xfs: log head and tail aren't reliable during shutdown
[linux-block.git] / fs / xfs / xfs_log_cil.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
71e330b5
DC
2/*
3 * Copyright (c) 2010 Red Hat, Inc. All Rights Reserved.
71e330b5
DC
4 */
5
6#include "xfs.h"
7#include "xfs_fs.h"
4fb6e8ad 8#include "xfs_format.h"
239880ef 9#include "xfs_log_format.h"
70a9883c 10#include "xfs_shared.h"
239880ef 11#include "xfs_trans_resv.h"
71e330b5 12#include "xfs_mount.h"
efc27b52 13#include "xfs_extent_busy.h"
239880ef
DC
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_log.h"
17#include "xfs_log_priv.h"
4560e78f
CH
18#include "xfs_trace.h"
19
20struct workqueue_struct *xfs_discard_wq;
71e330b5 21
71e330b5
DC
22/*
23 * Allocate a new ticket. Failing to get a new ticket makes it really hard to
24 * recover, so we don't allow failure here. Also, we allocate in a context that
25 * we don't want to be issuing transactions from, so we need to tell the
26 * allocation code this as well.
27 *
28 * We don't reserve any space for the ticket - we are going to steal whatever
29 * space we require from transactions as they commit. To ensure we reserve all
30 * the space required, we need to set the current reservation of the ticket to
31 * zero so that we know to steal the initial transaction overhead from the
32 * first transaction commit.
33 */
34static struct xlog_ticket *
35xlog_cil_ticket_alloc(
f7bdf03a 36 struct xlog *log)
71e330b5
DC
37{
38 struct xlog_ticket *tic;
39
ca4f2589 40 tic = xlog_ticket_alloc(log, 0, 1, XFS_TRANSACTION, 0);
71e330b5
DC
41
42 /*
43 * set the current reservation to zero so we know to steal the basic
44 * transaction overhead reservation from the first transaction commit.
45 */
46 tic->t_curr_res = 0;
47 return tic;
48}
49
50/*
51 * After the first stage of log recovery is done, we know where the head and
52 * tail of the log are. We need this log initialisation done before we can
53 * initialise the first CIL checkpoint context.
54 *
55 * Here we allocate a log ticket to track space usage during a CIL push. This
56 * ticket is passed to xlog_write() directly so that we don't slowly leak log
57 * space by failing to account for space used by log headers and additional
58 * region headers for split regions.
59 */
60void
61xlog_cil_init_post_recovery(
f7bdf03a 62 struct xlog *log)
71e330b5 63{
71e330b5
DC
64 log->l_cilp->xc_ctx->ticket = xlog_cil_ticket_alloc(log);
65 log->l_cilp->xc_ctx->sequence = 1;
71e330b5
DC
66}
67
b1c5ebb2
DC
68static inline int
69xlog_cil_iovec_space(
70 uint niovecs)
71{
72 return round_up((sizeof(struct xfs_log_vec) +
73 niovecs * sizeof(struct xfs_log_iovec)),
74 sizeof(uint64_t));
75}
76
77/*
78 * Allocate or pin log vector buffers for CIL insertion.
79 *
80 * The CIL currently uses disposable buffers for copying a snapshot of the
81 * modified items into the log during a push. The biggest problem with this is
82 * the requirement to allocate the disposable buffer during the commit if:
83 * a) does not exist; or
84 * b) it is too small
85 *
86 * If we do this allocation within xlog_cil_insert_format_items(), it is done
87 * under the xc_ctx_lock, which means that a CIL push cannot occur during
88 * the memory allocation. This means that we have a potential deadlock situation
89 * under low memory conditions when we have lots of dirty metadata pinned in
90 * the CIL and we need a CIL commit to occur to free memory.
91 *
92 * To avoid this, we need to move the memory allocation outside the
93 * xc_ctx_lock, but because the log vector buffers are disposable, that opens
94 * up a TOCTOU race condition w.r.t. the CIL committing and removing the log
95 * vector buffers between the check and the formatting of the item into the
96 * log vector buffer within the xc_ctx_lock.
97 *
98 * Because the log vector buffer needs to be unchanged during the CIL push
99 * process, we cannot share the buffer between the transaction commit (which
100 * modifies the buffer) and the CIL push context that is writing the changes
101 * into the log. This means skipping preallocation of buffer space is
102 * unreliable, but we most definitely do not want to be allocating and freeing
103 * buffers unnecessarily during commits when overwrites can be done safely.
104 *
105 * The simplest solution to this problem is to allocate a shadow buffer when a
106 * log item is committed for the second time, and then to only use this buffer
107 * if necessary. The buffer can remain attached to the log item until such time
108 * it is needed, and this is the buffer that is reallocated to match the size of
109 * the incoming modification. Then during the formatting of the item we can swap
110 * the active buffer with the new one if we can't reuse the existing buffer. We
111 * don't free the old buffer as it may be reused on the next modification if
112 * it's size is right, otherwise we'll free and reallocate it at that point.
113 *
114 * This function builds a vector for the changes in each log item in the
115 * transaction. It then works out the length of the buffer needed for each log
116 * item, allocates them and attaches the vector to the log item in preparation
117 * for the formatting step which occurs under the xc_ctx_lock.
118 *
119 * While this means the memory footprint goes up, it avoids the repeated
120 * alloc/free pattern that repeated modifications of an item would otherwise
121 * cause, and hence minimises the CPU overhead of such behaviour.
122 */
123static void
124xlog_cil_alloc_shadow_bufs(
125 struct xlog *log,
126 struct xfs_trans *tp)
127{
e6631f85 128 struct xfs_log_item *lip;
b1c5ebb2 129
e6631f85 130 list_for_each_entry(lip, &tp->t_items, li_trans) {
b1c5ebb2
DC
131 struct xfs_log_vec *lv;
132 int niovecs = 0;
133 int nbytes = 0;
134 int buf_size;
135 bool ordered = false;
136
137 /* Skip items which aren't dirty in this transaction. */
e6631f85 138 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
b1c5ebb2
DC
139 continue;
140
141 /* get number of vecs and size of data to be stored */
142 lip->li_ops->iop_size(lip, &niovecs, &nbytes);
143
144 /*
145 * Ordered items need to be tracked but we do not wish to write
146 * them. We need a logvec to track the object, but we do not
147 * need an iovec or buffer to be allocated for copying data.
148 */
149 if (niovecs == XFS_LOG_VEC_ORDERED) {
150 ordered = true;
151 niovecs = 0;
152 nbytes = 0;
153 }
154
155 /*
156 * We 64-bit align the length of each iovec so that the start
157 * of the next one is naturally aligned. We'll need to
158 * account for that slack space here. Then round nbytes up
159 * to 64-bit alignment so that the initial buffer alignment is
160 * easy to calculate and verify.
161 */
162 nbytes += niovecs * sizeof(uint64_t);
163 nbytes = round_up(nbytes, sizeof(uint64_t));
164
165 /*
166 * The data buffer needs to start 64-bit aligned, so round up
167 * that space to ensure we can align it appropriately and not
168 * overrun the buffer.
169 */
170 buf_size = nbytes + xlog_cil_iovec_space(niovecs);
171
172 /*
173 * if we have no shadow buffer, or it is too small, we need to
174 * reallocate it.
