xfs: use %pS printk format for direct instruction addresses
[linux-2.6-block.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
70a9883c 20#include "xfs_shared.h"
239880ef
DC
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
a844f451 24#include "xfs_bit.h"
a844f451 25#include "xfs_sb.h"
1da177e4 26#include "xfs_mount.h"
50995582 27#include "xfs_defer.h"
57062787 28#include "xfs_da_format.h"
9a2cc41c 29#include "xfs_da_btree.h"
1da177e4 30#include "xfs_inode.h"
239880ef 31#include "xfs_trans.h"
239880ef 32#include "xfs_log.h"
1da177e4 33#include "xfs_log_priv.h"
1da177e4 34#include "xfs_log_recover.h"
a4fbe6ab 35#include "xfs_inode_item.h"
1da177e4
LT
36#include "xfs_extfree_item.h"
37#include "xfs_trans_priv.h"
a4fbe6ab
DC
38#include "xfs_alloc.h"
39#include "xfs_ialloc.h"
1da177e4 40#include "xfs_quota.h"
0e446be4 41#include "xfs_cksum.h"
0b1b213f 42#include "xfs_trace.h"
33479e05 43#include "xfs_icache.h"
a4fbe6ab 44#include "xfs_bmap_btree.h"
a4fbe6ab 45#include "xfs_error.h"
2b9ab5ab 46#include "xfs_dir2.h"
9e88b5d8 47#include "xfs_rmap_item.h"
60a4a222 48#include "xfs_buf_item.h"
f997ee21 49#include "xfs_refcount_item.h"
77d61fe4 50#include "xfs_bmap_item.h"
1da177e4 51
fc06c6d0
DC
52#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
53
9a8d2fdb
MT
54STATIC int
55xlog_find_zeroed(
56 struct xlog *,
57 xfs_daddr_t *);
58STATIC int
59xlog_clear_stale_blocks(
60 struct xlog *,
61 xfs_lsn_t);
1da177e4 62#if defined(DEBUG)
9a8d2fdb
MT
63STATIC void
64xlog_recover_check_summary(
65 struct xlog *);
1da177e4
LT
66#else
67#define xlog_recover_check_summary(log)
1da177e4 68#endif
7088c413
BF
69STATIC int
70xlog_do_recovery_pass(
71 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 72
d5689eaa
CH
73/*
74 * This structure is used during recovery to record the buf log items which
75 * have been canceled and should not be replayed.
76 */
77struct xfs_buf_cancel {
78 xfs_daddr_t bc_blkno;
79 uint bc_len;
80 int bc_refcount;
81 struct list_head bc_list;
82};
83
1da177e4
LT
84/*
85 * Sector aligned buffer routines for buffer create/read/write/access
86 */
87
ff30a622 88/*
99c26595
BF
89 * Verify the log-relative block number and length in basic blocks are valid for
90 * an operation involving the given XFS log buffer. Returns true if the fields
91 * are valid, false otherwise.
ff30a622 92 */
99c26595
BF
93static inline bool
94xlog_verify_bp(
9a8d2fdb 95 struct xlog *log,
99c26595 96 xfs_daddr_t blk_no,
ff30a622
AE
97 int bbcount)
98{
99c26595
BF
99 if (blk_no < 0 || blk_no >= log->l_logBBsize)
100 return false;
101 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
102 return false;
103 return true;
ff30a622
AE
104}
105
36adecff
AE
106/*
107 * Allocate a buffer to hold log data. The buffer needs to be able
108 * to map to a range of nbblks basic blocks at any valid (basic
109 * block) offset within the log.
110 */
5d77c0dc 111STATIC xfs_buf_t *
1da177e4 112xlog_get_bp(
9a8d2fdb 113 struct xlog *log,
3228149c 114 int nbblks)
1da177e4 115{
c8da0faf
CH
116 struct xfs_buf *bp;
117
99c26595
BF
118 /*
119 * Pass log block 0 since we don't have an addr yet, buffer will be
120 * verified on read.
121 */
122 if (!xlog_verify_bp(log, 0, nbblks)) {
a0fa2b67 123 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
124 nbblks);
125 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
126 return NULL;
127 }
1da177e4 128
36adecff
AE
129 /*
130 * We do log I/O in units of log sectors (a power-of-2
131 * multiple of the basic block size), so we round up the
25985edc 132 * requested size to accommodate the basic blocks required
36adecff
AE
133 * for complete log sectors.
134 *
135 * In addition, the buffer may be used for a non-sector-
136 * aligned block offset, in which case an I/O of the
137 * requested size could extend beyond the end of the
138 * buffer. If the requested size is only 1 basic block it
139 * will never straddle a sector boundary, so this won't be
140 * an issue. Nor will this be a problem if the log I/O is
141 * done in basic blocks (sector size 1). But otherwise we
142 * extend the buffer by one extra log sector to ensure
25985edc 143 * there's space to accommodate this possibility.
36adecff 144 */
69ce58f0
AE
145 if (nbblks > 1 && log->l_sectBBsize > 1)
146 nbblks += log->l_sectBBsize;
147 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 148
e70b73f8 149 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
150 if (bp)
151 xfs_buf_unlock(bp);
152 return bp;
1da177e4
LT
153}
154
5d77c0dc 155STATIC void
1da177e4
LT
156xlog_put_bp(
157 xfs_buf_t *bp)
158{
159 xfs_buf_free(bp);
160}
161
48389ef1
AE
162/*
163 * Return the address of the start of the given block number's data
164 * in a log buffer. The buffer covers a log sector-aligned region.
165 */
b2a922cd 166STATIC char *
076e6acb 167xlog_align(
9a8d2fdb 168 struct xlog *log,
076e6acb
CH
169 xfs_daddr_t blk_no,
170 int nbblks,
9a8d2fdb 171 struct xfs_buf *bp)
076e6acb 172{
fdc07f44 173 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 174
4e94b71b 175 ASSERT(offset + nbblks <= bp->b_length);
62926044 176 return bp->b_addr + BBTOB(offset);
076e6acb
CH
177}
178
1da177e4
LT
179
180/*
181 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
182 */
076e6acb
CH
183STATIC int
184xlog_bread_noalign(
9a8d2fdb 185 struct xlog *log,
1da177e4
LT
186 xfs_daddr_t blk_no,
187 int nbblks,
9a8d2fdb 188 struct xfs_buf *bp)
1da177e4
LT
189{
190 int error;
191
99c26595
BF
192 if (!xlog_verify_bp(log, blk_no, nbblks)) {
193 xfs_warn(log->l_mp,
194 "Invalid log block/length (0x%llx, 0x%x) for buffer",
195 blk_no, nbblks);
ff30a622 196 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 197 return -EFSCORRUPTED;
3228149c
DC
198 }
199
69ce58f0
AE
200 blk_no = round_down(blk_no, log->l_sectBBsize);
201 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
202
203 ASSERT(nbblks > 0);
4e94b71b 204 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
205
206 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
0cac682f 207 bp->b_flags |= XBF_READ;
aa0e8833 208 bp->b_io_length = nbblks;
0e95f19a 209 bp->b_error = 0;
1da177e4 210
595bff75
DC
211 error = xfs_buf_submit_wait(bp);
212 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 213 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
214 return error;
215}
216
076e6acb
CH
217STATIC int
218xlog_bread(
9a8d2fdb 219 struct xlog *log,
076e6acb
CH
220 xfs_daddr_t blk_no,
221 int nbblks,
9a8d2fdb 222 struct xfs_buf *bp,
b2a922cd 223 char **offset)
076e6acb
CH
224{
225 int error;
226
227 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
228 if (error)
229 return error;
230
231 *offset = xlog_align(log, blk_no, nbblks, bp);
232 return 0;
233}
234
44396476
DC
235/*
236 * Read at an offset into the buffer. Returns with the buffer in it's original
237 * state regardless of the result of the read.
238 */
239STATIC int
240xlog_bread_offset(
9a8d2fdb 241 struct xlog *log,
44396476
DC
242 xfs_daddr_t blk_no, /* block to read from */
243 int nbblks, /* blocks to read */
9a8d2fdb 244 struct xfs_buf *bp,
b2a922cd 245 char *offset)
44396476 246{
b2a922cd 247 char *orig_offset = bp->b_addr;
4e94b71b 248 int orig_len = BBTOB(bp->b_length);
44396476
DC
249 int error, error2;
250
02fe03d9 251 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
252 if (error)
253 return error;
254
255 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
256
257 /* must reset buffer pointer even on error */
02fe03d9 258 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
259 if (error)
260 return error;
261 return error2;
262}
263
1da177e4
LT
264/*
265 * Write out the buffer at the given block for the given number of blocks.
266 * The buffer is kept locked across the write and is returned locked.
267 * This can only be used for synchronous log writes.
268 */
ba0f32d4 269STATIC int
1da177e4 270xlog_bwrite(
9a8d2fdb 271 struct xlog *log,
1da177e4
LT
272 xfs_daddr_t blk_no,
273 int nbblks,
9a8d2fdb 274 struct xfs_buf *bp)
1da177e4
LT
275{
276 int error;
277
99c26595
BF
278 if (!xlog_verify_bp(log, blk_no, nbblks)) {
279 xfs_warn(log->l_mp,
280 "Invalid log block/length (0x%llx, 0x%x) for buffer",
281 blk_no, nbblks);
ff30a622 282 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 283 return -EFSCORRUPTED;
3228149c
DC
284 }
285
69ce58f0
AE
286 blk_no = round_down(blk_no, log->l_sectBBsize);
287 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
288
289 ASSERT(nbblks > 0);
4e94b71b 290 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
291
292 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
72790aa1 293 xfs_buf_hold(bp);
0c842ad4 294 xfs_buf_lock(bp);
aa0e8833 295 bp->b_io_length = nbblks;
0e95f19a 296 bp->b_error = 0;
1da177e4 297
c2b006c1 298 error = xfs_bwrite(bp);
901796af
CH
299 if (error)
300 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 301 xfs_buf_relse(bp);
1da177e4
LT
302 return error;
303}
304
1da177e4
LT
305#ifdef DEBUG
306/*
307 * dump debug superblock and log record information
308 */
309STATIC void
310xlog_header_check_dump(
311 xfs_mount_t *mp,
312 xlog_rec_header_t *head)
313{
08e96e1a 314 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 315 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 316 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 317 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
318}
319#else
320#define xlog_header_check_dump(mp, head)
321#endif
322
323/*
324 * check log record header for recovery
325 */
326STATIC int
327xlog_header_check_recover(
328 xfs_mount_t *mp,
329 xlog_rec_header_t *head)
330{
69ef921b 331 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
332
333 /*
334 * IRIX doesn't write the h_fmt field and leaves it zeroed
335 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
336 * a dirty log created in IRIX.
337 */
69ef921b 338 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
339 xfs_warn(mp,
340 "dirty log written in incompatible format - can't recover");
1da177e4
LT
341 xlog_header_check_dump(mp, head);
342 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
343 XFS_ERRLEVEL_HIGH, mp);
2451337d 344 return -EFSCORRUPTED;
1da177e4 345 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
346 xfs_warn(mp,
347 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
348 xlog_header_check_dump(mp, head);
349 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
350 XFS_ERRLEVEL_HIGH, mp);
2451337d 351 return -EFSCORRUPTED;
1da177e4
LT
352 }
353 return 0;
354}
355
356/*
357 * read the head block of the log and check the header
358 */
359STATIC int
360xlog_header_check_mount(
361 xfs_mount_t *mp,
362 xlog_rec_header_t *head)
363{
69ef921b 364 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4 365
d905fdaa 366 if (uuid_is_null(&head->h_fs_uuid)) {
1da177e4
LT
367 /*
368 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
d905fdaa 369 * h_fs_uuid is null, we assume this log was last mounted
1da177e4
LT
370 * by IRIX and continue.
371 */
d905fdaa 372 xfs_warn(mp, "null uuid in log - IRIX style log");
1da177e4 373 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 374 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
375 xlog_header_check_dump(mp, head);
376 XFS_ERROR_REPORT("xlog_header_check_mount",
377 XFS_ERRLEVEL_HIGH, mp);
2451337d 378 return -EFSCORRUPTED;
1da177e4
LT
379 }
380 return 0;
381}
382
383STATIC void
384xlog_recover_iodone(
385 struct xfs_buf *bp)
386{
5a52c2a5 387 if (bp->b_error) {
1da177e4
LT
388 /*
389 * We're not going to bother about retrying
390 * this during recovery. One strike!
391 */
595bff75
DC
392 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
393 xfs_buf_ioerror_alert(bp, __func__);
394 xfs_force_shutdown(bp->b_target->bt_mount,
395 SHUTDOWN_META_IO_ERROR);
396 }
1da177e4 397 }
60a4a222
BF
398
399 /*
400 * On v5 supers, a bli could be attached to update the metadata LSN.
401 * Clean it up.
402 */
403 if (bp->b_fspriv)
404 xfs_buf_item_relse(bp);
405 ASSERT(bp->b_fspriv == NULL);
406
cb669ca5 407 bp->b_iodone = NULL;
e8aaba9a 408 xfs_buf_ioend(bp);
1da177e4
LT
409}
410
411/*
412 * This routine finds (to an approximation) the first block in the physical
413 * log which contains the given cycle. It uses a binary search algorithm.
414 * Note that the algorithm can not be perfect because the disk will not
415 * necessarily be perfect.
416 */
a8272ce0 417STATIC int
1da177e4 418xlog_find_cycle_start(
9a8d2fdb
MT
419 struct xlog *log,
420 struct xfs_buf *bp,
1da177e4
LT
421 xfs_daddr_t first_blk,
422 xfs_daddr_t *last_blk,
423 uint cycle)
424{
b2a922cd 425 char *offset;
1da177e4 426 xfs_daddr_t mid_blk;
e3bb2e30 427 xfs_daddr_t end_blk;
1da177e4
LT
428 uint mid_cycle;
429 int error;
430
e3bb2e30
AE
431 end_blk = *last_blk;
432 mid_blk = BLK_AVG(first_blk, end_blk);
433 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
434 error = xlog_bread(log, mid_blk, 1, bp, &offset);
435 if (error)
1da177e4 436 return error;
03bea6fe 437 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
438 if (mid_cycle == cycle)
439 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
440 else
441 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
442 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 443 }
e3bb2e30
AE
444 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
445 (mid_blk == end_blk && mid_blk-1 == first_blk));
446
447 *last_blk = end_blk;
1da177e4
LT
448
449 return 0;
450}
451
452/*
3f943d85
AE
453 * Check that a range of blocks does not contain stop_on_cycle_no.
454 * Fill in *new_blk with the block offset where such a block is
455 * found, or with -1 (an invalid block number) if there is no such
456 * block in the range. The scan needs to occur from front to back
457 * and the pointer into the region must be updated since a later
458 * routine will need to perform another test.
1da177e4
LT
459 */
460STATIC int
461xlog_find_verify_cycle(
9a8d2fdb 462 struct xlog *log,
1da177e4
LT
463 xfs_daddr_t start_blk,
464 int nbblks,
465 uint stop_on_cycle_no,
466 xfs_daddr_t *new_blk)
467{
468 xfs_daddr_t i, j;
469 uint cycle;
470 xfs_buf_t *bp;
471 xfs_daddr_t bufblks;
b2a922cd 472 char *buf = NULL;
1da177e4
LT
473 int error = 0;
474
6881a229
AE
475 /*
476 * Greedily allocate a buffer big enough to handle the full
477 * range of basic blocks we'll be examining. If that fails,
478 * try a smaller size. We need to be able to read at least
479 * a log sector, or we're out of luck.
480 */
1da177e4 481 bufblks = 1 << ffs(nbblks);
81158e0c
DC
482 while (bufblks > log->l_logBBsize)
483 bufblks >>= 1;
1da177e4 484 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 485 bufblks >>= 1;
69ce58f0 486 if (bufblks < log->l_sectBBsize)
2451337d 487 return -ENOMEM;
1da177e4
LT
488 }
489
490 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
491 int bcount;
492
493 bcount = min(bufblks, (start_blk + nbblks - i));
494
076e6acb
CH
495 error = xlog_bread(log, i, bcount, bp, &buf);
496 if (error)
1da177e4
LT
497 goto out;
498
1da177e4 499 for (j = 0; j < bcount; j++) {
03bea6fe 500 cycle = xlog_get_cycle(buf);
1da177e4
LT
501 if (cycle == stop_on_cycle_no) {
502 *new_blk = i+j;
503 goto out;
504 }
505
506 buf += BBSIZE;
507 }
508 }
509
510 *new_blk = -1;
511
512out:
513 xlog_put_bp(bp);
514 return error;
515}
516
517/*
518 * Potentially backup over partial log record write.
519 *
520 * In the typical case, last_blk is the number of the block directly after
521 * a good log record. Therefore, we subtract one to get the block number
522 * of the last block in the given buffer. extra_bblks contains the number
523 * of blocks we would have read on a previous read. This happens when the
524 * last log record is split over the end of the physical log.
525 *
526 * extra_bblks is the number of blocks potentially verified on a previous
527 * call to this routine.
528 */
529STATIC int
530xlog_find_verify_log_record(
9a8d2fdb 531 struct xlog *log,
1da177e4
LT
532 xfs_daddr_t start_blk,
533 xfs_daddr_t *last_blk,
534 int extra_bblks)
535{
536 xfs_daddr_t i;
537 xfs_buf_t *bp;
b2a922cd 538 char *offset = NULL;
1da177e4
LT
539 xlog_rec_header_t *head = NULL;
540 int error = 0;
541 int smallmem = 0;
542 int num_blks = *last_blk - start_blk;
543 int xhdrs;
544
545 ASSERT(start_blk != 0 || *last_blk != start_blk);
546
547 if (!(bp = xlog_get_bp(log, num_blks))) {
548 if (!(bp = xlog_get_bp(log, 1)))
2451337d 549 return -ENOMEM;
1da177e4
LT
550 smallmem = 1;
551 } else {
076e6acb
CH
552 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
553 if (error)
1da177e4 554 goto out;
1da177e4
LT
555 offset += ((num_blks - 1) << BBSHIFT);
556 }
557
558 for (i = (*last_blk) - 1; i >= 0; i--) {
559 if (i < start_blk) {
560 /* valid log record not found */
a0fa2b67
DC
561 xfs_warn(log->l_mp,
562 "Log inconsistent (didn't find previous header)");
1da177e4 563 ASSERT(0);
2451337d 564 error = -EIO;
1da177e4
LT
565 goto out;
566 }
567
568 if (smallmem) {
076e6acb
CH
569 error = xlog_bread(log, i, 1, bp, &offset);
570 if (error)
1da177e4 571 goto out;
1da177e4
LT
572 }
573
574 head = (xlog_rec_header_t *)offset;
575
69ef921b 576 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
577 break;
578
579 if (!smallmem)
580 offset -= BBSIZE;
581 }
582
583 /*
584 * We hit the beginning of the physical log & still no header. Return
585 * to caller. If caller can handle a return of -1, then this routine
586 * will be called again for the end of the physical log.
587 */
588 if (i == -1) {
2451337d 589 error = 1;
1da177e4
LT
590 goto out;
591 }
592
593 /*
594 * We have the final block of the good log (the first block
595 * of the log record _before_ the head. So we check the uuid.
596 */
597 if ((error = xlog_header_check_mount(log->l_mp, head)))
598 goto out;
599
600 /*
601 * We may have found a log record header before we expected one.
602 * last_blk will be the 1st block # with a given cycle #. We may end
603 * up reading an entire log record. In this case, we don't want to
604 * reset last_blk. Only when last_blk points in the middle of a log
605 * record do we update last_blk.
606 */
62118709 607 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 608 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
609
610 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
611 if (h_size % XLOG_HEADER_CYCLE_SIZE)
612 xhdrs++;
613 } else {
614 xhdrs = 1;
615 }
616
b53e675d
CH
617 if (*last_blk - i + extra_bblks !=
618 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
619 *last_blk = i;
620
621out:
622 xlog_put_bp(bp);
623 return error;
624}
625
626/*
627 * Head is defined to be the point of the log where the next log write
0a94da24 628 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
629 * eliminated when calculating the head. We aren't guaranteed that previous
630 * LR have complete transactions. We only know that a cycle number of
631 * current cycle number -1 won't be present in the log if we start writing
632 * from our current block number.
633 *
634 * last_blk contains the block number of the first block with a given
635 * cycle number.
636 *
637 * Return: zero if normal, non-zero if error.
638 */
ba0f32d4 639STATIC int
1da177e4 640xlog_find_head(
9a8d2fdb 641 struct xlog *log,
1da177e4
LT
642 xfs_daddr_t *return_head_blk)
643{
644 xfs_buf_t *bp;
b2a922cd 645 char *offset;
1da177e4
LT
646 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
647 int num_scan_bblks;
648 uint first_half_cycle, last_half_cycle;
649 uint stop_on_cycle;
650 int error, log_bbnum = log->l_logBBsize;
651
652 /* Is the end of the log device zeroed? */
2451337d
DC
653 error = xlog_find_zeroed(log, &first_blk);
654 if (error < 0) {
655 xfs_warn(log->l_mp, "empty log check failed");
656 return error;
657 }
658 if (error == 1) {
1da177e4
LT
659 *return_head_blk = first_blk;
660
661 /* Is the whole lot zeroed? */
662 if (!first_blk) {
663 /* Linux XFS shouldn't generate totally zeroed logs -
664 * mkfs etc write a dummy unmount record to a fresh
665 * log so we can store the uuid in there
666 */
a0fa2b67 667 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
668 }
669
670 return 0;
1da177e4
LT
671 }
672
673 first_blk = 0; /* get cycle # of 1st block */
674 bp = xlog_get_bp(log, 1);
675 if (!bp)
2451337d 676 return -ENOMEM;
076e6acb
CH
677
678 error = xlog_bread(log, 0, 1, bp, &offset);
679 if (error)
1da177e4 680 goto bp_err;
076e6acb 681
03bea6fe 682 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
683
684 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
685 error = xlog_bread(log, last_blk, 1, bp, &offset);
686 if (error)
1da177e4 687 goto bp_err;
076e6acb 688
03bea6fe 689 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
690 ASSERT(last_half_cycle != 0);
691
692 /*
693 * If the 1st half cycle number is equal to the last half cycle number,
694 * then the entire log is stamped with the same cycle number. In this
695 * case, head_blk can't be set to zero (which makes sense). The below
696 * math doesn't work out properly with head_blk equal to zero. Instead,
697 * we set it to log_bbnum which is an invalid block number, but this
698 * value makes the math correct. If head_blk doesn't changed through
699 * all the tests below, *head_blk is set to zero at the very end rather
700 * than log_bbnum. In a sense, log_bbnum and zero are the same block
701 * in a circular file.
702 */
703 if (first_half_cycle == last_half_cycle) {
704 /*
705 * In this case we believe that the entire log should have
706 * cycle number last_half_cycle. We need to scan backwards
707 * from the end verifying that there are no holes still
708 * containing last_half_cycle - 1. If we find such a hole,
709 * then the start of that hole will be the new head. The
710 * simple case looks like
711 * x | x ... | x - 1 | x
712 * Another case that fits this picture would be
713 * x | x + 1 | x ... | x
c41564b5 714 * In this case the head really is somewhere at the end of the
1da177e4
LT
715 * log, as one of the latest writes at the beginning was
716 * incomplete.
717 * One more case is
718 * x | x + 1 | x ... | x - 1 | x
719 * This is really the combination of the above two cases, and
720 * the head has to end up at the start of the x-1 hole at the
721 * end of the log.
722 *
723 * In the 256k log case, we will read from the beginning to the
724 * end of the log and search for cycle numbers equal to x-1.
725 * We don't worry about the x+1 blocks that we encounter,
726 * because we know that they cannot be the head since the log
727 * started with x.
728 */
729 head_blk = log_bbnum;
730 stop_on_cycle = last_half_cycle - 1;
731 } else {
732 /*
733 * In this case we want to find the first block with cycle
734 * number matching last_half_cycle. We expect the log to be
735 * some variation on
3f943d85 736 * x + 1 ... | x ... | x
1da177e4
LT
737 * The first block with cycle number x (last_half_cycle) will
738 * be where the new head belongs. First we do a binary search
739 * for the first occurrence of last_half_cycle. The binary
740 * search may not be totally accurate, so then we scan back
741 * from there looking for occurrences of last_half_cycle before
742 * us. If that backwards scan wraps around the beginning of
743 * the log, then we look for occurrences of last_half_cycle - 1
744 * at the end of the log. The cases we're looking for look
745 * like
3f943d85
AE
746 * v binary search stopped here
747 * x + 1 ... | x | x + 1 | x ... | x
748 * ^ but we want to locate this spot
1da177e4 749 * or
1da177e4 750 * <---------> less than scan distance
3f943d85
AE
751 * x + 1 ... | x ... | x - 1 | x
752 * ^ we want to locate this spot
1da177e4
LT
753 */
754 stop_on_cycle = last_half_cycle;
755 if ((error = xlog_find_cycle_start(log, bp, first_blk,
756 &head_blk, last_half_cycle)))
757 goto bp_err;
758 }
759
760 /*
761 * Now validate the answer. Scan back some number of maximum possible
762 * blocks and make sure each one has the expected cycle number. The
763 * maximum is determined by the total possible amount of buffering
764 * in the in-core log. The following number can be made tighter if
765 * we actually look at the block size of the filesystem.
766 */
9f2a4505 767 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
1da177e4
LT
768 if (head_blk >= num_scan_bblks) {
769 /*
770 * We are guaranteed that the entire check can be performed
771 * in one buffer.
