Merge tag 'batadv-net-for-davem-20180717' of git://git.open-mesh.org/linux-merge
[linux-2.6-block.git] / fs / xfs / xfs_log_recover.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
87c199c2 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
239880ef
DC
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
a844f451 12#include "xfs_bit.h"
a844f451 13#include "xfs_sb.h"
1da177e4 14#include "xfs_mount.h"
50995582 15#include "xfs_defer.h"
57062787 16#include "xfs_da_format.h"
9a2cc41c 17#include "xfs_da_btree.h"
1da177e4 18#include "xfs_inode.h"
239880ef 19#include "xfs_trans.h"
239880ef 20#include "xfs_log.h"
1da177e4 21#include "xfs_log_priv.h"
1da177e4 22#include "xfs_log_recover.h"
a4fbe6ab 23#include "xfs_inode_item.h"
1da177e4
LT
24#include "xfs_extfree_item.h"
25#include "xfs_trans_priv.h"
a4fbe6ab
DC
26#include "xfs_alloc.h"
27#include "xfs_ialloc.h"
1da177e4 28#include "xfs_quota.h"
0e446be4 29#include "xfs_cksum.h"
0b1b213f 30#include "xfs_trace.h"
33479e05 31#include "xfs_icache.h"
a4fbe6ab 32#include "xfs_bmap_btree.h"
a4fbe6ab 33#include "xfs_error.h"
2b9ab5ab 34#include "xfs_dir2.h"
9e88b5d8 35#include "xfs_rmap_item.h"
60a4a222 36#include "xfs_buf_item.h"
f997ee21 37#include "xfs_refcount_item.h"
77d61fe4 38#include "xfs_bmap_item.h"
1da177e4 39
fc06c6d0
DC
40#define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1)
41
9a8d2fdb
MT
42STATIC int
43xlog_find_zeroed(
44 struct xlog *,
45 xfs_daddr_t *);
46STATIC int
47xlog_clear_stale_blocks(
48 struct xlog *,
49 xfs_lsn_t);
1da177e4 50#if defined(DEBUG)
9a8d2fdb
MT
51STATIC void
52xlog_recover_check_summary(
53 struct xlog *);
1da177e4
LT
54#else
55#define xlog_recover_check_summary(log)
1da177e4 56#endif
7088c413
BF
57STATIC int
58xlog_do_recovery_pass(
59 struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
1da177e4 60
d5689eaa
CH
61/*
62 * This structure is used during recovery to record the buf log items which
63 * have been canceled and should not be replayed.
64 */
65struct xfs_buf_cancel {
66 xfs_daddr_t bc_blkno;
67 uint bc_len;
68 int bc_refcount;
69 struct list_head bc_list;
70};
71
1da177e4
LT
72/*
73 * Sector aligned buffer routines for buffer create/read/write/access
74 */
75
ff30a622 76/*
99c26595
BF
77 * Verify the log-relative block number and length in basic blocks are valid for
78 * an operation involving the given XFS log buffer. Returns true if the fields
79 * are valid, false otherwise.
ff30a622 80 */
99c26595
BF
81static inline bool
82xlog_verify_bp(
9a8d2fdb 83 struct xlog *log,
99c26595 84 xfs_daddr_t blk_no,
ff30a622
AE
85 int bbcount)
86{
99c26595
BF
87 if (blk_no < 0 || blk_no >= log->l_logBBsize)
88 return false;
89 if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
90 return false;
91 return true;
ff30a622
AE
92}
93
36adecff
AE
94/*
95 * Allocate a buffer to hold log data. The buffer needs to be able
96 * to map to a range of nbblks basic blocks at any valid (basic
97 * block) offset within the log.
98 */
5d77c0dc 99STATIC xfs_buf_t *
1da177e4 100xlog_get_bp(
9a8d2fdb 101 struct xlog *log,
3228149c 102 int nbblks)
1da177e4 103{
c8da0faf
CH
104 struct xfs_buf *bp;
105
99c26595
BF
106 /*
107 * Pass log block 0 since we don't have an addr yet, buffer will be
108 * verified on read.
109 */
110 if (!xlog_verify_bp(log, 0, nbblks)) {
a0fa2b67 111 xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
ff30a622
AE
112 nbblks);
113 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
3228149c
DC
114 return NULL;
115 }
1da177e4 116
36adecff
AE
117 /*
118 * We do log I/O in units of log sectors (a power-of-2
119 * multiple of the basic block size), so we round up the
25985edc 120 * requested size to accommodate the basic blocks required
36adecff
AE
121 * for complete log sectors.
122 *
123 * In addition, the buffer may be used for a non-sector-
124 * aligned block offset, in which case an I/O of the
125 * requested size could extend beyond the end of the
126 * buffer. If the requested size is only 1 basic block it
127 * will never straddle a sector boundary, so this won't be
128 * an issue. Nor will this be a problem if the log I/O is
129 * done in basic blocks (sector size 1). But otherwise we
130 * extend the buffer by one extra log sector to ensure
25985edc 131 * there's space to accommodate this possibility.
36adecff 132 */
69ce58f0
AE
133 if (nbblks > 1 && log->l_sectBBsize > 1)
134 nbblks += log->l_sectBBsize;
135 nbblks = round_up(nbblks, log->l_sectBBsize);
36adecff 136
e70b73f8 137 bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0);
c8da0faf
CH
138 if (bp)
139 xfs_buf_unlock(bp);
140 return bp;
1da177e4
LT
141}
142
5d77c0dc 143STATIC void
1da177e4
LT
144xlog_put_bp(
145 xfs_buf_t *bp)
146{
147 xfs_buf_free(bp);
148}
149
48389ef1
AE
150/*
151 * Return the address of the start of the given block number's data
152 * in a log buffer. The buffer covers a log sector-aligned region.
153 */
b2a922cd 154STATIC char *
076e6acb 155xlog_align(
9a8d2fdb 156 struct xlog *log,
076e6acb
CH
157 xfs_daddr_t blk_no,
158 int nbblks,
9a8d2fdb 159 struct xfs_buf *bp)
076e6acb 160{
fdc07f44 161 xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1);
076e6acb 162
4e94b71b 163 ASSERT(offset + nbblks <= bp->b_length);
62926044 164 return bp->b_addr + BBTOB(offset);
076e6acb
CH
165}
166
1da177e4
LT
167
168/*
169 * nbblks should be uint, but oh well. Just want to catch that 32-bit length.
170 */
076e6acb
CH
171STATIC int
172xlog_bread_noalign(
9a8d2fdb 173 struct xlog *log,
1da177e4
LT
174 xfs_daddr_t blk_no,
175 int nbblks,
9a8d2fdb 176 struct xfs_buf *bp)
1da177e4
LT
177{
178 int error;
179
99c26595
BF
180 if (!xlog_verify_bp(log, blk_no, nbblks)) {
181 xfs_warn(log->l_mp,
182 "Invalid log block/length (0x%llx, 0x%x) for buffer",
183 blk_no, nbblks);
ff30a622 184 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 185 return -EFSCORRUPTED;
3228149c
DC
186 }
187
69ce58f0
AE
188 blk_no = round_down(blk_no, log->l_sectBBsize);
189 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
190
191 ASSERT(nbblks > 0);
4e94b71b 192 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
193
194 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
0cac682f 195 bp->b_flags |= XBF_READ;
aa0e8833 196 bp->b_io_length = nbblks;
0e95f19a 197 bp->b_error = 0;
1da177e4 198
595bff75
DC
199 error = xfs_buf_submit_wait(bp);
200 if (error && !XFS_FORCED_SHUTDOWN(log->l_mp))
901796af 201 xfs_buf_ioerror_alert(bp, __func__);
1da177e4
LT
202 return error;
203}
204
076e6acb
CH
205STATIC int
206xlog_bread(
9a8d2fdb 207 struct xlog *log,
076e6acb
CH
208 xfs_daddr_t blk_no,
209 int nbblks,
9a8d2fdb 210 struct xfs_buf *bp,
b2a922cd 211 char **offset)
076e6acb
CH
212{
213 int error;
214
215 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
216 if (error)
217 return error;
218
219 *offset = xlog_align(log, blk_no, nbblks, bp);
220 return 0;
221}
222
44396476
DC
223/*
224 * Read at an offset into the buffer. Returns with the buffer in it's original
225 * state regardless of the result of the read.
226 */
227STATIC int
228xlog_bread_offset(
9a8d2fdb 229 struct xlog *log,
44396476
DC
230 xfs_daddr_t blk_no, /* block to read from */
231 int nbblks, /* blocks to read */
9a8d2fdb 232 struct xfs_buf *bp,
b2a922cd 233 char *offset)
44396476 234{
b2a922cd 235 char *orig_offset = bp->b_addr;
4e94b71b 236 int orig_len = BBTOB(bp->b_length);
44396476
DC
237 int error, error2;
238
02fe03d9 239 error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks));
44396476
DC
240 if (error)
241 return error;
242
243 error = xlog_bread_noalign(log, blk_no, nbblks, bp);
244
245 /* must reset buffer pointer even on error */
02fe03d9 246 error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len);
44396476
DC
247 if (error)
248 return error;
249 return error2;
250}
251
1da177e4
LT
252/*
253 * Write out the buffer at the given block for the given number of blocks.
254 * The buffer is kept locked across the write and is returned locked.
255 * This can only be used for synchronous log writes.
256 */
ba0f32d4 257STATIC int
1da177e4 258xlog_bwrite(
9a8d2fdb 259 struct xlog *log,
1da177e4
LT
260 xfs_daddr_t blk_no,
261 int nbblks,
9a8d2fdb 262 struct xfs_buf *bp)
1da177e4
LT
263{
264 int error;
265
99c26595
BF
266 if (!xlog_verify_bp(log, blk_no, nbblks)) {
267 xfs_warn(log->l_mp,
268 "Invalid log block/length (0x%llx, 0x%x) for buffer",
269 blk_no, nbblks);
ff30a622 270 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp);
2451337d 271 return -EFSCORRUPTED;
3228149c
DC
272 }
273
69ce58f0
AE
274 blk_no = round_down(blk_no, log->l_sectBBsize);
275 nbblks = round_up(nbblks, log->l_sectBBsize);
1da177e4
LT
276
277 ASSERT(nbblks > 0);
4e94b71b 278 ASSERT(nbblks <= bp->b_length);
1da177e4
LT
279
280 XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no);
72790aa1 281 xfs_buf_hold(bp);
0c842ad4 282 xfs_buf_lock(bp);
aa0e8833 283 bp->b_io_length = nbblks;
0e95f19a 284 bp->b_error = 0;
1da177e4 285
c2b006c1 286 error = xfs_bwrite(bp);
901796af
CH
287 if (error)
288 xfs_buf_ioerror_alert(bp, __func__);
c2b006c1 289 xfs_buf_relse(bp);
1da177e4
LT
290 return error;
291}
292
1da177e4
LT
293#ifdef DEBUG
294/*
295 * dump debug superblock and log record information
296 */
297STATIC void
298xlog_header_check_dump(
299 xfs_mount_t *mp,
300 xlog_rec_header_t *head)
301{
08e96e1a 302 xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d",
03daa57c 303 __func__, &mp->m_sb.sb_uuid, XLOG_FMT);
08e96e1a 304 xfs_debug(mp, " log : uuid = %pU, fmt = %d",
03daa57c 305 &head->h_fs_uuid, be32_to_cpu(head->h_fmt));
1da177e4
LT
306}
307#else
308#define xlog_header_check_dump(mp, head)
309#endif
310
311/*
312 * check log record header for recovery
313 */
314STATIC int
315xlog_header_check_recover(
316 xfs_mount_t *mp,
317 xlog_rec_header_t *head)
318{
69ef921b 319 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4
LT
320
321 /*
322 * IRIX doesn't write the h_fmt field and leaves it zeroed
323 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
324 * a dirty log created in IRIX.
325 */
69ef921b 326 if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) {
a0fa2b67
DC
327 xfs_warn(mp,
328 "dirty log written in incompatible format - can't recover");
1da177e4
LT
329 xlog_header_check_dump(mp, head);
330 XFS_ERROR_REPORT("xlog_header_check_recover(1)",
331 XFS_ERRLEVEL_HIGH, mp);
2451337d 332 return -EFSCORRUPTED;
1da177e4 333 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67
DC
334 xfs_warn(mp,
335 "dirty log entry has mismatched uuid - can't recover");
1da177e4
LT
336 xlog_header_check_dump(mp, head);
337 XFS_ERROR_REPORT("xlog_header_check_recover(2)",
338 XFS_ERRLEVEL_HIGH, mp);
2451337d 339 return -EFSCORRUPTED;
1da177e4
LT
340 }
341 return 0;
342}
343
344/*
345 * read the head block of the log and check the header
346 */
347STATIC int
348xlog_header_check_mount(
349 xfs_mount_t *mp,
350 xlog_rec_header_t *head)
351{
69ef921b 352 ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
1da177e4 353
d905fdaa 354 if (uuid_is_null(&head->h_fs_uuid)) {
1da177e4
LT
355 /*
356 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
d905fdaa 357 * h_fs_uuid is null, we assume this log was last mounted
1da177e4
LT
358 * by IRIX and continue.
359 */
d905fdaa 360 xfs_warn(mp, "null uuid in log - IRIX style log");
1da177e4 361 } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) {
a0fa2b67 362 xfs_warn(mp, "log has mismatched uuid - can't recover");
1da177e4
LT
363 xlog_header_check_dump(mp, head);
364 XFS_ERROR_REPORT("xlog_header_check_mount",
365 XFS_ERRLEVEL_HIGH, mp);
2451337d 366 return -EFSCORRUPTED;
1da177e4
LT
367 }
368 return 0;
369}
370
371STATIC void
372xlog_recover_iodone(
373 struct xfs_buf *bp)
374{
5a52c2a5 375 if (bp->b_error) {
1da177e4
LT
376 /*
377 * We're not going to bother about retrying
378 * this during recovery. One strike!
379 */
595bff75
DC
380 if (!XFS_FORCED_SHUTDOWN(bp->b_target->bt_mount)) {
381 xfs_buf_ioerror_alert(bp, __func__);
382 xfs_force_shutdown(bp->b_target->bt_mount,
383 SHUTDOWN_META_IO_ERROR);
384 }
1da177e4 385 }
60a4a222
BF
386
387 /*
388 * On v5 supers, a bli could be attached to update the metadata LSN.
389 * Clean it up.
390 */
fb1755a6 391 if (bp->b_log_item)
60a4a222 392 xfs_buf_item_relse(bp);
fb1755a6 393 ASSERT(bp->b_log_item == NULL);
60a4a222 394
cb669ca5 395 bp->b_iodone = NULL;
e8aaba9a 396 xfs_buf_ioend(bp);
1da177e4
LT
397}
398
399/*
400 * This routine finds (to an approximation) the first block in the physical
401 * log which contains the given cycle. It uses a binary search algorithm.
402 * Note that the algorithm can not be perfect because the disk will not
403 * necessarily be perfect.
404 */
a8272ce0 405STATIC int
1da177e4 406xlog_find_cycle_start(
9a8d2fdb
MT
407 struct xlog *log,
408 struct xfs_buf *bp,
1da177e4
LT
409 xfs_daddr_t first_blk,
410 xfs_daddr_t *last_blk,
411 uint cycle)
412{
b2a922cd 413 char *offset;
1da177e4 414 xfs_daddr_t mid_blk;
e3bb2e30 415 xfs_daddr_t end_blk;
1da177e4
LT
416 uint mid_cycle;
417 int error;
418
e3bb2e30
AE
419 end_blk = *last_blk;
420 mid_blk = BLK_AVG(first_blk, end_blk);
421 while (mid_blk != first_blk && mid_blk != end_blk) {
076e6acb
CH
422 error = xlog_bread(log, mid_blk, 1, bp, &offset);
423 if (error)
1da177e4 424 return error;
03bea6fe 425 mid_cycle = xlog_get_cycle(offset);
e3bb2e30
AE
426 if (mid_cycle == cycle)
427 end_blk = mid_blk; /* last_half_cycle == mid_cycle */
428 else
429 first_blk = mid_blk; /* first_half_cycle == mid_cycle */
430 mid_blk = BLK_AVG(first_blk, end_blk);
1da177e4 431 }
e3bb2e30
AE
432 ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
433 (mid_blk == end_blk && mid_blk-1 == first_blk));
434
435 *last_blk = end_blk;
1da177e4
LT
436
437 return 0;
438}
439
440/*
3f943d85
AE
441 * Check that a range of blocks does not contain stop_on_cycle_no.
442 * Fill in *new_blk with the block offset where such a block is
443 * found, or with -1 (an invalid block number) if there is no such
444 * block in the range. The scan needs to occur from front to back
445 * and the pointer into the region must be updated since a later
446 * routine will need to perform another test.
1da177e4
LT
447 */
448STATIC int
449xlog_find_verify_cycle(
9a8d2fdb 450 struct xlog *log,
1da177e4
LT
451 xfs_daddr_t start_blk,
452 int nbblks,
453 uint stop_on_cycle_no,
454 xfs_daddr_t *new_blk)
455{
456 xfs_daddr_t i, j;
457 uint cycle;
458 xfs_buf_t *bp;
459 xfs_daddr_t bufblks;
b2a922cd 460 char *buf = NULL;
1da177e4
LT
461 int error = 0;
462
6881a229
AE
463 /*
464 * Greedily allocate a buffer big enough to handle the full
465 * range of basic blocks we'll be examining. If that fails,
466 * try a smaller size. We need to be able to read at least
467 * a log sector, or we're out of luck.
468 */
1da177e4 469 bufblks = 1 << ffs(nbblks);
81158e0c
DC
470 while (bufblks > log->l_logBBsize)
471 bufblks >>= 1;
1da177e4 472 while (!(bp = xlog_get_bp(log, bufblks))) {
1da177e4 473 bufblks >>= 1;
69ce58f0 474 if (bufblks < log->l_sectBBsize)
2451337d 475 return -ENOMEM;
1da177e4
LT
476 }
477
478 for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
479 int bcount;
480
481 bcount = min(bufblks, (start_blk + nbblks - i));
482
076e6acb
CH
483 error = xlog_bread(log, i, bcount, bp, &buf);
484 if (error)
1da177e4
LT
485 goto out;
486
1da177e4 487 for (j = 0; j < bcount; j++) {
03bea6fe 488 cycle = xlog_get_cycle(buf);
1da177e4
LT
489 if (cycle == stop_on_cycle_no) {
490 *new_blk = i+j;
491 goto out;
492 }
493
494 buf += BBSIZE;
495 }
496 }
497
498 *new_blk = -1;
499
500out:
501 xlog_put_bp(bp);
502 return error;
503}
504
505/*
506 * Potentially backup over partial log record write.
507 *
508 * In the typical case, last_blk is the number of the block directly after
509 * a good log record. Therefore, we subtract one to get the block number
510 * of the last block in the given buffer. extra_bblks contains the number
511 * of blocks we would have read on a previous read. This happens when the
512 * last log record is split over the end of the physical log.
513 *
514 * extra_bblks is the number of blocks potentially verified on a previous
515 * call to this routine.
516 */
517STATIC int
518xlog_find_verify_log_record(
9a8d2fdb 519 struct xlog *log,
1da177e4
LT
520 xfs_daddr_t start_blk,
521 xfs_daddr_t *last_blk,
522 int extra_bblks)
523{
524 xfs_daddr_t i;
525 xfs_buf_t *bp;
b2a922cd 526 char *offset = NULL;
1da177e4
LT
527 xlog_rec_header_t *head = NULL;
528 int error = 0;
529 int smallmem = 0;
530 int num_blks = *last_blk - start_blk;
531 int xhdrs;
532
533 ASSERT(start_blk != 0 || *last_blk != start_blk);
534
535 if (!(bp = xlog_get_bp(log, num_blks))) {
536 if (!(bp = xlog_get_bp(log, 1)))
2451337d 537 return -ENOMEM;
1da177e4
LT
538 smallmem = 1;
539 } else {
076e6acb
CH
540 error = xlog_bread(log, start_blk, num_blks, bp, &offset);
541 if (error)
1da177e4 542 goto out;
1da177e4
LT
543 offset += ((num_blks - 1) << BBSHIFT);
544 }
545
546 for (i = (*last_blk) - 1; i >= 0; i--) {
547 if (i < start_blk) {
548 /* valid log record not found */
a0fa2b67
DC
549 xfs_warn(log->l_mp,
550 "Log inconsistent (didn't find previous header)");
1da177e4 551 ASSERT(0);
2451337d 552 error = -EIO;
1da177e4
LT
553 goto out;
554 }
555
556 if (smallmem) {
076e6acb
CH
557 error = xlog_bread(log, i, 1, bp, &offset);
558 if (error)
1da177e4 559 goto out;
1da177e4
LT
560 }
561
562 head = (xlog_rec_header_t *)offset;
563
69ef921b 564 if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
1da177e4
LT
565 break;
566
567 if (!smallmem)
568 offset -= BBSIZE;
569 }
570
571 /*
572 * We hit the beginning of the physical log & still no header. Return
573 * to caller. If caller can handle a return of -1, then this routine
574 * will be called again for the end of the physical log.
575 */
576 if (i == -1) {
2451337d 577 error = 1;
1da177e4
LT
578 goto out;
579 }
580
581 /*
582 * We have the final block of the good log (the first block
583 * of the log record _before_ the head. So we check the uuid.
584 */
585 if ((error = xlog_header_check_mount(log->l_mp, head)))
586 goto out;
587
588 /*
589 * We may have found a log record header before we expected one.
590 * last_blk will be the 1st block # with a given cycle #. We may end
591 * up reading an entire log record. In this case, we don't want to
592 * reset last_blk. Only when last_blk points in the middle of a log
593 * record do we update last_blk.
594 */
62118709 595 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b53e675d 596 uint h_size = be32_to_cpu(head->h_size);
1da177e4
LT
597
598 xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE;
599 if (h_size % XLOG_HEADER_CYCLE_SIZE)
600 xhdrs++;
601 } else {
602 xhdrs = 1;
603 }
604
b53e675d
CH
605 if (*last_blk - i + extra_bblks !=
606 BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
1da177e4
LT
607 *last_blk = i;
608
609out:
610 xlog_put_bp(bp);
611 return error;
612}
613
614/*
615 * Head is defined to be the point of the log where the next log write
0a94da24 616 * could go. This means that incomplete LR writes at the end are
1da177e4
LT
617 * eliminated when calculating the head. We aren't guaranteed that previous
618 * LR have complete transactions. We only know that a cycle number of
619 * current cycle number -1 won't be present in the log if we start writing
620 * from our current block number.
621 *
622 * last_blk contains the block number of the first block with a given
623 * cycle number.
624 *
625 * Return: zero if normal, non-zero if error.
626 */
ba0f32d4 627STATIC int
1da177e4 628xlog_find_head(
9a8d2fdb 629 struct xlog *log,
1da177e4
LT
630 xfs_daddr_t *return_head_blk)
631{
632 xfs_buf_t *bp;
b2a922cd 633 char *offset;
1da177e4
LT
634 xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk;
635 int num_scan_bblks;
636 uint first_half_cycle, last_half_cycle;
637 uint stop_on_cycle;
638 int error, log_bbnum = log->l_logBBsize;
639
640 /* Is the end of the log device zeroed? */
2451337d
DC
641 error = xlog_find_zeroed(log, &first_blk);
642 if (error < 0) {
643 xfs_warn(log->l_mp, "empty log check failed");
644 return error;
645 }
646 if (error == 1) {
1da177e4
LT
647 *return_head_blk = first_blk;
648
649 /* Is the whole lot zeroed? */
650 if (!first_blk) {
651 /* Linux XFS shouldn't generate totally zeroed logs -
652 * mkfs etc write a dummy unmount record to a fresh
653 * log so we can store the uuid in there
654 */
a0fa2b67 655 xfs_warn(log->l_mp, "totally zeroed log");
1da177e4
LT
656 }
657
658 return 0;
1da177e4
LT
659 }
660
661 first_blk = 0; /* get cycle # of 1st block */
662 bp = xlog_get_bp(log, 1);
663 if (!bp)
2451337d 664 return -ENOMEM;
076e6acb
CH
665
666 error = xlog_bread(log, 0, 1, bp, &offset);
667 if (error)
1da177e4 668 goto bp_err;
076e6acb 669
03bea6fe 670 first_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
671
672 last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */
076e6acb
CH
673 error = xlog_bread(log, last_blk, 1, bp, &offset);
674 if (error)
1da177e4 675 goto bp_err;
076e6acb 676
03bea6fe 677 last_half_cycle = xlog_get_cycle(offset);
1da177e4
LT
678 ASSERT(last_half_cycle != 0);
679
680 /*
681 * If the 1st half cycle number is equal to the last half cycle number,
682 * then the entire log is stamped with the same cycle number. In this
683 * case, head_blk can't be set to zero (which makes sense). The below
684 * math doesn't work out properly with head_blk equal to zero. Instead,
685 * we set it to log_bbnum which is an invalid block number, but this
686 * value makes the math correct. If head_blk doesn't changed through
687 * all the tests below, *head_blk is set to zero at the very end rather
688 * than log_bbnum. In a sense, log_bbnum and zero are the same block
689 * in a circular file.
690 */
691 if (first_half_cycle == last_half_cycle) {
692 /*
693 * In this case we believe that the entire log should have
694 * cycle number last_half_cycle. We need to scan backwards
695 * from the end verifying that there are no holes still
696 * containing last_half_cycle - 1. If we find such a hole,
697 * then the start of that hole will be the new head. The
698 * simple case looks like
699 * x | x ... | x - 1 | x
700 * Another case that fits this picture would be
701 * x | x + 1 | x ... | x
c41564b5 702 * In this case the head really is somewhere at the end of the
1da177e4
LT
703 * log, as one of the latest writes at the beginning was
704 * incomplete.
705 * One more case is
706 * x | x + 1 | x ... | x - 1 | x
707 * This is really the combination of the above two cases, and
708 * the head has to end up at the start of the x-1 hole at the
709 * end of the log.
710 *
711 * In the 256k log case, we will read from the beginning to the
712 * end of the log and search for cycle numbers equal to x-1.
713 * We don't worry about the x+1 blocks that we encounter,
714 * because we know that they cannot be the head since the log
715 * started with x.
716 */
717 head_blk = log_bbnum;
718 stop_on_cycle = last_half_cycle - 1;
719 } else {
720 /*
721 * In this case we want to find the first block with cycle
722 * number matching last_half_cycle. We expect the log to be
723 * some variation on
3f943d85 724 * x + 1 ... | x ... | x
1da177e4
LT
725 * The first block with cycle number x (last_half_cycle) will
726 * be where the new head belongs. First we do a binary search
727 * for the first occurrence of last_half_cycle. The binary
728 * search may not be totally accurate, so then we scan back
729 * from there looking for occurrences of last_half_cycle before
730 * us. If that backwards scan wraps around the beginning of
731 * the log, then we look for occurrences of last_half_cycle - 1
732 * at the end of the log. The cases we're looking for look
733 * like
3f943d85
AE
734 * v binary search stopped here
735 * x + 1 ... | x | x + 1 | x ... | x
736 * ^ but we want to locate this spot
1da177e4 737 * or
1da177e4 738 * <---------> less than scan distance
3f943d85
AE
739 * x + 1 ... | x ... | x - 1 | x
740 * ^ we want to locate this spot
1da177e4
LT
741 */
742 stop_on_cycle = last_half_cycle;
743 if ((error = xlog_find_cycle_start(log, bp, first_blk,
744 &head_blk, last_half_cycle)))
745 goto bp_err;
746 }
747
748 /*
749 * Now validate the answer. Scan back some number of maximum possible
750 * blocks and make sure each one has the expected cycle number. The
751 * maximum is determined by the total possible amount of buffering
752 * in the in-core log. The following number can be made tighter if
753 * we actually look at the block size of the filesystem.
754 */
9f2a4505 755 num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
1da177e4
LT
756 if (head_blk >= num_scan_bblks) {
757 /*
758 * We are guaranteed that the entire check can be performed
759 * in one buffer.
760 */
761 start_blk = head_blk - num_scan_bblks;
762 if ((error = xlog_find_verify_cycle(log,
763 start_blk, num_scan_bblks,
764 stop_on_cycle, &new_blk)))
765 goto bp_err;
766 if (new_blk != -1)
767 head_blk = new_blk;
768 } else { /* need to read 2 parts of log */
769 /*
770 * We are going to scan backwards in the log in two parts.
771 * First we scan the physical end of the log. In this part
772 * of the log, we are looking for blocks with cycle number
773 * last_half_cycle - 1.
774 * If we find one, then we know that the log starts there, as
775 * we've found a hole that didn't get written in going around
776 * the end of the physical log. The simple case for this is
777 * x + 1 ... | x ... | x - 1 | x
778 * <---------> less than scan distance
779 * If all of the blocks at the end of the log have cycle number
780 * last_half_cycle, then we check the blocks at the start of
781 * the log looking for occurrences of last_half_cycle. If we
782 * find one, then our current estimate for the location of the
783 * first occurrence of last_half_cycle is wrong and we move
784 * back to the hole we've found. This case looks like
785 * x + 1 ... | x | x + 1 | x ...
786 * ^ binary search stopped here
787 * Another case we need to handle that only occurs in 256k
788 * logs is
789 * x + 1 ... | x ... | x+1 | x ...
790 * ^ binary search stops here
791 * In a 256k log, the scan at the end of the log will see the
792 * x + 1 blocks. We need to skip past those since that is
793 * certainly not the head of the log. By searching for
794 * last_half_cycle-1 we accomplish that.
