xfs: prevent deadlock trying to cover an active log
[linux-2.6-block.git] / fs / xfs / xfs_log_recover.c
CommitLineData
1da177e4 1/*
87c199c2 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451 23#include "xfs_inum.h"
1da177e4 24#include "xfs_trans.h"
a844f451
NS
25#include "xfs_sb.h"
26#include "xfs_ag.h"
1da177e4
LT
27#include "xfs_mount.h"
28#include "xfs_error.h"
29#include "xfs_bmap_btree.h"
a844f451
NS
30#include "xfs_alloc_btree.h"
31#include "xfs_ialloc_btree.h"
ee1a47ab 32#include "xfs_btree.h"
1da177e4 33#include "xfs_dinode.h"
1da177e4 34#include "xfs_inode.h"
a844f451 35#include "xfs_inode_item.h"
a844f451 36#include "xfs_alloc.h"
1da177e4
LT
37#include "xfs_ialloc.h"
38#include "xfs_log_priv.h"
39#include "xfs_buf_item.h"
1da177e4
LT
40#include "xfs_log_recover.h"
41#include "xfs_extfree_item.h"
42#include "xfs_trans_priv.h"
1da177e4 43#include "xfs_quota.h"
0e446be4 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
28c8e41a 47#include "xfs_icreate_item.h"
d75afeb3
DC
48
49/* Need all the magic numbers and buffer ops structures from these headers */
f948dd76 50#include "xfs_symlink.h"
d75afeb3
DC
51#include "xfs_da_btree.h"
52#include "xfs_dir2_format.h"
2b9ab5ab 53#include "xfs_dir2.h"
d75afeb3
DC
54#include "xfs_attr_leaf.h"
55#include "xfs_attr_remote.h"
1da177e4 56
fc06c6d0
DC
57#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
58
9a8d2fdb
MT
59STATIC int
60xlog_find_zeroed(
61 struct xlog *,
62 xfs_daddr_t *);
63STATIC int
64xlog_clear_stale_blocks(
65 struct xlog *,
66 xfs_lsn_t);
1da177e4 67#if defined(DEBUG)
9a8d2fdb
MT
68STATIC void
69xlog_recover_check_summary(
70 struct xlog *);
1da177e4
LT
71#else
72#define xlog_recover_check_summary(log)
1da177e4
LT
73#endif
74
d5689eaa
CH
75/*
76 * This structure is used during recovery to record the buf log items which
77 * have been canceled and should not be replayed.
78 */
79struct xfs_buf_cancel {
80 xfs_daddr_t bc_blkno;
81 uint bc_len;
82 int bc_refcount;
83 struct list_head bc_list;
84};
85
1da177e4
LT
86/*
87 * Sector aligned buffer routines for buffer create/read/write/access
88 */
89
ff30a622
AE
90/*
91 * Verify the given count of basic blocks is valid number of blocks
92 * to specify for an operation involving the given XFS log buffer.
93 * Returns nonzero if the count is valid, 0 otherwise.
94 */
95
96static inline int
97xlog_buf_bbcount_valid(
9a8d2fdb 98 struct xlog *log,
ff30a622
AE
99 int bbcount)
100{
101 return bbcount > 0 && bbcount <= log->l_logBBsize;
102}
103
36adecff
AE
104/*
105 * Allocate a buffer to hold log data. The buffer needs to be able
106 * to map to a range of nbblks basic blocks at any valid (basic
107 * block) offset within the log.
108 */
5d77c0dc 109STATIC xfs_buf_t *
1da177e4 110xlog_get_bp(
9a8d2fdb 111 struct xlog *log,
3228149c 112 int nbblks)
1da177e4 113{
c8da0faf
CH
114 struct xfs_buf *bp;
115
ff30a622 116 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 117 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
118 nbblks);
119 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
120 return NULL;
121 }
1da177e4 122
36adecff
AE
123 /*
124 * We do log I/O in units of log sectors (a power-of-2
125 * multiple of the basic block size), so we round up the
25985edc 126 * requested size to accommodate the basic blocks required
36adecff
AE
127 * for complete log sectors.
128 *
129 * In addition, the buffer may be used for a non-sector-
130 * aligned block offset, in which case an I/O of the
131 * requested size could extend beyond the end of the
132 * buffer. If the requested size is only 1 basic block it
133 * will never straddle a sector boundary, so this won't be
134 * an issue. Nor will this be a problem if the log I/O is
135 * done in basic blocks (sector size 1). But otherwise we
136 * extend the buffer by one extra log sector to ensure
25985edc 137 * there's space to accommodate this possibility.
36adecff 138 */
69ce58f0
AE
139 if (nbblks > 1 && log->l_sectBBsize > 1)
140 nbblks += log->l_sectBBsize;
141 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 142
e70b73f8 143 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
144 if (bp)
145 xfs_buf_unlock(bp);
146 return bp;
1da177e4
LT
147}
148
5d77c0dc 149STATIC void
1da177e4
LT
150xlog_put_bp(
151 xfs_buf_t *bp)
152{
153 xfs_buf_free(bp);
154}
155
48389ef1
AE
156/*
157 * Return the address of the start of the given block number's data
158 * in a log buffer. The buffer covers a log sector-aligned region.
159 */
076e6acb
CH
160STATIC xfs_caddr_t
161xlog_align(
9a8d2fdb 162 struct xlog *log,
076e6acb
CH
163 xfs_daddr_t blk_no,
164 int nbblks,
9a8d2fdb 165 struct xfs_buf *bp)
076e6acb 166{
fdc07f44 167 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 168
4e94b71b 169 ASSERT(offset + nbblks <= bp->b_length);
62926044 170 return bp->b_addr + BBTOB(offset);
076e6acb
CH
171}
172
1da177e4
LT
173
174/*
175 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
176 */
076e6acb
CH
177STATIC int
178xlog_bread_noalign(
9a8d2fdb 179 struct xlog *log,
1da177e4
LT
180 xfs_daddr_t blk_no,
181 int nbblks,
9a8d2fdb 182 struct xfs_buf *bp)
1da177e4
LT
183{
184 int error;
185
ff30a622 186 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 187 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
188 nbblks);
189 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
190 return EFSCORRUPTED;
191 }
192
69ce58f0
AE
193 blk_no = round_down(blk_no, log->l_sectBBsize);
194 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
195
196 ASSERT(nbblks > 0);
4e94b71b 197 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
198
199 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
200 XFS_BUF_READ(bp);
aa0e8833 201 bp->b_io_length = nbblks;
0e95f19a 202 bp->b_error = 0;
1da177e4
LT
203
204 xfsbdstrat(log->l_mp, bp);
1a1a3e97 205 error = xfs_buf_iowait(bp);
d64e31a2 206 if (error)
901796af 207 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
208 return error;
209}
210
076e6acb
CH
211STATIC int
212xlog_bread(
9a8d2fdb 213 struct xlog *log,
076e6acb
CH
214 xfs_daddr_t blk_no,
215 int nbblks,
9a8d2fdb 216 struct xfs_buf *bp,
076e6acb
CH
217 xfs_caddr_t *offset)
218{
219 int error;
220
221 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
222 if (error)
223 return error;
224
225 *offset = xlog_align(log, blk_no, nbblks, bp);
226 return 0;
227}
228
44396476
DC
229/*
230 * Read at an offset into the buffer. Returns with the buffer in it's original
231 * state regardless of the result of the read.
232 */
233STATIC int
234xlog_bread_offset(
9a8d2fdb 235 struct xlog *log,
44396476
DC
236 xfs_daddr_t blk_no, /* block to read from */
237 int nbblks, /* blocks to read */
9a8d2fdb 238 struct xfs_buf *bp,
44396476
DC
239 xfs_caddr_t offset)
240{
62926044 241 xfs_caddr_t orig_offset = bp->b_addr;
4e94b71b 242 int orig_len = BBTOB(bp->b_length);
44396476
DC
243 int error, error2;
244
02fe03d9 245 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
246 if (error)
247 return error;
248
249 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
250
251 /* must reset buffer pointer even on error */
02fe03d9 252 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
253 if (error)
254 return error;
255 return error2;
256}
257
1da177e4
LT
258/*
259 * Write out the buffer at the given block for the given number of blocks.
260 * The buffer is kept locked across the write and is returned locked.
261 * This can only be used for synchronous log writes.
262 */
ba0f32d4 263STATIC int
1da177e4 264xlog_bwrite(
9a8d2fdb 265 struct xlog *log,
1da177e4
LT
266 xfs_daddr_t blk_no,
267 int nbblks,
9a8d2fdb 268 struct xfs_buf *bp)
1da177e4
LT
269{
270 int error;
271
ff30a622 272 if (!xlog_buf_bbcount_valid(log, nbblks)) {
a0fa2b67 273 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
274 nbblks);
275 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
276 return EFSCORRUPTED;
277 }
278
69ce58f0
AE
279 blk_no = round_down(blk_no, log->l_sectBBsize);
280 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
281
282 ASSERT(nbblks > 0);
4e94b71b 283 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
284
285 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
286 XFS_BUF_ZEROFLAGS(bp);
72790aa1 287 xfs_buf_hold(bp);
0c842ad4 288 xfs_buf_lock(bp);
aa0e8833 289 bp->b_io_length = nbblks;
0e95f19a 290 bp->b_error = 0;
1da177e4 291
c2b006c1 292 error = xfs_bwrite(bp);
901796af
CH
293 if (error)
294 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 295 xfs_buf_relse(bp);
1da177e4
LT
296 return error;
297}
298
1da177e4
LT
299#ifdef DEBUG
300/*
301 * dump debug superblock and log record information
302 */
303STATIC void
304xlog_header_check_dump(
305 xfs_mount_t *mp,
306 xlog_rec_header_t *head)
307{
a0fa2b67 308 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d\n",
03daa57c 309 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
a0fa2b67 310 xfs_debug(mp, " log : uuid = %pU, fmt = %d\n",
03daa57c 311 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
312}
313#else
314#define xlog_header_check_dump(mp, head)
315#endif
316
317/*
318 * check log record header for recovery
319 */
320STATIC int
321xlog_header_check_recover(
322 xfs_mount_t *mp,
323 xlog_rec_header_t *head)
324{
69ef921b 325 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
326
327 /*
328 * IRIX doesn't write the h_fmt field and leaves it zeroed
329 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
330 * a dirty log created in IRIX.
331 */
69ef921b 332 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
333 xfs_warn(mp,
334 "dirty log written in incompatible format - can't recover");
1da177e4
LT
335 xlog_header_check_dump(mp, head);
336 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
337 XFS_ERRLEVEL_HIGH, mp);
338 return XFS_ERROR(EFSCORRUPTED);
339 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
340 xfs_warn(mp,
341 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
342 xlog_header_check_dump(mp, head);
343 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
344 XFS_ERRLEVEL_HIGH, mp);
345 return XFS_ERROR(EFSCORRUPTED);
346 }
347 return 0;
348}
349
350/*
351 * read the head block of the log and check the header
352 */
353STATIC int
354xlog_header_check_mount(
355 xfs_mount_t *mp,
356 xlog_rec_header_t *head)
357{
69ef921b 358 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
359
360 if (uuid_is_nil(&head->h_fs_uuid)) {
361 /*
362 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
363 * h_fs_uuid is nil, we assume this log was last mounted
364 * by IRIX and continue.
365 */
a0fa2b67 366 xfs_warn(mp, "nil uuid in log - IRIX style log");
1da177e4 367 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 368 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
369 xlog_header_check_dump(mp, head);
370 XFS_ERROR_REPORT("xlog_header_check_mount",
371 XFS_ERRLEVEL_HIGH, mp);
372 return XFS_ERROR(EFSCORRUPTED);
373 }
374 return 0;
375}
376
377STATIC void
378xlog_recover_iodone(
379 struct xfs_buf *bp)
380{
5a52c2a5 381 if (bp->b_error) {
1da177e4
LT
382 /*
383 * We're not going to bother about retrying
384 * this during recovery. One strike!
385 */
901796af 386 xfs_buf_ioerror_alert(bp, __func__);
ebad861b
DC
387 xfs_force_shutdown(bp->b_target->bt_mount,
388 SHUTDOWN_META_IO_ERROR);
1da177e4 389 }
cb669ca5 390 bp->b_iodone = NULL;
1a1a3e97 391 xfs_buf_ioend(bp, 0);
1da177e4
LT
392}
393
394/*
395 * This routine finds (to an approximation) the first block in the physical
396 * log which contains the given cycle. It uses a binary search algorithm.
397 * Note that the algorithm can not be perfect because the disk will not
398 * necessarily be perfect.
399 */
a8272ce0 400STATIC int
1da177e4 401xlog_find_cycle_start(
9a8d2fdb
MT
402 struct xlog *log,
403 struct xfs_buf *bp,
1da177e4
LT
404 xfs_daddr_t first_blk,
405 xfs_daddr_t *last_blk,
406 uint cycle)
407{
408 xfs_caddr_t offset;
409 xfs_daddr_t mid_blk;
e3bb2e30 410 xfs_daddr_t end_blk;
1da177e4
LT
411 uint mid_cycle;
412 int error;
413
e3bb2e30
AE
414 end_blk = *last_blk;
415 mid_blk = BLK_AVG(first_blk, end_blk);
416 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
417 error = xlog_bread(log, mid_blk, 1, bp, &offset);
418 if (error)
1da177e4 419 return error;
03bea6fe 420 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
421 if (mid_cycle == cycle)
422 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
423 else
424 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
425 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 426 }
e3bb2e30
AE
427 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
428 (mid_blk == end_blk && mid_blk-1 == first_blk));
429
430 *last_blk = end_blk;
1da177e4
LT
431
432 return 0;
433}
434
435/*
3f943d85
AE
436 * Check that a range of blocks does not contain stop_on_cycle_no.
437 * Fill in *new_blk with the block offset where such a block is
438 * found, or with -1 (an invalid block number) if there is no such
439 * block in the range. The scan needs to occur from front to back
440 * and the pointer into the region must be updated since a later
441 * routine will need to perform another test.
1da177e4
LT
442 */
443STATIC int
444xlog_find_verify_cycle(
9a8d2fdb 445 struct xlog *log,
1da177e4
LT
446 xfs_daddr_t start_blk,
447 int nbblks,
448 uint stop_on_cycle_no,
449 xfs_daddr_t *new_blk)
450{
451 xfs_daddr_t i, j;
452 uint cycle;
453 xfs_buf_t *bp;
454 xfs_daddr_t bufblks;
455 xfs_caddr_t buf = NULL;
456 int error = 0;
457
6881a229
AE
458 /*
459 * Greedily allocate a buffer big enough to handle the full
460 * range of basic blocks we'll be examining. If that fails,
461 * try a smaller size. We need to be able to read at least
462 * a log sector, or we're out of luck.
463 */
1da177e4 464 bufblks = 1 << ffs(nbblks);
81158e0c
DC
465 while (bufblks > log->l_logBBsize)
466 bufblks >>= 1;
1da177e4 467 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 468 bufblks >>= 1;
69ce58f0 469 if (bufblks < log->l_sectBBsize)
1da177e4
LT
470 return ENOMEM;
471 }
472
473 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
474 int bcount;
475
476 bcount = min(bufblks, (start_blk + nbblks - i));
477
076e6acb
CH
478 error = xlog_bread(log, i, bcount, bp, &buf);
479 if (error)
1da177e4
LT
480 goto out;
481
1da177e4 482 for (j = 0; j < bcount; j++) {
03bea6fe 483 cycle = xlog_get_cycle(buf);
1da177e4
LT
484 if (cycle == stop_on_cycle_no) {
485 *new_blk = i+j;
486 goto out;
487 }
488
489 buf += BBSIZE;
490 }
491 }
492
493 *new_blk = -1;
494
495out:
496 xlog_put_bp(bp);
497 return error;
498}
499
500/*
501 * Potentially backup over partial log record write.
502 *
503 * In the typical case, last_blk is the number of the block directly after
504 * a good log record. Therefore, we subtract one to get the block number
505 * of the last block in the given buffer. extra_bblks contains the number
506 * of blocks we would have read on a previous read. This happens when the
507 * last log record is split over the end of the physical log.
508 *
509 * extra_bblks is the number of blocks potentially verified on a previous
510 * call to this routine.
511 */
512STATIC int
513xlog_find_verify_log_record(
9a8d2fdb 514 struct xlog *log,
1da177e4
LT
515 xfs_daddr_t start_blk,
516 xfs_daddr_t *last_blk,
517 int extra_bblks)
518{
519 xfs_daddr_t i;
520 xfs_buf_t *bp;
521 xfs_caddr_t offset = NULL;
522 xlog_rec_header_t *head = NULL;
523 int error = 0;
524 int smallmem = 0;
525 int num_blks = *last_blk - start_blk;
526 int xhdrs;
527
528 ASSERT(start_blk != 0 || *last_blk != start_blk);
529
530 if (!(bp = xlog_get_bp(log, num_blks))) {
531 if (!(bp = xlog_get_bp(log, 1)))
532 return ENOMEM;
533 smallmem = 1;
534 } else {
076e6acb
CH
535 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
536 if (error)
1da177e4 537 goto out;
1da177e4
LT
538 offset += ((num_blks - 1) << BBSHIFT);
539 }
540
541 for (i = (*last_blk) - 1; i >= 0; i--) {
542 if (i < start_blk) {
543 /* valid log record not found */
a0fa2b67
DC
544 xfs_warn(log->l_mp,
545 "Log inconsistent (didn't find previous header)");
1da177e4
LT
546 ASSERT(0);
547 error = XFS_ERROR(EIO);
548 goto out;
549 }
550
551 if (smallmem) {
076e6acb
CH
552 error = xlog_bread(log, i, 1, bp, &offset);
553 if (error)
1da177e4 554 goto out;
1da177e4
LT
555 }
556
557 head = (xlog_rec_header_t *)offset;
558
69ef921b 559 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
560 break;
561
562 if (!smallmem)
563 offset -= BBSIZE;
564 }
565
566 /*
567 * We hit the beginning of the physical log & still no header. Return
568 * to caller. If caller can handle a return of -1, then this routine
569 * will be called again for the end of the physical log.
570 */
571 if (i == -1) {
572 error = -1;
573 goto out;
574 }
575
576 /*
577 * We have the final block of the good log (the first block
578 * of the log record _before_ the head. So we check the uuid.
579 */
580 if ((error = xlog_header_check_mount(log->l_mp, head)))
581 goto out;
582
583 /*
584 * We may have found a log record header before we expected one.
585 * last_blk will be the 1st block # with a given cycle #. We may end
586 * up reading an entire log record. In this case, we don't want to
587 * reset last_blk. Only when last_blk points in the middle of a log
588 * record do we update last_blk.
589 */
62118709 590 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 591 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
592
593 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
594 if (h_size % XLOG_HEADER_CYCLE_SIZE)
595 xhdrs++;
596 } else {
597 xhdrs = 1;
598 }
599
b53e675d
CH
600 if (*last_blk - i + extra_bblks !=
601 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
602 *last_blk = i;
603
604out:
605 xlog_put_bp(bp);
606 return error;
607}
608
609/*
610 * Head is defined to be the point of the log where the next log write
0a94da24 611 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
612 * eliminated when calculating the head. We aren't guaranteed that previous
613 * LR have complete transactions. We only know that a cycle number of
614 * current cycle number -1 won't be present in the log if we start writing
615 * from our current block number.
616 *
617 * last_blk contains the block number of the first block with a given
618 * cycle number.
619 *
620 * Return: zero if normal, non-zero if error.
621 */
ba0f32d4 622STATIC int
1da177e4 623xlog_find_head(
9a8d2fdb 624 struct xlog *log,
1da177e4
LT
625 xfs_daddr_t *return_head_blk)
626{
627 xfs_buf_t *bp;
628 xfs_caddr_t offset;
629 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
630 int num_scan_bblks;
631 uint first_half_cycle, last_half_cycle;
632 uint stop_on_cycle;
633 int error, log_bbnum = log->l_logBBsize;
634
635 /* Is the end of the log device zeroed? */
636 if ((error = xlog_find_zeroed(log, &first_blk)) == -1) {
637 *return_head_blk = first_blk;
638
639 /* Is the whole lot zeroed? */
640 if (!first_blk) {
641 /* Linux XFS shouldn't generate totally zeroed logs -
642 * mkfs etc write a dummy unmount record to a fresh
643 * log so we can store the uuid in there
644 */
a0fa2b67 645 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
646 }
647
648 return 0;
649 } else if (error) {
a0fa2b67 650 xfs_warn(log->l_mp, "empty log check failed");
1da177e4
LT
651 return error;
652 }
653
654 first_blk = 0; /* get cycle # of 1st block */
655 bp = xlog_get_bp(log, 1);
656 if (!bp)
657 return ENOMEM;
076e6acb
CH
658
659 error = xlog_bread(log, 0, 1, bp, &offset);
660 if (error)
1da177e4 661 goto bp_err;
076e6acb 662
03bea6fe 663 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
664
665 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
666 error = xlog_bread(log, last_blk, 1, bp, &offset);
667 if (error)
1da177e4 668 goto bp_err;
076e6acb 669
03bea6fe 670 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
671 ASSERT(last_half_cycle != 0);
672
673 /*
674 * If the 1st half cycle number is equal to the last half cycle number,
675 * then the entire log is stamped with the same cycle number. In this
676 * case, head_blk can't be set to zero (which makes sense). The below
677 * math doesn't work out properly with head_blk equal to zero. Instead,
678 * we set it to log_bbnum which is an invalid block number, but this
679 * value makes the math correct. If head_blk doesn't changed through
680 * all the tests below, *head_blk is set to zero at the very end rather
681 * than log_bbnum. In a sense, log_bbnum and zero are the same block
682 * in a circular file.