772 */
773 start_blk = head_blk - num_scan_bblks;
774 if ((error = xlog_find_verify_cycle(log,
775 start_blk, num_scan_bblks,
776 stop_on_cycle, &new_blk)))
777 goto bp_err;
778 if (new_blk != -1)
779 head_blk = new_blk;
780 } else { /* need to read 2 parts of log */
781 /*
782 * We are going to scan backwards in the log in two parts.
783 * First we scan the physical end of the log. In this part
784 * of the log, we are looking for blocks with cycle number
785 * last_half_cycle - 1.
786 * If we find one, then we know that the log starts there, as
787 * we've found a hole that didn't get written in going around
788 * the end of the physical log. The simple case for this is
789 * x + 1 ... | x ... | x - 1 | x
790 * <---------> less than scan distance
791 * If all of the blocks at the end of the log have cycle number
792 * last_half_cycle, then we check the blocks at the start of
793 * the log looking for occurrences of last_half_cycle. If we
794 * find one, then our current estimate for the location of the
795 * first occurrence of last_half_cycle is wrong and we move
796 * back to the hole we've found. This case looks like
797 * x + 1 ... | x | x + 1 | x ...
798 * ^ binary search stopped here
799 * Another case we need to handle that only occurs in 256k
800 * logs is
801 * x + 1 ... | x ... | x+1 | x ...
802 * ^ binary search stops here
803 * In a 256k log, the scan at the end of the log will see the
804 * x + 1 blocks. We need to skip past those since that is
805 * certainly not the head of the log. By searching for
806 * last_half_cycle-1 we accomplish that.
807 */
1da177e4 808 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
809 (xfs_daddr_t) num_scan_bblks >= head_blk);
810 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
811 if ((error = xlog_find_verify_cycle(log, start_blk,
812 num_scan_bblks - (int)head_blk,
813 (stop_on_cycle - 1), &new_blk)))
814 goto bp_err;
815 if (new_blk != -1) {
816 head_blk = new_blk;
9db127ed 817 goto validate_head;
1da177e4
LT
818 }
819
820 /*
821 * Scan beginning of log now. The last part of the physical
822 * log is good. This scan needs to verify that it doesn't find
823 * the last_half_cycle.
824 */
825 start_blk = 0;
826 ASSERT(head_blk <= INT_MAX);
827 if ((error = xlog_find_verify_cycle(log,
828 start_blk, (int)head_blk,
829 stop_on_cycle, &new_blk)))
830 goto bp_err;
831 if (new_blk != -1)
832 head_blk = new_blk;
833 }
834
9db127ed 835validate_head:
1da177e4
LT
836 /*
837 * Now we need to make sure head_blk is not pointing to a block in
838 * the middle of a log record.
839 */
840 num_scan_bblks = XLOG_REC_SHIFT(log);
841 if (head_blk >= num_scan_bblks) {
842 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
843
844 /* start ptr at last block ptr before head_blk */
2451337d
DC
845 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
846 if (error == 1)
847 error = -EIO;
848 if (error)
1da177e4
LT
849 goto bp_err;
850 } else {
851 start_blk = 0;
852 ASSERT(head_blk <= INT_MAX);
2451337d
DC
853 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
854 if (error < 0)
855 goto bp_err;
856 if (error == 1) {
1da177e4 857 /* We hit the beginning of the log during our search */
3f943d85 858 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
859 new_blk = log_bbnum;
860 ASSERT(start_blk <= INT_MAX &&
861 (xfs_daddr_t) log_bbnum-start_blk >= 0);
862 ASSERT(head_blk <= INT_MAX);
2451337d
DC
863 error = xlog_find_verify_log_record(log, start_blk,
864 &new_blk, (int)head_blk);
865 if (error == 1)
866 error = -EIO;
867 if (error)
1da177e4
LT
868 goto bp_err;
869 if (new_blk != log_bbnum)
870 head_blk = new_blk;
871 } else if (error)
872 goto bp_err;
873 }
874
875 xlog_put_bp(bp);
876 if (head_blk == log_bbnum)
877 *return_head_blk = 0;
878 else
879 *return_head_blk = head_blk;
880 /*
881 * When returning here, we have a good block number. Bad block
882 * means that during a previous crash, we didn't have a clean break
883 * from cycle number N to cycle number N-1. In this case, we need
884 * to find the first block with cycle number N-1.
885 */
886 return 0;
887
888 bp_err:
889 xlog_put_bp(bp);
890
891 if (error)
a0fa2b67 892 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
893 return error;
894}
895
eed6b462
BF
896/*
897 * Seek backwards in the log for log record headers.
898 *
899 * Given a starting log block, walk backwards until we find the provided number
900 * of records or hit the provided tail block. The return value is the number of
901 * records encountered or a negative error code. The log block and buffer
902 * pointer of the last record seen are returned in rblk and rhead respectively.
903 */
904STATIC int
905xlog_rseek_logrec_hdr(
906 struct xlog *log,
907 xfs_daddr_t head_blk,
908 xfs_daddr_t tail_blk,
909 int count,
910 struct xfs_buf *bp,
911 xfs_daddr_t *rblk,
912 struct xlog_rec_header **rhead,
913 bool *wrapped)
914{
915 int i;
916 int error;
917 int found = 0;
918 char *offset = NULL;
919 xfs_daddr_t end_blk;
920
921 *wrapped = false;
922
923 /*
924 * Walk backwards from the head block until we hit the tail or the first
925 * block in the log.
926 */
927 end_blk = head_blk > tail_blk ? tail_blk : 0;
928 for (i = (int) head_blk - 1; i >= end_blk; i--) {
929 error = xlog_bread(log, i, 1, bp, &offset);
930 if (error)
931 goto out_error;
932
933 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
934 *rblk = i;
935 *rhead = (struct xlog_rec_header *) offset;
936 if (++found == count)
937 break;
938 }
939 }
940
941 /*
942 * If we haven't hit the tail block or the log record header count,
943 * start looking again from the end of the physical log. Note that
944 * callers can pass head == tail if the tail is not yet known.
945 */
946 if (tail_blk >= head_blk && found != count) {
947 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
948 error = xlog_bread(log, i, 1, bp, &offset);
949 if (error)
950 goto out_error;
951
952 if (*(__be32 *)offset ==
953 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
954 *wrapped = true;
955 *rblk = i;
956 *rhead = (struct xlog_rec_header *) offset;
957 if (++found == count)
958 break;
959 }
960 }
961 }
962
963 return found;
964
965out_error:
966 return error;
967}
968
7088c413
BF
969/*
970 * Seek forward in the log for log record headers.
971 *
972 * Given head and tail blocks, walk forward from the tail block until we find
973 * the provided number of records or hit the head block. The return value is the
974 * number of records encountered or a negative error code. The log block and
975 * buffer pointer of the last record seen are returned in rblk and rhead
976 * respectively.
977 */
978STATIC int
979xlog_seek_logrec_hdr(
980 struct xlog *log,
981 xfs_daddr_t head_blk,
982 xfs_daddr_t tail_blk,
983 int count,
984 struct xfs_buf *bp,
985 xfs_daddr_t *rblk,
986 struct xlog_rec_header **rhead,
987 bool *wrapped)
988{
989 int i;
990 int error;
991 int found = 0;
992 char *offset = NULL;
993 xfs_daddr_t end_blk;
994
995 *wrapped = false;
996
997 /*
998 * Walk forward from the tail block until we hit the head or the last
999 * block in the log.
1000 */
1001 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
1002 for (i = (int) tail_blk; i <= end_blk; i++) {
1003 error = xlog_bread(log, i, 1, bp, &offset);
1004 if (error)
1005 goto out_error;
1006
1007 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1008 *rblk = i;
1009 *rhead = (struct xlog_rec_header *) offset;
1010 if (++found == count)
1011 break;
1012 }
1013 }
1014
1015 /*
1016 * If we haven't hit the head block or the log record header count,
1017 * start looking again from the start of the physical log.
1018 */
1019 if (tail_blk > head_blk && found != count) {
1020 for (i = 0; i < (int) head_blk; i++) {
1021 error = xlog_bread(log, i, 1, bp, &offset);
1022 if (error)
1023 goto out_error;
1024
1025 if (*(__be32 *)offset ==
1026 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1027 *wrapped = true;
1028 *rblk = i;
1029 *rhead = (struct xlog_rec_header *) offset;
1030 if (++found == count)
1031 break;
1032 }
1033 }
1034 }
1035
1036 return found;
1037
1038out_error:
1039 return error;
1040}
1041
1042/*
4a4f66ea
BF
1043 * Calculate distance from head to tail (i.e., unused space in the log).
1044 */
1045static inline int
1046xlog_tail_distance(
1047 struct xlog *log,
1048 xfs_daddr_t head_blk,
1049 xfs_daddr_t tail_blk)
1050{
1051 if (head_blk < tail_blk)
1052 return tail_blk - head_blk;
1053
1054 return tail_blk + (log->l_logBBsize - head_blk);
1055}
1056
1057/*
1058 * Verify the log tail. This is particularly important when torn or incomplete
1059 * writes have been detected near the front of the log and the head has been
1060 * walked back accordingly.
1061 *
1062 * We also have to handle the case where the tail was pinned and the head
1063 * blocked behind the tail right before a crash. If the tail had been pushed
1064 * immediately prior to the crash and the subsequent checkpoint was only
1065 * partially written, it's possible it overwrote the last referenced tail in the
1066 * log with garbage. This is not a coherency problem because the tail must have
1067 * been pushed before it can be overwritten, but appears as log corruption to
1068 * recovery because we have no way to know the tail was updated if the
1069 * subsequent checkpoint didn't write successfully.
7088c413 1070 *
4a4f66ea
BF
1071 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1072 * offending record is within max iclog bufs from the head, walk the tail
1073 * forward and retry until a valid tail is found or corruption is detected out
1074 * of the range of a possible overwrite.
7088c413
BF
1075 */
1076STATIC int
1077xlog_verify_tail(
1078 struct xlog *log,
1079 xfs_daddr_t head_blk,
4a4f66ea
BF
1080 xfs_daddr_t *tail_blk,
1081 int hsize)
7088c413
BF
1082{
1083 struct xlog_rec_header *thead;
1084 struct xfs_buf *bp;
1085 xfs_daddr_t first_bad;
7088c413
BF
1086 int error = 0;
1087 bool wrapped;
4a4f66ea
BF
1088 xfs_daddr_t tmp_tail;
1089 xfs_daddr_t orig_tail = *tail_blk;
7088c413
BF
1090
1091 bp = xlog_get_bp(log, 1);
1092 if (!bp)
1093 return -ENOMEM;
1094
1095 /*
4a4f66ea
BF
1096 * Make sure the tail points to a record (returns positive count on
1097 * success).
7088c413 1098 */
4a4f66ea
BF
1099 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1100 &tmp_tail, &thead, &wrapped);
1101 if (error < 0)
7088c413 1102 goto out;
4a4f66ea
BF
1103 if (*tail_blk != tmp_tail)
1104 *tail_blk = tmp_tail;
7088c413
BF
1105
1106 /*
4a4f66ea
BF
1107 * Run a CRC check from the tail to the head. We can't just check
1108 * MAX_ICLOGS records past the tail because the tail may point to stale
1109 * blocks cleared during the search for the head/tail. These blocks are
1110 * overwritten with zero-length records and thus record count is not a
1111 * reliable indicator of the iclog state before a crash.
7088c413 1112 */
4a4f66ea
BF
1113 first_bad = 0;
1114 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
7088c413 1115 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1116 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
4a4f66ea
BF
1117 int tail_distance;
1118
1119 /*
1120 * Is corruption within range of the head? If so, retry from
1121 * the next record. Otherwise return an error.
1122 */
1123 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1124 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1125 break;
7088c413 1126
4a4f66ea
BF
1127 /* skip to the next record; returns positive count on success */
1128 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1129 &tmp_tail, &thead, &wrapped);
1130 if (error < 0)
1131 goto out;
1132
1133 *tail_blk = tmp_tail;
1134 first_bad = 0;
1135 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1136 XLOG_RECOVER_CRCPASS, &first_bad);
1137 }
1138
1139 if (!error && *tail_blk != orig_tail)
1140 xfs_warn(log->l_mp,
1141 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1142 orig_tail, *tail_blk);
7088c413
BF
1143out:
1144 xlog_put_bp(bp);
1145 return error;
1146}
1147
1148/*
1149 * Detect and trim torn writes from the head of the log.
1150 *
1151 * Storage without sector atomicity guarantees can result in torn writes in the
1152 * log in the event of a crash. Our only means to detect this scenario is via
1153 * CRC verification. While we can't always be certain that CRC verification
1154 * failure is due to a torn write vs. an unrelated corruption, we do know that
1155 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1156 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1157 * the log and treat failures in this range as torn writes as a matter of
1158 * policy. In the event of CRC failure, the head is walked back to the last good
1159 * record in the log and the tail is updated from that record and verified.
1160 */
1161STATIC int
1162xlog_verify_head(
1163 struct xlog *log,
1164 xfs_daddr_t *head_blk, /* in/out: unverified head */
1165 xfs_daddr_t *tail_blk, /* out: tail block */
1166 struct xfs_buf *bp,
1167 xfs_daddr_t *rhead_blk, /* start blk of last record */
1168 struct xlog_rec_header **rhead, /* ptr to last record */
1169 bool *wrapped) /* last rec. wraps phys. log */
1170{
1171 struct xlog_rec_header *tmp_rhead;
1172 struct xfs_buf *tmp_bp;
1173 xfs_daddr_t first_bad;
1174 xfs_daddr_t tmp_rhead_blk;
1175 int found;
1176 int error;
1177 bool tmp_wrapped;
1178
1179 /*
82ff6cc2
BF
1180 * Check the head of the log for torn writes. Search backwards from the
1181 * head until we hit the tail or the maximum number of log record I/Os
1182 * that could have been in flight at one time. Use a temporary buffer so
1183 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1184 */
1185 tmp_bp = xlog_get_bp(log, 1);
1186 if (!tmp_bp)
1187 return -ENOMEM;
1188 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1189 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1190 &tmp_rhead, &tmp_wrapped);
1191 xlog_put_bp(tmp_bp);
1192 if (error < 0)
1193 return error;
1194
1195 /*
1196 * Now run a CRC verification pass over the records starting at the
1197 * block found above to the current head. If a CRC failure occurs, the
1198 * log block of the first bad record is saved in first_bad.
1199 */
1200 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1201 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1202 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
7088c413
BF
1203 /*
1204 * We've hit a potential torn write. Reset the error and warn
1205 * about it.
1206 */
1207 error = 0;
1208 xfs_warn(log->l_mp,
1209"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1210 first_bad, *head_blk);
1211
1212 /*
1213 * Get the header block and buffer pointer for the last good
1214 * record before the bad record.
1215 *
1216 * Note that xlog_find_tail() clears the blocks at the new head
1217 * (i.e., the records with invalid CRC) if the cycle number
1218 * matches the the current cycle.
1219 */
1220 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1221 rhead_blk, rhead, wrapped);
1222 if (found < 0)
1223 return found;
1224 if (found == 0) /* XXX: right thing to do here? */
1225 return -EIO;
1226
1227 /*
1228 * Reset the head block to the starting block of the first bad
1229 * log record and set the tail block based on the last good
1230 * record.
1231 *
1232 * Bail out if the updated head/tail match as this indicates
1233 * possible corruption outside of the acceptable
1234 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1235 */
1236 *head_blk = first_bad;
1237 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1238 if (*head_blk == *tail_blk) {
1239 ASSERT(0);
1240 return 0;
1241 }
7088c413 1242 }
5297ac1f
BF
1243 if (error)
1244 return error;
7088c413 1245
4a4f66ea
BF
1246 return xlog_verify_tail(log, *head_blk, tail_blk,
1247 be32_to_cpu((*rhead)->h_size));
7088c413
BF
1248}
1249
65b99a08
BF
1250/*
1251 * Check whether the head of the log points to an unmount record. In other
1252 * words, determine whether the log is clean. If so, update the in-core state
1253 * appropriately.
1254 */
1255static int
1256xlog_check_unmount_rec(
1257 struct xlog *log,
1258 xfs_daddr_t *head_blk,
1259 xfs_daddr_t *tail_blk,
1260 struct xlog_rec_header *rhead,
1261 xfs_daddr_t rhead_blk,
1262 struct xfs_buf *bp,
1263 bool *clean)
1264{
1265 struct xlog_op_header *op_head;
1266 xfs_daddr_t umount_data_blk;
1267 xfs_daddr_t after_umount_blk;
1268 int hblks;
1269 int error;
1270 char *offset;
1271
1272 *clean = false;
1273
1274 /*
1275 * Look for unmount record. If we find it, then we know there was a
1276 * clean unmount. Since 'i' could be the last block in the physical
1277 * log, we convert to a log block before comparing to the head_blk.
1278 *
1279 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1280 * below. We won't want to clear the unmount record if there is one, so
1281 * we pass the lsn of the unmount record rather than the block after it.
1282 */
1283 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1284 int h_size = be32_to_cpu(rhead->h_size);
1285 int h_version = be32_to_cpu(rhead->h_version);
1286
1287 if ((h_version & XLOG_VERSION_2) &&
1288 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1289 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1290 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1291 hblks++;
1292 } else {
1293 hblks = 1;
1294 }
1295 } else {
1296 hblks = 1;
1297 }
1298 after_umount_blk = rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len));
1299 after_umount_blk = do_mod(after_umount_blk, log->l_logBBsize);
1300 if (*head_blk == after_umount_blk &&
1301 be32_to_cpu(rhead->h_num_logops) == 1) {
1302 umount_data_blk = rhead_blk + hblks;
1303 umount_data_blk = do_mod(umount_data_blk, log->l_logBBsize);
1304 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1305 if (error)
1306 return error;
1307
1308 op_head = (struct xlog_op_header *)offset;
1309 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1310 /*
1311 * Set tail and last sync so that newly written log
1312 * records will point recovery to after the current
1313 * unmount record.
1314 */
1315 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1316 log->l_curr_cycle, after_umount_blk);
1317 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1318 log->l_curr_cycle, after_umount_blk);
1319 *tail_blk = after_umount_blk;
1320
1321 *clean = true;
1322 }
1323 }
1324
1325 return 0;
1326}
1327
717bc0eb
BF
1328static void
1329xlog_set_state(
1330 struct xlog *log,
1331 xfs_daddr_t head_blk,
1332 struct xlog_rec_header *rhead,
1333 xfs_daddr_t rhead_blk,
1334 bool bump_cycle)
1335{
1336 /*
1337 * Reset log values according to the state of the log when we
1338 * crashed. In the case where head_blk == 0, we bump curr_cycle
1339 * one because the next write starts a new cycle rather than
1340 * continuing the cycle of the last good log record. At this
1341 * point we have guaranteed that all partial log records have been
1342 * accounted for. Therefore, we know that the last good log record
1343 * written was complete and ended exactly on the end boundary
1344 * of the physical log.
1345 */
1346 log->l_prev_block = rhead_blk;
1347 log->l_curr_block = (int)head_blk;
1348 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1349 if (bump_cycle)
1350 log->l_curr_cycle++;
1351 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1352 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1353 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1354 BBTOB(log->l_curr_block));
1355 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1356 BBTOB(log->l_curr_block));
1357}
1358
1da177e4
LT
1359/*
1360 * Find the sync block number or the tail of the log.
1361 *
1362 * This will be the block number of the last record to have its
1363 * associated buffers synced to disk. Every log record header has
1364 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1365 * to get a sync block number. The only concern is to figure out which
1366 * log record header to believe.
1367 *
1368 * The following algorithm uses the log record header with the largest
1369 * lsn. The entire log record does not need to be valid. We only care
1370 * that the header is valid.
1371 *
1372 * We could speed up search by using current head_blk buffer, but it is not
1373 * available.
1374 */
5d77c0dc 1375STATIC int
1da177e4 1376xlog_find_tail(
9a8d2fdb 1377 struct xlog *log,
1da177e4 1378 xfs_daddr_t *head_blk,
65be6054 1379 xfs_daddr_t *tail_blk)
1da177e4
LT
1380{
1381 xlog_rec_header_t *rhead;
b2a922cd 1382 char *offset = NULL;
1da177e4 1383 xfs_buf_t *bp;
7088c413 1384 int error;
7088c413 1385 xfs_daddr_t rhead_blk;
1da177e4 1386 xfs_lsn_t tail_lsn;
eed6b462 1387 bool wrapped = false;
65b99a08 1388 bool clean = false;
1da177e4
LT
1389
1390 /*
1391 * Find previous log record
1392 */
1393 if ((error = xlog_find_head(log, head_blk)))
1394 return error;
82ff6cc2 1395 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1396
1397 bp = xlog_get_bp(log, 1);
1398 if (!bp)
2451337d 1399 return -ENOMEM;
1da177e4 1400 if (*head_blk == 0) { /* special case */
076e6acb
CH
1401 error = xlog_bread(log, 0, 1, bp, &offset);
1402 if (error)
9db127ed 1403 goto done;
076e6acb 1404
03bea6fe 1405 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1406 *tail_blk = 0;
1407 /* leave all other log inited values alone */
9db127ed 1408 goto done;
1da177e4
LT
1409 }
1410 }
1411
1412 /*
82ff6cc2
BF
1413 * Search backwards through the log looking for the log record header
1414 * block. This wraps all the way back around to the head so something is
1415 * seriously wrong if we can't find it.
1da177e4 1416 */
82ff6cc2
BF
1417 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1418 &rhead_blk, &rhead, &wrapped);
1419 if (error < 0)
1420 return error;
1421 if (!error) {
1422 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1423 return -EIO;
1424 }
1425 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1426
1427 /*
717bc0eb 1428 * Set the log state based on the current head record.
1da177e4 1429 */
717bc0eb 1430 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
65b99a08 1431 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1432
1433 /*
65b99a08
BF
1434 * Look for an unmount record at the head of the log. This sets the log
1435 * state to determine whether recovery is necessary.
1da177e4 1436 */
65b99a08
BF
1437 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1438 rhead_blk, bp, &clean);
1439 if (error)
1440 goto done;
1da177e4
LT
1441
1442 /*
7f6aff3a
BF
1443 * Verify the log head if the log is not clean (e.g., we have anything
1444 * but an unmount record at the head). This uses CRC verification to
1445 * detect and trim torn writes. If discovered, CRC failures are
1446 * considered torn writes and the log head is trimmed accordingly.
1da177e4 1447 *
7f6aff3a
BF
1448 * Note that we can only run CRC verification when the log is dirty
1449 * because there's no guarantee that the log data behind an unmount
1450 * record is compatible with the current architecture.
1da177e4 1451 */
7f6aff3a
BF
1452 if (!clean) {
1453 xfs_daddr_t orig_head = *head_blk;
1da177e4 1454
7f6aff3a
BF
1455 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1456 &rhead_blk, &rhead, &wrapped);
076e6acb 1457 if (error)
9db127ed 1458 goto done;
076e6acb 1459
7f6aff3a
BF
1460 /* update in-core state again if the head changed */
1461 if (*head_blk != orig_head) {
1462 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1463 wrapped);
1464 tail_lsn = atomic64_read(&log->l_tail_lsn);
1465 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1466 rhead, rhead_blk, bp,
1467 &clean);
1468 if (error)
1469 goto done;
1da177e4
LT
1470 }
1471 }
1472
65b99a08
BF
1473 /*
1474 * Note that the unmount was clean. If the unmount was not clean, we
1475 * need to know this to rebuild the superblock counters from the perag
1476 * headers if we have a filesystem using non-persistent counters.
1477 */
1478 if (clean)
1479 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1480
1481 /*
1482 * Make sure that there are no blocks in front of the head
1483 * with the same cycle number as the head. This can happen
1484 * because we allow multiple outstanding log writes concurrently,
1485 * and the later writes might make it out before earlier ones.
1486 *
1487 * We use the lsn from before modifying it so that we'll never
1488 * overwrite the unmount record after a clean unmount.
1489 *
1490 * Do this only if we are going to recover the filesystem
1491 *
1492 * NOTE: This used to say "if (!readonly)"
1493 * However on Linux, we can & do recover a read-only filesystem.
1494 * We only skip recovery if NORECOVERY is specified on mount,
1495 * in which case we would not be here.
1496 *
1497 * But... if the -device- itself is readonly, just skip this.
1498 * We can't recover this device anyway, so it won't matter.
1499 */
9db127ed 1500 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1501 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1502
9db127ed 1503done:
1da177e4
LT
1504 xlog_put_bp(bp);
1505
1506 if (error)
a0fa2b67 1507 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1508 return error;
1509}
1510
1511/*
1512 * Is the log zeroed at all?
1513 *
1514 * The last binary search should be changed to perform an X block read
1515 * once X becomes small enough. You can then search linearly through
1516 * the X blocks. This will cut down on the number of reads we need to do.
1517 *
1518 * If the log is partially zeroed, this routine will pass back the blkno
1519 * of the first block with cycle number 0. It won't have a complete LR
1520 * preceding it.
