xfs: rework xlog_state_do_callback()
[linux-block.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
eb01c9cd 24kmem_zone_t *xfs_log_ticket_zone;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
9a8d2fdb
MT
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
ad223e60
MT
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
9a8d2fdb
MT
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
1da177e4
LT
40
41/* local state machine functions */
d15cbf2f 42STATIC void xlog_state_done_syncing(
12e6a0f4 43 struct xlog_in_core *iclog);
9a8d2fdb
MT
44STATIC int
45xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
9a8d2fdb
MT
52STATIC void
53xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57STATIC void
ad223e60 58xlog_grant_push_ail(
9a8d2fdb
MT
59 struct xlog *log,
60 int need_bytes);
61STATIC void
df732b29
CH
62xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
cfcbbbd0 65#if defined(DEBUG)
9a8d2fdb
MT
66STATIC void
67xlog_verify_dest_ptr(
68 struct xlog *log,
5809d5e0 69 void *ptr);
ad223e60
MT
70STATIC void
71xlog_verify_grant_tail(
9a8d2fdb
MT
72 struct xlog *log);
73STATIC void
74xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
abca1f33 77 int count);
9a8d2fdb
MT
78STATIC void
79xlog_verify_tail_lsn(
80 struct xlog *log,
9d110014 81 struct xlog_in_core *iclog);
1da177e4
LT
82#else
83#define xlog_verify_dest_ptr(a,b)
3f336c6f 84#define xlog_verify_grant_tail(a)
abca1f33 85#define xlog_verify_iclog(a,b,c)
9d110014 86#define xlog_verify_tail_lsn(a,b)
1da177e4
LT
87#endif
88
9a8d2fdb
MT
89STATIC int
90xlog_iclogs_empty(
91 struct xlog *log);
1da177e4 92
303591a0
BF
93static int
94xfs_log_cover(struct xfs_mount *);
95
dd954c69 96static void
663e496a 97xlog_grant_sub_space(
ad223e60
MT
98 struct xlog *log,
99 atomic64_t *head,
100 int bytes)
dd954c69 101{
d0eb2f38
DC
102 int64_t head_val = atomic64_read(head);
103 int64_t new, old;
a69ed03c 104
d0eb2f38
DC
105 do {
106 int cycle, space;
a69ed03c 107
d0eb2f38 108 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 109
d0eb2f38
DC
110 space -= bytes;
111 if (space < 0) {
112 space += log->l_logsize;
113 cycle--;
114 }
115
116 old = head_val;
117 new = xlog_assign_grant_head_val(cycle, space);
118 head_val = atomic64_cmpxchg(head, old, new);
119 } while (head_val != old);
dd954c69
CH
120}
121
122static void
663e496a 123xlog_grant_add_space(
ad223e60
MT
124 struct xlog *log,
125 atomic64_t *head,
126 int bytes)
dd954c69 127{
d0eb2f38
DC
128 int64_t head_val = atomic64_read(head);
129 int64_t new, old;
a69ed03c 130
d0eb2f38
DC
131 do {
132 int tmp;
133 int cycle, space;
a69ed03c 134
d0eb2f38 135 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 136
d0eb2f38
DC
137 tmp = log->l_logsize - space;
138 if (tmp > bytes)
139 space += bytes;
140 else {
141 space = bytes - tmp;
142 cycle++;
143 }
144
145 old = head_val;
146 new = xlog_assign_grant_head_val(cycle, space);
147 head_val = atomic64_cmpxchg(head, old, new);
148 } while (head_val != old);
dd954c69 149}
a69ed03c 150
c303c5b8
CH
151STATIC void
152xlog_grant_head_init(
153 struct xlog_grant_head *head)
154{
155 xlog_assign_grant_head(&head->grant, 1, 0);
156 INIT_LIST_HEAD(&head->waiters);
157 spin_lock_init(&head->lock);
158}
159
a79bf2d7
CH
160STATIC void
161xlog_grant_head_wake_all(
162 struct xlog_grant_head *head)
163{
164 struct xlog_ticket *tic;
165
166 spin_lock(&head->lock);
167 list_for_each_entry(tic, &head->waiters, t_queue)
168 wake_up_process(tic->t_task);
169 spin_unlock(&head->lock);
170}
171
e179840d
CH
172static inline int
173xlog_ticket_reservation(
ad223e60 174 struct xlog *log,
e179840d
CH
175 struct xlog_grant_head *head,
176 struct xlog_ticket *tic)
9f9c19ec 177{
e179840d
CH
178 if (head == &log->l_write_head) {
179 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
180 return tic->t_unit_res;
181 } else {
9f9c19ec 182 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 183 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 184 else
e179840d 185 return tic->t_unit_res;
9f9c19ec 186 }
9f9c19ec
CH
187}
188
189STATIC bool
e179840d 190xlog_grant_head_wake(
ad223e60 191 struct xlog *log,
e179840d 192 struct xlog_grant_head *head,
9f9c19ec
CH
193 int *free_bytes)
194{
195 struct xlog_ticket *tic;
196 int need_bytes;
7c107afb 197 bool woken_task = false;
9f9c19ec 198
e179840d 199 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
200
201 /*
202 * There is a chance that the size of the CIL checkpoints in
203 * progress at the last AIL push target calculation resulted in
204 * limiting the target to the log head (l_last_sync_lsn) at the
205 * time. This may not reflect where the log head is now as the
206 * CIL checkpoints may have completed.
207 *
208 * Hence when we are woken here, it may be that the head of the
209 * log that has moved rather than the tail. As the tail didn't
210 * move, there still won't be space available for the
211 * reservation we require. However, if the AIL has already
212 * pushed to the target defined by the old log head location, we
213 * will hang here waiting for something else to update the AIL
214 * push target.
215 *
216 * Therefore, if there isn't space to wake the first waiter on
217 * the grant head, we need to push the AIL again to ensure the
218 * target reflects both the current log tail and log head
219 * position before we wait for the tail to move again.
220 */
221
e179840d 222 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
223 if (*free_bytes < need_bytes) {
224 if (!woken_task)
225 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 226 return false;
7c107afb 227 }
9f9c19ec 228
e179840d
CH
229 *free_bytes -= need_bytes;
230 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 231 wake_up_process(tic->t_task);
7c107afb 232 woken_task = true;
9f9c19ec
CH
233 }
234
235 return true;
236}
237
238STATIC int
23ee3df3 239xlog_grant_head_wait(
ad223e60 240 struct xlog *log,
23ee3df3 241 struct xlog_grant_head *head,
9f9c19ec 242 struct xlog_ticket *tic,
a30b0367
DC
243 int need_bytes) __releases(&head->lock)
244 __acquires(&head->lock)
9f9c19ec 245{
23ee3df3 246 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
247
248 do {
2039a272 249 if (xlog_is_shutdown(log))
9f9c19ec
CH
250 goto shutdown;
251 xlog_grant_push_ail(log, need_bytes);
252
14a7235f 253 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 254 spin_unlock(&head->lock);
14a7235f 255
ff6d6af2 256 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 257
14a7235f
CH
258 trace_xfs_log_grant_sleep(log, tic);
259 schedule();
9f9c19ec
CH
260 trace_xfs_log_grant_wake(log, tic);
261
23ee3df3 262 spin_lock(&head->lock);
2039a272 263 if (xlog_is_shutdown(log))
9f9c19ec 264 goto shutdown;
23ee3df3 265 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
266
267 list_del_init(&tic->t_queue);
268 return 0;
269shutdown:
270 list_del_init(&tic->t_queue);
2451337d 271 return -EIO;
9f9c19ec
CH
272}
273
42ceedb3
CH
274/*
275 * Atomically get the log space required for a log ticket.
276 *
277 * Once a ticket gets put onto head->waiters, it will only return after the
278 * needed reservation is satisfied.
279 *
280 * This function is structured so that it has a lock free fast path. This is
281 * necessary because every new transaction reservation will come through this
282 * path. Hence any lock will be globally hot if we take it unconditionally on
283 * every pass.
284 *
285 * As tickets are only ever moved on and off head->waiters under head->lock, we
286 * only need to take that lock if we are going to add the ticket to the queue
287 * and sleep. We can avoid taking the lock if the ticket was never added to
288 * head->waiters because the t_queue list head will be empty and we hold the
289 * only reference to it so it can safely be checked unlocked.
290 */
291STATIC int
292xlog_grant_head_check(
ad223e60 293 struct xlog *log,
42ceedb3
CH
294 struct xlog_grant_head *head,
295 struct xlog_ticket *tic,
296 int *need_bytes)
297{
298 int free_bytes;
299 int error = 0;
300
e1d06e5f 301 ASSERT(!xlog_in_recovery(log));
42ceedb3
CH
302
303 /*
304 * If there are other waiters on the queue then give them a chance at
305 * logspace before us. Wake up the first waiters, if we do not wake
306 * up all the waiters then go to sleep waiting for more free space,
307 * otherwise try to get some space for this transaction.
308 */
309 *need_bytes = xlog_ticket_reservation(log, head, tic);
310 free_bytes = xlog_space_left(log, &head->grant);
311 if (!list_empty_careful(&head->waiters)) {
312 spin_lock(&head->lock);
313 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
314 free_bytes < *need_bytes) {
315 error = xlog_grant_head_wait(log, head, tic,
316 *need_bytes);
317 }
318 spin_unlock(&head->lock);
319 } else if (free_bytes < *need_bytes) {
320 spin_lock(&head->lock);
321 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
322 spin_unlock(&head->lock);
323 }
324
325 return error;
326}
327
0adba536
CH
328static void
329xlog_tic_reset_res(xlog_ticket_t *tic)
330{
331 tic->t_res_num = 0;
332 tic->t_res_arr_sum = 0;
333 tic->t_res_num_ophdrs = 0;
334}
335
336static void
337xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
338{
339 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
340 /* add to overflow and start again */
341 tic->t_res_o_flow += tic->t_res_arr_sum;
342 tic->t_res_num = 0;
343 tic->t_res_arr_sum = 0;
344 }
345
346 tic->t_res_arr[tic->t_res_num].r_len = len;
347 tic->t_res_arr[tic->t_res_num].r_type = type;
348 tic->t_res_arr_sum += len;
349 tic->t_res_num++;
350}
dd954c69 351
50d25484
BF
352bool
353xfs_log_writable(
354 struct xfs_mount *mp)
355{
356 /*
8e9800f9
DW
357 * Do not write to the log on norecovery mounts, if the data or log
358 * devices are read-only, or if the filesystem is shutdown. Read-only
359 * mounts allow internal writes for log recovery and unmount purposes,
360 * so don't restrict that case.
50d25484
BF
361 */
362 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
363 return false;
8e9800f9
DW
364 if (xfs_readonly_buftarg(mp->m_ddev_targp))
365 return false;
50d25484
BF
366 if (xfs_readonly_buftarg(mp->m_log->l_targ))
367 return false;
2039a272 368 if (xlog_is_shutdown(mp->m_log))
50d25484
BF
369 return false;
370 return true;
371}
372
9006fb91
CH
373/*
374 * Replenish the byte reservation required by moving the grant write head.
375 */
376int
377xfs_log_regrant(
378 struct xfs_mount *mp,
379 struct xlog_ticket *tic)
380{
ad223e60 381 struct xlog *log = mp->m_log;
9006fb91
CH
382 int need_bytes;
383 int error = 0;
384
2039a272 385 if (xlog_is_shutdown(log))
2451337d 386 return -EIO;
9006fb91 387
ff6d6af2 388 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
389
390 /*
391 * This is a new transaction on the ticket, so we need to change the
392 * transaction ID so that the next transaction has a different TID in
393 * the log. Just add one to the existing tid so that we can see chains
394 * of rolling transactions in the log easily.
395 */
396 tic->t_tid++;
397
398 xlog_grant_push_ail(log, tic->t_unit_res);
399
400 tic->t_curr_res = tic->t_unit_res;
401 xlog_tic_reset_res(tic);
402
403 if (tic->t_cnt > 0)
404 return 0;
405
406 trace_xfs_log_regrant(log, tic);
407
408 error = xlog_grant_head_check(log, &log->l_write_head, tic,
409 &need_bytes);
410 if (error)
411 goto out_error;
412
413 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
414 trace_xfs_log_regrant_exit(log, tic);
415 xlog_verify_grant_tail(log);
416 return 0;
417
418out_error:
419 /*
420 * If we are failing, make sure the ticket doesn't have any current
421 * reservations. We don't want to add this back when the ticket/
422 * transaction gets cancelled.
423 */
424 tic->t_curr_res = 0;
425 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
426 return error;
427}
428
429/*
a0e336ba 430 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
431 *
432 * Each reservation is going to reserve extra space for a log record header.
433 * When writes happen to the on-disk log, we don't subtract the length of the
434 * log record header from any reservation. By wasting space in each
435 * reservation, we prevent over allocation problems.