683 */
684 if (first_half_cycle == last_half_cycle) {
685 /*
686 * In this case we believe that the entire log should have
687 * cycle number last_half_cycle. We need to scan backwards
688 * from the end verifying that there are no holes still
689 * containing last_half_cycle - 1. If we find such a hole,
690 * then the start of that hole will be the new head. The
691 * simple case looks like
692 * x | x ... | x - 1 | x
693 * Another case that fits this picture would be
694 * x | x + 1 | x ... | x
c41564b5 695 * In this case the head really is somewhere at the end of the
1da177e4
LT
696 * log, as one of the latest writes at the beginning was
697 * incomplete.
698 * One more case is
699 * x | x + 1 | x ... | x - 1 | x
700 * This is really the combination of the above two cases, and
701 * the head has to end up at the start of the x-1 hole at the
702 * end of the log.
703 *
704 * In the 256k log case, we will read from the beginning to the
705 * end of the log and search for cycle numbers equal to x-1.
706 * We don't worry about the x+1 blocks that we encounter,
707 * because we know that they cannot be the head since the log
708 * started with x.
709 */
710 head_blk = log_bbnum;
711 stop_on_cycle = last_half_cycle - 1;
712 } else {
713 /*
714 * In this case we want to find the first block with cycle
715 * number matching last_half_cycle. We expect the log to be
716 * some variation on
3f943d85 717 * x + 1 ... | x ... | x
1da177e4
LT
718 * The first block with cycle number x (last_half_cycle) will
719 * be where the new head belongs. First we do a binary search
720 * for the first occurrence of last_half_cycle. The binary
721 * search may not be totally accurate, so then we scan back
722 * from there looking for occurrences of last_half_cycle before
723 * us. If that backwards scan wraps around the beginning of
724 * the log, then we look for occurrences of last_half_cycle - 1
725 * at the end of the log. The cases we're looking for look
726 * like
3f943d85
AE
727 * v binary search stopped here
728 * x + 1 ... | x | x + 1 | x ... | x
729 * ^ but we want to locate this spot
1da177e4 730 * or
1da177e4 731 * <---------> less than scan distance
3f943d85
AE
732 * x + 1 ... | x ... | x - 1 | x
733 * ^ we want to locate this spot
1da177e4
LT
734 */
735 stop_on_cycle = last_half_cycle;
736 if ((error = xlog_find_cycle_start(log, bp, first_blk,
737 &head_blk, last_half_cycle)))
738 goto bp_err;
739 }
740
741 /*
742 * Now validate the answer. Scan back some number of maximum possible
743 * blocks and make sure each one has the expected cycle number. The
744 * maximum is determined by the total possible amount of buffering
745 * in the in-core log. The following number can be made tighter if
746 * we actually look at the block size of the filesystem.
747 */
748 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
749 if (head_blk >= num_scan_bblks) {
750 /*
751 * We are guaranteed that the entire check can be performed
752 * in one buffer.
753 */
754 start_blk = head_blk - num_scan_bblks;
755 if ((error = xlog_find_verify_cycle(log,
756 start_blk, num_scan_bblks,
757 stop_on_cycle, &new_blk)))
758 goto bp_err;
759 if (new_blk != -1)
760 head_blk = new_blk;
761 } else { /* need to read 2 parts of log */
762 /*
763 * We are going to scan backwards in the log in two parts.
764 * First we scan the physical end of the log. In this part
765 * of the log, we are looking for blocks with cycle number
766 * last_half_cycle - 1.
767 * If we find one, then we know that the log starts there, as
768 * we've found a hole that didn't get written in going around
769 * the end of the physical log. The simple case for this is
770 * x + 1 ... | x ... | x - 1 | x
771 * <---------> less than scan distance
772 * If all of the blocks at the end of the log have cycle number
773 * last_half_cycle, then we check the blocks at the start of
774 * the log looking for occurrences of last_half_cycle. If we
775 * find one, then our current estimate for the location of the
776 * first occurrence of last_half_cycle is wrong and we move
777 * back to the hole we've found. This case looks like
778 * x + 1 ... | x | x + 1 | x ...
779 * ^ binary search stopped here
780 * Another case we need to handle that only occurs in 256k
781 * logs is
782 * x + 1 ... | x ... | x+1 | x ...
783 * ^ binary search stops here
784 * In a 256k log, the scan at the end of the log will see the
785 * x + 1 blocks. We need to skip past those since that is
786 * certainly not the head of the log. By searching for
787 * last_half_cycle-1 we accomplish that.
788 */
1da177e4 789 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
790 (xfs_daddr_t) num_scan_bblks >= head_blk);
791 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
792 if ((error = xlog_find_verify_cycle(log, start_blk,
793 num_scan_bblks - (int)head_blk,
794 (stop_on_cycle - 1), &new_blk)))
795 goto bp_err;
796 if (new_blk != -1) {
797 head_blk = new_blk;
9db127ed 798 goto validate_head;
1da177e4
LT
799 }
800
801 /*
802 * Scan beginning of log now. The last part of the physical
803 * log is good. This scan needs to verify that it doesn't find
804 * the last_half_cycle.
805 */
806 start_blk = 0;
807 ASSERT(head_blk <= INT_MAX);
808 if ((error = xlog_find_verify_cycle(log,
809 start_blk, (int)head_blk,
810 stop_on_cycle, &new_blk)))
811 goto bp_err;
812 if (new_blk != -1)
813 head_blk = new_blk;
814 }
815
9db127ed 816validate_head:
1da177e4
LT
817 /*
818 * Now we need to make sure head_blk is not pointing to a block in
819 * the middle of a log record.
820 */
821 num_scan_bblks = XLOG_REC_SHIFT(log);
822 if (head_blk >= num_scan_bblks) {
823 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
824
825 /* start ptr at last block ptr before head_blk */
826 if ((error = xlog_find_verify_log_record(log, start_blk,
827 &head_blk, 0)) == -1) {
828 error = XFS_ERROR(EIO);
829 goto bp_err;
830 } else if (error)
831 goto bp_err;
832 } else {
833 start_blk = 0;
834 ASSERT(head_blk <= INT_MAX);
835 if ((error = xlog_find_verify_log_record(log, start_blk,
836 &head_blk, 0)) == -1) {
837 /* We hit the beginning of the log during our search */
3f943d85 838 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
839 new_blk = log_bbnum;
840 ASSERT(start_blk <= INT_MAX &&
841 (xfs_daddr_t) log_bbnum-start_blk >= 0);
842 ASSERT(head_blk <= INT_MAX);
843 if ((error = xlog_find_verify_log_record(log,
844 start_blk, &new_blk,
845 (int)head_blk)) == -1) {
846 error = XFS_ERROR(EIO);
847 goto bp_err;
848 } else if (error)
849 goto bp_err;
850 if (new_blk != log_bbnum)
851 head_blk = new_blk;
852 } else if (error)
853 goto bp_err;
854 }
855
856 xlog_put_bp(bp);
857 if (head_blk == log_bbnum)
858 *return_head_blk = 0;
859 else
860 *return_head_blk = head_blk;
861 /*
862 * When returning here, we have a good block number. Bad block
863 * means that during a previous crash, we didn't have a clean break
864 * from cycle number N to cycle number N-1. In this case, we need
865 * to find the first block with cycle number N-1.
866 */
867 return 0;
868
869 bp_err:
870 xlog_put_bp(bp);
871
872 if (error)
a0fa2b67 873 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
874 return error;
875}
876
877/*
878 * Find the sync block number or the tail of the log.
879 *
880 * This will be the block number of the last record to have its
881 * associated buffers synced to disk. Every log record header has
882 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
883 * to get a sync block number. The only concern is to figure out which
884 * log record header to believe.
885 *
886 * The following algorithm uses the log record header with the largest
887 * lsn. The entire log record does not need to be valid. We only care
888 * that the header is valid.
889 *
890 * We could speed up search by using current head_blk buffer, but it is not
891 * available.
892 */
5d77c0dc 893STATIC int
1da177e4 894xlog_find_tail(
9a8d2fdb 895 struct xlog *log,
1da177e4 896 xfs_daddr_t *head_blk,
65be6054 897 xfs_daddr_t *tail_blk)
1da177e4
LT
898{
899 xlog_rec_header_t *rhead;
900 xlog_op_header_t *op_head;
901 xfs_caddr_t offset = NULL;
902 xfs_buf_t *bp;
903 int error, i, found;
904 xfs_daddr_t umount_data_blk;
905 xfs_daddr_t after_umount_blk;
906 xfs_lsn_t tail_lsn;
907 int hblks;
908
909 found = 0;
910
911 /*
912 * Find previous log record
913 */
914 if ((error = xlog_find_head(log, head_blk)))
915 return error;
916
917 bp = xlog_get_bp(log, 1);
918 if (!bp)
919 return ENOMEM;
920 if (*head_blk == 0) { /* special case */
076e6acb
CH
921 error = xlog_bread(log, 0, 1, bp, &offset);
922 if (error)
9db127ed 923 goto done;
076e6acb 924
03bea6fe 925 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
926 *tail_blk = 0;
927 /* leave all other log inited values alone */
9db127ed 928 goto done;
1da177e4
LT
929 }
930 }
931
932 /*
933 * Search backwards looking for log record header block
934 */
935 ASSERT(*head_blk < INT_MAX);
936 for (i = (int)(*head_blk) - 1; i >= 0; i--) {
076e6acb
CH
937 error = xlog_bread(log, i, 1, bp, &offset);
938 if (error)
9db127ed 939 goto done;
076e6acb 940
69ef921b 941 if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
942 found = 1;
943 break;
944 }
945 }
946 /*
947 * If we haven't found the log record header block, start looking
948 * again from the end of the physical log. XXXmiken: There should be
949 * a check here to make sure we didn't search more than N blocks in
950 * the previous code.
951 */
952 if (!found) {
953 for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) {
076e6acb
CH
954 error = xlog_bread(log, i, 1, bp, &offset);
955 if (error)
9db127ed 956 goto done;
076e6acb 957
69ef921b
CH
958 if (*(__be32 *)offset ==
959 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1da177e4
LT
960 found = 2;
961 break;
962 }
963 }
964 }
965 if (!found) {
a0fa2b67 966 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
050a1952 967 xlog_put_bp(bp);
1da177e4
LT
968 ASSERT(0);
969 return XFS_ERROR(EIO);
970 }
971
972 /* find blk_no of tail of log */
973 rhead = (xlog_rec_header_t *)offset;
b53e675d 974 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
975
976 /*
977 * Reset log values according to the state of the log when we
978 * crashed. In the case where head_blk == 0, we bump curr_cycle
979 * one because the next write starts a new cycle rather than
980 * continuing the cycle of the last good log record. At this
981 * point we have guaranteed that all partial log records have been
982 * accounted for. Therefore, we know that the last good log record
983 * written was complete and ended exactly on the end boundary
984 * of the physical log.
985 */
986 log->l_prev_block = i;
987 log->l_curr_block = (int)*head_blk;
b53e675d 988 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1da177e4
LT
989 if (found == 2)
990 log->l_curr_cycle++;
1c3cb9ec 991 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
84f3c683 992 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
28496968 993 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
a69ed03c 994 BBTOB(log->l_curr_block));
28496968 995 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
a69ed03c 996 BBTOB(log->l_curr_block));
1da177e4
LT
997
998 /*
999 * Look for unmount record. If we find it, then we know there
1000 * was a clean unmount. Since 'i' could be the last block in
1001 * the physical log, we convert to a log block before comparing
1002 * to the head_blk.
1003 *
1004 * Save the current tail lsn to use to pass to
1005 * xlog_clear_stale_blocks() below. We won't want to clear the
1006 * unmount record if there is one, so we pass the lsn of the
1007 * unmount record rather than the block after it.
1008 */
62118709 1009 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d
CH
1010 int h_size = be32_to_cpu(rhead->h_size);
1011 int h_version = be32_to_cpu(rhead->h_version);
1da177e4
LT
1012
1013 if ((h_version & XLOG_VERSION_2) &&
1014 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1015 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1016 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1017 hblks++;
1018 } else {
1019 hblks = 1;
1020 }
1021 } else {
1022 hblks = 1;
1023 }
1024 after_umount_blk = (i + hblks + (int)
b53e675d 1025 BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize;
1c3cb9ec 1026 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4 1027 if (*head_blk == after_umount_blk &&
b53e675d 1028 be32_to_cpu(rhead->h_num_logops) == 1) {
1da177e4 1029 umount_data_blk = (i + hblks) % log->l_logBBsize;
076e6acb
CH
1030 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1031 if (error)
9db127ed 1032 goto done;
076e6acb 1033
1da177e4
LT
1034 op_head = (xlog_op_header_t *)offset;
1035 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1036 /*
1037 * Set tail and last sync so that newly written
1038 * log records will point recovery to after the
1039 * current unmount record.
1040 */
1c3cb9ec
DC
1041 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1042 log->l_curr_cycle, after_umount_blk);
1043 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1044 log->l_curr_cycle, after_umount_blk);
1da177e4 1045 *tail_blk = after_umount_blk;
92821e2b
DC
1046
1047 /*
1048 * Note that the unmount was clean. If the unmount
1049 * was not clean, we need to know this to rebuild the
1050 * superblock counters from the perag headers if we
1051 * have a filesystem using non-persistent counters.
1052 */
1053 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1054 }
1055 }
1056
1057 /*
1058 * Make sure that there are no blocks in front of the head
1059 * with the same cycle number as the head. This can happen
1060 * because we allow multiple outstanding log writes concurrently,
1061 * and the later writes might make it out before earlier ones.
1062 *
1063 * We use the lsn from before modifying it so that we'll never
1064 * overwrite the unmount record after a clean unmount.
1065 *
1066 * Do this only if we are going to recover the filesystem
1067 *
1068 * NOTE: This used to say "if (!readonly)"
1069 * However on Linux, we can & do recover a read-only filesystem.
1070 * We only skip recovery if NORECOVERY is specified on mount,
1071 * in which case we would not be here.
1072 *
1073 * But... if the -device- itself is readonly, just skip this.
1074 * We can't recover this device anyway, so it won't matter.
1075 */
9db127ed 1076 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1077 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1078
9db127ed 1079done:
1da177e4
LT
1080 xlog_put_bp(bp);
1081
1082 if (error)
a0fa2b67 1083 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1084 return error;
1085}
1086
1087/*
1088 * Is the log zeroed at all?
1089 *
1090 * The last binary search should be changed to perform an X block read
1091 * once X becomes small enough. You can then search linearly through
1092 * the X blocks. This will cut down on the number of reads we need to do.
1093 *
1094 * If the log is partially zeroed, this routine will pass back the blkno
1095 * of the first block with cycle number 0. It won't have a complete LR
1096 * preceding it.
1097 *
1098 * Return:
1099 * 0 => the log is completely written to
1100 * -1 => use *blk_no as the first block of the log
1101 * >0 => error has occurred
1102 */
a8272ce0 1103STATIC int
1da177e4 1104xlog_find_zeroed(
9a8d2fdb 1105 struct xlog *log,
1da177e4
LT
1106 xfs_daddr_t *blk_no)
1107{
1108 xfs_buf_t *bp;
1109 xfs_caddr_t offset;
1110 uint first_cycle, last_cycle;
1111 xfs_daddr_t new_blk, last_blk, start_blk;
1112 xfs_daddr_t num_scan_bblks;
1113 int error, log_bbnum = log->l_logBBsize;
1114
6fdf8ccc
NS
1115 *blk_no = 0;
1116
1da177e4
LT
1117 /* check totally zeroed log */
1118 bp = xlog_get_bp(log, 1);
1119 if (!bp)
1120 return ENOMEM;
076e6acb
CH
1121 error = xlog_bread(log, 0, 1, bp, &offset);
1122 if (error)
1da177e4 1123 goto bp_err;
076e6acb 1124
03bea6fe 1125 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1126 if (first_cycle == 0) { /* completely zeroed log */
1127 *blk_no = 0;
1128 xlog_put_bp(bp);
1129 return -1;
1130 }
1131
1132 /* check partially zeroed log */
076e6acb
CH
1133 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1134 if (error)
1da177e4 1135 goto bp_err;
076e6acb 1136
03bea6fe 1137 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1138 if (last_cycle != 0) { /* log completely written to */
1139 xlog_put_bp(bp);
1140 return 0;
1141 } else if (first_cycle != 1) {
1142 /*
1143 * If the cycle of the last block is zero, the cycle of
1144 * the first block must be 1. If it's not, maybe we're
1145 * not looking at a log... Bail out.
1146 */
a0fa2b67
DC
1147 xfs_warn(log->l_mp,
1148 "Log inconsistent or not a log (last==0, first!=1)");
5d0a6549
ES
1149 error = XFS_ERROR(EINVAL);
1150 goto bp_err;
1da177e4
LT
1151 }
1152
1153 /* we have a partially zeroed log */
1154 last_blk = log_bbnum-1;
1155 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1156 goto bp_err;
1157
1158 /*
1159 * Validate the answer. Because there is no way to guarantee that
1160 * the entire log is made up of log records which are the same size,
1161 * we scan over the defined maximum blocks. At this point, the maximum
1162 * is not chosen to mean anything special. XXXmiken
1163 */
1164 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1165 ASSERT(num_scan_bblks <= INT_MAX);
1166
1167 if (last_blk < num_scan_bblks)
1168 num_scan_bblks = last_blk;
1169 start_blk = last_blk - num_scan_bblks;
1170
1171 /*
1172 * We search for any instances of cycle number 0 that occur before
1173 * our current estimate of the head. What we're trying to detect is
1174 * 1 ... | 0 | 1 | 0...
1175 * ^ binary search ends here
1176 */
1177 if ((error = xlog_find_verify_cycle(log, start_blk,
1178 (int)num_scan_bblks, 0, &new_blk)))
1179 goto bp_err;
1180 if (new_blk != -1)
1181 last_blk = new_blk;
1182
1183 /*
1184 * Potentially backup over partial log record write. We don't need
1185 * to search the end of the log because we know it is zero.
1186 */
1187 if ((error = xlog_find_verify_log_record(log, start_blk,
1188 &last_blk, 0)) == -1) {
1189 error = XFS_ERROR(EIO);
1190 goto bp_err;
1191 } else if (error)
1192 goto bp_err;
1193
1194 *blk_no = last_blk;
1195bp_err:
1196 xlog_put_bp(bp);
1197 if (error)
1198 return error;
1199 return -1;
1200}
1201
1202/*
1203 * These are simple subroutines used by xlog_clear_stale_blocks() below
1204 * to initialize a buffer full of empty log record headers and write
1205 * them into the log.
1206 */
1207STATIC void
1208xlog_add_record(
9a8d2fdb 1209 struct xlog *log,
1da177e4
LT
1210 xfs_caddr_t buf,
1211 int cycle,
1212 int block,
1213 int tail_cycle,
1214 int tail_block)
1215{
1216 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1217
1218 memset(buf, 0, BBSIZE);
b53e675d
CH
1219 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1220 recp->h_cycle = cpu_to_be32(cycle);
1221 recp->h_version = cpu_to_be32(
62118709 1222 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1223 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1224 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1225 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1226 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1227}
1228
1229STATIC int
1230xlog_write_log_records(
9a8d2fdb 1231 struct xlog *log,
1da177e4
LT
1232 int cycle,
1233 int start_block,
1234 int blocks,
1235 int tail_cycle,
1236 int tail_block)
1237{
1238 xfs_caddr_t offset;
1239 xfs_buf_t *bp;
1240 int balign, ealign;
69ce58f0 1241 int sectbb = log->l_sectBBsize;
1da177e4
LT
1242 int end_block = start_block + blocks;
1243 int bufblks;
1244 int error = 0;
1245 int i, j = 0;
1246
6881a229
AE
1247 /*
1248 * Greedily allocate a buffer big enough to handle the full
1249 * range of basic blocks to be written. If that fails, try
1250 * a smaller size. We need to be able to write at least a
1251 * log sector, or we're out of luck.
1252 */
1da177e4 1253 bufblks = 1 << ffs(blocks);
81158e0c
DC
1254 while (bufblks > log->l_logBBsize)
1255 bufblks >>= 1;
1da177e4
LT
1256 while (!(bp = xlog_get_bp(log, bufblks))) {
1257 bufblks >>= 1;
69ce58f0 1258 if (bufblks < sectbb)
1da177e4
LT
1259 return ENOMEM;
1260 }
1261
1262 /* We may need to do a read at the start to fill in part of
1263 * the buffer in the starting sector not covered by the first
1264 * write below.