1521 *
1522 * Return:
1523 * 0 => the log is completely written to
2451337d
DC
1524 * 1 => use *blk_no as the first block of the log
1525 * <0 => error has occurred
1da177e4 1526 */
a8272ce0 1527STATIC int
1da177e4 1528xlog_find_zeroed(
9a8d2fdb 1529 struct xlog *log,
1da177e4
LT
1530 xfs_daddr_t *blk_no)
1531{
1532 xfs_buf_t *bp;
b2a922cd 1533 char *offset;
1da177e4
LT
1534 uint first_cycle, last_cycle;
1535 xfs_daddr_t new_blk, last_blk, start_blk;
1536 xfs_daddr_t num_scan_bblks;
1537 int error, log_bbnum = log->l_logBBsize;
1538
6fdf8ccc
NS
1539 *blk_no = 0;
1540
1da177e4
LT
1541 /* check totally zeroed log */
1542 bp = xlog_get_bp(log, 1);
1543 if (!bp)
2451337d 1544 return -ENOMEM;
076e6acb
CH
1545 error = xlog_bread(log, 0, 1, bp, &offset);
1546 if (error)
1da177e4 1547 goto bp_err;
076e6acb 1548
03bea6fe 1549 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1550 if (first_cycle == 0) { /* completely zeroed log */
1551 *blk_no = 0;
1552 xlog_put_bp(bp);
2451337d 1553 return 1;
1da177e4
LT
1554 }
1555
1556 /* check partially zeroed log */
076e6acb
CH
1557 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1558 if (error)
1da177e4 1559 goto bp_err;
076e6acb 1560
03bea6fe 1561 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1562 if (last_cycle != 0) { /* log completely written to */
1563 xlog_put_bp(bp);
1564 return 0;
1565 } else if (first_cycle != 1) {
1566 /*
1567 * If the cycle of the last block is zero, the cycle of
1568 * the first block must be 1. If it's not, maybe we're
1569 * not looking at a log... Bail out.
1570 */
a0fa2b67
DC
1571 xfs_warn(log->l_mp,
1572 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1573 error = -EINVAL;
5d0a6549 1574 goto bp_err;
1da177e4
LT
1575 }
1576
1577 /* we have a partially zeroed log */
1578 last_blk = log_bbnum-1;
1579 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1580 goto bp_err;
1581
1582 /*
1583 * Validate the answer. Because there is no way to guarantee that
1584 * the entire log is made up of log records which are the same size,
1585 * we scan over the defined maximum blocks. At this point, the maximum
1586 * is not chosen to mean anything special. XXXmiken
1587 */
1588 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1589 ASSERT(num_scan_bblks <= INT_MAX);
1590
1591 if (last_blk < num_scan_bblks)
1592 num_scan_bblks = last_blk;
1593 start_blk = last_blk - num_scan_bblks;
1594
1595 /*
1596 * We search for any instances of cycle number 0 that occur before
1597 * our current estimate of the head. What we're trying to detect is
1598 * 1 ... | 0 | 1 | 0...
1599 * ^ binary search ends here
1600 */
1601 if ((error = xlog_find_verify_cycle(log, start_blk,
1602 (int)num_scan_bblks, 0, &new_blk)))
1603 goto bp_err;
1604 if (new_blk != -1)
1605 last_blk = new_blk;
1606
1607 /*
1608 * Potentially backup over partial log record write. We don't need
1609 * to search the end of the log because we know it is zero.
1610 */
2451337d
DC
1611 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1612 if (error == 1)
1613 error = -EIO;
1614 if (error)
1615 goto bp_err;
1da177e4
LT
1616
1617 *blk_no = last_blk;
1618bp_err:
1619 xlog_put_bp(bp);
1620 if (error)
1621 return error;
2451337d 1622 return 1;
1da177e4
LT
1623}
1624
1625/*
1626 * These are simple subroutines used by xlog_clear_stale_blocks() below
1627 * to initialize a buffer full of empty log record headers and write
1628 * them into the log.
1629 */
1630STATIC void
1631xlog_add_record(
9a8d2fdb 1632 struct xlog *log,
b2a922cd 1633 char *buf,
1da177e4
LT
1634 int cycle,
1635 int block,
1636 int tail_cycle,
1637 int tail_block)
1638{
1639 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1640
1641 memset(buf, 0, BBSIZE);
b53e675d
CH
1642 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1643 recp->h_cycle = cpu_to_be32(cycle);
1644 recp->h_version = cpu_to_be32(
62118709 1645 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1646 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1647 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1648 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1649 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1650}
1651
1652STATIC int
1653xlog_write_log_records(
9a8d2fdb 1654 struct xlog *log,
1da177e4
LT
1655 int cycle,
1656 int start_block,
1657 int blocks,
1658 int tail_cycle,
1659 int tail_block)
1660{
b2a922cd 1661 char *offset;
1da177e4
LT
1662 xfs_buf_t *bp;
1663 int balign, ealign;
69ce58f0 1664 int sectbb = log->l_sectBBsize;
1da177e4
LT
1665 int end_block = start_block + blocks;
1666 int bufblks;
1667 int error = 0;
1668 int i, j = 0;
1669
6881a229
AE
1670 /*
1671 * Greedily allocate a buffer big enough to handle the full
1672 * range of basic blocks to be written. If that fails, try
1673 * a smaller size. We need to be able to write at least a
1674 * log sector, or we're out of luck.
1675 */
1da177e4 1676 bufblks = 1 << ffs(blocks);
81158e0c
DC
1677 while (bufblks > log->l_logBBsize)
1678 bufblks >>= 1;
1da177e4
LT
1679 while (!(bp = xlog_get_bp(log, bufblks))) {
1680 bufblks >>= 1;
69ce58f0 1681 if (bufblks < sectbb)
2451337d 1682 return -ENOMEM;
1da177e4
LT
1683 }
1684
1685 /* We may need to do a read at the start to fill in part of
1686 * the buffer in the starting sector not covered by the first
1687 * write below.
1688 */
5c17f533 1689 balign = round_down(start_block, sectbb);
1da177e4 1690 if (balign != start_block) {
076e6acb
CH
1691 error = xlog_bread_noalign(log, start_block, 1, bp);
1692 if (error)
1693 goto out_put_bp;
1694
1da177e4
LT
1695 j = start_block - balign;
1696 }
1697
1698 for (i = start_block; i < end_block; i += bufblks) {
1699 int bcount, endcount;
1700
1701 bcount = min(bufblks, end_block - start_block);
1702 endcount = bcount - j;
1703
1704 /* We may need to do a read at the end to fill in part of
1705 * the buffer in the final sector not covered by the write.
1706 * If this is the same sector as the above read, skip it.
1707 */
5c17f533 1708 ealign = round_down(end_block, sectbb);
1da177e4 1709 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1710 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1711 error = xlog_bread_offset(log, ealign, sectbb,
1712 bp, offset);
076e6acb
CH
1713 if (error)
1714 break;
1715
1da177e4
LT
1716 }
1717
1718 offset = xlog_align(log, start_block, endcount, bp);
1719 for (; j < endcount; j++) {
1720 xlog_add_record(log, offset, cycle, i+j,
1721 tail_cycle, tail_block);
1722 offset += BBSIZE;
1723 }
1724 error = xlog_bwrite(log, start_block, endcount, bp);
1725 if (error)
1726 break;
1727 start_block += endcount;
1728 j = 0;
1729 }
076e6acb
CH
1730
1731 out_put_bp:
1da177e4
LT
1732 xlog_put_bp(bp);
1733 return error;
1734}
1735
1736/*
1737 * This routine is called to blow away any incomplete log writes out
1738 * in front of the log head. We do this so that we won't become confused
1739 * if we come up, write only a little bit more, and then crash again.
1740 * If we leave the partial log records out there, this situation could
1741 * cause us to think those partial writes are valid blocks since they
1742 * have the current cycle number. We get rid of them by overwriting them
1743 * with empty log records with the old cycle number rather than the
1744 * current one.
1745 *
1746 * The tail lsn is passed in rather than taken from
1747 * the log so that we will not write over the unmount record after a
1748 * clean unmount in a 512 block log. Doing so would leave the log without
1749 * any valid log records in it until a new one was written. If we crashed
1750 * during that time we would not be able to recover.
1751 */
1752STATIC int
1753xlog_clear_stale_blocks(
9a8d2fdb 1754 struct xlog *log,
1da177e4
LT
1755 xfs_lsn_t tail_lsn)
1756{
1757 int tail_cycle, head_cycle;
1758 int tail_block, head_block;
1759 int tail_distance, max_distance;
1760 int distance;
1761 int error;
1762
1763 tail_cycle = CYCLE_LSN(tail_lsn);
1764 tail_block = BLOCK_LSN(tail_lsn);
1765 head_cycle = log->l_curr_cycle;
1766 head_block = log->l_curr_block;
1767
1768 /*
1769 * Figure out the distance between the new head of the log
1770 * and the tail. We want to write over any blocks beyond the
1771 * head that we may have written just before the crash, but
1772 * we don't want to overwrite the tail of the log.
1773 */
1774 if (head_cycle == tail_cycle) {
1775 /*
1776 * The tail is behind the head in the physical log,
1777 * so the distance from the head to the tail is the
1778 * distance from the head to the end of the log plus
1779 * the distance from the beginning of the log to the
1780 * tail.
1781 */
1782 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1783 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1784 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1785 return -EFSCORRUPTED;
1da177e4
LT
1786 }
1787 tail_distance = tail_block + (log->l_logBBsize - head_block);
1788 } else {
1789 /*
1790 * The head is behind the tail in the physical log,
1791 * so the distance from the head to the tail is just
1792 * the tail block minus the head block.
1793 */
1794 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1795 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1796 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1797 return -EFSCORRUPTED;
1da177e4
LT
1798 }
1799 tail_distance = tail_block - head_block;
1800 }
1801
1802 /*
1803 * If the head is right up against the tail, we can't clear
1804 * anything.
1805 */
1806 if (tail_distance <= 0) {
1807 ASSERT(tail_distance == 0);
1808 return 0;
1809 }
1810
1811 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1812 /*
1813 * Take the smaller of the maximum amount of outstanding I/O
1814 * we could have and the distance to the tail to clear out.
1815 * We take the smaller so that we don't overwrite the tail and
1816 * we don't waste all day writing from the head to the tail
1817 * for no reason.
1818 */
1819 max_distance = MIN(max_distance, tail_distance);
1820
1821 if ((head_block + max_distance) <= log->l_logBBsize) {
1822 /*
1823 * We can stomp all the blocks we need to without
1824 * wrapping around the end of the log. Just do it
1825 * in a single write. Use the cycle number of the
1826 * current cycle minus one so that the log will look like:
1827 * n ... | n - 1 ...
1828 */
1829 error = xlog_write_log_records(log, (head_cycle - 1),
1830 head_block, max_distance, tail_cycle,
1831 tail_block);
1832 if (error)
1833 return error;
1834 } else {
1835 /*
1836 * We need to wrap around the end of the physical log in
1837 * order to clear all the blocks. Do it in two separate
1838 * I/Os. The first write should be from the head to the
1839 * end of the physical log, and it should use the current
1840 * cycle number minus one just like above.
1841 */
1842 distance = log->l_logBBsize - head_block;
1843 error = xlog_write_log_records(log, (head_cycle - 1),
1844 head_block, distance, tail_cycle,
1845 tail_block);
1846
1847 if (error)
1848 return error;
1849
1850 /*
1851 * Now write the blocks at the start of the physical log.
1852 * This writes the remainder of the blocks we want to clear.
1853 * It uses the current cycle number since we're now on the
1854 * same cycle as the head so that we get:
1855 * n ... n ... | n - 1 ...
1856 * ^^^^^ blocks we're writing
1857 */
1858 distance = max_distance - (log->l_logBBsize - head_block);
1859 error = xlog_write_log_records(log, head_cycle, 0, distance,
1860 tail_cycle, tail_block);
1861 if (error)
1862 return error;
1863 }
1864
1865 return 0;
1866}
1867
1868/******************************************************************************
1869 *
1870 * Log recover routines
1871 *
1872 ******************************************************************************
1873 */
1874
f0a76953 1875/*
a775ad77
DC
1876 * Sort the log items in the transaction.
1877 *
1878 * The ordering constraints are defined by the inode allocation and unlink
1879 * behaviour. The rules are:
1880 *
1881 * 1. Every item is only logged once in a given transaction. Hence it
1882 * represents the last logged state of the item. Hence ordering is
1883 * dependent on the order in which operations need to be performed so
1884 * required initial conditions are always met.
1885 *
1886 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1887 * there's nothing to replay from them so we can simply cull them
1888 * from the transaction. However, we can't do that until after we've
1889 * replayed all the other items because they may be dependent on the
1890 * cancelled buffer and replaying the cancelled buffer can remove it
1891 * form the cancelled buffer table. Hence they have tobe done last.
1892 *
1893 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1894 * read the buffer and replay changes into it. For filesystems using the
1895 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1896 * treated the same as inode allocation buffers as they create and
1897 * initialise the buffers directly.
a775ad77
DC
1898 *
1899 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1900 * This ensures that inodes are completely flushed to the inode buffer
1901 * in a "free" state before we remove the unlinked inode list pointer.
1902 *
1903 * Hence the ordering needs to be inode allocation buffers first, inode items
1904 * second, inode unlink buffers third and cancelled buffers last.
1905 *
1906 * But there's a problem with that - we can't tell an inode allocation buffer
1907 * apart from a regular buffer, so we can't separate them. We can, however,
1908 * tell an inode unlink buffer from the others, and so we can separate them out
1909 * from all the other buffers and move them to last.
1910 *
1911 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1912 * - buffer_list for all buffers except cancelled/inode unlink buffers
1913 * - item_list for all non-buffer items
1914 * - inode_buffer_list for inode unlink buffers
1915 * - cancel_list for the cancelled buffers
1916 *
1917 * Note that we add objects to the tail of the lists so that first-to-last
1918 * ordering is preserved within the lists. Adding objects to the head of the
1919 * list means when we traverse from the head we walk them in last-to-first
1920 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1921 * but for all other items there may be specific ordering that we need to
1922 * preserve.
f0a76953 1923 */
1da177e4
LT
1924STATIC int
1925xlog_recover_reorder_trans(
ad223e60
MT
1926 struct xlog *log,
1927 struct xlog_recover *trans,
9abbc539 1928 int pass)
1da177e4 1929{
f0a76953 1930 xlog_recover_item_t *item, *n;
2a84108f 1931 int error = 0;
f0a76953 1932 LIST_HEAD(sort_list);
a775ad77
DC
1933 LIST_HEAD(cancel_list);
1934 LIST_HEAD(buffer_list);
1935 LIST_HEAD(inode_buffer_list);
1936 LIST_HEAD(inode_list);
f0a76953
DC
1937
1938 list_splice_init(&trans->r_itemq, &sort_list);
1939 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1940 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1941
f0a76953 1942 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1943 case XFS_LI_ICREATE:
1944 list_move_tail(&item->ri_list, &buffer_list);
1945 break;
1da177e4 1946 case XFS_LI_BUF:
a775ad77 1947 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1948 trace_xfs_log_recover_item_reorder_head(log,
1949 trans, item, pass);
a775ad77 1950 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1951 break;
1952 }
a775ad77
DC
1953 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1954 list_move(&item->ri_list, &inode_buffer_list);
1955 break;
1956 }
1957 list_move_tail(&item->ri_list, &buffer_list);
1958 break;
1da177e4 1959 case XFS_LI_INODE:
1da177e4
LT
1960 case XFS_LI_DQUOT:
1961 case XFS_LI_QUOTAOFF:
1962 case XFS_LI_EFD:
1963 case XFS_LI_EFI:
9e88b5d8
DW
1964 case XFS_LI_RUI:
1965 case XFS_LI_RUD:
f997ee21
DW
1966 case XFS_LI_CUI:
1967 case XFS_LI_CUD:
77d61fe4
DW
1968 case XFS_LI_BUI:
1969 case XFS_LI_BUD:
9abbc539
DC
1970 trace_xfs_log_recover_item_reorder_tail(log,
1971 trans, item, pass);
a775ad77 1972 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1973 break;
1974 default:
a0fa2b67
DC
1975 xfs_warn(log->l_mp,
1976 "%s: unrecognized type of log operation",
1977 __func__);
1da177e4 1978 ASSERT(0);
2a84108f
MT
1979 /*
1980 * return the remaining items back to the transaction
1981 * item list so they can be freed in caller.
1982 */
1983 if (!list_empty(&sort_list))
1984 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1985 error = -EIO;
2a84108f 1986 goto out;
1da177e4 1987 }
f0a76953 1988 }
2a84108f 1989out:
f0a76953 1990 ASSERT(list_empty(&sort_list));
a775ad77
DC
1991 if (!list_empty(&buffer_list))
1992 list_splice(&buffer_list, &trans->r_itemq);
1993 if (!list_empty(&inode_list))
1994 list_splice_tail(&inode_list, &trans->r_itemq);
1995 if (!list_empty(&inode_buffer_list))
1996 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1997 if (!list_empty(&cancel_list))
1998 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 1999 return error;
1da177e4
LT
2000}
2001
2002/*
2003 * Build up the table of buf cancel records so that we don't replay
2004 * cancelled data in the second pass. For buffer records that are
2005 * not cancel records, there is nothing to do here so we just return.
2006 *
2007 * If we get a cancel record which is already in the table, this indicates
2008 * that the buffer was cancelled multiple times. In order to ensure
2009 * that during pass 2 we keep the record in the table until we reach its
2010 * last occurrence in the log, we keep a reference count in the cancel
2011 * record in the table to tell us how many times we expect to see this
2012 * record during the second pass.
2013 */
c9f71f5f
CH
2014STATIC int
2015xlog_recover_buffer_pass1(
ad223e60
MT
2016 struct xlog *log,
2017 struct xlog_recover_item *item)
1da177e4 2018{
c9f71f5f 2019 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
2020 struct list_head *bucket;
2021 struct xfs_buf_cancel *bcp;
1da177e4
LT
2022
2023 /*
2024 * If this isn't a cancel buffer item, then just return.
2025 */
e2714bf8 2026 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 2027 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 2028 return 0;
9abbc539 2029 }
1da177e4
LT
2030
2031 /*
d5689eaa
CH
2032 * Insert an xfs_buf_cancel record into the hash table of them.
2033 * If there is already an identical record, bump its reference count.
1da177e4 2034 */
d5689eaa
CH
2035 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2036 list_for_each_entry(bcp, bucket, bc_list) {
2037 if (bcp->bc_blkno == buf_f->blf_blkno &&
2038 bcp->bc_len == buf_f->blf_len) {
2039 bcp->bc_refcount++;
9abbc539 2040 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 2041 return 0;
1da177e4 2042 }
d5689eaa
CH
2043 }
2044
2045 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2046 bcp->bc_blkno = buf_f->blf_blkno;
2047 bcp->bc_len = buf_f->blf_len;
1da177e4 2048 bcp->bc_refcount = 1;
d5689eaa
CH
2049 list_add_tail(&bcp->bc_list, bucket);
2050
9abbc539 2051 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 2052 return 0;
1da177e4
LT
2053}
2054
2055/*
2056 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
2057 * entry in the buffer cancel record table. If it is, return the cancel
2058 * buffer structure to the caller.
1da177e4 2059 */
84a5b730
DC
2060STATIC struct xfs_buf_cancel *
2061xlog_peek_buffer_cancelled(
ad223e60 2062 struct xlog *log,
1da177e4
LT
2063 xfs_daddr_t blkno,
2064 uint len,
755c7bf5 2065 unsigned short flags)
1da177e4 2066{
d5689eaa
CH
2067 struct list_head *bucket;
2068 struct xfs_buf_cancel *bcp;
1da177e4 2069
84a5b730
DC
2070 if (!log->l_buf_cancel_table) {
2071 /* empty table means no cancelled buffers in the log */
c1155410 2072 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 2073 return NULL;
1da177e4
LT
2074 }
2075
d5689eaa
CH
2076 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2077 list_for_each_entry(bcp, bucket, bc_list) {
2078 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 2079 return bcp;
1da177e4 2080 }
d5689eaa 2081
1da177e4 2082 /*
d5689eaa
CH
2083 * We didn't find a corresponding entry in the table, so return 0 so
2084 * that the buffer is NOT cancelled.
1da177e4 2085 */
c1155410 2086 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
2087 return NULL;
2088}
2089
2090/*
2091 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2092 * otherwise return 0. If the buffer is actually a buffer cancel item
2093 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2094 * table and remove it from the table if this is the last reference.
2095 *
2096 * We remove the cancel record from the table when we encounter its last
2097 * occurrence in the log so that if the same buffer is re-used again after its
2098 * last cancellation we actually replay the changes made at that point.
2099 */
2100STATIC int
2101xlog_check_buffer_cancelled(
2102 struct xlog *log,
2103 xfs_daddr_t blkno,
2104 uint len,
755c7bf5 2105 unsigned short flags)
84a5b730
DC
2106{
2107 struct xfs_buf_cancel *bcp;
2108
2109 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2110 if (!bcp)
2111 return 0;
d5689eaa 2112
d5689eaa
CH
2113 /*
2114 * We've go a match, so return 1 so that the recovery of this buffer
2115 * is cancelled. If this buffer is actually a buffer cancel log
2116 * item, then decrement the refcount on the one in the table and
2117 * remove it if this is the last reference.
2118 */
2119 if (flags & XFS_BLF_CANCEL) {
2120 if (--bcp->bc_refcount == 0) {
2121 list_del(&bcp->bc_list);
2122 kmem_free(bcp);
2123 }
2124 }
2125 return 1;
1da177e4
LT
2126}
2127
1da177e4 2128/*
e2714bf8
CH
2129 * Perform recovery for a buffer full of inodes. In these buffers, the only
2130 * data which should be recovered is that which corresponds to the
2131 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2132 * data for the inodes is always logged through the inodes themselves rather
2133 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2134 *
e2714bf8
CH
2135 * The only time when buffers full of inodes are fully recovered is when the
2136 * buffer is full of newly allocated inodes. In this case the buffer will
2137 * not be marked as an inode buffer and so will be sent to
2138 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2139 */
2140STATIC int
2141xlog_recover_do_inode_buffer(
e2714bf8 2142 struct xfs_mount *mp,
1da177e4 2143 xlog_recover_item_t *item,
e2714bf8 2144 struct xfs_buf *bp,
1da177e4
LT
2145 xfs_buf_log_format_t *buf_f)
2146{
2147 int i;
e2714bf8
CH
2148 int item_index = 0;
2149 int bit = 0;
2150 int nbits = 0;
2151 int reg_buf_offset = 0;
2152 int reg_buf_bytes = 0;
1da177e4
LT
2153 int next_unlinked_offset;
2154 int inodes_per_buf;
2155 xfs_agino_t *logged_nextp;
2156 xfs_agino_t *buffer_nextp;
1da177e4 2157
9abbc539 2158 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2159
2160 /*
2161 * Post recovery validation only works properly on CRC enabled
2162 * filesystems.
2163 */
2164 if (xfs_sb_version_hascrc(&mp->m_sb))
2165 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2166
aa0e8833 2167 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2168 for (i = 0; i < inodes_per_buf; i++) {
2169 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2170 offsetof(xfs_dinode_t, di_next_unlinked);
2171
2172 while (next_unlinked_offset >=
2173 (reg_buf_offset + reg_buf_bytes)) {
2174 /*
2175 * The next di_next_unlinked field is beyond
2176 * the current logged region. Find the next
2177 * logged region that contains or is beyond
2178 * the current di_next_unlinked field.
2179 */
2180 bit += nbits;
e2714bf8
CH
2181 bit = xfs_next_bit(buf_f->blf_data_map,
2182 buf_f->blf_map_size, bit);
1da177e4
LT
2183
2184 /*
2185 * If there are no more logged regions in the
2186 * buffer, then we're done.
2187 */
e2714bf8 2188 if (bit == -1)
1da177e4 2189 return 0;
1da177e4 2190
e2714bf8
CH
2191 nbits = xfs_contig_bits(buf_f->blf_data_map,
2192 buf_f->blf_map_size, bit);
1da177e4 2193 ASSERT(nbits > 0);
c1155410
DC
2194 reg_buf_offset = bit << XFS_BLF_SHIFT;
2195 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2196 item_index++;
2197 }
2198
2199 /*
2200 * If the current logged region starts after the current
2201 * di_next_unlinked field, then move on to the next
2202 * di_next_unlinked field.
2203 */
e2714bf8 2204 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2205 continue;
1da177e4
LT
2206
2207 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2208 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2209 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2210 BBTOB(bp->b_io_length));
1da177e4
LT
2211
2212 /*
2213 * The current logged region contains a copy of the
2214 * current di_next_unlinked field. Extract its value
2215 * and copy it to the buffer copy.
2216 */
4e0d5f92
CH
2217 logged_nextp = item->ri_buf[item_index].i_addr +
2218 next_unlinked_offset - reg_buf_offset;
1da177e4 2219 if (unlikely(*logged_nextp == 0)) {
a0fa2b67 2220 xfs_alert(mp,
3d170aa2 2221 "Bad inode buffer log record (ptr = %p, bp = %p). "
a0fa2b67 2222 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2223 item, bp);
2224 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2225 XFS_ERRLEVEL_LOW, mp);
2451337d 2226 return -EFSCORRUPTED;
1da177e4
LT
2227 }
2228
88ee2df7 2229 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2230 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2231
2232 /*
2233 * If necessary, recalculate the CRC in the on-disk inode. We
2234 * have to leave the inode in a consistent state for whoever
2235 * reads it next....
2236 */
88ee2df7 2237 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2238 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2239
1da177e4
LT
2240 }
2241
2242 return 0;
2243}
2244
50d5c8d8
DC
2245/*
2246 * V5 filesystems know the age of the buffer on disk being recovered. We can
2247 * have newer objects on disk than we are replaying, and so for these cases we
2248 * don't want to replay the current change as that will make the buffer contents
2249 * temporarily invalid on disk.
2250 *
2251 * The magic number might not match the buffer type we are going to recover
2252 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2253 * extract the LSN of the existing object in the buffer based on it's current
2254 * magic number. If we don't recognise the magic number in the buffer, then
2255 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2256 * so can recover the buffer.
566055d3
DC
2257 *
2258 * Note: we cannot rely solely on magic number matches to determine that the
2259 * buffer has a valid LSN - we also need to verify that it belongs to this
2260 * filesystem, so we need to extract the object's LSN and compare it to that
2261 * which we read from the superblock. If the UUIDs don't match, then we've got a
2262 * stale metadata block from an old filesystem instance that we need to recover
2263 * over the top of.