795 */
1da177e4 796 ASSERT(head_blk <= INT_MAX &&
3f943d85
AE
797 (xfs_daddr_t) num_scan_bblks >= head_blk);
798 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
799 if ((error = xlog_find_verify_cycle(log, start_blk,
800 num_scan_bblks - (int)head_blk,
801 (stop_on_cycle - 1), &new_blk)))
802 goto bp_err;
803 if (new_blk != -1) {
804 head_blk = new_blk;
9db127ed 805 goto validate_head;
1da177e4
LT
806 }
807
808 /*
809 * Scan beginning of log now. The last part of the physical
810 * log is good. This scan needs to verify that it doesn't find
811 * the last_half_cycle.
812 */
813 start_blk = 0;
814 ASSERT(head_blk <= INT_MAX);
815 if ((error = xlog_find_verify_cycle(log,
816 start_blk, (int)head_blk,
817 stop_on_cycle, &new_blk)))
818 goto bp_err;
819 if (new_blk != -1)
820 head_blk = new_blk;
821 }
822
9db127ed 823validate_head:
1da177e4
LT
824 /*
825 * Now we need to make sure head_blk is not pointing to a block in
826 * the middle of a log record.
827 */
828 num_scan_bblks = XLOG_REC_SHIFT(log);
829 if (head_blk >= num_scan_bblks) {
830 start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
831
832 /* start ptr at last block ptr before head_blk */
2451337d
DC
833 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
834 if (error == 1)
835 error = -EIO;
836 if (error)
1da177e4
LT
837 goto bp_err;
838 } else {
839 start_blk = 0;
840 ASSERT(head_blk <= INT_MAX);
2451337d
DC
841 error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
842 if (error < 0)
843 goto bp_err;
844 if (error == 1) {
1da177e4 845 /* We hit the beginning of the log during our search */
3f943d85 846 start_blk = log_bbnum - (num_scan_bblks - head_blk);
1da177e4
LT
847 new_blk = log_bbnum;
848 ASSERT(start_blk <= INT_MAX &&
849 (xfs_daddr_t) log_bbnum-start_blk >= 0);
850 ASSERT(head_blk <= INT_MAX);
2451337d
DC
851 error = xlog_find_verify_log_record(log, start_blk,
852 &new_blk, (int)head_blk);
853 if (error == 1)
854 error = -EIO;
855 if (error)
1da177e4
LT
856 goto bp_err;
857 if (new_blk != log_bbnum)
858 head_blk = new_blk;
859 } else if (error)
860 goto bp_err;
861 }
862
863 xlog_put_bp(bp);
864 if (head_blk == log_bbnum)
865 *return_head_blk = 0;
866 else
867 *return_head_blk = head_blk;
868 /*
869 * When returning here, we have a good block number. Bad block
870 * means that during a previous crash, we didn't have a clean break
871 * from cycle number N to cycle number N-1. In this case, we need
872 * to find the first block with cycle number N-1.
873 */
874 return 0;
875
876 bp_err:
877 xlog_put_bp(bp);
878
879 if (error)
a0fa2b67 880 xfs_warn(log->l_mp, "failed to find log head");
1da177e4
LT
881 return error;
882}
883
eed6b462
BF
884/*
885 * Seek backwards in the log for log record headers.
886 *
887 * Given a starting log block, walk backwards until we find the provided number
888 * of records or hit the provided tail block. The return value is the number of
889 * records encountered or a negative error code. The log block and buffer
890 * pointer of the last record seen are returned in rblk and rhead respectively.
891 */
892STATIC int
893xlog_rseek_logrec_hdr(
894 struct xlog *log,
895 xfs_daddr_t head_blk,
896 xfs_daddr_t tail_blk,
897 int count,
898 struct xfs_buf *bp,
899 xfs_daddr_t *rblk,
900 struct xlog_rec_header **rhead,
901 bool *wrapped)
902{
903 int i;
904 int error;
905 int found = 0;
906 char *offset = NULL;
907 xfs_daddr_t end_blk;
908
909 *wrapped = false;
910
911 /*
912 * Walk backwards from the head block until we hit the tail or the first
913 * block in the log.
914 */
915 end_blk = head_blk > tail_blk ? tail_blk : 0;
916 for (i = (int) head_blk - 1; i >= end_blk; i--) {
917 error = xlog_bread(log, i, 1, bp, &offset);
918 if (error)
919 goto out_error;
920
921 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
922 *rblk = i;
923 *rhead = (struct xlog_rec_header *) offset;
924 if (++found == count)
925 break;
926 }
927 }
928
929 /*
930 * If we haven't hit the tail block or the log record header count,
931 * start looking again from the end of the physical log. Note that
932 * callers can pass head == tail if the tail is not yet known.
933 */
934 if (tail_blk >= head_blk && found != count) {
935 for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
936 error = xlog_bread(log, i, 1, bp, &offset);
937 if (error)
938 goto out_error;
939
940 if (*(__be32 *)offset ==
941 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
942 *wrapped = true;
943 *rblk = i;
944 *rhead = (struct xlog_rec_header *) offset;
945 if (++found == count)
946 break;
947 }
948 }
949 }
950
951 return found;
952
953out_error:
954 return error;
955}
956
7088c413
BF
957/*
958 * Seek forward in the log for log record headers.
959 *
960 * Given head and tail blocks, walk forward from the tail block until we find
961 * the provided number of records or hit the head block. The return value is the
962 * number of records encountered or a negative error code. The log block and
963 * buffer pointer of the last record seen are returned in rblk and rhead
964 * respectively.
965 */
966STATIC int
967xlog_seek_logrec_hdr(
968 struct xlog *log,
969 xfs_daddr_t head_blk,
970 xfs_daddr_t tail_blk,
971 int count,
972 struct xfs_buf *bp,
973 xfs_daddr_t *rblk,
974 struct xlog_rec_header **rhead,
975 bool *wrapped)
976{
977 int i;
978 int error;
979 int found = 0;
980 char *offset = NULL;
981 xfs_daddr_t end_blk;
982
983 *wrapped = false;
984
985 /*
986 * Walk forward from the tail block until we hit the head or the last
987 * block in the log.
988 */
989 end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
990 for (i = (int) tail_blk; i <= end_blk; i++) {
991 error = xlog_bread(log, i, 1, bp, &offset);
992 if (error)
993 goto out_error;
994
995 if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
996 *rblk = i;
997 *rhead = (struct xlog_rec_header *) offset;
998 if (++found == count)
999 break;
1000 }
1001 }
1002
1003 /*
1004 * If we haven't hit the head block or the log record header count,
1005 * start looking again from the start of the physical log.
1006 */
1007 if (tail_blk > head_blk && found != count) {
1008 for (i = 0; i < (int) head_blk; i++) {
1009 error = xlog_bread(log, i, 1, bp, &offset);
1010 if (error)
1011 goto out_error;
1012
1013 if (*(__be32 *)offset ==
1014 cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
1015 *wrapped = true;
1016 *rblk = i;
1017 *rhead = (struct xlog_rec_header *) offset;
1018 if (++found == count)
1019 break;
1020 }
1021 }
1022 }
1023
1024 return found;
1025
1026out_error:
1027 return error;
1028}
1029
1030/*
4a4f66ea
BF
1031 * Calculate distance from head to tail (i.e., unused space in the log).
1032 */
1033static inline int
1034xlog_tail_distance(
1035 struct xlog *log,
1036 xfs_daddr_t head_blk,
1037 xfs_daddr_t tail_blk)
1038{
1039 if (head_blk < tail_blk)
1040 return tail_blk - head_blk;
1041
1042 return tail_blk + (log->l_logBBsize - head_blk);
1043}
1044
1045/*
1046 * Verify the log tail. This is particularly important when torn or incomplete
1047 * writes have been detected near the front of the log and the head has been
1048 * walked back accordingly.
1049 *
1050 * We also have to handle the case where the tail was pinned and the head
1051 * blocked behind the tail right before a crash. If the tail had been pushed
1052 * immediately prior to the crash and the subsequent checkpoint was only
1053 * partially written, it's possible it overwrote the last referenced tail in the
1054 * log with garbage. This is not a coherency problem because the tail must have
1055 * been pushed before it can be overwritten, but appears as log corruption to
1056 * recovery because we have no way to know the tail was updated if the
1057 * subsequent checkpoint didn't write successfully.
7088c413 1058 *
4a4f66ea
BF
1059 * Therefore, CRC check the log from tail to head. If a failure occurs and the
1060 * offending record is within max iclog bufs from the head, walk the tail
1061 * forward and retry until a valid tail is found or corruption is detected out
1062 * of the range of a possible overwrite.
7088c413
BF
1063 */
1064STATIC int
1065xlog_verify_tail(
1066 struct xlog *log,
1067 xfs_daddr_t head_blk,
4a4f66ea
BF
1068 xfs_daddr_t *tail_blk,
1069 int hsize)
7088c413
BF
1070{
1071 struct xlog_rec_header *thead;
1072 struct xfs_buf *bp;
1073 xfs_daddr_t first_bad;
7088c413
BF
1074 int error = 0;
1075 bool wrapped;
4a4f66ea
BF
1076 xfs_daddr_t tmp_tail;
1077 xfs_daddr_t orig_tail = *tail_blk;
7088c413
BF
1078
1079 bp = xlog_get_bp(log, 1);
1080 if (!bp)
1081 return -ENOMEM;
1082
1083 /*
4a4f66ea
BF
1084 * Make sure the tail points to a record (returns positive count on
1085 * success).
7088c413 1086 */
4a4f66ea
BF
1087 error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, bp,
1088 &tmp_tail, &thead, &wrapped);
1089 if (error < 0)
7088c413 1090 goto out;
4a4f66ea
BF
1091 if (*tail_blk != tmp_tail)
1092 *tail_blk = tmp_tail;
7088c413
BF
1093
1094 /*
4a4f66ea
BF
1095 * Run a CRC check from the tail to the head. We can't just check
1096 * MAX_ICLOGS records past the tail because the tail may point to stale
1097 * blocks cleared during the search for the head/tail. These blocks are
1098 * overwritten with zero-length records and thus record count is not a
1099 * reliable indicator of the iclog state before a crash.
7088c413 1100 */
4a4f66ea
BF
1101 first_bad = 0;
1102 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
7088c413 1103 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1104 while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
4a4f66ea
BF
1105 int tail_distance;
1106
1107 /*
1108 * Is corruption within range of the head? If so, retry from
1109 * the next record. Otherwise return an error.
1110 */
1111 tail_distance = xlog_tail_distance(log, head_blk, first_bad);
1112 if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
1113 break;
7088c413 1114
4a4f66ea
BF
1115 /* skip to the next record; returns positive count on success */
1116 error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2, bp,
1117 &tmp_tail, &thead, &wrapped);
1118 if (error < 0)
1119 goto out;
1120
1121 *tail_blk = tmp_tail;
1122 first_bad = 0;
1123 error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1124 XLOG_RECOVER_CRCPASS, &first_bad);
1125 }
1126
1127 if (!error && *tail_blk != orig_tail)
1128 xfs_warn(log->l_mp,
1129 "Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1130 orig_tail, *tail_blk);
7088c413
BF
1131out:
1132 xlog_put_bp(bp);
1133 return error;
1134}
1135
1136/*
1137 * Detect and trim torn writes from the head of the log.
1138 *
1139 * Storage without sector atomicity guarantees can result in torn writes in the
1140 * log in the event of a crash. Our only means to detect this scenario is via
1141 * CRC verification. While we can't always be certain that CRC verification
1142 * failure is due to a torn write vs. an unrelated corruption, we do know that
1143 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1144 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1145 * the log and treat failures in this range as torn writes as a matter of
1146 * policy. In the event of CRC failure, the head is walked back to the last good
1147 * record in the log and the tail is updated from that record and verified.
1148 */
1149STATIC int
1150xlog_verify_head(
1151 struct xlog *log,
1152 xfs_daddr_t *head_blk, /* in/out: unverified head */
1153 xfs_daddr_t *tail_blk, /* out: tail block */
1154 struct xfs_buf *bp,
1155 xfs_daddr_t *rhead_blk, /* start blk of last record */
1156 struct xlog_rec_header **rhead, /* ptr to last record */
1157 bool *wrapped) /* last rec. wraps phys. log */
1158{
1159 struct xlog_rec_header *tmp_rhead;
1160 struct xfs_buf *tmp_bp;
1161 xfs_daddr_t first_bad;
1162 xfs_daddr_t tmp_rhead_blk;
1163 int found;
1164 int error;
1165 bool tmp_wrapped;
1166
1167 /*
82ff6cc2
BF
1168 * Check the head of the log for torn writes. Search backwards from the
1169 * head until we hit the tail or the maximum number of log record I/Os
1170 * that could have been in flight at one time. Use a temporary buffer so
1171 * we don't trash the rhead/bp pointers from the caller.
7088c413
BF
1172 */
1173 tmp_bp = xlog_get_bp(log, 1);
1174 if (!tmp_bp)
1175 return -ENOMEM;
1176 error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1177 XLOG_MAX_ICLOGS, tmp_bp, &tmp_rhead_blk,
1178 &tmp_rhead, &tmp_wrapped);
1179 xlog_put_bp(tmp_bp);
1180 if (error < 0)
1181 return error;
1182
1183 /*
1184 * Now run a CRC verification pass over the records starting at the
1185 * block found above to the current head. If a CRC failure occurs, the
1186 * log block of the first bad record is saved in first_bad.
1187 */
1188 error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1189 XLOG_RECOVER_CRCPASS, &first_bad);
a4c9b34d 1190 if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
7088c413
BF
1191 /*
1192 * We've hit a potential torn write. Reset the error and warn
1193 * about it.
1194 */
1195 error = 0;
1196 xfs_warn(log->l_mp,
1197"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1198 first_bad, *head_blk);
1199
1200 /*
1201 * Get the header block and buffer pointer for the last good
1202 * record before the bad record.
1203 *
1204 * Note that xlog_find_tail() clears the blocks at the new head
1205 * (i.e., the records with invalid CRC) if the cycle number
1206 * matches the the current cycle.
1207 */
1208 found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1, bp,
1209 rhead_blk, rhead, wrapped);
1210 if (found < 0)
1211 return found;
1212 if (found == 0) /* XXX: right thing to do here? */
1213 return -EIO;
1214
1215 /*
1216 * Reset the head block to the starting block of the first bad
1217 * log record and set the tail block based on the last good
1218 * record.
1219 *
1220 * Bail out if the updated head/tail match as this indicates
1221 * possible corruption outside of the acceptable
1222 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1223 */
1224 *head_blk = first_bad;
1225 *tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1226 if (*head_blk == *tail_blk) {
1227 ASSERT(0);
1228 return 0;
1229 }
7088c413 1230 }
5297ac1f
BF
1231 if (error)
1232 return error;
7088c413 1233
4a4f66ea
BF
1234 return xlog_verify_tail(log, *head_blk, tail_blk,
1235 be32_to_cpu((*rhead)->h_size));
7088c413
BF
1236}
1237
0703a8e1
DC
1238/*
1239 * We need to make sure we handle log wrapping properly, so we can't use the
1240 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1241 * log.
1242 *
1243 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1244 * operation here and cast it back to a 64 bit daddr on return.
1245 */
1246static inline xfs_daddr_t
1247xlog_wrap_logbno(
1248 struct xlog *log,
1249 xfs_daddr_t bno)
1250{
1251 int mod;
1252
1253 div_s64_rem(bno, log->l_logBBsize, &mod);
1254 return mod;
1255}
1256
65b99a08
BF
1257/*
1258 * Check whether the head of the log points to an unmount record. In other
1259 * words, determine whether the log is clean. If so, update the in-core state
1260 * appropriately.
1261 */
1262static int
1263xlog_check_unmount_rec(
1264 struct xlog *log,
1265 xfs_daddr_t *head_blk,
1266 xfs_daddr_t *tail_blk,
1267 struct xlog_rec_header *rhead,
1268 xfs_daddr_t rhead_blk,
1269 struct xfs_buf *bp,
1270 bool *clean)
1271{
1272 struct xlog_op_header *op_head;
1273 xfs_daddr_t umount_data_blk;
1274 xfs_daddr_t after_umount_blk;
1275 int hblks;
1276 int error;
1277 char *offset;
1278
1279 *clean = false;
1280
1281 /*
1282 * Look for unmount record. If we find it, then we know there was a
1283 * clean unmount. Since 'i' could be the last block in the physical
1284 * log, we convert to a log block before comparing to the head_blk.
1285 *
1286 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1287 * below. We won't want to clear the unmount record if there is one, so
1288 * we pass the lsn of the unmount record rather than the block after it.
1289 */
1290 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1291 int h_size = be32_to_cpu(rhead->h_size);
1292 int h_version = be32_to_cpu(rhead->h_version);
1293
1294 if ((h_version & XLOG_VERSION_2) &&
1295 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
1296 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
1297 if (h_size % XLOG_HEADER_CYCLE_SIZE)
1298 hblks++;
1299 } else {
1300 hblks = 1;
1301 }
1302 } else {
1303 hblks = 1;
1304 }
0703a8e1
DC
1305
1306 after_umount_blk = xlog_wrap_logbno(log,
1307 rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1308
65b99a08
BF
1309 if (*head_blk == after_umount_blk &&
1310 be32_to_cpu(rhead->h_num_logops) == 1) {
0703a8e1 1311 umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
65b99a08
BF
1312 error = xlog_bread(log, umount_data_blk, 1, bp, &offset);
1313 if (error)
1314 return error;
1315
1316 op_head = (struct xlog_op_header *)offset;
1317 if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1318 /*
1319 * Set tail and last sync so that newly written log
1320 * records will point recovery to after the current
1321 * unmount record.
1322 */
1323 xlog_assign_atomic_lsn(&log->l_tail_lsn,
1324 log->l_curr_cycle, after_umount_blk);
1325 xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1326 log->l_curr_cycle, after_umount_blk);
1327 *tail_blk = after_umount_blk;
1328
1329 *clean = true;
1330 }
1331 }
1332
1333 return 0;
1334}
1335
717bc0eb
BF
1336static void
1337xlog_set_state(
1338 struct xlog *log,
1339 xfs_daddr_t head_blk,
1340 struct xlog_rec_header *rhead,
1341 xfs_daddr_t rhead_blk,
1342 bool bump_cycle)
1343{
1344 /*
1345 * Reset log values according to the state of the log when we
1346 * crashed. In the case where head_blk == 0, we bump curr_cycle
1347 * one because the next write starts a new cycle rather than
1348 * continuing the cycle of the last good log record. At this
1349 * point we have guaranteed that all partial log records have been
1350 * accounted for. Therefore, we know that the last good log record
1351 * written was complete and ended exactly on the end boundary
1352 * of the physical log.
1353 */
1354 log->l_prev_block = rhead_blk;
1355 log->l_curr_block = (int)head_blk;
1356 log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1357 if (bump_cycle)
1358 log->l_curr_cycle++;
1359 atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1360 atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1361 xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1362 BBTOB(log->l_curr_block));
1363 xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1364 BBTOB(log->l_curr_block));
1365}
1366
1da177e4
LT
1367/*
1368 * Find the sync block number or the tail of the log.
1369 *
1370 * This will be the block number of the last record to have its
1371 * associated buffers synced to disk. Every log record header has
1372 * a sync lsn embedded in it. LSNs hold block numbers, so it is easy
1373 * to get a sync block number. The only concern is to figure out which
1374 * log record header to believe.
1375 *
1376 * The following algorithm uses the log record header with the largest
1377 * lsn. The entire log record does not need to be valid. We only care
1378 * that the header is valid.
1379 *
1380 * We could speed up search by using current head_blk buffer, but it is not
1381 * available.
1382 */
5d77c0dc 1383STATIC int
1da177e4 1384xlog_find_tail(
9a8d2fdb 1385 struct xlog *log,
1da177e4 1386 xfs_daddr_t *head_blk,
65be6054 1387 xfs_daddr_t *tail_blk)
1da177e4
LT
1388{
1389 xlog_rec_header_t *rhead;
b2a922cd 1390 char *offset = NULL;
1da177e4 1391 xfs_buf_t *bp;
7088c413 1392 int error;
7088c413 1393 xfs_daddr_t rhead_blk;
1da177e4 1394 xfs_lsn_t tail_lsn;
eed6b462 1395 bool wrapped = false;
65b99a08 1396 bool clean = false;
1da177e4
LT
1397
1398 /*
1399 * Find previous log record
1400 */
1401 if ((error = xlog_find_head(log, head_blk)))
1402 return error;
82ff6cc2 1403 ASSERT(*head_blk < INT_MAX);
1da177e4
LT
1404
1405 bp = xlog_get_bp(log, 1);
1406 if (!bp)
2451337d 1407 return -ENOMEM;
1da177e4 1408 if (*head_blk == 0) { /* special case */
076e6acb
CH
1409 error = xlog_bread(log, 0, 1, bp, &offset);
1410 if (error)
9db127ed 1411 goto done;
076e6acb 1412
03bea6fe 1413 if (xlog_get_cycle(offset) == 0) {
1da177e4
LT
1414 *tail_blk = 0;
1415 /* leave all other log inited values alone */
9db127ed 1416 goto done;
1da177e4
LT
1417 }
1418 }
1419
1420 /*
82ff6cc2
BF
1421 * Search backwards through the log looking for the log record header
1422 * block. This wraps all the way back around to the head so something is
1423 * seriously wrong if we can't find it.
1da177e4 1424 */
82ff6cc2
BF
1425 error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, bp,
1426 &rhead_blk, &rhead, &wrapped);
1427 if (error < 0)
1428 return error;
1429 if (!error) {
1430 xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1431 return -EIO;
1432 }
1433 *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1da177e4
LT
1434
1435 /*
717bc0eb 1436 * Set the log state based on the current head record.
1da177e4 1437 */
717bc0eb 1438 xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
65b99a08 1439 tail_lsn = atomic64_read(&log->l_tail_lsn);
1da177e4
LT
1440
1441 /*
65b99a08
BF
1442 * Look for an unmount record at the head of the log. This sets the log
1443 * state to determine whether recovery is necessary.
1da177e4 1444 */
65b99a08
BF
1445 error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1446 rhead_blk, bp, &clean);
1447 if (error)
1448 goto done;
1da177e4
LT
1449
1450 /*
7f6aff3a
BF
1451 * Verify the log head if the log is not clean (e.g., we have anything
1452 * but an unmount record at the head). This uses CRC verification to
1453 * detect and trim torn writes. If discovered, CRC failures are
1454 * considered torn writes and the log head is trimmed accordingly.
1da177e4 1455 *
7f6aff3a
BF
1456 * Note that we can only run CRC verification when the log is dirty
1457 * because there's no guarantee that the log data behind an unmount
1458 * record is compatible with the current architecture.
1da177e4 1459 */
7f6aff3a
BF
1460 if (!clean) {
1461 xfs_daddr_t orig_head = *head_blk;
1da177e4 1462
7f6aff3a
BF
1463 error = xlog_verify_head(log, head_blk, tail_blk, bp,
1464 &rhead_blk, &rhead, &wrapped);
076e6acb 1465 if (error)
9db127ed 1466 goto done;
076e6acb 1467
7f6aff3a
BF
1468 /* update in-core state again if the head changed */
1469 if (*head_blk != orig_head) {
1470 xlog_set_state(log, *head_blk, rhead, rhead_blk,
1471 wrapped);
1472 tail_lsn = atomic64_read(&log->l_tail_lsn);
1473 error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1474 rhead, rhead_blk, bp,
1475 &clean);
1476 if (error)
1477 goto done;
1da177e4
LT
1478 }
1479 }
1480
65b99a08
BF
1481 /*
1482 * Note that the unmount was clean. If the unmount was not clean, we
1483 * need to know this to rebuild the superblock counters from the perag
1484 * headers if we have a filesystem using non-persistent counters.
1485 */
1486 if (clean)
1487 log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1da177e4
LT
1488
1489 /*
1490 * Make sure that there are no blocks in front of the head
1491 * with the same cycle number as the head. This can happen
1492 * because we allow multiple outstanding log writes concurrently,
1493 * and the later writes might make it out before earlier ones.
1494 *
1495 * We use the lsn from before modifying it so that we'll never
1496 * overwrite the unmount record after a clean unmount.
1497 *
1498 * Do this only if we are going to recover the filesystem
1499 *
1500 * NOTE: This used to say "if (!readonly)"
1501 * However on Linux, we can & do recover a read-only filesystem.
1502 * We only skip recovery if NORECOVERY is specified on mount,
1503 * in which case we would not be here.
1504 *
1505 * But... if the -device- itself is readonly, just skip this.
1506 * We can't recover this device anyway, so it won't matter.
1507 */
9db127ed 1508 if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp))
1da177e4 1509 error = xlog_clear_stale_blocks(log, tail_lsn);
1da177e4 1510
9db127ed 1511done:
1da177e4
LT
1512 xlog_put_bp(bp);
1513
1514 if (error)
a0fa2b67 1515 xfs_warn(log->l_mp, "failed to locate log tail");
1da177e4
LT
1516 return error;
1517}
1518
1519/*
1520 * Is the log zeroed at all?
1521 *
1522 * The last binary search should be changed to perform an X block read
1523 * once X becomes small enough. You can then search linearly through
1524 * the X blocks. This will cut down on the number of reads we need to do.
1525 *
1526 * If the log is partially zeroed, this routine will pass back the blkno
1527 * of the first block with cycle number 0. It won't have a complete LR
1528 * preceding it.
1529 *
1530 * Return:
1531 * 0 => the log is completely written to
2451337d
DC
1532 * 1 => use *blk_no as the first block of the log
1533 * <0 => error has occurred
1da177e4 1534 */
a8272ce0 1535STATIC int
1da177e4 1536xlog_find_zeroed(
9a8d2fdb 1537 struct xlog *log,
1da177e4
LT
1538 xfs_daddr_t *blk_no)
1539{
1540 xfs_buf_t *bp;
b2a922cd 1541 char *offset;
1da177e4
LT
1542 uint first_cycle, last_cycle;
1543 xfs_daddr_t new_blk, last_blk, start_blk;
1544 xfs_daddr_t num_scan_bblks;
1545 int error, log_bbnum = log->l_logBBsize;
1546
6fdf8ccc
NS
1547 *blk_no = 0;
1548
1da177e4
LT
1549 /* check totally zeroed log */
1550 bp = xlog_get_bp(log, 1);
1551 if (!bp)
2451337d 1552 return -ENOMEM;
076e6acb
CH
1553 error = xlog_bread(log, 0, 1, bp, &offset);
1554 if (error)
1da177e4 1555 goto bp_err;
076e6acb 1556
03bea6fe 1557 first_cycle = xlog_get_cycle(offset);
1da177e4
LT
1558 if (first_cycle == 0) { /* completely zeroed log */
1559 *blk_no = 0;
1560 xlog_put_bp(bp);
2451337d 1561 return 1;
1da177e4
LT
1562 }
1563
1564 /* check partially zeroed log */
076e6acb
CH
1565 error = xlog_bread(log, log_bbnum-1, 1, bp, &offset);
1566 if (error)
1da177e4 1567 goto bp_err;
076e6acb 1568
03bea6fe 1569 last_cycle = xlog_get_cycle(offset);
1da177e4
LT
1570 if (last_cycle != 0) { /* log completely written to */
1571 xlog_put_bp(bp);
1572 return 0;
1573 } else if (first_cycle != 1) {
1574 /*
1575 * If the cycle of the last block is zero, the cycle of
1576 * the first block must be 1. If it's not, maybe we're
1577 * not looking at a log... Bail out.
1578 */
a0fa2b67
DC
1579 xfs_warn(log->l_mp,
1580 "Log inconsistent or not a log (last==0, first!=1)");
2451337d 1581 error = -EINVAL;
5d0a6549 1582 goto bp_err;
1da177e4
LT
1583 }
1584
1585 /* we have a partially zeroed log */
1586 last_blk = log_bbnum-1;
1587 if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0)))
1588 goto bp_err;
1589
1590 /*
1591 * Validate the answer. Because there is no way to guarantee that
1592 * the entire log is made up of log records which are the same size,
1593 * we scan over the defined maximum blocks. At this point, the maximum
1594 * is not chosen to mean anything special. XXXmiken
1595 */
1596 num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1597 ASSERT(num_scan_bblks <= INT_MAX);
1598
1599 if (last_blk < num_scan_bblks)
1600 num_scan_bblks = last_blk;
1601 start_blk = last_blk - num_scan_bblks;
1602
1603 /*
1604 * We search for any instances of cycle number 0 that occur before
1605 * our current estimate of the head. What we're trying to detect is
1606 * 1 ... | 0 | 1 | 0...
1607 * ^ binary search ends here
1608 */
1609 if ((error = xlog_find_verify_cycle(log, start_blk,
1610 (int)num_scan_bblks, 0, &new_blk)))
1611 goto bp_err;
1612 if (new_blk != -1)
1613 last_blk = new_blk;
1614
1615 /*
1616 * Potentially backup over partial log record write. We don't need
1617 * to search the end of the log because we know it is zero.
1618 */
2451337d
DC
1619 error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1620 if (error == 1)
1621 error = -EIO;
1622 if (error)
1623 goto bp_err;
1da177e4
LT
1624
1625 *blk_no = last_blk;
1626bp_err:
1627 xlog_put_bp(bp);
1628 if (error)
1629 return error;
2451337d 1630 return 1;
1da177e4
LT
1631}
1632
1633/*
1634 * These are simple subroutines used by xlog_clear_stale_blocks() below
1635 * to initialize a buffer full of empty log record headers and write
1636 * them into the log.