1265 */
5c17f533 1266 balign = round_down(start_block, sectbb);
1da177e4 1267 if (balign != start_block) {
076e6acb
CH
1268 error = xlog_bread_noalign(log, start_block, 1, bp);
1269 if (error)
1270 goto out_put_bp;
1271
1da177e4
LT
1272 j = start_block - balign;
1273 }
1274
1275 for (i = start_block; i < end_block; i += bufblks) {
1276 int bcount, endcount;
1277
1278 bcount = min(bufblks, end_block - start_block);
1279 endcount = bcount - j;
1280
1281 /* We may need to do a read at the end to fill in part of
1282 * the buffer in the final sector not covered by the write.
1283 * If this is the same sector as the above read, skip it.
1284 */
5c17f533 1285 ealign = round_down(end_block, sectbb);
1da177e4 1286 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1287 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1288 error = xlog_bread_offset(log, ealign, sectbb,
1289 bp, offset);
076e6acb
CH
1290 if (error)
1291 break;
1292
1da177e4
LT
1293 }
1294
1295 offset = xlog_align(log, start_block, endcount, bp);
1296 for (; j < endcount; j++) {
1297 xlog_add_record(log, offset, cycle, i+j,
1298 tail_cycle, tail_block);
1299 offset += BBSIZE;
1300 }
1301 error = xlog_bwrite(log, start_block, endcount, bp);
1302 if (error)
1303 break;
1304 start_block += endcount;
1305 j = 0;
1306 }
076e6acb
CH
1307
1308 out_put_bp:
1da177e4
LT
1309 xlog_put_bp(bp);
1310 return error;
1311}
1312
1313/*
1314 * This routine is called to blow away any incomplete log writes out
1315 * in front of the log head. We do this so that we won't become confused
1316 * if we come up, write only a little bit more, and then crash again.
1317 * If we leave the partial log records out there, this situation could
1318 * cause us to think those partial writes are valid blocks since they
1319 * have the current cycle number. We get rid of them by overwriting them
1320 * with empty log records with the old cycle number rather than the
1321 * current one.
1322 *
1323 * The tail lsn is passed in rather than taken from
1324 * the log so that we will not write over the unmount record after a
1325 * clean unmount in a 512 block log. Doing so would leave the log without
1326 * any valid log records in it until a new one was written. If we crashed
1327 * during that time we would not be able to recover.
1328 */
1329STATIC int
1330xlog_clear_stale_blocks(
9a8d2fdb 1331 struct xlog *log,
1da177e4
LT
1332 xfs_lsn_t tail_lsn)
1333{
1334 int tail_cycle, head_cycle;
1335 int tail_block, head_block;
1336 int tail_distance, max_distance;
1337 int distance;
1338 int error;
1339
1340 tail_cycle = CYCLE_LSN(tail_lsn);
1341 tail_block = BLOCK_LSN(tail_lsn);
1342 head_cycle = log->l_curr_cycle;
1343 head_block = log->l_curr_block;
1344
1345 /*
1346 * Figure out the distance between the new head of the log
1347 * and the tail. We want to write over any blocks beyond the
1348 * head that we may have written just before the crash, but
1349 * we don't want to overwrite the tail of the log.
1350 */
1351 if (head_cycle == tail_cycle) {
1352 /*
1353 * The tail is behind the head in the physical log,
1354 * so the distance from the head to the tail is the
1355 * distance from the head to the end of the log plus
1356 * the distance from the beginning of the log to the
1357 * tail.
1358 */
1359 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1360 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1361 XFS_ERRLEVEL_LOW, log->l_mp);
1362 return XFS_ERROR(EFSCORRUPTED);
1363 }
1364 tail_distance = tail_block + (log->l_logBBsize - head_block);
1365 } else {
1366 /*
1367 * The head is behind the tail in the physical log,
1368 * so the distance from the head to the tail is just
1369 * the tail block minus the head block.
1370 */
1371 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1372 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1373 XFS_ERRLEVEL_LOW, log->l_mp);
1374 return XFS_ERROR(EFSCORRUPTED);
1375 }
1376 tail_distance = tail_block - head_block;
1377 }
1378
1379 /*
1380 * If the head is right up against the tail, we can't clear
1381 * anything.
1382 */
1383 if (tail_distance <= 0) {
1384 ASSERT(tail_distance == 0);
1385 return 0;
1386 }
1387
1388 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1389 /*
1390 * Take the smaller of the maximum amount of outstanding I/O
1391 * we could have and the distance to the tail to clear out.
1392 * We take the smaller so that we don't overwrite the tail and
1393 * we don't waste all day writing from the head to the tail
1394 * for no reason.
1395 */
1396 max_distance = MIN(max_distance, tail_distance);
1397
1398 if ((head_block + max_distance) <= log->l_logBBsize) {
1399 /*
1400 * We can stomp all the blocks we need to without
1401 * wrapping around the end of the log. Just do it
1402 * in a single write. Use the cycle number of the
1403 * current cycle minus one so that the log will look like:
1404 * n ... | n - 1 ...
1405 */
1406 error = xlog_write_log_records(log, (head_cycle - 1),
1407 head_block, max_distance, tail_cycle,
1408 tail_block);
1409 if (error)
1410 return error;
1411 } else {
1412 /*
1413 * We need to wrap around the end of the physical log in
1414 * order to clear all the blocks. Do it in two separate
1415 * I/Os. The first write should be from the head to the
1416 * end of the physical log, and it should use the current
1417 * cycle number minus one just like above.
1418 */
1419 distance = log->l_logBBsize - head_block;
1420 error = xlog_write_log_records(log, (head_cycle - 1),
1421 head_block, distance, tail_cycle,
1422 tail_block);
1423
1424 if (error)
1425 return error;
1426
1427 /*
1428 * Now write the blocks at the start of the physical log.
1429 * This writes the remainder of the blocks we want to clear.
1430 * It uses the current cycle number since we're now on the
1431 * same cycle as the head so that we get:
1432 * n ... n ... | n - 1 ...
1433 * ^^^^^ blocks we're writing
1434 */
1435 distance = max_distance - (log->l_logBBsize - head_block);
1436 error = xlog_write_log_records(log, head_cycle, 0, distance,
1437 tail_cycle, tail_block);
1438 if (error)
1439 return error;
1440 }
1441
1442 return 0;
1443}
1444
1445/******************************************************************************
1446 *
1447 * Log recover routines
1448 *
1449 ******************************************************************************
1450 */
1451
1452STATIC xlog_recover_t *
1453xlog_recover_find_tid(
f0a76953 1454 struct hlist_head *head,
1da177e4
LT
1455 xlog_tid_t tid)
1456{
f0a76953 1457 xlog_recover_t *trans;
1da177e4 1458
b67bfe0d 1459 hlist_for_each_entry(trans, head, r_list) {
f0a76953
DC
1460 if (trans->r_log_tid == tid)
1461 return trans;
1da177e4 1462 }
f0a76953 1463 return NULL;
1da177e4
LT
1464}
1465
1466STATIC void
f0a76953
DC
1467xlog_recover_new_tid(
1468 struct hlist_head *head,
1469 xlog_tid_t tid,
1470 xfs_lsn_t lsn)
1da177e4 1471{
f0a76953
DC
1472 xlog_recover_t *trans;
1473
1474 trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP);
1475 trans->r_log_tid = tid;
1476 trans->r_lsn = lsn;
1477 INIT_LIST_HEAD(&trans->r_itemq);
1478
1479 INIT_HLIST_NODE(&trans->r_list);
1480 hlist_add_head(&trans->r_list, head);
1da177e4
LT
1481}
1482
1483STATIC void
1484xlog_recover_add_item(
f0a76953 1485 struct list_head *head)
1da177e4
LT
1486{
1487 xlog_recover_item_t *item;
1488
1489 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
f0a76953
DC
1490 INIT_LIST_HEAD(&item->ri_list);
1491 list_add_tail(&item->ri_list, head);
1da177e4
LT
1492}
1493
1494STATIC int
1495xlog_recover_add_to_cont_trans(
ad223e60
MT
1496 struct xlog *log,
1497 struct xlog_recover *trans,
1da177e4
LT
1498 xfs_caddr_t dp,
1499 int len)
1500{
1501 xlog_recover_item_t *item;
1502 xfs_caddr_t ptr, old_ptr;
1503 int old_len;
1504
f0a76953 1505 if (list_empty(&trans->r_itemq)) {
1da177e4
LT
1506 /* finish copying rest of trans header */
1507 xlog_recover_add_item(&trans->r_itemq);
1508 ptr = (xfs_caddr_t) &trans->r_theader +
1509 sizeof(xfs_trans_header_t) - len;
1510 memcpy(ptr, dp, len); /* d, s, l */
1511 return 0;
1512 }
f0a76953
DC
1513 /* take the tail entry */
1514 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1da177e4
LT
1515
1516 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
1517 old_len = item->ri_buf[item->ri_cnt-1].i_len;
1518
45053603 1519 ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP);
1da177e4
LT
1520 memcpy(&ptr[old_len], dp, len); /* d, s, l */
1521 item->ri_buf[item->ri_cnt-1].i_len += len;
1522 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
9abbc539 1523 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
1524 return 0;
1525}
1526
1527/*
1528 * The next region to add is the start of a new region. It could be
1529 * a whole region or it could be the first part of a new region. Because
1530 * of this, the assumption here is that the type and size fields of all
1531 * format structures fit into the first 32 bits of the structure.
1532 *
1533 * This works because all regions must be 32 bit aligned. Therefore, we
1534 * either have both fields or we have neither field. In the case we have
1535 * neither field, the data part of the region is zero length. We only have
1536 * a log_op_header and can throw away the header since a new one will appear
1537 * later. If we have at least 4 bytes, then we can determine how many regions
1538 * will appear in the current log item.
1539 */
1540STATIC int
1541xlog_recover_add_to_trans(
ad223e60
MT
1542 struct xlog *log,
1543 struct xlog_recover *trans,
1da177e4
LT
1544 xfs_caddr_t dp,
1545 int len)
1546{
1547 xfs_inode_log_format_t *in_f; /* any will do */
1548 xlog_recover_item_t *item;
1549 xfs_caddr_t ptr;
1550
1551 if (!len)
1552 return 0;
f0a76953 1553 if (list_empty(&trans->r_itemq)) {
5a792c45
DC
1554 /* we need to catch log corruptions here */
1555 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
a0fa2b67
DC
1556 xfs_warn(log->l_mp, "%s: bad header magic number",
1557 __func__);
5a792c45
DC
1558 ASSERT(0);
1559 return XFS_ERROR(EIO);
1560 }
1da177e4
LT
1561 if (len == sizeof(xfs_trans_header_t))
1562 xlog_recover_add_item(&trans->r_itemq);
1563 memcpy(&trans->r_theader, dp, len); /* d, s, l */
1564 return 0;
1565 }
1566
1567 ptr = kmem_alloc(len, KM_SLEEP);
1568 memcpy(ptr, dp, len);
1569 in_f = (xfs_inode_log_format_t *)ptr;
1570
f0a76953
DC
1571 /* take the tail entry */
1572 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
1573 if (item->ri_total != 0 &&
1574 item->ri_total == item->ri_cnt) {
1575 /* tail item is in use, get a new one */
1da177e4 1576 xlog_recover_add_item(&trans->r_itemq);
f0a76953
DC
1577 item = list_entry(trans->r_itemq.prev,
1578 xlog_recover_item_t, ri_list);
1da177e4 1579 }
1da177e4
LT
1580
1581 if (item->ri_total == 0) { /* first region to be added */
e8fa6b48
CH
1582 if (in_f->ilf_size == 0 ||
1583 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
a0fa2b67
DC
1584 xfs_warn(log->l_mp,
1585 "bad number of regions (%d) in inode log format",
e8fa6b48
CH
1586 in_f->ilf_size);
1587 ASSERT(0);
aaaae980 1588 kmem_free(ptr);
e8fa6b48
CH
1589 return XFS_ERROR(EIO);
1590 }
1591
1592 item->ri_total = in_f->ilf_size;
1593 item->ri_buf =
1594 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
1595 KM_SLEEP);
1da177e4
LT
1596 }
1597 ASSERT(item->ri_total > item->ri_cnt);
1598 /* Description region is ri_buf[0] */
1599 item->ri_buf[item->ri_cnt].i_addr = ptr;
1600 item->ri_buf[item->ri_cnt].i_len = len;
1601 item->ri_cnt++;
9abbc539 1602 trace_xfs_log_recover_item_add(log, trans, item, 0);
1da177e4
LT
1603 return 0;
1604}
1605
f0a76953 1606/*
a775ad77
DC
1607 * Sort the log items in the transaction.
1608 *
1609 * The ordering constraints are defined by the inode allocation and unlink
1610 * behaviour. The rules are:
1611 *
1612 * 1. Every item is only logged once in a given transaction. Hence it
1613 * represents the last logged state of the item. Hence ordering is
1614 * dependent on the order in which operations need to be performed so
1615 * required initial conditions are always met.
1616 *
1617 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1618 * there's nothing to replay from them so we can simply cull them
1619 * from the transaction. However, we can't do that until after we've
1620 * replayed all the other items because they may be dependent on the
1621 * cancelled buffer and replaying the cancelled buffer can remove it
1622 * form the cancelled buffer table. Hence they have tobe done last.
1623 *
1624 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1625 * read the buffer and replay changes into it. For filesystems using the
1626 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1627 * treated the same as inode allocation buffers as they create and
1628 * initialise the buffers directly.
a775ad77
DC
1629 *
1630 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1631 * This ensures that inodes are completely flushed to the inode buffer
1632 * in a "free" state before we remove the unlinked inode list pointer.
1633 *
1634 * Hence the ordering needs to be inode allocation buffers first, inode items
1635 * second, inode unlink buffers third and cancelled buffers last.
1636 *
1637 * But there's a problem with that - we can't tell an inode allocation buffer
1638 * apart from a regular buffer, so we can't separate them. We can, however,
1639 * tell an inode unlink buffer from the others, and so we can separate them out
1640 * from all the other buffers and move them to last.
1641 *
1642 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1643 * - buffer_list for all buffers except cancelled/inode unlink buffers
1644 * - item_list for all non-buffer items
1645 * - inode_buffer_list for inode unlink buffers
1646 * - cancel_list for the cancelled buffers
1647 *
1648 * Note that we add objects to the tail of the lists so that first-to-last
1649 * ordering is preserved within the lists. Adding objects to the head of the
1650 * list means when we traverse from the head we walk them in last-to-first
1651 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1652 * but for all other items there may be specific ordering that we need to
1653 * preserve.
f0a76953 1654 */
1da177e4
LT
1655STATIC int
1656xlog_recover_reorder_trans(
ad223e60
MT
1657 struct xlog *log,
1658 struct xlog_recover *trans,
9abbc539 1659 int pass)
1da177e4 1660{
f0a76953
DC
1661 xlog_recover_item_t *item, *n;
1662 LIST_HEAD(sort_list);
a775ad77
DC
1663 LIST_HEAD(cancel_list);
1664 LIST_HEAD(buffer_list);
1665 LIST_HEAD(inode_buffer_list);
1666 LIST_HEAD(inode_list);
f0a76953
DC
1667
1668 list_splice_init(&trans->r_itemq, &sort_list);
1669 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1670 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1671
f0a76953 1672 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1673 case XFS_LI_ICREATE:
1674 list_move_tail(&item->ri_list, &buffer_list);
1675 break;
1da177e4 1676 case XFS_LI_BUF:
a775ad77 1677 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1678 trace_xfs_log_recover_item_reorder_head(log,
1679 trans, item, pass);
a775ad77 1680 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1681 break;
1682 }
a775ad77
DC
1683 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1684 list_move(&item->ri_list, &inode_buffer_list);
1685 break;
1686 }
1687 list_move_tail(&item->ri_list, &buffer_list);
1688 break;
1da177e4 1689 case XFS_LI_INODE:
1da177e4
LT
1690 case XFS_LI_DQUOT:
1691 case XFS_LI_QUOTAOFF:
1692 case XFS_LI_EFD:
1693 case XFS_LI_EFI:
9abbc539
DC
1694 trace_xfs_log_recover_item_reorder_tail(log,
1695 trans, item, pass);
a775ad77 1696 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1697 break;
1698 default:
a0fa2b67
DC
1699 xfs_warn(log->l_mp,
1700 "%s: unrecognized type of log operation",
1701 __func__);
1da177e4
LT
1702 ASSERT(0);
1703 return XFS_ERROR(EIO);
1704 }
f0a76953
DC
1705 }
1706 ASSERT(list_empty(&sort_list));
a775ad77
DC
1707 if (!list_empty(&buffer_list))
1708 list_splice(&buffer_list, &trans->r_itemq);
1709 if (!list_empty(&inode_list))
1710 list_splice_tail(&inode_list, &trans->r_itemq);
1711 if (!list_empty(&inode_buffer_list))
1712 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1713 if (!list_empty(&cancel_list))
1714 list_splice_tail(&cancel_list, &trans->r_itemq);
1da177e4
LT
1715 return 0;
1716}
1717
1718/*
1719 * Build up the table of buf cancel records so that we don't replay
1720 * cancelled data in the second pass. For buffer records that are
1721 * not cancel records, there is nothing to do here so we just return.
1722 *
1723 * If we get a cancel record which is already in the table, this indicates
1724 * that the buffer was cancelled multiple times. In order to ensure
1725 * that during pass 2 we keep the record in the table until we reach its
1726 * last occurrence in the log, we keep a reference count in the cancel
1727 * record in the table to tell us how many times we expect to see this
1728 * record during the second pass.
1729 */
c9f71f5f
CH
1730STATIC int
1731xlog_recover_buffer_pass1(
ad223e60
MT
1732 struct xlog *log,
1733 struct xlog_recover_item *item)
1da177e4 1734{
c9f71f5f 1735 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
1736 struct list_head *bucket;
1737 struct xfs_buf_cancel *bcp;
1da177e4
LT
1738
1739 /*
1740 * If this isn't a cancel buffer item, then just return.
1741 */
e2714bf8 1742 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 1743 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 1744 return 0;
9abbc539 1745 }
1da177e4
LT
1746
1747 /*
d5689eaa
CH
1748 * Insert an xfs_buf_cancel record into the hash table of them.
1749 * If there is already an identical record, bump its reference count.
1da177e4 1750 */
d5689eaa
CH
1751 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
1752 list_for_each_entry(bcp, bucket, bc_list) {
1753 if (bcp->bc_blkno == buf_f->blf_blkno &&
1754 bcp->bc_len == buf_f->blf_len) {
1755 bcp->bc_refcount++;
9abbc539 1756 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 1757 return 0;
1da177e4 1758 }
d5689eaa
CH
1759 }
1760
1761 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
1762 bcp->bc_blkno = buf_f->blf_blkno;
1763 bcp->bc_len = buf_f->blf_len;
1da177e4 1764 bcp->bc_refcount = 1;
d5689eaa
CH
1765 list_add_tail(&bcp->bc_list, bucket);
1766
9abbc539 1767 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 1768 return 0;
1da177e4
LT
1769}
1770
1771/*
1772 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
1773 * entry in the buffer cancel record table. If it is, return the cancel
1774 * buffer structure to the caller.
1da177e4 1775 */
84a5b730
DC
1776STATIC struct xfs_buf_cancel *
1777xlog_peek_buffer_cancelled(
ad223e60 1778 struct xlog *log,
1da177e4
LT
1779 xfs_daddr_t blkno,
1780 uint len,
1781 ushort flags)
1782{
d5689eaa
CH
1783 struct list_head *bucket;
1784 struct xfs_buf_cancel *bcp;
1da177e4 1785
84a5b730
DC
1786 if (!log->l_buf_cancel_table) {
1787 /* empty table means no cancelled buffers in the log */
c1155410 1788 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 1789 return NULL;
1da177e4
LT
1790 }
1791
d5689eaa
CH
1792 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
1793 list_for_each_entry(bcp, bucket, bc_list) {
1794 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 1795 return bcp;
1da177e4 1796 }
d5689eaa 1797
1da177e4 1798 /*
d5689eaa
CH
1799 * We didn't find a corresponding entry in the table, so return 0 so
1800 * that the buffer is NOT cancelled.
1da177e4 1801 */
c1155410 1802 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
1803 return NULL;
1804}
1805
1806/*
1807 * If the buffer is being cancelled then return 1 so that it will be cancelled,
1808 * otherwise return 0. If the buffer is actually a buffer cancel item
1809 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
1810 * table and remove it from the table if this is the last reference.
1811 *
1812 * We remove the cancel record from the table when we encounter its last
1813 * occurrence in the log so that if the same buffer is re-used again after its
1814 * last cancellation we actually replay the changes made at that point.