175 */
176 if (!lip->li_lv_shadow ||
177 buf_size > lip->li_lv_shadow->lv_size) {
178
179 /*
180 * We free and allocate here as a realloc would copy
cf085a1b 181 * unnecessary data. We don't use kmem_zalloc() for the
b1c5ebb2
DC
182 * same reason - we don't need to zero the data area in
183 * the buffer, only the log vector header and the iovec
184 * storage.
185 */
186 kmem_free(lip->li_lv_shadow);
187
d634525d
DC
188 /*
189 * We are in transaction context, which means this
190 * allocation will pick up GFP_NOFS from the
191 * memalloc_nofs_save/restore context the transaction
192 * holds. This means we can use GFP_KERNEL here so the
193 * generic kvmalloc() code will run vmalloc on
194 * contiguous page allocation failure as we require.
195 */
196 lv = kvmalloc(buf_size, GFP_KERNEL);
b1c5ebb2
DC
197 memset(lv, 0, xlog_cil_iovec_space(niovecs));
198
199 lv->lv_item = lip;
200 lv->lv_size = buf_size;
201 if (ordered)
202 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
203 else
204 lv->lv_iovecp = (struct xfs_log_iovec *)&lv[1];
205 lip->li_lv_shadow = lv;
206 } else {
207 /* same or smaller, optimise common overwrite case */
208 lv = lip->li_lv_shadow;
209 if (ordered)
210 lv->lv_buf_len = XFS_LOG_VEC_ORDERED;
211 else
212 lv->lv_buf_len = 0;
213 lv->lv_bytes = 0;
214 lv->lv_next = NULL;
215 }
216
217 /* Ensure the lv is set up according to ->iop_size */
218 lv->lv_niovecs = niovecs;
219
220 /* The allocated data region lies beyond the iovec region */
221 lv->lv_buf = (char *)lv + xlog_cil_iovec_space(niovecs);
222 }
223
224}
225
991aaf65
DC
226/*
227 * Prepare the log item for insertion into the CIL. Calculate the difference in
228 * log space and vectors it will consume, and if it is a new item pin it as
229 * well.
230 */
231STATIC void
232xfs_cil_prepare_item(
233 struct xlog *log,
234 struct xfs_log_vec *lv,
235 struct xfs_log_vec *old_lv,
236 int *diff_len,
237 int *diff_iovecs)
238{
239 /* Account for the new LV being passed in */
240 if (lv->lv_buf_len != XFS_LOG_VEC_ORDERED) {
110dc24a 241 *diff_len += lv->lv_bytes;
991aaf65
DC
242 *diff_iovecs += lv->lv_niovecs;
243 }
244
245 /*
246 * If there is no old LV, this is the first time we've seen the item in
247 * this CIL context and so we need to pin it. If we are replacing the
b1c5ebb2
DC
248 * old_lv, then remove the space it accounts for and make it the shadow
249 * buffer for later freeing. In both cases we are now switching to the
b63da6c8 250 * shadow buffer, so update the pointer to it appropriately.
991aaf65 251 */
b1c5ebb2 252 if (!old_lv) {
e8b78db7
CH
253 if (lv->lv_item->li_ops->iop_pin)
254 lv->lv_item->li_ops->iop_pin(lv->lv_item);
b1c5ebb2
DC
255 lv->lv_item->li_lv_shadow = NULL;
256 } else if (old_lv != lv) {
991aaf65
DC
257 ASSERT(lv->lv_buf_len != XFS_LOG_VEC_ORDERED);
258
110dc24a 259 *diff_len -= old_lv->lv_bytes;
991aaf65 260 *diff_iovecs -= old_lv->lv_niovecs;
b1c5ebb2 261 lv->lv_item->li_lv_shadow = old_lv;
991aaf65
DC
262 }
263
264 /* attach new log vector to log item */
265 lv->lv_item->li_lv = lv;
266
267 /*
268 * If this is the first time the item is being committed to the
269 * CIL, store the sequence number on the log item so we can
270 * tell in future commits whether this is the first checkpoint
271 * the item is being committed into.
272 */
273 if (!lv->lv_item->li_seq)
274 lv->lv_item->li_seq = log->l_cilp->xc_ctx->sequence;
275}
276
71e330b5
DC
277/*
278 * Format log item into a flat buffers
279 *
280 * For delayed logging, we need to hold a formatted buffer containing all the
281 * changes on the log item. This enables us to relog the item in memory and
282 * write it out asynchronously without needing to relock the object that was
283 * modified at the time it gets written into the iclog.
284 *
b1c5ebb2
DC
285 * This function takes the prepared log vectors attached to each log item, and
286 * formats the changes into the log vector buffer. The buffer it uses is
287 * dependent on the current state of the vector in the CIL - the shadow lv is
288 * guaranteed to be large enough for the current modification, but we will only
289 * use that if we can't reuse the existing lv. If we can't reuse the existing
290 * lv, then simple swap it out for the shadow lv. We don't free it - that is
291 * done lazily either by th enext modification or the freeing of the log item.
71e330b5
DC
292 *
293 * We don't set up region headers during this process; we simply copy the
294 * regions into the flat buffer. We can do this because we still have to do a
295 * formatting step to write the regions into the iclog buffer. Writing the
296 * ophdrs during the iclog write means that we can support splitting large
297 * regions across iclog boundares without needing a change in the format of the
298 * item/region encapsulation.
299 *
300 * Hence what we need to do now is change the rewrite the vector array to point
301 * to the copied region inside the buffer we just allocated. This allows us to
302 * format the regions into the iclog as though they are being formatted
303 * directly out of the objects themselves.
304 */
991aaf65
DC
305static void
306xlog_cil_insert_format_items(
307 struct xlog *log,
308 struct xfs_trans *tp,
309 int *diff_len,
310 int *diff_iovecs)
71e330b5 311{
e6631f85 312 struct xfs_log_item *lip;
71e330b5 313
0244b960
CH
314
315 /* Bail out if we didn't find a log item. */
316 if (list_empty(&tp->t_items)) {
317 ASSERT(0);
991aaf65 318 return;
0244b960
CH
319 }
320
e6631f85 321 list_for_each_entry(lip, &tp->t_items, li_trans) {
7492c5b4 322 struct xfs_log_vec *lv;
b1c5ebb2
DC
323 struct xfs_log_vec *old_lv = NULL;
324 struct xfs_log_vec *shadow;
fd63875c 325 bool ordered = false;
71e330b5 326
0244b960 327 /* Skip items which aren't dirty in this transaction. */
e6631f85 328 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
0244b960
CH
329 continue;
330
fd63875c 331 /*
b1c5ebb2
DC
332 * The formatting size information is already attached to
333 * the shadow lv on the log item.
fd63875c 334 */
b1c5ebb2
DC
335 shadow = lip->li_lv_shadow;
336 if (shadow->lv_buf_len == XFS_LOG_VEC_ORDERED)
fd63875c 337 ordered = true;
fd63875c 338
b1c5ebb2
DC
339 /* Skip items that do not have any vectors for writing */
340 if (!shadow->lv_niovecs && !ordered)
341 continue;
0244b960 342
f5baac35 343 /* compare to existing item size */
b1c5ebb2
DC
344 old_lv = lip->li_lv;
345 if (lip->li_lv && shadow->lv_size <= lip->li_lv->lv_size) {
f5baac35
DC
346 /* same or smaller, optimise common overwrite case */
347 lv = lip->li_lv;
348 lv->lv_next = NULL;
349
350 if (ordered)
351 goto insert;
352
991aaf65
DC
353 /*
354 * set the item up as though it is a new insertion so
355 * that the space reservation accounting is correct.