436 */
437int
438xfs_log_reserve(
439 struct xfs_mount *mp,
440 int unit_bytes,
441 int cnt,
442 struct xlog_ticket **ticp,
c8ce540d 443 uint8_t client,
710b1e2c 444 bool permanent)
9006fb91 445{
ad223e60 446 struct xlog *log = mp->m_log;
9006fb91
CH
447 struct xlog_ticket *tic;
448 int need_bytes;
449 int error = 0;
450
451 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
452
2039a272 453 if (xlog_is_shutdown(log))
2451337d 454 return -EIO;
9006fb91 455
ff6d6af2 456 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
457
458 ASSERT(*ticp == NULL);
ca4f2589 459 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
9006fb91
CH
460 *ticp = tic;
461
437a255a
DC
462 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
463 : tic->t_unit_res);
9006fb91
CH
464
465 trace_xfs_log_reserve(log, tic);
466
467 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
468 &need_bytes);
469 if (error)
470 goto out_error;
471
472 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
473 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
474 trace_xfs_log_reserve_exit(log, tic);
475 xlog_verify_grant_tail(log);
476 return 0;
477
478out_error:
479 /*
480 * If we are failing, make sure the ticket doesn't have any current
481 * reservations. We don't want to add this back when the ticket/
482 * transaction gets cancelled.
483 */
484 tic->t_curr_res = 0;
485 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
486 return error;
487}
488
df732b29
CH
489/*
490 * Flush iclog to disk if this is the last reference to the given iclog and the
9d110014
DC
491 * it is in the WANT_SYNC state.
492 *
493 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
494 * does not match, there may be metadata on disk that must be persisted before
495 * this iclog is written. To satisfy that requirement, set the
496 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
497 * log tail value.
498 *
499 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
500 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
501 * written to stable storage, and implies that a commit record is contained
502 * within the iclog. We need to ensure that the log tail does not move beyond
503 * the tail that the first commit record in the iclog ordered against, otherwise
504 * correct recovery of that checkpoint becomes dependent on future operations
505 * performed on this iclog.
506 *
507 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
508 * current tail into iclog. Once the iclog tail is set, future operations must
509 * not modify it, otherwise they potentially violate ordering constraints for
510 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
511 * the iclog will get zeroed on activation of the iclog after sync, so we
512 * always capture the tail lsn on the iclog on the first NEED_FUA release
513 * regardless of the number of active reference counts on this iclog.
df732b29 514 */
9d110014 515
eef983ff 516int
df732b29
CH
517xlog_state_release_iclog(
518 struct xlog *log,
0dc8f7f1
DC
519 struct xlog_in_core *iclog,
520 xfs_lsn_t old_tail_lsn)
df732b29 521{
9d392064 522 xfs_lsn_t tail_lsn;
df732b29
CH
523 lockdep_assert_held(&log->l_icloglock);
524
956f6daa 525 trace_xlog_iclog_release(iclog, _RET_IP_);
5112e206 526 if (xlog_is_shutdown(log))
df732b29
CH
527 return -EIO;
528
0dc8f7f1
DC
529 /*
530 * Grabbing the current log tail needs to be atomic w.r.t. the writing
531 * of the tail LSN into the iclog so we guarantee that the log tail does
532 * not move between deciding if a cache flush is required and writing
533 * the LSN into the iclog below.
534 */
535 if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
536 tail_lsn = xlog_assign_tail_lsn(log->l_mp);
537
538 if (old_tail_lsn && tail_lsn != old_tail_lsn)
539 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
9d110014
DC
540
541 if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
542 !iclog->ic_header.h_tail_lsn)
543 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
0dc8f7f1
DC
544 }
545
9d392064
DC
546 if (!atomic_dec_and_test(&iclog->ic_refcnt))
547 return 0;
548
549 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
550 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
551 return 0;
df732b29
CH
552 }
553
9d392064 554 iclog->ic_state = XLOG_STATE_SYNCING;
9d110014
DC
555 if (!iclog->ic_header.h_tail_lsn)
556 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
557 xlog_verify_tail_lsn(log, iclog);
9d392064
DC
558 trace_xlog_iclog_syncing(iclog, _RET_IP_);
559
560 spin_unlock(&log->l_icloglock);
561 xlog_sync(log, iclog);
562 spin_lock(&log->l_icloglock);
df732b29
CH
563 return 0;
564}
565
1da177e4
LT
566/*
567 * Mount a log filesystem
568 *
569 * mp - ubiquitous xfs mount point structure
570 * log_target - buftarg of on-disk log device
571 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
572 * num_bblocks - Number of BBSIZE blocks in on-disk log
573 *
574 * Return error or zero.
575 */
576int
249a8c11
DC
577xfs_log_mount(
578 xfs_mount_t *mp,
579 xfs_buftarg_t *log_target,
580 xfs_daddr_t blk_offset,
581 int num_bblks)
1da177e4 582{
e1d06e5f 583 struct xlog *log;
9c92ee20 584 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
3e7b91cf
JL
585 int error = 0;
586 int min_logfsbs;
249a8c11 587
c99d609a
DC
588 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
589 xfs_notice(mp, "Mounting V%d Filesystem",
590 XFS_SB_VERSION_NUM(&mp->m_sb));
591 } else {
a0fa2b67 592 xfs_notice(mp,
c99d609a
DC
593"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
594 XFS_SB_VERSION_NUM(&mp->m_sb));
bd186aa9 595 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
596 }
597
e1d06e5f
DC
598 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
599 if (IS_ERR(log)) {
600 error = PTR_ERR(log);
644c3567
DC
601 goto out;
602 }
e1d06e5f 603 mp->m_log = log;
1da177e4 604
3e7b91cf
JL
605 /*
606 * Validate the given log space and drop a critical message via syslog
607 * if the log size is too small that would lead to some unexpected
608 * situations in transaction log space reservation stage.
609 *
610 * Note: we can't just reject the mount if the validation fails. This
611 * would mean that people would have to downgrade their kernel just to
612 * remedy the situation as there is no way to grow the log (short of
613 * black magic surgery with xfs_db).
614 *
615 * We can, however, reject mounts for CRC format filesystems, as the
616 * mkfs binary being used to make the filesystem should never create a
617 * filesystem with a log that is too small.
618 */
619 min_logfsbs = xfs_log_calc_minimum_size(mp);
620
621 if (mp->m_sb.sb_logblocks < min_logfsbs) {
622 xfs_warn(mp,
623 "Log size %d blocks too small, minimum size is %d blocks",
624 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 625 error = -EINVAL;
3e7b91cf
JL
626 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
627 xfs_warn(mp,
628 "Log size %d blocks too large, maximum size is %lld blocks",
629 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 630 error = -EINVAL;
3e7b91cf
JL
631 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
632 xfs_warn(mp,
633 "log size %lld bytes too large, maximum size is %lld bytes",
634 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
635 XFS_MAX_LOG_BYTES);
2451337d 636 error = -EINVAL;
9c92ee20
DW
637 } else if (mp->m_sb.sb_logsunit > 1 &&
638 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
639 xfs_warn(mp,
640 "log stripe unit %u bytes must be a multiple of block size",
641 mp->m_sb.sb_logsunit);
642 error = -EINVAL;
643 fatal = true;
3e7b91cf
JL
644 }
645 if (error) {
9c92ee20
DW
646 /*
647 * Log check errors are always fatal on v5; or whenever bad
648 * metadata leads to a crash.
649 */
650 if (fatal) {
3e7b91cf
JL
651 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
652 ASSERT(0);
653 goto out_free_log;
654 }
f41febd2 655 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 656 xfs_crit(mp,
f41febd2 657"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
658 }
659
249a8c11
DC
660 /*
661 * Initialize the AIL now we have a log.
662 */
249a8c11
DC
663 error = xfs_trans_ail_init(mp);
664 if (error) {
a0fa2b67 665 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 666 goto out_free_log;
249a8c11 667 }
e1d06e5f 668 log->l_ailp = mp->m_ail;
249a8c11 669
1da177e4
LT
670 /*
671 * skip log recovery on a norecovery mount. pretend it all
672 * just worked.
673 */
674 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
249a8c11 675 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
1da177e4
LT
676
677 if (readonly)
bd186aa9 678 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4 679
e1d06e5f 680 error = xlog_recover(log);
1da177e4
LT
681
682 if (readonly)
bd186aa9 683 mp->m_flags |= XFS_MOUNT_RDONLY;
1da177e4 684 if (error) {
a0fa2b67
DC
685 xfs_warn(mp, "log mount/recovery failed: error %d",
686 error);
e1d06e5f 687 xlog_recover_cancel(log);
26430752 688 goto out_destroy_ail;
1da177e4
LT
689 }
690 }
691
e1d06e5f 692 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
baff4e44
BF
693 "log");
694 if (error)
695 goto out_destroy_ail;
696
1da177e4 697 /* Normal transactions can now occur */
e1d06e5f 698 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1da177e4 699
71e330b5
DC
700 /*
701 * Now the log has been fully initialised and we know were our
702 * space grant counters are, we can initialise the permanent ticket
703 * needed for delayed logging to work.
704 */
e1d06e5f 705 xlog_cil_init_post_recovery(log);
71e330b5 706
1da177e4 707 return 0;
26430752
CH
708
709out_destroy_ail:
710 xfs_trans_ail_destroy(mp);
711out_free_log:
e1d06e5f 712 xlog_dealloc_log(log);
644c3567 713out:
249a8c11 714 return error;
26430752 715}
1da177e4
LT
716
717/*
f661f1e0
DC
718 * Finish the recovery of the file system. This is separate from the
719 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
720 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
721 * here.
1da177e4 722 *
f661f1e0
DC
723 * If we finish recovery successfully, start the background log work. If we are
724 * not doing recovery, then we have a RO filesystem and we don't need to start
725 * it.
1da177e4
LT
726 */
727int
f0b2efad
BF
728xfs_log_mount_finish(
729 struct xfs_mount *mp)
1da177e4 730{
fd67d8a0
DC
731 struct xlog *log = mp->m_log;
732 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
733 int error = 0;
1da177e4 734
f0b2efad 735 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
bd186aa9 736 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
f0b2efad 737 return 0;
6f4a1eef
ES
738 } else if (readonly) {
739 /* Allow unlinked processing to proceed */
740 mp->m_flags &= ~XFS_MOUNT_RDONLY;
1da177e4
LT
741 }
742
8204f8dd
DW
743 /*
744 * During the second phase of log recovery, we need iget and
745 * iput to behave like they do for an active filesystem.
746 * xfs_fs_drop_inode needs to be able to prevent the deletion
747 * of inodes before we're done replaying log items on those
748 * inodes. Turn it off immediately after recovery finishes
749 * so that we don't leak the quota inodes if subsequent mount
750 * activities fail.
799ea9e9
DW
751 *
752 * We let all inodes involved in redo item processing end up on
753 * the LRU instead of being evicted immediately so that if we do
754 * something to an unlinked inode, the irele won't cause
755 * premature truncation and freeing of the inode, which results
756 * in log recovery failure. We have to evict the unreferenced
1751e8a6 757 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
758 * otherwise clean up the lru if there's a subsequent failure in
759 * xfs_mountfs, which leads to us leaking the inodes if nothing
760 * else (e.g. quotacheck) references the inodes before the
761 * mount failure occurs.
8204f8dd 762 */
1751e8a6 763 mp->m_super->s_flags |= SB_ACTIVE;
e1d06e5f 764 if (xlog_recovery_needed(log))
fd67d8a0 765 error = xlog_recover_finish(log);
f0b2efad
BF
766 if (!error)
767 xfs_log_work_queue(mp);
1751e8a6 768 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 769 evict_inodes(mp->m_super);
f0b2efad 770
f1b92bbc
BF
771 /*
772 * Drain the buffer LRU after log recovery. This is required for v4
773 * filesystems to avoid leaving around buffers with NULL verifier ops,
774 * but we do it unconditionally to make sure we're always in a clean
775 * cache state after mount.
776 *
777 * Don't push in the error case because the AIL may have pending intents
778 * that aren't removed until recovery is cancelled.
779 */
e1d06e5f 780 if (xlog_recovery_needed(log)) {
fd67d8a0
DC
781 if (!error) {
782 xfs_log_force(mp, XFS_LOG_SYNC);
783 xfs_ail_push_all_sync(mp->m_ail);
784 }
785 xfs_notice(mp, "Ending recovery (logdev: %s)",
786 mp->m_logname ? mp->m_logname : "internal");
787 } else {
788 xfs_info(mp, "Ending clean mount");
f1b92bbc 789 }
10fb9ac1 790 xfs_buftarg_drain(mp->m_ddev_targp);
f1b92bbc 791
e1d06e5f 792 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
6f4a1eef
ES
793 if (readonly)
794 mp->m_flags |= XFS_MOUNT_RDONLY;
795
4e6b8270 796 /* Make sure the log is dead if we're returning failure. */
fd67d8a0 797 ASSERT(!error || xlog_is_shutdown(log));
4e6b8270 798
f0b2efad
BF
799 return error;
800}
801
802/*
803 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
804 * the log.
805 */
a7a9250e 806void
f0b2efad
BF
807xfs_log_mount_cancel(
808 struct xfs_mount *mp)
809{
a7a9250e 810 xlog_recover_cancel(mp->m_log);
f0b2efad 811 xfs_log_unmount(mp);
1da177e4
LT
812}
813
45eddb41
DC
814/*
815 * Flush out the iclog to disk ensuring that device caches are flushed and
816 * the iclog hits stable storage before any completion waiters are woken.