50d5c8d8
DC
2264 */
2265static xfs_lsn_t
2266xlog_recover_get_buf_lsn(
2267 struct xfs_mount *mp,
2268 struct xfs_buf *bp)
2269{
c8ce540d
DW
2270 uint32_t magic32;
2271 uint16_t magic16;
2272 uint16_t magicda;
50d5c8d8 2273 void *blk = bp->b_addr;
566055d3
DC
2274 uuid_t *uuid;
2275 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2276
2277 /* v4 filesystems always recover immediately */
2278 if (!xfs_sb_version_hascrc(&mp->m_sb))
2279 goto recover_immediately;
2280
2281 magic32 = be32_to_cpu(*(__be32 *)blk);
2282 switch (magic32) {
2283 case XFS_ABTB_CRC_MAGIC:
2284 case XFS_ABTC_CRC_MAGIC:
2285 case XFS_ABTB_MAGIC:
2286 case XFS_ABTC_MAGIC:
a650e8f9 2287 case XFS_RMAP_CRC_MAGIC:
a90c00f0 2288 case XFS_REFC_CRC_MAGIC:
50d5c8d8 2289 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2290 case XFS_IBT_MAGIC: {
2291 struct xfs_btree_block *btb = blk;
2292
2293 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2294 uuid = &btb->bb_u.s.bb_uuid;
2295 break;
2296 }
50d5c8d8 2297 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2298 case XFS_BMAP_MAGIC: {
2299 struct xfs_btree_block *btb = blk;
2300
2301 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2302 uuid = &btb->bb_u.l.bb_uuid;
2303 break;
2304 }
50d5c8d8 2305 case XFS_AGF_MAGIC:
566055d3
DC
2306 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2307 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2308 break;
50d5c8d8 2309 case XFS_AGFL_MAGIC:
566055d3
DC
2310 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2311 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2312 break;
50d5c8d8 2313 case XFS_AGI_MAGIC:
566055d3
DC
2314 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2315 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2316 break;
50d5c8d8 2317 case XFS_SYMLINK_MAGIC:
566055d3
DC
2318 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2319 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2320 break;
50d5c8d8
DC
2321 case XFS_DIR3_BLOCK_MAGIC:
2322 case XFS_DIR3_DATA_MAGIC:
2323 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2324 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2325 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2326 break;
50d5c8d8 2327 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2328 /*
2329 * Remote attr blocks are written synchronously, rather than
2330 * being logged. That means they do not contain a valid LSN
2331 * (i.e. transactionally ordered) in them, and hence any time we
2332 * see a buffer to replay over the top of a remote attribute
2333 * block we should simply do so.
2334 */
2335 goto recover_immediately;
50d5c8d8 2336 case XFS_SB_MAGIC:
fcfbe2c4
DC
2337 /*
2338 * superblock uuids are magic. We may or may not have a
2339 * sb_meta_uuid on disk, but it will be set in the in-core
2340 * superblock. We set the uuid pointer for verification
2341 * according to the superblock feature mask to ensure we check
2342 * the relevant UUID in the superblock.
2343 */
566055d3 2344 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2345 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2346 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2347 else
2348 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2349 break;
50d5c8d8
DC
2350 default:
2351 break;
2352 }
2353
566055d3 2354 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2355 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2356 goto recover_immediately;
2357 return lsn;
2358 }
2359
50d5c8d8
DC
2360 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2361 switch (magicda) {
2362 case XFS_DIR3_LEAF1_MAGIC:
2363 case XFS_DIR3_LEAFN_MAGIC:
2364 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2365 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2366 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2367 break;
50d5c8d8
DC
2368 default:
2369 break;
2370 }
2371
566055d3
DC
2372 if (lsn != (xfs_lsn_t)-1) {
2373 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2374 goto recover_immediately;
2375 return lsn;
2376 }
2377
50d5c8d8
DC
2378 /*
2379 * We do individual object checks on dquot and inode buffers as they
2380 * have their own individual LSN records. Also, we could have a stale
2381 * buffer here, so we have to at least recognise these buffer types.
2382 *
2383 * A notd complexity here is inode unlinked list processing - it logs
2384 * the inode directly in the buffer, but we don't know which inodes have
2385 * been modified, and there is no global buffer LSN. Hence we need to
2386 * recover all inode buffer types immediately. This problem will be
2387 * fixed by logical logging of the unlinked list modifications.
2388 */
2389 magic16 = be16_to_cpu(*(__be16 *)blk);
2390 switch (magic16) {
2391 case XFS_DQUOT_MAGIC:
2392 case XFS_DINODE_MAGIC:
2393 goto recover_immediately;
2394 default:
2395 break;
2396 }
2397
2398 /* unknown buffer contents, recover immediately */
2399
2400recover_immediately:
2401 return (xfs_lsn_t)-1;
2402
2403}
2404
1da177e4 2405/*
d75afeb3
DC
2406 * Validate the recovered buffer is of the correct type and attach the
2407 * appropriate buffer operations to them for writeback. Magic numbers are in a
2408 * few places:
2409 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2410 * the first 32 bits of the buffer (most blocks),
2411 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2412 */
d75afeb3 2413static void
50d5c8d8 2414xlog_recover_validate_buf_type(
9abbc539 2415 struct xfs_mount *mp,
e2714bf8 2416 struct xfs_buf *bp,
22db9af2
BF
2417 xfs_buf_log_format_t *buf_f,
2418 xfs_lsn_t current_lsn)
1da177e4 2419{
d75afeb3 2420 struct xfs_da_blkinfo *info = bp->b_addr;
c8ce540d
DW
2421 uint32_t magic32;
2422 uint16_t magic16;
2423 uint16_t magicda;
040c52c0 2424 char *warnmsg = NULL;
d75afeb3 2425
67dc288c
DC
2426 /*
2427 * We can only do post recovery validation on items on CRC enabled
2428 * fielsystems as we need to know when the buffer was written to be able
2429 * to determine if we should have replayed the item. If we replay old
2430 * metadata over a newer buffer, then it will enter a temporarily
2431 * inconsistent state resulting in verification failures. Hence for now
2432 * just avoid the verification stage for non-crc filesystems
2433 */
2434 if (!xfs_sb_version_hascrc(&mp->m_sb))
2435 return;
2436
d75afeb3
DC
2437 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2438 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2439 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2440 switch (xfs_blft_from_flags(buf_f)) {
2441 case XFS_BLFT_BTREE_BUF:
d75afeb3 2442 switch (magic32) {
ee1a47ab
CH
2443 case XFS_ABTB_CRC_MAGIC:
2444 case XFS_ABTC_CRC_MAGIC:
2445 case XFS_ABTB_MAGIC:
2446 case XFS_ABTC_MAGIC:
2447 bp->b_ops = &xfs_allocbt_buf_ops;
2448 break;
2449 case XFS_IBT_CRC_MAGIC:
aafc3c24 2450 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2451 case XFS_IBT_MAGIC:
aafc3c24 2452 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2453 bp->b_ops = &xfs_inobt_buf_ops;
2454 break;
2455 case XFS_BMAP_CRC_MAGIC:
2456 case XFS_BMAP_MAGIC:
2457 bp->b_ops = &xfs_bmbt_buf_ops;
2458 break;
a650e8f9
DW
2459 case XFS_RMAP_CRC_MAGIC:
2460 bp->b_ops = &xfs_rmapbt_buf_ops;
2461 break;
a90c00f0
DW
2462 case XFS_REFC_CRC_MAGIC:
2463 bp->b_ops = &xfs_refcountbt_buf_ops;
2464 break;
ee1a47ab 2465 default:
040c52c0 2466 warnmsg = "Bad btree block magic!";
ee1a47ab
CH
2467 break;
2468 }
2469 break;
61fe135c 2470 case XFS_BLFT_AGF_BUF:
d75afeb3 2471 if (magic32 != XFS_AGF_MAGIC) {
040c52c0 2472 warnmsg = "Bad AGF block magic!";
4e0e6040
DC
2473 break;
2474 }
2475 bp->b_ops = &xfs_agf_buf_ops;
2476 break;
61fe135c 2477 case XFS_BLFT_AGFL_BUF:
d75afeb3 2478 if (magic32 != XFS_AGFL_MAGIC) {
040c52c0 2479 warnmsg = "Bad AGFL block magic!";
77c95bba
CH
2480 break;
2481 }
2482 bp->b_ops = &xfs_agfl_buf_ops;
2483 break;
61fe135c 2484 case XFS_BLFT_AGI_BUF:
d75afeb3 2485 if (magic32 != XFS_AGI_MAGIC) {
040c52c0 2486 warnmsg = "Bad AGI block magic!";
983d09ff
DC
2487 break;
2488 }
2489 bp->b_ops = &xfs_agi_buf_ops;
2490 break;
61fe135c
DC
2491 case XFS_BLFT_UDQUOT_BUF:
2492 case XFS_BLFT_PDQUOT_BUF:
2493 case XFS_BLFT_GDQUOT_BUF:
123887e8 2494#ifdef CONFIG_XFS_QUOTA
d75afeb3 2495 if (magic16 != XFS_DQUOT_MAGIC) {
040c52c0 2496 warnmsg = "Bad DQUOT block magic!";
3fe58f30
CH
2497 break;
2498 }
2499 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2500#else
2501 xfs_alert(mp,
2502 "Trying to recover dquots without QUOTA support built in!");
2503 ASSERT(0);
2504#endif
3fe58f30 2505 break;
61fe135c 2506 case XFS_BLFT_DINO_BUF:
d75afeb3 2507 if (magic16 != XFS_DINODE_MAGIC) {
040c52c0 2508 warnmsg = "Bad INODE block magic!";
93848a99
CH
2509 break;
2510 }
2511 bp->b_ops = &xfs_inode_buf_ops;
2512 break;
61fe135c 2513 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2514 if (magic32 != XFS_SYMLINK_MAGIC) {
040c52c0 2515 warnmsg = "Bad symlink block magic!";
f948dd76
DC
2516 break;
2517 }
2518 bp->b_ops = &xfs_symlink_buf_ops;
2519 break;
61fe135c 2520 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2521 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2522 magic32 != XFS_DIR3_BLOCK_MAGIC) {
040c52c0 2523 warnmsg = "Bad dir block magic!";
d75afeb3
DC
2524 break;
2525 }
2526 bp->b_ops = &xfs_dir3_block_buf_ops;
2527 break;
61fe135c 2528 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2529 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2530 magic32 != XFS_DIR3_DATA_MAGIC) {
040c52c0 2531 warnmsg = "Bad dir data magic!";
d75afeb3
DC
2532 break;
2533 }
2534 bp->b_ops = &xfs_dir3_data_buf_ops;
2535 break;
61fe135c 2536 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2537 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2538 magic32 != XFS_DIR3_FREE_MAGIC) {
040c52c0 2539 warnmsg = "Bad dir3 free magic!";
d75afeb3
DC
2540 break;
2541 }
2542 bp->b_ops = &xfs_dir3_free_buf_ops;
2543 break;
61fe135c 2544 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2545 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2546 magicda != XFS_DIR3_LEAF1_MAGIC) {
040c52c0 2547 warnmsg = "Bad dir leaf1 magic!";
d75afeb3
DC
2548 break;
2549 }
2550 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2551 break;
61fe135c 2552 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2553 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2554 magicda != XFS_DIR3_LEAFN_MAGIC) {
040c52c0 2555 warnmsg = "Bad dir leafn magic!";
d75afeb3
DC
2556 break;
2557 }
2558 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2559 break;
61fe135c 2560 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2561 if (magicda != XFS_DA_NODE_MAGIC &&
2562 magicda != XFS_DA3_NODE_MAGIC) {
040c52c0 2563 warnmsg = "Bad da node magic!";
d75afeb3
DC
2564 break;
2565 }
2566 bp->b_ops = &xfs_da3_node_buf_ops;
2567 break;
61fe135c 2568 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2569 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2570 magicda != XFS_ATTR3_LEAF_MAGIC) {
040c52c0 2571 warnmsg = "Bad attr leaf magic!";
d75afeb3
DC
2572 break;
2573 }
2574 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2575 break;
61fe135c 2576 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2577 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
040c52c0 2578 warnmsg = "Bad attr remote magic!";
d75afeb3
DC
2579 break;
2580 }
2581 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2582 break;
04a1e6c5
DC
2583 case XFS_BLFT_SB_BUF:
2584 if (magic32 != XFS_SB_MAGIC) {
040c52c0 2585 warnmsg = "Bad SB block magic!";
04a1e6c5
DC
2586 break;
2587 }
2588 bp->b_ops = &xfs_sb_buf_ops;
2589 break;
f67ca6ec
DC
2590#ifdef CONFIG_XFS_RT
2591 case XFS_BLFT_RTBITMAP_BUF:
2592 case XFS_BLFT_RTSUMMARY_BUF:
bf85e099
DC
2593 /* no magic numbers for verification of RT buffers */
2594 bp->b_ops = &xfs_rtbuf_ops;
f67ca6ec
DC
2595 break;
2596#endif /* CONFIG_XFS_RT */
ee1a47ab 2597 default:
61fe135c
DC
2598 xfs_warn(mp, "Unknown buffer type %d!",
2599 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2600 break;
2601 }
040c52c0
BF
2602
2603 /*
60a4a222
BF
2604 * Nothing else to do in the case of a NULL current LSN as this means
2605 * the buffer is more recent than the change in the log and will be
2606 * skipped.
040c52c0 2607 */
60a4a222
BF
2608 if (current_lsn == NULLCOMMITLSN)
2609 return;
2610
2611 if (warnmsg) {
040c52c0
BF
2612 xfs_warn(mp, warnmsg);
2613 ASSERT(0);
2614 }
60a4a222
BF
2615
2616 /*
2617 * We must update the metadata LSN of the buffer as it is written out to
2618 * ensure that older transactions never replay over this one and corrupt
2619 * the buffer. This can occur if log recovery is interrupted at some
2620 * point after the current transaction completes, at which point a
2621 * subsequent mount starts recovery from the beginning.
2622 *
2623 * Write verifiers update the metadata LSN from log items attached to
2624 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2625 * the verifier. We'll clean it up in our ->iodone() callback.
2626 */
2627 if (bp->b_ops) {
2628 struct xfs_buf_log_item *bip;
2629
2630 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2631 bp->b_iodone = xlog_recover_iodone;
2632 xfs_buf_item_init(bp, mp);
2633 bip = bp->b_fspriv;
2634 bip->bli_item.li_lsn = current_lsn;
2635 }
1da177e4
LT
2636}
2637
d75afeb3
DC
2638/*
2639 * Perform a 'normal' buffer recovery. Each logged region of the
2640 * buffer should be copied over the corresponding region in the
2641 * given buffer. The bitmap in the buf log format structure indicates
2642 * where to place the logged data.
2643 */
2644STATIC void
2645xlog_recover_do_reg_buffer(
2646 struct xfs_mount *mp,
2647 xlog_recover_item_t *item,
2648 struct xfs_buf *bp,
22db9af2
BF
2649 xfs_buf_log_format_t *buf_f,
2650 xfs_lsn_t current_lsn)
d75afeb3
DC
2651{
2652 int i;
2653 int bit;
2654 int nbits;
eebf3cab 2655 xfs_failaddr_t fa;
d75afeb3
DC
2656
2657 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2658
2659 bit = 0;
2660 i = 1; /* 0 is the buf format structure */
2661 while (1) {
2662 bit = xfs_next_bit(buf_f->blf_data_map,
2663 buf_f->blf_map_size, bit);
2664 if (bit == -1)
2665 break;
2666 nbits = xfs_contig_bits(buf_f->blf_data_map,
2667 buf_f->blf_map_size, bit);
2668 ASSERT(nbits > 0);
2669 ASSERT(item->ri_buf[i].i_addr != NULL);
2670 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2671 ASSERT(BBTOB(bp->b_io_length) >=
2672 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2673
709da6a6
DC
2674 /*
2675 * The dirty regions logged in the buffer, even though
2676 * contiguous, may span multiple chunks. This is because the
2677 * dirty region may span a physical page boundary in a buffer
2678 * and hence be split into two separate vectors for writing into
2679 * the log. Hence we need to trim nbits back to the length of
2680 * the current region being copied out of the log.
2681 */
2682 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2683 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2684
d75afeb3
DC
2685 /*
2686 * Do a sanity check if this is a dquot buffer. Just checking
2687 * the first dquot in the buffer should do. XXXThis is
2688 * probably a good thing to do for other buf types also.
2689 */
eebf3cab 2690 fa = NULL;
d75afeb3
DC
2691 if (buf_f->blf_flags &
2692 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2693 if (item->ri_buf[i].i_addr == NULL) {
2694 xfs_alert(mp,
2695 "XFS: NULL dquot in %s.", __func__);
2696 goto next;
2697 }
2698 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2699 xfs_alert(mp,
2700 "XFS: dquot too small (%d) in %s.",
2701 item->ri_buf[i].i_len, __func__);
2702 goto next;
2703 }
eebf3cab
DW
2704 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
2705 -1, 0, 0);
2706 if (fa) {
2707 xfs_alert(mp,
2708 "dquot corrupt at %pS trying to replay into block 0x%llx",
2709 fa, bp->b_bn);
d75afeb3 2710 goto next;
eebf3cab 2711 }
d75afeb3
DC
2712 }
2713
2714 memcpy(xfs_buf_offset(bp,
2715 (uint)bit << XFS_BLF_SHIFT), /* dest */
2716 item->ri_buf[i].i_addr, /* source */
2717 nbits<<XFS_BLF_SHIFT); /* length */
2718 next:
2719 i++;
2720 bit += nbits;
2721 }
2722
2723 /* Shouldn't be any more regions */
2724 ASSERT(i == item->ri_total);
2725
22db9af2 2726 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
d75afeb3
DC
2727}
2728
1da177e4
LT
2729/*
2730 * Perform a dquot buffer recovery.
8ba701ee 2731 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2732 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2733 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2734 *
2735 * Return false if the buffer was tossed and true if we recovered the buffer to
2736 * indicate to the caller if the buffer needs writing.
1da177e4 2737 */
ad3714b8 2738STATIC bool
1da177e4 2739xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2740 struct xfs_mount *mp,
2741 struct xlog *log,
2742 struct xlog_recover_item *item,
2743 struct xfs_buf *bp,
2744 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2745{
2746 uint type;
2747
9abbc539
DC
2748 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2749
1da177e4
LT
2750 /*
2751 * Filesystems are required to send in quota flags at mount time.
2752 */
ad3714b8
DC
2753 if (!mp->m_qflags)
2754 return false;
1da177e4
LT
2755
2756 type = 0;
c1155410 2757 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2758 type |= XFS_DQ_USER;
c1155410 2759 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2760 type |= XFS_DQ_PROJ;
c1155410 2761 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2762 type |= XFS_DQ_GROUP;
2763 /*
2764 * This type of quotas was turned off, so ignore this buffer
2765 */
2766 if (log->l_quotaoffs_flag & type)
ad3714b8 2767 return false;
1da177e4 2768
22db9af2 2769 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
ad3714b8 2770 return true;
1da177e4
LT
2771}
2772
2773/*
2774 * This routine replays a modification made to a buffer at runtime.
2775 * There are actually two types of buffer, regular and inode, which
2776 * are handled differently. Inode buffers are handled differently
2777 * in that we only recover a specific set of data from them, namely
2778 * the inode di_next_unlinked fields. This is because all other inode
2779 * data is actually logged via inode records and any data we replay
2780 * here which overlaps that may be stale.
2781 *
2782 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2783 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2784 * of the buffer in the log should not be replayed at recovery time.
2785 * This is so that if the blocks covered by the buffer are reused for
2786 * file data before we crash we don't end up replaying old, freed
2787 * meta-data into a user's file.
2788 *
2789 * To handle the cancellation of buffer log items, we make two passes
2790 * over the log during recovery. During the first we build a table of
2791 * those buffers which have been cancelled, and during the second we
2792 * only replay those buffers which do not have corresponding cancel
34be5ff3 2793 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2794 * for more details on the implementation of the table of cancel records.
2795 */
2796STATIC int
c9f71f5f 2797xlog_recover_buffer_pass2(
9a8d2fdb
MT
2798 struct xlog *log,
2799 struct list_head *buffer_list,
50d5c8d8
DC
2800 struct xlog_recover_item *item,
2801 xfs_lsn_t current_lsn)
1da177e4 2802{
4e0d5f92 2803 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2804 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2805 xfs_buf_t *bp;
2806 int error;
6ad112bf 2807 uint buf_flags;
50d5c8d8 2808 xfs_lsn_t lsn;
1da177e4 2809
c9f71f5f
CH
2810 /*
2811 * In this pass we only want to recover all the buffers which have
2812 * not been cancelled and are not cancellation buffers themselves.
2813 */
2814 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2815 buf_f->blf_len, buf_f->blf_flags)) {
2816 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2817 return 0;
1da177e4 2818 }
c9f71f5f 2819
9abbc539 2820 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2821
a8acad70 2822 buf_flags = 0;
611c9946
DC
2823 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2824 buf_flags |= XBF_UNMAPPED;
6ad112bf 2825
e2714bf8 2826 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2827 buf_flags, NULL);
ac4d6888 2828 if (!bp)
2451337d 2829 return -ENOMEM;
e5702805 2830 error = bp->b_error;
5a52c2a5 2831 if (error) {
901796af 2832 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2833 goto out_release;
1da177e4
LT
2834 }
2835
50d5c8d8 2836 /*
67dc288c 2837 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2838 * the lsn of the transaction we are replaying.
67dc288c
DC
2839 *
2840 * Note that we have to be extremely careful of readahead here.
2841 * Readahead does not attach verfiers to the buffers so if we don't
2842 * actually do any replay after readahead because of the LSN we found
2843 * in the buffer if more recent than that current transaction then we
2844 * need to attach the verifier directly. Failure to do so can lead to
2845 * future recovery actions (e.g. EFI and unlinked list recovery) can
2846 * operate on the buffers and they won't get the verifier attached. This
2847 * can lead to blocks on disk having the correct content but a stale
2848 * CRC.
2849 *
2850 * It is safe to assume these clean buffers are currently up to date.
2851 * If the buffer is dirtied by a later transaction being replayed, then
2852 * the verifier will be reset to match whatever recover turns that
2853 * buffer into.
50d5c8d8
DC
2854 */
2855 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c 2856 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
5cd9cee9 2857 trace_xfs_log_recover_buf_skip(log, buf_f);
22db9af2 2858 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
50d5c8d8 2859 goto out_release;
67dc288c 2860 }
50d5c8d8 2861
e2714bf8 2862 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2863 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2864 if (error)
2865 goto out_release;
e2714bf8 2866 } else if (buf_f->blf_flags &
c1155410 2867 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2868 bool dirty;
2869
2870 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2871 if (!dirty)
2872 goto out_release;
1da177e4 2873 } else {
22db9af2 2874 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1da177e4 2875 }
1da177e4
LT
2876
2877 /*
2878 * Perform delayed write on the buffer. Asynchronous writes will be
2879 * slower when taking into account all the buffers to be flushed.
2880 *
2881 * Also make sure that only inode buffers with good sizes stay in
2882 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2883 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2884 * buffers in the log can be a different size if the log was generated
2885 * by an older kernel using unclustered inode buffers or a newer kernel
2886 * running with a different inode cluster size. Regardless, if the
0f49efd8
JL
2887 * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size)
2888 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2889 * the buffer out of the buffer cache so that the buffer won't
2890 * overlap with future reads of those inodes.
2891 */
2892 if (XFS_DINODE_MAGIC ==
b53e675d 2893 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2894 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
c8ce540d 2895 (uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2896 xfs_buf_stale(bp);
c2b006c1 2897 error = xfs_bwrite(bp);
1da177e4 2898 } else {
ebad861b 2899 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2900 bp->b_iodone = xlog_recover_iodone;
43ff2122 2901 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2902 }
2903
50d5c8d8 2904out_release:
c2b006c1
CH
2905 xfs_buf_relse(bp);
2906 return error;
1da177e4
LT
2907}
2908
638f4416
DC
2909/*
2910 * Inode fork owner changes
2911 *
2912 * If we have been told that we have to reparent the inode fork, it's because an
2913 * extent swap operation on a CRC enabled filesystem has been done and we are
2914 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2915 * owners of it.
2916 *
2917 * The complexity here is that we don't have an inode context to work with, so
2918 * after we've replayed the inode we need to instantiate one. This is where the
2919 * fun begins.
2920 *
2921 * We are in the middle of log recovery, so we can't run transactions. That
2922 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2923 * that will result in the corresponding iput() running the inode through
2924 * xfs_inactive(). If we've just replayed an inode core that changes the link
2925 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2926 * transactions (bad!).
2927 *
2928 * So, to avoid this, we instantiate an inode directly from the inode core we've
2929 * just recovered. We have the buffer still locked, and all we really need to
2930 * instantiate is the inode core and the forks being modified. We can do this
2931 * manually, then run the inode btree owner change, and then tear down the
2932 * xfs_inode without having to run any transactions at all.
2933 *
2934 * Also, because we don't have a transaction context available here but need to
2935 * gather all the buffers we modify for writeback so we pass the buffer_list
2936 * instead for the operation to use.