356 */
357 *diff_iovecs -= lv->lv_niovecs;
110dc24a 358 *diff_len -= lv->lv_bytes;
b1c5ebb2
DC
359
360 /* Ensure the lv is set up according to ->iop_size */
361 lv->lv_niovecs = shadow->lv_niovecs;
362
363 /* reset the lv buffer information for new formatting */
364 lv->lv_buf_len = 0;
365 lv->lv_bytes = 0;
366 lv->lv_buf = (char *)lv +
367 xlog_cil_iovec_space(lv->lv_niovecs);
9597df6b 368 } else {
b1c5ebb2
DC
369 /* switch to shadow buffer! */
370 lv = shadow;
9597df6b 371 lv->lv_item = lip;
9597df6b
CH
372 if (ordered) {
373 /* track as an ordered logvec */
374 ASSERT(lip->li_lv == NULL);
9597df6b
CH
375 goto insert;
376 }
f5baac35
DC
377 }
378
3895e51f 379 ASSERT(IS_ALIGNED((unsigned long)lv->lv_buf, sizeof(uint64_t)));
bde7cff6 380 lip->li_ops->iop_format(lip, lv);
7492c5b4 381insert:
991aaf65 382 xfs_cil_prepare_item(log, lv, old_lv, diff_len, diff_iovecs);
3b93c7aa 383 }
d1583a38
DC
384}
385
386/*
387 * Insert the log items into the CIL and calculate the difference in space
388 * consumed by the item. Add the space to the checkpoint ticket and calculate
389 * if the change requires additional log metadata. If it does, take that space
42b2aa86 390 * as well. Remove the amount of space we added to the checkpoint ticket from
d1583a38
DC
391 * the current transaction ticket so that the accounting works out correctly.
392 */
3b93c7aa
DC
393static void
394xlog_cil_insert_items(
f7bdf03a 395 struct xlog *log,
991aaf65 396 struct xfs_trans *tp)
3b93c7aa 397{
d1583a38
DC
398 struct xfs_cil *cil = log->l_cilp;
399 struct xfs_cil_ctx *ctx = cil->xc_ctx;
e6631f85 400 struct xfs_log_item *lip;
d1583a38
DC
401 int len = 0;
402 int diff_iovecs = 0;
403 int iclog_space;
e2f23426 404 int iovhdr_res = 0, split_res = 0, ctx_res = 0;
3b93c7aa 405
991aaf65 406 ASSERT(tp);
d1583a38
DC
407
408 /*
d1583a38
DC
409 * We can do this safely because the context can't checkpoint until we
410 * are done so it doesn't matter exactly how we update the CIL.
411 */
991aaf65
DC
412 xlog_cil_insert_format_items(log, tp, &len, &diff_iovecs);
413
d1583a38 414 spin_lock(&cil->xc_cil_lock);
d1583a38 415
fd63875c 416 /* account for space used by new iovec headers */
e2f23426
BF
417 iovhdr_res = diff_iovecs * sizeof(xlog_op_header_t);
418 len += iovhdr_res;
d1583a38
DC
419 ctx->nvecs += diff_iovecs;
420
991aaf65
DC
421 /* attach the transaction to the CIL if it has any busy extents */
422 if (!list_empty(&tp->t_busy))
423 list_splice_init(&tp->t_busy, &ctx->busy_extents);
424
d1583a38
DC
425 /*
426 * Now transfer enough transaction reservation to the context ticket
427 * for the checkpoint. The context ticket is special - the unit
428 * reservation has to grow as well as the current reservation as we
429 * steal from tickets so we can correctly determine the space used
430 * during the transaction commit.
431 */
432 if (ctx->ticket->t_curr_res == 0) {
e2f23426
BF
433 ctx_res = ctx->ticket->t_unit_res;
434 ctx->ticket->t_curr_res = ctx_res;
435 tp->t_ticket->t_curr_res -= ctx_res;
d1583a38
DC
436 }
437
438 /* do we need space for more log record headers? */
439 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
440 if (len > 0 && (ctx->space_used / iclog_space !=
441 (ctx->space_used + len) / iclog_space)) {
e2f23426 442 split_res = (len + iclog_space - 1) / iclog_space;
d1583a38 443 /* need to take into account split region headers, too */
e2f23426
BF
444 split_res *= log->l_iclog_hsize + sizeof(struct xlog_op_header);
445 ctx->ticket->t_unit_res += split_res;
446 ctx->ticket->t_curr_res += split_res;
447 tp->t_ticket->t_curr_res -= split_res;
991aaf65 448 ASSERT(tp->t_ticket->t_curr_res >= len);
d1583a38 449 }
991aaf65 450 tp->t_ticket->t_curr_res -= len;
d1583a38
DC
451 ctx->space_used += len;
452
d4ca1d55
BF
453 /*
454 * If we've overrun the reservation, dump the tx details before we move
455 * the log items. Shutdown is imminent...
456 */
457 if (WARN_ON(tp->t_ticket->t_curr_res < 0)) {
458 xfs_warn(log->l_mp, "Transaction log reservation overrun:");
459 xfs_warn(log->l_mp,
460 " log items: %d bytes (iov hdrs: %d bytes)",
461 len, iovhdr_res);
462 xfs_warn(log->l_mp, " split region headers: %d bytes",
463 split_res);
464 xfs_warn(log->l_mp, " ctx ticket: %d bytes", ctx_res);
465 xlog_print_trans(tp);
466 }
467
e2f23426
BF
468 /*
469 * Now (re-)position everything modified at the tail of the CIL.
470 * We do this here so we only need to take the CIL lock once during
471 * the transaction commit.
472 */
e6631f85 473 list_for_each_entry(lip, &tp->t_items, li_trans) {
e2f23426
BF
474
475 /* Skip items which aren't dirty in this transaction. */
e6631f85 476 if (!test_bit(XFS_LI_DIRTY, &lip->li_flags))
e2f23426
BF
477 continue;
478
479 /*
480 * Only move the item if it isn't already at the tail. This is
481 * to prevent a transient list_empty() state when reinserting
482 * an item that is already the only item in the CIL.
483 */
484 if (!list_is_last(&lip->li_cil, &cil->xc_cil))
485 list_move_tail(&lip->li_cil, &cil->xc_cil);
486 }
487
d1583a38 488 spin_unlock(&cil->xc_cil_lock);
d4ca1d55
BF
489
490 if (tp->t_ticket->t_curr_res < 0)
491 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
71e330b5
DC
492}
493
494static void
495xlog_cil_free_logvec(
496 struct xfs_log_vec *log_vector)
497{
498 struct xfs_log_vec *lv;
499
500 for (lv = log_vector; lv; ) {
501 struct xfs_log_vec *next = lv->lv_next;
71e330b5
DC
502 kmem_free(lv);
503 lv = next;
504 }
505}
506
4560e78f
CH
507static void
508xlog_discard_endio_work(
509 struct work_struct *work)
510{
511 struct xfs_cil_ctx *ctx =
512 container_of(work, struct xfs_cil_ctx, discard_endio_work);
513 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
514
515 xfs_extent_busy_clear(mp, &ctx->busy_extents, false);
516 kmem_free(ctx);
517}
518
519/*
520 * Queue up the actual completion to a thread to avoid IRQ-safe locking for
521 * pagb_lock. Note that we need a unbounded workqueue, otherwise we might
522 * get the execution delayed up to 30 seconds for weird reasons.