817 */
818static inline int
819xlog_force_iclog(
820 struct xlog_in_core *iclog)
821{
822 atomic_inc(&iclog->ic_refcnt);
2bf1ec0f 823 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
45eddb41
DC
824 if (iclog->ic_state == XLOG_STATE_ACTIVE)
825 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
826 return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
827}
828
81e5b50a 829/*
a79b28c2
DC
830 * Wait for the iclog and all prior iclogs to be written disk as required by the
831 * log force state machine. Waiting on ic_force_wait ensures iclog completions
832 * have been ordered and callbacks run before we are woken here, hence
833 * guaranteeing that all the iclogs up to this one are on stable storage.
81e5b50a 834 */
a79b28c2 835int
81e5b50a
CH
836xlog_wait_on_iclog(
837 struct xlog_in_core *iclog)
838 __releases(iclog->ic_log->l_icloglock)
839{
840 struct xlog *log = iclog->ic_log;
841
956f6daa 842 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
2039a272 843 if (!xlog_is_shutdown(log) &&
81e5b50a
CH
844 iclog->ic_state != XLOG_STATE_ACTIVE &&
845 iclog->ic_state != XLOG_STATE_DIRTY) {
846 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
847 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
848 } else {
849 spin_unlock(&log->l_icloglock);
850 }
851
2039a272 852 if (xlog_is_shutdown(log))
81e5b50a
CH
853 return -EIO;
854 return 0;
855}
856
1da177e4 857/*
3c702f95
DC
858 * Write out an unmount record using the ticket provided. We have to account for
859 * the data space used in the unmount ticket as this write is not done from a
860 * transaction context that has already done the accounting for us.
1da177e4 861 */
3c702f95
DC
862static int
863xlog_write_unmount_record(
864 struct xlog *log,
3468bb1c 865 struct xlog_ticket *ticket)
53235f22 866{
3c702f95 867 struct xfs_unmount_log_format ulf = {
53235f22
DW
868 .magic = XLOG_UNMOUNT_TYPE,
869 };
870 struct xfs_log_iovec reg = {
3c702f95
DC
871 .i_addr = &ulf,
872 .i_len = sizeof(ulf),
53235f22
DW
873 .i_type = XLOG_REG_TYPE_UNMOUNT,
874 };
875 struct xfs_log_vec vec = {
876 .lv_niovecs = 1,
877 .lv_iovecp = &reg,
878 };
3c702f95
DC
879
880 /* account for space used by record data */
881 ticket->t_curr_res -= sizeof(ulf);
eef983ff 882
3468bb1c 883 return xlog_write(log, &vec, ticket, NULL, NULL, XLOG_UNMOUNT_TRANS);
3c702f95
DC
884}
885
886/*
887 * Mark the filesystem clean by writing an unmount record to the head of the
888 * log.
889 */
890static void
891xlog_unmount_write(
892 struct xlog *log)
893{
894 struct xfs_mount *mp = log->l_mp;
53235f22
DW
895 struct xlog_in_core *iclog;
896 struct xlog_ticket *tic = NULL;
53235f22
DW
897 int error;
898
899 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
900 if (error)
901 goto out_err;
902
3468bb1c 903 error = xlog_write_unmount_record(log, tic);
53235f22
DW
904 /*
905 * At this point, we're umounting anyway, so there's no point in
5112e206 906 * transitioning log state to shutdown. Just continue...
53235f22
DW
907 */
908out_err:
909 if (error)
910 xfs_alert(mp, "%s: unmount record failed", __func__);
911
912 spin_lock(&log->l_icloglock);
913 iclog = log->l_iclog;
45eddb41 914 error = xlog_force_iclog(iclog);
81e5b50a 915 xlog_wait_on_iclog(iclog);
53235f22
DW
916
917 if (tic) {
918 trace_xfs_log_umount_write(log, tic);
8b41e3f9 919 xfs_log_ticket_ungrant(log, tic);
53235f22
DW
920 }
921}
922
13859c98
CH
923static void
924xfs_log_unmount_verify_iclog(
925 struct xlog *log)
926{
927 struct xlog_in_core *iclog = log->l_iclog;
928
929 do {
930 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
931 ASSERT(iclog->ic_offset == 0);
932 } while ((iclog = iclog->ic_next) != log->l_iclog);
933}
934
1da177e4
LT
935/*
936 * Unmount record used to have a string "Unmount filesystem--" in the
937 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
938 * We just write the magic number now since that particular field isn't
8e159e72 939 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
940 * As far as I know, there weren't any dependencies on the old behaviour.
941 */
550319e9 942static void
13859c98
CH
943xfs_log_unmount_write(
944 struct xfs_mount *mp)
1da177e4 945{
13859c98 946 struct xlog *log = mp->m_log;
1da177e4 947
50d25484 948 if (!xfs_log_writable(mp))
550319e9 949 return;
1da177e4 950
550319e9 951 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 952
2039a272 953 if (xlog_is_shutdown(log))
6178d104 954 return;
5cc3c006
DW
955
956 /*
957 * If we think the summary counters are bad, avoid writing the unmount
958 * record to force log recovery at next mount, after which the summary
959 * counters will be recalculated. Refer to xlog_check_unmount_rec for
960 * more details.
961 */
962 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
963 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
964 xfs_alert(mp, "%s: will fix summary counters at next mount",
965 __func__);
966 return;
967 }
968
13859c98 969 xfs_log_unmount_verify_iclog(log);
3c702f95 970 xlog_unmount_write(log);
550319e9 971}
1da177e4
LT
972
973/*
c75921a7 974 * Empty the log for unmount/freeze.
cf2931db
DC
975 *
976 * To do this, we first need to shut down the background log work so it is not
977 * trying to cover the log as we clean up. We then need to unpin all objects in
978 * the log so we can then flush them out. Once they have completed their IO and
303591a0 979 * run the callbacks removing themselves from the AIL, we can cover the log.
1da177e4 980 */
303591a0 981int
c75921a7
DC
982xfs_log_quiesce(
983 struct xfs_mount *mp)
1da177e4 984{
908ce71e
DW
985 /*
986 * Clear log incompat features since we're quiescing the log. Report
987 * failures, though it's not fatal to have a higher log feature
988 * protection level than the log contents actually require.
989 */
990 if (xfs_clear_incompat_log_features(mp)) {
991 int error;
992
993 error = xfs_sync_sb(mp, false);
994 if (error)
995 xfs_warn(mp,
996 "Failed to clear log incompat features on quiesce");
997 }
998
f661f1e0 999 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
1000 xfs_log_force(mp, XFS_LOG_SYNC);
1001
1002 /*
1003 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
8321ddb2 1004 * will push it, xfs_buftarg_wait() will not wait for it. Further,
cf2931db
DC
1005 * xfs_buf_iowait() cannot be used because it was pushed with the
1006 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1007 * the IO to complete.
1008 */
1009 xfs_ail_push_all_sync(mp->m_ail);
8321ddb2 1010 xfs_buftarg_wait(mp->m_ddev_targp);
cf2931db
DC
1011 xfs_buf_lock(mp->m_sb_bp);
1012 xfs_buf_unlock(mp->m_sb_bp);
303591a0
BF
1013
1014 return xfs_log_cover(mp);
9e54ee0f 1015}
cf2931db 1016
9e54ee0f
BF
1017void
1018xfs_log_clean(
1019 struct xfs_mount *mp)
1020{
1021 xfs_log_quiesce(mp);
cf2931db 1022 xfs_log_unmount_write(mp);
c75921a7
DC
1023}
1024
1025/*
1026 * Shut down and release the AIL and Log.
1027 *
1028 * During unmount, we need to ensure we flush all the dirty metadata objects
1029 * from the AIL so that the log is empty before we write the unmount record to
1030 * the log. Once this is done, we can tear down the AIL and the log.
1031 */
1032void
1033xfs_log_unmount(
1034 struct xfs_mount *mp)
1035{
9e54ee0f 1036 xfs_log_clean(mp);
cf2931db 1037
8321ddb2
BF
1038 xfs_buftarg_drain(mp->m_ddev_targp);
1039
249a8c11 1040 xfs_trans_ail_destroy(mp);
baff4e44
BF
1041
1042 xfs_sysfs_del(&mp->m_log->l_kobj);
1043
c41564b5 1044 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1045}
1046
43f5efc5
DC
1047void
1048xfs_log_item_init(
1049 struct xfs_mount *mp,
1050 struct xfs_log_item *item,
1051 int type,
272e42b2 1052 const struct xfs_item_ops *ops)
43f5efc5
DC
1053{
1054 item->li_mountp = mp;
1055 item->li_ailp = mp->m_ail;
1056 item->li_type = type;
1057 item->li_ops = ops;
71e330b5
DC
1058 item->li_lv = NULL;
1059
1060 INIT_LIST_HEAD(&item->li_ail);
1061 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1062 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1063 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1064}
1065
09a423a3
CH
1066/*
1067 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1068 */
1da177e4 1069void
09a423a3 1070xfs_log_space_wake(
cfb7cdca 1071 struct xfs_mount *mp)
1da177e4 1072{
ad223e60 1073 struct xlog *log = mp->m_log;
cfb7cdca 1074 int free_bytes;
1da177e4 1075
2039a272 1076 if (xlog_is_shutdown(log))
1da177e4 1077 return;
1da177e4 1078
28496968 1079 if (!list_empty_careful(&log->l_write_head.waiters)) {
e1d06e5f 1080 ASSERT(!xlog_in_recovery(log));
09a423a3 1081
28496968
CH
1082 spin_lock(&log->l_write_head.lock);
1083 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1084 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1085 spin_unlock(&log->l_write_head.lock);
1da177e4 1086 }
10547941 1087
28496968 1088 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
e1d06e5f 1089 ASSERT(!xlog_in_recovery(log));
09a423a3 1090
28496968
CH
1091 spin_lock(&log->l_reserve_head.lock);
1092 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1093 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1094 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1095 }
3f16b985 1096}
1da177e4
LT
1097
1098/*
2c6e24ce
DC
1099 * Determine if we have a transaction that has gone to disk that needs to be
1100 * covered. To begin the transition to the idle state firstly the log needs to
1101 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1102 * we start attempting to cover the log.
b6f8dd49 1103 *
2c6e24ce
DC
1104 * Only if we are then in a state where covering is needed, the caller is
1105 * informed that dummy transactions are required to move the log into the idle
1106 * state.
1107 *
1108 * If there are any items in the AIl or CIL, then we do not want to attempt to
1109 * cover the log as we may be in a situation where there isn't log space
1110 * available to run a dummy transaction and this can lead to deadlocks when the
1111 * tail of the log is pinned by an item that is modified in the CIL. Hence
1112 * there's no point in running a dummy transaction at this point because we
1113 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1114 */
37444fc4
BF
1115static bool
1116xfs_log_need_covered(
1117 struct xfs_mount *mp)
1da177e4 1118{
37444fc4
BF
1119 struct xlog *log = mp->m_log;
1120 bool needed = false;
1da177e4 1121
2c6e24ce 1122 if (!xlog_cil_empty(log))
8646b982 1123 return false;
2c6e24ce 1124
b22cd72c 1125 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1126 switch (log->l_covered_state) {
1127 case XLOG_STATE_COVER_DONE:
1128 case XLOG_STATE_COVER_DONE2:
1129 case XLOG_STATE_COVER_IDLE:
1130 break;
1131 case XLOG_STATE_COVER_NEED:
1132 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1133 if (xfs_ail_min_lsn(log->l_ailp))
1134 break;
1135 if (!xlog_iclogs_empty(log))
1136 break;
1137
37444fc4 1138 needed = true;
2c6e24ce
DC
1139 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1140 log->l_covered_state = XLOG_STATE_COVER_DONE;
1141 else
1142 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1143 break;
b6f8dd49 1144 default:
37444fc4 1145 needed = true;
b6f8dd49 1146 break;
1da177e4 1147 }
b22cd72c 1148 spin_unlock(&log->l_icloglock);
014c2544 1149 return needed;
1da177e4
LT
1150}
1151
303591a0
BF
1152/*
1153 * Explicitly cover the log. This is similar to background log covering but
1154 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1155 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1156 * must all be empty.
1157 */
1158static int
1159xfs_log_cover(
1160 struct xfs_mount *mp)
1161{
303591a0 1162 int error = 0;
f46e5a17 1163 bool need_covered;
303591a0 1164
4533fc63
BF
1165 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1166 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
2039a272 1167 xlog_is_shutdown(mp->m_log));
303591a0
BF
1168
1169 if (!xfs_log_writable(mp))
1170 return 0;
1171
f46e5a17
BF
1172 /*
1173 * xfs_log_need_covered() is not idempotent because it progresses the
1174 * state machine if the log requires covering. Therefore, we must call
1175 * this function once and use the result until we've issued an sb sync.
1176 * Do so first to make that abundantly clear.
1177 *
1178 * Fall into the covering sequence if the log needs covering or the
1179 * mount has lazy superblock accounting to sync to disk. The sb sync
1180 * used for covering accumulates the in-core counters, so covering
1181 * handles this for us.