1637 */
1638STATIC void
1639xlog_add_record(
9a8d2fdb 1640 struct xlog *log,
b2a922cd 1641 char *buf,
1da177e4
LT
1642 int cycle,
1643 int block,
1644 int tail_cycle,
1645 int tail_block)
1646{
1647 xlog_rec_header_t *recp = (xlog_rec_header_t *)buf;
1648
1649 memset(buf, 0, BBSIZE);
b53e675d
CH
1650 recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1651 recp->h_cycle = cpu_to_be32(cycle);
1652 recp->h_version = cpu_to_be32(
62118709 1653 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d
CH
1654 recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1655 recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1656 recp->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1657 memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1658}
1659
1660STATIC int
1661xlog_write_log_records(
9a8d2fdb 1662 struct xlog *log,
1da177e4
LT
1663 int cycle,
1664 int start_block,
1665 int blocks,
1666 int tail_cycle,
1667 int tail_block)
1668{
b2a922cd 1669 char *offset;
1da177e4
LT
1670 xfs_buf_t *bp;
1671 int balign, ealign;
69ce58f0 1672 int sectbb = log->l_sectBBsize;
1da177e4
LT
1673 int end_block = start_block + blocks;
1674 int bufblks;
1675 int error = 0;
1676 int i, j = 0;
1677
6881a229
AE
1678 /*
1679 * Greedily allocate a buffer big enough to handle the full
1680 * range of basic blocks to be written. If that fails, try
1681 * a smaller size. We need to be able to write at least a
1682 * log sector, or we're out of luck.
1683 */
1da177e4 1684 bufblks = 1 << ffs(blocks);
81158e0c
DC
1685 while (bufblks > log->l_logBBsize)
1686 bufblks >>= 1;
1da177e4
LT
1687 while (!(bp = xlog_get_bp(log, bufblks))) {
1688 bufblks >>= 1;
69ce58f0 1689 if (bufblks < sectbb)
2451337d 1690 return -ENOMEM;
1da177e4
LT
1691 }
1692
1693 /* We may need to do a read at the start to fill in part of
1694 * the buffer in the starting sector not covered by the first
1695 * write below.
1696 */
5c17f533 1697 balign = round_down(start_block, sectbb);
1da177e4 1698 if (balign != start_block) {
076e6acb
CH
1699 error = xlog_bread_noalign(log, start_block, 1, bp);
1700 if (error)
1701 goto out_put_bp;
1702
1da177e4
LT
1703 j = start_block - balign;
1704 }
1705
1706 for (i = start_block; i < end_block; i += bufblks) {
1707 int bcount, endcount;
1708
1709 bcount = min(bufblks, end_block - start_block);
1710 endcount = bcount - j;
1711
1712 /* We may need to do a read at the end to fill in part of
1713 * the buffer in the final sector not covered by the write.
1714 * If this is the same sector as the above read, skip it.
1715 */
5c17f533 1716 ealign = round_down(end_block, sectbb);
1da177e4 1717 if (j == 0 && (start_block + endcount > ealign)) {
62926044 1718 offset = bp->b_addr + BBTOB(ealign - start_block);
44396476
DC
1719 error = xlog_bread_offset(log, ealign, sectbb,
1720 bp, offset);
076e6acb
CH
1721 if (error)
1722 break;
1723
1da177e4
LT
1724 }
1725
1726 offset = xlog_align(log, start_block, endcount, bp);
1727 for (; j < endcount; j++) {
1728 xlog_add_record(log, offset, cycle, i+j,
1729 tail_cycle, tail_block);
1730 offset += BBSIZE;
1731 }
1732 error = xlog_bwrite(log, start_block, endcount, bp);
1733 if (error)
1734 break;
1735 start_block += endcount;
1736 j = 0;
1737 }
076e6acb
CH
1738
1739 out_put_bp:
1da177e4
LT
1740 xlog_put_bp(bp);
1741 return error;
1742}
1743
1744/*
1745 * This routine is called to blow away any incomplete log writes out
1746 * in front of the log head. We do this so that we won't become confused
1747 * if we come up, write only a little bit more, and then crash again.
1748 * If we leave the partial log records out there, this situation could
1749 * cause us to think those partial writes are valid blocks since they
1750 * have the current cycle number. We get rid of them by overwriting them
1751 * with empty log records with the old cycle number rather than the
1752 * current one.
1753 *
1754 * The tail lsn is passed in rather than taken from
1755 * the log so that we will not write over the unmount record after a
1756 * clean unmount in a 512 block log. Doing so would leave the log without
1757 * any valid log records in it until a new one was written. If we crashed
1758 * during that time we would not be able to recover.
1759 */
1760STATIC int
1761xlog_clear_stale_blocks(
9a8d2fdb 1762 struct xlog *log,
1da177e4
LT
1763 xfs_lsn_t tail_lsn)
1764{
1765 int tail_cycle, head_cycle;
1766 int tail_block, head_block;
1767 int tail_distance, max_distance;
1768 int distance;
1769 int error;
1770
1771 tail_cycle = CYCLE_LSN(tail_lsn);
1772 tail_block = BLOCK_LSN(tail_lsn);
1773 head_cycle = log->l_curr_cycle;
1774 head_block = log->l_curr_block;
1775
1776 /*
1777 * Figure out the distance between the new head of the log
1778 * and the tail. We want to write over any blocks beyond the
1779 * head that we may have written just before the crash, but
1780 * we don't want to overwrite the tail of the log.
1781 */
1782 if (head_cycle == tail_cycle) {
1783 /*
1784 * The tail is behind the head in the physical log,
1785 * so the distance from the head to the tail is the
1786 * distance from the head to the end of the log plus
1787 * the distance from the beginning of the log to the
1788 * tail.
1789 */
1790 if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) {
1791 XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)",
1792 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1793 return -EFSCORRUPTED;
1da177e4
LT
1794 }
1795 tail_distance = tail_block + (log->l_logBBsize - head_block);
1796 } else {
1797 /*
1798 * The head is behind the tail in the physical log,
1799 * so the distance from the head to the tail is just
1800 * the tail block minus the head block.
1801 */
1802 if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){
1803 XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)",
1804 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 1805 return -EFSCORRUPTED;
1da177e4
LT
1806 }
1807 tail_distance = tail_block - head_block;
1808 }
1809
1810 /*
1811 * If the head is right up against the tail, we can't clear
1812 * anything.
1813 */
1814 if (tail_distance <= 0) {
1815 ASSERT(tail_distance == 0);
1816 return 0;
1817 }
1818
1819 max_distance = XLOG_TOTAL_REC_SHIFT(log);
1820 /*
1821 * Take the smaller of the maximum amount of outstanding I/O
1822 * we could have and the distance to the tail to clear out.
1823 * We take the smaller so that we don't overwrite the tail and
1824 * we don't waste all day writing from the head to the tail
1825 * for no reason.
1826 */
9bb54cb5 1827 max_distance = min(max_distance, tail_distance);
1da177e4
LT
1828
1829 if ((head_block + max_distance) <= log->l_logBBsize) {
1830 /*
1831 * We can stomp all the blocks we need to without
1832 * wrapping around the end of the log. Just do it
1833 * in a single write. Use the cycle number of the
1834 * current cycle minus one so that the log will look like:
1835 * n ... | n - 1 ...
1836 */
1837 error = xlog_write_log_records(log, (head_cycle - 1),
1838 head_block, max_distance, tail_cycle,
1839 tail_block);
1840 if (error)
1841 return error;
1842 } else {
1843 /*
1844 * We need to wrap around the end of the physical log in
1845 * order to clear all the blocks. Do it in two separate
1846 * I/Os. The first write should be from the head to the
1847 * end of the physical log, and it should use the current
1848 * cycle number minus one just like above.
1849 */
1850 distance = log->l_logBBsize - head_block;
1851 error = xlog_write_log_records(log, (head_cycle - 1),
1852 head_block, distance, tail_cycle,
1853 tail_block);
1854
1855 if (error)
1856 return error;
1857
1858 /*
1859 * Now write the blocks at the start of the physical log.
1860 * This writes the remainder of the blocks we want to clear.
1861 * It uses the current cycle number since we're now on the
1862 * same cycle as the head so that we get:
1863 * n ... n ... | n - 1 ...
1864 * ^^^^^ blocks we're writing
1865 */
1866 distance = max_distance - (log->l_logBBsize - head_block);
1867 error = xlog_write_log_records(log, head_cycle, 0, distance,
1868 tail_cycle, tail_block);
1869 if (error)
1870 return error;
1871 }
1872
1873 return 0;
1874}
1875
1876/******************************************************************************
1877 *
1878 * Log recover routines
1879 *
1880 ******************************************************************************
1881 */
1882
f0a76953 1883/*
a775ad77
DC
1884 * Sort the log items in the transaction.
1885 *
1886 * The ordering constraints are defined by the inode allocation and unlink
1887 * behaviour. The rules are:
1888 *
1889 * 1. Every item is only logged once in a given transaction. Hence it
1890 * represents the last logged state of the item. Hence ordering is
1891 * dependent on the order in which operations need to be performed so
1892 * required initial conditions are always met.
1893 *
1894 * 2. Cancelled buffers are recorded in pass 1 in a separate table and
1895 * there's nothing to replay from them so we can simply cull them
1896 * from the transaction. However, we can't do that until after we've
1897 * replayed all the other items because they may be dependent on the
1898 * cancelled buffer and replaying the cancelled buffer can remove it
1899 * form the cancelled buffer table. Hence they have tobe done last.
1900 *
1901 * 3. Inode allocation buffers must be replayed before inode items that
28c8e41a
DC
1902 * read the buffer and replay changes into it. For filesystems using the
1903 * ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1904 * treated the same as inode allocation buffers as they create and
1905 * initialise the buffers directly.
a775ad77
DC
1906 *
1907 * 4. Inode unlink buffers must be replayed after inode items are replayed.
1908 * This ensures that inodes are completely flushed to the inode buffer
1909 * in a "free" state before we remove the unlinked inode list pointer.
1910 *
1911 * Hence the ordering needs to be inode allocation buffers first, inode items
1912 * second, inode unlink buffers third and cancelled buffers last.
1913 *
1914 * But there's a problem with that - we can't tell an inode allocation buffer
1915 * apart from a regular buffer, so we can't separate them. We can, however,
1916 * tell an inode unlink buffer from the others, and so we can separate them out
1917 * from all the other buffers and move them to last.
1918 *
1919 * Hence, 4 lists, in order from head to tail:
28c8e41a
DC
1920 * - buffer_list for all buffers except cancelled/inode unlink buffers
1921 * - item_list for all non-buffer items
1922 * - inode_buffer_list for inode unlink buffers
1923 * - cancel_list for the cancelled buffers
1924 *
1925 * Note that we add objects to the tail of the lists so that first-to-last
1926 * ordering is preserved within the lists. Adding objects to the head of the
1927 * list means when we traverse from the head we walk them in last-to-first
1928 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1929 * but for all other items there may be specific ordering that we need to
1930 * preserve.
f0a76953 1931 */
1da177e4
LT
1932STATIC int
1933xlog_recover_reorder_trans(
ad223e60
MT
1934 struct xlog *log,
1935 struct xlog_recover *trans,
9abbc539 1936 int pass)
1da177e4 1937{
f0a76953 1938 xlog_recover_item_t *item, *n;
2a84108f 1939 int error = 0;
f0a76953 1940 LIST_HEAD(sort_list);
a775ad77
DC
1941 LIST_HEAD(cancel_list);
1942 LIST_HEAD(buffer_list);
1943 LIST_HEAD(inode_buffer_list);
1944 LIST_HEAD(inode_list);
f0a76953
DC
1945
1946 list_splice_init(&trans->r_itemq, &sort_list);
1947 list_for_each_entry_safe(item, n, &sort_list, ri_list) {
4e0d5f92 1948 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
1da177e4 1949
f0a76953 1950 switch (ITEM_TYPE(item)) {
28c8e41a
DC
1951 case XFS_LI_ICREATE:
1952 list_move_tail(&item->ri_list, &buffer_list);
1953 break;
1da177e4 1954 case XFS_LI_BUF:
a775ad77 1955 if (buf_f->blf_flags & XFS_BLF_CANCEL) {
9abbc539
DC
1956 trace_xfs_log_recover_item_reorder_head(log,
1957 trans, item, pass);
a775ad77 1958 list_move(&item->ri_list, &cancel_list);
1da177e4
LT
1959 break;
1960 }
a775ad77
DC
1961 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1962 list_move(&item->ri_list, &inode_buffer_list);
1963 break;
1964 }
1965 list_move_tail(&item->ri_list, &buffer_list);
1966 break;
1da177e4 1967 case XFS_LI_INODE:
1da177e4
LT
1968 case XFS_LI_DQUOT:
1969 case XFS_LI_QUOTAOFF:
1970 case XFS_LI_EFD:
1971 case XFS_LI_EFI:
9e88b5d8
DW
1972 case XFS_LI_RUI:
1973 case XFS_LI_RUD:
f997ee21
DW
1974 case XFS_LI_CUI:
1975 case XFS_LI_CUD:
77d61fe4
DW
1976 case XFS_LI_BUI:
1977 case XFS_LI_BUD:
9abbc539
DC
1978 trace_xfs_log_recover_item_reorder_tail(log,
1979 trans, item, pass);
a775ad77 1980 list_move_tail(&item->ri_list, &inode_list);
1da177e4
LT
1981 break;
1982 default:
a0fa2b67
DC
1983 xfs_warn(log->l_mp,
1984 "%s: unrecognized type of log operation",
1985 __func__);
1da177e4 1986 ASSERT(0);
2a84108f
MT
1987 /*
1988 * return the remaining items back to the transaction
1989 * item list so they can be freed in caller.
1990 */
1991 if (!list_empty(&sort_list))
1992 list_splice_init(&sort_list, &trans->r_itemq);
2451337d 1993 error = -EIO;
2a84108f 1994 goto out;
1da177e4 1995 }
f0a76953 1996 }
2a84108f 1997out:
f0a76953 1998 ASSERT(list_empty(&sort_list));
a775ad77
DC
1999 if (!list_empty(&buffer_list))
2000 list_splice(&buffer_list, &trans->r_itemq);
2001 if (!list_empty(&inode_list))
2002 list_splice_tail(&inode_list, &trans->r_itemq);
2003 if (!list_empty(&inode_buffer_list))
2004 list_splice_tail(&inode_buffer_list, &trans->r_itemq);
2005 if (!list_empty(&cancel_list))
2006 list_splice_tail(&cancel_list, &trans->r_itemq);
2a84108f 2007 return error;
1da177e4
LT
2008}
2009
2010/*
2011 * Build up the table of buf cancel records so that we don't replay
2012 * cancelled data in the second pass. For buffer records that are
2013 * not cancel records, there is nothing to do here so we just return.
2014 *
2015 * If we get a cancel record which is already in the table, this indicates
2016 * that the buffer was cancelled multiple times. In order to ensure
2017 * that during pass 2 we keep the record in the table until we reach its
2018 * last occurrence in the log, we keep a reference count in the cancel
2019 * record in the table to tell us how many times we expect to see this
2020 * record during the second pass.
2021 */
c9f71f5f
CH
2022STATIC int
2023xlog_recover_buffer_pass1(
ad223e60
MT
2024 struct xlog *log,
2025 struct xlog_recover_item *item)
1da177e4 2026{
c9f71f5f 2027 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
d5689eaa
CH
2028 struct list_head *bucket;
2029 struct xfs_buf_cancel *bcp;
1da177e4
LT
2030
2031 /*
2032 * If this isn't a cancel buffer item, then just return.
2033 */
e2714bf8 2034 if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) {
9abbc539 2035 trace_xfs_log_recover_buf_not_cancel(log, buf_f);
c9f71f5f 2036 return 0;
9abbc539 2037 }
1da177e4
LT
2038
2039 /*
d5689eaa
CH
2040 * Insert an xfs_buf_cancel record into the hash table of them.
2041 * If there is already an identical record, bump its reference count.
1da177e4 2042 */
d5689eaa
CH
2043 bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno);
2044 list_for_each_entry(bcp, bucket, bc_list) {
2045 if (bcp->bc_blkno == buf_f->blf_blkno &&
2046 bcp->bc_len == buf_f->blf_len) {
2047 bcp->bc_refcount++;
9abbc539 2048 trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f);
c9f71f5f 2049 return 0;
1da177e4 2050 }
d5689eaa
CH
2051 }
2052
2053 bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP);
2054 bcp->bc_blkno = buf_f->blf_blkno;
2055 bcp->bc_len = buf_f->blf_len;
1da177e4 2056 bcp->bc_refcount = 1;
d5689eaa
CH
2057 list_add_tail(&bcp->bc_list, bucket);
2058
9abbc539 2059 trace_xfs_log_recover_buf_cancel_add(log, buf_f);
c9f71f5f 2060 return 0;
1da177e4
LT
2061}
2062
2063/*
2064 * Check to see whether the buffer being recovered has a corresponding
84a5b730
DC
2065 * entry in the buffer cancel record table. If it is, return the cancel
2066 * buffer structure to the caller.
1da177e4 2067 */
84a5b730
DC
2068STATIC struct xfs_buf_cancel *
2069xlog_peek_buffer_cancelled(
ad223e60 2070 struct xlog *log,
1da177e4
LT
2071 xfs_daddr_t blkno,
2072 uint len,
755c7bf5 2073 unsigned short flags)
1da177e4 2074{
d5689eaa
CH
2075 struct list_head *bucket;
2076 struct xfs_buf_cancel *bcp;
1da177e4 2077
84a5b730
DC
2078 if (!log->l_buf_cancel_table) {
2079 /* empty table means no cancelled buffers in the log */
c1155410 2080 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730 2081 return NULL;
1da177e4
LT
2082 }
2083
d5689eaa
CH
2084 bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno);
2085 list_for_each_entry(bcp, bucket, bc_list) {
2086 if (bcp->bc_blkno == blkno && bcp->bc_len == len)
84a5b730 2087 return bcp;
1da177e4 2088 }
d5689eaa 2089
1da177e4 2090 /*
d5689eaa
CH
2091 * We didn't find a corresponding entry in the table, so return 0 so
2092 * that the buffer is NOT cancelled.
1da177e4 2093 */
c1155410 2094 ASSERT(!(flags & XFS_BLF_CANCEL));
84a5b730
DC
2095 return NULL;
2096}
2097
2098/*
2099 * If the buffer is being cancelled then return 1 so that it will be cancelled,
2100 * otherwise return 0. If the buffer is actually a buffer cancel item
2101 * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the
2102 * table and remove it from the table if this is the last reference.
2103 *
2104 * We remove the cancel record from the table when we encounter its last
2105 * occurrence in the log so that if the same buffer is re-used again after its
2106 * last cancellation we actually replay the changes made at that point.
2107 */
2108STATIC int
2109xlog_check_buffer_cancelled(
2110 struct xlog *log,
2111 xfs_daddr_t blkno,
2112 uint len,
755c7bf5 2113 unsigned short flags)
84a5b730
DC
2114{
2115 struct xfs_buf_cancel *bcp;
2116
2117 bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags);
2118 if (!bcp)
2119 return 0;
d5689eaa 2120
d5689eaa
CH
2121 /*
2122 * We've go a match, so return 1 so that the recovery of this buffer
2123 * is cancelled. If this buffer is actually a buffer cancel log
2124 * item, then decrement the refcount on the one in the table and
2125 * remove it if this is the last reference.
2126 */
2127 if (flags & XFS_BLF_CANCEL) {
2128 if (--bcp->bc_refcount == 0) {
2129 list_del(&bcp->bc_list);
2130 kmem_free(bcp);
2131 }
2132 }
2133 return 1;
1da177e4
LT
2134}
2135
1da177e4 2136/*
e2714bf8
CH
2137 * Perform recovery for a buffer full of inodes. In these buffers, the only
2138 * data which should be recovered is that which corresponds to the
2139 * di_next_unlinked pointers in the on disk inode structures. The rest of the
2140 * data for the inodes is always logged through the inodes themselves rather
2141 * than the inode buffer and is recovered in xlog_recover_inode_pass2().
1da177e4 2142 *
e2714bf8
CH
2143 * The only time when buffers full of inodes are fully recovered is when the
2144 * buffer is full of newly allocated inodes. In this case the buffer will
2145 * not be marked as an inode buffer and so will be sent to
2146 * xlog_recover_do_reg_buffer() below during recovery.
1da177e4
LT
2147 */
2148STATIC int
2149xlog_recover_do_inode_buffer(
e2714bf8 2150 struct xfs_mount *mp,
1da177e4 2151 xlog_recover_item_t *item,
e2714bf8 2152 struct xfs_buf *bp,
1da177e4
LT
2153 xfs_buf_log_format_t *buf_f)
2154{
2155 int i;
e2714bf8
CH
2156 int item_index = 0;
2157 int bit = 0;
2158 int nbits = 0;
2159 int reg_buf_offset = 0;
2160 int reg_buf_bytes = 0;
1da177e4
LT
2161 int next_unlinked_offset;
2162 int inodes_per_buf;
2163 xfs_agino_t *logged_nextp;
2164 xfs_agino_t *buffer_nextp;
1da177e4 2165
9abbc539 2166 trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f);
9222a9cf
DC
2167
2168 /*
2169 * Post recovery validation only works properly on CRC enabled
2170 * filesystems.
2171 */
2172 if (xfs_sb_version_hascrc(&mp->m_sb))
2173 bp->b_ops = &xfs_inode_buf_ops;
9abbc539 2174
aa0e8833 2175 inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog;
1da177e4
LT
2176 for (i = 0; i < inodes_per_buf; i++) {
2177 next_unlinked_offset = (i * mp->m_sb.sb_inodesize) +
2178 offsetof(xfs_dinode_t, di_next_unlinked);
2179
2180 while (next_unlinked_offset >=
2181 (reg_buf_offset + reg_buf_bytes)) {
2182 /*
2183 * The next di_next_unlinked field is beyond
2184 * the current logged region. Find the next
2185 * logged region that contains or is beyond
2186 * the current di_next_unlinked field.
2187 */
2188 bit += nbits;
e2714bf8
CH
2189 bit = xfs_next_bit(buf_f->blf_data_map,
2190 buf_f->blf_map_size, bit);
1da177e4
LT
2191
2192 /*
2193 * If there are no more logged regions in the
2194 * buffer, then we're done.
2195 */
e2714bf8 2196 if (bit == -1)
1da177e4 2197 return 0;
1da177e4 2198
e2714bf8
CH
2199 nbits = xfs_contig_bits(buf_f->blf_data_map,
2200 buf_f->blf_map_size, bit);
1da177e4 2201 ASSERT(nbits > 0);
c1155410
DC
2202 reg_buf_offset = bit << XFS_BLF_SHIFT;
2203 reg_buf_bytes = nbits << XFS_BLF_SHIFT;
1da177e4
LT
2204 item_index++;
2205 }
2206
2207 /*
2208 * If the current logged region starts after the current
2209 * di_next_unlinked field, then move on to the next
2210 * di_next_unlinked field.
2211 */
e2714bf8 2212 if (next_unlinked_offset < reg_buf_offset)
1da177e4 2213 continue;
1da177e4
LT
2214
2215 ASSERT(item->ri_buf[item_index].i_addr != NULL);
c1155410 2216 ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0);
aa0e8833
DC
2217 ASSERT((reg_buf_offset + reg_buf_bytes) <=
2218 BBTOB(bp->b_io_length));
1da177e4
LT
2219
2220 /*
2221 * The current logged region contains a copy of the
2222 * current di_next_unlinked field. Extract its value
2223 * and copy it to the buffer copy.
2224 */
4e0d5f92
CH
2225 logged_nextp = item->ri_buf[item_index].i_addr +
2226 next_unlinked_offset - reg_buf_offset;
1da177e4 2227 if (unlikely(*logged_nextp == 0)) {
a0fa2b67 2228 xfs_alert(mp,
c9690043 2229 "Bad inode buffer log record (ptr = "PTR_FMT", bp = "PTR_FMT"). "
a0fa2b67 2230 "Trying to replay bad (0) inode di_next_unlinked field.",
1da177e4
LT
2231 item, bp);
2232 XFS_ERROR_REPORT("xlog_recover_do_inode_buf",
2233 XFS_ERRLEVEL_LOW, mp);
2451337d 2234 return -EFSCORRUPTED;
1da177e4
LT
2235 }
2236
88ee2df7 2237 buffer_nextp = xfs_buf_offset(bp, next_unlinked_offset);
87c199c2 2238 *buffer_nextp = *logged_nextp;
0a32c26e
DC
2239
2240 /*
2241 * If necessary, recalculate the CRC in the on-disk inode. We
2242 * have to leave the inode in a consistent state for whoever
2243 * reads it next....
2244 */
88ee2df7 2245 xfs_dinode_calc_crc(mp,
0a32c26e
DC
2246 xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize));
2247
1da177e4
LT
2248 }
2249
2250 return 0;
2251}
2252
50d5c8d8
DC
2253/*
2254 * V5 filesystems know the age of the buffer on disk being recovered. We can
2255 * have newer objects on disk than we are replaying, and so for these cases we
2256 * don't want to replay the current change as that will make the buffer contents
2257 * temporarily invalid on disk.
2258 *
2259 * The magic number might not match the buffer type we are going to recover
2260 * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence
2261 * extract the LSN of the existing object in the buffer based on it's current
2262 * magic number. If we don't recognise the magic number in the buffer, then
2263 * return a LSN of -1 so that the caller knows it was an unrecognised block and
2264 * so can recover the buffer.
566055d3
DC
2265 *
2266 * Note: we cannot rely solely on magic number matches to determine that the
2267 * buffer has a valid LSN - we also need to verify that it belongs to this
2268 * filesystem, so we need to extract the object's LSN and compare it to that
2269 * which we read from the superblock. If the UUIDs don't match, then we've got a
2270 * stale metadata block from an old filesystem instance that we need to recover
2271 * over the top of.
50d5c8d8
DC
2272 */
2273static xfs_lsn_t
2274xlog_recover_get_buf_lsn(
2275 struct xfs_mount *mp,
2276 struct xfs_buf *bp)
2277{
c8ce540d
DW
2278 uint32_t magic32;
2279 uint16_t magic16;
2280 uint16_t magicda;
50d5c8d8 2281 void *blk = bp->b_addr;
566055d3
DC
2282 uuid_t *uuid;
2283 xfs_lsn_t lsn = -1;
50d5c8d8
DC
2284
2285 /* v4 filesystems always recover immediately */
2286 if (!xfs_sb_version_hascrc(&mp->m_sb))
2287 goto recover_immediately;
2288
2289 magic32 = be32_to_cpu(*(__be32 *)blk);
2290 switch (magic32) {
2291 case XFS_ABTB_CRC_MAGIC:
2292 case XFS_ABTC_CRC_MAGIC:
2293 case XFS_ABTB_MAGIC:
2294 case XFS_ABTC_MAGIC:
a650e8f9 2295 case XFS_RMAP_CRC_MAGIC:
a90c00f0 2296 case XFS_REFC_CRC_MAGIC:
50d5c8d8 2297 case XFS_IBT_CRC_MAGIC:
566055d3
DC
2298 case XFS_IBT_MAGIC: {
2299 struct xfs_btree_block *btb = blk;
2300
2301 lsn = be64_to_cpu(btb->bb_u.s.bb_lsn);
2302 uuid = &btb->bb_u.s.bb_uuid;
2303 break;
2304 }
50d5c8d8 2305 case XFS_BMAP_CRC_MAGIC:
566055d3
DC
2306 case XFS_BMAP_MAGIC: {
2307 struct xfs_btree_block *btb = blk;
2308
2309 lsn = be64_to_cpu(btb->bb_u.l.bb_lsn);
2310 uuid = &btb->bb_u.l.bb_uuid;
2311 break;
2312 }
50d5c8d8 2313 case XFS_AGF_MAGIC:
566055d3
DC
2314 lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn);
2315 uuid = &((struct xfs_agf *)blk)->agf_uuid;
2316 break;
50d5c8d8 2317 case XFS_AGFL_MAGIC:
566055d3
DC
2318 lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn);
2319 uuid = &((struct xfs_agfl *)blk)->agfl_uuid;
2320 break;
50d5c8d8 2321 case XFS_AGI_MAGIC:
566055d3
DC
2322 lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn);
2323 uuid = &((struct xfs_agi *)blk)->agi_uuid;
2324 break;
50d5c8d8 2325 case XFS_SYMLINK_MAGIC:
566055d3
DC
2326 lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn);
2327 uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid;
2328 break;
50d5c8d8
DC
2329 case XFS_DIR3_BLOCK_MAGIC:
2330 case XFS_DIR3_DATA_MAGIC:
2331 case XFS_DIR3_FREE_MAGIC:
566055d3
DC
2332 lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn);
2333 uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid;
2334 break;
50d5c8d8 2335 case XFS_ATTR3_RMT_MAGIC:
e3c32ee9
DC
2336 /*
2337 * Remote attr blocks are written synchronously, rather than
2338 * being logged. That means they do not contain a valid LSN
2339 * (i.e. transactionally ordered) in them, and hence any time we
2340 * see a buffer to replay over the top of a remote attribute
2341 * block we should simply do so.