523 */
524static void
525xlog_discard_endio(
526 struct bio *bio)
527{
528 struct xfs_cil_ctx *ctx = bio->bi_private;
529
530 INIT_WORK(&ctx->discard_endio_work, xlog_discard_endio_work);
531 queue_work(xfs_discard_wq, &ctx->discard_endio_work);
ea7bd56f 532 bio_put(bio);
4560e78f
CH
533}
534
535static void
536xlog_discard_busy_extents(
537 struct xfs_mount *mp,
538 struct xfs_cil_ctx *ctx)
539{
540 struct list_head *list = &ctx->busy_extents;
541 struct xfs_extent_busy *busyp;
542 struct bio *bio = NULL;
543 struct blk_plug plug;
544 int error = 0;
545
546 ASSERT(mp->m_flags & XFS_MOUNT_DISCARD);
547
548 blk_start_plug(&plug);
549 list_for_each_entry(busyp, list, list) {
550 trace_xfs_discard_extent(mp, busyp->agno, busyp->bno,
551 busyp->length);
552
553 error = __blkdev_issue_discard(mp->m_ddev_targp->bt_bdev,
554 XFS_AGB_TO_DADDR(mp, busyp->agno, busyp->bno),
555 XFS_FSB_TO_BB(mp, busyp->length),
556 GFP_NOFS, 0, &bio);
557 if (error && error != -EOPNOTSUPP) {
558 xfs_info(mp,
559 "discard failed for extent [0x%llx,%u], error %d",
560 (unsigned long long)busyp->bno,
561 busyp->length,
562 error);
563 break;
564 }
565 }
566
567 if (bio) {
568 bio->bi_private = ctx;
569 bio->bi_end_io = xlog_discard_endio;
570 submit_bio(bio);
571 } else {
572 xlog_discard_endio_work(&ctx->discard_endio_work);
573 }
574 blk_finish_plug(&plug);
575}
576
71e330b5
DC
577/*
578 * Mark all items committed and clear busy extents. We free the log vector
579 * chains in a separate pass so that we unpin the log items as quickly as
580 * possible.
581 */
582static void
583xlog_cil_committed(
12e6a0f4 584 struct xfs_cil_ctx *ctx)
71e330b5 585{
e84661aa 586 struct xfs_mount *mp = ctx->cil->xc_log->l_mp;
2039a272 587 bool abort = xlog_is_shutdown(ctx->cil->xc_log);
71e330b5 588
545aa41f
BF
589 /*
590 * If the I/O failed, we're aborting the commit and already shutdown.
591 * Wake any commit waiters before aborting the log items so we don't
592 * block async log pushers on callbacks. Async log pushers explicitly do
593 * not wait on log force completion because they may be holding locks
594 * required to unpin items.
595 */
596 if (abort) {
597 spin_lock(&ctx->cil->xc_push_lock);
598 wake_up_all(&ctx->cil->xc_commit_wait);
599 spin_unlock(&ctx->cil->xc_push_lock);
600 }
601
0e57f6a3
DC
602 xfs_trans_committed_bulk(ctx->cil->xc_log->l_ailp, ctx->lv_chain,
603 ctx->start_lsn, abort);
71e330b5 604
4ecbfe63
DC
605 xfs_extent_busy_sort(&ctx->busy_extents);
606 xfs_extent_busy_clear(mp, &ctx->busy_extents,
e84661aa 607 (mp->m_flags & XFS_MOUNT_DISCARD) && !abort);
71e330b5 608
4bb928cd 609 spin_lock(&ctx->cil->xc_push_lock);
71e330b5 610 list_del(&ctx->committing);
4bb928cd 611 spin_unlock(&ctx->cil->xc_push_lock);
71e330b5
DC
612
613 xlog_cil_free_logvec(ctx->lv_chain);
e84661aa 614
4560e78f
CH
615 if (!list_empty(&ctx->busy_extents))
616 xlog_discard_busy_extents(mp, ctx);
617 else
618 kmem_free(ctx);
71e330b5
DC
619}
620
89ae379d
CH
621void
622xlog_cil_process_committed(
12e6a0f4 623 struct list_head *list)
89ae379d
CH
624{
625 struct xfs_cil_ctx *ctx;
626
627 while ((ctx = list_first_entry_or_null(list,
628 struct xfs_cil_ctx, iclog_entry))) {
629 list_del(&ctx->iclog_entry);
12e6a0f4 630 xlog_cil_committed(ctx);
89ae379d
CH
631 }
632}
633
71e330b5 634/*
c7cc296d
CH
635 * Push the Committed Item List to the log.
636 *
637 * If the current sequence is the same as xc_push_seq we need to do a flush. If
638 * xc_push_seq is less than the current sequence, then it has already been
a44f13ed
DC
639 * flushed and we don't need to do anything - the caller will wait for it to
640 * complete if necessary.
641 *
c7cc296d
CH
642 * xc_push_seq is checked unlocked against the sequence number for a match.
643 * Hence we can allow log forces to run racily and not issue pushes for the
644 * same sequence twice. If we get a race between multiple pushes for the same
645 * sequence they will block on the first one and then abort, hence avoiding
646 * needless pushes.
71e330b5 647 */
c7cc296d
CH
648static void
649xlog_cil_push_work(
650 struct work_struct *work)
71e330b5 651{
c7cc296d
CH
652 struct xfs_cil *cil =
653 container_of(work, struct xfs_cil, xc_push_work);
654 struct xlog *log = cil->xc_log;
71e330b5
DC
655 struct xfs_log_vec *lv;
656 struct xfs_cil_ctx *ctx;
657 struct xfs_cil_ctx *new_ctx;
658 struct xlog_in_core *commit_iclog;
659 struct xlog_ticket *tic;
71e330b5 660 int num_iovecs;
71e330b5
DC
661 int error = 0;
662 struct xfs_trans_header thdr;
663 struct xfs_log_iovec lhdr;
664 struct xfs_log_vec lvhdr = { NULL };
0dc8f7f1 665 xfs_lsn_t preflush_tail_lsn;
71e330b5 666 xfs_lsn_t commit_lsn;
0dc8f7f1 667 xfs_csn_t push_seq;
bad77c37
DC
668 struct bio bio;
669 DECLARE_COMPLETION_ONSTACK(bdev_flush);
71e330b5 670
707e0dda 671 new_ctx = kmem_zalloc(sizeof(*new_ctx), KM_NOFS);
71e330b5
DC
672 new_ctx->ticket = xlog_cil_ticket_alloc(log);
673
4c2d542f 674 down_write(&cil->xc_ctx_lock);
71e330b5
DC
675 ctx = cil->xc_ctx;
676
4bb928cd 677 spin_lock(&cil->xc_push_lock);
4c2d542f
DC
678 push_seq = cil->xc_push_seq;
679 ASSERT(push_seq <= ctx->sequence);
71e330b5 680
0e7ab7ef 681 /*
19f4e7cc
DC
682 * As we are about to switch to a new, empty CIL context, we no longer
683 * need to throttle tasks on CIL space overruns. Wake any waiters that
684 * the hard push throttle may have caught so they can start committing
685 * to the new context. The ctx->xc_push_lock provides the serialisation
686 * necessary for safely using the lockless waitqueue_active() check in
687 * this context.