1182 */
1183 need_covered = xfs_log_need_covered(mp);
1184 if (!need_covered && !xfs_sb_version_haslazysbcount(&mp->m_sb))
1185 return 0;
1186
303591a0
BF
1187 /*
1188 * To cover the log, commit the superblock twice (at most) in
1189 * independent checkpoints. The first serves as a reference for the
1190 * tail pointer. The sync transaction and AIL push empties the AIL and
1191 * updates the in-core tail to the LSN of the first checkpoint. The
1192 * second commit updates the on-disk tail with the in-core LSN,
1193 * covering the log. Push the AIL one more time to leave it empty, as
1194 * we found it.
1195 */
f46e5a17 1196 do {
303591a0
BF
1197 error = xfs_sync_sb(mp, true);
1198 if (error)
1199 break;
1200 xfs_ail_push_all_sync(mp->m_ail);
f46e5a17 1201 } while (xfs_log_need_covered(mp));
303591a0
BF
1202
1203 return error;
1204}
1205
09a423a3 1206/*
1da177e4
LT
1207 * We may be holding the log iclog lock upon entering this routine.
1208 */
1209xfs_lsn_t
1c304625 1210xlog_assign_tail_lsn_locked(
1c3cb9ec 1211 struct xfs_mount *mp)
1da177e4 1212{
ad223e60 1213 struct xlog *log = mp->m_log;
1c304625
CH
1214 struct xfs_log_item *lip;
1215 xfs_lsn_t tail_lsn;
1216
57e80956 1217 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1218
09a423a3
CH
1219 /*
1220 * To make sure we always have a valid LSN for the log tail we keep
1221 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1222 * and use that when the AIL was empty.
09a423a3 1223 */
1c304625
CH
1224 lip = xfs_ail_min(mp->m_ail);
1225 if (lip)
1226 tail_lsn = lip->li_lsn;
1227 else
84f3c683 1228 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1229 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1230 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1231 return tail_lsn;
1c3cb9ec 1232}
1da177e4 1233
1c304625
CH
1234xfs_lsn_t
1235xlog_assign_tail_lsn(
1236 struct xfs_mount *mp)
1237{
1238 xfs_lsn_t tail_lsn;
1239
57e80956 1240 spin_lock(&mp->m_ail->ail_lock);
1c304625 1241 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1242 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1243
1244 return tail_lsn;
1245}
1246
1da177e4
LT
1247/*
1248 * Return the space in the log between the tail and the head. The head
1249 * is passed in the cycle/bytes formal parms. In the special case where
1250 * the reserve head has wrapped passed the tail, this calculation is no
1251 * longer valid. In this case, just return 0 which means there is no space
1252 * in the log. This works for all places where this function is called
1253 * with the reserve head. Of course, if the write head were to ever
1254 * wrap the tail, we should blow up. Rather than catch this case here,
1255 * we depend on other ASSERTions in other parts of the code. XXXmiken
1256 *
1257 * This code also handles the case where the reservation head is behind
1258 * the tail. The details of this case are described below, but the end
1259 * result is that we return the size of the log as the amount of space left.
1260 */
a8272ce0 1261STATIC int
a69ed03c 1262xlog_space_left(
ad223e60 1263 struct xlog *log,
c8a09ff8 1264 atomic64_t *head)
1da177e4 1265{
a69ed03c
DC
1266 int free_bytes;
1267 int tail_bytes;
1268 int tail_cycle;
1269 int head_cycle;
1270 int head_bytes;
1da177e4 1271
a69ed03c 1272 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1273 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1274 tail_bytes = BBTOB(tail_bytes);
a69ed03c
DC
1275 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1276 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1277 else if (tail_cycle + 1 < head_cycle)
1da177e4 1278 return 0;
a69ed03c
DC
1279 else if (tail_cycle < head_cycle) {
1280 ASSERT(tail_cycle == (head_cycle - 1));
1281 free_bytes = tail_bytes - head_bytes;
1da177e4
LT
1282 } else {
1283 /*
1284 * The reservation head is behind the tail.
1285 * In this case we just want to return the size of the
1286 * log as the amount of space left.
1287 */
f41febd2 1288 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
a0fa2b67 1289 xfs_alert(log->l_mp,
f41febd2
JP
1290 " tail_cycle = %d, tail_bytes = %d",
1291 tail_cycle, tail_bytes);
1292 xfs_alert(log->l_mp,
1293 " GH cycle = %d, GH bytes = %d",
1294 head_cycle, head_bytes);
1da177e4
LT
1295 ASSERT(0);
1296 free_bytes = log->l_logsize;
1297 }
1298 return free_bytes;
a69ed03c 1299}
1da177e4
LT
1300
1301
0d5a75e9 1302static void
79b54d9b
CH
1303xlog_ioend_work(
1304 struct work_struct *work)
1da177e4 1305{
79b54d9b
CH
1306 struct xlog_in_core *iclog =
1307 container_of(work, struct xlog_in_core, ic_end_io_work);
1308 struct xlog *log = iclog->ic_log;
79b54d9b 1309 int error;
1da177e4 1310
79b54d9b 1311 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1312#ifdef DEBUG
1313 /* treat writes with injected CRC errors as failed */
1314 if (iclog->ic_fail_crc)
79b54d9b 1315 error = -EIO;
366fc4b8
CH
1316#endif
1317
1da177e4 1318 /*
366fc4b8 1319 * Race to shutdown the filesystem if we see an error.
1da177e4 1320 */
79b54d9b
CH
1321 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1322 xfs_alert(log->l_mp, "log I/O error %d", error);
1323 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1324 }
3db296f3 1325
12e6a0f4 1326 xlog_state_done_syncing(iclog);
79b54d9b 1327 bio_uninit(&iclog->ic_bio);
9c23eccc 1328
3db296f3 1329 /*
79b54d9b
CH
1330 * Drop the lock to signal that we are done. Nothing references the
1331 * iclog after this, so an unmount waiting on this lock can now tear it
1332 * down safely. As such, it is unsafe to reference the iclog after the
1333 * unlock as we could race with it being freed.
3db296f3 1334 */
79b54d9b 1335 up(&iclog->ic_sema);
c3f8fc73 1336}
1da177e4 1337
1da177e4
LT
1338/*
1339 * Return size of each in-core log record buffer.
1340 *
9da096fd 1341 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1342 *
1343 * If the filesystem blocksize is too large, we may need to choose a
1344 * larger size since the directory code currently logs entire blocks.
1345 */
1da177e4 1346STATIC void
9a8d2fdb
MT
1347xlog_get_iclog_buffer_size(
1348 struct xfs_mount *mp,
1349 struct xlog *log)
1da177e4 1350{
1cb51258 1351 if (mp->m_logbufs <= 0)
4f62282a
CH
1352 mp->m_logbufs = XLOG_MAX_ICLOGS;
1353 if (mp->m_logbsize <= 0)
1354 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1355
1356 log->l_iclog_bufs = mp->m_logbufs;
1357 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1358
1359 /*
4f62282a 1360 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1361 */
4f62282a
CH
1362 log->l_iclog_heads =
1363 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1364 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1365}
1da177e4 1366
f661f1e0
DC
1367void
1368xfs_log_work_queue(
1369 struct xfs_mount *mp)
1370{
696a5620 1371 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1372 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1373}
1374
2b73a2c8
DW
1375/*
1376 * Clear the log incompat flags if we have the opportunity.
1377 *
1378 * This only happens if we're about to log the second dummy transaction as part
1379 * of covering the log and we can get the log incompat feature usage lock.
1380 */
1381static inline void
1382xlog_clear_incompat(
1383 struct xlog *log)
1384{
1385 struct xfs_mount *mp = log->l_mp;
1386
1387 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1388 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1389 return;
1390
1391 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1392 return;
1393
1394 if (!down_write_trylock(&log->l_incompat_users))
1395 return;
1396
1397 xfs_clear_incompat_log_features(mp);
1398 up_write(&log->l_incompat_users);
1399}
1400
f661f1e0
DC
1401/*
1402 * Every sync period we need to unpin all items in the AIL and push them to
1403 * disk. If there is nothing dirty, then we might need to cover the log to
1404 * indicate that the filesystem is idle.
1405 */
0d5a75e9 1406static void
f661f1e0
DC
1407xfs_log_worker(
1408 struct work_struct *work)
1409{
1410 struct xlog *log = container_of(to_delayed_work(work),
1411 struct xlog, l_work);
1412 struct xfs_mount *mp = log->l_mp;
1413
1414 /* dgc: errors ignored - not fatal and nowhere to report them */
37444fc4 1415 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
61e63ecb
DC
1416 /*
1417 * Dump a transaction into the log that contains no real change.
1418 * This is needed to stamp the current tail LSN into the log
1419 * during the covering operation.
1420 *
1421 * We cannot use an inode here for this - that will push dirty
1422 * state back up into the VFS and then periodic inode flushing
1423 * will prevent log covering from making progress. Hence we
1424 * synchronously log the superblock instead to ensure the
1425 * superblock is immediately unpinned and can be written back.
1426 */
2b73a2c8 1427 xlog_clear_incompat(log);
61e63ecb
DC
1428 xfs_sync_sb(mp, true);
1429 } else
f661f1e0
DC
1430 xfs_log_force(mp, 0);
1431
1432 /* start pushing all the metadata that is currently dirty */
1433 xfs_ail_push_all(mp->m_ail);
1434
1435 /* queue us up again */
1436 xfs_log_work_queue(mp);
1437}
1438
1da177e4
LT
1439/*
1440 * This routine initializes some of the log structure for a given mount point.
1441 * Its primary purpose is to fill in enough, so recovery can occur. However,
1442 * some other stuff may be filled in too.
1443 */
9a8d2fdb
MT
1444STATIC struct xlog *
1445xlog_alloc_log(
1446 struct xfs_mount *mp,
1447 struct xfs_buftarg *log_target,
1448 xfs_daddr_t blk_offset,
1449 int num_bblks)
1da177e4 1450{
9a8d2fdb 1451 struct xlog *log;
1da177e4
LT
1452 xlog_rec_header_t *head;
1453 xlog_in_core_t **iclogp;
1454 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1455 int i;
2451337d 1456 int error = -ENOMEM;
69ce58f0 1457 uint log2_size = 0;
1da177e4 1458
9a8d2fdb 1459 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1460 if (!log) {
a0fa2b67 1461 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1462 goto out;
1463 }
1da177e4
LT
1464
1465 log->l_mp = mp;
1466 log->l_targ = log_target;
1467 log->l_logsize = BBTOB(num_bblks);
1468 log->l_logBBstart = blk_offset;
1469 log->l_logBBsize = num_bblks;
1470 log->l_covered_state = XLOG_STATE_COVER_IDLE;
e1d06e5f 1471 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
f661f1e0 1472 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1473
1474 log->l_prev_block = -1;
1da177e4 1475 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1476 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1477 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1478 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8 1479
a6a65fef
DC
1480 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1)
1481 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1482 else
1483 log->l_iclog_roundoff = BBSIZE;
1484
c303c5b8
CH
1485 xlog_grant_head_init(&log->l_reserve_head);
1486 xlog_grant_head_init(&log->l_write_head);
1da177e4 1487
2451337d 1488 error = -EFSCORRUPTED;
62118709 1489 if (xfs_sb_version_hassector(&mp->m_sb)) {
69ce58f0
AE
1490 log2_size = mp->m_sb.sb_logsectlog;
1491 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1492 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1493 log2_size, BBSHIFT);
a6cb767e
DC
1494 goto out_free_log;
1495 }
1496
69ce58f0
AE
1497 log2_size -= BBSHIFT;
1498 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1499 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1500 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1501 goto out_free_log;
1502 }
69ce58f0
AE
1503
1504 /* for larger sector sizes, must have v2 or external log */
1505 if (log2_size && log->l_logBBstart > 0 &&
1506 !xfs_sb_version_haslogv2(&mp->m_sb)) {
a0fa2b67
DC
1507 xfs_warn(mp,
1508 "log sector size (0x%x) invalid for configuration.",
1509 log2_size);
a6cb767e
DC
1510 goto out_free_log;
1511 }
1da177e4 1512 }
69ce58f0 1513 log->l_sectBBsize = 1 << log2_size;
1da177e4 1514
2b73a2c8
DW
1515 init_rwsem(&log->l_incompat_users);
1516
1da177e4
LT
1517 xlog_get_iclog_buffer_size(mp, log);
1518
007c61c6 1519 spin_lock_init(&log->l_icloglock);
eb40a875 1520 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1521
1da177e4
LT
1522 iclogp = &log->l_iclog;
1523 /*
1524 * The amount of memory to allocate for the iclog structure is
1525 * rather funky due to the way the structure is defined. It is
1526 * done this way so that we can use different sizes for machines
1527 * with different amounts of memory. See the definition of
1528 * xlog_in_core_t in xfs_log_priv.h for details.