2342 */
2343 goto recover_immediately;
50d5c8d8 2344 case XFS_SB_MAGIC:
fcfbe2c4
DC
2345 /*
2346 * superblock uuids are magic. We may or may not have a
2347 * sb_meta_uuid on disk, but it will be set in the in-core
2348 * superblock. We set the uuid pointer for verification
2349 * according to the superblock feature mask to ensure we check
2350 * the relevant UUID in the superblock.
2351 */
566055d3 2352 lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn);
fcfbe2c4
DC
2353 if (xfs_sb_version_hasmetauuid(&mp->m_sb))
2354 uuid = &((struct xfs_dsb *)blk)->sb_meta_uuid;
2355 else
2356 uuid = &((struct xfs_dsb *)blk)->sb_uuid;
566055d3 2357 break;
50d5c8d8
DC
2358 default:
2359 break;
2360 }
2361
566055d3 2362 if (lsn != (xfs_lsn_t)-1) {
fcfbe2c4 2363 if (!uuid_equal(&mp->m_sb.sb_meta_uuid, uuid))
566055d3
DC
2364 goto recover_immediately;
2365 return lsn;
2366 }
2367
50d5c8d8
DC
2368 magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic);
2369 switch (magicda) {
2370 case XFS_DIR3_LEAF1_MAGIC:
2371 case XFS_DIR3_LEAFN_MAGIC:
2372 case XFS_DA3_NODE_MAGIC:
566055d3
DC
2373 lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn);
2374 uuid = &((struct xfs_da3_blkinfo *)blk)->uuid;
2375 break;
50d5c8d8
DC
2376 default:
2377 break;
2378 }
2379
566055d3
DC
2380 if (lsn != (xfs_lsn_t)-1) {
2381 if (!uuid_equal(&mp->m_sb.sb_uuid, uuid))
2382 goto recover_immediately;
2383 return lsn;
2384 }
2385
50d5c8d8
DC
2386 /*
2387 * We do individual object checks on dquot and inode buffers as they
2388 * have their own individual LSN records. Also, we could have a stale
2389 * buffer here, so we have to at least recognise these buffer types.
2390 *
2391 * A notd complexity here is inode unlinked list processing - it logs
2392 * the inode directly in the buffer, but we don't know which inodes have
2393 * been modified, and there is no global buffer LSN. Hence we need to
2394 * recover all inode buffer types immediately. This problem will be
2395 * fixed by logical logging of the unlinked list modifications.
2396 */
2397 magic16 = be16_to_cpu(*(__be16 *)blk);
2398 switch (magic16) {
2399 case XFS_DQUOT_MAGIC:
2400 case XFS_DINODE_MAGIC:
2401 goto recover_immediately;
2402 default:
2403 break;
2404 }
2405
2406 /* unknown buffer contents, recover immediately */
2407
2408recover_immediately:
2409 return (xfs_lsn_t)-1;
2410
2411}
2412
1da177e4 2413/*
d75afeb3
DC
2414 * Validate the recovered buffer is of the correct type and attach the
2415 * appropriate buffer operations to them for writeback. Magic numbers are in a
2416 * few places:
2417 * the first 16 bits of the buffer (inode buffer, dquot buffer),
2418 * the first 32 bits of the buffer (most blocks),
2419 * inside a struct xfs_da_blkinfo at the start of the buffer.
1da177e4 2420 */
d75afeb3 2421static void
50d5c8d8 2422xlog_recover_validate_buf_type(
9abbc539 2423 struct xfs_mount *mp,
e2714bf8 2424 struct xfs_buf *bp,
22db9af2
BF
2425 xfs_buf_log_format_t *buf_f,
2426 xfs_lsn_t current_lsn)
1da177e4 2427{
d75afeb3 2428 struct xfs_da_blkinfo *info = bp->b_addr;
c8ce540d
DW
2429 uint32_t magic32;
2430 uint16_t magic16;
2431 uint16_t magicda;
040c52c0 2432 char *warnmsg = NULL;
d75afeb3 2433
67dc288c
DC
2434 /*
2435 * We can only do post recovery validation on items on CRC enabled
2436 * fielsystems as we need to know when the buffer was written to be able
2437 * to determine if we should have replayed the item. If we replay old
2438 * metadata over a newer buffer, then it will enter a temporarily
2439 * inconsistent state resulting in verification failures. Hence for now
2440 * just avoid the verification stage for non-crc filesystems
2441 */
2442 if (!xfs_sb_version_hascrc(&mp->m_sb))
2443 return;
2444
d75afeb3
DC
2445 magic32 = be32_to_cpu(*(__be32 *)bp->b_addr);
2446 magic16 = be16_to_cpu(*(__be16*)bp->b_addr);
2447 magicda = be16_to_cpu(info->magic);
61fe135c
DC
2448 switch (xfs_blft_from_flags(buf_f)) {
2449 case XFS_BLFT_BTREE_BUF:
d75afeb3 2450 switch (magic32) {
ee1a47ab
CH
2451 case XFS_ABTB_CRC_MAGIC:
2452 case XFS_ABTC_CRC_MAGIC:
2453 case XFS_ABTB_MAGIC:
2454 case XFS_ABTC_MAGIC:
2455 bp->b_ops = &xfs_allocbt_buf_ops;
2456 break;
2457 case XFS_IBT_CRC_MAGIC:
aafc3c24 2458 case XFS_FIBT_CRC_MAGIC:
ee1a47ab 2459 case XFS_IBT_MAGIC:
aafc3c24 2460 case XFS_FIBT_MAGIC:
ee1a47ab
CH
2461 bp->b_ops = &xfs_inobt_buf_ops;
2462 break;
2463 case XFS_BMAP_CRC_MAGIC:
2464 case XFS_BMAP_MAGIC:
2465 bp->b_ops = &xfs_bmbt_buf_ops;
2466 break;
a650e8f9
DW
2467 case XFS_RMAP_CRC_MAGIC:
2468 bp->b_ops = &xfs_rmapbt_buf_ops;
2469 break;
a90c00f0
DW
2470 case XFS_REFC_CRC_MAGIC:
2471 bp->b_ops = &xfs_refcountbt_buf_ops;
2472 break;
ee1a47ab 2473 default:
040c52c0 2474 warnmsg = "Bad btree block magic!";
ee1a47ab
CH
2475 break;
2476 }
2477 break;
61fe135c 2478 case XFS_BLFT_AGF_BUF:
d75afeb3 2479 if (magic32 != XFS_AGF_MAGIC) {
040c52c0 2480 warnmsg = "Bad AGF block magic!";
4e0e6040
DC
2481 break;
2482 }
2483 bp->b_ops = &xfs_agf_buf_ops;
2484 break;
61fe135c 2485 case XFS_BLFT_AGFL_BUF:
d75afeb3 2486 if (magic32 != XFS_AGFL_MAGIC) {
040c52c0 2487 warnmsg = "Bad AGFL block magic!";
77c95bba
CH
2488 break;
2489 }
2490 bp->b_ops = &xfs_agfl_buf_ops;
2491 break;
61fe135c 2492 case XFS_BLFT_AGI_BUF:
d75afeb3 2493 if (magic32 != XFS_AGI_MAGIC) {
040c52c0 2494 warnmsg = "Bad AGI block magic!";
983d09ff
DC
2495 break;
2496 }
2497 bp->b_ops = &xfs_agi_buf_ops;
2498 break;
61fe135c
DC
2499 case XFS_BLFT_UDQUOT_BUF:
2500 case XFS_BLFT_PDQUOT_BUF:
2501 case XFS_BLFT_GDQUOT_BUF:
123887e8 2502#ifdef CONFIG_XFS_QUOTA
d75afeb3 2503 if (magic16 != XFS_DQUOT_MAGIC) {
040c52c0 2504 warnmsg = "Bad DQUOT block magic!";
3fe58f30
CH
2505 break;
2506 }
2507 bp->b_ops = &xfs_dquot_buf_ops;
123887e8
DC
2508#else
2509 xfs_alert(mp,
2510 "Trying to recover dquots without QUOTA support built in!");
2511 ASSERT(0);
2512#endif
3fe58f30 2513 break;
61fe135c 2514 case XFS_BLFT_DINO_BUF:
d75afeb3 2515 if (magic16 != XFS_DINODE_MAGIC) {
040c52c0 2516 warnmsg = "Bad INODE block magic!";
93848a99
CH
2517 break;
2518 }
2519 bp->b_ops = &xfs_inode_buf_ops;
2520 break;
61fe135c 2521 case XFS_BLFT_SYMLINK_BUF:
d75afeb3 2522 if (magic32 != XFS_SYMLINK_MAGIC) {
040c52c0 2523 warnmsg = "Bad symlink block magic!";
f948dd76
DC
2524 break;
2525 }
2526 bp->b_ops = &xfs_symlink_buf_ops;
2527 break;
61fe135c 2528 case XFS_BLFT_DIR_BLOCK_BUF:
d75afeb3
DC
2529 if (magic32 != XFS_DIR2_BLOCK_MAGIC &&
2530 magic32 != XFS_DIR3_BLOCK_MAGIC) {
040c52c0 2531 warnmsg = "Bad dir block magic!";
d75afeb3
DC
2532 break;
2533 }
2534 bp->b_ops = &xfs_dir3_block_buf_ops;
2535 break;
61fe135c 2536 case XFS_BLFT_DIR_DATA_BUF:
d75afeb3
DC
2537 if (magic32 != XFS_DIR2_DATA_MAGIC &&
2538 magic32 != XFS_DIR3_DATA_MAGIC) {
040c52c0 2539 warnmsg = "Bad dir data magic!";
d75afeb3
DC
2540 break;
2541 }
2542 bp->b_ops = &xfs_dir3_data_buf_ops;
2543 break;
61fe135c 2544 case XFS_BLFT_DIR_FREE_BUF:
d75afeb3
DC
2545 if (magic32 != XFS_DIR2_FREE_MAGIC &&
2546 magic32 != XFS_DIR3_FREE_MAGIC) {
040c52c0 2547 warnmsg = "Bad dir3 free magic!";
d75afeb3
DC
2548 break;
2549 }
2550 bp->b_ops = &xfs_dir3_free_buf_ops;
2551 break;
61fe135c 2552 case XFS_BLFT_DIR_LEAF1_BUF:
d75afeb3
DC
2553 if (magicda != XFS_DIR2_LEAF1_MAGIC &&
2554 magicda != XFS_DIR3_LEAF1_MAGIC) {
040c52c0 2555 warnmsg = "Bad dir leaf1 magic!";
d75afeb3
DC
2556 break;
2557 }
2558 bp->b_ops = &xfs_dir3_leaf1_buf_ops;
2559 break;
61fe135c 2560 case XFS_BLFT_DIR_LEAFN_BUF:
d75afeb3
DC
2561 if (magicda != XFS_DIR2_LEAFN_MAGIC &&
2562 magicda != XFS_DIR3_LEAFN_MAGIC) {
040c52c0 2563 warnmsg = "Bad dir leafn magic!";
d75afeb3
DC
2564 break;
2565 }
2566 bp->b_ops = &xfs_dir3_leafn_buf_ops;
2567 break;
61fe135c 2568 case XFS_BLFT_DA_NODE_BUF:
d75afeb3
DC
2569 if (magicda != XFS_DA_NODE_MAGIC &&
2570 magicda != XFS_DA3_NODE_MAGIC) {
040c52c0 2571 warnmsg = "Bad da node magic!";
d75afeb3
DC
2572 break;
2573 }
2574 bp->b_ops = &xfs_da3_node_buf_ops;
2575 break;
61fe135c 2576 case XFS_BLFT_ATTR_LEAF_BUF:
d75afeb3
DC
2577 if (magicda != XFS_ATTR_LEAF_MAGIC &&
2578 magicda != XFS_ATTR3_LEAF_MAGIC) {
040c52c0 2579 warnmsg = "Bad attr leaf magic!";
d75afeb3
DC
2580 break;
2581 }
2582 bp->b_ops = &xfs_attr3_leaf_buf_ops;
2583 break;
61fe135c 2584 case XFS_BLFT_ATTR_RMT_BUF:
cab09a81 2585 if (magic32 != XFS_ATTR3_RMT_MAGIC) {
040c52c0 2586 warnmsg = "Bad attr remote magic!";
d75afeb3
DC
2587 break;
2588 }
2589 bp->b_ops = &xfs_attr3_rmt_buf_ops;
2590 break;
04a1e6c5
DC
2591 case XFS_BLFT_SB_BUF:
2592 if (magic32 != XFS_SB_MAGIC) {
040c52c0 2593 warnmsg = "Bad SB block magic!";
04a1e6c5
DC
2594 break;
2595 }
2596 bp->b_ops = &xfs_sb_buf_ops;
2597 break;
f67ca6ec
DC
2598#ifdef CONFIG_XFS_RT
2599 case XFS_BLFT_RTBITMAP_BUF:
2600 case XFS_BLFT_RTSUMMARY_BUF:
bf85e099
DC
2601 /* no magic numbers for verification of RT buffers */
2602 bp->b_ops = &xfs_rtbuf_ops;
f67ca6ec
DC
2603 break;
2604#endif /* CONFIG_XFS_RT */
ee1a47ab 2605 default:
61fe135c
DC
2606 xfs_warn(mp, "Unknown buffer type %d!",
2607 xfs_blft_from_flags(buf_f));
ee1a47ab
CH
2608 break;
2609 }
040c52c0
BF
2610
2611 /*
60a4a222
BF
2612 * Nothing else to do in the case of a NULL current LSN as this means
2613 * the buffer is more recent than the change in the log and will be
2614 * skipped.
040c52c0 2615 */
60a4a222
BF
2616 if (current_lsn == NULLCOMMITLSN)
2617 return;
2618
2619 if (warnmsg) {
040c52c0
BF
2620 xfs_warn(mp, warnmsg);
2621 ASSERT(0);
2622 }
60a4a222
BF
2623
2624 /*
2625 * We must update the metadata LSN of the buffer as it is written out to
2626 * ensure that older transactions never replay over this one and corrupt
2627 * the buffer. This can occur if log recovery is interrupted at some
2628 * point after the current transaction completes, at which point a
2629 * subsequent mount starts recovery from the beginning.
2630 *
2631 * Write verifiers update the metadata LSN from log items attached to
2632 * the buffer. Therefore, initialize a bli purely to carry the LSN to
2633 * the verifier. We'll clean it up in our ->iodone() callback.
2634 */
2635 if (bp->b_ops) {
2636 struct xfs_buf_log_item *bip;
2637
2638 ASSERT(!bp->b_iodone || bp->b_iodone == xlog_recover_iodone);
2639 bp->b_iodone = xlog_recover_iodone;
2640 xfs_buf_item_init(bp, mp);
fb1755a6 2641 bip = bp->b_log_item;
60a4a222
BF
2642 bip->bli_item.li_lsn = current_lsn;
2643 }
1da177e4
LT
2644}
2645
d75afeb3
DC
2646/*
2647 * Perform a 'normal' buffer recovery. Each logged region of the
2648 * buffer should be copied over the corresponding region in the
2649 * given buffer. The bitmap in the buf log format structure indicates
2650 * where to place the logged data.
2651 */
2652STATIC void
2653xlog_recover_do_reg_buffer(
2654 struct xfs_mount *mp,
2655 xlog_recover_item_t *item,
2656 struct xfs_buf *bp,
22db9af2
BF
2657 xfs_buf_log_format_t *buf_f,
2658 xfs_lsn_t current_lsn)
d75afeb3
DC
2659{
2660 int i;
2661 int bit;
2662 int nbits;
eebf3cab 2663 xfs_failaddr_t fa;
d75afeb3
DC
2664
2665 trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f);
2666
2667 bit = 0;
2668 i = 1; /* 0 is the buf format structure */
2669 while (1) {
2670 bit = xfs_next_bit(buf_f->blf_data_map,
2671 buf_f->blf_map_size, bit);
2672 if (bit == -1)
2673 break;
2674 nbits = xfs_contig_bits(buf_f->blf_data_map,
2675 buf_f->blf_map_size, bit);
2676 ASSERT(nbits > 0);
2677 ASSERT(item->ri_buf[i].i_addr != NULL);
2678 ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0);
2679 ASSERT(BBTOB(bp->b_io_length) >=
2680 ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT));
2681
709da6a6
DC
2682 /*
2683 * The dirty regions logged in the buffer, even though
2684 * contiguous, may span multiple chunks. This is because the
2685 * dirty region may span a physical page boundary in a buffer
2686 * and hence be split into two separate vectors for writing into
2687 * the log. Hence we need to trim nbits back to the length of
2688 * the current region being copied out of the log.
2689 */
2690 if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT))
2691 nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT;
2692
d75afeb3
DC
2693 /*
2694 * Do a sanity check if this is a dquot buffer. Just checking
2695 * the first dquot in the buffer should do. XXXThis is
2696 * probably a good thing to do for other buf types also.
2697 */
eebf3cab 2698 fa = NULL;
d75afeb3
DC
2699 if (buf_f->blf_flags &
2700 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
2701 if (item->ri_buf[i].i_addr == NULL) {
2702 xfs_alert(mp,
2703 "XFS: NULL dquot in %s.", __func__);
2704 goto next;
2705 }
2706 if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) {
2707 xfs_alert(mp,
2708 "XFS: dquot too small (%d) in %s.",
2709 item->ri_buf[i].i_len, __func__);
2710 goto next;
2711 }
eebf3cab 2712 fa = xfs_dquot_verify(mp, item->ri_buf[i].i_addr,
e381a0f6 2713 -1, 0);
eebf3cab
DW
2714 if (fa) {
2715 xfs_alert(mp,
2716 "dquot corrupt at %pS trying to replay into block 0x%llx",
2717 fa, bp->b_bn);
d75afeb3 2718 goto next;
eebf3cab 2719 }
d75afeb3
DC
2720 }
2721
2722 memcpy(xfs_buf_offset(bp,
2723 (uint)bit << XFS_BLF_SHIFT), /* dest */
2724 item->ri_buf[i].i_addr, /* source */
2725 nbits<<XFS_BLF_SHIFT); /* length */
2726 next:
2727 i++;
2728 bit += nbits;
2729 }
2730
2731 /* Shouldn't be any more regions */
2732 ASSERT(i == item->ri_total);
2733
22db9af2 2734 xlog_recover_validate_buf_type(mp, bp, buf_f, current_lsn);
d75afeb3
DC
2735}
2736
1da177e4
LT
2737/*
2738 * Perform a dquot buffer recovery.
8ba701ee 2739 * Simple algorithm: if we have found a QUOTAOFF log item of the same type
1da177e4
LT
2740 * (ie. USR or GRP), then just toss this buffer away; don't recover it.
2741 * Else, treat it as a regular buffer and do recovery.
ad3714b8
DC
2742 *
2743 * Return false if the buffer was tossed and true if we recovered the buffer to
2744 * indicate to the caller if the buffer needs writing.
1da177e4 2745 */
ad3714b8 2746STATIC bool
1da177e4 2747xlog_recover_do_dquot_buffer(
9a8d2fdb
MT
2748 struct xfs_mount *mp,
2749 struct xlog *log,
2750 struct xlog_recover_item *item,
2751 struct xfs_buf *bp,
2752 struct xfs_buf_log_format *buf_f)
1da177e4
LT
2753{
2754 uint type;
2755
9abbc539
DC
2756 trace_xfs_log_recover_buf_dquot_buf(log, buf_f);
2757
1da177e4
LT
2758 /*
2759 * Filesystems are required to send in quota flags at mount time.
2760 */
ad3714b8
DC
2761 if (!mp->m_qflags)
2762 return false;
1da177e4
LT
2763
2764 type = 0;
c1155410 2765 if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF)
1da177e4 2766 type |= XFS_DQ_USER;
c1155410 2767 if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF)
c8ad20ff 2768 type |= XFS_DQ_PROJ;
c1155410 2769 if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF)
1da177e4
LT
2770 type |= XFS_DQ_GROUP;
2771 /*
2772 * This type of quotas was turned off, so ignore this buffer
2773 */
2774 if (log->l_quotaoffs_flag & type)
ad3714b8 2775 return false;
1da177e4 2776
22db9af2 2777 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, NULLCOMMITLSN);
ad3714b8 2778 return true;
1da177e4
LT
2779}
2780
2781/*
2782 * This routine replays a modification made to a buffer at runtime.
2783 * There are actually two types of buffer, regular and inode, which
2784 * are handled differently. Inode buffers are handled differently
2785 * in that we only recover a specific set of data from them, namely
2786 * the inode di_next_unlinked fields. This is because all other inode
2787 * data is actually logged via inode records and any data we replay
2788 * here which overlaps that may be stale.
2789 *
2790 * When meta-data buffers are freed at run time we log a buffer item
c1155410 2791 * with the XFS_BLF_CANCEL bit set to indicate that previous copies
1da177e4
LT
2792 * of the buffer in the log should not be replayed at recovery time.
2793 * This is so that if the blocks covered by the buffer are reused for
2794 * file data before we crash we don't end up replaying old, freed
2795 * meta-data into a user's file.
2796 *
2797 * To handle the cancellation of buffer log items, we make two passes
2798 * over the log during recovery. During the first we build a table of
2799 * those buffers which have been cancelled, and during the second we
2800 * only replay those buffers which do not have corresponding cancel
34be5ff3 2801 * records in the table. See xlog_recover_buffer_pass[1,2] above
1da177e4
LT
2802 * for more details on the implementation of the table of cancel records.
2803 */
2804STATIC int
c9f71f5f 2805xlog_recover_buffer_pass2(
9a8d2fdb
MT
2806 struct xlog *log,
2807 struct list_head *buffer_list,
50d5c8d8
DC
2808 struct xlog_recover_item *item,
2809 xfs_lsn_t current_lsn)
1da177e4 2810{
4e0d5f92 2811 xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr;
e2714bf8 2812 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
2813 xfs_buf_t *bp;
2814 int error;
6ad112bf 2815 uint buf_flags;
50d5c8d8 2816 xfs_lsn_t lsn;
1da177e4 2817
c9f71f5f
CH
2818 /*
2819 * In this pass we only want to recover all the buffers which have
2820 * not been cancelled and are not cancellation buffers themselves.
2821 */
2822 if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno,
2823 buf_f->blf_len, buf_f->blf_flags)) {
2824 trace_xfs_log_recover_buf_cancel(log, buf_f);
1da177e4 2825 return 0;
1da177e4 2826 }
c9f71f5f 2827
9abbc539 2828 trace_xfs_log_recover_buf_recover(log, buf_f);
1da177e4 2829
a8acad70 2830 buf_flags = 0;
611c9946
DC
2831 if (buf_f->blf_flags & XFS_BLF_INODE_BUF)
2832 buf_flags |= XBF_UNMAPPED;
6ad112bf 2833
e2714bf8 2834 bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len,
c3f8fc73 2835 buf_flags, NULL);
ac4d6888 2836 if (!bp)
2451337d 2837 return -ENOMEM;
e5702805 2838 error = bp->b_error;
5a52c2a5 2839 if (error) {
901796af 2840 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)");
50d5c8d8 2841 goto out_release;
1da177e4
LT
2842 }
2843
50d5c8d8 2844 /*
67dc288c 2845 * Recover the buffer only if we get an LSN from it and it's less than
50d5c8d8 2846 * the lsn of the transaction we are replaying.
67dc288c
DC
2847 *
2848 * Note that we have to be extremely careful of readahead here.
2849 * Readahead does not attach verfiers to the buffers so if we don't
2850 * actually do any replay after readahead because of the LSN we found
2851 * in the buffer if more recent than that current transaction then we
2852 * need to attach the verifier directly. Failure to do so can lead to
2853 * future recovery actions (e.g. EFI and unlinked list recovery) can
2854 * operate on the buffers and they won't get the verifier attached. This
2855 * can lead to blocks on disk having the correct content but a stale
2856 * CRC.
2857 *
2858 * It is safe to assume these clean buffers are currently up to date.
2859 * If the buffer is dirtied by a later transaction being replayed, then
2860 * the verifier will be reset to match whatever recover turns that
2861 * buffer into.
50d5c8d8
DC
2862 */
2863 lsn = xlog_recover_get_buf_lsn(mp, bp);
67dc288c 2864 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
5cd9cee9 2865 trace_xfs_log_recover_buf_skip(log, buf_f);
22db9af2 2866 xlog_recover_validate_buf_type(mp, bp, buf_f, NULLCOMMITLSN);
50d5c8d8 2867 goto out_release;
67dc288c 2868 }
50d5c8d8 2869
e2714bf8 2870 if (buf_f->blf_flags & XFS_BLF_INODE_BUF) {
1da177e4 2871 error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f);
ad3714b8
DC
2872 if (error)
2873 goto out_release;
e2714bf8 2874 } else if (buf_f->blf_flags &
c1155410 2875 (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) {
ad3714b8
DC
2876 bool dirty;
2877
2878 dirty = xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f);
2879 if (!dirty)
2880 goto out_release;
1da177e4 2881 } else {
22db9af2 2882 xlog_recover_do_reg_buffer(mp, item, bp, buf_f, current_lsn);
1da177e4 2883 }
1da177e4
LT
2884
2885 /*
2886 * Perform delayed write on the buffer. Asynchronous writes will be
2887 * slower when taking into account all the buffers to be flushed.
2888 *
2889 * Also make sure that only inode buffers with good sizes stay in
2890 * the buffer cache. The kernel moves inodes in buffers of 1 block
0f49efd8 2891 * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode
1da177e4
LT
2892 * buffers in the log can be a different size if the log was generated
2893 * by an older kernel using unclustered inode buffers or a newer kernel
2894 * running with a different inode cluster size. Regardless, if the
9bb54cb5 2895 * the inode buffer size isn't max(blocksize, mp->m_inode_cluster_size)
0f49efd8 2896 * for *our* value of mp->m_inode_cluster_size, then we need to keep
1da177e4
LT
2897 * the buffer out of the buffer cache so that the buffer won't
2898 * overlap with future reads of those inodes.
2899 */
2900 if (XFS_DINODE_MAGIC ==
b53e675d 2901 be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) &&
9bb54cb5 2902 (BBTOB(bp->b_io_length) != max(log->l_mp->m_sb.sb_blocksize,
c8ce540d 2903 (uint32_t)log->l_mp->m_inode_cluster_size))) {
c867cb61 2904 xfs_buf_stale(bp);
c2b006c1 2905 error = xfs_bwrite(bp);
1da177e4 2906 } else {
ebad861b 2907 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 2908 bp->b_iodone = xlog_recover_iodone;
43ff2122 2909 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4
LT
2910 }
2911
50d5c8d8 2912out_release:
c2b006c1
CH
2913 xfs_buf_relse(bp);
2914 return error;
1da177e4
LT
2915}
2916
638f4416
DC
2917/*
2918 * Inode fork owner changes
2919 *
2920 * If we have been told that we have to reparent the inode fork, it's because an
2921 * extent swap operation on a CRC enabled filesystem has been done and we are
2922 * replaying it. We need to walk the BMBT of the appropriate fork and change the
2923 * owners of it.
2924 *
2925 * The complexity here is that we don't have an inode context to work with, so
2926 * after we've replayed the inode we need to instantiate one. This is where the
2927 * fun begins.
2928 *
2929 * We are in the middle of log recovery, so we can't run transactions. That
2930 * means we cannot use cache coherent inode instantiation via xfs_iget(), as
2931 * that will result in the corresponding iput() running the inode through
2932 * xfs_inactive(). If we've just replayed an inode core that changes the link
2933 * count to zero (i.e. it's been unlinked), then xfs_inactive() will run
2934 * transactions (bad!).
2935 *
2936 * So, to avoid this, we instantiate an inode directly from the inode core we've
2937 * just recovered. We have the buffer still locked, and all we really need to
2938 * instantiate is the inode core and the forks being modified. We can do this
2939 * manually, then run the inode btree owner change, and then tear down the
2940 * xfs_inode without having to run any transactions at all.
2941 *
2942 * Also, because we don't have a transaction context available here but need to
2943 * gather all the buffers we modify for writeback so we pass the buffer_list
2944 * instead for the operation to use.
2945 */
2946
2947STATIC int
2948xfs_recover_inode_owner_change(
2949 struct xfs_mount *mp,
2950 struct xfs_dinode *dip,
2951 struct xfs_inode_log_format *in_f,
2952 struct list_head *buffer_list)
2953{
2954 struct xfs_inode *ip;
2955 int error;
2956
2957 ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER));
2958
2959 ip = xfs_inode_alloc(mp, in_f->ilf_ino);
2960 if (!ip)
2451337d 2961 return -ENOMEM;
638f4416
DC
2962
2963 /* instantiate the inode */
3987848c 2964 xfs_inode_from_disk(ip, dip);
638f4416
DC
2965 ASSERT(ip->i_d.di_version >= 3);
2966
2967 error = xfs_iformat_fork(ip, dip);
2968 if (error)
2969 goto out_free_ip;
2970
9cfb9b47
DW
2971 if (!xfs_inode_verify_forks(ip)) {
2972 error = -EFSCORRUPTED;
2973 goto out_free_ip;
2974 }
638f4416
DC
2975
2976 if (in_f->ilf_fields & XFS_ILOG_DOWNER) {
2977 ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT);
2978 error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK,
2979 ip->i_ino, buffer_list);
2980 if (error)
2981 goto out_free_ip;
2982 }
2983
2984 if (in_f->ilf_fields & XFS_ILOG_AOWNER) {
2985 ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT);
2986 error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK,
2987 ip->i_ino, buffer_list);
2988 if (error)
2989 goto out_free_ip;
2990 }
2991
2992out_free_ip:
2993 xfs_inode_free(ip);
2994 return error;
2995}
2996
1da177e4 2997STATIC int
c9f71f5f 2998xlog_recover_inode_pass2(
9a8d2fdb
MT
2999 struct xlog *log,
3000 struct list_head *buffer_list,
50d5c8d8
DC
3001 struct xlog_recover_item *item,
3002 xfs_lsn_t current_lsn)
1da177e4 3003{
06b11321 3004 struct xfs_inode_log_format *in_f;
c9f71f5f 3005 xfs_mount_t *mp = log->l_mp;
1da177e4 3006 xfs_buf_t *bp;
1da177e4 3007 xfs_dinode_t *dip;
1da177e4 3008 int len;
b2a922cd
CH
3009 char *src;
3010 char *dest;
1da177e4
LT
3011 int error;
3012 int attr_index;
3013 uint fields;
f8d55aa0 3014 struct xfs_log_dinode *ldip;
93848a99 3015 uint isize;
6d192a9b 3016 int need_free = 0;
1da177e4 3017
06b11321 3018 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
4e0d5f92 3019 in_f = item->ri_buf[0].i_addr;
6d192a9b 3020 } else {
06b11321 3021 in_f = kmem_alloc(sizeof(struct xfs_inode_log_format), KM_SLEEP);
6d192a9b
TS
3022 need_free = 1;
3023 error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f);
3024 if (error)
3025 goto error;
3026 }
1da177e4
LT
3027
3028 /*
3029 * Inode buffers can be freed, look out for it,
3030 * and do not replay the inode.