0e7ab7ef 688 */
19f4e7cc 689 if (waitqueue_active(&cil->xc_push_wait))
c7f87f39 690 wake_up_all(&cil->xc_push_wait);
0e7ab7ef 691
4c2d542f
DC
692 /*
693 * Check if we've anything to push. If there is nothing, then we don't
694 * move on to a new sequence number and so we have to be able to push
695 * this sequence again later.
696 */
697 if (list_empty(&cil->xc_cil)) {
698 cil->xc_push_seq = 0;
4bb928cd 699 spin_unlock(&cil->xc_push_lock);
a44f13ed 700 goto out_skip;
4c2d542f 701 }
4c2d542f 702
a44f13ed 703
cf085a1b 704 /* check for a previously pushed sequence */
8af3dcd3
DC
705 if (push_seq < cil->xc_ctx->sequence) {
706 spin_unlock(&cil->xc_push_lock);
df806158 707 goto out_skip;
8af3dcd3
DC
708 }
709
710 /*
711 * We are now going to push this context, so add it to the committing
712 * list before we do anything else. This ensures that anyone waiting on
713 * this push can easily detect the difference between a "push in
714 * progress" and "CIL is empty, nothing to do".
715 *
716 * IOWs, a wait loop can now check for:
717 * the current sequence not being found on the committing list;
718 * an empty CIL; and
719 * an unchanged sequence number
720 * to detect a push that had nothing to do and therefore does not need
721 * waiting on. If the CIL is not empty, we get put on the committing
722 * list before emptying the CIL and bumping the sequence number. Hence
723 * an empty CIL and an unchanged sequence number means we jumped out
724 * above after doing nothing.
725 *
726 * Hence the waiter will either find the commit sequence on the
727 * committing list or the sequence number will be unchanged and the CIL
728 * still dirty. In that latter case, the push has not yet started, and
729 * so the waiter will have to continue trying to check the CIL
730 * committing list until it is found. In extreme cases of delay, the
731 * sequence may fully commit between the attempts the wait makes to wait
732 * on the commit sequence.
733 */
734 list_add(&ctx->committing, &cil->xc_committing);
735 spin_unlock(&cil->xc_push_lock);
df806158 736
71e330b5 737 /*
bad77c37
DC
738 * The CIL is stable at this point - nothing new will be added to it
739 * because we hold the flush lock exclusively. Hence we can now issue
740 * a cache flush to ensure all the completed metadata in the journal we
741 * are about to overwrite is on stable storage.
0dc8f7f1
DC
742 *
743 * Because we are issuing this cache flush before we've written the
744 * tail lsn to the iclog, we can have metadata IO completions move the
745 * tail forwards between the completion of this flush and the iclog
746 * being written. In this case, we need to re-issue the cache flush
747 * before the iclog write. To detect whether the log tail moves, sample
748 * the tail LSN *before* we issue the flush.
bad77c37 749 */
0dc8f7f1 750 preflush_tail_lsn = atomic64_read(&log->l_tail_lsn);
bad77c37
DC
751 xfs_flush_bdev_async(&bio, log->l_mp->m_ddev_targp->bt_bdev,
752 &bdev_flush);
753
754 /*
755 * Pull all the log vectors off the items in the CIL, and remove the
756 * items from the CIL. We don't need the CIL lock here because it's only
757 * needed on the transaction commit side which is currently locked out
758 * by the flush lock.
71e330b5
DC
759 */
760 lv = NULL;
71e330b5 761 num_iovecs = 0;
71e330b5
DC
762 while (!list_empty(&cil->xc_cil)) {
763 struct xfs_log_item *item;
71e330b5
DC
764
765 item = list_first_entry(&cil->xc_cil,
766 struct xfs_log_item, li_cil);
767 list_del_init(&item->li_cil);
768 if (!ctx->lv_chain)
769 ctx->lv_chain = item->li_lv;
770 else
771 lv->lv_next = item->li_lv;
772 lv = item->li_lv;
773 item->li_lv = NULL;
71e330b5 774 num_iovecs += lv->lv_niovecs;
71e330b5
DC
775 }
776
777 /*
778 * initialise the new context and attach it to the CIL. Then attach
c7f87f39 779 * the current context to the CIL committing list so it can be found
71e330b5
DC
780 * during log forces to extract the commit lsn of the sequence that
781 * needs to be forced.
782 */
783 INIT_LIST_HEAD(&new_ctx->committing);
784 INIT_LIST_HEAD(&new_ctx->busy_extents);
785 new_ctx->sequence = ctx->sequence + 1;
786 new_ctx->cil = cil;
787 cil->xc_ctx = new_ctx;
788
789 /*
790 * The switch is now done, so we can drop the context lock and move out
791 * of a shared context. We can't just go straight to the commit record,
792 * though - we need to synchronise with previous and future commits so
793 * that the commit records are correctly ordered in the log to ensure
794 * that we process items during log IO completion in the correct order.
795 *
796 * For example, if we get an EFI in one checkpoint and the EFD in the
797 * next (e.g. due to log forces), we do not want the checkpoint with
798 * the EFD to be committed before the checkpoint with the EFI. Hence
799 * we must strictly order the commit records of the checkpoints so
800 * that: a) the checkpoint callbacks are attached to the iclogs in the
801 * correct order; and b) the checkpoints are replayed in correct order
802 * in log recovery.
803 *
804 * Hence we need to add this context to the committing context list so
805 * that higher sequences will wait for us to write out a commit record
806 * before they do.
f876e446 807 *
5f9b4b0d 808 * xfs_log_force_seq requires us to mirror the new sequence into the cil
f876e446
DC
809 * structure atomically with the addition of this sequence to the
810 * committing list. This also ensures that we can do unlocked checks
811 * against the current sequence in log forces without risking
812 * deferencing a freed context pointer.
71e330b5 813 */
4bb928cd 814 spin_lock(&cil->xc_push_lock);
f876e446 815 cil->xc_current_sequence = new_ctx->sequence;
4bb928cd 816 spin_unlock(&cil->xc_push_lock);
71e330b5
DC
817 up_write(&cil->xc_ctx_lock);
818
819 /*
820 * Build a checkpoint transaction header and write it to the log to
821 * begin the transaction. We need to account for the space used by the
822 * transaction header here as it is not accounted for in xlog_write().
823 *
824 * The LSN we need to pass to the log items on transaction commit is
825 * the LSN reported by the first log vector write. If we use the commit
826 * record lsn then we can move the tail beyond the grant write head.
827 */
828 tic = ctx->ticket;
829 thdr.th_magic = XFS_TRANS_HEADER_MAGIC;
830 thdr.th_type = XFS_TRANS_CHECKPOINT;
831 thdr.th_tid = tic->t_tid;
832 thdr.th_num_items = num_iovecs;
4e0d5f92 833 lhdr.i_addr = &thdr;
71e330b5
DC
834 lhdr.i_len = sizeof(xfs_trans_header_t);
835 lhdr.i_type = XLOG_REG_TYPE_TRANSHDR;
836 tic->t_curr_res -= lhdr.i_len + sizeof(xlog_op_header_t);
837
838 lvhdr.lv_niovecs = 1;
839 lvhdr.lv_iovecp = &lhdr;
840 lvhdr.lv_next = ctx->lv_chain;
841
bad77c37
DC
842 /*
843 * Before we format and submit the first iclog, we have to ensure that
844 * the metadata writeback ordering cache flush is complete.