1529 */
1da177e4 1530 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1531 for (i = 0; i < log->l_iclog_bufs; i++) {
89b171ac
CH
1532 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1533 sizeof(struct bio_vec);
79b54d9b
CH
1534
1535 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1536 if (!iclog)
644c3567
DC
1537 goto out_free_iclog;
1538
79b54d9b 1539 *iclogp = iclog;
1da177e4
LT
1540 iclog->ic_prev = prev_iclog;
1541 prev_iclog = iclog;
1fa40b01 1542
d634525d
DC
1543 iclog->ic_data = kvzalloc(log->l_iclog_size,
1544 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
79b54d9b 1545 if (!iclog->ic_data)
644c3567 1546 goto out_free_iclog;
4679b2d3 1547#ifdef DEBUG
5809d5e0 1548 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1549#endif
1da177e4
LT
1550 head = &iclog->ic_header;
1551 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1552 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1553 head->h_version = cpu_to_be32(
62118709 1554 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
b53e675d 1555 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1556 /* new fields */
b53e675d 1557 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1558 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1559
79b54d9b 1560 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1561 iclog->ic_state = XLOG_STATE_ACTIVE;
1562 iclog->ic_log = log;
114d23aa 1563 atomic_set(&iclog->ic_refcnt, 0);
89ae379d 1564 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1565 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1566
eb40a875
DC
1567 init_waitqueue_head(&iclog->ic_force_wait);
1568 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1569 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1570 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1571
1572 iclogp = &iclog->ic_next;
1573 }
1574 *iclogp = log->l_iclog; /* complete ring */
1575 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1576
1058d0f5 1577 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
05a302a1
DW
1578 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1579 WQ_HIGHPRI),
1580 0, mp->m_super->s_id);
1058d0f5
CH
1581 if (!log->l_ioend_workqueue)
1582 goto out_free_iclog;
1583
71e330b5
DC
1584 error = xlog_cil_init(log);
1585 if (error)
1058d0f5 1586 goto out_destroy_workqueue;
1da177e4 1587 return log;
644c3567 1588
1058d0f5
CH
1589out_destroy_workqueue:
1590 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1591out_free_iclog:
1592 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1593 prev_iclog = iclog->ic_next;
79b54d9b 1594 kmem_free(iclog->ic_data);
644c3567 1595 kmem_free(iclog);
798a9cad
BF
1596 if (prev_iclog == log->l_iclog)
1597 break;
644c3567 1598 }
644c3567
DC
1599out_free_log:
1600 kmem_free(log);
a6cb767e 1601out:
2451337d 1602 return ERR_PTR(error);
1da177e4
LT
1603} /* xlog_alloc_log */
1604
1da177e4
LT
1605/*
1606 * Write out the commit record of a transaction associated with the given
f10e925d 1607 * ticket to close off a running log write. Return the lsn of the commit record.
1da177e4 1608 */
f10e925d 1609int
55b66332 1610xlog_commit_record(
ad223e60 1611 struct xlog *log,
55b66332
DC
1612 struct xlog_ticket *ticket,
1613 struct xlog_in_core **iclog,
f10e925d 1614 xfs_lsn_t *lsn)
1da177e4 1615{
55b66332
DC
1616 struct xfs_log_iovec reg = {
1617 .i_addr = NULL,
1618 .i_len = 0,
1619 .i_type = XLOG_REG_TYPE_COMMIT,
1620 };
1621 struct xfs_log_vec vec = {
1622 .lv_niovecs = 1,
1623 .lv_iovecp = &reg,
1624 };
f10e925d 1625 int error;
1da177e4 1626
2039a272 1627 if (xlog_is_shutdown(log))
f10e925d
DC
1628 return -EIO;
1629
3468bb1c 1630 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS);
55b66332 1631 if (error)
f10e925d 1632 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
014c2544 1633 return error;
55b66332 1634}
1da177e4
LT
1635
1636/*
ed1575da
DW
1637 * Compute the LSN that we'd need to push the log tail towards in order to have
1638 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1639 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1640 * log free space already meets all three thresholds, this function returns
1641 * NULLCOMMITLSN.
1da177e4 1642 */
ed1575da
DW
1643xfs_lsn_t
1644xlog_grant_push_threshold(
ad223e60 1645 struct xlog *log,
2ced19cb 1646 int need_bytes)
1da177e4 1647{
2ced19cb 1648 xfs_lsn_t threshold_lsn = 0;
84f3c683 1649 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1650 int free_blocks;
1651 int free_bytes;
1652 int threshold_block;
1653 int threshold_cycle;
1654 int free_threshold;
1655
1656 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1657
28496968 1658 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1659 free_blocks = BTOBBT(free_bytes);
1660
1661 /*
1662 * Set the threshold for the minimum number of free blocks in the
1663 * log to the maximum of what the caller needs, one quarter of the
1664 * log, and 256 blocks.
1665 */
1666 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1667 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1668 free_threshold = max(free_threshold, 256);
2ced19cb 1669 if (free_blocks >= free_threshold)
ed1575da 1670 return NULLCOMMITLSN;
2ced19cb 1671
1c3cb9ec
DC
1672 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1673 &threshold_block);
1674 threshold_block += free_threshold;
1da177e4 1675 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1676 threshold_block -= log->l_logBBsize;
1677 threshold_cycle += 1;
1da177e4 1678 }
2ced19cb
DC
1679 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1680 threshold_block);
1681 /*
1682 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1683 * log record known to be on disk. Use a snapshot of the last sync lsn
1684 * so that it doesn't change between the compare and the set.
1da177e4 1685 */
84f3c683
DC
1686 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1687 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1688 threshold_lsn = last_sync_lsn;
2ced19cb 1689
ed1575da
DW
1690 return threshold_lsn;
1691}
1692
1693/*
1694 * Push the tail of the log if we need to do so to maintain the free log space
1695 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1696 * policy which pushes on an lsn which is further along in the log once we
1697 * reach the high water mark. In this manner, we would be creating a low water
1698 * mark.
1699 */
1700STATIC void
1701xlog_grant_push_ail(
1702 struct xlog *log,
1703 int need_bytes)
1704{
1705 xfs_lsn_t threshold_lsn;
1706
1707 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
2039a272 1708 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
ed1575da
DW
1709 return;
1710
2ced19cb
DC
1711 /*
1712 * Get the transaction layer to kick the dirty buffers out to
1713 * disk asynchronously. No point in trying to do this if
1714 * the filesystem is shutting down.
1715 */
ed1575da 1716 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1717}
1da177e4 1718
0e446be4
CH
1719/*
1720 * Stamp cycle number in every block
1721 */
1722STATIC void
1723xlog_pack_data(
1724 struct xlog *log,
1725 struct xlog_in_core *iclog,
1726 int roundoff)
1727{
1728 int i, j, k;
1729 int size = iclog->ic_offset + roundoff;
1730 __be32 cycle_lsn;
b2a922cd 1731 char *dp;
0e446be4
CH
1732
1733 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1734
1735 dp = iclog->ic_datap;
1736 for (i = 0; i < BTOBB(size); i++) {
1737 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1738 break;
1739 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1740 *(__be32 *)dp = cycle_lsn;
1741 dp += BBSIZE;
1742 }
1743
1744 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1745 xlog_in_core_2_t *xhdr = iclog->ic_data;
1746
1747 for ( ; i < BTOBB(size); i++) {
1748 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1749 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1750 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1751 *(__be32 *)dp = cycle_lsn;
1752 dp += BBSIZE;
1753 }
1754
1755 for (i = 1; i < log->l_iclog_heads; i++)
1756 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1757 }
1758}
1759
1760/*
1761 * Calculate the checksum for a log buffer.
1762 *
1763 * This is a little more complicated than it should be because the various
1764 * headers and the actual data are non-contiguous.
1765 */
f9668a09 1766__le32
0e446be4
CH
1767xlog_cksum(
1768 struct xlog *log,
1769 struct xlog_rec_header *rhead,
1770 char *dp,
1771 int size)
1772{
c8ce540d 1773 uint32_t crc;
0e446be4
CH
1774
1775 /* first generate the crc for the record header ... */
cae028df 1776 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1777 sizeof(struct xlog_rec_header),
1778 offsetof(struct xlog_rec_header, h_crc));
1779
1780 /* ... then for additional cycle data for v2 logs ... */
1781 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1782 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1783 int i;
a3f20014 1784 int xheads;
0e446be4 1785
0c771b99 1786 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
0e446be4 1787
a3f20014 1788 for (i = 1; i < xheads; i++) {
0e446be4
CH
1789 crc = crc32c(crc, &xhdr[i].hic_xheader,
1790 sizeof(struct xlog_rec_ext_header));
1791 }
1792 }
1793
1794 /* ... and finally for the payload */
1795 crc = crc32c(crc, dp, size);
1796
1797 return xfs_end_cksum(crc);
1798}
1799
79b54d9b
CH
1800static void
1801xlog_bio_end_io(
1802 struct bio *bio)
1803{
1804 struct xlog_in_core *iclog = bio->bi_private;
1805
1058d0f5 1806 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1807 &iclog->ic_end_io_work);
1808}
1809
842a42d1 1810static int
79b54d9b
CH
1811xlog_map_iclog_data(
1812 struct bio *bio,
1813 void *data,
1814 size_t count)
1815{
1816 do {
1817 struct page *page = kmem_to_page(data);
1818 unsigned int off = offset_in_page(data);
1819 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1820
842a42d1
BF
1821 if (bio_add_page(bio, page, len, off) != len)
1822 return -EIO;
79b54d9b
CH
1823
1824 data += len;
1825 count -= len;
1826 } while (count);
842a42d1
BF
1827
1828 return 0;
79b54d9b
CH
1829}
1830
94860a30
CH
1831STATIC void
1832xlog_write_iclog(
1833 struct xlog *log,
1834 struct xlog_in_core *iclog,
94860a30 1835 uint64_t bno,
eef983ff 1836 unsigned int count)
873ff550 1837{
94860a30 1838 ASSERT(bno < log->l_logBBsize);
956f6daa 1839 trace_xlog_iclog_write(iclog, _RET_IP_);
94860a30
CH
1840
1841 /*
1842 * We lock the iclogbufs here so that we can serialise against I/O
1843 * completion during unmount. We might be processing a shutdown
1844 * triggered during unmount, and that can occur asynchronously to the
1845 * unmount thread, and hence we need to ensure that completes before
1846 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1847 * across the log IO to archieve that.
1848 */
79b54d9b 1849 down(&iclog->ic_sema);
5112e206 1850 if (xlog_is_shutdown(log)) {
873ff550
CH
1851 /*
1852 * It would seem logical to return EIO here, but we rely on
1853 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1854 * doing it here. We kick of the state machine and unlock
1855 * the buffer manually, the code needs to be kept in sync
1856 * with the I/O completion path.
873ff550 1857 */
12e6a0f4 1858 xlog_state_done_syncing(iclog);
79b54d9b 1859 up(&iclog->ic_sema);
94860a30 1860 return;
873ff550
CH
1861 }
1862
79b54d9b
CH
1863 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1864 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1865 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1866 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1867 iclog->ic_bio.bi_private = iclog;
2def2845
DC
1868
1869 /*
1870 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1871 * IOs coming immediately after this one. This prevents the block layer
1872 * writeback throttle from throttling log writes behind background
1873 * metadata writeback and causing priority inversions.
1874 */
eef983ff 1875 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE;
b5d721ea 1876 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
79b54d9b 1877 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
b5d721ea
DC
1878 /*
1879 * For external log devices, we also need to flush the data
1880 * device cache first to ensure all metadata writeback covered
1881 * by the LSN in this iclog is on stable storage. This is slow,
1882 * but it *must* complete before we issue the external log IO.
1883 */
1884 if (log->l_targ != log->l_mp->m_ddev_targp)
1885 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1886 }
eef983ff
DC
1887 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1888 iclog->ic_bio.bi_opf |= REQ_FUA;
b5d721ea 1889
eef983ff 1890 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
79b54d9b 1891
842a42d1
BF
1892 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1893 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1894 return;
1895 }
79b54d9b 1896 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1897 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1898
1899 /*
1900 * If this log buffer would straddle the end of the log we will have
1901 * to split it up into two bios, so that we can continue at the start.
1902 */
1903 if (bno + BTOBB(count) > log->l_logBBsize) {
1904 struct bio *split;
1905
1906 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1907 GFP_NOIO, &fs_bio_set);
1908 bio_chain(split, &iclog->ic_bio);
1909 submit_bio(split);
1910
1911 /* restart at logical offset zero for the remainder */
1912 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1913 }
1914
1915 submit_bio(&iclog->ic_bio);
873ff550 1916}
1da177e4 1917
56933848
CH
1918/*
1919 * We need to bump cycle number for the part of the iclog that is
1920 * written to the start of the log. Watch out for the header magic
1921 * number case, though.
1922 */
79b54d9b 1923static void
56933848
CH
1924xlog_split_iclog(
1925 struct xlog *log,
1926 void *data,
1927 uint64_t bno,
1928 unsigned int count)
1929{
1930 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1931 unsigned int i;
1932
1933 for (i = split_offset; i < count; i += BBSIZE) {
1934 uint32_t cycle = get_unaligned_be32(data + i);
1935
1936 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1937 cycle++;
1938 put_unaligned_be32(cycle, data + i);
1939 }
56933848
CH
1940}
1941
db0a6faf
CH
1942static int
1943xlog_calc_iclog_size(
1944 struct xlog *log,
1945 struct xlog_in_core *iclog,
1946 uint32_t *roundoff)
1947{
1948 uint32_t count_init, count;
db0a6faf
CH
1949
1950 /* Add for LR header */
1951 count_init = log->l_iclog_hsize + iclog->ic_offset;
a6a65fef 1952 count = roundup(count_init, log->l_iclog_roundoff);
db0a6faf 1953
db0a6faf
CH
1954 *roundoff = count - count_init;
1955
a6a65fef
DC
1956 ASSERT(count >= count_init);
1957 ASSERT(*roundoff < log->l_iclog_roundoff);
db0a6faf
CH
1958 return count;
1959}
1960
1da177e4
LT
1961/*
1962 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1963 * fashion. Previously, we should have moved the current iclog
1964 * ptr in the log to point to the next available iclog. This allows further
1965 * write to continue while this code syncs out an iclog ready to go.