2937 */
2938
2939STATIC int
2940xfs_recover_inode_owner_change(
2941 struct xfs_mount *mp,
2942 struct xfs_dinode *dip,
2943 struct xfs_inode_log_format *in_f,
2944 struct list_head *buffer_list)
2945{
2946 struct xfs_inode *ip;
2947 int error;
2948
2949 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2950
2951 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2952 if (!ip)
2451337d 2953 return -ENOMEM;
638f4416
DC
2954
2955 /* instantiate the inode */
3987848c 2956 xfs_inode_from_disk(ip, dip);
638f4416
DC
2957 ASSERT(ip->i_d.di_version >= 3);
2958
2959 error = xfs_iformat_fork(ip, dip);
2960 if (error)
2961 goto out_free_ip;
2962
9cfb9b47
DW
2963 if (!xfs_inode_verify_forks(ip)) {
2964 error = -EFSCORRUPTED;
2965 goto out_free_ip;
2966 }
638f4416
DC
2967
2968 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2969 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2970 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2971 ip->i_ino, buffer_list);
2972 if (error)
2973 goto out_free_ip;
2974 }
2975
2976 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2977 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2978 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2979 ip->i_ino, buffer_list);
2980 if (error)
2981 goto out_free_ip;
2982 }
2983
2984out_free_ip:
2985 xfs_inode_free(ip);
2986 return error;
2987}
2988
1da177e4 2989STATIC int
c9f71f5f 2990xlog_recover_inode_pass2(
9a8d2fdb
MT
2991 struct xlog *log,
2992 struct list_head *buffer_list,
50d5c8d8
DC
2993 struct xlog_recover_item *item,
2994 xfs_lsn_t current_lsn)
1da177e4 2995{
06b11321 2996 struct xfs_inode_log_format *in_f;
c9f71f5f 2997 xfs_mount_t *mp = log->l_mp;
1da177e4 2998 xfs_buf_t *bp;
1da177e4 2999 xfs_dinode_t *dip;
1da177e4 3000 int len;
b2a922cd
CH
3001 char *src;
3002 char *dest;
1da177e4
LT
3003 int error;
3004 int attr_index;
3005 uint fields;
f8d55aa0 3006 struct xfs_log_dinode *ldip;
93848a99 3007 uint isize;
6d192a9b 3008 int need_free = 0;
1da177e4 3009
06b11321 3010 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
4e0d5f92 3011 in_f = item->ri_buf[0].i_addr;
6d192a9b 3012 } else {
06b11321 3013 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
6d192a9b
TS
3014 need_free = 1;
3015 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3016 if (error)
3017 goto error;
3018 }
1da177e4
LT
3019
3020 /*
3021 * Inode buffers can be freed, look out for it,
3022 * and do not replay the inode.
3023 */
a1941895
CH
3024 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3025 in_f->ilf_len, 0)) {
6d192a9b 3026 error = 0;
9abbc539 3027 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
3028 goto error;
3029 }
9abbc539 3030 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 3031
c3f8fc73 3032 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 3033 &xfs_inode_buf_ops);
ac4d6888 3034 if (!bp) {
2451337d 3035 error = -ENOMEM;
ac4d6888
CS
3036 goto error;
3037 }
e5702805 3038 error = bp->b_error;
5a52c2a5 3039 if (error) {
901796af 3040 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 3041 goto out_release;
1da177e4 3042 }
1da177e4 3043 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 3044 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
3045
3046 /*
3047 * Make sure the place we're flushing out to really looks
3048 * like an inode!
3049 */
69ef921b 3050 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67 3051 xfs_alert(mp,
3d170aa2 3052 "%s: Bad inode magic number, dip = %p, dino bp = %p, ino = %Ld",
a0fa2b67 3053 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 3054 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 3055 XFS_ERRLEVEL_LOW, mp);
2451337d 3056 error = -EFSCORRUPTED;
638f4416 3057 goto out_release;
1da177e4 3058 }
f8d55aa0
DC
3059 ldip = item->ri_buf[1].i_addr;
3060 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67 3061 xfs_alert(mp,
3d170aa2 3062 "%s: Bad inode log record, rec ptr %p, ino %Ld",
a0fa2b67 3063 __func__, item, in_f->ilf_ino);
c9f71f5f 3064 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 3065 XFS_ERRLEVEL_LOW, mp);
2451337d 3066 error = -EFSCORRUPTED;
638f4416 3067 goto out_release;
1da177e4
LT
3068 }
3069
50d5c8d8
DC
3070 /*
3071 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
3072 * than the lsn of the transaction we are replaying. Note: we still
3073 * need to replay an owner change even though the inode is more recent
3074 * than the transaction as there is no guarantee that all the btree
3075 * blocks are more recent than this transaction, too.
50d5c8d8
DC
3076 */
3077 if (dip->di_version >= 3) {
3078 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3079
3080 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3081 trace_xfs_log_recover_inode_skip(log, in_f);
3082 error = 0;
638f4416 3083 goto out_owner_change;
50d5c8d8
DC
3084 }
3085 }
3086
e60896d8
DC
3087 /*
3088 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3089 * are transactional and if ordering is necessary we can determine that
3090 * more accurately by the LSN field in the V3 inode core. Don't trust
3091 * the inode versions we might be changing them here - use the
3092 * superblock flag to determine whether we need to look at di_flushiter
3093 * to skip replay when the on disk inode is newer than the log one
3094 */
3095 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
f8d55aa0 3096 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
3097 /*
3098 * Deal with the wrap case, DI_MAX_FLUSH is less
3099 * than smaller numbers
3100 */
81591fe2 3101 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
f8d55aa0 3102 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
3103 /* do nothing */
3104 } else {
9abbc539 3105 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 3106 error = 0;
638f4416 3107 goto out_release;
1da177e4
LT
3108 }
3109 }
e60896d8 3110
1da177e4 3111 /* Take the opportunity to reset the flush iteration count */
f8d55aa0 3112 ldip->di_flushiter = 0;
1da177e4 3113
f8d55aa0
DC
3114 if (unlikely(S_ISREG(ldip->di_mode))) {
3115 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3116 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 3117 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
f8d55aa0 3118 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67 3119 xfs_alert(mp,
3d170aa2
DW
3120 "%s: Bad regular inode log record, rec ptr %p, "
3121 "ino ptr = %p, ino bp = %p, ino %Ld",
a0fa2b67 3122 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3123 error = -EFSCORRUPTED;
638f4416 3124 goto out_release;
1da177e4 3125 }
f8d55aa0
DC
3126 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3127 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3128 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3129 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 3130 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
f8d55aa0 3131 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67 3132 xfs_alert(mp,
3d170aa2
DW
3133 "%s: Bad dir inode log record, rec ptr %p, "
3134 "ino ptr = %p, ino bp = %p, ino %Ld",
a0fa2b67 3135 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3136 error = -EFSCORRUPTED;
638f4416 3137 goto out_release;
1da177e4
LT
3138 }
3139 }
f8d55aa0 3140 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
c9f71f5f 3141 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
f8d55aa0 3142 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67 3143 xfs_alert(mp,
3d170aa2
DW
3144 "%s: Bad inode log record, rec ptr %p, dino ptr %p, "
3145 "dino bp %p, ino %Ld, total extents = %d, nblocks = %Ld",
a0fa2b67 3146 __func__, item, dip, bp, in_f->ilf_ino,
f8d55aa0
DC
3147 ldip->di_nextents + ldip->di_anextents,
3148 ldip->di_nblocks);
2451337d 3149 error = -EFSCORRUPTED;
638f4416 3150 goto out_release;
1da177e4 3151 }
f8d55aa0 3152 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3153 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
f8d55aa0 3154 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67 3155 xfs_alert(mp,
3d170aa2
DW
3156 "%s: Bad inode log record, rec ptr %p, dino ptr %p, "
3157 "dino bp %p, ino %Ld, forkoff 0x%x", __func__,
f8d55aa0 3158 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
2451337d 3159 error = -EFSCORRUPTED;
638f4416 3160 goto out_release;
1da177e4 3161 }
f8d55aa0 3162 isize = xfs_log_dinode_size(ldip->di_version);
93848a99 3163 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
f8d55aa0 3165 XFS_ERRLEVEL_LOW, mp, ldip);
a0fa2b67 3166 xfs_alert(mp,
3d170aa2 3167 "%s: Bad inode log record length %d, rec ptr %p",
a0fa2b67 3168 __func__, item->ri_buf[1].i_len, item);
2451337d 3169 error = -EFSCORRUPTED;
638f4416 3170 goto out_release;
1da177e4
LT
3171 }
3172
3987848c
DC
3173 /* recover the log dinode inode into the on disk inode */
3174 xfs_log_dinode_to_disk(ldip, dip);
1da177e4
LT
3175
3176 /* the rest is in on-disk format */
93848a99
CH
3177 if (item->ri_buf[1].i_len > isize) {
3178 memcpy((char *)dip + isize,
3179 item->ri_buf[1].i_addr + isize,
3180 item->ri_buf[1].i_len - isize);
1da177e4
LT
3181 }
3182
3183 fields = in_f->ilf_fields;
42b67dc6 3184 if (fields & XFS_ILOG_DEV)
81591fe2 3185 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3186
3187 if (in_f->ilf_size == 2)
638f4416 3188 goto out_owner_change;
1da177e4
LT
3189 len = item->ri_buf[2].i_len;
3190 src = item->ri_buf[2].i_addr;
3191 ASSERT(in_f->ilf_size <= 4);
3192 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3193 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3194 (len == in_f->ilf_dsize));
3195
3196 switch (fields & XFS_ILOG_DFORK) {
3197 case XFS_ILOG_DDATA:
3198 case XFS_ILOG_DEXT:
81591fe2 3199 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3200 break;
3201
3202 case XFS_ILOG_DBROOT:
7cc95a82 3203 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3204 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3205 XFS_DFORK_DSIZE(dip, mp));
3206 break;
3207
3208 default:
3209 /*
3210 * There are no data fork flags set.
3211 */
3212 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3213 break;
3214 }
3215
3216 /*
3217 * If we logged any attribute data, recover it. There may or
3218 * may not have been any other non-core data logged in this
3219 * transaction.
3220 */
3221 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3222 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3223 attr_index = 3;
3224 } else {
3225 attr_index = 2;
3226 }
3227 len = item->ri_buf[attr_index].i_len;
3228 src = item->ri_buf[attr_index].i_addr;
3229 ASSERT(len == in_f->ilf_asize);
3230
3231 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3232 case XFS_ILOG_ADATA:
3233 case XFS_ILOG_AEXT:
3234 dest = XFS_DFORK_APTR(dip);
3235 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3236 memcpy(dest, src, len);
3237 break;
3238
3239 case XFS_ILOG_ABROOT:
3240 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3241 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3242 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3243 XFS_DFORK_ASIZE(dip, mp));
3244 break;
3245
3246 default:
a0fa2b67 3247 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3248 ASSERT(0);
2451337d 3249 error = -EIO;
638f4416 3250 goto out_release;
1da177e4
LT
3251 }
3252 }
3253
638f4416
DC
3254out_owner_change:
3255 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3256 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3257 buffer_list);
93848a99
CH
3258 /* re-generate the checksum. */
3259 xfs_dinode_calc_crc(log->l_mp, dip);
3260
ebad861b 3261 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3262 bp->b_iodone = xlog_recover_iodone;
43ff2122 3263 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3264
3265out_release:
61551f1e 3266 xfs_buf_relse(bp);
6d192a9b
TS
3267error:
3268 if (need_free)
f0e2d93c 3269 kmem_free(in_f);
b474c7ae 3270 return error;
1da177e4
LT
3271}
3272
3273/*
9a8d2fdb 3274 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3275 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3276 * of that type.
3277 */
3278STATIC int
c9f71f5f 3279xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3280 struct xlog *log,
3281 struct xlog_recover_item *item)
1da177e4 3282{
c9f71f5f 3283 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3284 ASSERT(qoff_f);
3285
3286 /*
3287 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3288 * group/project quotaoff or both.
1da177e4
LT
3289 */
3290 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3291 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3292 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3293 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3294 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3295 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3296
d99831ff 3297 return 0;
1da177e4
LT
3298}
3299
3300/*
3301 * Recover a dquot record
3302 */
3303STATIC int
c9f71f5f 3304xlog_recover_dquot_pass2(
9a8d2fdb
MT
3305 struct xlog *log,
3306 struct list_head *buffer_list,
50d5c8d8
DC
3307 struct xlog_recover_item *item,
3308 xfs_lsn_t current_lsn)
1da177e4 3309{
c9f71f5f 3310 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3311 xfs_buf_t *bp;
3312 struct xfs_disk_dquot *ddq, *recddq;
eebf3cab 3313 xfs_failaddr_t fa;
1da177e4
LT
3314 int error;
3315 xfs_dq_logformat_t *dq_f;
3316 uint type;
3317
1da177e4
LT
3318
3319 /*
3320 * Filesystems are required to send in quota flags at mount time.
3321 */
3322 if (mp->m_qflags == 0)
d99831ff 3323 return 0;
1da177e4 3324
4e0d5f92
CH
3325 recddq = item->ri_buf[1].i_addr;
3326 if (recddq == NULL) {
a0fa2b67 3327 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3328 return -EIO;
0c5e1ce8 3329 }
8ec6dba2 3330 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3331 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3332 item->ri_buf[1].i_len, __func__);
2451337d 3333 return -EIO;
0c5e1ce8
CH
3334 }
3335
1da177e4
LT
3336 /*
3337 * This type of quotas was turned off, so ignore this record.
3338 */
b53e675d 3339 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3340 ASSERT(type);
3341 if (log->l_quotaoffs_flag & type)
d99831ff 3342 return 0;
1da177e4
LT
3343
3344 /*
3345 * At this point we know that quota was _not_ turned off.
3346 * Since the mount flags are not indicating to us otherwise, this
3347 * must mean that quota is on, and the dquot needs to be replayed.
3348 * Remember that we may not have fully recovered the superblock yet,
3349 * so we can't do the usual trick of looking at the SB quota bits.
3350 *
3351 * The other possibility, of course, is that the quota subsystem was
3352 * removed since the last mount - ENOSYS.
3353 */
4e0d5f92 3354 dq_f = item->ri_buf[0].i_addr;
1da177e4 3355 ASSERT(dq_f);
eebf3cab
DW
3356 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0, 0);
3357 if (fa) {
3358 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3359 dq_f->qlf_id, fa);
2451337d 3360 return -EIO;
eebf3cab 3361 }
1da177e4
LT
3362 ASSERT(dq_f->qlf_len == 1);
3363
ad3714b8
DC
3364 /*
3365 * At this point we are assuming that the dquots have been allocated
3366 * and hence the buffer has valid dquots stamped in it. It should,
3367 * therefore, pass verifier validation. If the dquot is bad, then the
3368 * we'll return an error here, so we don't need to specifically check
3369 * the dquot in the buffer after the verifier has run.
3370 */
7ca790a5 3371 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3372 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3373 &xfs_dquot_buf_ops);
7ca790a5 3374 if (error)
1da177e4 3375 return error;
7ca790a5 3376
1da177e4 3377 ASSERT(bp);
88ee2df7 3378 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3379
50d5c8d8
DC
3380 /*
3381 * If the dquot has an LSN in it, recover the dquot only if it's less
3382 * than the lsn of the transaction we are replaying.
3383 */
3384 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3385 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3386 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3387
3388 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3389 goto out_release;
3390 }
3391 }
3392
1da177e4 3393 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3394 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3395 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3396 XFS_DQUOT_CRC_OFF);
3397 }
1da177e4
LT
3398
3399 ASSERT(dq_f->qlf_size == 2);
ebad861b 3400 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3401 bp->b_iodone = xlog_recover_iodone;
43ff2122 3402 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3403
50d5c8d8
DC
3404out_release:
3405 xfs_buf_relse(bp);
3406 return 0;
1da177e4
LT
3407}
3408
3409/*
3410 * This routine is called to create an in-core extent free intent
3411 * item from the efi format structure which was logged on disk.
3412 * It allocates an in-core efi, copies the extents from the format
3413 * structure into it, and adds the efi to the AIL with the given
3414 * LSN.
3415 */
6d192a9b 3416STATIC int
c9f71f5f 3417xlog_recover_efi_pass2(
9a8d2fdb
MT
3418 struct xlog *log,
3419 struct xlog_recover_item *item,
3420 xfs_lsn_t lsn)
1da177e4 3421{
e32a1d1f
BF
3422 int error;
3423 struct xfs_mount *mp = log->l_mp;
3424 struct xfs_efi_log_item *efip;
3425 struct xfs_efi_log_format *efi_formatp;
1da177e4 3426
4e0d5f92 3427 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3428
1da177e4 3429 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3430 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3431 if (error) {
6d192a9b
TS
3432 xfs_efi_item_free(efip);
3433 return error;
3434 }
b199c8a4 3435 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3436
a9c21c1b 3437 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3438 /*
e32a1d1f
BF
3439 * The EFI has two references. One for the EFD and one for EFI to ensure
3440 * it makes it into the AIL. Insert the EFI into the AIL directly and
3441 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3442 * AIL lock.
1da177e4 3443 */
e6059949 3444 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3445 xfs_efi_release(efip);
6d192a9b 3446 return 0;
1da177e4
LT
3447}
3448
3449
3450/*
e32a1d1f
BF
3451 * This routine is called when an EFD format structure is found in a committed
3452 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3453 * was still in the log. To do this it searches the AIL for the EFI with an id
3454 * equal to that in the EFD format structure. If we find it we drop the EFD
3455 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3456 */
c9f71f5f
CH
3457STATIC int
3458xlog_recover_efd_pass2(
9a8d2fdb
MT
3459 struct xlog *log,
3460 struct xlog_recover_item *item)
1da177e4 3461{
1da177e4
LT
3462 xfs_efd_log_format_t *efd_formatp;
3463 xfs_efi_log_item_t *efip = NULL;
3464 xfs_log_item_t *lip;
c8ce540d 3465 uint64_t efi_id;
27d8d5fe 3466 struct xfs_ail_cursor cur;
783a2f65 3467 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3468
4e0d5f92 3469 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3470 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3471 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3472 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3473 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3474 efi_id = efd_formatp->efd_efi_id;
3475
3476 /*
e32a1d1f
BF
3477 * Search for the EFI with the id in the EFD format structure in the
3478 * AIL.
1da177e4 3479 */
a9c21c1b
DC
3480 spin_lock(&ailp->xa_lock);
3481 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3482 while (lip != NULL) {
3483 if (lip->li_type == XFS_LI_EFI) {
3484 efip = (xfs_efi_log_item_t *)lip;
3485 if (efip->efi_format.efi_id == efi_id) {
3486 /*
e32a1d1f
BF
3487 * Drop the EFD reference to the EFI. This
3488 * removes the EFI from the AIL and frees it.
1da177e4 3489 */
e32a1d1f
BF
3490 spin_unlock(&ailp->xa_lock);
3491 xfs_efi_release(efip);
a9c21c1b 3492 spin_lock(&ailp->xa_lock);
27d8d5fe 3493 break;
1da177e4
LT
3494 }
3495 }
a9c21c1b 3496 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3497 }
e32a1d1f 3498
e4a1e29c 3499 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 3500 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3501
3502 return 0;
1da177e4
LT
3503}
3504
9e88b5d8
DW
3505/*
3506 * This routine is called to create an in-core extent rmap update
3507 * item from the rui format structure which was logged on disk.
3508 * It allocates an in-core rui, copies the extents from the format
3509 * structure into it, and adds the rui to the AIL with the given
3510 * LSN.
3511 */
3512STATIC int
3513xlog_recover_rui_pass2(
3514 struct xlog *log,
3515 struct xlog_recover_item *item,
3516 xfs_lsn_t lsn)
3517{
3518 int error;
3519 struct xfs_mount *mp = log->l_mp;
3520 struct xfs_rui_log_item *ruip;
3521 struct xfs_rui_log_format *rui_formatp;
3522
3523 rui_formatp = item->ri_buf[0].i_addr;
3524
3525 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3526 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3527 if (error) {
3528 xfs_rui_item_free(ruip);
3529 return error;
3530 }
3531 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3532
3533 spin_lock(&log->l_ailp->xa_lock);
3534 /*
3535 * The RUI has two references. One for the RUD and one for RUI to ensure
3536 * it makes it into the AIL. Insert the RUI into the AIL directly and
3537 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3538 * AIL lock.
3539 */
3540 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3541 xfs_rui_release(ruip);
3542 return 0;
3543}
3544
3545
3546/*
3547 * This routine is called when an RUD format structure is found in a committed
3548 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3549 * was still in the log. To do this it searches the AIL for the RUI with an id
3550 * equal to that in the RUD format structure. If we find it we drop the RUD
3551 * reference, which removes the RUI from the AIL and frees it.
3552 */
3553STATIC int
3554xlog_recover_rud_pass2(
3555 struct xlog *log,
3556 struct xlog_recover_item *item)
3557{
3558 struct xfs_rud_log_format *rud_formatp;
3559 struct xfs_rui_log_item *ruip = NULL;
3560 struct xfs_log_item *lip;
c8ce540d 3561 uint64_t rui_id;
9e88b5d8
DW
3562 struct xfs_ail_cursor cur;
3563 struct xfs_ail *ailp = log->l_ailp;
3564
3565 rud_formatp = item->ri_buf[0].i_addr;
722e2517 3566 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
9e88b5d8
DW
3567 rui_id = rud_formatp->rud_rui_id;
3568
3569 /*
3570 * Search for the RUI with the id in the RUD format structure in the
3571 * AIL.
3572 */
3573 spin_lock(&ailp->xa_lock);
3574 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3575 while (lip != NULL) {
3576 if (lip->li_type == XFS_LI_RUI) {
3577 ruip = (struct xfs_rui_log_item *)lip;
3578 if (ruip->rui_format.rui_id == rui_id) {
3579 /*
3580 * Drop the RUD reference to the RUI. This
3581 * removes the RUI from the AIL and frees it.
3582 */
3583 spin_unlock(&ailp->xa_lock);
3584 xfs_rui_release(ruip);
3585 spin_lock(&ailp->xa_lock);
3586 break;
3587 }
3588 }
3589 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3590 }
3591
3592 xfs_trans_ail_cursor_done(&cur);
3593 spin_unlock(&ailp->xa_lock);
3594
3595 return 0;
3596}
3597
f997ee21
DW
3598/*
3599 * Copy an CUI format buffer from the given buf, and into the destination
3600 * CUI format structure. The CUI/CUD items were designed not to need any
3601 * special alignment handling.
3602 */
3603static int
3604xfs_cui_copy_format(
3605 struct xfs_log_iovec *buf,
3606 struct xfs_cui_log_format *dst_cui_fmt)
3607{
3608 struct xfs_cui_log_format *src_cui_fmt;
3609 uint len;
3610
3611 src_cui_fmt = buf->i_addr;
3612 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3613
3614 if (buf->i_len == len) {
3615 memcpy(dst_cui_fmt, src_cui_fmt, len);
3616 return 0;
3617 }
3618 return -EFSCORRUPTED;
3619}
3620
3621/*
3622 * This routine is called to create an in-core extent refcount update
3623 * item from the cui format structure which was logged on disk.
3624 * It allocates an in-core cui, copies the extents from the format
3625 * structure into it, and adds the cui to the AIL with the given
3626 * LSN.
3627 */
3628STATIC int
3629xlog_recover_cui_pass2(
3630 struct xlog *log,
3631 struct xlog_recover_item *item,
3632 xfs_lsn_t lsn)
3633{
3634 int error;
3635 struct xfs_mount *mp = log->l_mp;
3636 struct xfs_cui_log_item *cuip;
3637 struct xfs_cui_log_format *cui_formatp;
3638
3639 cui_formatp = item->ri_buf[0].i_addr;
3640
3641 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3642 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3643 if (error) {
3644 xfs_cui_item_free(cuip);
3645 return error;
3646 }
3647 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3648
3649 spin_lock(&log->l_ailp->xa_lock);
3650 /*
3651 * The CUI has two references. One for the CUD and one for CUI to ensure
3652 * it makes it into the AIL. Insert the CUI into the AIL directly and
3653 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3654 * AIL lock.
3655 */
3656 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3657 xfs_cui_release(cuip);
3658 return 0;
3659}
3660
3661
3662/*
3663 * This routine is called when an CUD format structure is found in a committed
3664 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3665 * was still in the log. To do this it searches the AIL for the CUI with an id
3666 * equal to that in the CUD format structure. If we find it we drop the CUD
3667 * reference, which removes the CUI from the AIL and frees it.
3668 */
3669STATIC int
3670xlog_recover_cud_pass2(
3671 struct xlog *log,
3672 struct xlog_recover_item *item)
3673{
3674 struct xfs_cud_log_format *cud_formatp;
3675 struct xfs_cui_log_item *cuip = NULL;
3676 struct xfs_log_item *lip;
c8ce540d 3677 uint64_t cui_id;
f997ee21
DW
3678 struct xfs_ail_cursor cur;
3679 struct xfs_ail *ailp = log->l_ailp;
3680
3681 cud_formatp = item->ri_buf[0].i_addr;
3682 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3683 return -EFSCORRUPTED;
3684 cui_id = cud_formatp->cud_cui_id;
3685
3686 /*
3687 * Search for the CUI with the id in the CUD format structure in the
3688 * AIL.
3689 */
3690 spin_lock(&ailp->xa_lock);
3691 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3692 while (lip != NULL) {
3693 if (lip->li_type == XFS_LI_CUI) {
3694 cuip = (struct xfs_cui_log_item *)lip;
3695 if (cuip->cui_format.cui_id == cui_id) {
3696 /*
3697 * Drop the CUD reference to the CUI. This
3698 * removes the CUI from the AIL and frees it.
3699 */
3700 spin_unlock(&ailp->xa_lock);
3701 xfs_cui_release(cuip);
3702 spin_lock(&ailp->xa_lock);
3703 break;
3704 }
3705 }
3706 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3707 }
3708
3709 xfs_trans_ail_cursor_done(&cur);
3710 spin_unlock(&ailp->xa_lock);
3711
3712 return 0;
3713}
3714
77d61fe4
DW
3715/*
3716 * Copy an BUI format buffer from the given buf, and into the destination
3717 * BUI format structure. The BUI/BUD items were designed not to need any
3718 * special alignment handling.