1815 */
1816STATIC int
1817xlog_check_buffer_cancelled(
1818 struct xlog *log,
1819 xfs_daddr_t blkno,
1820 uint len,
1821 ushort flags)
1822{
1823 struct xfs_buf_cancel *bcp;
1824
1825 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
1826 if (!bcp)
1827 return 0;
d5689eaa 1828
d5689eaa
CH
1829 /*
1830 * We've go a match, so return 1 so that the recovery of this buffer
1831 * is cancelled. If this buffer is actually a buffer cancel log
1832 * item, then decrement the refcount on the one in the table and
1833 * remove it if this is the last reference.
1834 */
1835 if (flags & XFS_BLF_CANCEL) {
1836 if (--bcp->bc_refcount == 0) {
1837 list_del(&bcp->bc_list);
1838 kmem_free(bcp);
1839 }
1840 }
1841 return 1;
1da177e4
LT
1842}
1843
1da177e4 1844/*
e2714bf8
CH
1845 * Perform recovery for a buffer full of inodes. In these buffers, the only
1846 * data which should be recovered is that which corresponds to the
1847 * di_next_unlinked pointers in the on disk inode structures. The rest of the
1848 * data for the inodes is always logged through the inodes themselves rather
1849 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 1850 *
e2714bf8
CH
1851 * The only time when buffers full of inodes are fully recovered is when the
1852 * buffer is full of newly allocated inodes. In this case the buffer will
1853 * not be marked as an inode buffer and so will be sent to
1854 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
1855 */
1856STATIC int
1857xlog_recover_do_inode_buffer(
e2714bf8 1858 struct xfs_mount *mp,
1da177e4 1859 xlog_recover_item_t *item,
e2714bf8 1860 struct xfs_buf *bp,
1da177e4
LT
1861 xfs_buf_log_format_t *buf_f)
1862{
1863 int i;
e2714bf8
CH
1864 int item_index = 0;
1865 int bit = 0;
1866 int nbits = 0;
1867 int reg_buf_offset = 0;
1868 int reg_buf_bytes = 0;
1da177e4
LT
1869 int next_unlinked_offset;
1870 int inodes_per_buf;
1871 xfs_agino_t *logged_nextp;
1872 xfs_agino_t *buffer_nextp;
1da177e4 1873
9abbc539 1874 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
1875
1876 /*
1877 * Post recovery validation only works properly on CRC enabled
1878 * filesystems.
1879 */
1880 if (xfs_sb_version_hascrc(&mp->m_sb))
1881 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 1882
aa0e8833 1883 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
1884 for (i = 0; i < inodes_per_buf; i++) {
1885 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
1886 offsetof(xfs_dinode_t, di_next_unlinked);
1887
1888 while (next_unlinked_offset >=
1889 (reg_buf_offset + reg_buf_bytes)) {
1890 /*
1891 * The next di_next_unlinked field is beyond
1892 * the current logged region. Find the next
1893 * logged region that contains or is beyond
1894 * the current di_next_unlinked field.
1895 */
1896 bit += nbits;
e2714bf8
CH
1897 bit = xfs_next_bit(buf_f->blf_data_map,
1898 buf_f->blf_map_size, bit);
1da177e4
LT
1899
1900 /*
1901 * If there are no more logged regions in the
1902 * buffer, then we're done.
1903 */
e2714bf8 1904 if (bit == -1)
1da177e4 1905 return 0;
1da177e4 1906
e2714bf8
CH
1907 nbits = xfs_contig_bits(buf_f->blf_data_map,
1908 buf_f->blf_map_size, bit);
1da177e4 1909 ASSERT(nbits > 0);
c1155410
DC
1910 reg_buf_offset = bit << XFS_BLF_SHIFT;
1911 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
1912 item_index++;
1913 }
1914
1915 /*
1916 * If the current logged region starts after the current
1917 * di_next_unlinked field, then move on to the next
1918 * di_next_unlinked field.
1919 */
e2714bf8 1920 if (next_unlinked_offset < reg_buf_offset)
1da177e4 1921 continue;
1da177e4
LT
1922
1923 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 1924 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
1925 ASSERT((reg_buf_offset + reg_buf_bytes) <=
1926 BBTOB(bp->b_io_length));
1da177e4
LT
1927
1928 /*
1929 * The current logged region contains a copy of the
1930 * current di_next_unlinked field. Extract its value
1931 * and copy it to the buffer copy.
1932 */
4e0d5f92
CH
1933 logged_nextp = item->ri_buf[item_index].i_addr +
1934 next_unlinked_offset - reg_buf_offset;
1da177e4 1935 if (unlikely(*logged_nextp == 0)) {
a0fa2b67
DC
1936 xfs_alert(mp,
1937 "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). "
1938 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
1939 item, bp);
1940 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
1941 XFS_ERRLEVEL_LOW, mp);
1942 return XFS_ERROR(EFSCORRUPTED);
1943 }
1944
1945 buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp,
1946 next_unlinked_offset);
87c199c2 1947 *buffer_nextp = *logged_nextp;
0a32c26e
DC
1948
1949 /*
1950 * If necessary, recalculate the CRC in the on-disk inode. We
1951 * have to leave the inode in a consistent state for whoever
1952 * reads it next....
1953 */
1954 xfs_dinode_calc_crc(mp, (struct xfs_dinode *)
1955 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
1956
1da177e4
LT
1957 }
1958
1959 return 0;
1960}
1961
50d5c8d8
DC
1962/*
1963 * V5 filesystems know the age of the buffer on disk being recovered. We can
1964 * have newer objects on disk than we are replaying, and so for these cases we
1965 * don't want to replay the current change as that will make the buffer contents
1966 * temporarily invalid on disk.
1967 *
1968 * The magic number might not match the buffer type we are going to recover
1969 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
1970 * extract the LSN of the existing object in the buffer based on it's current
1971 * magic number. If we don't recognise the magic number in the buffer, then
1972 * return a LSN of -1 so that the caller knows it was an unrecognised block and
1973 * so can recover the buffer.
566055d3
DC
1974 *
1975 * Note: we cannot rely solely on magic number matches to determine that the
1976 * buffer has a valid LSN - we also need to verify that it belongs to this
1977 * filesystem, so we need to extract the object's LSN and compare it to that
1978 * which we read from the superblock. If the UUIDs don't match, then we've got a
1979 * stale metadata block from an old filesystem instance that we need to recover
1980 * over the top of.
50d5c8d8
DC
1981 */
1982static xfs_lsn_t
1983xlog_recover_get_buf_lsn(
1984 struct xfs_mount *mp,
1985 struct xfs_buf *bp)
1986{
1987 __uint32_t magic32;
1988 __uint16_t magic16;
1989 __uint16_t magicda;
1990 void *blk = bp->b_addr;
566055d3
DC
1991 uuid_t *uuid;
1992 xfs_lsn_t lsn = -1;
50d5c8d8
DC
1993
1994 /* v4 filesystems always recover immediately */
1995 if (!xfs_sb_version_hascrc(&mp->m_sb))
1996 goto recover_immediately;
1997
1998 magic32 = be32_to_cpu(*(__be32 *)blk);
1999 switch (magic32) {
2000 case XFS_ABTB_CRC_MAGIC:
2001 case XFS_ABTC_CRC_MAGIC:
2002 case XFS_ABTB_MAGIC:
2003 case XFS_ABTC_MAGIC:
2004 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2005 case XFS_IBT_MAGIC: {
2006 struct xfs_btree_block *btb = blk;
2007
2008 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2009 uuid = &btb->bb_u.s.bb_uuid;
2010 break;
2011 }
50d5c8d8 2012 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2013 case XFS_BMAP_MAGIC: {
2014 struct xfs_btree_block *btb = blk;
2015
2016 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2017 uuid = &btb->bb_u.l.bb_uuid;
2018 break;
2019 }
50d5c8d8 2020 case XFS_AGF_MAGIC:
566055d3
DC
2021 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2022 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2023 break;
50d5c8d8 2024 case XFS_AGFL_MAGIC:
566055d3
DC
2025 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2026 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2027 break;
50d5c8d8 2028 case XFS_AGI_MAGIC:
566055d3
DC
2029 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2030 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2031 break;
50d5c8d8 2032 case XFS_SYMLINK_MAGIC:
566055d3
DC
2033 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2034 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2035 break;
50d5c8d8
DC
2036 case XFS_DIR3_BLOCK_MAGIC:
2037 case XFS_DIR3_DATA_MAGIC:
2038 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2039 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2040 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2041 break;
50d5c8d8 2042 case XFS_ATTR3_RMT_MAGIC:
566055d3
DC
2043 lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn);
2044 uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid;
2045 break;
50d5c8d8 2046 case XFS_SB_MAGIC:
566055d3
DC
2047 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
2048 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
2049 break;
50d5c8d8
DC
2050 default:
2051 break;
2052 }
2053
566055d3
DC
2054 if (lsn != (xfs_lsn_t)-1) {
2055 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2056 goto recover_immediately;
2057 return lsn;
2058 }
2059
50d5c8d8
DC
2060 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2061 switch (magicda) {
2062 case XFS_DIR3_LEAF1_MAGIC:
2063 case XFS_DIR3_LEAFN_MAGIC:
2064 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2065 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2066 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2067 break;
50d5c8d8
DC
2068 default:
2069 break;
2070 }
2071
566055d3
DC
2072 if (lsn != (xfs_lsn_t)-1) {
2073 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2074 goto recover_immediately;
2075 return lsn;
2076 }
2077
50d5c8d8
DC
2078 /*
2079 * We do individual object checks on dquot and inode buffers as they
2080 * have their own individual LSN records. Also, we could have a stale
2081 * buffer here, so we have to at least recognise these buffer types.
2082 *
2083 * A notd complexity here is inode unlinked list processing - it logs
2084 * the inode directly in the buffer, but we don't know which inodes have
2085 * been modified, and there is no global buffer LSN. Hence we need to
2086 * recover all inode buffer types immediately. This problem will be
2087 * fixed by logical logging of the unlinked list modifications.
2088 */
2089 magic16 = be16_to_cpu(*(__be16 *)blk);
2090 switch (magic16) {
2091 case XFS_DQUOT_MAGIC:
2092 case XFS_DINODE_MAGIC:
2093 goto recover_immediately;
2094 default:
2095 break;
2096 }
2097
2098 /* unknown buffer contents, recover immediately */
2099
2100recover_immediately:
2101 return (xfs_lsn_t)-1;
2102
2103}
2104
1da177e4 2105/*
d75afeb3
DC
2106 * Validate the recovered buffer is of the correct type and attach the
2107 * appropriate buffer operations to them for writeback. Magic numbers are in a
2108 * few places:
2109 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2110 * the first 32 bits of the buffer (most blocks),
2111 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2112 */
d75afeb3 2113static void
50d5c8d8 2114xlog_recover_validate_buf_type(
9abbc539 2115 struct xfs_mount *mp,
e2714bf8 2116 struct xfs_buf *bp,
1da177e4
LT
2117 xfs_buf_log_format_t *buf_f)
2118{
d75afeb3
DC
2119 struct xfs_da_blkinfo *info = bp->b_addr;
2120 __uint32_t magic32;
2121 __uint16_t magic16;
2122 __uint16_t magicda;
2123
2124 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2125 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2126 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2127 switch (xfs_blft_from_flags(buf_f)) {
2128 case XFS_BLFT_BTREE_BUF:
d75afeb3 2129 switch (magic32) {
ee1a47ab
CH
2130 case XFS_ABTB_CRC_MAGIC:
2131 case XFS_ABTC_CRC_MAGIC:
2132 case XFS_ABTB_MAGIC:
2133 case XFS_ABTC_MAGIC:
2134 bp->b_ops = &xfs_allocbt_buf_ops;
2135 break;
2136 case XFS_IBT_CRC_MAGIC:
2137 case XFS_IBT_MAGIC:
2138 bp->b_ops = &xfs_inobt_buf_ops;
2139 break;
2140 case XFS_BMAP_CRC_MAGIC:
2141 case XFS_BMAP_MAGIC:
2142 bp->b_ops = &xfs_bmbt_buf_ops;
2143 break;
2144 default:
2145 xfs_warn(mp, "Bad btree block magic!");
2146 ASSERT(0);
2147 break;
2148 }
2149 break;
61fe135c 2150 case XFS_BLFT_AGF_BUF:
d75afeb3 2151 if (magic32 != XFS_AGF_MAGIC) {
4e0e6040
DC
2152 xfs_warn(mp, "Bad AGF block magic!");
2153 ASSERT(0);
2154 break;
2155 }
2156 bp->b_ops = &xfs_agf_buf_ops;
2157 break;
61fe135c 2158 case XFS_BLFT_AGFL_BUF:
77c95bba
CH
2159 if (!xfs_sb_version_hascrc(&mp->m_sb))
2160 break;
d75afeb3 2161 if (magic32 != XFS_AGFL_MAGIC) {
77c95bba
CH
2162 xfs_warn(mp, "Bad AGFL block magic!");
2163 ASSERT(0);
2164 break;
2165 }
2166 bp->b_ops = &xfs_agfl_buf_ops;
2167 break;
61fe135c 2168 case XFS_BLFT_AGI_BUF:
d75afeb3 2169 if (magic32 != XFS_AGI_MAGIC) {
983d09ff
DC
2170 xfs_warn(mp, "Bad AGI block magic!");
2171 ASSERT(0);
2172 break;
2173 }
2174 bp->b_ops = &xfs_agi_buf_ops;
2175 break;
61fe135c
DC
2176 case XFS_BLFT_UDQUOT_BUF:
2177 case XFS_BLFT_PDQUOT_BUF:
2178 case XFS_BLFT_GDQUOT_BUF:
123887e8 2179#ifdef CONFIG_XFS_QUOTA
d75afeb3 2180 if (magic16 != XFS_DQUOT_MAGIC) {
3fe58f30
CH
2181 xfs_warn(mp, "Bad DQUOT block magic!");
2182 ASSERT(0);
2183 break;
2184 }
2185 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2186#else
2187 xfs_alert(mp,
2188 "Trying to recover dquots without QUOTA support built in!");
2189 ASSERT(0);
2190#endif
3fe58f30 2191 break;
61fe135c 2192 case XFS_BLFT_DINO_BUF:
93848a99
CH
2193 /*
2194 * we get here with inode allocation buffers, not buffers that
2195 * track unlinked list changes.
2196 */
d75afeb3 2197 if (magic16 != XFS_DINODE_MAGIC) {
93848a99
CH
2198 xfs_warn(mp, "Bad INODE block magic!");
2199 ASSERT(0);
2200 break;
2201 }
2202 bp->b_ops = &xfs_inode_buf_ops;
2203 break;
61fe135c 2204 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2205 if (magic32 != XFS_SYMLINK_MAGIC) {
f948dd76
DC
2206 xfs_warn(mp, "Bad symlink block magic!");
2207 ASSERT(0);
2208 break;
2209 }
2210 bp->b_ops = &xfs_symlink_buf_ops;
2211 break;
61fe135c 2212 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2213 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2214 magic32 != XFS_DIR3_BLOCK_MAGIC) {
2215 xfs_warn(mp, "Bad dir block magic!");
2216 ASSERT(0);
2217 break;
2218 }
2219 bp->b_ops = &xfs_dir3_block_buf_ops;
2220 break;
61fe135c 2221 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2222 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2223 magic32 != XFS_DIR3_DATA_MAGIC) {
2224 xfs_warn(mp, "Bad dir data magic!");
2225 ASSERT(0);
2226 break;
2227 }
2228 bp->b_ops = &xfs_dir3_data_buf_ops;
2229 break;
61fe135c 2230 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2231 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2232 magic32 != XFS_DIR3_FREE_MAGIC) {
2233 xfs_warn(mp, "Bad dir3 free magic!");
2234 ASSERT(0);
2235 break;
2236 }
2237 bp->b_ops = &xfs_dir3_free_buf_ops;
2238 break;
61fe135c 2239 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2240 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2241 magicda != XFS_DIR3_LEAF1_MAGIC) {
2242 xfs_warn(mp, "Bad dir leaf1 magic!");
2243 ASSERT(0);
2244 break;
2245 }
2246 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2247 break;
61fe135c 2248 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2249 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2250 magicda != XFS_DIR3_LEAFN_MAGIC) {
2251 xfs_warn(mp, "Bad dir leafn magic!");
2252 ASSERT(0);
2253 break;
2254 }
2255 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2256 break;
61fe135c 2257 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2258 if (magicda != XFS_DA_NODE_MAGIC &&
2259 magicda != XFS_DA3_NODE_MAGIC) {
2260 xfs_warn(mp, "Bad da node magic!");
2261 ASSERT(0);
2262 break;
2263 }
2264 bp->b_ops = &xfs_da3_node_buf_ops;
2265 break;
61fe135c 2266 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2267 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2268 magicda != XFS_ATTR3_LEAF_MAGIC) {
2269 xfs_warn(mp, "Bad attr leaf magic!");
2270 ASSERT(0);
2271 break;
2272 }
2273 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2274 break;
61fe135c 2275 case XFS_BLFT_ATTR_RMT_BUF:
d75afeb3
DC
2276 if (!xfs_sb_version_hascrc(&mp->m_sb))
2277 break;
cab09a81 2278 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
d75afeb3
DC
2279 xfs_warn(mp, "Bad attr remote magic!");
2280 ASSERT(0);
2281 break;
2282 }
2283 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2284 break;
04a1e6c5
DC
2285 case XFS_BLFT_SB_BUF:
2286 if (magic32 != XFS_SB_MAGIC) {
2287 xfs_warn(mp, "Bad SB block magic!");
2288 ASSERT(0);
2289 break;
2290 }
2291 bp->b_ops = &xfs_sb_buf_ops;
2292 break;
ee1a47ab 2293 default:
61fe135c
DC
2294 xfs_warn(mp, "Unknown buffer type %d!",
2295 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2296 break;
2297 }
1da177e4
LT
2298}
2299
d75afeb3
DC
2300/*
2301 * Perform a 'normal' buffer recovery. Each logged region of the
2302 * buffer should be copied over the corresponding region in the
2303 * given buffer. The bitmap in the buf log format structure indicates
2304 * where to place the logged data.
2305 */
2306STATIC void
2307xlog_recover_do_reg_buffer(
2308 struct xfs_mount *mp,
2309 xlog_recover_item_t *item,
2310 struct xfs_buf *bp,
2311 xfs_buf_log_format_t *buf_f)
2312{
2313 int i;
2314 int bit;
2315 int nbits;
2316 int error;
2317
2318 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2319
2320 bit = 0;
2321 i = 1; /* 0 is the buf format structure */
2322 while (1) {
2323 bit = xfs_next_bit(buf_f->blf_data_map,
2324 buf_f->blf_map_size, bit);
2325 if (bit == -1)
2326 break;
2327 nbits = xfs_contig_bits(buf_f->blf_data_map,
2328 buf_f->blf_map_size, bit);
2329 ASSERT(nbits > 0);
2330 ASSERT(item->ri_buf[i].i_addr != NULL);
2331 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2332 ASSERT(BBTOB(bp->b_io_length) >=
2333 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2334
709da6a6
DC
2335 /*
2336 * The dirty regions logged in the buffer, even though
2337 * contiguous, may span multiple chunks. This is because the
2338 * dirty region may span a physical page boundary in a buffer
2339 * and hence be split into two separate vectors for writing into
2340 * the log. Hence we need to trim nbits back to the length of
2341 * the current region being copied out of the log.
2342 */
2343 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2344 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2345
d75afeb3
DC
2346 /*
2347 * Do a sanity check if this is a dquot buffer. Just checking
2348 * the first dquot in the buffer should do. XXXThis is
2349 * probably a good thing to do for other buf types also.
2350 */
2351 error = 0;
2352 if (buf_f->blf_flags &
2353 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2354 if (item->ri_buf[i].i_addr == NULL) {
2355 xfs_alert(mp,
2356 "XFS: NULL dquot in %s.", __func__);
2357 goto next;
2358 }
2359 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2360 xfs_alert(mp,
2361 "XFS: dquot too small (%d) in %s.",
2362 item->ri_buf[i].i_len, __func__);
2363 goto next;
2364 }
2365 error = xfs_qm_dqcheck(mp, item->ri_buf[i].i_addr,
2366 -1, 0, XFS_QMOPT_DOWARN,
2367 "dquot_buf_recover");
2368 if (error)
2369 goto next;
2370 }
2371
2372 memcpy(xfs_buf_offset(bp,
2373 (uint)bit << XFS_BLF_SHIFT), /* dest */
2374 item->ri_buf[i].i_addr, /* source */
2375 nbits<<XFS_BLF_SHIFT); /* length */
2376 next:
2377 i++;
2378 bit += nbits;
2379 }
2380
2381 /* Shouldn't be any more regions */
2382 ASSERT(i == item->ri_total);
2383
9222a9cf
DC
2384 /*
2385 * We can only do post recovery validation on items on CRC enabled
2386 * fielsystems as we need to know when the buffer was written to be able
2387 * to determine if we should have replayed the item. If we replay old
2388 * metadata over a newer buffer, then it will enter a temporarily
2389 * inconsistent state resulting in verification failures. Hence for now
2390 * just avoid the verification stage for non-crc filesystems
2391 */
2392 if (xfs_sb_version_hascrc(&mp->m_sb))
50d5c8d8 2393 xlog_recover_validate_buf_type(mp, bp, buf_f);
d75afeb3
DC
2394}
2395
1da177e4
LT
2396/*
2397 * Do some primitive error checking on ondisk dquot data structures.