1966 * Before an in-core log can be written out, the data section must be scanned
1967 * to save away the 1st word of each BBSIZE block into the header. We replace
1968 * it with the current cycle count. Each BBSIZE block is tagged with the
1969 * cycle count because there in an implicit assumption that drives will
1970 * guarantee that entire 512 byte blocks get written at once. In other words,
1971 * we can't have part of a 512 byte block written and part not written. By
1972 * tagging each block, we will know which blocks are valid when recovering
1973 * after an unclean shutdown.
1974 *
1975 * This routine is single threaded on the iclog. No other thread can be in
1976 * this routine with the same iclog. Changing contents of iclog can there-
1977 * fore be done without grabbing the state machine lock. Updating the global
1978 * log will require grabbing the lock though.
1979 *
1980 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
1981 * xlog_write_iclog knows about the fact that the log may not start with
1982 * block zero on a given device.
1da177e4 1983 */
94860a30 1984STATIC void
9a8d2fdb
MT
1985xlog_sync(
1986 struct xlog *log,
1987 struct xlog_in_core *iclog)
1da177e4 1988{
db0a6faf
CH
1989 unsigned int count; /* byte count of bwrite */
1990 unsigned int roundoff; /* roundoff to BB or stripe */
1991 uint64_t bno;
db0a6faf 1992 unsigned int size;
1da177e4 1993
155cc6b7 1994 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 1995 trace_xlog_iclog_sync(iclog, _RET_IP_);
1da177e4 1996
db0a6faf 1997 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
1998
1999 /* move grant heads by roundoff in sync */
28496968
CH
2000 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2001 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
2002
2003 /* put cycle number in every block */
2004 xlog_pack_data(log, iclog, roundoff);
2005
2006 /* real byte length */
0e446be4 2007 size = iclog->ic_offset;
db0a6faf 2008 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
0e446be4
CH
2009 size += roundoff;
2010 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 2011
9b0489c1 2012 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 2013 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 2014
94860a30
CH
2015 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2016
1da177e4 2017 /* Do we need to split this write into 2 parts? */
eef983ff 2018 if (bno + BTOBB(count) > log->l_logBBsize)
79b54d9b 2019 xlog_split_iclog(log, &iclog->ic_header, bno, count);
0e446be4
CH
2020
2021 /* calculcate the checksum */
2022 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2023 iclog->ic_datap, size);
609adfc2
BF
2024 /*
2025 * Intentionally corrupt the log record CRC based on the error injection
2026 * frequency, if defined. This facilitates testing log recovery in the
2027 * event of torn writes. Hence, set the IOABORT state to abort the log
2028 * write on I/O completion and shutdown the fs. The subsequent mount
2029 * detects the bad CRC and attempts to recover.
2030 */
366fc4b8 2031#ifdef DEBUG
3e88a007 2032 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 2033 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 2034 iclog->ic_fail_crc = true;
609adfc2
BF
2035 xfs_warn(log->l_mp,
2036 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2037 be64_to_cpu(iclog->ic_header.h_lsn));
2038 }
366fc4b8 2039#endif
abca1f33 2040 xlog_verify_iclog(log, iclog, count);
eef983ff 2041 xlog_write_iclog(log, iclog, bno, count);
94860a30 2042}
1da177e4 2043
1da177e4 2044/*
c41564b5 2045 * Deallocate a log structure
1da177e4 2046 */
a8272ce0 2047STATIC void
9a8d2fdb
MT
2048xlog_dealloc_log(
2049 struct xlog *log)
1da177e4
LT
2050{
2051 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
2052 int i;
2053
71e330b5
DC
2054 xlog_cil_destroy(log);
2055
44396476 2056 /*
9c23eccc
DC
2057 * Cycle all the iclogbuf locks to make sure all log IO completion
2058 * is done before we tear down these buffers.
2059 */
2060 iclog = log->l_iclog;
2061 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
2062 down(&iclog->ic_sema);
2063 up(&iclog->ic_sema);
9c23eccc
DC
2064 iclog = iclog->ic_next;
2065 }
2066
1da177e4 2067 iclog = log->l_iclog;
9c23eccc 2068 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 2069 next_iclog = iclog->ic_next;
79b54d9b 2070 kmem_free(iclog->ic_data);
f0e2d93c 2071 kmem_free(iclog);
1da177e4
LT
2072 iclog = next_iclog;
2073 }
1da177e4 2074
1da177e4 2075 log->l_mp->m_log = NULL;
1058d0f5 2076 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 2077 kmem_free(log);
b843299b 2078}
1da177e4
LT
2079
2080/*
2081 * Update counters atomically now that memcpy is done.
2082 */
1da177e4 2083static inline void
9a8d2fdb
MT
2084xlog_state_finish_copy(
2085 struct xlog *log,
2086 struct xlog_in_core *iclog,
2087 int record_cnt,
2088 int copy_bytes)
1da177e4 2089{
390aab0a 2090 lockdep_assert_held(&log->l_icloglock);
1da177e4 2091
413d57c9 2092 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 2093 iclog->ic_offset += copy_bytes;
390aab0a 2094}
1da177e4 2095
7e9c6396
TS
2096/*
2097 * print out info relating to regions written which consume
2098 * the reservation
2099 */
71e330b5
DC
2100void
2101xlog_print_tic_res(
2102 struct xfs_mount *mp,
2103 struct xlog_ticket *ticket)
7e9c6396
TS
2104{
2105 uint i;
2106 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2107
2108 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2109#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2110 static char *res_type_str[] = {
5110cd82
DW
2111 REG_TYPE_STR(BFORMAT, "bformat"),
2112 REG_TYPE_STR(BCHUNK, "bchunk"),
2113 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2114 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2115 REG_TYPE_STR(IFORMAT, "iformat"),
2116 REG_TYPE_STR(ICORE, "icore"),
2117 REG_TYPE_STR(IEXT, "iext"),
2118 REG_TYPE_STR(IBROOT, "ibroot"),
2119 REG_TYPE_STR(ILOCAL, "ilocal"),
2120 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2121 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2122 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2123 REG_TYPE_STR(QFORMAT, "qformat"),
2124 REG_TYPE_STR(DQUOT, "dquot"),
2125 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2126 REG_TYPE_STR(LRHEADER, "LR header"),
2127 REG_TYPE_STR(UNMOUNT, "unmount"),
2128 REG_TYPE_STR(COMMIT, "commit"),
2129 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2130 REG_TYPE_STR(ICREATE, "inode create"),
2131 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2132 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2133 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2134 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2135 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2136 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2137 };
d31d7185 2138 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2139#undef REG_TYPE_STR
7e9c6396 2140
7d2d5653 2141 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2142 xfs_warn(mp, " unit res = %d bytes",
2143 ticket->t_unit_res);
2144 xfs_warn(mp, " current res = %d bytes",
2145 ticket->t_curr_res);
2146 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2147 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2148 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2149 ticket->t_res_num_ophdrs, ophdr_spc);
2150 xfs_warn(mp, " ophdr + reg = %u bytes",
2151 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2152 xfs_warn(mp, " num regions = %u",
2153 ticket->t_res_num);
7e9c6396
TS
2154
2155 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2156 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2157 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2158 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2159 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2160 ticket->t_res_arr[i].r_len);
2161 }
2162}
7e9c6396 2163
d4ca1d55
BF
2164/*
2165 * Print a summary of the transaction.
2166 */
2167void
2168xlog_print_trans(
e6631f85 2169 struct xfs_trans *tp)
d4ca1d55 2170{
e6631f85
DC
2171 struct xfs_mount *mp = tp->t_mountp;
2172 struct xfs_log_item *lip;
d4ca1d55
BF
2173
2174 /* dump core transaction and ticket info */
2175 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2176 xfs_warn(mp, " log res = %d", tp->t_log_res);
2177 xfs_warn(mp, " log count = %d", tp->t_log_count);
2178 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2179
2180 xlog_print_tic_res(mp, tp->t_ticket);
2181
2182 /* dump each log item */
e6631f85 2183 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2184 struct xfs_log_vec *lv = lip->li_lv;
2185 struct xfs_log_iovec *vec;
2186 int i;
2187
2188 xfs_warn(mp, "log item: ");
2189 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2190 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2191 if (!lv)
2192 continue;
2193 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2194 xfs_warn(mp, " size = %d", lv->lv_size);
2195 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2196 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2197
2198 /* dump each iovec for the log item */
2199 vec = lv->lv_iovecp;
2200 for (i = 0; i < lv->lv_niovecs; i++) {
2201 int dumplen = min(vec->i_len, 32);
2202
2203 xfs_warn(mp, " iovec[%d]", i);
2204 xfs_warn(mp, " type = 0x%x", vec->i_type);
2205 xfs_warn(mp, " len = %d", vec->i_len);
2206 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2207 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2208
2209 vec++;
2210 }
2211 }
2212}
2213
b5203cd0 2214/*
7ec94921
DC
2215 * Calculate the potential space needed by the log vector. We may need a start
2216 * record, and each region gets its own struct xlog_op_header and may need to be
2217 * double word aligned.
b5203cd0
DC
2218 */
2219static int
2220xlog_write_calc_vec_length(
2221 struct xlog_ticket *ticket,
7ec94921 2222 struct xfs_log_vec *log_vector,
3468bb1c 2223 uint optype)
b5203cd0 2224{
55b66332 2225 struct xfs_log_vec *lv;
3468bb1c 2226 int headers = 0;
b5203cd0
DC
2227 int len = 0;
2228 int i;
2229
3468bb1c
DC
2230 if (optype & XLOG_START_TRANS)
2231 headers++;
2232
55b66332 2233 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2234 /* we don't write ordered log vectors */
2235 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2236 continue;
2237
55b66332
DC
2238 headers += lv->lv_niovecs;
2239
2240 for (i = 0; i < lv->lv_niovecs; i++) {
2241 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2242
55b66332
DC
2243 len += vecp->i_len;
2244 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2245 }
b5203cd0
DC
2246 }
2247
2248 ticket->t_res_num_ophdrs += headers;
2249 len += headers * sizeof(struct xlog_op_header);
2250
2251 return len;
2252}
2253
7ec94921 2254static void
b5203cd0 2255xlog_write_start_rec(
e6b1f273 2256 struct xlog_op_header *ophdr,
b5203cd0
DC
2257 struct xlog_ticket *ticket)
2258{
b5203cd0
DC
2259 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2260 ophdr->oh_clientid = ticket->t_clientid;
2261 ophdr->oh_len = 0;
2262 ophdr->oh_flags = XLOG_START_TRANS;
2263 ophdr->oh_res2 = 0;
b5203cd0
DC
2264}
2265
2266static xlog_op_header_t *
2267xlog_write_setup_ophdr(
ad223e60 2268 struct xlog *log,
e6b1f273 2269 struct xlog_op_header *ophdr,
b5203cd0
DC
2270 struct xlog_ticket *ticket,
2271 uint flags)
2272{
b5203cd0
DC
2273 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2274 ophdr->oh_clientid = ticket->t_clientid;
2275 ophdr->oh_res2 = 0;
2276
2277 /* are we copying a commit or unmount record? */
2278 ophdr->oh_flags = flags;
2279
2280 /*
2281 * We've seen logs corrupted with bad transaction client ids. This
2282 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2283 * and shut down the filesystem.