3031 */
a1941895
CH
3032 if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno,
3033 in_f->ilf_len, 0)) {
6d192a9b 3034 error = 0;
9abbc539 3035 trace_xfs_log_recover_inode_cancel(log, in_f);
6d192a9b
TS
3036 goto error;
3037 }
9abbc539 3038 trace_xfs_log_recover_inode_recover(log, in_f);
1da177e4 3039
c3f8fc73 3040 bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0,
93848a99 3041 &xfs_inode_buf_ops);
ac4d6888 3042 if (!bp) {
2451337d 3043 error = -ENOMEM;
ac4d6888
CS
3044 goto error;
3045 }
e5702805 3046 error = bp->b_error;
5a52c2a5 3047 if (error) {
901796af 3048 xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)");
638f4416 3049 goto out_release;
1da177e4 3050 }
1da177e4 3051 ASSERT(in_f->ilf_fields & XFS_ILOG_CORE);
88ee2df7 3052 dip = xfs_buf_offset(bp, in_f->ilf_boffset);
1da177e4
LT
3053
3054 /*
3055 * Make sure the place we're flushing out to really looks
3056 * like an inode!
3057 */
69ef921b 3058 if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) {
a0fa2b67 3059 xfs_alert(mp,
c9690043 3060 "%s: Bad inode magic number, dip = "PTR_FMT", dino bp = "PTR_FMT", ino = %Ld",
a0fa2b67 3061 __func__, dip, bp, in_f->ilf_ino);
c9f71f5f 3062 XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)",
1da177e4 3063 XFS_ERRLEVEL_LOW, mp);
2451337d 3064 error = -EFSCORRUPTED;
638f4416 3065 goto out_release;
1da177e4 3066 }
f8d55aa0
DC
3067 ldip = item->ri_buf[1].i_addr;
3068 if (unlikely(ldip->di_magic != XFS_DINODE_MAGIC)) {
a0fa2b67 3069 xfs_alert(mp,
c9690043 3070 "%s: Bad inode log record, rec ptr "PTR_FMT", ino %Ld",
a0fa2b67 3071 __func__, item, in_f->ilf_ino);
c9f71f5f 3072 XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)",
1da177e4 3073 XFS_ERRLEVEL_LOW, mp);
2451337d 3074 error = -EFSCORRUPTED;
638f4416 3075 goto out_release;
1da177e4
LT
3076 }
3077
50d5c8d8
DC
3078 /*
3079 * If the inode has an LSN in it, recover the inode only if it's less
638f4416
DC
3080 * than the lsn of the transaction we are replaying. Note: we still
3081 * need to replay an owner change even though the inode is more recent
3082 * than the transaction as there is no guarantee that all the btree
3083 * blocks are more recent than this transaction, too.
50d5c8d8
DC
3084 */
3085 if (dip->di_version >= 3) {
3086 xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn);
3087
3088 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3089 trace_xfs_log_recover_inode_skip(log, in_f);
3090 error = 0;
638f4416 3091 goto out_owner_change;
50d5c8d8
DC
3092 }
3093 }
3094
e60896d8
DC
3095 /*
3096 * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes
3097 * are transactional and if ordering is necessary we can determine that
3098 * more accurately by the LSN field in the V3 inode core. Don't trust
3099 * the inode versions we might be changing them here - use the
3100 * superblock flag to determine whether we need to look at di_flushiter
3101 * to skip replay when the on disk inode is newer than the log one
3102 */
3103 if (!xfs_sb_version_hascrc(&mp->m_sb) &&
f8d55aa0 3104 ldip->di_flushiter < be16_to_cpu(dip->di_flushiter)) {
1da177e4
LT
3105 /*
3106 * Deal with the wrap case, DI_MAX_FLUSH is less
3107 * than smaller numbers
3108 */
81591fe2 3109 if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH &&
f8d55aa0 3110 ldip->di_flushiter < (DI_MAX_FLUSH >> 1)) {
1da177e4
LT
3111 /* do nothing */
3112 } else {
9abbc539 3113 trace_xfs_log_recover_inode_skip(log, in_f);
6d192a9b 3114 error = 0;
638f4416 3115 goto out_release;
1da177e4
LT
3116 }
3117 }
e60896d8 3118
1da177e4 3119 /* Take the opportunity to reset the flush iteration count */
f8d55aa0 3120 ldip->di_flushiter = 0;
1da177e4 3121
f8d55aa0
DC
3122 if (unlikely(S_ISREG(ldip->di_mode))) {
3123 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3124 (ldip->di_format != XFS_DINODE_FMT_BTREE)) {
c9f71f5f 3125 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)",
2551a530
DW
3126 XFS_ERRLEVEL_LOW, mp, ldip,
3127 sizeof(*ldip));
a0fa2b67 3128 xfs_alert(mp,
c9690043
DW
3129 "%s: Bad regular inode log record, rec ptr "PTR_FMT", "
3130 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
a0fa2b67 3131 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3132 error = -EFSCORRUPTED;
638f4416 3133 goto out_release;
1da177e4 3134 }
f8d55aa0
DC
3135 } else if (unlikely(S_ISDIR(ldip->di_mode))) {
3136 if ((ldip->di_format != XFS_DINODE_FMT_EXTENTS) &&
3137 (ldip->di_format != XFS_DINODE_FMT_BTREE) &&
3138 (ldip->di_format != XFS_DINODE_FMT_LOCAL)) {
c9f71f5f 3139 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)",
2551a530
DW
3140 XFS_ERRLEVEL_LOW, mp, ldip,
3141 sizeof(*ldip));
a0fa2b67 3142 xfs_alert(mp,
c9690043
DW
3143 "%s: Bad dir inode log record, rec ptr "PTR_FMT", "
3144 "ino ptr = "PTR_FMT", ino bp = "PTR_FMT", ino %Ld",
a0fa2b67 3145 __func__, item, dip, bp, in_f->ilf_ino);
2451337d 3146 error = -EFSCORRUPTED;
638f4416 3147 goto out_release;
1da177e4
LT
3148 }
3149 }
f8d55aa0 3150 if (unlikely(ldip->di_nextents + ldip->di_anextents > ldip->di_nblocks)){
c9f71f5f 3151 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)",
2551a530
DW
3152 XFS_ERRLEVEL_LOW, mp, ldip,
3153 sizeof(*ldip));
a0fa2b67 3154 xfs_alert(mp,
c9690043
DW
3155 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3156 "dino bp "PTR_FMT", ino %Ld, total extents = %d, nblocks = %Ld",
a0fa2b67 3157 __func__, item, dip, bp, in_f->ilf_ino,
f8d55aa0
DC
3158 ldip->di_nextents + ldip->di_anextents,
3159 ldip->di_nblocks);
2451337d 3160 error = -EFSCORRUPTED;
638f4416 3161 goto out_release;
1da177e4 3162 }
f8d55aa0 3163 if (unlikely(ldip->di_forkoff > mp->m_sb.sb_inodesize)) {
c9f71f5f 3164 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)",
2551a530
DW
3165 XFS_ERRLEVEL_LOW, mp, ldip,
3166 sizeof(*ldip));
a0fa2b67 3167 xfs_alert(mp,
c9690043
DW
3168 "%s: Bad inode log record, rec ptr "PTR_FMT", dino ptr "PTR_FMT", "
3169 "dino bp "PTR_FMT", ino %Ld, forkoff 0x%x", __func__,
f8d55aa0 3170 item, dip, bp, in_f->ilf_ino, ldip->di_forkoff);
2451337d 3171 error = -EFSCORRUPTED;
638f4416 3172 goto out_release;
1da177e4 3173 }
f8d55aa0 3174 isize = xfs_log_dinode_size(ldip->di_version);
93848a99 3175 if (unlikely(item->ri_buf[1].i_len > isize)) {
c9f71f5f 3176 XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)",
2551a530
DW
3177 XFS_ERRLEVEL_LOW, mp, ldip,
3178 sizeof(*ldip));
a0fa2b67 3179 xfs_alert(mp,
c9690043 3180 "%s: Bad inode log record length %d, rec ptr "PTR_FMT,
a0fa2b67 3181 __func__, item->ri_buf[1].i_len, item);
2451337d 3182 error = -EFSCORRUPTED;
638f4416 3183 goto out_release;
1da177e4
LT
3184 }
3185
3987848c
DC
3186 /* recover the log dinode inode into the on disk inode */
3187 xfs_log_dinode_to_disk(ldip, dip);
1da177e4 3188
1da177e4 3189 fields = in_f->ilf_fields;
42b67dc6 3190 if (fields & XFS_ILOG_DEV)
81591fe2 3191 xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev);
1da177e4
LT
3192
3193 if (in_f->ilf_size == 2)
638f4416 3194 goto out_owner_change;
1da177e4
LT
3195 len = item->ri_buf[2].i_len;
3196 src = item->ri_buf[2].i_addr;
3197 ASSERT(in_f->ilf_size <= 4);
3198 ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK));
3199 ASSERT(!(fields & XFS_ILOG_DFORK) ||
3200 (len == in_f->ilf_dsize));
3201
3202 switch (fields & XFS_ILOG_DFORK) {
3203 case XFS_ILOG_DDATA:
3204 case XFS_ILOG_DEXT:
81591fe2 3205 memcpy(XFS_DFORK_DPTR(dip), src, len);
1da177e4
LT
3206 break;
3207
3208 case XFS_ILOG_DBROOT:
7cc95a82 3209 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len,
81591fe2 3210 (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip),
1da177e4
LT
3211 XFS_DFORK_DSIZE(dip, mp));
3212 break;
3213
3214 default:
3215 /*
3216 * There are no data fork flags set.
3217 */
3218 ASSERT((fields & XFS_ILOG_DFORK) == 0);
3219 break;
3220 }
3221
3222 /*
3223 * If we logged any attribute data, recover it. There may or
3224 * may not have been any other non-core data logged in this
3225 * transaction.
3226 */
3227 if (in_f->ilf_fields & XFS_ILOG_AFORK) {
3228 if (in_f->ilf_fields & XFS_ILOG_DFORK) {
3229 attr_index = 3;
3230 } else {
3231 attr_index = 2;
3232 }
3233 len = item->ri_buf[attr_index].i_len;
3234 src = item->ri_buf[attr_index].i_addr;
3235 ASSERT(len == in_f->ilf_asize);
3236
3237 switch (in_f->ilf_fields & XFS_ILOG_AFORK) {
3238 case XFS_ILOG_ADATA:
3239 case XFS_ILOG_AEXT:
3240 dest = XFS_DFORK_APTR(dip);
3241 ASSERT(len <= XFS_DFORK_ASIZE(dip, mp));
3242 memcpy(dest, src, len);
3243 break;
3244
3245 case XFS_ILOG_ABROOT:
3246 dest = XFS_DFORK_APTR(dip);
7cc95a82
CH
3247 xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src,
3248 len, (xfs_bmdr_block_t*)dest,
1da177e4
LT
3249 XFS_DFORK_ASIZE(dip, mp));
3250 break;
3251
3252 default:
a0fa2b67 3253 xfs_warn(log->l_mp, "%s: Invalid flag", __func__);
1da177e4 3254 ASSERT(0);
2451337d 3255 error = -EIO;
638f4416 3256 goto out_release;
1da177e4
LT
3257 }
3258 }
3259
638f4416 3260out_owner_change:
dc1baa71
ES
3261 /* Recover the swapext owner change unless inode has been deleted */
3262 if ((in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) &&
3263 (dip->di_mode != 0))
638f4416
DC
3264 error = xfs_recover_inode_owner_change(mp, dip, in_f,
3265 buffer_list);
93848a99
CH
3266 /* re-generate the checksum. */
3267 xfs_dinode_calc_crc(log->l_mp, dip);
3268
ebad861b 3269 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3270 bp->b_iodone = xlog_recover_iodone;
43ff2122 3271 xfs_buf_delwri_queue(bp, buffer_list);
50d5c8d8
DC
3272
3273out_release:
61551f1e 3274 xfs_buf_relse(bp);
6d192a9b
TS
3275error:
3276 if (need_free)
f0e2d93c 3277 kmem_free(in_f);
b474c7ae 3278 return error;
1da177e4
LT
3279}
3280
3281/*
9a8d2fdb 3282 * Recover QUOTAOFF records. We simply make a note of it in the xlog
1da177e4
LT
3283 * structure, so that we know not to do any dquot item or dquot buffer recovery,
3284 * of that type.
3285 */
3286STATIC int
c9f71f5f 3287xlog_recover_quotaoff_pass1(
9a8d2fdb
MT
3288 struct xlog *log,
3289 struct xlog_recover_item *item)
1da177e4 3290{
c9f71f5f 3291 xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr;
1da177e4
LT
3292 ASSERT(qoff_f);
3293
3294 /*
3295 * The logitem format's flag tells us if this was user quotaoff,
77a7cce4 3296 * group/project quotaoff or both.
1da177e4
LT
3297 */
3298 if (qoff_f->qf_flags & XFS_UQUOTA_ACCT)
3299 log->l_quotaoffs_flag |= XFS_DQ_USER;
77a7cce4
NS
3300 if (qoff_f->qf_flags & XFS_PQUOTA_ACCT)
3301 log->l_quotaoffs_flag |= XFS_DQ_PROJ;
1da177e4
LT
3302 if (qoff_f->qf_flags & XFS_GQUOTA_ACCT)
3303 log->l_quotaoffs_flag |= XFS_DQ_GROUP;
3304
d99831ff 3305 return 0;
1da177e4
LT
3306}
3307
3308/*
3309 * Recover a dquot record
3310 */
3311STATIC int
c9f71f5f 3312xlog_recover_dquot_pass2(
9a8d2fdb
MT
3313 struct xlog *log,
3314 struct list_head *buffer_list,
50d5c8d8
DC
3315 struct xlog_recover_item *item,
3316 xfs_lsn_t current_lsn)
1da177e4 3317{
c9f71f5f 3318 xfs_mount_t *mp = log->l_mp;
1da177e4
LT
3319 xfs_buf_t *bp;
3320 struct xfs_disk_dquot *ddq, *recddq;
eebf3cab 3321 xfs_failaddr_t fa;
1da177e4
LT
3322 int error;
3323 xfs_dq_logformat_t *dq_f;
3324 uint type;
3325
1da177e4
LT
3326
3327 /*
3328 * Filesystems are required to send in quota flags at mount time.
3329 */
3330 if (mp->m_qflags == 0)
d99831ff 3331 return 0;
1da177e4 3332
4e0d5f92
CH
3333 recddq = item->ri_buf[1].i_addr;
3334 if (recddq == NULL) {
a0fa2b67 3335 xfs_alert(log->l_mp, "NULL dquot in %s.", __func__);
2451337d 3336 return -EIO;
0c5e1ce8 3337 }
8ec6dba2 3338 if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) {
a0fa2b67 3339 xfs_alert(log->l_mp, "dquot too small (%d) in %s.",
0c5e1ce8 3340 item->ri_buf[1].i_len, __func__);
2451337d 3341 return -EIO;
0c5e1ce8
CH
3342 }
3343
1da177e4
LT
3344 /*
3345 * This type of quotas was turned off, so ignore this record.
3346 */
b53e675d 3347 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
1da177e4
LT
3348 ASSERT(type);
3349 if (log->l_quotaoffs_flag & type)
d99831ff 3350 return 0;
1da177e4
LT
3351
3352 /*
3353 * At this point we know that quota was _not_ turned off.
3354 * Since the mount flags are not indicating to us otherwise, this
3355 * must mean that quota is on, and the dquot needs to be replayed.
3356 * Remember that we may not have fully recovered the superblock yet,
3357 * so we can't do the usual trick of looking at the SB quota bits.
3358 *
3359 * The other possibility, of course, is that the quota subsystem was
3360 * removed since the last mount - ENOSYS.
3361 */
4e0d5f92 3362 dq_f = item->ri_buf[0].i_addr;
1da177e4 3363 ASSERT(dq_f);
e381a0f6 3364 fa = xfs_dquot_verify(mp, recddq, dq_f->qlf_id, 0);
eebf3cab
DW
3365 if (fa) {
3366 xfs_alert(mp, "corrupt dquot ID 0x%x in log at %pS",
3367 dq_f->qlf_id, fa);
2451337d 3368 return -EIO;
eebf3cab 3369 }
1da177e4
LT
3370 ASSERT(dq_f->qlf_len == 1);
3371
ad3714b8
DC
3372 /*
3373 * At this point we are assuming that the dquots have been allocated
3374 * and hence the buffer has valid dquots stamped in it. It should,
3375 * therefore, pass verifier validation. If the dquot is bad, then the
3376 * we'll return an error here, so we don't need to specifically check
3377 * the dquot in the buffer after the verifier has run.
3378 */
7ca790a5 3379 error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno,
c3f8fc73 3380 XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp,
ad3714b8 3381 &xfs_dquot_buf_ops);
7ca790a5 3382 if (error)
1da177e4 3383 return error;
7ca790a5 3384
1da177e4 3385 ASSERT(bp);
88ee2df7 3386 ddq = xfs_buf_offset(bp, dq_f->qlf_boffset);
1da177e4 3387
50d5c8d8
DC
3388 /*
3389 * If the dquot has an LSN in it, recover the dquot only if it's less
3390 * than the lsn of the transaction we are replaying.
3391 */
3392 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3393 struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq;
3394 xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn);
3395
3396 if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) {
3397 goto out_release;
3398 }
3399 }
3400
1da177e4 3401 memcpy(ddq, recddq, item->ri_buf[1].i_len);
6fcdc59d
DC
3402 if (xfs_sb_version_hascrc(&mp->m_sb)) {
3403 xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk),
3404 XFS_DQUOT_CRC_OFF);
3405 }
1da177e4
LT
3406
3407 ASSERT(dq_f->qlf_size == 2);
ebad861b 3408 ASSERT(bp->b_target->bt_mount == mp);
cb669ca5 3409 bp->b_iodone = xlog_recover_iodone;
43ff2122 3410 xfs_buf_delwri_queue(bp, buffer_list);
1da177e4 3411
50d5c8d8
DC
3412out_release:
3413 xfs_buf_relse(bp);
3414 return 0;
1da177e4
LT
3415}
3416
3417/*
3418 * This routine is called to create an in-core extent free intent
3419 * item from the efi format structure which was logged on disk.
3420 * It allocates an in-core efi, copies the extents from the format
3421 * structure into it, and adds the efi to the AIL with the given
3422 * LSN.
3423 */
6d192a9b 3424STATIC int
c9f71f5f 3425xlog_recover_efi_pass2(
9a8d2fdb
MT
3426 struct xlog *log,
3427 struct xlog_recover_item *item,
3428 xfs_lsn_t lsn)
1da177e4 3429{
e32a1d1f
BF
3430 int error;
3431 struct xfs_mount *mp = log->l_mp;
3432 struct xfs_efi_log_item *efip;
3433 struct xfs_efi_log_format *efi_formatp;
1da177e4 3434
4e0d5f92 3435 efi_formatp = item->ri_buf[0].i_addr;
1da177e4 3436
1da177e4 3437 efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
e32a1d1f
BF
3438 error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
3439 if (error) {
6d192a9b
TS
3440 xfs_efi_item_free(efip);
3441 return error;
3442 }
b199c8a4 3443 atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
1da177e4 3444
57e80956 3445 spin_lock(&log->l_ailp->ail_lock);
1da177e4 3446 /*
e32a1d1f
BF
3447 * The EFI has two references. One for the EFD and one for EFI to ensure
3448 * it makes it into the AIL. Insert the EFI into the AIL directly and
3449 * drop the EFI reference. Note that xfs_trans_ail_update() drops the
3450 * AIL lock.
1da177e4 3451 */
e6059949 3452 xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn);
e32a1d1f 3453 xfs_efi_release(efip);
6d192a9b 3454 return 0;
1da177e4
LT
3455}
3456
3457
3458/*
e32a1d1f
BF
3459 * This routine is called when an EFD format structure is found in a committed
3460 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
3461 * was still in the log. To do this it searches the AIL for the EFI with an id
3462 * equal to that in the EFD format structure. If we find it we drop the EFD
3463 * reference, which removes the EFI from the AIL and frees it.
1da177e4 3464 */
c9f71f5f
CH
3465STATIC int
3466xlog_recover_efd_pass2(
9a8d2fdb
MT
3467 struct xlog *log,
3468 struct xlog_recover_item *item)
1da177e4 3469{
1da177e4
LT
3470 xfs_efd_log_format_t *efd_formatp;
3471 xfs_efi_log_item_t *efip = NULL;
3472 xfs_log_item_t *lip;
c8ce540d 3473 uint64_t efi_id;
27d8d5fe 3474 struct xfs_ail_cursor cur;
783a2f65 3475 struct xfs_ail *ailp = log->l_ailp;
1da177e4 3476
4e0d5f92 3477 efd_formatp = item->ri_buf[0].i_addr;
6d192a9b
TS
3478 ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
3479 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
3480 (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
3481 ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
1da177e4
LT
3482 efi_id = efd_formatp->efd_efi_id;
3483
3484 /*
e32a1d1f
BF
3485 * Search for the EFI with the id in the EFD format structure in the
3486 * AIL.
1da177e4 3487 */
57e80956 3488 spin_lock(&ailp->ail_lock);
a9c21c1b 3489 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
1da177e4
LT
3490 while (lip != NULL) {
3491 if (lip->li_type == XFS_LI_EFI) {
3492 efip = (xfs_efi_log_item_t *)lip;
3493 if (efip->efi_format.efi_id == efi_id) {
3494 /*
e32a1d1f
BF
3495 * Drop the EFD reference to the EFI. This
3496 * removes the EFI from the AIL and frees it.
1da177e4 3497 */
57e80956 3498 spin_unlock(&ailp->ail_lock);
e32a1d1f 3499 xfs_efi_release(efip);
57e80956 3500 spin_lock(&ailp->ail_lock);
27d8d5fe 3501 break;
1da177e4
LT
3502 }
3503 }
a9c21c1b 3504 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 3505 }
e32a1d1f 3506
e4a1e29c 3507 xfs_trans_ail_cursor_done(&cur);
57e80956 3508 spin_unlock(&ailp->ail_lock);
c9f71f5f
CH
3509
3510 return 0;
1da177e4
LT
3511}
3512
9e88b5d8
DW
3513/*
3514 * This routine is called to create an in-core extent rmap update
3515 * item from the rui format structure which was logged on disk.
3516 * It allocates an in-core rui, copies the extents from the format
3517 * structure into it, and adds the rui to the AIL with the given
3518 * LSN.
3519 */
3520STATIC int
3521xlog_recover_rui_pass2(
3522 struct xlog *log,
3523 struct xlog_recover_item *item,
3524 xfs_lsn_t lsn)
3525{
3526 int error;
3527 struct xfs_mount *mp = log->l_mp;
3528 struct xfs_rui_log_item *ruip;
3529 struct xfs_rui_log_format *rui_formatp;
3530
3531 rui_formatp = item->ri_buf[0].i_addr;
3532
3533 ruip = xfs_rui_init(mp, rui_formatp->rui_nextents);
3534 error = xfs_rui_copy_format(&item->ri_buf[0], &ruip->rui_format);
3535 if (error) {
3536 xfs_rui_item_free(ruip);
3537 return error;
3538 }
3539 atomic_set(&ruip->rui_next_extent, rui_formatp->rui_nextents);
3540
57e80956 3541 spin_lock(&log->l_ailp->ail_lock);
9e88b5d8
DW
3542 /*
3543 * The RUI has two references. One for the RUD and one for RUI to ensure
3544 * it makes it into the AIL. Insert the RUI into the AIL directly and
3545 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3546 * AIL lock.
3547 */
3548 xfs_trans_ail_update(log->l_ailp, &ruip->rui_item, lsn);
3549 xfs_rui_release(ruip);
3550 return 0;
3551}
3552
3553
3554/*
3555 * This routine is called when an RUD format structure is found in a committed
3556 * transaction in the log. Its purpose is to cancel the corresponding RUI if it
3557 * was still in the log. To do this it searches the AIL for the RUI with an id
3558 * equal to that in the RUD format structure. If we find it we drop the RUD
3559 * reference, which removes the RUI from the AIL and frees it.
3560 */
3561STATIC int
3562xlog_recover_rud_pass2(
3563 struct xlog *log,
3564 struct xlog_recover_item *item)
3565{
3566 struct xfs_rud_log_format *rud_formatp;
3567 struct xfs_rui_log_item *ruip = NULL;
3568 struct xfs_log_item *lip;
c8ce540d 3569 uint64_t rui_id;
9e88b5d8
DW
3570 struct xfs_ail_cursor cur;
3571 struct xfs_ail *ailp = log->l_ailp;
3572
3573 rud_formatp = item->ri_buf[0].i_addr;
722e2517 3574 ASSERT(item->ri_buf[0].i_len == sizeof(struct xfs_rud_log_format));
9e88b5d8
DW
3575 rui_id = rud_formatp->rud_rui_id;
3576
3577 /*
3578 * Search for the RUI with the id in the RUD format structure in the
3579 * AIL.
3580 */
57e80956 3581 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
3582 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3583 while (lip != NULL) {
3584 if (lip->li_type == XFS_LI_RUI) {
3585 ruip = (struct xfs_rui_log_item *)lip;
3586 if (ruip->rui_format.rui_id == rui_id) {
3587 /*
3588 * Drop the RUD reference to the RUI. This
3589 * removes the RUI from the AIL and frees it.
3590 */
57e80956 3591 spin_unlock(&ailp->ail_lock);
9e88b5d8 3592 xfs_rui_release(ruip);
57e80956 3593 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
3594 break;
3595 }
3596 }
3597 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3598 }
3599
3600 xfs_trans_ail_cursor_done(&cur);
57e80956 3601 spin_unlock(&ailp->ail_lock);
9e88b5d8
DW
3602
3603 return 0;
3604}
3605
f997ee21
DW
3606/*
3607 * Copy an CUI format buffer from the given buf, and into the destination
3608 * CUI format structure. The CUI/CUD items were designed not to need any
3609 * special alignment handling.
3610 */
3611static int
3612xfs_cui_copy_format(
3613 struct xfs_log_iovec *buf,
3614 struct xfs_cui_log_format *dst_cui_fmt)
3615{
3616 struct xfs_cui_log_format *src_cui_fmt;
3617 uint len;
3618
3619 src_cui_fmt = buf->i_addr;
3620 len = xfs_cui_log_format_sizeof(src_cui_fmt->cui_nextents);
3621
3622 if (buf->i_len == len) {
3623 memcpy(dst_cui_fmt, src_cui_fmt, len);
3624 return 0;
3625 }
3626 return -EFSCORRUPTED;
3627}
3628
3629/*
3630 * This routine is called to create an in-core extent refcount update
3631 * item from the cui format structure which was logged on disk.
3632 * It allocates an in-core cui, copies the extents from the format
3633 * structure into it, and adds the cui to the AIL with the given
3634 * LSN.
3635 */
3636STATIC int
3637xlog_recover_cui_pass2(
3638 struct xlog *log,
3639 struct xlog_recover_item *item,
3640 xfs_lsn_t lsn)
3641{
3642 int error;
3643 struct xfs_mount *mp = log->l_mp;
3644 struct xfs_cui_log_item *cuip;
3645 struct xfs_cui_log_format *cui_formatp;
3646
3647 cui_formatp = item->ri_buf[0].i_addr;
3648
3649 cuip = xfs_cui_init(mp, cui_formatp->cui_nextents);
3650 error = xfs_cui_copy_format(&item->ri_buf[0], &cuip->cui_format);
3651 if (error) {
3652 xfs_cui_item_free(cuip);
3653 return error;
3654 }
3655 atomic_set(&cuip->cui_next_extent, cui_formatp->cui_nextents);
3656
57e80956 3657 spin_lock(&log->l_ailp->ail_lock);
f997ee21
DW
3658 /*
3659 * The CUI has two references. One for the CUD and one for CUI to ensure
3660 * it makes it into the AIL. Insert the CUI into the AIL directly and
3661 * drop the CUI reference. Note that xfs_trans_ail_update() drops the
3662 * AIL lock.