2398 */
2399int
2400xfs_qm_dqcheck(
a0fa2b67 2401 struct xfs_mount *mp,
1da177e4
LT
2402 xfs_disk_dquot_t *ddq,
2403 xfs_dqid_t id,
2404 uint type, /* used only when IO_dorepair is true */
2405 uint flags,
2406 char *str)
2407{
2408 xfs_dqblk_t *d = (xfs_dqblk_t *)ddq;
2409 int errs = 0;
2410
2411 /*
2412 * We can encounter an uninitialized dquot buffer for 2 reasons:
2413 * 1. If we crash while deleting the quotainode(s), and those blks got
2414 * used for user data. This is because we take the path of regular
2415 * file deletion; however, the size field of quotainodes is never
2416 * updated, so all the tricks that we play in itruncate_finish
2417 * don't quite matter.
2418 *
2419 * 2. We don't play the quota buffers when there's a quotaoff logitem.
2420 * But the allocation will be replayed so we'll end up with an
2421 * uninitialized quota block.
2422 *
2423 * This is all fine; things are still consistent, and we haven't lost
2424 * any quota information. Just don't complain about bad dquot blks.
2425 */
69ef921b 2426 if (ddq->d_magic != cpu_to_be16(XFS_DQUOT_MAGIC)) {
1da177e4 2427 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2428 xfs_alert(mp,
1da177e4 2429 "%s : XFS dquot ID 0x%x, magic 0x%x != 0x%x",
1149d96a 2430 str, id, be16_to_cpu(ddq->d_magic), XFS_DQUOT_MAGIC);
1da177e4
LT
2431 errs++;
2432 }
1149d96a 2433 if (ddq->d_version != XFS_DQUOT_VERSION) {
1da177e4 2434 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2435 xfs_alert(mp,
1da177e4 2436 "%s : XFS dquot ID 0x%x, version 0x%x != 0x%x",
1149d96a 2437 str, id, ddq->d_version, XFS_DQUOT_VERSION);
1da177e4
LT
2438 errs++;
2439 }
2440
1149d96a
CH
2441 if (ddq->d_flags != XFS_DQ_USER &&
2442 ddq->d_flags != XFS_DQ_PROJ &&
2443 ddq->d_flags != XFS_DQ_GROUP) {
1da177e4 2444 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2445 xfs_alert(mp,
1da177e4 2446 "%s : XFS dquot ID 0x%x, unknown flags 0x%x",
1149d96a 2447 str, id, ddq->d_flags);
1da177e4
LT
2448 errs++;
2449 }
2450
1149d96a 2451 if (id != -1 && id != be32_to_cpu(ddq->d_id)) {
1da177e4 2452 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2453 xfs_alert(mp,
1da177e4
LT
2454 "%s : ondisk-dquot 0x%p, ID mismatch: "
2455 "0x%x expected, found id 0x%x",
1149d96a 2456 str, ddq, id, be32_to_cpu(ddq->d_id));
1da177e4
LT
2457 errs++;
2458 }
2459
2460 if (!errs && ddq->d_id) {
1149d96a 2461 if (ddq->d_blk_softlimit &&
d0a3fe67 2462 be64_to_cpu(ddq->d_bcount) >
1149d96a 2463 be64_to_cpu(ddq->d_blk_softlimit)) {
1da177e4
LT
2464 if (!ddq->d_btimer) {
2465 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2466 xfs_alert(mp,
2467 "%s : Dquot ID 0x%x (0x%p) BLK TIMER NOT STARTED",
1149d96a 2468 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2469 errs++;
2470 }
2471 }
1149d96a 2472 if (ddq->d_ino_softlimit &&
d0a3fe67 2473 be64_to_cpu(ddq->d_icount) >
1149d96a 2474 be64_to_cpu(ddq->d_ino_softlimit)) {
1da177e4
LT
2475 if (!ddq->d_itimer) {
2476 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2477 xfs_alert(mp,
2478 "%s : Dquot ID 0x%x (0x%p) INODE TIMER NOT STARTED",
1149d96a 2479 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2480 errs++;
2481 }
2482 }
1149d96a 2483 if (ddq->d_rtb_softlimit &&
d0a3fe67 2484 be64_to_cpu(ddq->d_rtbcount) >
1149d96a 2485 be64_to_cpu(ddq->d_rtb_softlimit)) {
1da177e4
LT
2486 if (!ddq->d_rtbtimer) {
2487 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67
DC
2488 xfs_alert(mp,
2489 "%s : Dquot ID 0x%x (0x%p) RTBLK TIMER NOT STARTED",
1149d96a 2490 str, (int)be32_to_cpu(ddq->d_id), ddq);
1da177e4
LT
2491 errs++;
2492 }
2493 }
2494 }
2495
2496 if (!errs || !(flags & XFS_QMOPT_DQREPAIR))
2497 return errs;
2498
2499 if (flags & XFS_QMOPT_DOWARN)
a0fa2b67 2500 xfs_notice(mp, "Re-initializing dquot ID 0x%x", id);
1da177e4
LT
2501
2502 /*
2503 * Typically, a repair is only requested by quotacheck.
2504 */
2505 ASSERT(id != -1);
2506 ASSERT(flags & XFS_QMOPT_DQREPAIR);
2507 memset(d, 0, sizeof(xfs_dqblk_t));
1149d96a
CH
2508
2509 d->dd_diskdq.d_magic = cpu_to_be16(XFS_DQUOT_MAGIC);
2510 d->dd_diskdq.d_version = XFS_DQUOT_VERSION;
2511 d->dd_diskdq.d_flags = type;
2512 d->dd_diskdq.d_id = cpu_to_be32(id);
1da177e4 2513
6fcdc59d
DC
2514 if (xfs_sb_version_hascrc(&mp->m_sb)) {
2515 uuid_copy(&d->dd_uuid, &mp->m_sb.sb_uuid);
2516 xfs_update_cksum((char *)d, sizeof(struct xfs_dqblk),
2517 XFS_DQUOT_CRC_OFF);
2518 }
2519
1da177e4
LT
2520 return errs;
2521}
2522
2523/*
2524 * Perform a dquot buffer recovery.
8ba701ee 2525 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2526 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2527 * Else, treat it as a regular buffer and do recovery.
2528 */
2529STATIC void
2530xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2531 struct xfs_mount *mp,
2532 struct xlog *log,
2533 struct xlog_recover_item *item,
2534 struct xfs_buf *bp,
2535 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2536{
2537 uint type;
2538
9abbc539
DC
2539 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2540
1da177e4
LT
2541 /*
2542 * Filesystems are required to send in quota flags at mount time.
2543 */
2544 if (mp->m_qflags == 0) {
2545 return;
2546 }
2547
2548 type = 0;
c1155410 2549 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2550 type |= XFS_DQ_USER;
c1155410 2551 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2552 type |= XFS_DQ_PROJ;
c1155410 2553 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2554 type |= XFS_DQ_GROUP;
2555 /*
2556 * This type of quotas was turned off, so ignore this buffer
2557 */
2558 if (log->l_quotaoffs_flag & type)
2559 return;
2560
9abbc539 2561 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2562}
2563
2564/*
2565 * This routine replays a modification made to a buffer at runtime.
2566 * There are actually two types of buffer, regular and inode, which
2567 * are handled differently. Inode buffers are handled differently
2568 * in that we only recover a specific set of data from them, namely
2569 * the inode di_next_unlinked fields. This is because all other inode
2570 * data is actually logged via inode records and any data we replay
2571 * here which overlaps that may be stale.
2572 *
2573 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2574 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2575 * of the buffer in the log should not be replayed at recovery time.
2576 * This is so that if the blocks covered by the buffer are reused for
2577 * file data before we crash we don't end up replaying old, freed
2578 * meta-data into a user's file.
2579 *
2580 * To handle the cancellation of buffer log items, we make two passes
2581 * over the log during recovery. During the first we build a table of
2582 * those buffers which have been cancelled, and during the second we
2583 * only replay those buffers which do not have corresponding cancel
34be5ff3 2584 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2585 * for more details on the implementation of the table of cancel records.
2586 */
2587STATIC int
c9f71f5f 2588xlog_recover_buffer_pass2(
9a8d2fdb
MT
2589 struct xlog *log,
2590 struct list_head *buffer_list,
50d5c8d8
DC
2591 struct xlog_recover_item *item,
2592 xfs_lsn_t current_lsn)
1da177e4 2593{
4e0d5f92 2594 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2595 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2596 xfs_buf_t *bp;
2597 int error;
6ad112bf 2598 uint buf_flags;
50d5c8d8 2599 xfs_lsn_t lsn;
1da177e4 2600
c9f71f5f
CH
2601 /*
2602 * In this pass we only want to recover all the buffers which have
2603 * not been cancelled and are not cancellation buffers themselves.
2604 */
2605 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2606 buf_f->blf_len, buf_f->blf_flags)) {
2607 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2608 return 0;
1da177e4 2609 }
c9f71f5f 2610
9abbc539 2611 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2612
a8acad70 2613 buf_flags = 0;
611c9946
DC
2614 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2615 buf_flags |= XBF_UNMAPPED;
6ad112bf 2616
e2714bf8 2617 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2618 buf_flags, NULL);
ac4d6888
CS
2619 if (!bp)
2620 return XFS_ERROR(ENOMEM);
e5702805 2621 error = bp->b_error;
5a52c2a5 2622 if (error) {
901796af 2623 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2624 goto out_release;
1da177e4
LT
2625 }
2626
50d5c8d8
DC
2627 /*
2628 * recover the buffer only if we get an LSN from it and it's less than
2629 * the lsn of the transaction we are replaying.
2630 */
2631 lsn = xlog_recover_get_buf_lsn(mp, bp);
2632 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0)
2633 goto out_release;
2634
e2714bf8 2635 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2636 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
e2714bf8 2637 } else if (buf_f->blf_flags &
c1155410 2638 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
1da177e4
LT
2639 xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2640 } else {
9abbc539 2641 xlog_recover_do_reg_buffer(mp, item, bp, buf_f);
1da177e4
LT
2642 }
2643 if (error)
50d5c8d8 2644 goto out_release;
1da177e4
LT
2645
2646 /*
2647 * Perform delayed write on the buffer. Asynchronous writes will be
2648 * slower when taking into account all the buffers to be flushed.
2649 *
2650 * Also make sure that only inode buffers with good sizes stay in
2651 * the buffer cache. The kernel moves inodes in buffers of 1 block
2652 * or XFS_INODE_CLUSTER_SIZE bytes, whichever is bigger. The inode
2653 * buffers in the log can be a different size if the log was generated
2654 * by an older kernel using unclustered inode buffers or a newer kernel
2655 * running with a different inode cluster size. Regardless, if the
2656 * the inode buffer size isn't MAX(blocksize, XFS_INODE_CLUSTER_SIZE)
2657 * for *our* value of XFS_INODE_CLUSTER_SIZE, then we need to keep
2658 * the buffer out of the buffer cache so that the buffer won't
2659 * overlap with future reads of those inodes.
2660 */
2661 if (XFS_DINODE_MAGIC ==
b53e675d 2662 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
aa0e8833 2663 (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize,
1da177e4 2664 (__uint32_t)XFS_INODE_CLUSTER_SIZE(log->l_mp)))) {
c867cb61 2665 xfs_buf_stale(bp);
c2b006c1 2666 error = xfs_bwrite(bp);
1da177e4 2667 } else {
ebad861b 2668 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2669 bp->b_iodone = xlog_recover_iodone;
43ff2122 2670 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2671 }
2672
50d5c8d8 2673out_release:
c2b006c1
CH
2674 xfs_buf_relse(bp);
2675 return error;
1da177e4
LT
2676}
2677
638f4416
DC
2678/*
2679 * Inode fork owner changes
2680 *
2681 * If we have been told that we have to reparent the inode fork, it's because an
2682 * extent swap operation on a CRC enabled filesystem has been done and we are
2683 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2684 * owners of it.
2685 *
2686 * The complexity here is that we don't have an inode context to work with, so
2687 * after we've replayed the inode we need to instantiate one. This is where the
2688 * fun begins.
2689 *
2690 * We are in the middle of log recovery, so we can't run transactions. That
2691 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2692 * that will result in the corresponding iput() running the inode through
2693 * xfs_inactive(). If we've just replayed an inode core that changes the link
2694 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2695 * transactions (bad!).
2696 *
2697 * So, to avoid this, we instantiate an inode directly from the inode core we've
2698 * just recovered. We have the buffer still locked, and all we really need to
2699 * instantiate is the inode core and the forks being modified. We can do this
2700 * manually, then run the inode btree owner change, and then tear down the
2701 * xfs_inode without having to run any transactions at all.
2702 *
2703 * Also, because we don't have a transaction context available here but need to
2704 * gather all the buffers we modify for writeback so we pass the buffer_list
2705 * instead for the operation to use.
2706 */
2707
2708STATIC int
2709xfs_recover_inode_owner_change(
2710 struct xfs_mount *mp,
2711 struct xfs_dinode *dip,
2712 struct xfs_inode_log_format *in_f,
2713 struct list_head *buffer_list)
2714{
2715 struct xfs_inode *ip;
2716 int error;
2717
2718 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2719
2720 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2721 if (!ip)
2722 return ENOMEM;
2723
2724 /* instantiate the inode */
2725 xfs_dinode_from_disk(&ip->i_d, dip);
2726 ASSERT(ip->i_d.di_version >= 3);
2727
2728 error = xfs_iformat_fork(ip, dip);
2729 if (error)
2730 goto out_free_ip;
2731
2732
2733 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2734 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2735 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2736 ip->i_ino, buffer_list);
2737 if (error)
2738 goto out_free_ip;
2739 }
2740
2741 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2742 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2743 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2744 ip->i_ino, buffer_list);
2745 if (error)
2746 goto out_free_ip;
2747 }
2748
2749out_free_ip:
2750 xfs_inode_free(ip);
2751 return error;
2752}
2753
1da177e4 2754STATIC int
c9f71f5f 2755xlog_recover_inode_pass2(
9a8d2fdb
MT
2756 struct xlog *log,
2757 struct list_head *buffer_list,
50d5c8d8
DC
2758 struct xlog_recover_item *item,
2759 xfs_lsn_t current_lsn)
1da177e4
LT
2760{
2761 xfs_inode_log_format_t *in_f;
c9f71f5f 2762 xfs_mount_t *mp = log->l_mp;
1da177e4 2763 xfs_buf_t *bp;
1da177e4 2764 xfs_dinode_t *dip;
1da177e4
LT
2765 int len;
2766 xfs_caddr_t src;
2767 xfs_caddr_t dest;
2768 int error;
2769 int attr_index;
2770 uint fields;
347d1c01 2771 xfs_icdinode_t *dicp;
93848a99 2772 uint isize;
6d192a9b 2773 int need_free = 0;
1da177e4 2774
6d192a9b 2775 if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) {
4e0d5f92 2776 in_f = item->ri_buf[0].i_addr;
6d192a9b 2777 } else {
4e0d5f92 2778 in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP);
6d192a9b
TS
2779 need_free = 1;
2780 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
2781 if (error)
2782 goto error;
2783 }
1da177e4
LT
2784
2785 /*
2786 * Inode buffers can be freed, look out for it,
2787 * and do not replay the inode.
2788 */
a1941895
CH
2789 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
2790 in_f->ilf_len, 0)) {
6d192a9b 2791 error = 0;
9abbc539 2792 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
2793 goto error;
2794 }
9abbc539 2795 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 2796
c3f8fc73 2797 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 2798 &xfs_inode_buf_ops);
ac4d6888
CS
2799 if (!bp) {
2800 error = ENOMEM;
2801 goto error;
2802 }
e5702805 2803 error = bp->b_error;
5a52c2a5 2804 if (error) {
901796af 2805 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 2806 goto out_release;
1da177e4 2807 }
1da177e4 2808 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
a1941895 2809 dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
2810
2811 /*
2812 * Make sure the place we're flushing out to really looks
2813 * like an inode!
2814 */
69ef921b 2815 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67
DC
2816 xfs_alert(mp,
2817 "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld",
2818 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 2819 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 2820 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2821 error = EFSCORRUPTED;
638f4416 2822 goto out_release;
1da177e4 2823 }
4e0d5f92 2824 dicp = item->ri_buf[1].i_addr;
1da177e4 2825 if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67
DC
2826 xfs_alert(mp,
2827 "%s: Bad inode log record, rec ptr 0x%p, ino %Ld",
2828 __func__, item, in_f->ilf_ino);
c9f71f5f 2829 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 2830 XFS_ERRLEVEL_LOW, mp);
6d192a9b 2831 error = EFSCORRUPTED;
638f4416 2832 goto out_release;
1da177e4
LT
2833 }
2834
50d5c8d8
DC
2835 /*
2836 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
2837 * than the lsn of the transaction we are replaying. Note: we still
2838 * need to replay an owner change even though the inode is more recent
2839 * than the transaction as there is no guarantee that all the btree
2840 * blocks are more recent than this transaction, too.
50d5c8d8
DC
2841 */
2842 if (dip->di_version >= 3) {
2843 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
2844
2845 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
2846 trace_xfs_log_recover_inode_skip(log, in_f);
2847 error = 0;
638f4416 2848 goto out_owner_change;
50d5c8d8
DC
2849 }
2850 }
2851
e60896d8
DC
2852 /*
2853 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
2854 * are transactional and if ordering is necessary we can determine that
2855 * more accurately by the LSN field in the V3 inode core. Don't trust
2856 * the inode versions we might be changing them here - use the
2857 * superblock flag to determine whether we need to look at di_flushiter
2858 * to skip replay when the on disk inode is newer than the log one
2859 */
2860 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
2861 dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
2862 /*
2863 * Deal with the wrap case, DI_MAX_FLUSH is less
2864 * than smaller numbers
2865 */
81591fe2 2866 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
347d1c01 2867 dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
2868 /* do nothing */
2869 } else {
9abbc539 2870 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 2871 error = 0;
638f4416 2872 goto out_release;
1da177e4
LT
2873 }
2874 }
e60896d8 2875
1da177e4
LT
2876 /* Take the opportunity to reset the flush iteration count */
2877 dicp->di_flushiter = 0;
2878
abbede1b 2879 if (unlikely(S_ISREG(dicp->di_mode))) {
1da177e4
LT
2880 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2881 (dicp->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 2882 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
1da177e4 2883 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2884 xfs_alert(mp,
2885 "%s: Bad regular inode log record, rec ptr 0x%p, "
2886 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2887 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2888 error = EFSCORRUPTED;
638f4416 2889 goto out_release;
1da177e4 2890 }
abbede1b 2891 } else if (unlikely(S_ISDIR(dicp->di_mode))) {
1da177e4
LT
2892 if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) &&
2893 (dicp->di_format != XFS_DINODE_FMT_BTREE) &&
2894 (dicp->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 2895 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
1da177e4 2896 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2897 xfs_alert(mp,
2898 "%s: Bad dir inode log record, rec ptr 0x%p, "
2899 "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld",
2900 __func__, item, dip, bp, in_f->ilf_ino);
6d192a9b 2901 error = EFSCORRUPTED;
638f4416 2902 goto out_release;
1da177e4
LT
2903 }
2904 }
2905 if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){
c9f71f5f 2906 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
1da177e4 2907 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2908 xfs_alert(mp,
2909 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2910 "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld",
2911 __func__, item, dip, bp, in_f->ilf_ino,
1da177e4
LT
2912 dicp->di_nextents + dicp->di_anextents,
2913 dicp->di_nblocks);
6d192a9b 2914 error = EFSCORRUPTED;
638f4416 2915 goto out_release;
1da177e4
LT
2916 }
2917 if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 2918 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
1da177e4 2919 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2920 xfs_alert(mp,
2921 "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, "
2922 "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__,
c9f71f5f 2923 item, dip, bp, in_f->ilf_ino, dicp->di_forkoff);
6d192a9b 2924 error = EFSCORRUPTED;
638f4416 2925 goto out_release;
1da177e4 2926 }
93848a99
CH
2927 isize = xfs_icdinode_size(dicp->di_version);
2928 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 2929 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
1da177e4 2930 XFS_ERRLEVEL_LOW, mp, dicp);
a0fa2b67
DC
2931 xfs_alert(mp,
2932 "%s: Bad inode log record length %d, rec ptr 0x%p",
2933 __func__, item->ri_buf[1].i_len, item);
6d192a9b 2934 error = EFSCORRUPTED;
638f4416 2935 goto out_release;
1da177e4
LT
2936 }
2937
2938 /* The core is in in-core format */
93848a99 2939 xfs_dinode_to_disk(dip, dicp);
1da177e4
LT
2940
2941 /* the rest is in on-disk format */
93848a99
CH
2942 if (item->ri_buf[1].i_len > isize) {
2943 memcpy((char *)dip + isize,
2944 item->ri_buf[1].i_addr + isize,
2945 item->ri_buf[1].i_len - isize);
1da177e4
LT
2946 }
2947
2948 fields = in_f->ilf_fields;
2949 switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) {
2950 case XFS_ILOG_DEV:
81591fe2 2951 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
2952 break;
2953 case XFS_ILOG_UUID:
81591fe2
CH
2954 memcpy(XFS_DFORK_DPTR(dip),
2955 &in_f->ilf_u.ilfu_uuid,
2956 sizeof(uuid_t));
1da177e4
LT
2957 break;
2958 }
2959
2960 if (in_f->ilf_size == 2)
638f4416 2961 goto out_owner_change;
1da177e4
LT
2962 len = item->ri_buf[2].i_len;
2963 src = item->ri_buf[2].i_addr;
2964 ASSERT(in_f->ilf_size <= 4);
2965 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
2966 ASSERT(!(fields & XFS_ILOG_DFORK) ||
2967 (len == in_f->ilf_dsize));
2968
2969 switch (fields & XFS_ILOG_DFORK) {
2970 case XFS_ILOG_DDATA:
2971 case XFS_ILOG_DEXT:
81591fe2 2972 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
2973 break;
2974
2975 case XFS_ILOG_DBROOT:
7cc95a82 2976 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 2977 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
2978 XFS_DFORK_DSIZE(dip, mp));
2979 break;
2980
2981 default:
2982 /*
2983 * There are no data fork flags set.