3719 */
3720static int
3721xfs_bui_copy_format(
3722 struct xfs_log_iovec *buf,
3723 struct xfs_bui_log_format *dst_bui_fmt)
3724{
3725 struct xfs_bui_log_format *src_bui_fmt;
3726 uint len;
3727
3728 src_bui_fmt = buf->i_addr;
3729 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3730
3731 if (buf->i_len == len) {
3732 memcpy(dst_bui_fmt, src_bui_fmt, len);
3733 return 0;
3734 }
3735 return -EFSCORRUPTED;
3736}
3737
3738/*
3739 * This routine is called to create an in-core extent bmap update
3740 * item from the bui format structure which was logged on disk.
3741 * It allocates an in-core bui, copies the extents from the format
3742 * structure into it, and adds the bui to the AIL with the given
3743 * LSN.
3744 */
3745STATIC int
3746xlog_recover_bui_pass2(
3747 struct xlog *log,
3748 struct xlog_recover_item *item,
3749 xfs_lsn_t lsn)
3750{
3751 int error;
3752 struct xfs_mount *mp = log->l_mp;
3753 struct xfs_bui_log_item *buip;
3754 struct xfs_bui_log_format *bui_formatp;
3755
3756 bui_formatp = item->ri_buf[0].i_addr;
3757
3758 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3759 return -EFSCORRUPTED;
3760 buip = xfs_bui_init(mp);
3761 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3762 if (error) {
3763 xfs_bui_item_free(buip);
3764 return error;
3765 }
3766 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3767
3768 spin_lock(&log->l_ailp->xa_lock);
3769 /*
3770 * The RUI has two references. One for the RUD and one for RUI to ensure
3771 * it makes it into the AIL. Insert the RUI into the AIL directly and
3772 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3773 * AIL lock.
3774 */
3775 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3776 xfs_bui_release(buip);
3777 return 0;
3778}
3779
3780
3781/*
3782 * This routine is called when an BUD format structure is found in a committed
3783 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3784 * was still in the log. To do this it searches the AIL for the BUI with an id
3785 * equal to that in the BUD format structure. If we find it we drop the BUD
3786 * reference, which removes the BUI from the AIL and frees it.
3787 */
3788STATIC int
3789xlog_recover_bud_pass2(
3790 struct xlog *log,
3791 struct xlog_recover_item *item)
3792{
3793 struct xfs_bud_log_format *bud_formatp;
3794 struct xfs_bui_log_item *buip = NULL;
3795 struct xfs_log_item *lip;
c8ce540d 3796 uint64_t bui_id;
77d61fe4
DW
3797 struct xfs_ail_cursor cur;
3798 struct xfs_ail *ailp = log->l_ailp;
3799
3800 bud_formatp = item->ri_buf[0].i_addr;
3801 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3802 return -EFSCORRUPTED;
3803 bui_id = bud_formatp->bud_bui_id;
3804
3805 /*
3806 * Search for the BUI with the id in the BUD format structure in the
3807 * AIL.
3808 */
3809 spin_lock(&ailp->xa_lock);
3810 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3811 while (lip != NULL) {
3812 if (lip->li_type == XFS_LI_BUI) {
3813 buip = (struct xfs_bui_log_item *)lip;
3814 if (buip->bui_format.bui_id == bui_id) {
3815 /*
3816 * Drop the BUD reference to the BUI. This
3817 * removes the BUI from the AIL and frees it.
3818 */
3819 spin_unlock(&ailp->xa_lock);
3820 xfs_bui_release(buip);
3821 spin_lock(&ailp->xa_lock);
3822 break;
3823 }
3824 }
3825 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3826 }
3827
3828 xfs_trans_ail_cursor_done(&cur);
3829 spin_unlock(&ailp->xa_lock);
3830
3831 return 0;
3832}
3833
28c8e41a
DC
3834/*
3835 * This routine is called when an inode create format structure is found in a
3836 * committed transaction in the log. It's purpose is to initialise the inodes
3837 * being allocated on disk. This requires us to get inode cluster buffers that
6e7c2b4d 3838 * match the range to be initialised, stamped with inode templates and written
28c8e41a
DC
3839 * by delayed write so that subsequent modifications will hit the cached buffer
3840 * and only need writing out at the end of recovery.
3841 */
3842STATIC int
3843xlog_recover_do_icreate_pass2(
3844 struct xlog *log,
3845 struct list_head *buffer_list,
3846 xlog_recover_item_t *item)
3847{
3848 struct xfs_mount *mp = log->l_mp;
3849 struct xfs_icreate_log *icl;
3850 xfs_agnumber_t agno;
3851 xfs_agblock_t agbno;
3852 unsigned int count;
3853 unsigned int isize;
3854 xfs_agblock_t length;
fc0d1656
BF
3855 int blks_per_cluster;
3856 int bb_per_cluster;
3857 int cancel_count;
3858 int nbufs;
3859 int i;
28c8e41a
DC
3860
3861 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3862 if (icl->icl_type != XFS_LI_ICREATE) {
3863 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3864 return -EINVAL;
28c8e41a
DC
3865 }
3866
3867 if (icl->icl_size != 1) {
3868 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3869 return -EINVAL;
28c8e41a
DC
3870 }
3871
3872 agno = be32_to_cpu(icl->icl_ag);
3873 if (agno >= mp->m_sb.sb_agcount) {
3874 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3875 return -EINVAL;
28c8e41a
DC
3876 }
3877 agbno = be32_to_cpu(icl->icl_agbno);
3878 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3879 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3880 return -EINVAL;
28c8e41a
DC
3881 }
3882 isize = be32_to_cpu(icl->icl_isize);
3883 if (isize != mp->m_sb.sb_inodesize) {
3884 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3885 return -EINVAL;
28c8e41a
DC
3886 }
3887 count = be32_to_cpu(icl->icl_count);
3888 if (!count) {
3889 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3890 return -EINVAL;
28c8e41a
DC
3891 }
3892 length = be32_to_cpu(icl->icl_length);
3893 if (!length || length >= mp->m_sb.sb_agblocks) {
3894 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3895 return -EINVAL;
28c8e41a
DC
3896 }
3897
7f43c907
BF
3898 /*
3899 * The inode chunk is either full or sparse and we only support
3900 * m_ialloc_min_blks sized sparse allocations at this time.
3901 */
3902 if (length != mp->m_ialloc_blks &&
3903 length != mp->m_ialloc_min_blks) {
3904 xfs_warn(log->l_mp,
3905 "%s: unsupported chunk length", __FUNCTION__);
3906 return -EINVAL;
3907 }
3908
3909 /* verify inode count is consistent with extent length */
3910 if ((count >> mp->m_sb.sb_inopblog) != length) {
3911 xfs_warn(log->l_mp,
3912 "%s: inconsistent inode count and chunk length",
3913 __FUNCTION__);
2451337d 3914 return -EINVAL;
28c8e41a
DC
3915 }
3916
3917 /*
fc0d1656
BF
3918 * The icreate transaction can cover multiple cluster buffers and these
3919 * buffers could have been freed and reused. Check the individual
3920 * buffers for cancellation so we don't overwrite anything written after
3921 * a cancellation.
3922 */
3923 blks_per_cluster = xfs_icluster_size_fsb(mp);
3924 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3925 nbufs = length / blks_per_cluster;
3926 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3927 xfs_daddr_t daddr;
3928
3929 daddr = XFS_AGB_TO_DADDR(mp, agno,
3930 agbno + i * blks_per_cluster);
3931 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3932 cancel_count++;
3933 }
3934
3935 /*
3936 * We currently only use icreate for a single allocation at a time. This
3937 * means we should expect either all or none of the buffers to be
3938 * cancelled. Be conservative and skip replay if at least one buffer is
3939 * cancelled, but warn the user that something is awry if the buffers
3940 * are not consistent.
28c8e41a 3941 *
fc0d1656
BF
3942 * XXX: This must be refined to only skip cancelled clusters once we use
3943 * icreate for multiple chunk allocations.
28c8e41a 3944 */
fc0d1656
BF
3945 ASSERT(!cancel_count || cancel_count == nbufs);
3946 if (cancel_count) {
3947 if (cancel_count != nbufs)
3948 xfs_warn(mp,
3949 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3950 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3951 return 0;
78d57e45 3952 }
28c8e41a 3953
78d57e45 3954 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3955 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3956 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3957}
3958
00574da1
ZYW
3959STATIC void
3960xlog_recover_buffer_ra_pass2(
3961 struct xlog *log,
3962 struct xlog_recover_item *item)
3963{
3964 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3965 struct xfs_mount *mp = log->l_mp;
3966
84a5b730 3967 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3968 buf_f->blf_len, buf_f->blf_flags)) {
3969 return;
3970 }
3971
3972 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3973 buf_f->blf_len, NULL);
3974}
3975
3976STATIC void
3977xlog_recover_inode_ra_pass2(
3978 struct xlog *log,
3979 struct xlog_recover_item *item)
3980{
3981 struct xfs_inode_log_format ilf_buf;
3982 struct xfs_inode_log_format *ilfp;
3983 struct xfs_mount *mp = log->l_mp;
3984 int error;
3985
3986 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3987 ilfp = item->ri_buf[0].i_addr;
3988 } else {
3989 ilfp = &ilf_buf;
3990 memset(ilfp, 0, sizeof(*ilfp));
3991 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3992 if (error)
3993 return;
3994 }
3995
84a5b730 3996 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3997 return;
3998
3999 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 4000 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
4001}
4002
4003STATIC void
4004xlog_recover_dquot_ra_pass2(
4005 struct xlog *log,
4006 struct xlog_recover_item *item)
4007{
4008 struct xfs_mount *mp = log->l_mp;
4009 struct xfs_disk_dquot *recddq;
4010 struct xfs_dq_logformat *dq_f;
4011 uint type;
7d6a13f0 4012 int len;
00574da1
ZYW
4013
4014
4015 if (mp->m_qflags == 0)
4016 return;
4017
4018 recddq = item->ri_buf[1].i_addr;
4019 if (recddq == NULL)
4020 return;
4021 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4022 return;
4023
4024 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4025 ASSERT(type);
4026 if (log->l_quotaoffs_flag & type)
4027 return;
4028
4029 dq_f = item->ri_buf[0].i_addr;
4030 ASSERT(dq_f);
4031 ASSERT(dq_f->qlf_len == 1);
4032
7d6a13f0
DC
4033 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4034 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4035 return;
4036
4037 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4038 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
4039}
4040
4041STATIC void
4042xlog_recover_ra_pass2(
4043 struct xlog *log,
4044 struct xlog_recover_item *item)
4045{
4046 switch (ITEM_TYPE(item)) {
4047 case XFS_LI_BUF:
4048 xlog_recover_buffer_ra_pass2(log, item);
4049 break;
4050 case XFS_LI_INODE:
4051 xlog_recover_inode_ra_pass2(log, item);
4052 break;
4053 case XFS_LI_DQUOT:
4054 xlog_recover_dquot_ra_pass2(log, item);
4055 break;
4056 case XFS_LI_EFI:
4057 case XFS_LI_EFD:
4058 case XFS_LI_QUOTAOFF:
9e88b5d8
DW
4059 case XFS_LI_RUI:
4060 case XFS_LI_RUD:
f997ee21
DW
4061 case XFS_LI_CUI:
4062 case XFS_LI_CUD:
77d61fe4
DW
4063 case XFS_LI_BUI:
4064 case XFS_LI_BUD:
00574da1
ZYW
4065 default:
4066 break;
4067 }
4068}
4069
d0450948 4070STATIC int
c9f71f5f 4071xlog_recover_commit_pass1(
ad223e60
MT
4072 struct xlog *log,
4073 struct xlog_recover *trans,
4074 struct xlog_recover_item *item)
d0450948 4075{
c9f71f5f 4076 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
4077
4078 switch (ITEM_TYPE(item)) {
4079 case XFS_LI_BUF:
c9f71f5f
CH
4080 return xlog_recover_buffer_pass1(log, item);
4081 case XFS_LI_QUOTAOFF:
4082 return xlog_recover_quotaoff_pass1(log, item);
d0450948 4083 case XFS_LI_INODE:
d0450948 4084 case XFS_LI_EFI:
d0450948 4085 case XFS_LI_EFD:
c9f71f5f 4086 case XFS_LI_DQUOT:
28c8e41a 4087 case XFS_LI_ICREATE:
9e88b5d8
DW
4088 case XFS_LI_RUI:
4089 case XFS_LI_RUD:
f997ee21
DW
4090 case XFS_LI_CUI:
4091 case XFS_LI_CUD:
77d61fe4
DW
4092 case XFS_LI_BUI:
4093 case XFS_LI_BUD:
c9f71f5f 4094 /* nothing to do in pass 1 */
d0450948 4095 return 0;
c9f71f5f 4096 default:
a0fa2b67
DC
4097 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4098 __func__, ITEM_TYPE(item));
c9f71f5f 4099 ASSERT(0);
2451337d 4100 return -EIO;
c9f71f5f
CH
4101 }
4102}
4103
4104STATIC int
4105xlog_recover_commit_pass2(
ad223e60
MT
4106 struct xlog *log,
4107 struct xlog_recover *trans,
4108 struct list_head *buffer_list,
4109 struct xlog_recover_item *item)
c9f71f5f
CH
4110{
4111 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4112
4113 switch (ITEM_TYPE(item)) {
4114 case XFS_LI_BUF:
50d5c8d8
DC
4115 return xlog_recover_buffer_pass2(log, buffer_list, item,
4116 trans->r_lsn);
c9f71f5f 4117 case XFS_LI_INODE:
50d5c8d8
DC
4118 return xlog_recover_inode_pass2(log, buffer_list, item,
4119 trans->r_lsn);
c9f71f5f
CH
4120 case XFS_LI_EFI:
4121 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4122 case XFS_LI_EFD:
4123 return xlog_recover_efd_pass2(log, item);
9e88b5d8
DW
4124 case XFS_LI_RUI:
4125 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4126 case XFS_LI_RUD:
4127 return xlog_recover_rud_pass2(log, item);
f997ee21
DW
4128 case XFS_LI_CUI:
4129 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4130 case XFS_LI_CUD:
4131 return xlog_recover_cud_pass2(log, item);
77d61fe4
DW
4132 case XFS_LI_BUI:
4133 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4134 case XFS_LI_BUD:
4135 return xlog_recover_bud_pass2(log, item);
d0450948 4136 case XFS_LI_DQUOT:
50d5c8d8
DC
4137 return xlog_recover_dquot_pass2(log, buffer_list, item,
4138 trans->r_lsn);
28c8e41a
DC
4139 case XFS_LI_ICREATE:
4140 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 4141 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
4142 /* nothing to do in pass2 */
4143 return 0;
d0450948 4144 default:
a0fa2b67
DC
4145 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4146 __func__, ITEM_TYPE(item));
d0450948 4147 ASSERT(0);
2451337d 4148 return -EIO;
d0450948
CH
4149 }
4150}
4151
00574da1
ZYW
4152STATIC int
4153xlog_recover_items_pass2(
4154 struct xlog *log,
4155 struct xlog_recover *trans,
4156 struct list_head *buffer_list,
4157 struct list_head *item_list)
4158{
4159 struct xlog_recover_item *item;
4160 int error = 0;
4161
4162 list_for_each_entry(item, item_list, ri_list) {
4163 error = xlog_recover_commit_pass2(log, trans,
4164 buffer_list, item);
4165 if (error)
4166 return error;
4167 }
4168
4169 return error;
4170}
4171
d0450948
CH
4172/*
4173 * Perform the transaction.
4174 *
4175 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4176 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4177 */
1da177e4
LT
4178STATIC int
4179xlog_recover_commit_trans(
ad223e60 4180 struct xlog *log,
d0450948 4181 struct xlog_recover *trans,
12818d24
BF
4182 int pass,
4183 struct list_head *buffer_list)
1da177e4 4184{
00574da1 4185 int error = 0;
00574da1
ZYW
4186 int items_queued = 0;
4187 struct xlog_recover_item *item;
4188 struct xlog_recover_item *next;
00574da1
ZYW
4189 LIST_HEAD (ra_list);
4190 LIST_HEAD (done_list);
4191
4192 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 4193
39775431 4194 hlist_del_init(&trans->r_list);
d0450948
CH
4195
4196 error = xlog_recover_reorder_trans(log, trans, pass);
4197 if (error)
1da177e4 4198 return error;
d0450948 4199
00574da1 4200 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
4201 switch (pass) {
4202 case XLOG_RECOVER_PASS1:
c9f71f5f 4203 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
4204 break;
4205 case XLOG_RECOVER_PASS2:
00574da1
ZYW
4206 xlog_recover_ra_pass2(log, item);
4207 list_move_tail(&item->ri_list, &ra_list);
4208 items_queued++;
4209 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4210 error = xlog_recover_items_pass2(log, trans,
12818d24 4211 buffer_list, &ra_list);
00574da1
ZYW
4212 list_splice_tail_init(&ra_list, &done_list);
4213 items_queued = 0;
4214 }
4215
43ff2122
CH
4216 break;
4217 default:
4218 ASSERT(0);
4219 }
4220
d0450948 4221 if (error)
43ff2122 4222 goto out;
d0450948
CH
4223 }
4224
00574da1
ZYW
4225out:
4226 if (!list_empty(&ra_list)) {
4227 if (!error)
4228 error = xlog_recover_items_pass2(log, trans,
12818d24 4229 buffer_list, &ra_list);
00574da1
ZYW
4230 list_splice_tail_init(&ra_list, &done_list);
4231 }
4232
4233 if (!list_empty(&done_list))
4234 list_splice_init(&done_list, &trans->r_itemq);
4235
12818d24 4236 return error;
1da177e4
LT
4237}
4238
76560669
DC
4239STATIC void
4240xlog_recover_add_item(
4241 struct list_head *head)
4242{
4243 xlog_recover_item_t *item;
4244
4245 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4246 INIT_LIST_HEAD(&item->ri_list);
4247 list_add_tail(&item->ri_list, head);
4248}
4249
1da177e4 4250STATIC int
76560669
DC
4251xlog_recover_add_to_cont_trans(
4252 struct xlog *log,
4253 struct xlog_recover *trans,
b2a922cd 4254 char *dp,
76560669 4255 int len)
1da177e4 4256{
76560669 4257 xlog_recover_item_t *item;
b2a922cd 4258 char *ptr, *old_ptr;
76560669
DC
4259 int old_len;
4260
89cebc84
BF
4261 /*
4262 * If the transaction is empty, the header was split across this and the
4263 * previous record. Copy the rest of the header.
4264 */
76560669 4265 if (list_empty(&trans->r_itemq)) {
848ccfc8 4266 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
4267 if (len > sizeof(struct xfs_trans_header)) {
4268 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4269 return -EIO;
4270 }
4271
76560669 4272 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 4273 ptr = (char *)&trans->r_theader +
89cebc84 4274 sizeof(struct xfs_trans_header) - len;
76560669
DC
4275 memcpy(ptr, dp, len);
4276 return 0;
4277 }
89cebc84 4278
76560669
DC
4279 /* take the tail entry */
4280 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4281
4282 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4283 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4284
664b60f6 4285 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
76560669
DC
4286 memcpy(&ptr[old_len], dp, len);
4287 item->ri_buf[item->ri_cnt-1].i_len += len;
4288 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4289 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
4290 return 0;
4291}
4292
76560669
DC
4293/*
4294 * The next region to add is the start of a new region. It could be
4295 * a whole region or it could be the first part of a new region. Because
4296 * of this, the assumption here is that the type and size fields of all
4297 * format structures fit into the first 32 bits of the structure.
4298 *
4299 * This works because all regions must be 32 bit aligned. Therefore, we
4300 * either have both fields or we have neither field. In the case we have
4301 * neither field, the data part of the region is zero length. We only have
4302 * a log_op_header and can throw away the header since a new one will appear
4303 * later. If we have at least 4 bytes, then we can determine how many regions
4304 * will appear in the current log item.
4305 */
4306STATIC int
4307xlog_recover_add_to_trans(
4308 struct xlog *log,
4309 struct xlog_recover *trans,
b2a922cd 4310 char *dp,
76560669
DC
4311 int len)
4312{
06b11321 4313 struct xfs_inode_log_format *in_f; /* any will do */
76560669 4314 xlog_recover_item_t *item;
b2a922cd 4315 char *ptr;
76560669
DC
4316
4317 if (!len)
4318 return 0;
4319 if (list_empty(&trans->r_itemq)) {
4320 /* we need to catch log corruptions here */
4321 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4322 xfs_warn(log->l_mp, "%s: bad header magic number",
4323 __func__);
4324 ASSERT(0);
4325 return -EIO;
4326 }
89cebc84
BF
4327
4328 if (len > sizeof(struct xfs_trans_header)) {
4329 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4330 ASSERT(0);
4331 return -EIO;
4332 }
4333
4334 /*
4335 * The transaction header can be arbitrarily split across op
4336 * records. If we don't have the whole thing here, copy what we
4337 * do have and handle the rest in the next record.
4338 */
4339 if (len == sizeof(struct xfs_trans_header))
76560669
DC
4340 xlog_recover_add_item(&trans->r_itemq);
4341 memcpy(&trans->r_theader, dp, len);
4342 return 0;
4343 }
4344
4345 ptr = kmem_alloc(len, KM_SLEEP);
4346 memcpy(ptr, dp, len);
06b11321 4347 in_f = (struct xfs_inode_log_format *)ptr;
76560669
DC
4348
4349 /* take the tail entry */
4350 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4351 if (item->ri_total != 0 &&
4352 item->ri_total == item->ri_cnt) {
4353 /* tail item is in use, get a new one */
4354 xlog_recover_add_item(&trans->r_itemq);
4355 item = list_entry(trans->r_itemq.prev,
4356 xlog_recover_item_t, ri_list);
4357 }
4358
4359 if (item->ri_total == 0) { /* first region to be added */
4360 if (in_f->ilf_size == 0 ||
4361 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4362 xfs_warn(log->l_mp,
4363 "bad number of regions (%d) in inode log format",
4364 in_f->ilf_size);
4365 ASSERT(0);
4366 kmem_free(ptr);
4367 return -EIO;
4368 }
4369
4370 item->ri_total = in_f->ilf_size;
4371 item->ri_buf =
4372 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4373 KM_SLEEP);
4374 }
4375 ASSERT(item->ri_total > item->ri_cnt);
4376 /* Description region is ri_buf[0] */
4377 item->ri_buf[item->ri_cnt].i_addr = ptr;
4378 item->ri_buf[item->ri_cnt].i_len = len;
4379 item->ri_cnt++;
4380 trace_xfs_log_recover_item_add(log, trans, item, 0);
4381 return 0;
4382}
b818cca1 4383
76560669
DC
4384/*
4385 * Free up any resources allocated by the transaction
4386 *
4387 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4388 */
4389STATIC void
4390xlog_recover_free_trans(
4391 struct xlog_recover *trans)
4392{
4393 xlog_recover_item_t *item, *n;
4394 int i;
4395
39775431
BF
4396 hlist_del_init(&trans->r_list);
4397
76560669
DC
4398 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4399 /* Free the regions in the item. */
4400 list_del(&item->ri_list);
4401 for (i = 0; i < item->ri_cnt; i++)
4402 kmem_free(item->ri_buf[i].i_addr);
4403 /* Free the item itself */
4404 kmem_free(item->ri_buf);
4405 kmem_free(item);
4406 }
4407 /* Free the transaction recover structure */
4408 kmem_free(trans);
4409}
4410
e9131e50
DC
4411/*
4412 * On error or completion, trans is freed.
4413 */
1da177e4 4414STATIC int
eeb11688
DC
4415xlog_recovery_process_trans(
4416 struct xlog *log,
4417 struct xlog_recover *trans,
b2a922cd 4418 char *dp,
eeb11688
DC
4419 unsigned int len,
4420 unsigned int flags,
12818d24
BF
4421 int pass,
4422 struct list_head *buffer_list)
1da177e4 4423{
e9131e50
DC
4424 int error = 0;
4425 bool freeit = false;
eeb11688
DC
4426
4427 /* mask off ophdr transaction container flags */
4428 flags &= ~XLOG_END_TRANS;
4429 if (flags & XLOG_WAS_CONT_TRANS)
4430 flags &= ~XLOG_CONTINUE_TRANS;
4431
88b863db
DC
4432 /*
4433 * Callees must not free the trans structure. We'll decide if we need to
4434 * free it or not based on the operation being done and it's result.
4435 */
eeb11688
DC
4436 switch (flags) {
4437 /* expected flag values */
4438 case 0:
4439 case XLOG_CONTINUE_TRANS:
4440 error = xlog_recover_add_to_trans(log, trans, dp, len);
4441 break;
4442 case XLOG_WAS_CONT_TRANS:
4443 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4444 break;
4445 case XLOG_COMMIT_TRANS:
12818d24
BF
4446 error = xlog_recover_commit_trans(log, trans, pass,
4447 buffer_list);
88b863db
DC
4448 /* success or fail, we are now done with this transaction. */
4449 freeit = true;
eeb11688
DC
4450 break;
4451
4452 /* unexpected flag values */
4453 case XLOG_UNMOUNT_TRANS:
e9131e50 4454 /* just skip trans */
eeb11688 4455 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 4456 freeit = true;
eeb11688
DC
4457 break;
4458 case XLOG_START_TRANS:
eeb11688
DC
4459 default:
4460 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4461 ASSERT(0);
e9131e50 4462 error = -EIO;
eeb11688
DC
4463 break;
4464 }
e9131e50
DC
4465 if (error || freeit)
4466 xlog_recover_free_trans(trans);
eeb11688
DC
4467 return error;
4468}
4469
b818cca1
DC
4470/*
4471 * Lookup the transaction recovery structure associated with the ID in the
4472 * current ophdr. If the transaction doesn't exist and the start flag is set in
4473 * the ophdr, then allocate a new transaction for future ID matches to find.