3663 */
3664 xfs_trans_ail_update(log->l_ailp, &cuip->cui_item, lsn);
3665 xfs_cui_release(cuip);
3666 return 0;
3667}
3668
3669
3670/*
3671 * This routine is called when an CUD format structure is found in a committed
3672 * transaction in the log. Its purpose is to cancel the corresponding CUI if it
3673 * was still in the log. To do this it searches the AIL for the CUI with an id
3674 * equal to that in the CUD format structure. If we find it we drop the CUD
3675 * reference, which removes the CUI from the AIL and frees it.
3676 */
3677STATIC int
3678xlog_recover_cud_pass2(
3679 struct xlog *log,
3680 struct xlog_recover_item *item)
3681{
3682 struct xfs_cud_log_format *cud_formatp;
3683 struct xfs_cui_log_item *cuip = NULL;
3684 struct xfs_log_item *lip;
c8ce540d 3685 uint64_t cui_id;
f997ee21
DW
3686 struct xfs_ail_cursor cur;
3687 struct xfs_ail *ailp = log->l_ailp;
3688
3689 cud_formatp = item->ri_buf[0].i_addr;
3690 if (item->ri_buf[0].i_len != sizeof(struct xfs_cud_log_format))
3691 return -EFSCORRUPTED;
3692 cui_id = cud_formatp->cud_cui_id;
3693
3694 /*
3695 * Search for the CUI with the id in the CUD format structure in the
3696 * AIL.
3697 */
57e80956 3698 spin_lock(&ailp->ail_lock);
f997ee21
DW
3699 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3700 while (lip != NULL) {
3701 if (lip->li_type == XFS_LI_CUI) {
3702 cuip = (struct xfs_cui_log_item *)lip;
3703 if (cuip->cui_format.cui_id == cui_id) {
3704 /*
3705 * Drop the CUD reference to the CUI. This
3706 * removes the CUI from the AIL and frees it.
3707 */
57e80956 3708 spin_unlock(&ailp->ail_lock);
f997ee21 3709 xfs_cui_release(cuip);
57e80956 3710 spin_lock(&ailp->ail_lock);
f997ee21
DW
3711 break;
3712 }
3713 }
3714 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3715 }
3716
3717 xfs_trans_ail_cursor_done(&cur);
57e80956 3718 spin_unlock(&ailp->ail_lock);
f997ee21
DW
3719
3720 return 0;
3721}
3722
77d61fe4
DW
3723/*
3724 * Copy an BUI format buffer from the given buf, and into the destination
3725 * BUI format structure. The BUI/BUD items were designed not to need any
3726 * special alignment handling.
3727 */
3728static int
3729xfs_bui_copy_format(
3730 struct xfs_log_iovec *buf,
3731 struct xfs_bui_log_format *dst_bui_fmt)
3732{
3733 struct xfs_bui_log_format *src_bui_fmt;
3734 uint len;
3735
3736 src_bui_fmt = buf->i_addr;
3737 len = xfs_bui_log_format_sizeof(src_bui_fmt->bui_nextents);
3738
3739 if (buf->i_len == len) {
3740 memcpy(dst_bui_fmt, src_bui_fmt, len);
3741 return 0;
3742 }
3743 return -EFSCORRUPTED;
3744}
3745
3746/*
3747 * This routine is called to create an in-core extent bmap update
3748 * item from the bui format structure which was logged on disk.
3749 * It allocates an in-core bui, copies the extents from the format
3750 * structure into it, and adds the bui to the AIL with the given
3751 * LSN.
3752 */
3753STATIC int
3754xlog_recover_bui_pass2(
3755 struct xlog *log,
3756 struct xlog_recover_item *item,
3757 xfs_lsn_t lsn)
3758{
3759 int error;
3760 struct xfs_mount *mp = log->l_mp;
3761 struct xfs_bui_log_item *buip;
3762 struct xfs_bui_log_format *bui_formatp;
3763
3764 bui_formatp = item->ri_buf[0].i_addr;
3765
3766 if (bui_formatp->bui_nextents != XFS_BUI_MAX_FAST_EXTENTS)
3767 return -EFSCORRUPTED;
3768 buip = xfs_bui_init(mp);
3769 error = xfs_bui_copy_format(&item->ri_buf[0], &buip->bui_format);
3770 if (error) {
3771 xfs_bui_item_free(buip);
3772 return error;
3773 }
3774 atomic_set(&buip->bui_next_extent, bui_formatp->bui_nextents);
3775
57e80956 3776 spin_lock(&log->l_ailp->ail_lock);
77d61fe4
DW
3777 /*
3778 * The RUI has two references. One for the RUD and one for RUI to ensure
3779 * it makes it into the AIL. Insert the RUI into the AIL directly and
3780 * drop the RUI reference. Note that xfs_trans_ail_update() drops the
3781 * AIL lock.
3782 */
3783 xfs_trans_ail_update(log->l_ailp, &buip->bui_item, lsn);
3784 xfs_bui_release(buip);
3785 return 0;
3786}
3787
3788
3789/*
3790 * This routine is called when an BUD format structure is found in a committed
3791 * transaction in the log. Its purpose is to cancel the corresponding BUI if it
3792 * was still in the log. To do this it searches the AIL for the BUI with an id
3793 * equal to that in the BUD format structure. If we find it we drop the BUD
3794 * reference, which removes the BUI from the AIL and frees it.
3795 */
3796STATIC int
3797xlog_recover_bud_pass2(
3798 struct xlog *log,
3799 struct xlog_recover_item *item)
3800{
3801 struct xfs_bud_log_format *bud_formatp;
3802 struct xfs_bui_log_item *buip = NULL;
3803 struct xfs_log_item *lip;
c8ce540d 3804 uint64_t bui_id;
77d61fe4
DW
3805 struct xfs_ail_cursor cur;
3806 struct xfs_ail *ailp = log->l_ailp;
3807
3808 bud_formatp = item->ri_buf[0].i_addr;
3809 if (item->ri_buf[0].i_len != sizeof(struct xfs_bud_log_format))
3810 return -EFSCORRUPTED;
3811 bui_id = bud_formatp->bud_bui_id;
3812
3813 /*
3814 * Search for the BUI with the id in the BUD format structure in the
3815 * AIL.
3816 */
57e80956 3817 spin_lock(&ailp->ail_lock);
77d61fe4
DW
3818 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
3819 while (lip != NULL) {
3820 if (lip->li_type == XFS_LI_BUI) {
3821 buip = (struct xfs_bui_log_item *)lip;
3822 if (buip->bui_format.bui_id == bui_id) {
3823 /*
3824 * Drop the BUD reference to the BUI. This
3825 * removes the BUI from the AIL and frees it.
3826 */
57e80956 3827 spin_unlock(&ailp->ail_lock);
77d61fe4 3828 xfs_bui_release(buip);
57e80956 3829 spin_lock(&ailp->ail_lock);
77d61fe4
DW
3830 break;
3831 }
3832 }
3833 lip = xfs_trans_ail_cursor_next(ailp, &cur);
3834 }
3835
3836 xfs_trans_ail_cursor_done(&cur);
57e80956 3837 spin_unlock(&ailp->ail_lock);
77d61fe4
DW
3838
3839 return 0;
3840}
3841
28c8e41a
DC
3842/*
3843 * This routine is called when an inode create format structure is found in a
3844 * committed transaction in the log. It's purpose is to initialise the inodes
3845 * being allocated on disk. This requires us to get inode cluster buffers that
6e7c2b4d 3846 * match the range to be initialised, stamped with inode templates and written
28c8e41a
DC
3847 * by delayed write so that subsequent modifications will hit the cached buffer
3848 * and only need writing out at the end of recovery.
3849 */
3850STATIC int
3851xlog_recover_do_icreate_pass2(
3852 struct xlog *log,
3853 struct list_head *buffer_list,
3854 xlog_recover_item_t *item)
3855{
3856 struct xfs_mount *mp = log->l_mp;
3857 struct xfs_icreate_log *icl;
3858 xfs_agnumber_t agno;
3859 xfs_agblock_t agbno;
3860 unsigned int count;
3861 unsigned int isize;
3862 xfs_agblock_t length;
fc0d1656
BF
3863 int blks_per_cluster;
3864 int bb_per_cluster;
3865 int cancel_count;
3866 int nbufs;
3867 int i;
28c8e41a
DC
3868
3869 icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr;
3870 if (icl->icl_type != XFS_LI_ICREATE) {
3871 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type");
2451337d 3872 return -EINVAL;
28c8e41a
DC
3873 }
3874
3875 if (icl->icl_size != 1) {
3876 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size");
2451337d 3877 return -EINVAL;
28c8e41a
DC
3878 }
3879
3880 agno = be32_to_cpu(icl->icl_ag);
3881 if (agno >= mp->m_sb.sb_agcount) {
3882 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno");
2451337d 3883 return -EINVAL;
28c8e41a
DC
3884 }
3885 agbno = be32_to_cpu(icl->icl_agbno);
3886 if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) {
3887 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno");
2451337d 3888 return -EINVAL;
28c8e41a
DC
3889 }
3890 isize = be32_to_cpu(icl->icl_isize);
3891 if (isize != mp->m_sb.sb_inodesize) {
3892 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize");
2451337d 3893 return -EINVAL;
28c8e41a
DC
3894 }
3895 count = be32_to_cpu(icl->icl_count);
3896 if (!count) {
3897 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count");
2451337d 3898 return -EINVAL;
28c8e41a
DC
3899 }
3900 length = be32_to_cpu(icl->icl_length);
3901 if (!length || length >= mp->m_sb.sb_agblocks) {
3902 xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length");
2451337d 3903 return -EINVAL;
28c8e41a
DC
3904 }
3905
7f43c907
BF
3906 /*
3907 * The inode chunk is either full or sparse and we only support
3908 * m_ialloc_min_blks sized sparse allocations at this time.
3909 */
3910 if (length != mp->m_ialloc_blks &&
3911 length != mp->m_ialloc_min_blks) {
3912 xfs_warn(log->l_mp,
3913 "%s: unsupported chunk length", __FUNCTION__);
3914 return -EINVAL;
3915 }
3916
3917 /* verify inode count is consistent with extent length */
3918 if ((count >> mp->m_sb.sb_inopblog) != length) {
3919 xfs_warn(log->l_mp,
3920 "%s: inconsistent inode count and chunk length",
3921 __FUNCTION__);
2451337d 3922 return -EINVAL;
28c8e41a
DC
3923 }
3924
3925 /*
fc0d1656
BF
3926 * The icreate transaction can cover multiple cluster buffers and these
3927 * buffers could have been freed and reused. Check the individual
3928 * buffers for cancellation so we don't overwrite anything written after
3929 * a cancellation.
3930 */
3931 blks_per_cluster = xfs_icluster_size_fsb(mp);
3932 bb_per_cluster = XFS_FSB_TO_BB(mp, blks_per_cluster);
3933 nbufs = length / blks_per_cluster;
3934 for (i = 0, cancel_count = 0; i < nbufs; i++) {
3935 xfs_daddr_t daddr;
3936
3937 daddr = XFS_AGB_TO_DADDR(mp, agno,
3938 agbno + i * blks_per_cluster);
3939 if (xlog_check_buffer_cancelled(log, daddr, bb_per_cluster, 0))
3940 cancel_count++;
3941 }
3942
3943 /*
3944 * We currently only use icreate for a single allocation at a time. This
3945 * means we should expect either all or none of the buffers to be
3946 * cancelled. Be conservative and skip replay if at least one buffer is
3947 * cancelled, but warn the user that something is awry if the buffers
3948 * are not consistent.
28c8e41a 3949 *
fc0d1656
BF
3950 * XXX: This must be refined to only skip cancelled clusters once we use
3951 * icreate for multiple chunk allocations.
28c8e41a 3952 */
fc0d1656
BF
3953 ASSERT(!cancel_count || cancel_count == nbufs);
3954 if (cancel_count) {
3955 if (cancel_count != nbufs)
3956 xfs_warn(mp,
3957 "WARNING: partial inode chunk cancellation, skipped icreate.");
78d57e45 3958 trace_xfs_log_recover_icreate_cancel(log, icl);
28c8e41a 3959 return 0;
78d57e45 3960 }
28c8e41a 3961
78d57e45 3962 trace_xfs_log_recover_icreate_recover(log, icl);
fc0d1656
BF
3963 return xfs_ialloc_inode_init(mp, NULL, buffer_list, count, agno, agbno,
3964 length, be32_to_cpu(icl->icl_gen));
28c8e41a
DC
3965}
3966
00574da1
ZYW
3967STATIC void
3968xlog_recover_buffer_ra_pass2(
3969 struct xlog *log,
3970 struct xlog_recover_item *item)
3971{
3972 struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr;
3973 struct xfs_mount *mp = log->l_mp;
3974
84a5b730 3975 if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno,
00574da1
ZYW
3976 buf_f->blf_len, buf_f->blf_flags)) {
3977 return;
3978 }
3979
3980 xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno,
3981 buf_f->blf_len, NULL);
3982}
3983
3984STATIC void
3985xlog_recover_inode_ra_pass2(
3986 struct xlog *log,
3987 struct xlog_recover_item *item)
3988{
3989 struct xfs_inode_log_format ilf_buf;
3990 struct xfs_inode_log_format *ilfp;
3991 struct xfs_mount *mp = log->l_mp;
3992 int error;
3993
3994 if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) {
3995 ilfp = item->ri_buf[0].i_addr;
3996 } else {
3997 ilfp = &ilf_buf;
3998 memset(ilfp, 0, sizeof(*ilfp));
3999 error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp);
4000 if (error)
4001 return;
4002 }
4003
84a5b730 4004 if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0))
00574da1
ZYW
4005 return;
4006
4007 xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno,
d8914002 4008 ilfp->ilf_len, &xfs_inode_buf_ra_ops);
00574da1
ZYW
4009}
4010
4011STATIC void
4012xlog_recover_dquot_ra_pass2(
4013 struct xlog *log,
4014 struct xlog_recover_item *item)
4015{
4016 struct xfs_mount *mp = log->l_mp;
4017 struct xfs_disk_dquot *recddq;
4018 struct xfs_dq_logformat *dq_f;
4019 uint type;
7d6a13f0 4020 int len;
00574da1
ZYW
4021
4022
4023 if (mp->m_qflags == 0)
4024 return;
4025
4026 recddq = item->ri_buf[1].i_addr;
4027 if (recddq == NULL)
4028 return;
4029 if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot))
4030 return;
4031
4032 type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP);
4033 ASSERT(type);
4034 if (log->l_quotaoffs_flag & type)
4035 return;
4036
4037 dq_f = item->ri_buf[0].i_addr;
4038 ASSERT(dq_f);
4039 ASSERT(dq_f->qlf_len == 1);
4040
7d6a13f0
DC
4041 len = XFS_FSB_TO_BB(mp, dq_f->qlf_len);
4042 if (xlog_peek_buffer_cancelled(log, dq_f->qlf_blkno, len, 0))
4043 return;
4044
4045 xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, len,
4046 &xfs_dquot_buf_ra_ops);
00574da1
ZYW
4047}
4048
4049STATIC void
4050xlog_recover_ra_pass2(
4051 struct xlog *log,
4052 struct xlog_recover_item *item)
4053{
4054 switch (ITEM_TYPE(item)) {
4055 case XFS_LI_BUF:
4056 xlog_recover_buffer_ra_pass2(log, item);
4057 break;
4058 case XFS_LI_INODE:
4059 xlog_recover_inode_ra_pass2(log, item);
4060 break;
4061 case XFS_LI_DQUOT:
4062 xlog_recover_dquot_ra_pass2(log, item);
4063 break;
4064 case XFS_LI_EFI:
4065 case XFS_LI_EFD:
4066 case XFS_LI_QUOTAOFF:
9e88b5d8
DW
4067 case XFS_LI_RUI:
4068 case XFS_LI_RUD:
f997ee21
DW
4069 case XFS_LI_CUI:
4070 case XFS_LI_CUD:
77d61fe4
DW
4071 case XFS_LI_BUI:
4072 case XFS_LI_BUD:
00574da1
ZYW
4073 default:
4074 break;
4075 }
4076}
4077
d0450948 4078STATIC int
c9f71f5f 4079xlog_recover_commit_pass1(
ad223e60
MT
4080 struct xlog *log,
4081 struct xlog_recover *trans,
4082 struct xlog_recover_item *item)
d0450948 4083{
c9f71f5f 4084 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1);
d0450948
CH
4085
4086 switch (ITEM_TYPE(item)) {
4087 case XFS_LI_BUF:
c9f71f5f
CH
4088 return xlog_recover_buffer_pass1(log, item);
4089 case XFS_LI_QUOTAOFF:
4090 return xlog_recover_quotaoff_pass1(log, item);
d0450948 4091 case XFS_LI_INODE:
d0450948 4092 case XFS_LI_EFI:
d0450948 4093 case XFS_LI_EFD:
c9f71f5f 4094 case XFS_LI_DQUOT:
28c8e41a 4095 case XFS_LI_ICREATE:
9e88b5d8
DW
4096 case XFS_LI_RUI:
4097 case XFS_LI_RUD:
f997ee21
DW
4098 case XFS_LI_CUI:
4099 case XFS_LI_CUD:
77d61fe4
DW
4100 case XFS_LI_BUI:
4101 case XFS_LI_BUD:
c9f71f5f 4102 /* nothing to do in pass 1 */
d0450948 4103 return 0;
c9f71f5f 4104 default:
a0fa2b67
DC
4105 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4106 __func__, ITEM_TYPE(item));
c9f71f5f 4107 ASSERT(0);
2451337d 4108 return -EIO;
c9f71f5f
CH
4109 }
4110}
4111
4112STATIC int
4113xlog_recover_commit_pass2(
ad223e60
MT
4114 struct xlog *log,
4115 struct xlog_recover *trans,
4116 struct list_head *buffer_list,
4117 struct xlog_recover_item *item)
c9f71f5f
CH
4118{
4119 trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2);
4120
4121 switch (ITEM_TYPE(item)) {
4122 case XFS_LI_BUF:
50d5c8d8
DC
4123 return xlog_recover_buffer_pass2(log, buffer_list, item,
4124 trans->r_lsn);
c9f71f5f 4125 case XFS_LI_INODE:
50d5c8d8
DC
4126 return xlog_recover_inode_pass2(log, buffer_list, item,
4127 trans->r_lsn);
c9f71f5f
CH
4128 case XFS_LI_EFI:
4129 return xlog_recover_efi_pass2(log, item, trans->r_lsn);
4130 case XFS_LI_EFD:
4131 return xlog_recover_efd_pass2(log, item);
9e88b5d8
DW
4132 case XFS_LI_RUI:
4133 return xlog_recover_rui_pass2(log, item, trans->r_lsn);
4134 case XFS_LI_RUD:
4135 return xlog_recover_rud_pass2(log, item);
f997ee21
DW
4136 case XFS_LI_CUI:
4137 return xlog_recover_cui_pass2(log, item, trans->r_lsn);
4138 case XFS_LI_CUD:
4139 return xlog_recover_cud_pass2(log, item);
77d61fe4
DW
4140 case XFS_LI_BUI:
4141 return xlog_recover_bui_pass2(log, item, trans->r_lsn);
4142 case XFS_LI_BUD:
4143 return xlog_recover_bud_pass2(log, item);
d0450948 4144 case XFS_LI_DQUOT:
50d5c8d8
DC
4145 return xlog_recover_dquot_pass2(log, buffer_list, item,
4146 trans->r_lsn);
28c8e41a
DC
4147 case XFS_LI_ICREATE:
4148 return xlog_recover_do_icreate_pass2(log, buffer_list, item);
d0450948 4149 case XFS_LI_QUOTAOFF:
c9f71f5f
CH
4150 /* nothing to do in pass2 */
4151 return 0;
d0450948 4152 default:
a0fa2b67
DC
4153 xfs_warn(log->l_mp, "%s: invalid item type (%d)",
4154 __func__, ITEM_TYPE(item));
d0450948 4155 ASSERT(0);
2451337d 4156 return -EIO;
d0450948
CH
4157 }
4158}
4159
00574da1
ZYW
4160STATIC int
4161xlog_recover_items_pass2(
4162 struct xlog *log,
4163 struct xlog_recover *trans,
4164 struct list_head *buffer_list,
4165 struct list_head *item_list)
4166{
4167 struct xlog_recover_item *item;
4168 int error = 0;
4169
4170 list_for_each_entry(item, item_list, ri_list) {
4171 error = xlog_recover_commit_pass2(log, trans,
4172 buffer_list, item);
4173 if (error)
4174 return error;
4175 }
4176
4177 return error;
4178}
4179
d0450948
CH
4180/*
4181 * Perform the transaction.
4182 *
4183 * If the transaction modifies a buffer or inode, do it now. Otherwise,
4184 * EFIs and EFDs get queued up by adding entries into the AIL for them.
4185 */
1da177e4
LT
4186STATIC int
4187xlog_recover_commit_trans(
ad223e60 4188 struct xlog *log,
d0450948 4189 struct xlog_recover *trans,
12818d24
BF
4190 int pass,
4191 struct list_head *buffer_list)
1da177e4 4192{
00574da1 4193 int error = 0;
00574da1
ZYW
4194 int items_queued = 0;
4195 struct xlog_recover_item *item;
4196 struct xlog_recover_item *next;
00574da1
ZYW
4197 LIST_HEAD (ra_list);
4198 LIST_HEAD (done_list);
4199
4200 #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1da177e4 4201
39775431 4202 hlist_del_init(&trans->r_list);
d0450948
CH
4203
4204 error = xlog_recover_reorder_trans(log, trans, pass);
4205 if (error)
1da177e4 4206 return error;
d0450948 4207
00574da1 4208 list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
43ff2122
CH
4209 switch (pass) {
4210 case XLOG_RECOVER_PASS1:
c9f71f5f 4211 error = xlog_recover_commit_pass1(log, trans, item);
43ff2122
CH
4212 break;
4213 case XLOG_RECOVER_PASS2:
00574da1
ZYW
4214 xlog_recover_ra_pass2(log, item);
4215 list_move_tail(&item->ri_list, &ra_list);
4216 items_queued++;
4217 if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
4218 error = xlog_recover_items_pass2(log, trans,
12818d24 4219 buffer_list, &ra_list);
00574da1
ZYW
4220 list_splice_tail_init(&ra_list, &done_list);
4221 items_queued = 0;
4222 }
4223
43ff2122
CH
4224 break;
4225 default:
4226 ASSERT(0);
4227 }
4228
d0450948 4229 if (error)
43ff2122 4230 goto out;
d0450948
CH
4231 }
4232
00574da1
ZYW
4233out:
4234 if (!list_empty(&ra_list)) {
4235 if (!error)
4236 error = xlog_recover_items_pass2(log, trans,
12818d24 4237 buffer_list, &ra_list);
00574da1
ZYW
4238 list_splice_tail_init(&ra_list, &done_list);
4239 }
4240
4241 if (!list_empty(&done_list))
4242 list_splice_init(&done_list, &trans->r_itemq);
4243
12818d24 4244 return error;
1da177e4
LT
4245}
4246
76560669
DC
4247STATIC void
4248xlog_recover_add_item(
4249 struct list_head *head)
4250{
4251 xlog_recover_item_t *item;
4252
4253 item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP);
4254 INIT_LIST_HEAD(&item->ri_list);
4255 list_add_tail(&item->ri_list, head);
4256}
4257
1da177e4 4258STATIC int
76560669
DC
4259xlog_recover_add_to_cont_trans(
4260 struct xlog *log,
4261 struct xlog_recover *trans,
b2a922cd 4262 char *dp,
76560669 4263 int len)
1da177e4 4264{
76560669 4265 xlog_recover_item_t *item;
b2a922cd 4266 char *ptr, *old_ptr;
76560669
DC
4267 int old_len;
4268
89cebc84
BF
4269 /*
4270 * If the transaction is empty, the header was split across this and the
4271 * previous record. Copy the rest of the header.
4272 */
76560669 4273 if (list_empty(&trans->r_itemq)) {
848ccfc8 4274 ASSERT(len <= sizeof(struct xfs_trans_header));
89cebc84
BF
4275 if (len > sizeof(struct xfs_trans_header)) {
4276 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4277 return -EIO;
4278 }
4279
76560669 4280 xlog_recover_add_item(&trans->r_itemq);
b2a922cd 4281 ptr = (char *)&trans->r_theader +
89cebc84 4282 sizeof(struct xfs_trans_header) - len;
76560669
DC
4283 memcpy(ptr, dp, len);
4284 return 0;
4285 }
89cebc84 4286
76560669
DC
4287 /* take the tail entry */
4288 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4289
4290 old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
4291 old_len = item->ri_buf[item->ri_cnt-1].i_len;
4292
664b60f6 4293 ptr = kmem_realloc(old_ptr, len + old_len, KM_SLEEP);
76560669
DC
4294 memcpy(&ptr[old_len], dp, len);
4295 item->ri_buf[item->ri_cnt-1].i_len += len;
4296 item->ri_buf[item->ri_cnt-1].i_addr = ptr;
4297 trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
1da177e4
LT
4298 return 0;
4299}
4300
76560669
DC
4301/*
4302 * The next region to add is the start of a new region. It could be
4303 * a whole region or it could be the first part of a new region. Because
4304 * of this, the assumption here is that the type and size fields of all
4305 * format structures fit into the first 32 bits of the structure.
4306 *
4307 * This works because all regions must be 32 bit aligned. Therefore, we
4308 * either have both fields or we have neither field. In the case we have
4309 * neither field, the data part of the region is zero length. We only have
4310 * a log_op_header and can throw away the header since a new one will appear
4311 * later. If we have at least 4 bytes, then we can determine how many regions
4312 * will appear in the current log item.
4313 */
4314STATIC int
4315xlog_recover_add_to_trans(
4316 struct xlog *log,
4317 struct xlog_recover *trans,
b2a922cd 4318 char *dp,
76560669
DC
4319 int len)
4320{
06b11321 4321 struct xfs_inode_log_format *in_f; /* any will do */
76560669 4322 xlog_recover_item_t *item;
b2a922cd 4323 char *ptr;
76560669
DC
4324
4325 if (!len)
4326 return 0;
4327 if (list_empty(&trans->r_itemq)) {
4328 /* we need to catch log corruptions here */
4329 if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
4330 xfs_warn(log->l_mp, "%s: bad header magic number",
4331 __func__);
4332 ASSERT(0);
4333 return -EIO;
4334 }
89cebc84
BF
4335
4336 if (len > sizeof(struct xfs_trans_header)) {
4337 xfs_warn(log->l_mp, "%s: bad header length", __func__);
4338 ASSERT(0);
4339 return -EIO;
4340 }
4341
4342 /*
4343 * The transaction header can be arbitrarily split across op
4344 * records. If we don't have the whole thing here, copy what we
4345 * do have and handle the rest in the next record.
4346 */
4347 if (len == sizeof(struct xfs_trans_header))
76560669
DC
4348 xlog_recover_add_item(&trans->r_itemq);
4349 memcpy(&trans->r_theader, dp, len);
4350 return 0;
4351 }
4352
4353 ptr = kmem_alloc(len, KM_SLEEP);
4354 memcpy(ptr, dp, len);
06b11321 4355 in_f = (struct xfs_inode_log_format *)ptr;
76560669
DC
4356
4357 /* take the tail entry */
4358 item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list);
4359 if (item->ri_total != 0 &&
4360 item->ri_total == item->ri_cnt) {
4361 /* tail item is in use, get a new one */
4362 xlog_recover_add_item(&trans->r_itemq);
4363 item = list_entry(trans->r_itemq.prev,
4364 xlog_recover_item_t, ri_list);
4365 }
4366
4367 if (item->ri_total == 0) { /* first region to be added */
4368 if (in_f->ilf_size == 0 ||
4369 in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
4370 xfs_warn(log->l_mp,
4371 "bad number of regions (%d) in inode log format",
4372 in_f->ilf_size);
4373 ASSERT(0);
4374 kmem_free(ptr);
4375 return -EIO;
4376 }
4377
4378 item->ri_total = in_f->ilf_size;
4379 item->ri_buf =
4380 kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
4381 KM_SLEEP);
4382 }
4383 ASSERT(item->ri_total > item->ri_cnt);
4384 /* Description region is ri_buf[0] */
4385 item->ri_buf[item->ri_cnt].i_addr = ptr;
4386 item->ri_buf[item->ri_cnt].i_len = len;
4387 item->ri_cnt++;
4388 trace_xfs_log_recover_item_add(log, trans, item, 0);
4389 return 0;
4390}
b818cca1 4391
76560669
DC
4392/*
4393 * Free up any resources allocated by the transaction
4394 *
4395 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
4396 */
4397STATIC void
4398xlog_recover_free_trans(
4399 struct xlog_recover *trans)
4400{
4401 xlog_recover_item_t *item, *n;
4402 int i;
4403
39775431
BF
4404 hlist_del_init(&trans->r_list);
4405
76560669
DC
4406 list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
4407 /* Free the regions in the item. */
4408 list_del(&item->ri_list);
4409 for (i = 0; i < item->ri_cnt; i++)
4410 kmem_free(item->ri_buf[i].i_addr);
4411 /* Free the item itself */
4412 kmem_free(item->ri_buf);
4413 kmem_free(item);
4414 }
4415 /* Free the transaction recover structure */
4416 kmem_free(trans);
4417}
4418
e9131e50
DC
4419/*
4420 * On error or completion, trans is freed.