2984 */
2985 ASSERT((fields & XFS_ILOG_DFORK) == 0);
2986 break;
2987 }
2988
2989 /*
2990 * If we logged any attribute data, recover it. There may or
2991 * may not have been any other non-core data logged in this
2992 * transaction.
2993 */
2994 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
2995 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
2996 attr_index = 3;
2997 } else {
2998 attr_index = 2;
2999 }
3000 len = item->ri_buf[attr_index].i_len;
3001 src = item->ri_buf[attr_index].i_addr;
3002 ASSERT(len == in_f->ilf_asize);
3003
3004 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3005 case XFS_ILOG_ADATA:
3006 case XFS_ILOG_AEXT:
3007 dest = XFS_DFORK_APTR(dip);
3008 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3009 memcpy(dest, src, len);
3010 break;
3011
3012 case XFS_ILOG_ABROOT:
3013 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3014 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3015 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3016 XFS_DFORK_ASIZE(dip, mp));
3017 break;
3018
3019 default:
a0fa2b67 3020 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3021 ASSERT(0);
6d192a9b 3022 error = EIO;
638f4416 3023 goto out_release;
1da177e4
LT
3024 }
3025 }
3026
638f4416
DC
3027out_owner_change:
3028 if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER))
3029 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3030 buffer_list);
93848a99
CH
3031 /* re-generate the checksum. */
3032 xfs_dinode_calc_crc(log->l_mp, dip);
3033
ebad861b 3034 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3035 bp->b_iodone = xlog_recover_iodone;
43ff2122 3036 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3037
3038out_release:
61551f1e 3039 xfs_buf_relse(bp);
6d192a9b
TS
3040error:
3041 if (need_free)
f0e2d93c 3042 kmem_free(in_f);
6d192a9b 3043 return XFS_ERROR(error);
1da177e4
LT
3044}
3045
3046/*
9a8d2fdb 3047 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3048 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3049 * of that type.
3050 */
3051STATIC int
c9f71f5f 3052xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3053 struct xlog *log,
3054 struct xlog_recover_item *item)
1da177e4 3055{
c9f71f5f 3056 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3057 ASSERT(qoff_f);
3058
3059 /*
3060 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3061 * group/project quotaoff or both.
1da177e4
LT
3062 */
3063 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3064 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3065 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3066 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3067 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3068 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3069
3070 return (0);
3071}
3072
3073/*
3074 * Recover a dquot record
3075 */
3076STATIC int
c9f71f5f 3077xlog_recover_dquot_pass2(
9a8d2fdb
MT
3078 struct xlog *log,
3079 struct list_head *buffer_list,
50d5c8d8
DC
3080 struct xlog_recover_item *item,
3081 xfs_lsn_t current_lsn)
1da177e4 3082{
c9f71f5f 3083 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3084 xfs_buf_t *bp;
3085 struct xfs_disk_dquot *ddq, *recddq;
3086 int error;
3087 xfs_dq_logformat_t *dq_f;
3088 uint type;
3089
1da177e4
LT
3090
3091 /*
3092 * Filesystems are required to send in quota flags at mount time.
3093 */
3094 if (mp->m_qflags == 0)
3095 return (0);
3096
4e0d5f92
CH
3097 recddq = item->ri_buf[1].i_addr;
3098 if (recddq == NULL) {
a0fa2b67 3099 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
0c5e1ce8
CH
3100 return XFS_ERROR(EIO);
3101 }
8ec6dba2 3102 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3103 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8
CH
3104 item->ri_buf[1].i_len, __func__);
3105 return XFS_ERROR(EIO);
3106 }
3107
1da177e4
LT
3108 /*
3109 * This type of quotas was turned off, so ignore this record.
3110 */
b53e675d 3111 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3112 ASSERT(type);
3113 if (log->l_quotaoffs_flag & type)
3114 return (0);
3115
3116 /*
3117 * At this point we know that quota was _not_ turned off.
3118 * Since the mount flags are not indicating to us otherwise, this
3119 * must mean that quota is on, and the dquot needs to be replayed.
3120 * Remember that we may not have fully recovered the superblock yet,
3121 * so we can't do the usual trick of looking at the SB quota bits.
3122 *
3123 * The other possibility, of course, is that the quota subsystem was
3124 * removed since the last mount - ENOSYS.
3125 */
4e0d5f92 3126 dq_f = item->ri_buf[0].i_addr;
1da177e4 3127 ASSERT(dq_f);
a0fa2b67
DC
3128 error = xfs_qm_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3129 "xlog_recover_dquot_pass2 (log copy)");
3130 if (error)
1da177e4 3131 return XFS_ERROR(EIO);
1da177e4
LT
3132 ASSERT(dq_f->qlf_len == 1);
3133
7ca790a5 3134 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73
DC
3135 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
3136 NULL);
7ca790a5 3137 if (error)
1da177e4 3138 return error;
7ca790a5 3139
1da177e4
LT
3140 ASSERT(bp);
3141 ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset);
3142
3143 /*
3144 * At least the magic num portion should be on disk because this
3145 * was among a chunk of dquots created earlier, and we did some
3146 * minimal initialization then.
3147 */
a0fa2b67
DC
3148 error = xfs_qm_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN,
3149 "xlog_recover_dquot_pass2");
3150 if (error) {
1da177e4
LT
3151 xfs_buf_relse(bp);
3152 return XFS_ERROR(EIO);
3153 }
3154
50d5c8d8
DC
3155 /*
3156 * If the dquot has an LSN in it, recover the dquot only if it's less
3157 * than the lsn of the transaction we are replaying.
3158 */
3159 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3160 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3161 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3162
3163 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3164 goto out_release;
3165 }
3166 }
3167
1da177e4 3168 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3169 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3170 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3171 XFS_DQUOT_CRC_OFF);
3172 }
1da177e4
LT
3173
3174 ASSERT(dq_f->qlf_size == 2);
ebad861b 3175 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3176 bp->b_iodone = xlog_recover_iodone;
43ff2122 3177 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3178
50d5c8d8
DC
3179out_release:
3180 xfs_buf_relse(bp);
3181 return 0;
1da177e4
LT
3182}
3183
3184/*
3185 * This routine is called to create an in-core extent free intent
3186 * item from the efi format structure which was logged on disk.
3187 * It allocates an in-core efi, copies the extents from the format
3188 * structure into it, and adds the efi to the AIL with the given
3189 * LSN.
3190 */
6d192a9b 3191STATIC int
c9f71f5f 3192xlog_recover_efi_pass2(
9a8d2fdb
MT
3193 struct xlog *log,
3194 struct xlog_recover_item *item,
3195 xfs_lsn_t lsn)
1da177e4 3196{
6d192a9b 3197 int error;
c9f71f5f 3198 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3199 xfs_efi_log_item_t *efip;
3200 xfs_efi_log_format_t *efi_formatp;
1da177e4 3201
4e0d5f92 3202 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3203
1da177e4 3204 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
6d192a9b
TS
3205 if ((error = xfs_efi_copy_format(&(item->ri_buf[0]),
3206 &(efip->efi_format)))) {
3207 xfs_efi_item_free(efip);
3208 return error;
3209 }
b199c8a4 3210 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3211
a9c21c1b 3212 spin_lock(&log->l_ailp->xa_lock);
1da177e4 3213 /*
783a2f65 3214 * xfs_trans_ail_update() drops the AIL lock.
1da177e4 3215 */
e6059949 3216 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
6d192a9b 3217 return 0;
1da177e4
LT
3218}
3219
3220
3221/*
3222 * This routine is called when an efd format structure is found in
3223 * a committed transaction in the log. It's purpose is to cancel
3224 * the corresponding efi if it was still in the log. To do this
3225 * it searches the AIL for the efi with an id equal to that in the
3226 * efd format structure. If we find it, we remove the efi from the
3227 * AIL and free it.
3228 */
c9f71f5f
CH
3229STATIC int
3230xlog_recover_efd_pass2(
9a8d2fdb
MT
3231 struct xlog *log,
3232 struct xlog_recover_item *item)
1da177e4 3233{
1da177e4
LT
3234 xfs_efd_log_format_t *efd_formatp;
3235 xfs_efi_log_item_t *efip = NULL;
3236 xfs_log_item_t *lip;
1da177e4 3237 __uint64_t efi_id;
27d8d5fe 3238 struct xfs_ail_cursor cur;
783a2f65 3239 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3240
4e0d5f92 3241 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3242 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3243 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3244 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3245 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3246 efi_id = efd_formatp->efd_efi_id;
3247
3248 /*
3249 * Search for the efi with the id in the efd format structure
3250 * in the AIL.
3251 */
a9c21c1b
DC
3252 spin_lock(&ailp->xa_lock);
3253 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3254 while (lip != NULL) {
3255 if (lip->li_type == XFS_LI_EFI) {
3256 efip = (xfs_efi_log_item_t *)lip;
3257 if (efip->efi_format.efi_id == efi_id) {
3258 /*
783a2f65 3259 * xfs_trans_ail_delete() drops the
1da177e4
LT
3260 * AIL lock.
3261 */
04913fdd
DC
3262 xfs_trans_ail_delete(ailp, lip,
3263 SHUTDOWN_CORRUPT_INCORE);
8ae2c0f6 3264 xfs_efi_item_free(efip);
a9c21c1b 3265 spin_lock(&ailp->xa_lock);
27d8d5fe 3266 break;
1da177e4
LT
3267 }
3268 }
a9c21c1b 3269 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3270 }
a9c21c1b
DC
3271 xfs_trans_ail_cursor_done(ailp, &cur);
3272 spin_unlock(&ailp->xa_lock);
c9f71f5f
CH
3273
3274 return 0;
1da177e4
LT
3275}
3276
28c8e41a
DC
3277/*
3278 * This routine is called when an inode create format structure is found in a
3279 * committed transaction in the log. It's purpose is to initialise the inodes
3280 * being allocated on disk. This requires us to get inode cluster buffers that
3281 * match the range to be intialised, stamped with inode templates and written
3282 * by delayed write so that subsequent modifications will hit the cached buffer
3283 * and only need writing out at the end of recovery.
3284 */
3285STATIC int
3286xlog_recover_do_icreate_pass2(
3287 struct xlog *log,
3288 struct list_head *buffer_list,
3289 xlog_recover_item_t *item)
3290{
3291 struct xfs_mount *mp = log->l_mp;
3292 struct xfs_icreate_log *icl;
3293 xfs_agnumber_t agno;
3294 xfs_agblock_t agbno;
3295 unsigned int count;
3296 unsigned int isize;
3297 xfs_agblock_t length;
3298
3299 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3300 if (icl->icl_type != XFS_LI_ICREATE) {
3301 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
3302 return EINVAL;
3303 }
3304
3305 if (icl->icl_size != 1) {
3306 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
3307 return EINVAL;
3308 }
3309
3310 agno = be32_to_cpu(icl->icl_ag);
3311 if (agno >= mp->m_sb.sb_agcount) {
3312 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
3313 return EINVAL;
3314 }
3315 agbno = be32_to_cpu(icl->icl_agbno);
3316 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3317 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
3318 return EINVAL;
3319 }
3320 isize = be32_to_cpu(icl->icl_isize);
3321 if (isize != mp->m_sb.sb_inodesize) {
3322 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
3323 return EINVAL;
3324 }
3325 count = be32_to_cpu(icl->icl_count);
3326 if (!count) {
3327 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
3328 return EINVAL;
3329 }
3330 length = be32_to_cpu(icl->icl_length);
3331 if (!length || length >= mp->m_sb.sb_agblocks) {
3332 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
3333 return EINVAL;
3334 }
3335
3336 /* existing allocation is fixed value */
3337 ASSERT(count == XFS_IALLOC_INODES(mp));
3338 ASSERT(length == XFS_IALLOC_BLOCKS(mp));
3339 if (count != XFS_IALLOC_INODES(mp) ||
3340 length != XFS_IALLOC_BLOCKS(mp)) {
3341 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2");
3342 return EINVAL;
3343 }
3344
3345 /*
3346 * Inode buffers can be freed. Do not replay the inode initialisation as
3347 * we could be overwriting something written after this inode buffer was
3348 * cancelled.
3349 *
3350 * XXX: we need to iterate all buffers and only init those that are not
3351 * cancelled. I think that a more fine grained factoring of
3352 * xfs_ialloc_inode_init may be appropriate here to enable this to be
3353 * done easily.
3354 */
3355 if (xlog_check_buffer_cancelled(log,
3356 XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0))
3357 return 0;
3358
3359 xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length,
3360 be32_to_cpu(icl->icl_gen));
3361 return 0;
3362}
3363
1da177e4
LT
3364/*
3365 * Free up any resources allocated by the transaction
3366 *
3367 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
3368 */
3369STATIC void
3370xlog_recover_free_trans(
d0450948 3371 struct xlog_recover *trans)
1da177e4 3372{
f0a76953 3373 xlog_recover_item_t *item, *n;
1da177e4
LT
3374 int i;
3375
f0a76953
DC
3376 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
3377 /* Free the regions in the item. */
3378 list_del(&item->ri_list);
3379 for (i = 0; i < item->ri_cnt; i++)
3380 kmem_free(item->ri_buf[i].i_addr);
1da177e4 3381 /* Free the item itself */
f0a76953
DC
3382 kmem_free(item->ri_buf);
3383 kmem_free(item);
3384 }
1da177e4 3385 /* Free the transaction recover structure */
f0e2d93c 3386 kmem_free(trans);
1da177e4
LT
3387}
3388
00574da1
ZYW
3389STATIC void
3390xlog_recover_buffer_ra_pass2(
3391 struct xlog *log,
3392 struct xlog_recover_item *item)
3393{
3394 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3395 struct xfs_mount *mp = log->l_mp;
3396
84a5b730 3397 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3398 buf_f->blf_len, buf_f->blf_flags)) {
3399 return;
3400 }
3401
3402 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3403 buf_f->blf_len, NULL);
3404}
3405
3406STATIC void
3407xlog_recover_inode_ra_pass2(
3408 struct xlog *log,
3409 struct xlog_recover_item *item)
3410{
3411 struct xfs_inode_log_format ilf_buf;
3412 struct xfs_inode_log_format *ilfp;
3413 struct xfs_mount *mp = log->l_mp;
3414 int error;
3415
3416 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3417 ilfp = item->ri_buf[0].i_addr;
3418 } else {
3419 ilfp = &ilf_buf;
3420 memset(ilfp, 0, sizeof(*ilfp));
3421 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
3422 if (error)
3423 return;
3424 }
3425
84a5b730 3426 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
3427 return;
3428
3429 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 3430 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
3431}
3432
3433STATIC void
3434xlog_recover_dquot_ra_pass2(
3435 struct xlog *log,
3436 struct xlog_recover_item *item)
3437{
3438 struct xfs_mount *mp = log->l_mp;
3439 struct xfs_disk_dquot *recddq;
3440 struct xfs_dq_logformat *dq_f;
3441 uint type;
3442
3443
3444 if (mp->m_qflags == 0)
3445 return;
3446
3447 recddq = item->ri_buf[1].i_addr;
3448 if (recddq == NULL)
3449 return;
3450 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
3451 return;
3452
3453 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
3454 ASSERT(type);
3455 if (log->l_quotaoffs_flag & type)
3456 return;
3457
3458 dq_f = item->ri_buf[0].i_addr;
3459 ASSERT(dq_f);
3460 ASSERT(dq_f->qlf_len == 1);
3461
3462 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno,
0f0d3345 3463 XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL);
00574da1
ZYW
3464}
3465
3466STATIC void
3467xlog_recover_ra_pass2(
3468 struct xlog *log,
3469 struct xlog_recover_item *item)
3470{
3471 switch (ITEM_TYPE(item)) {
3472 case XFS_LI_BUF:
3473 xlog_recover_buffer_ra_pass2(log, item);
3474 break;
3475 case XFS_LI_INODE:
3476 xlog_recover_inode_ra_pass2(log, item);
3477 break;
3478 case XFS_LI_DQUOT:
3479 xlog_recover_dquot_ra_pass2(log, item);
3480 break;
3481 case XFS_LI_EFI:
3482 case XFS_LI_EFD:
3483 case XFS_LI_QUOTAOFF:
3484 default:
3485 break;
3486 }
3487}
3488
d0450948 3489STATIC int
c9f71f5f 3490xlog_recover_commit_pass1(
ad223e60
MT
3491 struct xlog *log,
3492 struct xlog_recover *trans,
3493 struct xlog_recover_item *item)
d0450948 3494{
c9f71f5f 3495 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
3496
3497 switch (ITEM_TYPE(item)) {
3498 case XFS_LI_BUF:
c9f71f5f
CH
3499 return xlog_recover_buffer_pass1(log, item);
3500 case XFS_LI_QUOTAOFF:
3501 return xlog_recover_quotaoff_pass1(log, item);
d0450948 3502 case XFS_LI_INODE:
d0450948 3503 case XFS_LI_EFI:
d0450948 3504 case XFS_LI_EFD:
c9f71f5f 3505 case XFS_LI_DQUOT:
28c8e41a 3506 case XFS_LI_ICREATE:
c9f71f5f 3507 /* nothing to do in pass 1 */
d0450948 3508 return 0;
c9f71f5f 3509 default:
a0fa2b67
DC
3510 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3511 __func__, ITEM_TYPE(item));
c9f71f5f
CH
3512 ASSERT(0);
3513 return XFS_ERROR(EIO);
3514 }
3515}
3516
3517STATIC int
3518xlog_recover_commit_pass2(
ad223e60
MT
3519 struct xlog *log,
3520 struct xlog_recover *trans,
3521 struct list_head *buffer_list,
3522 struct xlog_recover_item *item)
c9f71f5f
CH
3523{
3524 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
3525
3526 switch (ITEM_TYPE(item)) {
3527 case XFS_LI_BUF:
50d5c8d8
DC
3528 return xlog_recover_buffer_pass2(log, buffer_list, item,
3529 trans->r_lsn);
c9f71f5f 3530 case XFS_LI_INODE:
50d5c8d8
DC
3531 return xlog_recover_inode_pass2(log, buffer_list, item,
3532 trans->r_lsn);
c9f71f5f
CH
3533 case XFS_LI_EFI:
3534 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
3535 case XFS_LI_EFD:
3536 return xlog_recover_efd_pass2(log, item);
d0450948 3537 case XFS_LI_DQUOT:
50d5c8d8
DC
3538 return xlog_recover_dquot_pass2(log, buffer_list, item,
3539 trans->r_lsn);
28c8e41a
DC
3540 case XFS_LI_ICREATE:
3541 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 3542 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
3543 /* nothing to do in pass2 */
3544 return 0;
d0450948 3545 default:
a0fa2b67
DC
3546 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
3547 __func__, ITEM_TYPE(item));
d0450948
CH
3548 ASSERT(0);
3549 return XFS_ERROR(EIO);
3550 }
3551}
3552
00574da1
ZYW
3553STATIC int
3554xlog_recover_items_pass2(
3555 struct xlog *log,
3556 struct xlog_recover *trans,
3557 struct list_head *buffer_list,
3558 struct list_head *item_list)
3559{
3560 struct xlog_recover_item *item;
3561 int error = 0;
3562
3563 list_for_each_entry(item, item_list, ri_list) {
3564 error = xlog_recover_commit_pass2(log, trans,
3565 buffer_list, item);
3566 if (error)
3567 return error;
3568 }
3569
3570 return error;
3571}
3572
d0450948
CH
3573/*
3574 * Perform the transaction.
