ...but this is no longer true. Now, unless you specify | |
3439 | * NORECOVERY (in which case this function would never be | |
3440 | * called), we just go ahead and recover. We do this all | |
3441 | * under the vfs layer, so we can get away with it unless | |
3442 | * the device itself is read-only, in which case we fail. | |
3443 | */ | |
3a02ee18 | 3444 | if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { |
1da177e4 LT |
3445 | return error; |
3446 | } | |
3447 | ||
e721f504 DC |
3448 | /* |
3449 | * Version 5 superblock log feature mask validation. We know the | |
3450 | * log is dirty so check if there are any unknown log features | |
3451 | * in what we need to recover. If there are unknown features | |
3452 | * (e.g. unsupported transactions, then simply reject the | |
3453 | * attempt at recovery before touching anything. | |
3454 | */ | |
d6837c1a | 3455 | if (xfs_sb_is_v5(&log->l_mp->m_sb) && |
e721f504 DC |
3456 | xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, |
3457 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { | |
3458 | xfs_warn(log->l_mp, | |
f41febd2 | 3459 | "Superblock has unknown incompatible log features (0x%x) enabled.", |
e721f504 DC |
3460 | (log->l_mp->m_sb.sb_features_log_incompat & |
3461 | XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); | |
f41febd2 JP |
3462 | xfs_warn(log->l_mp, |
3463 | "The log can not be fully and/or safely recovered by this kernel."); | |
3464 | xfs_warn(log->l_mp, | |
3465 | "Please recover the log on a kernel that supports the unknown features."); | |
2451337d | 3466 | return -EINVAL; |
e721f504 DC |
3467 | } |
3468 | ||
2e227178 BF |
3469 | /* |
3470 | * Delay log recovery if the debug hook is set. This is debug | |
bd24a4f5 | 3471 | * instrumentation to coordinate simulation of I/O failures with |
2e227178 BF |
3472 | * log recovery. |
3473 | */ | |
3474 | if (xfs_globals.log_recovery_delay) { | |
3475 | xfs_notice(log->l_mp, | |
3476 | "Delaying log recovery for %d seconds.", | |
3477 | xfs_globals.log_recovery_delay); | |
3478 | msleep(xfs_globals.log_recovery_delay * 1000); | |
3479 | } | |
3480 | ||
a0fa2b67 DC |
3481 | xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", |
3482 | log->l_mp->m_logname ? log->l_mp->m_logname | |
3483 | : "internal"); | |
1da177e4 LT |
3484 | |
3485 | error = xlog_do_recover(log, head_blk, tail_blk); | |
e1d06e5f | 3486 | set_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate); |
1da177e4 LT |
3487 | } |
3488 | return error; | |
3489 | } | |
3490 | ||
3491 | /* | |
fd67d8a0 DC |
3492 | * In the first part of recovery we replay inodes and buffers and build up the |
3493 | * list of intents which need to be processed. Here we process the intents and | |
3494 | * clean up the on disk unlinked inode lists. This is separated from the first | |
3495 | * part of recovery so that the root and real-time bitmap inodes can be read in | |
3496 | * from disk in between the two stages. This is necessary so that we can free | |
3497 | * space in the real-time portion of the file system. | |
2c1e31ed DC |
3498 | * |
3499 | * We run this whole process under GFP_NOFS allocation context. We do a | |
3500 | * combination of non-transactional and transactional work, yet we really don't | |
3501 | * want to recurse into the filesystem from direct reclaim during any of this | |
3502 | * processing. This allows all the recovery code run here not to care about the | |
3503 | * memory allocation context it is running in. | |
1da177e4 LT |
3504 | */ |
3505 | int | |
3506 | xlog_recover_finish( | |
9a8d2fdb | 3507 | struct xlog *log) |
1da177e4 | 3508 | { |
2c1e31ed DC |
3509 | unsigned int nofs_flags = memalloc_nofs_save(); |
3510 | int error; | |
9e88b5d8 | 3511 | |
fd67d8a0 DC |
3512 | error = xlog_recover_process_intents(log); |
3513 | if (error) { | |
1da177e4 | 3514 | /* |
fd67d8a0 DC |
3515 | * Cancel all the unprocessed intent items now so that we don't |
3516 | * leave them pinned in the AIL. This can cause the AIL to | |
3517 | * livelock on the pinned item if anyone tries to push the AIL | |
3518 | * (inode reclaim does this) before we get around to | |
3519 | * xfs_log_mount_cancel. | |
1da177e4 | 3520 | */ |
fd67d8a0 DC |
3521 | xlog_recover_cancel_intents(log); |
3522 | xfs_alert(log->l_mp, "Failed to recover intents"); | |
b5f17bec | 3523 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); |
2c1e31ed | 3524 | goto out_error; |
fd67d8a0 | 3525 | } |
1da177e4 | 3526 | |
fd67d8a0 DC |
3527 | /* |
3528 | * Sync the log to get all the intents out of the AIL. This isn't | |
3529 | * absolutely necessary, but it helps in case the unlink transactions | |
3530 | * would have problems pushing the intents out of the way. | |
3531 | */ | |
3532 | xfs_log_force(log->l_mp, XFS_LOG_SYNC); | |
3533 | ||
fd67d8a0 | 3534 | xlog_recover_process_iunlinks(log); |
7993f1a4 DW |
3535 | |
3536 | /* | |
3537 | * Recover any CoW staging blocks that are still referenced by the | |
3538 | * ondisk refcount metadata. During mount there cannot be any live | |
3539 | * staging extents as we have not permitted any user modifications. | |
3540 | * Therefore, it is safe to free them all right now, even on a | |
3541 | * read-only mount. | |
3542 | */ | |
3543 | error = xfs_reflink_recover_cow(log->l_mp); | |
3544 | if (error) { | |
3545 | xfs_alert(log->l_mp, | |
3546 | "Failed to recover leftover CoW staging extents, err %d.", | |
3547 | error); | |
3548 | /* | |
3549 | * If we get an error here, make sure the log is shut down | |
3550 | * but return zero so that any log items committed since the | |
3551 | * end of intents processing can be pushed through the CIL | |
3552 | * and AIL. | |
3553 | */ | |
b5f17bec | 3554 | xlog_force_shutdown(log, SHUTDOWN_LOG_IO_ERROR); |
1e5efd72 | 3555 | error = 0; |
2c1e31ed | 3556 | goto out_error; |
7993f1a4 DW |
3557 | } |
3558 | ||
2c1e31ed DC |
3559 | out_error: |
3560 | memalloc_nofs_restore(nofs_flags); | |
3561 | return error; | |
1da177e4 LT |
3562 | } |
3563 | ||
a7a9250e | 3564 | void |
f0b2efad BF |
3565 | xlog_recover_cancel( |
3566 | struct xlog *log) | |
3567 | { | |
e1d06e5f | 3568 | if (xlog_recovery_needed(log)) |
a7a9250e | 3569 | xlog_recover_cancel_intents(log); |
f0b2efad | 3570 | } |
1da177e4 | 3571 |