2284 */
2285 switch (ophdr->oh_clientid) {
2286 case XFS_TRANSACTION:
2287 case XFS_VOLUME:
2288 case XFS_LOG:
2289 break;
2290 default:
a0fa2b67 2291 xfs_warn(log->l_mp,
c9690043 2292 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2293 ophdr->oh_clientid, ticket);
2294 return NULL;
2295 }
2296
2297 return ophdr;
2298}
2299
2300/*
2301 * Set up the parameters of the region copy into the log. This has
2302 * to handle region write split across multiple log buffers - this
2303 * state is kept external to this function so that this code can
ac0e300f 2304 * be written in an obvious, self documenting manner.
b5203cd0
DC
2305 */
2306static int
2307xlog_write_setup_copy(
2308 struct xlog_ticket *ticket,
2309 struct xlog_op_header *ophdr,
2310 int space_available,
2311 int space_required,
2312 int *copy_off,
2313 int *copy_len,
2314 int *last_was_partial_copy,
2315 int *bytes_consumed)
2316{
2317 int still_to_copy;
2318
2319 still_to_copy = space_required - *bytes_consumed;
2320 *copy_off = *bytes_consumed;
2321
2322 if (still_to_copy <= space_available) {
2323 /* write of region completes here */
2324 *copy_len = still_to_copy;
2325 ophdr->oh_len = cpu_to_be32(*copy_len);
2326 if (*last_was_partial_copy)
2327 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2328 *last_was_partial_copy = 0;
2329 *bytes_consumed = 0;
2330 return 0;
2331 }
2332
2333 /* partial write of region, needs extra log op header reservation */
2334 *copy_len = space_available;
2335 ophdr->oh_len = cpu_to_be32(*copy_len);
2336 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2337 if (*last_was_partial_copy)
2338 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2339 *bytes_consumed += *copy_len;
2340 (*last_was_partial_copy)++;
2341
2342 /* account for new log op header */
2343 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2344 ticket->t_res_num_ophdrs++;
2345
2346 return sizeof(struct xlog_op_header);
2347}
2348
2349static int
2350xlog_write_copy_finish(
ad223e60 2351 struct xlog *log,
b5203cd0
DC
2352 struct xlog_in_core *iclog,
2353 uint flags,
2354 int *record_cnt,
2355 int *data_cnt,
2356 int *partial_copy,
2357 int *partial_copy_len,
2358 int log_offset,
2359 struct xlog_in_core **commit_iclog)
2360{
df732b29
CH
2361 int error;
2362
b5203cd0
DC
2363 if (*partial_copy) {
2364 /*
2365 * This iclog has already been marked WANT_SYNC by
2366 * xlog_state_get_iclog_space.
2367 */
390aab0a 2368 spin_lock(&log->l_icloglock);
b5203cd0
DC
2369 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2370 *record_cnt = 0;
2371 *data_cnt = 0;
df732b29 2372 goto release_iclog;
b5203cd0
DC
2373 }
2374
2375 *partial_copy = 0;
2376 *partial_copy_len = 0;
2377
2378 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2379 /* no more space in this iclog - push it. */
390aab0a 2380 spin_lock(&log->l_icloglock);
b5203cd0
DC
2381 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2382 *record_cnt = 0;
2383 *data_cnt = 0;
2384
69363999
CH
2385 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2386 xlog_state_switch_iclogs(log, iclog, 0);
2387 else
2388 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
5112e206 2389 xlog_is_shutdown(log));
b5203cd0 2390 if (!commit_iclog)
df732b29
CH
2391 goto release_iclog;
2392 spin_unlock(&log->l_icloglock);
b5203cd0
DC
2393 ASSERT(flags & XLOG_COMMIT_TRANS);
2394 *commit_iclog = iclog;
2395 }
2396
2397 return 0;
df732b29
CH
2398
2399release_iclog:
0dc8f7f1 2400 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
2401 spin_unlock(&log->l_icloglock);
2402 return error;
b5203cd0
DC
2403}
2404
1da177e4
LT
2405/*
2406 * Write some region out to in-core log
2407 *
2408 * This will be called when writing externally provided regions or when
2409 * writing out a commit record for a given transaction.
2410 *
2411 * General algorithm:
2412 * 1. Find total length of this write. This may include adding to the
2413 * lengths passed in.
2414 * 2. Check whether we violate the tickets reservation.
2415 * 3. While writing to this iclog
2416 * A. Reserve as much space in this iclog as can get
2417 * B. If this is first write, save away start lsn
2418 * C. While writing this region:
2419 * 1. If first write of transaction, write start record
2420 * 2. Write log operation header (header per region)
2421 * 3. Find out if we can fit entire region into this iclog
2422 * 4. Potentially, verify destination memcpy ptr
2423 * 5. Memcpy (partial) region
2424 * 6. If partial copy, release iclog; otherwise, continue
2425 * copying more regions into current iclog
2426 * 4. Mark want sync bit (in simulation mode)
2427 * 5. Release iclog for potential flush to on-disk log.
2428 *
2429 * ERRORS:
2430 * 1. Panic if reservation is overrun. This should never happen since
2431 * reservation amounts are generated internal to the filesystem.
2432 * NOTES:
2433 * 1. Tickets are single threaded data structures.
2434 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2435 * syncing routine. When a single log_write region needs to span
2436 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2437 * on all log operation writes which don't contain the end of the
2438 * region. The XLOG_END_TRANS bit is used for the in-core log
2439 * operation which contains the end of the continued log_write region.
2440 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2441 * we don't really know exactly how much space will be used. As a result,
2442 * we don't update ic_offset until the end when we know exactly how many
2443 * bytes have been written out.
2444 */
71e330b5 2445int
35a8a72f 2446xlog_write(
ad223e60 2447 struct xlog *log,
55b66332 2448 struct xfs_log_vec *log_vector,
35a8a72f
CH
2449 struct xlog_ticket *ticket,
2450 xfs_lsn_t *start_lsn,
2451 struct xlog_in_core **commit_iclog,
3468bb1c 2452 uint optype)
1da177e4 2453{
99428ad0 2454 struct xlog_in_core *iclog = NULL;
9590e9c6
DC
2455 struct xfs_log_vec *lv = log_vector;
2456 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2457 int index = 0;
99428ad0 2458 int len;
99428ad0
CH
2459 int partial_copy = 0;
2460 int partial_copy_len = 0;
2461 int contwr = 0;
2462 int record_cnt = 0;
2463 int data_cnt = 0;
df732b29 2464 int error = 0;
99428ad0 2465
93b8a585 2466 /*
9590e9c6
DC
2467 * If this is a commit or unmount transaction, we don't need a start
2468 * record to be written. We do, however, have to account for the
2469 * commit or unmount header that gets written. Hence we always have
2470 * to account for an extra xlog_op_header here.
93b8a585 2471 */
9590e9c6 2472 ticket->t_curr_res -= sizeof(struct xlog_op_header);
7d2d5653
BF
2473 if (ticket->t_curr_res < 0) {
2474 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2475 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2476 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2477 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2478 }
1da177e4 2479
3468bb1c
DC
2480 len = xlog_write_calc_vec_length(ticket, log_vector, optype);
2481 if (start_lsn)
2482 *start_lsn = 0;
fd63875c 2483 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2484 void *ptr;
99428ad0 2485 int log_offset;
1da177e4 2486
99428ad0
CH
2487 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2488 &contwr, &log_offset);
2489 if (error)
2490 return error;
1da177e4 2491
99428ad0 2492 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2493 ptr = iclog->ic_datap + log_offset;
1da177e4 2494
eef983ff 2495 /* Start_lsn is the first lsn written to. */
3468bb1c 2496 if (start_lsn && !*start_lsn)
99428ad0 2497 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
b5203cd0 2498
99428ad0
CH
2499 /*
2500 * This loop writes out as many regions as can fit in the amount
2501 * of space which was allocated by xlog_state_get_iclog_space().
2502 */
fd63875c
DC
2503 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2504 struct xfs_log_iovec *reg;
99428ad0 2505 struct xlog_op_header *ophdr;
99428ad0
CH
2506 int copy_len;
2507 int copy_off;
fd63875c 2508 bool ordered = false;
3468bb1c 2509 bool wrote_start_rec = false;
fd63875c
DC
2510
2511 /* ordered log vectors have no regions to write */
2512 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2513 ASSERT(lv->lv_niovecs == 0);
2514 ordered = true;
2515 goto next_lv;
2516 }
99428ad0 2517
fd63875c 2518 reg = &vecp[index];
c8ce540d
DW
2519 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2520 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0 2521
7ec94921
DC
2522 /*
2523 * Before we start formatting log vectors, we need to
2524 * write a start record. Only do this for the first
2525 * iclog we write to.
2526 */
3468bb1c 2527 if (optype & XLOG_START_TRANS) {
7ec94921 2528 xlog_write_start_rec(ptr, ticket);
e6b1f273 2529 xlog_write_adv_cnt(&ptr, &len, &log_offset,
7ec94921 2530 sizeof(struct xlog_op_header));
3468bb1c
DC
2531 optype &= ~XLOG_START_TRANS;
2532 wrote_start_rec = true;
99428ad0 2533 }
b5203cd0 2534
3468bb1c 2535 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
99428ad0 2536 if (!ophdr)
2451337d 2537 return -EIO;
99428ad0 2538
e6b1f273 2539 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2540 sizeof(struct xlog_op_header));
2541
2542 len += xlog_write_setup_copy(ticket, ophdr,
2543 iclog->ic_size-log_offset,
55b66332 2544 reg->i_len,
99428ad0
CH
2545 &copy_off, &copy_len,
2546 &partial_copy,
2547 &partial_copy_len);
2548 xlog_verify_dest_ptr(log, ptr);
2549
91f9f5fe
ES
2550 /*
2551 * Copy region.
2552 *
2553 * Unmount records just log an opheader, so can have
2554 * empty payloads with no data region to copy. Hence we
2555 * only copy the payload if the vector says it has data
2556 * to copy.
2557 */
99428ad0 2558 ASSERT(copy_len >= 0);
91f9f5fe
ES
2559 if (copy_len > 0) {
2560 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2561 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2562 copy_len);
2563 }
7ec94921 2564 copy_len += sizeof(struct xlog_op_header);
99428ad0 2565 record_cnt++;
3468bb1c 2566 if (wrote_start_rec) {
7ec94921
DC
2567 copy_len += sizeof(struct xlog_op_header);
2568 record_cnt++;
7ec94921 2569 }
99428ad0
CH
2570 data_cnt += contwr ? copy_len : 0;
2571
3468bb1c 2572 error = xlog_write_copy_finish(log, iclog, optype,
99428ad0
CH
2573 &record_cnt, &data_cnt,
2574 &partial_copy,
2575 &partial_copy_len,
2576 log_offset,
2577 commit_iclog);
2578 if (error)
2579 return error;
2580
2581 /*
2582 * if we had a partial copy, we need to get more iclog
2583 * space but we don't want to increment the region
2584 * index because there is still more is this region to
2585 * write.
2586 *
2587 * If we completed writing this region, and we flushed
2588 * the iclog (indicated by resetting of the record
2589 * count), then we also need to get more log space. If
2590 * this was the last record, though, we are done and
2591 * can just return.
2592 */
2593 if (partial_copy)
2594 break;
2595
55b66332 2596 if (++index == lv->lv_niovecs) {
fd63875c 2597next_lv:
55b66332
DC
2598 lv = lv->lv_next;
2599 index = 0;
2600 if (lv)
2601 vecp = lv->lv_iovecp;
2602 }
749f24f3 2603 if (record_cnt == 0 && !ordered) {
55b66332 2604 if (!lv)
99428ad0
CH
2605 return 0;
2606 break;
2607 }
2608 }
2609 }
2610
2611 ASSERT(len == 0);
2612
390aab0a 2613 spin_lock(&log->l_icloglock);
99428ad0 2614 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
df732b29 2615 if (commit_iclog) {
3468bb1c 2616 ASSERT(optype & XLOG_COMMIT_TRANS);
df732b29
CH
2617 *commit_iclog = iclog;
2618 } else {
0dc8f7f1 2619 error = xlog_state_release_iclog(log, iclog, 0);
df732b29 2620 }
390aab0a 2621 spin_unlock(&log->l_icloglock);
1da177e4 2622
df732b29 2623 return error;
99428ad0 2624}
1da177e4 2625
c814b4f2
CH
2626static void
2627xlog_state_activate_iclog(
2628 struct xlog_in_core *iclog,
2629 int *iclogs_changed)
2630{
2631 ASSERT(list_empty_careful(&iclog->ic_callbacks));
956f6daa 2632 trace_xlog_iclog_activate(iclog, _RET_IP_);
c814b4f2
CH
2633
2634 /*
2635 * If the number of ops in this iclog indicate it just contains the
2636 * dummy transaction, we can change state into IDLE (the second time
2637 * around). Otherwise we should change the state into NEED a dummy.
2638 * We don't need to cover the dummy.
2639 */
2640 if (*iclogs_changed == 0 &&
2641 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2642 *iclogs_changed = 1;
2643 } else {
2644 /*
2645 * We have two dirty iclogs so start over. This could also be
2646 * num of ops indicating this is not the dummy going out.
2647 */
2648 *iclogs_changed = 2;
2649 }
2650
2651 iclog->ic_state = XLOG_STATE_ACTIVE;
2652 iclog->ic_offset = 0;
2653 iclog->ic_header.h_num_logops = 0;
2654 memset(iclog->ic_header.h_cycle_data, 0,
2655 sizeof(iclog->ic_header.h_cycle_data));
2656 iclog->ic_header.h_lsn = 0;
9d110014 2657 iclog->ic_header.h_tail_lsn = 0;
c814b4f2
CH
2658}
2659
0383f543 2660/*
c814b4f2
CH
2661 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2662 * ACTIVE after iclog I/O has completed.
1da177e4 2663 */
c814b4f2
CH
2664static void
2665xlog_state_activate_iclogs(
0383f543 2666 struct xlog *log,
c814b4f2 2667 int *iclogs_changed)
1da177e4 2668{
c814b4f2 2669 struct xlog_in_core *iclog = log->l_iclog;
1da177e4 2670
1da177e4 2671 do {
c814b4f2
CH
2672 if (iclog->ic_state == XLOG_STATE_DIRTY)
2673 xlog_state_activate_iclog(iclog, iclogs_changed);
2674 /*
2675 * The ordering of marking iclogs ACTIVE must be maintained, so
2676 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2677 */
2678 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2679 break;
2680 } while ((iclog = iclog->ic_next) != log->l_iclog);
2681}
0383f543 2682
c814b4f2
CH
2683static int
2684xlog_covered_state(
2685 int prev_state,
2686 int iclogs_changed)
2687{
0383f543 2688 /*
b0eb9e11
BF
2689 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2690 * wrote the first covering record (DONE). We go to IDLE if we just
2691 * wrote the second covering record (DONE2) and remain in IDLE until a
2692 * non-covering write occurs.