3575 *
3576 * If the transaction modifies a buffer or inode, do it now. Otherwise,
3577 * EFIs and EFDs get queued up by adding entries into the AIL for them.
3578 */
1da177e4
LT
3579STATIC int
3580xlog_recover_commit_trans(
ad223e60 3581 struct xlog *log,
d0450948 3582 struct xlog_recover *trans,
1da177e4
LT
3583 int pass)
3584{
00574da1
ZYW
3585 int error = 0;
3586 int error2;
3587 int items_queued = 0;
3588 struct xlog_recover_item *item;
3589 struct xlog_recover_item *next;
3590 LIST_HEAD (buffer_list);
3591 LIST_HEAD (ra_list);
3592 LIST_HEAD (done_list);
3593
3594 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 3595
f0a76953 3596 hlist_del(&trans->r_list);
d0450948
CH
3597
3598 error = xlog_recover_reorder_trans(log, trans, pass);
3599 if (error)
1da177e4 3600 return error;
d0450948 3601
00574da1 3602 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
3603 switch (pass) {
3604 case XLOG_RECOVER_PASS1:
c9f71f5f 3605 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
3606 break;
3607 case XLOG_RECOVER_PASS2:
00574da1
ZYW
3608 xlog_recover_ra_pass2(log, item);
3609 list_move_tail(&item->ri_list, &ra_list);
3610 items_queued++;
3611 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
3612 error = xlog_recover_items_pass2(log, trans,
3613 &buffer_list, &ra_list);
3614 list_splice_tail_init(&ra_list, &done_list);
3615 items_queued = 0;
3616 }
3617
43ff2122
CH
3618 break;
3619 default:
3620 ASSERT(0);
3621 }
3622
d0450948 3623 if (error)
43ff2122 3624 goto out;
d0450948
CH
3625 }
3626
00574da1
ZYW
3627out:
3628 if (!list_empty(&ra_list)) {
3629 if (!error)
3630 error = xlog_recover_items_pass2(log, trans,
3631 &buffer_list, &ra_list);
3632 list_splice_tail_init(&ra_list, &done_list);
3633 }
3634
3635 if (!list_empty(&done_list))
3636 list_splice_init(&done_list, &trans->r_itemq);
3637
d0450948 3638 xlog_recover_free_trans(trans);
43ff2122 3639
43ff2122
CH
3640 error2 = xfs_buf_delwri_submit(&buffer_list);
3641 return error ? error : error2;
1da177e4
LT
3642}
3643
3644STATIC int
3645xlog_recover_unmount_trans(
ad223e60
MT
3646 struct xlog *log,
3647 struct xlog_recover *trans)
1da177e4
LT
3648{
3649 /* Do nothing now */
a0fa2b67 3650 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
1da177e4
LT
3651 return 0;
3652}
3653
3654/*
3655 * There are two valid states of the r_state field. 0 indicates that the
3656 * transaction structure is in a normal state. We have either seen the
3657 * start of the transaction or the last operation we added was not a partial
3658 * operation. If the last operation we added to the transaction was a
3659 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
3660 *
3661 * NOTE: skip LRs with 0 data length.
3662 */
3663STATIC int
3664xlog_recover_process_data(
9a8d2fdb 3665 struct xlog *log,
f0a76953 3666 struct hlist_head rhash[],
9a8d2fdb 3667 struct xlog_rec_header *rhead,
1da177e4
LT
3668 xfs_caddr_t dp,
3669 int pass)
3670{
3671 xfs_caddr_t lp;
3672 int num_logops;
3673 xlog_op_header_t *ohead;
3674 xlog_recover_t *trans;
3675 xlog_tid_t tid;
3676 int error;
3677 unsigned long hash;
3678 uint flags;
3679
b53e675d
CH
3680 lp = dp + be32_to_cpu(rhead->h_len);
3681 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
3682
3683 /* check the log format matches our own - else we can't recover */
3684 if (xlog_header_check_recover(log->l_mp, rhead))
3685 return (XFS_ERROR(EIO));
3686
3687 while ((dp < lp) && num_logops) {
3688 ASSERT(dp + sizeof(xlog_op_header_t) <= lp);
3689 ohead = (xlog_op_header_t *)dp;
3690 dp += sizeof(xlog_op_header_t);
3691 if (ohead->oh_clientid != XFS_TRANSACTION &&
3692 ohead->oh_clientid != XFS_LOG) {
a0fa2b67
DC
3693 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
3694 __func__, ohead->oh_clientid);
1da177e4
LT
3695 ASSERT(0);
3696 return (XFS_ERROR(EIO));
3697 }
67fcb7bf 3698 tid = be32_to_cpu(ohead->oh_tid);
1da177e4 3699 hash = XLOG_RHASH(tid);
f0a76953 3700 trans = xlog_recover_find_tid(&rhash[hash], tid);
1da177e4
LT
3701 if (trans == NULL) { /* not found; add new tid */
3702 if (ohead->oh_flags & XLOG_START_TRANS)
3703 xlog_recover_new_tid(&rhash[hash], tid,
b53e675d 3704 be64_to_cpu(rhead->h_lsn));
1da177e4 3705 } else {
9742bb93 3706 if (dp + be32_to_cpu(ohead->oh_len) > lp) {
a0fa2b67
DC
3707 xfs_warn(log->l_mp, "%s: bad length 0x%x",
3708 __func__, be32_to_cpu(ohead->oh_len));
9742bb93
LM
3709 WARN_ON(1);
3710 return (XFS_ERROR(EIO));
3711 }
1da177e4
LT
3712 flags = ohead->oh_flags & ~XLOG_END_TRANS;
3713 if (flags & XLOG_WAS_CONT_TRANS)
3714 flags &= ~XLOG_CONTINUE_TRANS;
3715 switch (flags) {
3716 case XLOG_COMMIT_TRANS:
3717 error = xlog_recover_commit_trans(log,
f0a76953 3718 trans, pass);
1da177e4
LT
3719 break;
3720 case XLOG_UNMOUNT_TRANS:
a0fa2b67 3721 error = xlog_recover_unmount_trans(log, trans);
1da177e4
LT
3722 break;
3723 case XLOG_WAS_CONT_TRANS:
9abbc539
DC
3724 error = xlog_recover_add_to_cont_trans(log,
3725 trans, dp,
3726 be32_to_cpu(ohead->oh_len));
1da177e4
LT
3727 break;
3728 case XLOG_START_TRANS:
a0fa2b67
DC
3729 xfs_warn(log->l_mp, "%s: bad transaction",
3730 __func__);
1da177e4
LT
3731 ASSERT(0);
3732 error = XFS_ERROR(EIO);
3733 break;
3734 case 0:
3735 case XLOG_CONTINUE_TRANS:
9abbc539 3736 error = xlog_recover_add_to_trans(log, trans,
67fcb7bf 3737 dp, be32_to_cpu(ohead->oh_len));
1da177e4
LT
3738 break;
3739 default:
a0fa2b67
DC
3740 xfs_warn(log->l_mp, "%s: bad flag 0x%x",
3741 __func__, flags);
1da177e4
LT
3742 ASSERT(0);
3743 error = XFS_ERROR(EIO);
3744 break;
3745 }
3746 if (error)
3747 return error;
3748 }
67fcb7bf 3749 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
3750 num_logops--;
3751 }
3752 return 0;
3753}
3754
3755/*
3756 * Process an extent free intent item that was recovered from
3757 * the log. We need to free the extents that it describes.
3758 */
3c1e2bbe 3759STATIC int
1da177e4
LT
3760xlog_recover_process_efi(
3761 xfs_mount_t *mp,
3762 xfs_efi_log_item_t *efip)
3763{
3764 xfs_efd_log_item_t *efdp;
3765 xfs_trans_t *tp;
3766 int i;
3c1e2bbe 3767 int error = 0;
1da177e4
LT
3768 xfs_extent_t *extp;
3769 xfs_fsblock_t startblock_fsb;
3770
b199c8a4 3771 ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags));
1da177e4
LT
3772
3773 /*
3774 * First check the validity of the extents described by the
3775 * EFI. If any are bad, then assume that all are bad and
3776 * just toss the EFI.
3777 */
3778 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3779 extp = &(efip->efi_format.efi_extents[i]);
3780 startblock_fsb = XFS_BB_TO_FSB(mp,
3781 XFS_FSB_TO_DADDR(mp, extp->ext_start));
3782 if ((startblock_fsb == 0) ||
3783 (extp->ext_len == 0) ||
3784 (startblock_fsb >= mp->m_sb.sb_dblocks) ||
3785 (extp->ext_len >= mp->m_sb.sb_agblocks)) {
3786 /*
3787 * This will pull the EFI from the AIL and
3788 * free the memory associated with it.
3789 */
666d644c 3790 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
1da177e4 3791 xfs_efi_release(efip, efip->efi_format.efi_nextents);
3c1e2bbe 3792 return XFS_ERROR(EIO);
1da177e4
LT
3793 }
3794 }
3795
3796 tp = xfs_trans_alloc(mp, 0);
3d3c8b52 3797 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
fc6149d8
DC
3798 if (error)
3799 goto abort_error;
1da177e4
LT
3800 efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
3801
3802 for (i = 0; i < efip->efi_format.efi_nextents; i++) {
3803 extp = &(efip->efi_format.efi_extents[i]);
fc6149d8
DC
3804 error = xfs_free_extent(tp, extp->ext_start, extp->ext_len);
3805 if (error)
3806 goto abort_error;
1da177e4
LT
3807 xfs_trans_log_efd_extent(tp, efdp, extp->ext_start,
3808 extp->ext_len);
3809 }
3810
b199c8a4 3811 set_bit(XFS_EFI_RECOVERED, &efip->efi_flags);
e5720eec 3812 error = xfs_trans_commit(tp, 0);
3c1e2bbe 3813 return error;
fc6149d8
DC
3814
3815abort_error:
3816 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3817 return error;
1da177e4
LT
3818}
3819
1da177e4
LT
3820/*
3821 * When this is called, all of the EFIs which did not have
3822 * corresponding EFDs should be in the AIL. What we do now
3823 * is free the extents associated with each one.
3824 *
3825 * Since we process the EFIs in normal transactions, they
3826 * will be removed at some point after the commit. This prevents
3827 * us from just walking down the list processing each one.
3828 * We'll use a flag in the EFI to skip those that we've already
3829 * processed and use the AIL iteration mechanism's generation
3830 * count to try to speed this up at least a bit.
3831 *
3832 * When we start, we know that the EFIs are the only things in
3833 * the AIL. As we process them, however, other items are added
3834 * to the AIL. Since everything added to the AIL must come after
3835 * everything already in the AIL, we stop processing as soon as
3836 * we see something other than an EFI in the AIL.
3837 */
3c1e2bbe 3838STATIC int
1da177e4 3839xlog_recover_process_efis(
9a8d2fdb 3840 struct xlog *log)
1da177e4
LT
3841{
3842 xfs_log_item_t *lip;
3843 xfs_efi_log_item_t *efip;
3c1e2bbe 3844 int error = 0;
27d8d5fe 3845 struct xfs_ail_cursor cur;
a9c21c1b 3846 struct xfs_ail *ailp;
1da177e4 3847
a9c21c1b
DC
3848 ailp = log->l_ailp;
3849 spin_lock(&ailp->xa_lock);
3850 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3851 while (lip != NULL) {
3852 /*
3853 * We're done when we see something other than an EFI.
27d8d5fe 3854 * There should be no EFIs left in the AIL now.
1da177e4
LT
3855 */
3856 if (lip->li_type != XFS_LI_EFI) {
27d8d5fe 3857#ifdef DEBUG
a9c21c1b 3858 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
27d8d5fe
DC
3859 ASSERT(lip->li_type != XFS_LI_EFI);
3860#endif
1da177e4
LT
3861 break;
3862 }
3863
3864 /*
3865 * Skip EFIs that we've already processed.
3866 */
3867 efip = (xfs_efi_log_item_t *)lip;
b199c8a4 3868 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) {
a9c21c1b 3869 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4
LT
3870 continue;
3871 }
3872
a9c21c1b
DC
3873 spin_unlock(&ailp->xa_lock);
3874 error = xlog_recover_process_efi(log->l_mp, efip);
3875 spin_lock(&ailp->xa_lock);
27d8d5fe
DC
3876 if (error)
3877 goto out;
a9c21c1b 3878 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3879 }
27d8d5fe 3880out:
a9c21c1b
DC
3881 xfs_trans_ail_cursor_done(ailp, &cur);
3882 spin_unlock(&ailp->xa_lock);
3c1e2bbe 3883 return error;
1da177e4
LT
3884}
3885
3886/*
3887 * This routine performs a transaction to null out a bad inode pointer
3888 * in an agi unlinked inode hash bucket.
3889 */
3890STATIC void
3891xlog_recover_clear_agi_bucket(
3892 xfs_mount_t *mp,
3893 xfs_agnumber_t agno,
3894 int bucket)
3895{
3896 xfs_trans_t *tp;
3897 xfs_agi_t *agi;
3898 xfs_buf_t *agibp;
3899 int offset;
3900 int error;
3901
3902 tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET);
3d3c8b52 3903 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0);
e5720eec
DC
3904 if (error)
3905 goto out_abort;
1da177e4 3906
5e1be0fb
CH
3907 error = xfs_read_agi(mp, tp, agno, &agibp);
3908 if (error)
e5720eec 3909 goto out_abort;
1da177e4 3910
5e1be0fb 3911 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 3912 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
3913 offset = offsetof(xfs_agi_t, agi_unlinked) +
3914 (sizeof(xfs_agino_t) * bucket);
3915 xfs_trans_log_buf(tp, agibp, offset,
3916 (offset + sizeof(xfs_agino_t) - 1));
3917
e5720eec
DC
3918 error = xfs_trans_commit(tp, 0);
3919 if (error)
3920 goto out_error;
3921 return;
3922
3923out_abort:
3924 xfs_trans_cancel(tp, XFS_TRANS_ABORT);
3925out_error:
a0fa2b67 3926 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 3927 return;
1da177e4
LT
3928}
3929
23fac50f
CH
3930STATIC xfs_agino_t
3931xlog_recover_process_one_iunlink(
3932 struct xfs_mount *mp,
3933 xfs_agnumber_t agno,
3934 xfs_agino_t agino,
3935 int bucket)
3936{
3937 struct xfs_buf *ibp;
3938 struct xfs_dinode *dip;
3939 struct xfs_inode *ip;
3940 xfs_ino_t ino;
3941 int error;
3942
3943 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 3944 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
3945 if (error)
3946 goto fail;
3947
3948 /*
3949 * Get the on disk inode to find the next inode in the bucket.
3950 */
475ee413 3951 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 3952 if (error)
0e446673 3953 goto fail_iput;
23fac50f 3954
23fac50f 3955 ASSERT(ip->i_d.di_nlink == 0);
0e446673 3956 ASSERT(ip->i_d.di_mode != 0);
23fac50f
CH
3957
3958 /* setup for the next pass */
3959 agino = be32_to_cpu(dip->di_next_unlinked);
3960 xfs_buf_relse(ibp);
3961
3962 /*
3963 * Prevent any DMAPI event from being sent when the reference on
3964 * the inode is dropped.
3965 */
3966 ip->i_d.di_dmevmask = 0;
3967
0e446673 3968 IRELE(ip);
23fac50f
CH
3969 return agino;
3970
0e446673
CH
3971 fail_iput:
3972 IRELE(ip);
23fac50f
CH
3973 fail:
3974 /*
3975 * We can't read in the inode this bucket points to, or this inode
3976 * is messed up. Just ditch this bucket of inodes. We will lose
3977 * some inodes and space, but at least we won't hang.
3978 *
3979 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
3980 * clear the inode pointer in the bucket.
3981 */
3982 xlog_recover_clear_agi_bucket(mp, agno, bucket);
3983 return NULLAGINO;
3984}
3985
1da177e4
LT
3986/*
3987 * xlog_iunlink_recover
3988 *
3989 * This is called during recovery to process any inodes which
3990 * we unlinked but not freed when the system crashed. These
3991 * inodes will be on the lists in the AGI blocks. What we do
3992 * here is scan all the AGIs and fully truncate and free any
3993 * inodes found on the lists. Each inode is removed from the
3994 * lists when it has been fully truncated and is freed. The
3995 * freeing of the inode and its removal from the list must be
3996 * atomic.
3997 */
d96f8f89 3998STATIC void
1da177e4 3999xlog_recover_process_iunlinks(
9a8d2fdb 4000 struct xlog *log)
1da177e4
LT
4001{
4002 xfs_mount_t *mp;
4003 xfs_agnumber_t agno;
4004 xfs_agi_t *agi;
4005 xfs_buf_t *agibp;
1da177e4 4006 xfs_agino_t agino;
1da177e4
LT
4007 int bucket;
4008 int error;
4009 uint mp_dmevmask;
4010
4011 mp = log->l_mp;
4012
4013 /*
4014 * Prevent any DMAPI event from being sent while in this function.
4015 */
4016 mp_dmevmask = mp->m_dmevmask;
4017 mp->m_dmevmask = 0;
4018
4019 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4020 /*
4021 * Find the agi for this ag.
4022 */
5e1be0fb
CH
4023 error = xfs_read_agi(mp, NULL, agno, &agibp);
4024 if (error) {
4025 /*
4026 * AGI is b0rked. Don't process it.
4027 *
4028 * We should probably mark the filesystem as corrupt
4029 * after we've recovered all the ag's we can....
4030 */
4031 continue;
1da177e4 4032 }
d97d32ed
JK
4033 /*
4034 * Unlock the buffer so that it can be acquired in the normal
4035 * course of the transaction to truncate and free each inode.
4036 * Because we are not racing with anyone else here for the AGI
4037 * buffer, we don't even need to hold it locked to read the
4038 * initial unlinked bucket entries out of the buffer. We keep
4039 * buffer reference though, so that it stays pinned in memory
4040 * while we need the buffer.
4041 */
1da177e4 4042 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 4043 xfs_buf_unlock(agibp);
1da177e4
LT
4044
4045 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 4046 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 4047 while (agino != NULLAGINO) {
23fac50f
CH
4048 agino = xlog_recover_process_one_iunlink(mp,
4049 agno, agino, bucket);
1da177e4
LT
4050 }
4051 }
d97d32ed 4052 xfs_buf_rele(agibp);
1da177e4
LT
4053 }
4054
4055 mp->m_dmevmask = mp_dmevmask;
4056}
4057
1da177e4 4058/*
0e446be4
CH
4059 * Upack the log buffer data and crc check it. If the check fails, issue a
4060 * warning if and only if the CRC in the header is non-zero. This makes the
4061 * check an advisory warning, and the zero CRC check will prevent failure
4062 * warnings from being emitted when upgrading the kernel from one that does not
4063 * add CRCs by default.
4064 *
4065 * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log
4066 * corruption failure
1da177e4 4067 */
0e446be4
CH
4068STATIC int
4069xlog_unpack_data_crc(
4070 struct xlog_rec_header *rhead,
4071 xfs_caddr_t dp,
4072 struct xlog *log)
1da177e4 4073{
f9668a09 4074 __le32 crc;
0e446be4
CH
4075
4076 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
4077 if (crc != rhead->h_crc) {
4078 if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
4079 xfs_alert(log->l_mp,
4080 "log record CRC mismatch: found 0x%x, expected 0x%x.\n",
f9668a09
DC
4081 le32_to_cpu(rhead->h_crc),
4082 le32_to_cpu(crc));
0e446be4 4083 xfs_hex_dump(dp, 32);
1da177e4
LT
4084 }
4085
0e446be4
CH
4086 /*
4087 * If we've detected a log record corruption, then we can't
4088 * recover past this point. Abort recovery if we are enforcing
4089 * CRC protection by punting an error back up the stack.
4090 */
4091 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
4092 return EFSCORRUPTED;
1da177e4 4093 }
0e446be4
CH
4094
4095 return 0;
1da177e4
LT
4096}
4097
0e446be4 4098STATIC int
1da177e4 4099xlog_unpack_data(
9a8d2fdb 4100 struct xlog_rec_header *rhead,
1da177e4 4101 xfs_caddr_t dp,
9a8d2fdb 4102 struct xlog *log)
1da177e4
LT
4103{
4104 int i, j, k;
0e446be4
CH
4105 int error;
4106
4107 error = xlog_unpack_data_crc(rhead, dp, log);
4108 if (error)
4109 return error;
1da177e4 4110
b53e675d 4111 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 4112 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 4113 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
4114 dp += BBSIZE;
4115 }
4116
62118709 4117 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 4118 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 4119 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
4120 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
4121 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 4122 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
4123 dp += BBSIZE;
4124 }
4125 }
0e446be4
CH
4126
4127 return 0;
1da177e4
LT
4128}
4129
4130STATIC int
4131xlog_valid_rec_header(
9a8d2fdb
MT
4132 struct xlog *log,
4133 struct xlog_rec_header *rhead,
1da177e4
LT
4134 xfs_daddr_t blkno)
4135{
4136 int hlen;
4137
69ef921b 4138 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
4139 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
4140 XFS_ERRLEVEL_LOW, log->l_mp);
4141 return XFS_ERROR(EFSCORRUPTED);
4142 }
4143 if (unlikely(
4144 (!rhead->h_version ||
b53e675d 4145 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 4146 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 4147 __func__, be32_to_cpu(rhead->h_version));
1da177e4
LT
4148 return XFS_ERROR(EIO);
4149 }
4150
4151 /* LR body must have data or it wouldn't have been written */
b53e675d 4152 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
4153 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
4154 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
4155 XFS_ERRLEVEL_LOW, log->l_mp);
4156 return XFS_ERROR(EFSCORRUPTED);
4157 }
4158 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
4159 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
4160 XFS_ERRLEVEL_LOW, log->l_mp);
4161 return XFS_ERROR(EFSCORRUPTED);
4162 }
4163 return 0;
4164}
4165
4166/*
4167 * Read the log from tail to head and process the log records found.