4474 * Either way, return what we found during the lookup - an existing transaction
4475 * or nothing.
4476 */
eeb11688
DC
4477STATIC struct xlog_recover *
4478xlog_recover_ophdr_to_trans(
4479 struct hlist_head rhash[],
4480 struct xlog_rec_header *rhead,
4481 struct xlog_op_header *ohead)
4482{
4483 struct xlog_recover *trans;
4484 xlog_tid_t tid;
4485 struct hlist_head *rhp;
4486
4487 tid = be32_to_cpu(ohead->oh_tid);
4488 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4489 hlist_for_each_entry(trans, rhp, r_list) {
4490 if (trans->r_log_tid == tid)
4491 return trans;
4492 }
eeb11688
DC
4493
4494 /*
b818cca1
DC
4495 * skip over non-start transaction headers - we could be
4496 * processing slack space before the next transaction starts
4497 */
4498 if (!(ohead->oh_flags & XLOG_START_TRANS))
4499 return NULL;
4500
4501 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4502
4503 /*
4504 * This is a new transaction so allocate a new recovery container to
4505 * hold the recovery ops that will follow.
4506 */
4507 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4508 trans->r_log_tid = tid;
4509 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4510 INIT_LIST_HEAD(&trans->r_itemq);
4511 INIT_HLIST_NODE(&trans->r_list);
4512 hlist_add_head(&trans->r_list, rhp);
4513
4514 /*
4515 * Nothing more to do for this ophdr. Items to be added to this new
4516 * transaction will be in subsequent ophdr containers.
eeb11688 4517 */
eeb11688
DC
4518 return NULL;
4519}
4520
4521STATIC int
4522xlog_recover_process_ophdr(
4523 struct xlog *log,
4524 struct hlist_head rhash[],
4525 struct xlog_rec_header *rhead,
4526 struct xlog_op_header *ohead,
b2a922cd
CH
4527 char *dp,
4528 char *end,
12818d24
BF
4529 int pass,
4530 struct list_head *buffer_list)
eeb11688
DC
4531{
4532 struct xlog_recover *trans;
eeb11688 4533 unsigned int len;
12818d24 4534 int error;
eeb11688
DC
4535
4536 /* Do we understand who wrote this op? */
4537 if (ohead->oh_clientid != XFS_TRANSACTION &&
4538 ohead->oh_clientid != XFS_LOG) {
4539 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4540 __func__, ohead->oh_clientid);
4541 ASSERT(0);
4542 return -EIO;
4543 }
4544
4545 /*
4546 * Check the ophdr contains all the data it is supposed to contain.
4547 */
4548 len = be32_to_cpu(ohead->oh_len);
4549 if (dp + len > end) {
4550 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4551 WARN_ON(1);
4552 return -EIO;
4553 }
4554
4555 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4556 if (!trans) {
4557 /* nothing to do, so skip over this ophdr */
4558 return 0;
4559 }
4560
12818d24
BF
4561 /*
4562 * The recovered buffer queue is drained only once we know that all
4563 * recovery items for the current LSN have been processed. This is
4564 * required because:
4565 *
4566 * - Buffer write submission updates the metadata LSN of the buffer.
4567 * - Log recovery skips items with a metadata LSN >= the current LSN of
4568 * the recovery item.
4569 * - Separate recovery items against the same metadata buffer can share
4570 * a current LSN. I.e., consider that the LSN of a recovery item is
4571 * defined as the starting LSN of the first record in which its
4572 * transaction appears, that a record can hold multiple transactions,
4573 * and/or that a transaction can span multiple records.
4574 *
4575 * In other words, we are allowed to submit a buffer from log recovery
4576 * once per current LSN. Otherwise, we may incorrectly skip recovery
4577 * items and cause corruption.
4578 *
4579 * We don't know up front whether buffers are updated multiple times per
4580 * LSN. Therefore, track the current LSN of each commit log record as it
4581 * is processed and drain the queue when it changes. Use commit records
4582 * because they are ordered correctly by the logging code.
4583 */
4584 if (log->l_recovery_lsn != trans->r_lsn &&
4585 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4586 error = xfs_buf_delwri_submit(buffer_list);
4587 if (error)
4588 return error;
4589 log->l_recovery_lsn = trans->r_lsn;
4590 }
4591
e9131e50 4592 return xlog_recovery_process_trans(log, trans, dp, len,
12818d24 4593 ohead->oh_flags, pass, buffer_list);
1da177e4
LT
4594}
4595
4596/*
4597 * There are two valid states of the r_state field. 0 indicates that the
4598 * transaction structure is in a normal state. We have either seen the
4599 * start of the transaction or the last operation we added was not a partial
4600 * operation. If the last operation we added to the transaction was a
4601 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4602 *
4603 * NOTE: skip LRs with 0 data length.
4604 */
4605STATIC int
4606xlog_recover_process_data(
9a8d2fdb 4607 struct xlog *log,
f0a76953 4608 struct hlist_head rhash[],
9a8d2fdb 4609 struct xlog_rec_header *rhead,
b2a922cd 4610 char *dp,
12818d24
BF
4611 int pass,
4612 struct list_head *buffer_list)
1da177e4 4613{
eeb11688 4614 struct xlog_op_header *ohead;
b2a922cd 4615 char *end;
1da177e4 4616 int num_logops;
1da177e4 4617 int error;
1da177e4 4618
eeb11688 4619 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4620 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4621
4622 /* check the log format matches our own - else we can't recover */
4623 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4624 return -EIO;
1da177e4 4625
5cd9cee9 4626 trace_xfs_log_recover_record(log, rhead, pass);
eeb11688
DC
4627 while ((dp < end) && num_logops) {
4628
4629 ohead = (struct xlog_op_header *)dp;
4630 dp += sizeof(*ohead);
4631 ASSERT(dp <= end);
4632
4633 /* errors will abort recovery */
4634 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
12818d24 4635 dp, end, pass, buffer_list);
eeb11688
DC
4636 if (error)
4637 return error;
4638
67fcb7bf 4639 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4640 num_logops--;
4641 }
4642 return 0;
4643}
4644
dc42375d 4645/* Recover the EFI if necessary. */
3c1e2bbe 4646STATIC int
1da177e4 4647xlog_recover_process_efi(
dc42375d
DW
4648 struct xfs_mount *mp,
4649 struct xfs_ail *ailp,
4650 struct xfs_log_item *lip)
1da177e4 4651{
dc42375d
DW
4652 struct xfs_efi_log_item *efip;
4653 int error;
1da177e4
LT
4654
4655 /*
dc42375d 4656 * Skip EFIs that we've already processed.
1da177e4 4657 */
dc42375d
DW
4658 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4659 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4660 return 0;
1da177e4 4661
dc42375d
DW
4662 spin_unlock(&ailp->xa_lock);
4663 error = xfs_efi_recover(mp, efip);
4664 spin_lock(&ailp->xa_lock);
1da177e4 4665
dc42375d
DW
4666 return error;
4667}
6bc43af3 4668
dc42375d
DW
4669/* Release the EFI since we're cancelling everything. */
4670STATIC void
4671xlog_recover_cancel_efi(
4672 struct xfs_mount *mp,
4673 struct xfs_ail *ailp,
4674 struct xfs_log_item *lip)
4675{
4676 struct xfs_efi_log_item *efip;
1da177e4 4677
dc42375d 4678 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
fc6149d8 4679
dc42375d
DW
4680 spin_unlock(&ailp->xa_lock);
4681 xfs_efi_release(efip);
4682 spin_lock(&ailp->xa_lock);
4683}
4684
9e88b5d8
DW
4685/* Recover the RUI if necessary. */
4686STATIC int
4687xlog_recover_process_rui(
4688 struct xfs_mount *mp,
4689 struct xfs_ail *ailp,
4690 struct xfs_log_item *lip)
4691{
4692 struct xfs_rui_log_item *ruip;
4693 int error;
4694
4695 /*
4696 * Skip RUIs that we've already processed.
4697 */
4698 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4699 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4700 return 0;
4701
4702 spin_unlock(&ailp->xa_lock);
4703 error = xfs_rui_recover(mp, ruip);
4704 spin_lock(&ailp->xa_lock);
4705
4706 return error;
4707}
4708
4709/* Release the RUI since we're cancelling everything. */
4710STATIC void
4711xlog_recover_cancel_rui(
4712 struct xfs_mount *mp,
4713 struct xfs_ail *ailp,
4714 struct xfs_log_item *lip)
4715{
4716 struct xfs_rui_log_item *ruip;
4717
4718 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4719
4720 spin_unlock(&ailp->xa_lock);
4721 xfs_rui_release(ruip);
4722 spin_lock(&ailp->xa_lock);
4723}
4724
f997ee21
DW
4725/* Recover the CUI if necessary. */
4726STATIC int
4727xlog_recover_process_cui(
4728 struct xfs_mount *mp,
4729 struct xfs_ail *ailp,
50995582
DW
4730 struct xfs_log_item *lip,
4731 struct xfs_defer_ops *dfops)
f997ee21
DW
4732{
4733 struct xfs_cui_log_item *cuip;
4734 int error;
4735
4736 /*
4737 * Skip CUIs that we've already processed.
4738 */
4739 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4740 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4741 return 0;
4742
4743 spin_unlock(&ailp->xa_lock);
50995582 4744 error = xfs_cui_recover(mp, cuip, dfops);
f997ee21
DW
4745 spin_lock(&ailp->xa_lock);
4746
4747 return error;
4748}
4749
4750/* Release the CUI since we're cancelling everything. */
4751STATIC void
4752xlog_recover_cancel_cui(
4753 struct xfs_mount *mp,
4754 struct xfs_ail *ailp,
4755 struct xfs_log_item *lip)
4756{
4757 struct xfs_cui_log_item *cuip;
4758
4759 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4760
4761 spin_unlock(&ailp->xa_lock);
4762 xfs_cui_release(cuip);
4763 spin_lock(&ailp->xa_lock);
4764}
4765
77d61fe4
DW
4766/* Recover the BUI if necessary. */
4767STATIC int
4768xlog_recover_process_bui(
4769 struct xfs_mount *mp,
4770 struct xfs_ail *ailp,
50995582
DW
4771 struct xfs_log_item *lip,
4772 struct xfs_defer_ops *dfops)
77d61fe4
DW
4773{
4774 struct xfs_bui_log_item *buip;
4775 int error;
4776
4777 /*
4778 * Skip BUIs that we've already processed.
4779 */
4780 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4781 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4782 return 0;
4783
4784 spin_unlock(&ailp->xa_lock);
50995582 4785 error = xfs_bui_recover(mp, buip, dfops);
77d61fe4
DW
4786 spin_lock(&ailp->xa_lock);
4787
4788 return error;
4789}
4790
4791/* Release the BUI since we're cancelling everything. */
4792STATIC void
4793xlog_recover_cancel_bui(
4794 struct xfs_mount *mp,
4795 struct xfs_ail *ailp,
4796 struct xfs_log_item *lip)
4797{
4798 struct xfs_bui_log_item *buip;
4799
4800 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4801
4802 spin_unlock(&ailp->xa_lock);
4803 xfs_bui_release(buip);
4804 spin_lock(&ailp->xa_lock);
4805}
4806
dc42375d
DW
4807/* Is this log item a deferred action intent? */
4808static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4809{
4810 switch (lip->li_type) {
4811 case XFS_LI_EFI:
9e88b5d8 4812 case XFS_LI_RUI:
f997ee21 4813 case XFS_LI_CUI:
77d61fe4 4814 case XFS_LI_BUI:
dc42375d
DW
4815 return true;
4816 default:
4817 return false;
4818 }
1da177e4
LT
4819}
4820
50995582
DW
4821/* Take all the collected deferred ops and finish them in order. */
4822static int
4823xlog_finish_defer_ops(
4824 struct xfs_mount *mp,
4825 struct xfs_defer_ops *dfops)
4826{
4827 struct xfs_trans *tp;
4828 int64_t freeblks;
4829 uint resblks;
4830 int error;
4831
4832 /*
4833 * We're finishing the defer_ops that accumulated as a result of
4834 * recovering unfinished intent items during log recovery. We
4835 * reserve an itruncate transaction because it is the largest
4836 * permanent transaction type. Since we're the only user of the fs
4837 * right now, take 93% (15/16) of the available free blocks. Use
4838 * weird math to avoid a 64-bit division.
4839 */
4840 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4841 if (freeblks <= 0)
4842 return -ENOSPC;
4843 resblks = min_t(int64_t, UINT_MAX, freeblks);
4844 resblks = (resblks * 15) >> 4;
4845 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4846 0, XFS_TRANS_RESERVE, &tp);
4847 if (error)
4848 return error;
4849
4850 error = xfs_defer_finish(&tp, dfops);
4851 if (error)
4852 goto out_cancel;
4853
4854 return xfs_trans_commit(tp);
4855
4856out_cancel:
4857 xfs_trans_cancel(tp);
4858 return error;
4859}
4860
1da177e4 4861/*
dc42375d
DW
4862 * When this is called, all of the log intent items which did not have
4863 * corresponding log done items should be in the AIL. What we do now
4864 * is update the data structures associated with each one.
1da177e4 4865 *
dc42375d
DW
4866 * Since we process the log intent items in normal transactions, they
4867 * will be removed at some point after the commit. This prevents us
4868 * from just walking down the list processing each one. We'll use a
4869 * flag in the intent item to skip those that we've already processed
4870 * and use the AIL iteration mechanism's generation count to try to
4871 * speed this up at least a bit.
1da177e4 4872 *
dc42375d
DW
4873 * When we start, we know that the intents are the only things in the
4874 * AIL. As we process them, however, other items are added to the
4875 * AIL.
1da177e4 4876 */
3c1e2bbe 4877STATIC int
dc42375d 4878xlog_recover_process_intents(
f0b2efad 4879 struct xlog *log)
1da177e4 4880{
50995582 4881 struct xfs_defer_ops dfops;
27d8d5fe 4882 struct xfs_ail_cursor cur;
50995582 4883 struct xfs_log_item *lip;
a9c21c1b 4884 struct xfs_ail *ailp;
50995582
DW
4885 xfs_fsblock_t firstfsb;
4886 int error = 0;
7bf7a193 4887#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4888 xfs_lsn_t last_lsn;
7bf7a193 4889#endif
1da177e4 4890
a9c21c1b
DC
4891 ailp = log->l_ailp;
4892 spin_lock(&ailp->xa_lock);
4893 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
7bf7a193 4894#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4895 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
7bf7a193 4896#endif
50995582 4897 xfs_defer_init(&dfops, &firstfsb);
1da177e4
LT
4898 while (lip != NULL) {
4899 /*
dc42375d
DW
4900 * We're done when we see something other than an intent.
4901 * There should be no intents left in the AIL now.
1da177e4 4902 */
dc42375d 4903 if (!xlog_item_is_intent(lip)) {
27d8d5fe 4904#ifdef DEBUG
a9c21c1b 4905 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4906 ASSERT(!xlog_item_is_intent(lip));
27d8d5fe 4907#endif
1da177e4
LT
4908 break;
4909 }
4910
4911 /*
dc42375d
DW
4912 * We should never see a redo item with a LSN higher than
4913 * the last transaction we found in the log at the start
4914 * of recovery.
1da177e4 4915 */
dc42375d 4916 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
1da177e4 4917
50995582
DW
4918 /*
4919 * NOTE: If your intent processing routine can create more
4920 * deferred ops, you /must/ attach them to the dfops in this
4921 * routine or else those subsequent intents will get
4922 * replayed in the wrong order!
4923 */
dc42375d
DW
4924 switch (lip->li_type) {
4925 case XFS_LI_EFI:
4926 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4927 break;
9e88b5d8
DW
4928 case XFS_LI_RUI:
4929 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4930 break;
f997ee21 4931 case XFS_LI_CUI:
50995582
DW
4932 error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4933 &dfops);
f997ee21 4934 break;
77d61fe4 4935 case XFS_LI_BUI:
50995582
DW
4936 error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4937 &dfops);
77d61fe4 4938 break;
dc42375d 4939 }
27d8d5fe
DC
4940 if (error)
4941 goto out;
a9c21c1b 4942 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4943 }
27d8d5fe 4944out:
e4a1e29c 4945 xfs_trans_ail_cursor_done(&cur);
a9c21c1b 4946 spin_unlock(&ailp->xa_lock);
50995582
DW
4947 if (error)
4948 xfs_defer_cancel(&dfops);
4949 else
4950 error = xlog_finish_defer_ops(log->l_mp, &dfops);
4951
3c1e2bbe 4952 return error;
1da177e4
LT
4953}
4954
f0b2efad 4955/*
dc42375d
DW
4956 * A cancel occurs when the mount has failed and we're bailing out.
4957 * Release all pending log intent items so they don't pin the AIL.
f0b2efad
BF
4958 */
4959STATIC int
dc42375d 4960xlog_recover_cancel_intents(
f0b2efad
BF
4961 struct xlog *log)
4962{
4963 struct xfs_log_item *lip;
f0b2efad
BF
4964 int error = 0;
4965 struct xfs_ail_cursor cur;
4966 struct xfs_ail *ailp;
4967
4968 ailp = log->l_ailp;
4969 spin_lock(&ailp->xa_lock);
4970 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4971 while (lip != NULL) {
4972 /*
dc42375d
DW
4973 * We're done when we see something other than an intent.
4974 * There should be no intents left in the AIL now.
f0b2efad 4975 */
dc42375d 4976 if (!xlog_item_is_intent(lip)) {
f0b2efad
BF
4977#ifdef DEBUG
4978 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4979 ASSERT(!xlog_item_is_intent(lip));
f0b2efad
BF
4980#endif
4981 break;
4982 }
4983
dc42375d
DW
4984 switch (lip->li_type) {
4985 case XFS_LI_EFI:
4986 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4987 break;
9e88b5d8
DW
4988 case XFS_LI_RUI:
4989 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4990 break;
f997ee21
DW
4991 case XFS_LI_CUI:
4992 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
4993 break;
77d61fe4
DW
4994 case XFS_LI_BUI:
4995 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
4996 break;
dc42375d 4997 }
f0b2efad
BF
4998
4999 lip = xfs_trans_ail_cursor_next(ailp, &cur);
5000 }
5001
5002 xfs_trans_ail_cursor_done(&cur);
5003 spin_unlock(&ailp->xa_lock);
5004 return error;
5005}
5006
1da177e4
LT
5007/*
5008 * This routine performs a transaction to null out a bad inode pointer
5009 * in an agi unlinked inode hash bucket.
5010 */
5011STATIC void
5012xlog_recover_clear_agi_bucket(
5013 xfs_mount_t *mp,
5014 xfs_agnumber_t agno,
5015 int bucket)
5016{
5017 xfs_trans_t *tp;
5018 xfs_agi_t *agi;
5019 xfs_buf_t *agibp;
5020 int offset;
5021 int error;
5022
253f4911 5023 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
e5720eec 5024 if (error)
253f4911 5025 goto out_error;
1da177e4 5026
5e1be0fb
CH
5027 error = xfs_read_agi(mp, tp, agno, &agibp);
5028 if (error)
e5720eec 5029 goto out_abort;
1da177e4 5030
5e1be0fb 5031 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5032 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
5033 offset = offsetof(xfs_agi_t, agi_unlinked) +
5034 (sizeof(xfs_agino_t) * bucket);
5035 xfs_trans_log_buf(tp, agibp, offset,
5036 (offset + sizeof(xfs_agino_t) - 1));
5037
70393313 5038 error = xfs_trans_commit(tp);
e5720eec
DC
5039 if (error)
5040 goto out_error;
5041 return;
5042
5043out_abort:
4906e215 5044 xfs_trans_cancel(tp);
e5720eec 5045out_error:
a0fa2b67 5046 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 5047 return;
1da177e4
LT
5048}
5049
23fac50f
CH
5050STATIC xfs_agino_t
5051xlog_recover_process_one_iunlink(
5052 struct xfs_mount *mp,
5053 xfs_agnumber_t agno,
5054 xfs_agino_t agino,
5055 int bucket)
5056{
5057 struct xfs_buf *ibp;
5058 struct xfs_dinode *dip;
5059 struct xfs_inode *ip;
5060 xfs_ino_t ino;
5061 int error;
5062
5063 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 5064 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
5065 if (error)
5066 goto fail;
5067
5068 /*
5069 * Get the on disk inode to find the next inode in the bucket.
5070 */
475ee413 5071 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 5072 if (error)
0e446673 5073 goto fail_iput;
23fac50f 5074
17c12bcd 5075 xfs_iflags_clear(ip, XFS_IRECOVERY);
54d7b5c1 5076 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 5077 ASSERT(VFS_I(ip)->i_mode != 0);
23fac50f
CH
5078
5079 /* setup for the next pass */
5080 agino = be32_to_cpu(dip->di_next_unlinked);
5081 xfs_buf_relse(ibp);
5082
5083 /*
5084 * Prevent any DMAPI event from being sent when the reference on
5085 * the inode is dropped.
5086 */
5087 ip->i_d.di_dmevmask = 0;
5088
0e446673 5089 IRELE(ip);
23fac50f
CH
5090 return agino;
5091
0e446673
CH
5092 fail_iput:
5093 IRELE(ip);
23fac50f
CH
5094 fail:
5095 /*
5096 * We can't read in the inode this bucket points to, or this inode
5097 * is messed up. Just ditch this bucket of inodes. We will lose
5098 * some inodes and space, but at least we won't hang.
5099 *
5100 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5101 * clear the inode pointer in the bucket.
5102 */
5103 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5104 return NULLAGINO;
5105}
5106
1da177e4
LT
5107/*
5108 * xlog_iunlink_recover
5109 *
5110 * This is called during recovery to process any inodes which
5111 * we unlinked but not freed when the system crashed. These
5112 * inodes will be on the lists in the AGI blocks. What we do
5113 * here is scan all the AGIs and fully truncate and free any
5114 * inodes found on the lists. Each inode is removed from the
5115 * lists when it has been fully truncated and is freed. The
5116 * freeing of the inode and its removal from the list must be
5117 * atomic.
5118 */
d96f8f89 5119STATIC void
1da177e4 5120xlog_recover_process_iunlinks(
9a8d2fdb 5121 struct xlog *log)
1da177e4
LT
5122{
5123 xfs_mount_t *mp;
5124 xfs_agnumber_t agno;
5125 xfs_agi_t *agi;
5126 xfs_buf_t *agibp;
1da177e4 5127 xfs_agino_t agino;
1da177e4
LT
5128 int bucket;
5129 int error;
5130 uint mp_dmevmask;
5131
5132 mp = log->l_mp;
5133
5134 /*
5135 * Prevent any DMAPI event from being sent while in this function.
5136 */
5137 mp_dmevmask = mp->m_dmevmask;
5138 mp->m_dmevmask = 0;
5139
5140 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5141 /*
5142 * Find the agi for this ag.
5143 */
5e1be0fb
CH
5144 error = xfs_read_agi(mp, NULL, agno, &agibp);
5145 if (error) {
5146 /*
5147 * AGI is b0rked. Don't process it.
5148 *
5149 * We should probably mark the filesystem as corrupt
5150 * after we've recovered all the ag's we can....
5151 */
5152 continue;
1da177e4 5153 }
d97d32ed
JK
5154 /*
5155 * Unlock the buffer so that it can be acquired in the normal
5156 * course of the transaction to truncate and free each inode.
5157 * Because we are not racing with anyone else here for the AGI
5158 * buffer, we don't even need to hold it locked to read the
5159 * initial unlinked bucket entries out of the buffer. We keep
5160 * buffer reference though, so that it stays pinned in memory
5161 * while we need the buffer.
5162 */
1da177e4 5163 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 5164 xfs_buf_unlock(agibp);
1da177e4
LT
5165
5166 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 5167 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 5168 while (agino != NULLAGINO) {
23fac50f
CH
5169 agino = xlog_recover_process_one_iunlink(mp,
5170 agno, agino, bucket);
1da177e4
LT
5171 }
5172 }
d97d32ed 5173 xfs_buf_rele(agibp);
1da177e4
LT
5174 }
5175
5176 mp->m_dmevmask = mp_dmevmask;
5177}
5178
0e446be4 5179STATIC int
1da177e4 5180xlog_unpack_data(
9a8d2fdb 5181 struct xlog_rec_header *rhead,
b2a922cd 5182 char *dp,
9a8d2fdb 5183 struct xlog *log)
1da177e4
LT
5184{
5185 int i, j, k;
1da177e4 5186
b53e675d 5187 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 5188 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 5189 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
5190 dp += BBSIZE;
5191 }
5192
62118709 5193 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 5194 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 5195 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
5196 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5197 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 5198 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
5199 dp += BBSIZE;
5200 }
5201 }
0e446be4
CH
5202
5203 return 0;
1da177e4
LT
5204}
5205
9d94901f 5206/*
b94fb2d1 5207 * CRC check, unpack and process a log record.
9d94901f
BF
5208 */
5209STATIC int
5210xlog_recover_process(
5211 struct xlog *log,
5212 struct hlist_head rhash[],
5213 struct xlog_rec_header *rhead,
5214 char *dp,
12818d24
BF
5215 int pass,
5216 struct list_head *buffer_list)
9d94901f
BF
5217{
5218 int error;
cae028df 5219 __le32 old_crc = rhead->h_crc;
b94fb2d1
BF
5220 __le32 crc;
5221
cae028df 5222
6528250b
BF
5223 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5224
b94fb2d1 5225 /*
6528250b
BF
5226 * Nothing else to do if this is a CRC verification pass. Just return
5227 * if this a record with a non-zero crc. Unfortunately, mkfs always
cae028df 5228 * sets old_crc to 0 so we must consider this valid even on v5 supers.