845 */
846 wait_for_completion(&bdev_flush);
847
3468bb1c
DC
848 error = xlog_write(log, &lvhdr, tic, &ctx->start_lsn, NULL,
849 XLOG_START_TRANS);
71e330b5 850 if (error)
7db37c5e 851 goto out_abort_free_ticket;
71e330b5
DC
852
853 /*
854 * now that we've written the checkpoint into the log, strictly
855 * order the commit records so replay will get them in the right order.
856 */
857restart:
4bb928cd 858 spin_lock(&cil->xc_push_lock);
71e330b5 859 list_for_each_entry(new_ctx, &cil->xc_committing, committing) {
ac983517
DC
860 /*
861 * Avoid getting stuck in this loop because we were woken by the
862 * shutdown, but then went back to sleep once already in the
863 * shutdown state.
864 */
2039a272 865 if (xlog_is_shutdown(log)) {
ac983517
DC
866 spin_unlock(&cil->xc_push_lock);
867 goto out_abort_free_ticket;
868 }
869
71e330b5
DC
870 /*
871 * Higher sequences will wait for this one so skip them.
ac983517 872 * Don't wait for our own sequence, either.
71e330b5
DC
873 */
874 if (new_ctx->sequence >= ctx->sequence)
875 continue;
876 if (!new_ctx->commit_lsn) {
877 /*
878 * It is still being pushed! Wait for the push to
879 * complete, then start again from the beginning.
880 */
4bb928cd 881 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
71e330b5
DC
882 goto restart;
883 }
884 }
4bb928cd 885 spin_unlock(&cil->xc_push_lock);
71e330b5 886
f10e925d 887 error = xlog_commit_record(log, tic, &commit_iclog, &commit_lsn);
dd401770
DC
888 if (error)
889 goto out_abort_free_ticket;
890
8b41e3f9 891 xfs_log_ticket_ungrant(log, tic);
71e330b5 892
a1bb8505 893 /*
502a01fa
DC
894 * Once we attach the ctx to the iclog, it is effectively owned by the
895 * iclog and we can only use it while we still have an active reference
896 * to the iclog. i.e. once we call xlog_state_release_iclog() we can no
897 * longer safely reference the ctx.
a1bb8505
DC
898 */
899 spin_lock(&log->l_icloglock);
5112e206 900 if (xlog_is_shutdown(log)) {
a1bb8505 901 spin_unlock(&log->l_icloglock);
71e330b5 902 goto out_abort;
89ae379d
CH
903 }
904 ASSERT_ALWAYS(commit_iclog->ic_state == XLOG_STATE_ACTIVE ||
905 commit_iclog->ic_state == XLOG_STATE_WANT_SYNC);
906 list_add_tail(&ctx->iclog_entry, &commit_iclog->ic_callbacks);
71e330b5
DC
907
908 /*
909 * now the checkpoint commit is complete and we've attached the
910 * callbacks to the iclog we can assign the commit LSN to the context
911 * and wake up anyone who is waiting for the commit to complete.
912 */
4bb928cd 913 spin_lock(&cil->xc_push_lock);
71e330b5 914 ctx->commit_lsn = commit_lsn;
eb40a875 915 wake_up_all(&cil->xc_commit_wait);
4bb928cd 916 spin_unlock(&cil->xc_push_lock);
71e330b5 917
a79b28c2 918 /*
1effb72a
DC
919 * If the checkpoint spans multiple iclogs, wait for all previous iclogs
920 * to complete before we submit the commit_iclog. We can't use state
921 * checks for this - ACTIVE can be either a past completed iclog or a
922 * future iclog being filled, while WANT_SYNC through SYNC_DONE can be a
923 * past or future iclog awaiting IO or ordered IO completion to be run.
924 * In the latter case, if it's a future iclog and we wait on it, the we
925 * will hang because it won't get processed through to ic_force_wait
926 * wakeup until this commit_iclog is written to disk. Hence we use the
927 * iclog header lsn and compare it to the commit lsn to determine if we
928 * need to wait on iclogs or not.
a79b28c2
DC
929 */
930 if (ctx->start_lsn != commit_lsn) {
1effb72a
DC
931 xfs_lsn_t plsn;
932
933 plsn = be64_to_cpu(commit_iclog->ic_prev->ic_header.h_lsn);
934 if (plsn && XFS_LSN_CMP(plsn, commit_lsn) < 0) {
935 /*
936 * Waiting on ic_force_wait orders the completion of
937 * iclogs older than ic_prev. Hence we only need to wait
938 * on the most recent older iclog here.
939 */
940 xlog_wait_on_iclog(commit_iclog->ic_prev);
941 spin_lock(&log->l_icloglock);
942 }
943
944 /*
945 * We need to issue a pre-flush so that the ordering for this
946 * checkpoint is correctly preserved down to stable storage.
947 */
eef983ff 948 commit_iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
a79b28c2
DC
949 }
950
eef983ff
DC
951 /*
952 * The commit iclog must be written to stable storage to guarantee
953 * journal IO vs metadata writeback IO is correctly ordered on stable
954 * storage.
955 */
956 commit_iclog->ic_flags |= XLOG_ICL_NEED_FUA;
0dc8f7f1 957 xlog_state_release_iclog(log, commit_iclog, preflush_tail_lsn);
502a01fa
DC
958
959 /* Not safe to reference ctx now! */
960
eef983ff 961 spin_unlock(&log->l_icloglock);
c7cc296d 962 return;
71e330b5
DC
963
964out_skip:
965 up_write(&cil->xc_ctx_lock);
966 xfs_log_ticket_put(new_ctx->ticket);
967 kmem_free(new_ctx);
c7cc296d 968 return;
71e330b5 969
7db37c5e 970out_abort_free_ticket:
8b41e3f9 971 xfs_log_ticket_ungrant(log, tic);
71e330b5 972out_abort:
2039a272 973 ASSERT(xlog_is_shutdown(log));
12e6a0f4 974 xlog_cil_committed(ctx);
4c2d542f
DC
975}
976
977/*
978 * We need to push CIL every so often so we don't cache more than we can fit in
979 * the log. The limit really is that a checkpoint can't be more than half the
980 * log (the current checkpoint is not allowed to overwrite the previous
981 * checkpoint), but commit latency and memory usage limit this to a smaller
982 * size.
983 */
984static void
985xlog_cil_push_background(
0e7ab7ef 986 struct xlog *log) __releases(cil->xc_ctx_lock)
4c2d542f
DC
987{
988 struct xfs_cil *cil = log->l_cilp;
989
990 /*
991 * The cil won't be empty because we are called while holding the
992 * context lock so whatever we added to the CIL will still be there
993 */
994 ASSERT(!list_empty(&cil->xc_cil));
995
996 /*
19f4e7cc 997 * Don't do a background push if we haven't used up all the
4c2d542f
DC
998 * space available yet.
999 */
0e7ab7ef
DC
1000 if (cil->xc_ctx->space_used < XLOG_CIL_SPACE_LIMIT(log)) {
1001 up_read(&cil->xc_ctx_lock);
4c2d542f 1002 return;
0e7ab7ef 1003 }
4c2d542f 1004
4bb928cd 1005 spin_lock(&cil->xc_push_lock);
4c2d542f
DC
1006 if (cil->xc_push_seq < cil->xc_current_sequence) {
1007 cil->xc_push_seq = cil->xc_current_sequence;
1008 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
1009 }
0e7ab7ef
DC
1010
1011 /*
1012 * Drop the context lock now, we can't hold that if we need to sleep
1013 * because we are over the blocking threshold. The push_lock is still
1014 * held, so blocking threshold sleep/wakeup is still correctly
1015 * serialised here.