4421 */
1da177e4 4422STATIC int
eeb11688
DC
4423xlog_recovery_process_trans(
4424 struct xlog *log,
4425 struct xlog_recover *trans,
b2a922cd 4426 char *dp,
eeb11688
DC
4427 unsigned int len,
4428 unsigned int flags,
12818d24
BF
4429 int pass,
4430 struct list_head *buffer_list)
1da177e4 4431{
e9131e50
DC
4432 int error = 0;
4433 bool freeit = false;
eeb11688
DC
4434
4435 /* mask off ophdr transaction container flags */
4436 flags &= ~XLOG_END_TRANS;
4437 if (flags & XLOG_WAS_CONT_TRANS)
4438 flags &= ~XLOG_CONTINUE_TRANS;
4439
88b863db
DC
4440 /*
4441 * Callees must not free the trans structure. We'll decide if we need to
4442 * free it or not based on the operation being done and it's result.
4443 */
eeb11688
DC
4444 switch (flags) {
4445 /* expected flag values */
4446 case 0:
4447 case XLOG_CONTINUE_TRANS:
4448 error = xlog_recover_add_to_trans(log, trans, dp, len);
4449 break;
4450 case XLOG_WAS_CONT_TRANS:
4451 error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
4452 break;
4453 case XLOG_COMMIT_TRANS:
12818d24
BF
4454 error = xlog_recover_commit_trans(log, trans, pass,
4455 buffer_list);
88b863db
DC
4456 /* success or fail, we are now done with this transaction. */
4457 freeit = true;
eeb11688
DC
4458 break;
4459
4460 /* unexpected flag values */
4461 case XLOG_UNMOUNT_TRANS:
e9131e50 4462 /* just skip trans */
eeb11688 4463 xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
e9131e50 4464 freeit = true;
eeb11688
DC
4465 break;
4466 case XLOG_START_TRANS:
eeb11688
DC
4467 default:
4468 xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
4469 ASSERT(0);
e9131e50 4470 error = -EIO;
eeb11688
DC
4471 break;
4472 }
e9131e50
DC
4473 if (error || freeit)
4474 xlog_recover_free_trans(trans);
eeb11688
DC
4475 return error;
4476}
4477
b818cca1
DC
4478/*
4479 * Lookup the transaction recovery structure associated with the ID in the
4480 * current ophdr. If the transaction doesn't exist and the start flag is set in
4481 * the ophdr, then allocate a new transaction for future ID matches to find.
4482 * Either way, return what we found during the lookup - an existing transaction
4483 * or nothing.
4484 */
eeb11688
DC
4485STATIC struct xlog_recover *
4486xlog_recover_ophdr_to_trans(
4487 struct hlist_head rhash[],
4488 struct xlog_rec_header *rhead,
4489 struct xlog_op_header *ohead)
4490{
4491 struct xlog_recover *trans;
4492 xlog_tid_t tid;
4493 struct hlist_head *rhp;
4494
4495 tid = be32_to_cpu(ohead->oh_tid);
4496 rhp = &rhash[XLOG_RHASH(tid)];
b818cca1
DC
4497 hlist_for_each_entry(trans, rhp, r_list) {
4498 if (trans->r_log_tid == tid)
4499 return trans;
4500 }
eeb11688
DC
4501
4502 /*
b818cca1
DC
4503 * skip over non-start transaction headers - we could be
4504 * processing slack space before the next transaction starts
4505 */
4506 if (!(ohead->oh_flags & XLOG_START_TRANS))
4507 return NULL;
4508
4509 ASSERT(be32_to_cpu(ohead->oh_len) == 0);
4510
4511 /*
4512 * This is a new transaction so allocate a new recovery container to
4513 * hold the recovery ops that will follow.
4514 */
4515 trans = kmem_zalloc(sizeof(struct xlog_recover), KM_SLEEP);
4516 trans->r_log_tid = tid;
4517 trans->r_lsn = be64_to_cpu(rhead->h_lsn);
4518 INIT_LIST_HEAD(&trans->r_itemq);
4519 INIT_HLIST_NODE(&trans->r_list);
4520 hlist_add_head(&trans->r_list, rhp);
4521
4522 /*
4523 * Nothing more to do for this ophdr. Items to be added to this new
4524 * transaction will be in subsequent ophdr containers.
eeb11688 4525 */
eeb11688
DC
4526 return NULL;
4527}
4528
4529STATIC int
4530xlog_recover_process_ophdr(
4531 struct xlog *log,
4532 struct hlist_head rhash[],
4533 struct xlog_rec_header *rhead,
4534 struct xlog_op_header *ohead,
b2a922cd
CH
4535 char *dp,
4536 char *end,
12818d24
BF
4537 int pass,
4538 struct list_head *buffer_list)
eeb11688
DC
4539{
4540 struct xlog_recover *trans;
eeb11688 4541 unsigned int len;
12818d24 4542 int error;
eeb11688
DC
4543
4544 /* Do we understand who wrote this op? */
4545 if (ohead->oh_clientid != XFS_TRANSACTION &&
4546 ohead->oh_clientid != XFS_LOG) {
4547 xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
4548 __func__, ohead->oh_clientid);
4549 ASSERT(0);
4550 return -EIO;
4551 }
4552
4553 /*
4554 * Check the ophdr contains all the data it is supposed to contain.
4555 */
4556 len = be32_to_cpu(ohead->oh_len);
4557 if (dp + len > end) {
4558 xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
4559 WARN_ON(1);
4560 return -EIO;
4561 }
4562
4563 trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
4564 if (!trans) {
4565 /* nothing to do, so skip over this ophdr */
4566 return 0;
4567 }
4568
12818d24
BF
4569 /*
4570 * The recovered buffer queue is drained only once we know that all
4571 * recovery items for the current LSN have been processed. This is
4572 * required because:
4573 *
4574 * - Buffer write submission updates the metadata LSN of the buffer.
4575 * - Log recovery skips items with a metadata LSN >= the current LSN of
4576 * the recovery item.
4577 * - Separate recovery items against the same metadata buffer can share
4578 * a current LSN. I.e., consider that the LSN of a recovery item is
4579 * defined as the starting LSN of the first record in which its
4580 * transaction appears, that a record can hold multiple transactions,
4581 * and/or that a transaction can span multiple records.
4582 *
4583 * In other words, we are allowed to submit a buffer from log recovery
4584 * once per current LSN. Otherwise, we may incorrectly skip recovery
4585 * items and cause corruption.
4586 *
4587 * We don't know up front whether buffers are updated multiple times per
4588 * LSN. Therefore, track the current LSN of each commit log record as it
4589 * is processed and drain the queue when it changes. Use commit records
4590 * because they are ordered correctly by the logging code.
4591 */
4592 if (log->l_recovery_lsn != trans->r_lsn &&
4593 ohead->oh_flags & XLOG_COMMIT_TRANS) {
4594 error = xfs_buf_delwri_submit(buffer_list);
4595 if (error)
4596 return error;
4597 log->l_recovery_lsn = trans->r_lsn;
4598 }
4599
e9131e50 4600 return xlog_recovery_process_trans(log, trans, dp, len,
12818d24 4601 ohead->oh_flags, pass, buffer_list);
1da177e4
LT
4602}
4603
4604/*
4605 * There are two valid states of the r_state field. 0 indicates that the
4606 * transaction structure is in a normal state. We have either seen the
4607 * start of the transaction or the last operation we added was not a partial
4608 * operation. If the last operation we added to the transaction was a
4609 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
4610 *
4611 * NOTE: skip LRs with 0 data length.
4612 */
4613STATIC int
4614xlog_recover_process_data(
9a8d2fdb 4615 struct xlog *log,
f0a76953 4616 struct hlist_head rhash[],
9a8d2fdb 4617 struct xlog_rec_header *rhead,
b2a922cd 4618 char *dp,
12818d24
BF
4619 int pass,
4620 struct list_head *buffer_list)
1da177e4 4621{
eeb11688 4622 struct xlog_op_header *ohead;
b2a922cd 4623 char *end;
1da177e4 4624 int num_logops;
1da177e4 4625 int error;
1da177e4 4626
eeb11688 4627 end = dp + be32_to_cpu(rhead->h_len);
b53e675d 4628 num_logops = be32_to_cpu(rhead->h_num_logops);
1da177e4
LT
4629
4630 /* check the log format matches our own - else we can't recover */
4631 if (xlog_header_check_recover(log->l_mp, rhead))
2451337d 4632 return -EIO;
1da177e4 4633
5cd9cee9 4634 trace_xfs_log_recover_record(log, rhead, pass);
eeb11688
DC
4635 while ((dp < end) && num_logops) {
4636
4637 ohead = (struct xlog_op_header *)dp;
4638 dp += sizeof(*ohead);
4639 ASSERT(dp <= end);
4640
4641 /* errors will abort recovery */
4642 error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
12818d24 4643 dp, end, pass, buffer_list);
eeb11688
DC
4644 if (error)
4645 return error;
4646
67fcb7bf 4647 dp += be32_to_cpu(ohead->oh_len);
1da177e4
LT
4648 num_logops--;
4649 }
4650 return 0;
4651}
4652
dc42375d 4653/* Recover the EFI if necessary. */
3c1e2bbe 4654STATIC int
1da177e4 4655xlog_recover_process_efi(
dc42375d
DW
4656 struct xfs_mount *mp,
4657 struct xfs_ail *ailp,
4658 struct xfs_log_item *lip)
1da177e4 4659{
dc42375d
DW
4660 struct xfs_efi_log_item *efip;
4661 int error;
1da177e4
LT
4662
4663 /*
dc42375d 4664 * Skip EFIs that we've already processed.
1da177e4 4665 */
dc42375d
DW
4666 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
4667 if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags))
4668 return 0;
1da177e4 4669
57e80956 4670 spin_unlock(&ailp->ail_lock);
dc42375d 4671 error = xfs_efi_recover(mp, efip);
57e80956 4672 spin_lock(&ailp->ail_lock);
1da177e4 4673
dc42375d
DW
4674 return error;
4675}
6bc43af3 4676
dc42375d
DW
4677/* Release the EFI since we're cancelling everything. */
4678STATIC void
4679xlog_recover_cancel_efi(
4680 struct xfs_mount *mp,
4681 struct xfs_ail *ailp,
4682 struct xfs_log_item *lip)
4683{
4684 struct xfs_efi_log_item *efip;
1da177e4 4685
dc42375d 4686 efip = container_of(lip, struct xfs_efi_log_item, efi_item);
fc6149d8 4687
57e80956 4688 spin_unlock(&ailp->ail_lock);
dc42375d 4689 xfs_efi_release(efip);
57e80956 4690 spin_lock(&ailp->ail_lock);
dc42375d
DW
4691}
4692
9e88b5d8
DW
4693/* Recover the RUI if necessary. */
4694STATIC int
4695xlog_recover_process_rui(
4696 struct xfs_mount *mp,
4697 struct xfs_ail *ailp,
4698 struct xfs_log_item *lip)
4699{
4700 struct xfs_rui_log_item *ruip;
4701 int error;
4702
4703 /*
4704 * Skip RUIs that we've already processed.
4705 */
4706 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4707 if (test_bit(XFS_RUI_RECOVERED, &ruip->rui_flags))
4708 return 0;
4709
57e80956 4710 spin_unlock(&ailp->ail_lock);
9e88b5d8 4711 error = xfs_rui_recover(mp, ruip);
57e80956 4712 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
4713
4714 return error;
4715}
4716
4717/* Release the RUI since we're cancelling everything. */
4718STATIC void
4719xlog_recover_cancel_rui(
4720 struct xfs_mount *mp,
4721 struct xfs_ail *ailp,
4722 struct xfs_log_item *lip)
4723{
4724 struct xfs_rui_log_item *ruip;
4725
4726 ruip = container_of(lip, struct xfs_rui_log_item, rui_item);
4727
57e80956 4728 spin_unlock(&ailp->ail_lock);
9e88b5d8 4729 xfs_rui_release(ruip);
57e80956 4730 spin_lock(&ailp->ail_lock);
9e88b5d8
DW
4731}
4732
f997ee21
DW
4733/* Recover the CUI if necessary. */
4734STATIC int
4735xlog_recover_process_cui(
4736 struct xfs_mount *mp,
4737 struct xfs_ail *ailp,
50995582
DW
4738 struct xfs_log_item *lip,
4739 struct xfs_defer_ops *dfops)
f997ee21
DW
4740{
4741 struct xfs_cui_log_item *cuip;
4742 int error;
4743
4744 /*
4745 * Skip CUIs that we've already processed.
4746 */
4747 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4748 if (test_bit(XFS_CUI_RECOVERED, &cuip->cui_flags))
4749 return 0;
4750
57e80956 4751 spin_unlock(&ailp->ail_lock);
50995582 4752 error = xfs_cui_recover(mp, cuip, dfops);
57e80956 4753 spin_lock(&ailp->ail_lock);
f997ee21
DW
4754
4755 return error;
4756}
4757
4758/* Release the CUI since we're cancelling everything. */
4759STATIC void
4760xlog_recover_cancel_cui(
4761 struct xfs_mount *mp,
4762 struct xfs_ail *ailp,
4763 struct xfs_log_item *lip)
4764{
4765 struct xfs_cui_log_item *cuip;
4766
4767 cuip = container_of(lip, struct xfs_cui_log_item, cui_item);
4768
57e80956 4769 spin_unlock(&ailp->ail_lock);
f997ee21 4770 xfs_cui_release(cuip);
57e80956 4771 spin_lock(&ailp->ail_lock);
f997ee21
DW
4772}
4773
77d61fe4
DW
4774/* Recover the BUI if necessary. */
4775STATIC int
4776xlog_recover_process_bui(
4777 struct xfs_mount *mp,
4778 struct xfs_ail *ailp,
50995582
DW
4779 struct xfs_log_item *lip,
4780 struct xfs_defer_ops *dfops)
77d61fe4
DW
4781{
4782 struct xfs_bui_log_item *buip;
4783 int error;
4784
4785 /*
4786 * Skip BUIs that we've already processed.
4787 */
4788 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4789 if (test_bit(XFS_BUI_RECOVERED, &buip->bui_flags))
4790 return 0;
4791
57e80956 4792 spin_unlock(&ailp->ail_lock);
50995582 4793 error = xfs_bui_recover(mp, buip, dfops);
57e80956 4794 spin_lock(&ailp->ail_lock);
77d61fe4
DW
4795
4796 return error;
4797}
4798
4799/* Release the BUI since we're cancelling everything. */
4800STATIC void
4801xlog_recover_cancel_bui(
4802 struct xfs_mount *mp,
4803 struct xfs_ail *ailp,
4804 struct xfs_log_item *lip)
4805{
4806 struct xfs_bui_log_item *buip;
4807
4808 buip = container_of(lip, struct xfs_bui_log_item, bui_item);
4809
57e80956 4810 spin_unlock(&ailp->ail_lock);
77d61fe4 4811 xfs_bui_release(buip);
57e80956 4812 spin_lock(&ailp->ail_lock);
77d61fe4
DW
4813}
4814
dc42375d
DW
4815/* Is this log item a deferred action intent? */
4816static inline bool xlog_item_is_intent(struct xfs_log_item *lip)
4817{
4818 switch (lip->li_type) {
4819 case XFS_LI_EFI:
9e88b5d8 4820 case XFS_LI_RUI:
f997ee21 4821 case XFS_LI_CUI:
77d61fe4 4822 case XFS_LI_BUI:
dc42375d
DW
4823 return true;
4824 default:
4825 return false;
4826 }
1da177e4
LT
4827}
4828
50995582
DW
4829/* Take all the collected deferred ops and finish them in order. */
4830static int
4831xlog_finish_defer_ops(
4832 struct xfs_mount *mp,
4833 struct xfs_defer_ops *dfops)
4834{
4835 struct xfs_trans *tp;
4836 int64_t freeblks;
4837 uint resblks;
4838 int error;
4839
4840 /*
4841 * We're finishing the defer_ops that accumulated as a result of
4842 * recovering unfinished intent items during log recovery. We
4843 * reserve an itruncate transaction because it is the largest
4844 * permanent transaction type. Since we're the only user of the fs
4845 * right now, take 93% (15/16) of the available free blocks. Use
4846 * weird math to avoid a 64-bit division.
4847 */
4848 freeblks = percpu_counter_sum(&mp->m_fdblocks);
4849 if (freeblks <= 0)
4850 return -ENOSPC;
4851 resblks = min_t(int64_t, UINT_MAX, freeblks);
4852 resblks = (resblks * 15) >> 4;
4853 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, resblks,
4854 0, XFS_TRANS_RESERVE, &tp);
4855 if (error)
4856 return error;
4857
4858 error = xfs_defer_finish(&tp, dfops);
4859 if (error)
4860 goto out_cancel;
4861
4862 return xfs_trans_commit(tp);
4863
4864out_cancel:
4865 xfs_trans_cancel(tp);
4866 return error;
4867}
4868
1da177e4 4869/*
dc42375d
DW
4870 * When this is called, all of the log intent items which did not have
4871 * corresponding log done items should be in the AIL. What we do now
4872 * is update the data structures associated with each one.
1da177e4 4873 *
dc42375d
DW
4874 * Since we process the log intent items in normal transactions, they
4875 * will be removed at some point after the commit. This prevents us
4876 * from just walking down the list processing each one. We'll use a
4877 * flag in the intent item to skip those that we've already processed
4878 * and use the AIL iteration mechanism's generation count to try to
4879 * speed this up at least a bit.
1da177e4 4880 *
dc42375d
DW
4881 * When we start, we know that the intents are the only things in the
4882 * AIL. As we process them, however, other items are added to the
4883 * AIL.
1da177e4 4884 */
3c1e2bbe 4885STATIC int
dc42375d 4886xlog_recover_process_intents(
f0b2efad 4887 struct xlog *log)
1da177e4 4888{
50995582 4889 struct xfs_defer_ops dfops;
27d8d5fe 4890 struct xfs_ail_cursor cur;
50995582 4891 struct xfs_log_item *lip;
a9c21c1b 4892 struct xfs_ail *ailp;
50995582
DW
4893 xfs_fsblock_t firstfsb;
4894 int error = 0;
7bf7a193 4895#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4896 xfs_lsn_t last_lsn;
7bf7a193 4897#endif
1da177e4 4898
a9c21c1b 4899 ailp = log->l_ailp;
57e80956 4900 spin_lock(&ailp->ail_lock);
a9c21c1b 4901 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
7bf7a193 4902#if defined(DEBUG) || defined(XFS_WARN)
dc42375d 4903 last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
7bf7a193 4904#endif
50995582 4905 xfs_defer_init(&dfops, &firstfsb);
1da177e4
LT
4906 while (lip != NULL) {
4907 /*
dc42375d
DW
4908 * We're done when we see something other than an intent.
4909 * There should be no intents left in the AIL now.
1da177e4 4910 */
dc42375d 4911 if (!xlog_item_is_intent(lip)) {
27d8d5fe 4912#ifdef DEBUG
a9c21c1b 4913 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4914 ASSERT(!xlog_item_is_intent(lip));
27d8d5fe 4915#endif
1da177e4
LT
4916 break;
4917 }
4918
4919 /*
dc42375d
DW
4920 * We should never see a redo item with a LSN higher than
4921 * the last transaction we found in the log at the start
4922 * of recovery.
1da177e4 4923 */
dc42375d 4924 ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
1da177e4 4925
50995582
DW
4926 /*
4927 * NOTE: If your intent processing routine can create more
4928 * deferred ops, you /must/ attach them to the dfops in this
4929 * routine or else those subsequent intents will get
4930 * replayed in the wrong order!
4931 */
dc42375d
DW
4932 switch (lip->li_type) {
4933 case XFS_LI_EFI:
4934 error = xlog_recover_process_efi(log->l_mp, ailp, lip);
4935 break;
9e88b5d8
DW
4936 case XFS_LI_RUI:
4937 error = xlog_recover_process_rui(log->l_mp, ailp, lip);
4938 break;
f997ee21 4939 case XFS_LI_CUI:
50995582
DW
4940 error = xlog_recover_process_cui(log->l_mp, ailp, lip,
4941 &dfops);
f997ee21 4942 break;
77d61fe4 4943 case XFS_LI_BUI:
50995582
DW
4944 error = xlog_recover_process_bui(log->l_mp, ailp, lip,
4945 &dfops);
77d61fe4 4946 break;
dc42375d 4947 }
27d8d5fe
DC
4948 if (error)
4949 goto out;
a9c21c1b 4950 lip = xfs_trans_ail_cursor_next(ailp, &cur);
1da177e4 4951 }
27d8d5fe 4952out:
e4a1e29c 4953 xfs_trans_ail_cursor_done(&cur);
57e80956 4954 spin_unlock(&ailp->ail_lock);
50995582
DW
4955 if (error)
4956 xfs_defer_cancel(&dfops);
4957 else
4958 error = xlog_finish_defer_ops(log->l_mp, &dfops);
4959
3c1e2bbe 4960 return error;
1da177e4
LT
4961}
4962
f0b2efad 4963/*
dc42375d
DW
4964 * A cancel occurs when the mount has failed and we're bailing out.
4965 * Release all pending log intent items so they don't pin the AIL.
f0b2efad
BF
4966 */
4967STATIC int
dc42375d 4968xlog_recover_cancel_intents(
f0b2efad
BF
4969 struct xlog *log)
4970{
4971 struct xfs_log_item *lip;
f0b2efad
BF
4972 int error = 0;
4973 struct xfs_ail_cursor cur;
4974 struct xfs_ail *ailp;
4975
4976 ailp = log->l_ailp;
57e80956 4977 spin_lock(&ailp->ail_lock);
f0b2efad
BF
4978 lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
4979 while (lip != NULL) {
4980 /*
dc42375d
DW
4981 * We're done when we see something other than an intent.
4982 * There should be no intents left in the AIL now.
f0b2efad 4983 */
dc42375d 4984 if (!xlog_item_is_intent(lip)) {
f0b2efad
BF
4985#ifdef DEBUG
4986 for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
dc42375d 4987 ASSERT(!xlog_item_is_intent(lip));
f0b2efad
BF
4988#endif
4989 break;
4990 }
4991
dc42375d
DW
4992 switch (lip->li_type) {
4993 case XFS_LI_EFI:
4994 xlog_recover_cancel_efi(log->l_mp, ailp, lip);
4995 break;
9e88b5d8
DW
4996 case XFS_LI_RUI:
4997 xlog_recover_cancel_rui(log->l_mp, ailp, lip);
4998 break;
f997ee21
DW
4999 case XFS_LI_CUI:
5000 xlog_recover_cancel_cui(log->l_mp, ailp, lip);
5001 break;
77d61fe4
DW
5002 case XFS_LI_BUI:
5003 xlog_recover_cancel_bui(log->l_mp, ailp, lip);
5004 break;
dc42375d 5005 }
f0b2efad
BF
5006
5007 lip = xfs_trans_ail_cursor_next(ailp, &cur);
5008 }
5009
5010 xfs_trans_ail_cursor_done(&cur);
57e80956 5011 spin_unlock(&ailp->ail_lock);
f0b2efad
BF
5012 return error;
5013}
5014
1da177e4
LT
5015/*
5016 * This routine performs a transaction to null out a bad inode pointer
5017 * in an agi unlinked inode hash bucket.
5018 */
5019STATIC void
5020xlog_recover_clear_agi_bucket(
5021 xfs_mount_t *mp,
5022 xfs_agnumber_t agno,
5023 int bucket)
5024{
5025 xfs_trans_t *tp;
5026 xfs_agi_t *agi;
5027 xfs_buf_t *agibp;
5028 int offset;
5029 int error;
5030
253f4911 5031 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
e5720eec 5032 if (error)
253f4911 5033 goto out_error;
1da177e4 5034
5e1be0fb
CH
5035 error = xfs_read_agi(mp, tp, agno, &agibp);
5036 if (error)
e5720eec 5037 goto out_abort;
1da177e4 5038
5e1be0fb 5039 agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5040 agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
1da177e4
LT
5041 offset = offsetof(xfs_agi_t, agi_unlinked) +
5042 (sizeof(xfs_agino_t) * bucket);
5043 xfs_trans_log_buf(tp, agibp, offset,
5044 (offset + sizeof(xfs_agino_t) - 1));
5045
70393313 5046 error = xfs_trans_commit(tp);
e5720eec
DC
5047 if (error)
5048 goto out_error;
5049 return;
5050
5051out_abort:
4906e215 5052 xfs_trans_cancel(tp);
e5720eec 5053out_error:
a0fa2b67 5054 xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
e5720eec 5055 return;
1da177e4
LT
5056}
5057
23fac50f
CH
5058STATIC xfs_agino_t
5059xlog_recover_process_one_iunlink(
5060 struct xfs_mount *mp,
5061 xfs_agnumber_t agno,
5062 xfs_agino_t agino,
5063 int bucket)
5064{
5065 struct xfs_buf *ibp;
5066 struct xfs_dinode *dip;
5067 struct xfs_inode *ip;
5068 xfs_ino_t ino;
5069 int error;
5070
5071 ino = XFS_AGINO_TO_INO(mp, agno, agino);
7b6259e7 5072 error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
23fac50f
CH
5073 if (error)
5074 goto fail;
5075
5076 /*
5077 * Get the on disk inode to find the next inode in the bucket.
5078 */
475ee413 5079 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0);
23fac50f 5080 if (error)
0e446673 5081 goto fail_iput;
23fac50f 5082
17c12bcd 5083 xfs_iflags_clear(ip, XFS_IRECOVERY);
54d7b5c1 5084 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 5085 ASSERT(VFS_I(ip)->i_mode != 0);
23fac50f
CH
5086
5087 /* setup for the next pass */
5088 agino = be32_to_cpu(dip->di_next_unlinked);
5089 xfs_buf_relse(ibp);
5090
5091 /*
5092 * Prevent any DMAPI event from being sent when the reference on
5093 * the inode is dropped.
5094 */
5095 ip->i_d.di_dmevmask = 0;
5096
0e446673 5097 IRELE(ip);
23fac50f
CH
5098 return agino;
5099
0e446673
CH
5100 fail_iput:
5101 IRELE(ip);
23fac50f
CH
5102 fail:
5103 /*
5104 * We can't read in the inode this bucket points to, or this inode
5105 * is messed up. Just ditch this bucket of inodes. We will lose
5106 * some inodes and space, but at least we won't hang.
5107 *
5108 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
5109 * clear the inode pointer in the bucket.
5110 */
5111 xlog_recover_clear_agi_bucket(mp, agno, bucket);
5112 return NULLAGINO;
5113}
5114
1da177e4
LT
5115/*
5116 * xlog_iunlink_recover
5117 *
5118 * This is called during recovery to process any inodes which
5119 * we unlinked but not freed when the system crashed. These
5120 * inodes will be on the lists in the AGI blocks. What we do
5121 * here is scan all the AGIs and fully truncate and free any
5122 * inodes found on the lists. Each inode is removed from the
5123 * lists when it has been fully truncated and is freed. The
5124 * freeing of the inode and its removal from the list must be
5125 * atomic.
5126 */
d96f8f89 5127STATIC void
1da177e4 5128xlog_recover_process_iunlinks(
9a8d2fdb 5129 struct xlog *log)
1da177e4
LT
5130{
5131 xfs_mount_t *mp;
5132 xfs_agnumber_t agno;
5133 xfs_agi_t *agi;
5134 xfs_buf_t *agibp;
1da177e4 5135 xfs_agino_t agino;
1da177e4
LT
5136 int bucket;
5137 int error;
1da177e4
LT
5138
5139 mp = log->l_mp;
5140
1da177e4
LT
5141 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
5142 /*
5143 * Find the agi for this ag.
5144 */
5e1be0fb
CH
5145 error = xfs_read_agi(mp, NULL, agno, &agibp);
5146 if (error) {
5147 /*
5148 * AGI is b0rked. Don't process it.
5149 *
5150 * We should probably mark the filesystem as corrupt
5151 * after we've recovered all the ag's we can....
5152 */
5153 continue;
1da177e4 5154 }
d97d32ed
JK
5155 /*
5156 * Unlock the buffer so that it can be acquired in the normal
5157 * course of the transaction to truncate and free each inode.
5158 * Because we are not racing with anyone else here for the AGI
5159 * buffer, we don't even need to hold it locked to read the
5160 * initial unlinked bucket entries out of the buffer. We keep
5161 * buffer reference though, so that it stays pinned in memory
5162 * while we need the buffer.
5163 */
1da177e4 5164 agi = XFS_BUF_TO_AGI(agibp);
d97d32ed 5165 xfs_buf_unlock(agibp);
1da177e4
LT
5166
5167 for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
16259e7d 5168 agino = be32_to_cpu(agi->agi_unlinked[bucket]);
1da177e4 5169 while (agino != NULLAGINO) {
23fac50f
CH
5170 agino = xlog_recover_process_one_iunlink(mp,
5171 agno, agino, bucket);
1da177e4
LT
5172 }
5173 }
d97d32ed 5174 xfs_buf_rele(agibp);
1da177e4 5175 }
1da177e4
LT
5176}
5177
0e446be4 5178STATIC int
1da177e4 5179xlog_unpack_data(
9a8d2fdb 5180 struct xlog_rec_header *rhead,
b2a922cd 5181 char *dp,
9a8d2fdb 5182 struct xlog *log)
1da177e4
LT
5183{
5184 int i, j, k;
1da177e4 5185
b53e675d 5186 for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
1da177e4 5187 i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
b53e675d 5188 *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
1da177e4
LT
5189 dp += BBSIZE;
5190 }
5191
62118709 5192 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
b28708d6 5193 xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
b53e675d 5194 for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
1da177e4
LT
5195 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
5196 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 5197 *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
1da177e4
LT
5198 dp += BBSIZE;
5199 }
5200 }
0e446be4
CH
5201
5202 return 0;
1da177e4
LT
5203}
5204
9d94901f 5205/*
b94fb2d1 5206 * CRC check, unpack and process a log record.