4168 * Handle the two cases where the tail and head are in the same cycle
4169 * and where the active portion of the log wraps around the end of
4170 * the physical log separately. The pass parameter is passed through
4171 * to the routines called to process the data and is not looked at
4172 * here.
4173 */
4174STATIC int
4175xlog_do_recovery_pass(
9a8d2fdb 4176 struct xlog *log,
1da177e4
LT
4177 xfs_daddr_t head_blk,
4178 xfs_daddr_t tail_blk,
4179 int pass)
4180{
4181 xlog_rec_header_t *rhead;
4182 xfs_daddr_t blk_no;
fc5bc4c8 4183 xfs_caddr_t offset;
1da177e4
LT
4184 xfs_buf_t *hbp, *dbp;
4185 int error = 0, h_size;
4186 int bblks, split_bblks;
4187 int hblks, split_hblks, wrapped_hblks;
f0a76953 4188 struct hlist_head rhash[XLOG_RHASH_SIZE];
1da177e4
LT
4189
4190 ASSERT(head_blk != tail_blk);
4191
4192 /*
4193 * Read the header of the tail block and get the iclog buffer size from
4194 * h_size. Use this to tell how many sectors make up the log header.
4195 */
62118709 4196 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
4197 /*
4198 * When using variable length iclogs, read first sector of
4199 * iclog header and extract the header size from it. Get a
4200 * new hbp that is the correct size.
4201 */
4202 hbp = xlog_get_bp(log, 1);
4203 if (!hbp)
4204 return ENOMEM;
076e6acb
CH
4205
4206 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
4207 if (error)
1da177e4 4208 goto bread_err1;
076e6acb 4209
1da177e4
LT
4210 rhead = (xlog_rec_header_t *)offset;
4211 error = xlog_valid_rec_header(log, rhead, tail_blk);
4212 if (error)
4213 goto bread_err1;
b53e675d
CH
4214 h_size = be32_to_cpu(rhead->h_size);
4215 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
4216 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
4217 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
4218 if (h_size % XLOG_HEADER_CYCLE_SIZE)
4219 hblks++;
4220 xlog_put_bp(hbp);
4221 hbp = xlog_get_bp(log, hblks);
4222 } else {
4223 hblks = 1;
4224 }
4225 } else {
69ce58f0 4226 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
4227 hblks = 1;
4228 hbp = xlog_get_bp(log, 1);
4229 h_size = XLOG_BIG_RECORD_BSIZE;
4230 }
4231
4232 if (!hbp)
4233 return ENOMEM;
4234 dbp = xlog_get_bp(log, BTOBB(h_size));
4235 if (!dbp) {
4236 xlog_put_bp(hbp);
4237 return ENOMEM;
4238 }
4239
4240 memset(rhash, 0, sizeof(rhash));
4241 if (tail_blk <= head_blk) {
4242 for (blk_no = tail_blk; blk_no < head_blk; ) {
076e6acb
CH
4243 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4244 if (error)
1da177e4 4245 goto bread_err2;
076e6acb 4246
1da177e4
LT
4247 rhead = (xlog_rec_header_t *)offset;
4248 error = xlog_valid_rec_header(log, rhead, blk_no);
4249 if (error)
4250 goto bread_err2;
4251
4252 /* blocks in data section */
b53e675d 4253 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4254 error = xlog_bread(log, blk_no + hblks, bblks, dbp,
4255 &offset);
1da177e4
LT
4256 if (error)
4257 goto bread_err2;
076e6acb 4258
0e446be4
CH
4259 error = xlog_unpack_data(rhead, offset, log);
4260 if (error)
4261 goto bread_err2;
4262
4263 error = xlog_recover_process_data(log,
4264 rhash, rhead, offset, pass);
4265 if (error)
1da177e4
LT
4266 goto bread_err2;
4267 blk_no += bblks + hblks;
4268 }
4269 } else {
4270 /*
4271 * Perform recovery around the end of the physical log.
4272 * When the head is not on the same cycle number as the tail,
4273 * we can't do a sequential recovery as above.
4274 */
4275 blk_no = tail_blk;
4276 while (blk_no < log->l_logBBsize) {
4277 /*
4278 * Check for header wrapping around physical end-of-log
4279 */
62926044 4280 offset = hbp->b_addr;
1da177e4
LT
4281 split_hblks = 0;
4282 wrapped_hblks = 0;
4283 if (blk_no + hblks <= log->l_logBBsize) {
4284 /* Read header in one read */
076e6acb
CH
4285 error = xlog_bread(log, blk_no, hblks, hbp,
4286 &offset);
1da177e4
LT
4287 if (error)
4288 goto bread_err2;
1da177e4
LT
4289 } else {
4290 /* This LR is split across physical log end */
4291 if (blk_no != log->l_logBBsize) {
4292 /* some data before physical log end */
4293 ASSERT(blk_no <= INT_MAX);
4294 split_hblks = log->l_logBBsize - (int)blk_no;
4295 ASSERT(split_hblks > 0);
076e6acb
CH
4296 error = xlog_bread(log, blk_no,
4297 split_hblks, hbp,
4298 &offset);
4299 if (error)
1da177e4 4300 goto bread_err2;
1da177e4 4301 }
076e6acb 4302
1da177e4
LT
4303 /*
4304 * Note: this black magic still works with
4305 * large sector sizes (non-512) only because:
4306 * - we increased the buffer size originally
4307 * by 1 sector giving us enough extra space
4308 * for the second read;
4309 * - the log start is guaranteed to be sector
4310 * aligned;
4311 * - we read the log end (LR header start)
4312 * _first_, then the log start (LR header end)
4313 * - order is important.
4314 */
234f56ac 4315 wrapped_hblks = hblks - split_hblks;
44396476
DC
4316 error = xlog_bread_offset(log, 0,
4317 wrapped_hblks, hbp,
4318 offset + BBTOB(split_hblks));
1da177e4
LT
4319 if (error)
4320 goto bread_err2;
1da177e4
LT
4321 }
4322 rhead = (xlog_rec_header_t *)offset;
4323 error = xlog_valid_rec_header(log, rhead,
4324 split_hblks ? blk_no : 0);
4325 if (error)
4326 goto bread_err2;
4327
b53e675d 4328 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
4329 blk_no += hblks;
4330
4331 /* Read in data for log record */
4332 if (blk_no + bblks <= log->l_logBBsize) {
076e6acb
CH
4333 error = xlog_bread(log, blk_no, bblks, dbp,
4334 &offset);
1da177e4
LT
4335 if (error)
4336 goto bread_err2;
1da177e4
LT
4337 } else {
4338 /* This log record is split across the
4339 * physical end of log */
62926044 4340 offset = dbp->b_addr;
1da177e4
LT
4341 split_bblks = 0;
4342 if (blk_no != log->l_logBBsize) {
4343 /* some data is before the physical
4344 * end of log */
4345 ASSERT(!wrapped_hblks);
4346 ASSERT(blk_no <= INT_MAX);
4347 split_bblks =
4348 log->l_logBBsize - (int)blk_no;
4349 ASSERT(split_bblks > 0);
076e6acb
CH
4350 error = xlog_bread(log, blk_no,
4351 split_bblks, dbp,
4352 &offset);
4353 if (error)
1da177e4 4354 goto bread_err2;
1da177e4 4355 }
076e6acb 4356
1da177e4
LT
4357 /*
4358 * Note: this black magic still works with
4359 * large sector sizes (non-512) only because:
4360 * - we increased the buffer size originally
4361 * by 1 sector giving us enough extra space
4362 * for the second read;
4363 * - the log start is guaranteed to be sector
4364 * aligned;
4365 * - we read the log end (LR header start)
4366 * _first_, then the log start (LR header end)
4367 * - order is important.
4368 */
44396476 4369 error = xlog_bread_offset(log, 0,
009507b0 4370 bblks - split_bblks, dbp,
44396476 4371 offset + BBTOB(split_bblks));
076e6acb
CH
4372 if (error)
4373 goto bread_err2;
1da177e4 4374 }
0e446be4
CH
4375
4376 error = xlog_unpack_data(rhead, offset, log);
4377 if (error)
4378 goto bread_err2;
4379
4380 error = xlog_recover_process_data(log, rhash,
4381 rhead, offset, pass);
4382 if (error)
1da177e4
LT
4383 goto bread_err2;
4384 blk_no += bblks;
4385 }
4386
4387 ASSERT(blk_no >= log->l_logBBsize);
4388 blk_no -= log->l_logBBsize;
4389
4390 /* read first part of physical log */
4391 while (blk_no < head_blk) {
076e6acb
CH
4392 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
4393 if (error)
1da177e4 4394 goto bread_err2;
076e6acb 4395
1da177e4
LT
4396 rhead = (xlog_rec_header_t *)offset;
4397 error = xlog_valid_rec_header(log, rhead, blk_no);
4398 if (error)
4399 goto bread_err2;
076e6acb 4400
b53e675d 4401 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
076e6acb
CH
4402 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
4403 &offset);
4404 if (error)
1da177e4 4405 goto bread_err2;
076e6acb 4406
0e446be4
CH
4407 error = xlog_unpack_data(rhead, offset, log);
4408 if (error)
4409 goto bread_err2;
4410
4411 error = xlog_recover_process_data(log, rhash,
4412 rhead, offset, pass);
4413 if (error)
1da177e4
LT
4414 goto bread_err2;
4415 blk_no += bblks + hblks;
4416 }
4417 }
4418
4419 bread_err2:
4420 xlog_put_bp(dbp);
4421 bread_err1:
4422 xlog_put_bp(hbp);
4423 return error;
4424}
4425
4426/*
4427 * Do the recovery of the log. We actually do this in two phases.
4428 * The two passes are necessary in order to implement the function
4429 * of cancelling a record written into the log. The first pass
4430 * determines those things which have been cancelled, and the
4431 * second pass replays log items normally except for those which
4432 * have been cancelled. The handling of the replay and cancellations
4433 * takes place in the log item type specific routines.
4434 *
4435 * The table of items which have cancel records in the log is allocated
4436 * and freed at this level, since only here do we know when all of
4437 * the log recovery has been completed.
4438 */
4439STATIC int
4440xlog_do_log_recovery(
9a8d2fdb 4441 struct xlog *log,
1da177e4
LT
4442 xfs_daddr_t head_blk,
4443 xfs_daddr_t tail_blk)
4444{
d5689eaa 4445 int error, i;
1da177e4
LT
4446
4447 ASSERT(head_blk != tail_blk);
4448
4449 /*
4450 * First do a pass to find all of the cancelled buf log items.
4451 * Store them in the buf_cancel_table for use in the second pass.
4452 */
d5689eaa
CH
4453 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
4454 sizeof(struct list_head),
1da177e4 4455 KM_SLEEP);
d5689eaa
CH
4456 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
4457 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
4458
1da177e4
LT
4459 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4460 XLOG_RECOVER_PASS1);
4461 if (error != 0) {
f0e2d93c 4462 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4463 log->l_buf_cancel_table = NULL;
4464 return error;
4465 }
4466 /*
4467 * Then do a second pass to actually recover the items in the log.
4468 * When it is complete free the table of buf cancel items.
4469 */
4470 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
4471 XLOG_RECOVER_PASS2);
4472#ifdef DEBUG
6d192a9b 4473 if (!error) {
1da177e4
LT
4474 int i;
4475
4476 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 4477 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
4478 }
4479#endif /* DEBUG */
4480
f0e2d93c 4481 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
4482 log->l_buf_cancel_table = NULL;
4483
4484 return error;
4485}
4486
4487/*
4488 * Do the actual recovery
4489 */
4490STATIC int
4491xlog_do_recover(
9a8d2fdb 4492 struct xlog *log,
1da177e4
LT
4493 xfs_daddr_t head_blk,
4494 xfs_daddr_t tail_blk)
4495{
4496 int error;
4497 xfs_buf_t *bp;
4498 xfs_sb_t *sbp;
4499
4500 /*
4501 * First replay the images in the log.
4502 */
4503 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 4504 if (error)
1da177e4 4505 return error;
1da177e4
LT
4506
4507 /*
4508 * If IO errors happened during recovery, bail out.
4509 */
4510 if (XFS_FORCED_SHUTDOWN(log->l_mp)) {
4511 return (EIO);
4512 }
4513
4514 /*
4515 * We now update the tail_lsn since much of the recovery has completed
4516 * and there may be space available to use. If there were no extent
4517 * or iunlinks, we can free up the entire log and set the tail_lsn to
4518 * be the last_sync_lsn. This was set in xlog_find_tail to be the
4519 * lsn of the last known good LR on disk. If there are extent frees
4520 * or iunlinks they will have some entries in the AIL; so we look at
4521 * the AIL to determine how to set the tail_lsn.
4522 */
4523 xlog_assign_tail_lsn(log->l_mp);
4524
4525 /*
4526 * Now that we've finished replaying all buffer and inode
98021821 4527 * updates, re-read in the superblock and reverify it.
1da177e4
LT
4528 */
4529 bp = xfs_getsb(log->l_mp, 0);
4530 XFS_BUF_UNDONE(bp);
bebf963f 4531 ASSERT(!(XFS_BUF_ISWRITE(bp)));
1da177e4 4532 XFS_BUF_READ(bp);
bebf963f 4533 XFS_BUF_UNASYNC(bp);
1813dd64 4534 bp->b_ops = &xfs_sb_buf_ops;
1da177e4 4535 xfsbdstrat(log->l_mp, bp);
1a1a3e97 4536 error = xfs_buf_iowait(bp);
d64e31a2 4537 if (error) {
901796af 4538 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
4539 ASSERT(0);
4540 xfs_buf_relse(bp);
4541 return error;
4542 }
4543
4544 /* Convert superblock from on-disk format */
4545 sbp = &log->l_mp->m_sb;
98021821 4546 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4 4547 ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC);
62118709 4548 ASSERT(xfs_sb_good_version(sbp));
1da177e4
LT
4549 xfs_buf_relse(bp);
4550
5478eead
LM
4551 /* We've re-read the superblock so re-initialize per-cpu counters */
4552 xfs_icsb_reinit_counters(log->l_mp);
4553
1da177e4
LT
4554 xlog_recover_check_summary(log);
4555
4556 /* Normal transactions can now occur */
4557 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
4558 return 0;
4559}
4560
4561/*
4562 * Perform recovery and re-initialize some log variables in xlog_find_tail.
4563 *
4564 * Return error or zero.
4565 */
4566int
4567xlog_recover(
9a8d2fdb 4568 struct xlog *log)
1da177e4
LT
4569{
4570 xfs_daddr_t head_blk, tail_blk;
4571 int error;
4572
4573 /* find the tail of the log */
65be6054 4574 if ((error = xlog_find_tail(log, &head_blk, &tail_blk)))
1da177e4
LT
4575 return error;
4576
4577 if (tail_blk != head_blk) {
4578 /* There used to be a comment here:
4579 *
4580 * disallow recovery on read-only mounts. note -- mount
4581 * checks for ENOSPC and turns it into an intelligent
4582 * error message.
4583 * ...but this is no longer true. Now, unless you specify
4584 * NORECOVERY (in which case this function would never be
4585 * called), we just go ahead and recover. We do this all
4586 * under the vfs layer, so we can get away with it unless
4587 * the device itself is read-only, in which case we fail.
4588 */
3a02ee18 4589 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
4590 return error;
4591 }
4592
e721f504
DC
4593 /*
4594 * Version 5 superblock log feature mask validation. We know the
4595 * log is dirty so check if there are any unknown log features
4596 * in what we need to recover. If there are unknown features
4597 * (e.g. unsupported transactions, then simply reject the
4598 * attempt at recovery before touching anything.
4599 */
4600 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
4601 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
4602 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
4603 xfs_warn(log->l_mp,
4604"Superblock has unknown incompatible log features (0x%x) enabled.\n"
4605"The log can not be fully and/or safely recovered by this kernel.\n"
4606"Please recover the log on a kernel that supports the unknown features.",
4607 (log->l_mp->m_sb.sb_features_log_incompat &
4608 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
4609 return EINVAL;
4610 }
4611
a0fa2b67
DC
4612 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
4613 log->l_mp->m_logname ? log->l_mp->m_logname
4614 : "internal");
1da177e4
LT
4615
4616 error = xlog_do_recover(log, head_blk, tail_blk);
4617 log->l_flags |= XLOG_RECOVERY_NEEDED;
4618 }
4619 return error;
4620}
4621
4622/*
4623 * In the first part of recovery we replay inodes and buffers and build
4624 * up the list of extent free items which need to be processed. Here
4625 * we process the extent free items and clean up the on disk unlinked
4626 * inode lists. This is separated from the first part of recovery so
4627 * that the root and real-time bitmap inodes can be read in from disk in
4628 * between the two stages. This is necessary so that we can free space
4629 * in the real-time portion of the file system.
4630 */
4631int
4632xlog_recover_finish(
9a8d2fdb 4633 struct xlog *log)
1da177e4
LT
4634{
4635 /*
4636 * Now we're ready to do the transactions needed for the
4637 * rest of recovery. Start with completing all the extent
4638 * free intent records and then process the unlinked inode
4639 * lists. At this point, we essentially run in normal mode
4640 * except that we're still performing recovery actions
4641 * rather than accepting new requests.
4642 */
4643 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe
DC
4644 int error;
4645 error = xlog_recover_process_efis(log);
4646 if (error) {
a0fa2b67 4647 xfs_alert(log->l_mp, "Failed to recover EFIs");
3c1e2bbe
DC
4648 return error;
4649 }
1da177e4
LT
4650 /*
4651 * Sync the log to get all the EFIs out of the AIL.
4652 * This isn't absolutely necessary, but it helps in
4653 * case the unlink transactions would have problems
4654 * pushing the EFIs out of the way.
4655 */
a14a348b 4656 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 4657
4249023a 4658 xlog_recover_process_iunlinks(log);
1da177e4
LT
4659
4660 xlog_recover_check_summary(log);
4661
a0fa2b67
DC
4662 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
4663 log->l_mp->m_logname ? log->l_mp->m_logname
4664 : "internal");
1da177e4
LT
4665 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
4666 } else {
a0fa2b67 4667 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
4668 }
4669 return 0;
4670}
4671
4672
4673#if defined(DEBUG)
4674/*
4675 * Read all of the agf and agi counters and check that they
4676 * are consistent with the superblock counters.
4677 */
4678void
4679xlog_recover_check_summary(
9a8d2fdb 4680 struct xlog *log)
1da177e4
LT
4681{
4682 xfs_mount_t *mp;
4683 xfs_agf_t *agfp;
1da177e4
LT
4684 xfs_buf_t *agfbp;
4685 xfs_buf_t *agibp;
1da177e4
LT
4686 xfs_agnumber_t agno;
4687 __uint64_t freeblks;
4688 __uint64_t itotal;
4689 __uint64_t ifree;
5e1be0fb 4690 int error;
1da177e4
LT
4691
4692 mp = log->l_mp;
4693
4694 freeblks = 0LL;
4695 itotal = 0LL;
4696 ifree = 0LL;
4697 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
4698 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
4699 if (error) {
a0fa2b67
DC
4700 xfs_alert(mp, "%s agf read failed agno %d error %d",
4701 __func__, agno, error);
4805621a
FCH
4702 } else {
4703 agfp = XFS_BUF_TO_AGF(agfbp);
4704 freeblks += be32_to_cpu(agfp->agf_freeblks) +
4705 be32_to_cpu(agfp->agf_flcount);
4706 xfs_buf_relse(agfbp);
1da177e4 4707 }
1da177e4 4708
5e1be0fb 4709 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
4710 if (error) {
4711 xfs_alert(mp, "%s agi read failed agno %d error %d",
4712 __func__, agno, error);
4713 } else {
5e1be0fb 4714 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 4715
5e1be0fb
CH
4716 itotal += be32_to_cpu(agi->agi_count);
4717 ifree += be32_to_cpu(agi->agi_freecount);
4718 xfs_buf_relse(agibp);
4719 }
1da177e4 4720 }
1da177e4
LT
4721}
4722#endif /* DEBUG */