1016 */
1017 up_read(&cil->xc_ctx_lock);
1018
1019 /*
1020 * If we are well over the space limit, throttle the work that is being
19f4e7cc
DC
1021 * done until the push work on this context has begun. Enforce the hard
1022 * throttle on all transaction commits once it has been activated, even
1023 * if the committing transactions have resulted in the space usage
1024 * dipping back down under the hard limit.
1025 *
1026 * The ctx->xc_push_lock provides the serialisation necessary for safely
1027 * using the lockless waitqueue_active() check in this context.
0e7ab7ef 1028 */
19f4e7cc
DC
1029 if (cil->xc_ctx->space_used >= XLOG_CIL_BLOCKING_SPACE_LIMIT(log) ||
1030 waitqueue_active(&cil->xc_push_wait)) {
0e7ab7ef
DC
1031 trace_xfs_log_cil_wait(log, cil->xc_ctx->ticket);
1032 ASSERT(cil->xc_ctx->space_used < log->l_logsize);
c7f87f39 1033 xlog_wait(&cil->xc_push_wait, &cil->xc_push_lock);
0e7ab7ef
DC
1034 return;
1035 }
1036
4bb928cd 1037 spin_unlock(&cil->xc_push_lock);
4c2d542f
DC
1038
1039}
1040
f876e446
DC
1041/*
1042 * xlog_cil_push_now() is used to trigger an immediate CIL push to the sequence
1043 * number that is passed. When it returns, the work will be queued for
1044 * @push_seq, but it won't be completed. The caller is expected to do any
1045 * waiting for push_seq to complete if it is required.
1046 */
4c2d542f 1047static void
f876e446 1048xlog_cil_push_now(
f7bdf03a 1049 struct xlog *log,
4c2d542f
DC
1050 xfs_lsn_t push_seq)
1051{
1052 struct xfs_cil *cil = log->l_cilp;
1053
1054 if (!cil)
1055 return;
1056
1057 ASSERT(push_seq && push_seq <= cil->xc_current_sequence);
1058
1059 /* start on any pending background push to minimise wait time on it */
1060 flush_work(&cil->xc_push_work);
1061
1062 /*
1063 * If the CIL is empty or we've already pushed the sequence then
1064 * there's no work we need to do.
1065 */
4bb928cd 1066 spin_lock(&cil->xc_push_lock);
4c2d542f 1067 if (list_empty(&cil->xc_cil) || push_seq <= cil->xc_push_seq) {
4bb928cd 1068 spin_unlock(&cil->xc_push_lock);
4c2d542f
DC
1069 return;
1070 }
1071
1072 cil->xc_push_seq = push_seq;
f876e446 1073 queue_work(log->l_mp->m_cil_workqueue, &cil->xc_push_work);
4bb928cd 1074 spin_unlock(&cil->xc_push_lock);
4c2d542f
DC
1075}
1076
2c6e24ce
DC
1077bool
1078xlog_cil_empty(
1079 struct xlog *log)
1080{
1081 struct xfs_cil *cil = log->l_cilp;
1082 bool empty = false;
1083
1084 spin_lock(&cil->xc_push_lock);
1085 if (list_empty(&cil->xc_cil))
1086 empty = true;
1087 spin_unlock(&cil->xc_push_lock);
1088 return empty;
1089}
1090
a44f13ed
DC
1091/*
1092 * Commit a transaction with the given vector to the Committed Item List.
1093 *
1094 * To do this, we need to format the item, pin it in memory if required and
1095 * account for the space used by the transaction. Once we have done that we
1096 * need to release the unused reservation for the transaction, attach the
1097 * transaction to the checkpoint context so we carry the busy extents through
1098 * to checkpoint completion, and then unlock all the items in the transaction.
1099 *
a44f13ed
DC
1100 * Called with the context lock already held in read mode to lock out
1101 * background commit, returns without it held once background commits are
1102 * allowed again.
1103 */
c6f97264 1104void
5f9b4b0d
DC
1105xlog_cil_commit(
1106 struct xlog *log,
a44f13ed 1107 struct xfs_trans *tp,
5f9b4b0d 1108 xfs_csn_t *commit_seq,
70393313 1109 bool regrant)
a44f13ed 1110{
991aaf65 1111 struct xfs_cil *cil = log->l_cilp;
195cd83d 1112 struct xfs_log_item *lip, *next;
a44f13ed 1113
b1c5ebb2
DC
1114 /*
1115 * Do all necessary memory allocation before we lock the CIL.
1116 * This ensures the allocation does not deadlock with a CIL
1117 * push in memory reclaim (e.g. from kswapd).
1118 */
1119 xlog_cil_alloc_shadow_bufs(log, tp);
1120
f5baac35 1121 /* lock out background commit */
991aaf65 1122 down_read(&cil->xc_ctx_lock);
f5baac35 1123
991aaf65 1124 xlog_cil_insert_items(log, tp);
a44f13ed 1125
2039a272 1126 if (regrant && !xlog_is_shutdown(log))
8b41e3f9
CH
1127 xfs_log_ticket_regrant(log, tp->t_ticket);
1128 else
1129 xfs_log_ticket_ungrant(log, tp->t_ticket);
ba18781b 1130 tp->t_ticket = NULL;
a44f13ed
DC
1131 xfs_trans_unreserve_and_mod_sb(tp);
1132
1133 /*
1134 * Once all the items of the transaction have been copied to the CIL,
195cd83d 1135 * the items can be unlocked and possibly freed.
a44f13ed
DC
1136 *
1137 * This needs to be done before we drop the CIL context lock because we
1138 * have to update state in the log items and unlock them before they go
1139 * to disk. If we don't, then the CIL checkpoint can race with us and
1140 * we can run checkpoint completion before we've updated and unlocked
1141 * the log items. This affects (at least) processing of stale buffers,
1142 * inodes and EFIs.
1143 */
195cd83d
CH
1144 trace_xfs_trans_commit_items(tp, _RET_IP_);
1145 list_for_each_entry_safe(lip, next, &tp->t_items, li_trans) {
1146 xfs_trans_del_item(lip);
1147 if (lip->li_ops->iop_committing)
5f9b4b0d 1148 lip->li_ops->iop_committing(lip, cil->xc_ctx->sequence);
195cd83d 1149 }
5f9b4b0d
DC
1150 if (commit_seq)
1151 *commit_seq = cil->xc_ctx->sequence;
a44f13ed 1152
0e7ab7ef
DC
1153 /* xlog_cil_push_background() releases cil->xc_ctx_lock */
1154 xlog_cil_push_background(log);
a44f13ed
DC
1155}
1156
71e330b5
DC
1157/*
1158 * Conditionally push the CIL based on the sequence passed in.
1159 *
1160 * We only need to push if we haven't already pushed the sequence
1161 * number given. Hence the only time we will trigger a push here is
1162 * if the push sequence is the same as the current context.
1163 *
1164 * We return the current commit lsn to allow the callers to determine if a
1165 * iclog flush is necessary following this call.