9d94901f
BF
5207 */
5208STATIC int
5209xlog_recover_process(
5210 struct xlog *log,
5211 struct hlist_head rhash[],
5212 struct xlog_rec_header *rhead,
5213 char *dp,
12818d24
BF
5214 int pass,
5215 struct list_head *buffer_list)
9d94901f
BF
5216{
5217 int error;
cae028df 5218 __le32 old_crc = rhead->h_crc;
b94fb2d1
BF
5219 __le32 crc;
5220
cae028df 5221
6528250b
BF
5222 crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
5223
b94fb2d1 5224 /*
6528250b
BF
5225 * Nothing else to do if this is a CRC verification pass. Just return
5226 * if this a record with a non-zero crc. Unfortunately, mkfs always
cae028df 5227 * sets old_crc to 0 so we must consider this valid even on v5 supers.
6528250b
BF
5228 * Otherwise, return EFSBADCRC on failure so the callers up the stack
5229 * know precisely what failed.
5230 */
5231 if (pass == XLOG_RECOVER_CRCPASS) {
cae028df 5232 if (old_crc && crc != old_crc)
6528250b
BF
5233 return -EFSBADCRC;
5234 return 0;
5235 }
5236
5237 /*
5238 * We're in the normal recovery path. Issue a warning if and only if the
5239 * CRC in the header is non-zero. This is an advisory warning and the
5240 * zero CRC check prevents warnings from being emitted when upgrading
5241 * the kernel from one that does not add CRCs by default.
b94fb2d1 5242 */
cae028df
DC
5243 if (crc != old_crc) {
5244 if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
b94fb2d1
BF
5245 xfs_alert(log->l_mp,
5246 "log record CRC mismatch: found 0x%x, expected 0x%x.",
cae028df 5247 le32_to_cpu(old_crc),
b94fb2d1
BF
5248 le32_to_cpu(crc));
5249 xfs_hex_dump(dp, 32);
5250 }
5251
5252 /*
5253 * If the filesystem is CRC enabled, this mismatch becomes a
5254 * fatal log corruption failure.
5255 */
5256 if (xfs_sb_version_hascrc(&log->l_mp->m_sb))
5257 return -EFSCORRUPTED;
5258 }
9d94901f
BF
5259
5260 error = xlog_unpack_data(rhead, dp, log);
5261 if (error)
5262 return error;
5263
12818d24
BF
5264 return xlog_recover_process_data(log, rhash, rhead, dp, pass,
5265 buffer_list);
9d94901f
BF
5266}
5267
1da177e4
LT
5268STATIC int
5269xlog_valid_rec_header(
9a8d2fdb
MT
5270 struct xlog *log,
5271 struct xlog_rec_header *rhead,
1da177e4
LT
5272 xfs_daddr_t blkno)
5273{
5274 int hlen;
5275
69ef921b 5276 if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) {
1da177e4
LT
5277 XFS_ERROR_REPORT("xlog_valid_rec_header(1)",
5278 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5279 return -EFSCORRUPTED;
1da177e4
LT
5280 }
5281 if (unlikely(
5282 (!rhead->h_version ||
b53e675d 5283 (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) {
a0fa2b67 5284 xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
34a622b2 5285 __func__, be32_to_cpu(rhead->h_version));
2451337d 5286 return -EIO;
1da177e4
LT
5287 }
5288
5289 /* LR body must have data or it wouldn't have been written */
b53e675d 5290 hlen = be32_to_cpu(rhead->h_len);
1da177e4
LT
5291 if (unlikely( hlen <= 0 || hlen > INT_MAX )) {
5292 XFS_ERROR_REPORT("xlog_valid_rec_header(2)",
5293 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5294 return -EFSCORRUPTED;
1da177e4
LT
5295 }
5296 if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) {
5297 XFS_ERROR_REPORT("xlog_valid_rec_header(3)",
5298 XFS_ERRLEVEL_LOW, log->l_mp);
2451337d 5299 return -EFSCORRUPTED;
1da177e4
LT
5300 }
5301 return 0;
5302}
5303
5304/*
5305 * Read the log from tail to head and process the log records found.
5306 * Handle the two cases where the tail and head are in the same cycle
5307 * and where the active portion of the log wraps around the end of
5308 * the physical log separately. The pass parameter is passed through
5309 * to the routines called to process the data and is not looked at
5310 * here.
5311 */
5312STATIC int
5313xlog_do_recovery_pass(
9a8d2fdb 5314 struct xlog *log,
1da177e4
LT
5315 xfs_daddr_t head_blk,
5316 xfs_daddr_t tail_blk,
d7f37692
BF
5317 int pass,
5318 xfs_daddr_t *first_bad) /* out: first bad log rec */
1da177e4
LT
5319{
5320 xlog_rec_header_t *rhead;
284f1c2c 5321 xfs_daddr_t blk_no, rblk_no;
d7f37692 5322 xfs_daddr_t rhead_blk;
b2a922cd 5323 char *offset;
1da177e4 5324 xfs_buf_t *hbp, *dbp;
a70f9fe5 5325 int error = 0, h_size, h_len;
12818d24 5326 int error2 = 0;
1da177e4
LT
5327 int bblks, split_bblks;
5328 int hblks, split_hblks, wrapped_hblks;
39775431 5329 int i;
f0a76953 5330 struct hlist_head rhash[XLOG_RHASH_SIZE];
12818d24 5331 LIST_HEAD (buffer_list);
1da177e4
LT
5332
5333 ASSERT(head_blk != tail_blk);
a4c9b34d 5334 blk_no = rhead_blk = tail_blk;
1da177e4 5335
39775431
BF
5336 for (i = 0; i < XLOG_RHASH_SIZE; i++)
5337 INIT_HLIST_HEAD(&rhash[i]);
5338
1da177e4
LT
5339 /*
5340 * Read the header of the tail block and get the iclog buffer size from
5341 * h_size. Use this to tell how many sectors make up the log header.
5342 */
62118709 5343 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1da177e4
LT
5344 /*
5345 * When using variable length iclogs, read first sector of
5346 * iclog header and extract the header size from it. Get a
5347 * new hbp that is the correct size.
5348 */
5349 hbp = xlog_get_bp(log, 1);
5350 if (!hbp)
2451337d 5351 return -ENOMEM;
076e6acb
CH
5352
5353 error = xlog_bread(log, tail_blk, 1, hbp, &offset);
5354 if (error)
1da177e4 5355 goto bread_err1;
076e6acb 5356
1da177e4
LT
5357 rhead = (xlog_rec_header_t *)offset;
5358 error = xlog_valid_rec_header(log, rhead, tail_blk);
5359 if (error)
5360 goto bread_err1;
a70f9fe5
BF
5361
5362 /*
5363 * xfsprogs has a bug where record length is based on lsunit but
5364 * h_size (iclog size) is hardcoded to 32k. Now that we
5365 * unconditionally CRC verify the unmount record, this means the
5366 * log buffer can be too small for the record and cause an
5367 * overrun.
5368 *
5369 * Detect this condition here. Use lsunit for the buffer size as
5370 * long as this looks like the mkfs case. Otherwise, return an
5371 * error to avoid a buffer overrun.
5372 */
b53e675d 5373 h_size = be32_to_cpu(rhead->h_size);
a70f9fe5
BF
5374 h_len = be32_to_cpu(rhead->h_len);
5375 if (h_len > h_size) {
5376 if (h_len <= log->l_mp->m_logbsize &&
5377 be32_to_cpu(rhead->h_num_logops) == 1) {
5378 xfs_warn(log->l_mp,
5379 "invalid iclog size (%d bytes), using lsunit (%d bytes)",
5380 h_size, log->l_mp->m_logbsize);
5381 h_size = log->l_mp->m_logbsize;
5382 } else
5383 return -EFSCORRUPTED;
5384 }
5385
b53e675d 5386 if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) &&
1da177e4
LT
5387 (h_size > XLOG_HEADER_CYCLE_SIZE)) {
5388 hblks = h_size / XLOG_HEADER_CYCLE_SIZE;
5389 if (h_size % XLOG_HEADER_CYCLE_SIZE)
5390 hblks++;
5391 xlog_put_bp(hbp);
5392 hbp = xlog_get_bp(log, hblks);
5393 } else {
5394 hblks = 1;
5395 }
5396 } else {
69ce58f0 5397 ASSERT(log->l_sectBBsize == 1);
1da177e4
LT
5398 hblks = 1;
5399 hbp = xlog_get_bp(log, 1);
5400 h_size = XLOG_BIG_RECORD_BSIZE;
5401 }
5402
5403 if (!hbp)
2451337d 5404 return -ENOMEM;
1da177e4
LT
5405 dbp = xlog_get_bp(log, BTOBB(h_size));
5406 if (!dbp) {
5407 xlog_put_bp(hbp);
2451337d 5408 return -ENOMEM;
1da177e4
LT
5409 }
5410
5411 memset(rhash, 0, sizeof(rhash));
970fd3f0 5412 if (tail_blk > head_blk) {
1da177e4
LT
5413 /*
5414 * Perform recovery around the end of the physical log.
5415 * When the head is not on the same cycle number as the tail,
970fd3f0 5416 * we can't do a sequential recovery.
1da177e4 5417 */
1da177e4
LT
5418 while (blk_no < log->l_logBBsize) {
5419 /*
5420 * Check for header wrapping around physical end-of-log
5421 */
62926044 5422 offset = hbp->b_addr;
1da177e4
LT
5423 split_hblks = 0;
5424 wrapped_hblks = 0;
5425 if (blk_no + hblks <= log->l_logBBsize) {
5426 /* Read header in one read */
076e6acb
CH
5427 error = xlog_bread(log, blk_no, hblks, hbp,
5428 &offset);
1da177e4
LT
5429 if (error)
5430 goto bread_err2;
1da177e4
LT
5431 } else {
5432 /* This LR is split across physical log end */
5433 if (blk_no != log->l_logBBsize) {
5434 /* some data before physical log end */
5435 ASSERT(blk_no <= INT_MAX);
5436 split_hblks = log->l_logBBsize - (int)blk_no;
5437 ASSERT(split_hblks > 0);
076e6acb
CH
5438 error = xlog_bread(log, blk_no,
5439 split_hblks, hbp,
5440 &offset);
5441 if (error)
1da177e4 5442 goto bread_err2;
1da177e4 5443 }
076e6acb 5444
1da177e4
LT
5445 /*
5446 * Note: this black magic still works with
5447 * large sector sizes (non-512) only because:
5448 * - we increased the buffer size originally
5449 * by 1 sector giving us enough extra space
5450 * for the second read;
5451 * - the log start is guaranteed to be sector
5452 * aligned;
5453 * - we read the log end (LR header start)
5454 * _first_, then the log start (LR header end)
5455 * - order is important.
5456 */
234f56ac 5457 wrapped_hblks = hblks - split_hblks;
44396476
DC
5458 error = xlog_bread_offset(log, 0,
5459 wrapped_hblks, hbp,
5460 offset + BBTOB(split_hblks));
1da177e4
LT
5461 if (error)
5462 goto bread_err2;
1da177e4
LT
5463 }
5464 rhead = (xlog_rec_header_t *)offset;
5465 error = xlog_valid_rec_header(log, rhead,
5466 split_hblks ? blk_no : 0);
5467 if (error)
5468 goto bread_err2;
5469
b53e675d 5470 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
1da177e4
LT
5471 blk_no += hblks;
5472
284f1c2c
BF
5473 /*
5474 * Read the log record data in multiple reads if it
5475 * wraps around the end of the log. Note that if the
5476 * header already wrapped, blk_no could point past the
5477 * end of the log. The record data is contiguous in
5478 * that case.
5479 */
5480 if (blk_no + bblks <= log->l_logBBsize ||
5481 blk_no >= log->l_logBBsize) {
0703a8e1 5482 rblk_no = xlog_wrap_logbno(log, blk_no);
284f1c2c 5483 error = xlog_bread(log, rblk_no, bblks, dbp,
076e6acb 5484 &offset);
1da177e4
LT
5485 if (error)
5486 goto bread_err2;
1da177e4
LT
5487 } else {
5488 /* This log record is split across the
5489 * physical end of log */
62926044 5490 offset = dbp->b_addr;
1da177e4
LT
5491 split_bblks = 0;
5492 if (blk_no != log->l_logBBsize) {
5493 /* some data is before the physical
5494 * end of log */
5495 ASSERT(!wrapped_hblks);
5496 ASSERT(blk_no <= INT_MAX);
5497 split_bblks =
5498 log->l_logBBsize - (int)blk_no;
5499 ASSERT(split_bblks > 0);
076e6acb
CH
5500 error = xlog_bread(log, blk_no,
5501 split_bblks, dbp,
5502 &offset);
5503 if (error)
1da177e4 5504 goto bread_err2;
1da177e4 5505 }
076e6acb 5506
1da177e4
LT
5507 /*
5508 * Note: this black magic still works with
5509 * large sector sizes (non-512) only because:
5510 * - we increased the buffer size originally
5511 * by 1 sector giving us enough extra space
5512 * for the second read;
5513 * - the log start is guaranteed to be sector
5514 * aligned;
5515 * - we read the log end (LR header start)
5516 * _first_, then the log start (LR header end)
5517 * - order is important.
5518 */
44396476 5519 error = xlog_bread_offset(log, 0,
009507b0 5520 bblks - split_bblks, dbp,
44396476 5521 offset + BBTOB(split_bblks));
076e6acb
CH
5522 if (error)
5523 goto bread_err2;
1da177e4 5524 }
0e446be4 5525
9d94901f 5526 error = xlog_recover_process(log, rhash, rhead, offset,
12818d24 5527 pass, &buffer_list);
0e446be4 5528 if (error)
1da177e4 5529 goto bread_err2;
d7f37692 5530
1da177e4 5531 blk_no += bblks;
d7f37692 5532 rhead_blk = blk_no;
1da177e4
LT
5533 }
5534
5535 ASSERT(blk_no >= log->l_logBBsize);
5536 blk_no -= log->l_logBBsize;
d7f37692 5537 rhead_blk = blk_no;
970fd3f0 5538 }
1da177e4 5539
970fd3f0
ES
5540 /* read first part of physical log */
5541 while (blk_no < head_blk) {
5542 error = xlog_bread(log, blk_no, hblks, hbp, &offset);
5543 if (error)
5544 goto bread_err2;
076e6acb 5545
970fd3f0
ES
5546 rhead = (xlog_rec_header_t *)offset;
5547 error = xlog_valid_rec_header(log, rhead, blk_no);
5548 if (error)
5549 goto bread_err2;
076e6acb 5550
970fd3f0
ES
5551 /* blocks in data section */
5552 bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
5553 error = xlog_bread(log, blk_no+hblks, bblks, dbp,
5554 &offset);
5555 if (error)
5556 goto bread_err2;
076e6acb 5557
12818d24
BF
5558 error = xlog_recover_process(log, rhash, rhead, offset, pass,
5559 &buffer_list);
970fd3f0
ES
5560 if (error)
5561 goto bread_err2;
d7f37692 5562
970fd3f0 5563 blk_no += bblks + hblks;
d7f37692 5564 rhead_blk = blk_no;
1da177e4
LT
5565 }
5566
5567 bread_err2:
5568 xlog_put_bp(dbp);
5569 bread_err1:
5570 xlog_put_bp(hbp);
d7f37692 5571
12818d24
BF
5572 /*
5573 * Submit buffers that have been added from the last record processed,
5574 * regardless of error status.
5575 */
5576 if (!list_empty(&buffer_list))
5577 error2 = xfs_buf_delwri_submit(&buffer_list);
5578
d7f37692
BF
5579 if (error && first_bad)
5580 *first_bad = rhead_blk;
5581
39775431
BF
5582 /*
5583 * Transactions are freed at commit time but transactions without commit
5584 * records on disk are never committed. Free any that may be left in the
5585 * hash table.
5586 */
5587 for (i = 0; i < XLOG_RHASH_SIZE; i++) {
5588 struct hlist_node *tmp;
5589 struct xlog_recover *trans;
5590
5591 hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
5592 xlog_recover_free_trans(trans);
5593 }
5594
12818d24 5595 return error ? error : error2;
1da177e4
LT
5596}
5597
5598/*
5599 * Do the recovery of the log. We actually do this in two phases.
5600 * The two passes are necessary in order to implement the function
5601 * of cancelling a record written into the log. The first pass
5602 * determines those things which have been cancelled, and the
5603 * second pass replays log items normally except for those which
5604 * have been cancelled. The handling of the replay and cancellations
5605 * takes place in the log item type specific routines.
5606 *
5607 * The table of items which have cancel records in the log is allocated
5608 * and freed at this level, since only here do we know when all of
5609 * the log recovery has been completed.
5610 */
5611STATIC int
5612xlog_do_log_recovery(
9a8d2fdb 5613 struct xlog *log,
1da177e4
LT
5614 xfs_daddr_t head_blk,
5615 xfs_daddr_t tail_blk)
5616{
d5689eaa 5617 int error, i;
1da177e4
LT
5618
5619 ASSERT(head_blk != tail_blk);
5620
5621 /*
5622 * First do a pass to find all of the cancelled buf log items.
5623 * Store them in the buf_cancel_table for use in the second pass.
5624 */
d5689eaa
CH
5625 log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
5626 sizeof(struct list_head),
1da177e4 5627 KM_SLEEP);
d5689eaa
CH
5628 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
5629 INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
5630
1da177e4 5631 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5632 XLOG_RECOVER_PASS1, NULL);
1da177e4 5633 if (error != 0) {
f0e2d93c 5634 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5635 log->l_buf_cancel_table = NULL;
5636 return error;
5637 }
5638 /*
5639 * Then do a second pass to actually recover the items in the log.
5640 * When it is complete free the table of buf cancel items.
5641 */
5642 error = xlog_do_recovery_pass(log, head_blk, tail_blk,
d7f37692 5643 XLOG_RECOVER_PASS2, NULL);
1da177e4 5644#ifdef DEBUG
6d192a9b 5645 if (!error) {
1da177e4
LT
5646 int i;
5647
5648 for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
d5689eaa 5649 ASSERT(list_empty(&log->l_buf_cancel_table[i]));
1da177e4
LT
5650 }
5651#endif /* DEBUG */
5652
f0e2d93c 5653 kmem_free(log->l_buf_cancel_table);
1da177e4
LT
5654 log->l_buf_cancel_table = NULL;
5655
5656 return error;
5657}
5658
5659/*
5660 * Do the actual recovery
5661 */
5662STATIC int
5663xlog_do_recover(
9a8d2fdb 5664 struct xlog *log,
1da177e4
LT
5665 xfs_daddr_t head_blk,
5666 xfs_daddr_t tail_blk)
5667{
a798011c 5668 struct xfs_mount *mp = log->l_mp;
1da177e4
LT
5669 int error;
5670 xfs_buf_t *bp;
5671 xfs_sb_t *sbp;
5672
e67d3d42
BF
5673 trace_xfs_log_recover(log, head_blk, tail_blk);
5674
1da177e4
LT
5675 /*
5676 * First replay the images in the log.
5677 */
5678 error = xlog_do_log_recovery(log, head_blk, tail_blk);
43ff2122 5679 if (error)
1da177e4 5680 return error;
1da177e4
LT
5681
5682 /*
5683 * If IO errors happened during recovery, bail out.
5684 */
a798011c 5685 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 5686 return -EIO;
1da177e4
LT
5687 }
5688
5689 /*
5690 * We now update the tail_lsn since much of the recovery has completed
5691 * and there may be space available to use. If there were no extent
5692 * or iunlinks, we can free up the entire log and set the tail_lsn to
5693 * be the last_sync_lsn. This was set in xlog_find_tail to be the
5694 * lsn of the last known good LR on disk. If there are extent frees
5695 * or iunlinks they will have some entries in the AIL; so we look at
5696 * the AIL to determine how to set the tail_lsn.
5697 */
a798011c 5698 xlog_assign_tail_lsn(mp);
1da177e4
LT
5699
5700 /*
5701 * Now that we've finished replaying all buffer and inode
98021821 5702 * updates, re-read in the superblock and reverify it.
1da177e4 5703 */
a798011c 5704 bp = xfs_getsb(mp, 0);
1157b32c 5705 bp->b_flags &= ~(XBF_DONE | XBF_ASYNC);
b68c0821 5706 ASSERT(!(bp->b_flags & XBF_WRITE));
0cac682f 5707 bp->b_flags |= XBF_READ;
1813dd64 5708 bp->b_ops = &xfs_sb_buf_ops;
83a0adc3 5709
595bff75 5710 error = xfs_buf_submit_wait(bp);
d64e31a2 5711 if (error) {
a798011c 5712 if (!XFS_FORCED_SHUTDOWN(mp)) {
595bff75
DC
5713 xfs_buf_ioerror_alert(bp, __func__);
5714 ASSERT(0);
5715 }
1da177e4
LT
5716 xfs_buf_relse(bp);
5717 return error;
5718 }
5719
5720 /* Convert superblock from on-disk format */
a798011c 5721 sbp = &mp->m_sb;
98021821 5722 xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp));
1da177e4
LT
5723 xfs_buf_relse(bp);
5724
a798011c
DC
5725 /* re-initialise in-core superblock and geometry structures */
5726 xfs_reinit_percpu_counters(mp);
5727 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
5728 if (error) {
5729 xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
5730 return error;
5731 }
52548852 5732 mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
5478eead 5733
1da177e4
LT
5734 xlog_recover_check_summary(log);
5735
5736 /* Normal transactions can now occur */
5737 log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
5738 return 0;
5739}
5740
5741/*
5742 * Perform recovery and re-initialize some log variables in xlog_find_tail.
5743 *
5744 * Return error or zero.
5745 */
5746int
5747xlog_recover(
9a8d2fdb 5748 struct xlog *log)
1da177e4
LT
5749{
5750 xfs_daddr_t head_blk, tail_blk;
5751 int error;
5752
5753 /* find the tail of the log */
a45086e2
BF
5754 error = xlog_find_tail(log, &head_blk, &tail_blk);
5755 if (error)
1da177e4
LT
5756 return error;
5757
a45086e2
BF
5758 /*
5759 * The superblock was read before the log was available and thus the LSN
5760 * could not be verified. Check the superblock LSN against the current
5761 * LSN now that it's known.
5762 */
5763 if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
5764 !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
5765 return -EINVAL;
5766
1da177e4
LT
5767 if (tail_blk != head_blk) {
5768 /* There used to be a comment here:
5769 *
5770 * disallow recovery on read-only mounts. note -- mount
5771 * checks for ENOSPC and turns it into an intelligent
5772 * error message.
5773 * ...but this is no longer true. Now, unless you specify
5774 * NORECOVERY (in which case this function would never be
5775 * called), we just go ahead and recover. We do this all
5776 * under the vfs layer, so we can get away with it unless
5777 * the device itself is read-only, in which case we fail.
5778 */
3a02ee18 5779 if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
1da177e4
LT
5780 return error;
5781 }
5782
e721f504
DC
5783 /*
5784 * Version 5 superblock log feature mask validation. We know the
5785 * log is dirty so check if there are any unknown log features
5786 * in what we need to recover. If there are unknown features
5787 * (e.g. unsupported transactions, then simply reject the
5788 * attempt at recovery before touching anything.
5789 */
5790 if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
5791 xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
5792 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
5793 xfs_warn(log->l_mp,
f41febd2 5794"Superblock has unknown incompatible log features (0x%x) enabled.",
e721f504
DC
5795 (log->l_mp->m_sb.sb_features_log_incompat &
5796 XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
f41febd2
JP
5797 xfs_warn(log->l_mp,
5798"The log can not be fully and/or safely recovered by this kernel.");
5799 xfs_warn(log->l_mp,
5800"Please recover the log on a kernel that supports the unknown features.");
2451337d 5801 return -EINVAL;
e721f504
DC
5802 }
5803
2e227178
BF
5804 /*
5805 * Delay log recovery if the debug hook is set. This is debug
5806 * instrumention to coordinate simulation of I/O failures with
5807 * log recovery.
5808 */
5809 if (xfs_globals.log_recovery_delay) {
5810 xfs_notice(log->l_mp,
5811 "Delaying log recovery for %d seconds.",
5812 xfs_globals.log_recovery_delay);
5813 msleep(xfs_globals.log_recovery_delay * 1000);
5814 }
5815
a0fa2b67
DC
5816 xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
5817 log->l_mp->m_logname ? log->l_mp->m_logname
5818 : "internal");
1da177e4
LT
5819
5820 error = xlog_do_recover(log, head_blk, tail_blk);
5821 log->l_flags |= XLOG_RECOVERY_NEEDED;
5822 }
5823 return error;
5824}
5825
5826/*
5827 * In the first part of recovery we replay inodes and buffers and build
5828 * up the list of extent free items which need to be processed. Here
5829 * we process the extent free items and clean up the on disk unlinked
5830 * inode lists. This is separated from the first part of recovery so
5831 * that the root and real-time bitmap inodes can be read in from disk in
5832 * between the two stages. This is necessary so that we can free space
5833 * in the real-time portion of the file system.
5834 */
5835int
5836xlog_recover_finish(
9a8d2fdb 5837 struct xlog *log)
1da177e4
LT
5838{
5839 /*
5840 * Now we're ready to do the transactions needed for the
5841 * rest of recovery. Start with completing all the extent
5842 * free intent records and then process the unlinked inode
5843 * lists. At this point, we essentially run in normal mode
5844 * except that we're still performing recovery actions
5845 * rather than accepting new requests.
5846 */
5847 if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3c1e2bbe 5848 int error;
dc42375d 5849 error = xlog_recover_process_intents(log);
3c1e2bbe 5850 if (error) {
dc42375d 5851 xfs_alert(log->l_mp, "Failed to recover intents");
3c1e2bbe
DC
5852 return error;
5853 }
9e88b5d8 5854
1da177e4 5855 /*
dc42375d 5856 * Sync the log to get all the intents out of the AIL.
1da177e4
LT
5857 * This isn't absolutely necessary, but it helps in
5858 * case the unlink transactions would have problems
dc42375d 5859 * pushing the intents out of the way.
1da177e4 5860 */
a14a348b 5861 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
1da177e4 5862
4249023a 5863 xlog_recover_process_iunlinks(log);
1da177e4
LT
5864
5865 xlog_recover_check_summary(log);
5866
a0fa2b67
DC
5867 xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
5868 log->l_mp->m_logname ? log->l_mp->m_logname
5869 : "internal");
1da177e4
LT
5870 log->l_flags &= ~XLOG_RECOVERY_NEEDED;
5871 } else {
a0fa2b67 5872 xfs_info(log->l_mp, "Ending clean mount");
1da177e4
LT
5873 }
5874 return 0;
5875}
5876
f0b2efad
BF
5877int
5878xlog_recover_cancel(
5879 struct xlog *log)
5880{
5881 int error = 0;
5882
5883 if (log->l_flags & XLOG_RECOVERY_NEEDED)
dc42375d 5884 error = xlog_recover_cancel_intents(log);
f0b2efad
BF
5885
5886 return error;
5887}
1da177e4
LT
5888
5889#if defined(DEBUG)
5890/*
5891 * Read all of the agf and agi counters and check that they
5892 * are consistent with the superblock counters.
5893 */
e89fbb5e 5894STATIC void
1da177e4 5895xlog_recover_check_summary(
9a8d2fdb 5896 struct xlog *log)
1da177e4
LT
5897{
5898 xfs_mount_t *mp;
5899 xfs_agf_t *agfp;
1da177e4
LT
5900 xfs_buf_t *agfbp;
5901 xfs_buf_t *agibp;
1da177e4 5902 xfs_agnumber_t agno;
c8ce540d
DW
5903 uint64_t freeblks;
5904 uint64_t itotal;
5905 uint64_t ifree;
5e1be0fb 5906 int error;
1da177e4
LT
5907
5908 mp = log->l_mp;
5909
5910 freeblks = 0LL;
5911 itotal = 0LL;
5912 ifree = 0LL;
5913 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
4805621a
FCH
5914 error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
5915 if (error) {
a0fa2b67
DC
5916 xfs_alert(mp, "%s agf read failed agno %d error %d",
5917 __func__, agno, error);
4805621a
FCH
5918 } else {
5919 agfp = XFS_BUF_TO_AGF(agfbp);
5920 freeblks += be32_to_cpu(agfp->agf_freeblks) +
5921 be32_to_cpu(agfp->agf_flcount);
5922 xfs_buf_relse(agfbp);
1da177e4 5923 }
1da177e4 5924
5e1be0fb 5925 error = xfs_read_agi(mp, NULL, agno, &agibp);
a0fa2b67
DC
5926 if (error) {
5927 xfs_alert(mp, "%s agi read failed agno %d error %d",
5928 __func__, agno, error);
5929 } else {
5e1be0fb 5930 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
16259e7d 5931
5e1be0fb
CH
5932 itotal += be32_to_cpu(agi->agi_count);
5933 ifree += be32_to_cpu(agi->agi_freecount);
5934 xfs_buf_relse(agibp);
5935 }
1da177e4 5936 }
1da177e4
LT
5937}
5938#endif /* DEBUG */