6528250b
BF
5229 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5230 * know precisely what failed.
5231 */
5232 if (pass == XLOG_RECOVER_CRCPASS) {
cae028df 5233 if (old_crc && crc != old_crc)
6528250b
BF
5234 return -EFSBADCRC;
5235 return 0;
5236 }
5237
5238 /*
5239 * We're in the normal recovery path. Issue a warning if and only if the
5240 * CRC in the header is non-zero. This is an advisory warning and the
5241 * zero CRC check prevents warnings from being emitted when upgrading
5242 * the kernel from one that does not add CRCs by default.
b94fb2d1 5243 */
cae028df
DC
5244 if (crc != old_crc) {
5245 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
b94fb2d1
BF
5246 xfs_alert(log->l_mp,
5247 "log record CRC mismatch: found 0x%x, expected 0x%x.",
cae028df 5248 le32_to_cpu(old_crc),
b94fb2d1
BF
5249 le32_to_cpu(crc));
5250 xfs_hex_dump(dp, 32);
5251 }
5252
5253 /*
5254 * If the filesystem is CRC enabled, this mismatch becomes a
5255 * fatal log corruption failure.
5256 */
5257 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5258 return -EFSCORRUPTED;
5259 }
9d94901f
BF
5260
5261 error = xlog_unpack_data(rhead, dp, log);
5262 if (error)
5263 return error;
5264
12818d24
BF
5265 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5266 buffer_list);
9d94901f
BF
5267}
5268
1da177e4
LT
5269STATIC int
5270xlog_valid_rec_header(
9a8d2fdb
MT
5271 struct xlog *log,
5272 struct xlog_rec_header *rhead,
1da177e4
LT
5273 xfs_daddr_t blkno)
5274{
5275 int hlen;
5276
69ef921b 5277 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
5278 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5279 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5280 return -EFSCORRUPTED;
1da177e4
LT
5281 }
5282 if (unlikely(
5283 (!rhead->h_version ||
b53e675d 5284 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 5285 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 5286 __func__, be32_to_cpu(rhead->h_version));
2451337d 5287 return -EIO;
1da177e4
LT
5288 }
5289
5290 /* LR body must have data or it wouldn't have been written */
b53e675d 5291 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
5292 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5293 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5294 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5295 return -EFSCORRUPTED;
1da177e4
LT
5296 }
5297 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5298 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5299 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5300 return -EFSCORRUPTED;
1da177e4
LT
5301 }
5302 return 0;
5303}
5304
5305/*
5306 * Read the log from tail to head and process the log records found.
5307 * Handle the two cases where the tail and head are in the same cycle
5308 * and where the active portion of the log wraps around the end of
5309 * the physical log separately. The pass parameter is passed through
5310 * to the routines called to process the data and is not looked at
5311 * here.
5312 */
5313STATIC int
5314xlog_do_recovery_pass(
9a8d2fdb 5315 struct xlog *log,
1da177e4
LT
5316 xfs_daddr_t head_blk,
5317 xfs_daddr_t tail_blk,
d7f37692
BF
5318 int pass,
5319 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
5320{
5321 xlog_rec_header_t *rhead;
284f1c2c 5322 xfs_daddr_t blk_no, rblk_no;
d7f37692 5323 xfs_daddr_t rhead_blk;
b2a922cd 5324 char *offset;
1da177e4 5325 xfs_buf_t *hbp, *dbp;
a70f9fe5 5326 int error = 0, h_size, h_len;
12818d24 5327 int error2 = 0;
1da177e4
LT
5328 int bblks, split_bblks;
5329 int hblks, split_hblks, wrapped_hblks;
39775431 5330 int i;
f0a76953 5331 struct hlist_head rhash[XLOG_RHASH_SIZE];
12818d24 5332 LIST_HEAD (buffer_list);
1da177e4
LT
5333
5334 ASSERT(head_blk != tail_blk);
a4c9b34d 5335 blk_no = rhead_blk = tail_blk;
1da177e4 5336
39775431
BF
5337 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5338 INIT_HLIST_HEAD(&rhash[i]);
5339
1da177e4
LT
5340 /*
5341 * Read the header of the tail block and get the iclog buffer size from
5342 * h_size. Use this to tell how many sectors make up the log header.
5343 */
62118709 5344 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
5345 /*
5346 * When using variable length iclogs, read first sector of
5347 * iclog header and extract the header size from it. Get a
5348 * new hbp that is the correct size.
5349 */
5350 hbp = xlog_get_bp(log, 1);
5351 if (!hbp)
2451337d 5352 return -ENOMEM;
076e6acb
CH
5353
5354 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5355 if (error)
1da177e4 5356 goto bread_err1;
076e6acb 5357
1da177e4
LT
5358 rhead = (xlog_rec_header_t *)offset;
5359 error = xlog_valid_rec_header(log, rhead, tail_blk);
5360 if (error)
5361 goto bread_err1;
a70f9fe5
BF
5362
5363 /*
5364 * xfsprogs has a bug where record length is based on lsunit but
5365 * h_size (iclog size) is hardcoded to 32k. Now that we
5366 * unconditionally CRC verify the unmount record, this means the
5367 * log buffer can be too small for the record and cause an
5368 * overrun.
5369 *
5370 * Detect this condition here. Use lsunit for the buffer size as
5371 * long as this looks like the mkfs case. Otherwise, return an
5372 * error to avoid a buffer overrun.
5373 */
b53e675d 5374 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
5375 h_len = be32_to_cpu(rhead->h_len);
5376 if (h_len > h_size) {
5377 if (h_len <= log->l_mp->m_logbsize &&
5378 be32_to_cpu(rhead->h_num_logops) == 1) {
5379 xfs_warn(log->l_mp,
5380 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5381 h_size, log->l_mp->m_logbsize);
5382 h_size = log->l_mp->m_logbsize;
5383 } else
5384 return -EFSCORRUPTED;
5385 }
5386
b53e675d 5387 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
5388 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5389 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5390 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5391 hblks++;
5392 xlog_put_bp(hbp);
5393 hbp = xlog_get_bp(log, hblks);
5394 } else {
5395 hblks = 1;
5396 }
5397 } else {
69ce58f0 5398 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
5399 hblks = 1;
5400 hbp = xlog_get_bp(log, 1);
5401 h_size = XLOG_BIG_RECORD_BSIZE;
5402 }
5403
5404 if (!hbp)
2451337d 5405 return -ENOMEM;
1da177e4
LT
5406 dbp = xlog_get_bp(log, BTOBB(h_size));
5407 if (!dbp) {
5408 xlog_put_bp(hbp);
2451337d 5409 return -ENOMEM;
1da177e4
LT
5410 }
5411
5412 memset(rhash, 0, sizeof(rhash));
970fd3f0 5413 if (tail_blk > head_blk) {
1da177e4
LT
5414 /*
5415 * Perform recovery around the end of the physical log.
5416 * When the head is not on the same cycle number as the tail,
970fd3f0 5417 * we can't do a sequential recovery.
1da177e4 5418 */
1da177e4
LT
5419 while (blk_no < log->l_logBBsize) {
5420 /*
5421 * Check for header wrapping around physical end-of-log
5422 */
62926044 5423 offset = hbp->b_addr;
1da177e4
LT
5424 split_hblks = 0;
5425 wrapped_hblks = 0;
5426 if (blk_no + hblks <= log->l_logBBsize) {
5427 /* Read header in one read */
076e6acb
CH
5428 error = xlog_bread(log, blk_no, hblks, hbp,
5429 &offset);
1da177e4
LT
5430 if (error)
5431 goto bread_err2;
1da177e4
LT
5432 } else {
5433 /* This LR is split across physical log end */
5434 if (blk_no != log->l_logBBsize) {
5435 /* some data before physical log end */
5436 ASSERT(blk_no <= INT_MAX);
5437 split_hblks = log->l_logBBsize - (int)blk_no;
5438 ASSERT(split_hblks > 0);
076e6acb
CH
5439 error = xlog_bread(log, blk_no,
5440 split_hblks, hbp,
5441 &offset);
5442 if (error)
1da177e4 5443 goto bread_err2;
1da177e4 5444 }
076e6acb 5445
1da177e4
LT
5446 /*
5447 * Note: this black magic still works with
5448 * large sector sizes (non-512) only because:
5449 * - we increased the buffer size originally
5450 * by 1 sector giving us enough extra space
5451 * for the second read;
5452 * - the log start is guaranteed to be sector
5453 * aligned;
5454 * - we read the log end (LR header start)
5455 * _first_, then the log start (LR header end)
5456 * - order is important.
5457 */
234f56ac 5458 wrapped_hblks = hblks - split_hblks;
44396476
DC
5459 error = xlog_bread_offset(log, 0,
5460 wrapped_hblks, hbp,
5461 offset + BBTOB(split_hblks));
1da177e4
LT
5462 if (error)
5463 goto bread_err2;
1da177e4
LT
5464 }
5465 rhead = (xlog_rec_header_t *)offset;
5466 error = xlog_valid_rec_header(log, rhead,
5467 split_hblks ? blk_no : 0);
5468 if (error)
5469 goto bread_err2;
5470
b53e675d 5471 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
5472 blk_no += hblks;
5473
284f1c2c
BF
5474 /*
5475 * Read the log record data in multiple reads if it
5476 * wraps around the end of the log. Note that if the
5477 * header already wrapped, blk_no could point past the
5478 * end of the log. The record data is contiguous in
5479 * that case.
5480 */
5481 if (blk_no + bblks <= log->l_logBBsize ||
5482 blk_no >= log->l_logBBsize) {
5483 /* mod blk_no in case the header wrapped and
5484 * pushed it beyond the end of the log */
5485 rblk_no = do_mod(blk_no, log->l_logBBsize);
5486 error = xlog_bread(log, rblk_no, bblks, dbp,
076e6acb 5487 &offset);
1da177e4
LT
5488 if (error)
5489 goto bread_err2;
1da177e4
LT
5490 } else {
5491 /* This log record is split across the
5492 * physical end of log */
62926044 5493 offset = dbp->b_addr;
1da177e4
LT
5494 split_bblks = 0;
5495 if (blk_no != log->l_logBBsize) {
5496 /* some data is before the physical
5497 * end of log */
5498 ASSERT(!wrapped_hblks);
5499 ASSERT(blk_no <= INT_MAX);
5500 split_bblks =
5501 log->l_logBBsize - (int)blk_no;
5502 ASSERT(split_bblks > 0);
076e6acb
CH
5503 error = xlog_bread(log, blk_no,
5504 split_bblks, dbp,
5505 &offset);
5506 if (error)
1da177e4 5507 goto bread_err2;
1da177e4 5508 }
076e6acb 5509
1da177e4
LT
5510 /*
5511 * Note: this black magic still works with
5512 * large sector sizes (non-512) only because:
5513 * - we increased the buffer size originally
5514 * by 1 sector giving us enough extra space
5515 * for the second read;
5516 * - the log start is guaranteed to be sector
5517 * aligned;
5518 * - we read the log end (LR header start)
5519 * _first_, then the log start (LR header end)
5520 * - order is important.
5521 */
44396476 5522 error = xlog_bread_offset(log, 0,
009507b0 5523 bblks - split_bblks, dbp,
44396476 5524 offset + BBTOB(split_bblks));
076e6acb
CH
5525 if (error)
5526 goto bread_err2;
1da177e4 5527 }
0e446be4 5528
9d94901f 5529 error = xlog_recover_process(log, rhash, rhead, offset,
12818d24 5530 pass, &buffer_list);
0e446be4 5531 if (error)
1da177e4 5532 goto bread_err2;
d7f37692 5533
1da177e4 5534 blk_no += bblks;
d7f37692 5535 rhead_blk = blk_no;
1da177e4
LT
5536 }
5537
5538 ASSERT(blk_no >= log->l_logBBsize);
5539 blk_no -= log->l_logBBsize;
d7f37692 5540 rhead_blk = blk_no;
970fd3f0 5541 }
1da177e4 5542
970fd3f0
ES
5543 /* read first part of physical log */
5544 while (blk_no < head_blk) {
5545 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5546 if (error)
5547 goto bread_err2;
076e6acb 5548
970fd3f0
ES
5549 rhead = (xlog_rec_header_t *)offset;
5550 error = xlog_valid_rec_header(log, rhead, blk_no);
5551 if (error)
5552 goto bread_err2;
076e6acb 5553
970fd3f0
ES
5554 /* blocks in data section */
5555 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5556 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5557 &offset);
5558 if (error)
5559 goto bread_err2;
076e6acb 5560
12818d24
BF
5561 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5562 &buffer_list);
970fd3f0
ES
5563 if (error)
5564 goto bread_err2;
d7f37692 5565
970fd3f0 5566 blk_no += bblks + hblks;
d7f37692 5567 rhead_blk = blk_no;
1da177e4
LT
5568 }
5569
5570 bread_err2:
5571 xlog_put_bp(dbp);
5572 bread_err1:
5573 xlog_put_bp(hbp);
d7f37692 5574
12818d24
BF
5575 /*
5576 * Submit buffers that have been added from the last record processed,
5577 * regardless of error status.
5578 */
5579 if (!list_empty(&buffer_list))
5580 error2 = xfs_buf_delwri_submit(&buffer_list);
5581
d7f37692
BF
5582 if (error && first_bad)
5583 *first_bad = rhead_blk;
5584
39775431
BF
5585 /*
5586 * Transactions are freed at commit time but transactions without commit
5587 * records on disk are never committed. Free any that may be left in the
5588 * hash table.
5589 */
5590 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5591 struct hlist_node *tmp;
5592 struct xlog_recover *trans;
5593
5594 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5595 xlog_recover_free_trans(trans);
5596 }
5597
12818d24 5598 return error ? error : error2;
1da177e4
LT
5599}
5600
5601/*
5602 * Do the recovery of the log. We actually do this in two phases.
5603 * The two passes are necessary in order to implement the function
5604 * of cancelling a record written into the log. The first pass
5605 * determines those things which have been cancelled, and the
5606 * second pass replays log items normally except for those which
5607 * have been cancelled. The handling of the replay and cancellations
5608 * takes place in the log item type specific routines.
5609 *
5610 * The table of items which have cancel records in the log is allocated
5611 * and freed at this level, since only here do we know when all of
5612 * the log recovery has been completed.
5613 */
5614STATIC int
5615xlog_do_log_recovery(
9a8d2fdb 5616 struct xlog *log,
1da177e4
LT
5617 xfs_daddr_t head_blk,
5618 xfs_daddr_t tail_blk)
5619{
d5689eaa 5620 int error, i;
1da177e4
LT
5621
5622 ASSERT(head_blk != tail_blk);
5623
5624 /*
5625 * First do a pass to find all of the cancelled buf log items.
5626 * Store them in the buf_cancel_table for use in the second pass.
5627 */
d5689eaa
CH
5628 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5629 sizeof(struct list_head),
1da177e4 5630 KM_SLEEP);
d5689eaa
CH
5631 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5632 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5633
1da177e4 5634 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5635 XLOG_RECOVER_PASS1, NULL);
1da177e4 5636 if (error != 0) {
f0e2d93c 5637 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5638 log->l_buf_cancel_table = NULL;
5639 return error;
5640 }
5641 /*
5642 * Then do a second pass to actually recover the items in the log.
5643 * When it is complete free the table of buf cancel items.
5644 */
5645 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5646 XLOG_RECOVER_PASS2, NULL);
1da177e4 5647#ifdef DEBUG
6d192a9b 5648 if (!error) {
1da177e4
LT
5649 int i;
5650
5651 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 5652 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
5653 }
5654#endif /* DEBUG */
5655
f0e2d93c 5656 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5657 log->l_buf_cancel_table = NULL;
5658
5659 return error;
5660}
5661
5662/*
5663 * Do the actual recovery
5664 */
5665STATIC int
5666xlog_do_recover(
9a8d2fdb 5667 struct xlog *log,
1da177e4
LT
5668 xfs_daddr_t head_blk,
5669 xfs_daddr_t tail_blk)
5670{
a798011c 5671 struct xfs_mount *mp = log->l_mp;
1da177e4
LT
5672 int error;
5673 xfs_buf_t *bp;
5674 xfs_sb_t *sbp;
5675
e67d3d42
BF
5676 trace_xfs_log_recover(log, head_blk, tail_blk);
5677
1da177e4
LT
5678 /*
5679 * First replay the images in the log.
5680 */
5681 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 5682 if (error)
1da177e4 5683 return error;
1da177e4
LT
5684
5685 /*
5686 * If IO errors happened during recovery, bail out.
5687 */
a798011c 5688 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 5689 return -EIO;
1da177e4
LT
5690 }
5691
5692 /*
5693 * We now update the tail_lsn since much of the recovery has completed
5694 * and there may be space available to use. If there were no extent
5695 * or iunlinks, we can free up the entire log and set the tail_lsn to
5696 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5697 * lsn of the last known good LR on disk. If there are extent frees
5698 * or iunlinks they will have some entries in the AIL; so we look at
5699 * the AIL to determine how to set the tail_lsn.
5700 */
a798011c 5701 xlog_assign_tail_lsn(mp);
1da177e4
LT
5702
5703 /*
5704 * Now that we've finished replaying all buffer and inode
98021821 5705 * updates, re-read in the superblock and reverify it.
1da177e4 5706 */
a798011c 5707 bp = xfs_getsb(mp, 0);
1157b32c 5708 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
b68c0821 5709 ASSERT(!(bp->b_flags & XBF_WRITE));
0cac682f 5710 bp->b_flags |= XBF_READ;
1813dd64 5711 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 5712
595bff75 5713 error = xfs_buf_submit_wait(bp);
d64e31a2 5714 if (error) {
a798011c 5715 if (!XFS_FORCED_SHUTDOWN(mp)) {
595bff75
DC
5716 xfs_buf_ioerror_alert(bp, __func__);
5717 ASSERT(0);
5718 }
1da177e4
LT
5719 xfs_buf_relse(bp);
5720 return error;
5721 }
5722
5723 /* Convert superblock from on-disk format */
a798011c 5724 sbp = &mp->m_sb;
98021821 5725 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4
LT
5726 xfs_buf_relse(bp);
5727
a798011c
DC
5728 /* re-initialise in-core superblock and geometry structures */
5729 xfs_reinit_percpu_counters(mp);
5730 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5731 if (error) {
5732 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5733 return error;
5734 }
52548852 5735 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5478eead 5736
1da177e4
LT
5737 xlog_recover_check_summary(log);
5738
5739 /* Normal transactions can now occur */
5740 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5741 return 0;
5742}
5743
5744/*
5745 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5746 *
5747 * Return error or zero.
5748 */
5749int
5750xlog_recover(
9a8d2fdb 5751 struct xlog *log)
1da177e4
LT
5752{
5753 xfs_daddr_t head_blk, tail_blk;
5754 int error;
5755
5756 /* find the tail of the log */
a45086e2
BF
5757 error = xlog_find_tail(log, &head_blk, &tail_blk);
5758 if (error)
1da177e4
LT
5759 return error;
5760
a45086e2
BF
5761 /*
5762 * The superblock was read before the log was available and thus the LSN
5763 * could not be verified. Check the superblock LSN against the current
5764 * LSN now that it's known.
5765 */
5766 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5767 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5768 return -EINVAL;
5769
1da177e4
LT
5770 if (tail_blk != head_blk) {
5771 /* There used to be a comment here:
5772 *
5773 * disallow recovery on read-only mounts. note -- mount
5774 * checks for ENOSPC and turns it into an intelligent
5775 * error message.
5776 * ...but this is no longer true. Now, unless you specify
5777 * NORECOVERY (in which case this function would never be
5778 * called), we just go ahead and recover. We do this all
5779 * under the vfs layer, so we can get away with it unless
5780 * the device itself is read-only, in which case we fail.
5781 */
3a02ee18 5782 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5783 return error;
5784 }
5785
e721f504
DC
5786 /*
5787 * Version 5 superblock log feature mask validation. We know the
5788 * log is dirty so check if there are any unknown log features
5789 * in what we need to recover. If there are unknown features
5790 * (e.g. unsupported transactions, then simply reject the
5791 * attempt at recovery before touching anything.
5792 */
5793 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5794 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5795 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5796 xfs_warn(log->l_mp,
f41febd2 5797"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5798 (log->l_mp->m_sb.sb_features_log_incompat &
5799 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5800 xfs_warn(log->l_mp,
5801"The log can not be fully and/or safely recovered by this kernel.");
5802 xfs_warn(log->l_mp,
5803"Please recover the log on a kernel that supports the unknown features.");
2451337d 5804 return -EINVAL;
e721f504
DC
5805 }
5806
2e227178
BF
5807 /*
5808 * Delay log recovery if the debug hook is set. This is debug
5809 * instrumention to coordinate simulation of I/O failures with
5810 * log recovery.
5811 */
5812 if (xfs_globals.log_recovery_delay) {
5813 xfs_notice(log->l_mp,
5814 "Delaying log recovery for %d seconds.",
5815 xfs_globals.log_recovery_delay);
5816 msleep(xfs_globals.log_recovery_delay * 1000);
5817 }
5818
a0fa2b67
DC
5819 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5820 log->l_mp->m_logname ? log->l_mp->m_logname
5821 : "internal");
1da177e4
LT
5822
5823 error = xlog_do_recover(log, head_blk, tail_blk);
5824 log->l_flags |= XLOG_RECOVERY_NEEDED;
5825 }
5826 return error;
5827}
5828
5829/*
5830 * In the first part of recovery we replay inodes and buffers and build
5831 * up the list of extent free items which need to be processed. Here
5832 * we process the extent free items and clean up the on disk unlinked
5833 * inode lists. This is separated from the first part of recovery so
5834 * that the root and real-time bitmap inodes can be read in from disk in
5835 * between the two stages. This is necessary so that we can free space
5836 * in the real-time portion of the file system.
5837 */
5838int
5839xlog_recover_finish(
9a8d2fdb 5840 struct xlog *log)
1da177e4
LT
5841{
5842 /*
5843 * Now we're ready to do the transactions needed for the
5844 * rest of recovery. Start with completing all the extent
5845 * free intent records and then process the unlinked inode
5846 * lists. At this point, we essentially run in normal mode
5847 * except that we're still performing recovery actions
5848 * rather than accepting new requests.
5849 */
5850 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe 5851 int error;
dc42375d 5852 error = xlog_recover_process_intents(log);
3c1e2bbe 5853 if (error) {
dc42375d 5854 xfs_alert(log->l_mp, "Failed to recover intents");
3c1e2bbe
DC
5855 return error;
5856 }
9e88b5d8 5857
1da177e4 5858 /*
dc42375d 5859 * Sync the log to get all the intents out of the AIL.
1da177e4
LT
5860 * This isn't absolutely necessary, but it helps in
5861 * case the unlink transactions would have problems
dc42375d 5862 * pushing the intents out of the way.
1da177e4 5863 */
a14a348b 5864 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5865
4249023a 5866 xlog_recover_process_iunlinks(log);
1da177e4
LT
5867
5868 xlog_recover_check_summary(log);
5869
a0fa2b67
DC
5870 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5871 log->l_mp->m_logname ? log->l_mp->m_logname
5872 : "internal");
1da177e4
LT
5873 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5874 } else {
a0fa2b67 5875 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5876 }
5877 return 0;
5878}
5879
f0b2efad
BF
5880int
5881xlog_recover_cancel(
5882 struct xlog *log)
5883{
5884 int error = 0;
5885
5886 if (log->l_flags & XLOG_RECOVERY_NEEDED)
dc42375d 5887 error = xlog_recover_cancel_intents(log);
f0b2efad
BF
5888
5889 return error;
5890}
1da177e4
LT
5891
5892#if defined(DEBUG)
5893/*
5894 * Read all of the agf and agi counters and check that they
5895 * are consistent with the superblock counters.
5896 */
e89fbb5e 5897STATIC void
1da177e4 5898xlog_recover_check_summary(
9a8d2fdb 5899 struct xlog *log)
1da177e4
LT
5900{
5901 xfs_mount_t *mp;
5902 xfs_agf_t *agfp;
1da177e4
LT
5903 xfs_buf_t *agfbp;
5904 xfs_buf_t *agibp;
1da177e4 5905 xfs_agnumber_t agno;
c8ce540d
DW
5906 uint64_t freeblks;
5907 uint64_t itotal;
5908 uint64_t ifree;
5e1be0fb 5909 int error;
1da177e4
LT
5910
5911 mp = log->l_mp;
5912
5913 freeblks = 0LL;
5914 itotal = 0LL;
5915 ifree = 0LL;
5916 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
5917 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5918 if (error) {
a0fa2b67
DC
5919 xfs_alert(mp, "%s agf read failed agno %d error %d",
5920 __func__, agno, error);
4805621a
FCH
5921 } else {
5922 agfp = XFS_BUF_TO_AGF(agfbp);
5923 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5924 be32_to_cpu(agfp->agf_flcount);
5925 xfs_buf_relse(agfbp);
1da177e4 5926 }
1da177e4 5927
5e1be0fb 5928 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5929 if (error) {
5930 xfs_alert(mp, "%s agi read failed agno %d error %d",
5931 __func__, agno, error);
5932 } else {
5e1be0fb 5933 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5934
5e1be0fb
CH
5935 itotal += be32_to_cpu(agi->agi_count);
5936 ifree += be32_to_cpu(agi->agi_freecount);
5937 xfs_buf_relse(agibp);
5938 }
1da177e4 5939 }
1da177e4
LT
5940}
5941#endif /* DEBUG */