71e330b5
DC
1166 */
1167xfs_lsn_t
5f9b4b0d 1168xlog_cil_force_seq(
f7bdf03a 1169 struct xlog *log,
5f9b4b0d 1170 xfs_csn_t sequence)
71e330b5
DC
1171{
1172 struct xfs_cil *cil = log->l_cilp;
1173 struct xfs_cil_ctx *ctx;
1174 xfs_lsn_t commit_lsn = NULLCOMMITLSN;
1175
a44f13ed
DC
1176 ASSERT(sequence <= cil->xc_current_sequence);
1177
1178 /*
1179 * check to see if we need to force out the current context.
1180 * xlog_cil_push() handles racing pushes for the same sequence,
1181 * so no need to deal with it here.
1182 */
f876e446
DC
1183restart:
1184 xlog_cil_push_now(log, sequence);
71e330b5
DC
1185
1186 /*
1187 * See if we can find a previous sequence still committing.
71e330b5
DC
1188 * We need to wait for all previous sequence commits to complete
1189 * before allowing the force of push_seq to go ahead. Hence block
1190 * on commits for those as well.
1191 */
4bb928cd 1192 spin_lock(&cil->xc_push_lock);
71e330b5 1193 list_for_each_entry(ctx, &cil->xc_committing, committing) {
ac983517
DC
1194 /*
1195 * Avoid getting stuck in this loop because we were woken by the
1196 * shutdown, but then went back to sleep once already in the
1197 * shutdown state.
1198 */
2039a272 1199 if (xlog_is_shutdown(log))
ac983517 1200 goto out_shutdown;
a44f13ed 1201 if (ctx->sequence > sequence)
71e330b5
DC
1202 continue;
1203 if (!ctx->commit_lsn) {
1204 /*
1205 * It is still being pushed! Wait for the push to
1206 * complete, then start again from the beginning.
1207 */
4bb928cd 1208 xlog_wait(&cil->xc_commit_wait, &cil->xc_push_lock);
71e330b5
DC
1209 goto restart;
1210 }
a44f13ed 1211 if (ctx->sequence != sequence)
71e330b5
DC
1212 continue;
1213 /* found it! */
1214 commit_lsn = ctx->commit_lsn;
1215 }
f876e446
DC
1216
1217 /*
1218 * The call to xlog_cil_push_now() executes the push in the background.
1219 * Hence by the time we have got here it our sequence may not have been
1220 * pushed yet. This is true if the current sequence still matches the
1221 * push sequence after the above wait loop and the CIL still contains
8af3dcd3
DC
1222 * dirty objects. This is guaranteed by the push code first adding the
1223 * context to the committing list before emptying the CIL.
f876e446 1224 *
8af3dcd3
DC
1225 * Hence if we don't find the context in the committing list and the
1226 * current sequence number is unchanged then the CIL contents are
1227 * significant. If the CIL is empty, if means there was nothing to push
1228 * and that means there is nothing to wait for. If the CIL is not empty,
1229 * it means we haven't yet started the push, because if it had started
1230 * we would have found the context on the committing list.
f876e446 1231 */
f876e446
DC
1232 if (sequence == cil->xc_current_sequence &&
1233 !list_empty(&cil->xc_cil)) {
1234 spin_unlock(&cil->xc_push_lock);
1235 goto restart;
1236 }
1237
4bb928cd 1238 spin_unlock(&cil->xc_push_lock);
71e330b5 1239 return commit_lsn;
ac983517
DC
1240
1241 /*
1242 * We detected a shutdown in progress. We need to trigger the log force
1243 * to pass through it's iclog state machine error handling, even though
1244 * we are already in a shutdown state. Hence we can't return
1245 * NULLCOMMITLSN here as that has special meaning to log forces (i.e.
1246 * LSN is already stable), so we return a zero LSN instead.
1247 */
1248out_shutdown:
1249 spin_unlock(&cil->xc_push_lock);
1250 return 0;
71e330b5 1251}
ccf7c23f
DC
1252
1253/*
1254 * Check if the current log item was first committed in this sequence.
1255 * We can't rely on just the log item being in the CIL, we have to check
1256 * the recorded commit sequence number.
1257 *
1258 * Note: for this to be used in a non-racy manner, it has to be called with
1259 * CIL flushing locked out. As a result, it should only be used during the
1260 * transaction commit process when deciding what to format into the item.
1261 */
1262bool
1263xfs_log_item_in_current_chkpt(
1264 struct xfs_log_item *lip)
1265{
5f9b4b0d 1266 struct xfs_cil_ctx *ctx = lip->li_mountp->m_log->l_cilp->xc_ctx;
ccf7c23f 1267
ccf7c23f
DC
1268 if (list_empty(&lip->li_cil))
1269 return false;
1270
ccf7c23f
DC
1271 /*
1272 * li_seq is written on the first commit of a log item to record the
1273 * first checkpoint it is written to. Hence if it is different to the
1274 * current sequence, we're in a new checkpoint.
1275 */
5f9b4b0d 1276 return lip->li_seq == ctx->sequence;
ccf7c23f 1277}
4c2d542f
DC
1278
1279/*
1280 * Perform initial CIL structure initialisation.
1281 */
1282int
1283xlog_cil_init(
f7bdf03a 1284 struct xlog *log)
4c2d542f
DC
1285{
1286 struct xfs_cil *cil;
1287 struct xfs_cil_ctx *ctx;
1288
707e0dda 1289 cil = kmem_zalloc(sizeof(*cil), KM_MAYFAIL);
4c2d542f 1290 if (!cil)
2451337d 1291 return -ENOMEM;
4c2d542f 1292
707e0dda 1293 ctx = kmem_zalloc(sizeof(*ctx), KM_MAYFAIL);
4c2d542f
DC
1294 if (!ctx) {
1295 kmem_free(cil);
2451337d 1296 return -ENOMEM;
4c2d542f
DC
1297 }
1298
1299 INIT_WORK(&cil->xc_push_work, xlog_cil_push_work);
1300 INIT_LIST_HEAD(&cil->xc_cil);
1301 INIT_LIST_HEAD(&cil->xc_committing);
1302 spin_lock_init(&cil->xc_cil_lock);
4bb928cd 1303 spin_lock_init(&cil->xc_push_lock);
c7f87f39 1304 init_waitqueue_head(&cil->xc_push_wait);
4c2d542f
DC
1305 init_rwsem(&cil->xc_ctx_lock);
1306 init_waitqueue_head(&cil->xc_commit_wait);
1307
1308 INIT_LIST_HEAD(&ctx->committing);
1309 INIT_LIST_HEAD(&ctx->busy_extents);
1310 ctx->sequence = 1;
1311 ctx->cil = cil;
1312 cil->xc_ctx = ctx;
1313 cil->xc_current_sequence = ctx->sequence;
1314
1315 cil->xc_log = log;
1316 log->l_cilp = cil;
1317 return 0;
1318}
1319
1320void
1321xlog_cil_destroy(
f7bdf03a 1322 struct xlog *log)
4c2d542f
DC
1323{
1324 if (log->l_cilp->xc_ctx) {
1325 if (log->l_cilp->xc_ctx->ticket)
1326 xfs_log_ticket_put(log->l_cilp->xc_ctx->ticket);
1327 kmem_free(log->l_cilp->xc_ctx);
1328 }
1329
1330 ASSERT(list_empty(&log->l_cilp->xc_cil));
1331 kmem_free(log->l_cilp);
1332}
1333