0383f543 2693 */
c814b4f2
CH
2694 switch (prev_state) {
2695 case XLOG_STATE_COVER_IDLE:
b0eb9e11
BF
2696 if (iclogs_changed == 1)
2697 return XLOG_STATE_COVER_IDLE;
53004ee7 2698 fallthrough;
c814b4f2
CH
2699 case XLOG_STATE_COVER_NEED:
2700 case XLOG_STATE_COVER_NEED2:
2701 break;
2702 case XLOG_STATE_COVER_DONE:
2703 if (iclogs_changed == 1)
2704 return XLOG_STATE_COVER_NEED2;
2705 break;
2706 case XLOG_STATE_COVER_DONE2:
2707 if (iclogs_changed == 1)
2708 return XLOG_STATE_COVER_IDLE;
2709 break;
2710 default:
2711 ASSERT(0);
2712 }
0383f543 2713
c814b4f2
CH
2714 return XLOG_STATE_COVER_NEED;
2715}
1da177e4 2716
c814b4f2
CH
2717STATIC void
2718xlog_state_clean_iclog(
2719 struct xlog *log,
2720 struct xlog_in_core *dirty_iclog)
2721{
2722 int iclogs_changed = 0;
1da177e4 2723
956f6daa
DC
2724 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2725
5781464b 2726 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2727
c814b4f2
CH
2728 xlog_state_activate_iclogs(log, &iclogs_changed);
2729 wake_up_all(&dirty_iclog->ic_force_wait);
2730
2731 if (iclogs_changed) {
2732 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2733 iclogs_changed);
1da177e4 2734 }
0383f543 2735}
1da177e4
LT
2736
2737STATIC xfs_lsn_t
2738xlog_get_lowest_lsn(
9bff3132 2739 struct xlog *log)
1da177e4 2740{
9bff3132
CH
2741 struct xlog_in_core *iclog = log->l_iclog;
2742 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2743
1da177e4 2744 do {
1858bb0b
CH
2745 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2746 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2747 continue;
2748
2749 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2750 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2751 lowest_lsn = lsn;
9bff3132
CH
2752 } while ((iclog = iclog->ic_next) != log->l_iclog);
2753
014c2544 2754 return lowest_lsn;
1da177e4
LT
2755}
2756
14e15f1b
DC
2757/*
2758 * Completion of a iclog IO does not imply that a transaction has completed, as
2759 * transactions can be large enough to span many iclogs. We cannot change the
2760 * tail of the log half way through a transaction as this may be the only
2761 * transaction in the log and moving the tail to point to the middle of it
2762 * will prevent recovery from finding the start of the transaction. Hence we
2763 * should only update the last_sync_lsn if this iclog contains transaction
2764 * completion callbacks on it.
2765 *
2766 * We have to do this before we drop the icloglock to ensure we are the only one
2767 * that can update it.
2768 *
2769 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2770 * the reservation grant head pushing. This is due to the fact that the push
2771 * target is bound by the current last_sync_lsn value. Hence if we have a large
2772 * amount of log space bound up in this committing transaction then the
2773 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2774 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2775 * should push the AIL to ensure the push target (and hence the grant head) is
2776 * no longer bound by the old log head location and can move forwards and make
2777 * progress again.
2778 */
2779static void
2780xlog_state_set_callback(
2781 struct xlog *log,
2782 struct xlog_in_core *iclog,
2783 xfs_lsn_t header_lsn)
2784{
956f6daa 2785 trace_xlog_iclog_callback(iclog, _RET_IP_);
14e15f1b
DC
2786 iclog->ic_state = XLOG_STATE_CALLBACK;
2787
2788 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2789 header_lsn) <= 0);
2790
2791 if (list_empty_careful(&iclog->ic_callbacks))
2792 return;
2793
2794 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2795 xlog_grant_push_ail(log, 0);
2796}
2797
5e96fa8d
DC
2798/*
2799 * Return true if we need to stop processing, false to continue to the next
2800 * iclog. The caller will need to run callbacks if the iclog is returned in the
2801 * XLOG_STATE_CALLBACK state.
2802 */
2803static bool
2804xlog_state_iodone_process_iclog(
2805 struct xlog *log,
5112e206 2806 struct xlog_in_core *iclog)
5e96fa8d
DC
2807{
2808 xfs_lsn_t lowest_lsn;
14e15f1b 2809 xfs_lsn_t header_lsn;
5e96fa8d 2810
1858bb0b
CH
2811 switch (iclog->ic_state) {
2812 case XLOG_STATE_ACTIVE:
2813 case XLOG_STATE_DIRTY:
2814 /*
2815 * Skip all iclogs in the ACTIVE & DIRTY states:
2816 */
5e96fa8d 2817 return false;
1858bb0b 2818 case XLOG_STATE_DONE_SYNC:
1858bb0b 2819 /*
4b29ab04
CH
2820 * Now that we have an iclog that is in the DONE_SYNC state, do
2821 * one more check here to see if we have chased our tail around.
2822 * If this is not the lowest lsn iclog, then we will leave it
2823 * for another completion to process.
1858bb0b
CH
2824 */
2825 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2826 lowest_lsn = xlog_get_lowest_lsn(log);
2827 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2828 return false;
2829 xlog_state_set_callback(log, iclog, header_lsn);
2830 return false;
2831 default:
2832 /*
2833 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2834 * in the DONE_SYNC state, we skip the rest and just try to
2835 * clean up.
1858bb0b 2836 */
5e96fa8d
DC
2837 return true;
2838 }
5e96fa8d
DC
2839}
2840
8bb92005
DC
2841/*
2842 * Loop over all the iclogs, running attached callbacks on them. Return true if
2843 * we ran any callbacks, indicating that we dropped the icloglock.
2844 */
2845static bool
2846xlog_state_do_iclog_callbacks(
2847 struct xlog *log)
2848 __releases(&log->l_icloglock)
2849 __acquires(&log->l_icloglock)
2850{
2851 struct xlog_in_core *first_iclog = log->l_iclog;
2852 struct xlog_in_core *iclog = first_iclog;
2853 bool ran_callback = false;
2854
2855 do {
2856 LIST_HEAD(cb_list);
2857
2858 if (!xlog_is_shutdown(log)) {
2859 if (xlog_state_iodone_process_iclog(log, iclog))
2860 break;
2861 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2862 iclog = iclog->ic_next;
2863 continue;
2864 }
2865 }
2866 list_splice_init(&iclog->ic_callbacks, &cb_list);
2867 spin_unlock(&log->l_icloglock);
2868
2869 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2870 xlog_cil_process_committed(&cb_list);
2871 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2872 ran_callback = true;
2873
2874 spin_lock(&log->l_icloglock);
2875 if (xlog_is_shutdown(log))
2876 wake_up_all(&iclog->ic_force_wait);
2877 else
2878 xlog_state_clean_iclog(log, iclog);
2879 iclog = iclog->ic_next;
2880 } while (iclog != first_iclog);
2881
2882 return ran_callback;
2883}
2884
2885
2886/*
2887 * Loop running iclog completion callbacks until there are no more iclogs in a
2888 * state that can run callbacks.
2889 */
1da177e4
LT
2890STATIC void
2891xlog_state_do_callback(
12e6a0f4 2892 struct xlog *log)
1da177e4 2893{
5e96fa8d
DC
2894 int flushcnt = 0;
2895 int repeats = 0;
1da177e4 2896
b22cd72c 2897 spin_lock(&log->l_icloglock);
8bb92005
DC
2898 while (xlog_state_do_iclog_callbacks(log)) {
2899 if (xlog_is_shutdown(log))
2900 break;
a3c6685e 2901
5112e206 2902 if (++repeats > 5000) {
a3c6685e
NS
2903 flushcnt += repeats;
2904 repeats = 0;
a0fa2b67 2905 xfs_warn(log->l_mp,
a3c6685e 2906 "%s: possible infinite loop (%d iterations)",
34a622b2 2907 __func__, flushcnt);
1da177e4 2908 }
8bb92005 2909 }
1da177e4 2910
1858bb0b 2911 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
5112e206 2912 xlog_is_shutdown(log))
eb40a875 2913 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2914
2915 spin_unlock(&log->l_icloglock);
d748c623 2916}
1da177e4
LT
2917
2918
2919/*
2920 * Finish transitioning this iclog to the dirty state.
2921 *
1da177e4 2922 * Callbacks could take time, so they are done outside the scope of the
12017faf 2923 * global state machine log lock.
1da177e4 2924 */
a8272ce0 2925STATIC void
1da177e4 2926xlog_state_done_syncing(
12e6a0f4 2927 struct xlog_in_core *iclog)
1da177e4 2928{
d15cbf2f 2929 struct xlog *log = iclog->ic_log;
1da177e4 2930
b22cd72c 2931 spin_lock(&log->l_icloglock);
155cc6b7 2932 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 2933 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
1da177e4
LT
2934
2935 /*
2936 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2937 * split log writes, on the second, we shut down the file system and
2938 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2939 */
2039a272 2940 if (!xlog_is_shutdown(log)) {
12e6a0f4 2941 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2942 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2943 }
1da177e4
LT
2944
2945 /*
2946 * Someone could be sleeping prior to writing out the next
2947 * iclog buffer, we wake them all, one will get to do the
2948 * I/O, the others get to wait for the result.
2949 */
eb40a875 2950 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2951 spin_unlock(&log->l_icloglock);
b843299b 2952 xlog_state_do_callback(log);
12e6a0f4 2953}
1da177e4
LT
2954
2955/*
2956 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2957 * sleep. We wait on the flush queue on the head iclog as that should be
2958 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2959 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2960 *
2961 * The in-core logs are used in a circular fashion. They are not used
2962 * out-of-order even when an iclog past the head is free.
2963 *
2964 * return:
2965 * * log_offset where xlog_write() can start writing into the in-core
2966 * log's data space.
2967 * * in-core log pointer to which xlog_write() should write.
2968 * * boolean indicating this is a continued write to an in-core log.
2969 * If this is the last write, then the in-core log's offset field
2970 * needs to be incremented, depending on the amount of data which
2971 * is copied.
2972 */
a8272ce0 2973STATIC int
9a8d2fdb
MT
2974xlog_state_get_iclog_space(
2975 struct xlog *log,
2976 int len,
2977 struct xlog_in_core **iclogp,
2978 struct xlog_ticket *ticket,
2979 int *continued_write,
2980 int *logoffsetp)
1da177e4 2981{
1da177e4
LT
2982 int log_offset;
2983 xlog_rec_header_t *head;
2984 xlog_in_core_t *iclog;
1da177e4
LT
2985
2986restart:
b22cd72c 2987 spin_lock(&log->l_icloglock);
2039a272 2988 if (xlog_is_shutdown(log)) {
b22cd72c 2989 spin_unlock(&log->l_icloglock);
2451337d 2990 return -EIO;
1da177e4
LT
2991 }
2992
2993 iclog = log->l_iclog;
d748c623 2994 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 2995 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
2996
2997 /* Wait for log writes to have flushed */
eb40a875 2998 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
2999 goto restart;
3000 }
d748c623 3001
1da177e4
LT
3002 head = &iclog->ic_header;
3003
155cc6b7 3004 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
3005 log_offset = iclog->ic_offset;
3006
956f6daa
DC
3007 trace_xlog_iclog_get_space(iclog, _RET_IP_);
3008
1da177e4
LT
3009 /* On the 1st write to an iclog, figure out lsn. This works
3010 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3011 * committing to. If the offset is set, that's how many blocks
3012 * must be written.
3013 */
3014 if (log_offset == 0) {
3015 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 3016 xlog_tic_add_region(ticket,
7e9c6396
TS
3017 log->l_iclog_hsize,
3018 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3019 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3020 head->h_lsn = cpu_to_be64(
03bea6fe 3021 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3022 ASSERT(log->l_curr_block >= 0);
3023 }
3024
3025 /* If there is enough room to write everything, then do it. Otherwise,
3026 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3027 * bit is on, so this will get flushed out. Don't update ic_offset
3028 * until you know exactly how many bytes get copied. Therefore, wait
3029 * until later to update ic_offset.
3030 *
3031 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3032 * can fit into remaining data section.
3033 */
3034 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
3035 int error = 0;
3036
1da177e4
LT
3037 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3038
49641f1a 3039 /*
df732b29
CH
3040 * If we are the only one writing to this iclog, sync it to
3041 * disk. We need to do an atomic compare and decrement here to
3042 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
3043 * xlog_state_release_iclog() when there is more than one
3044 * reference to the iclog.
3045 */
df732b29 3046 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
0dc8f7f1 3047 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
3048 spin_unlock(&log->l_icloglock);
3049 if (error)
3050 return error;
1da177e4
LT
3051 goto restart;
3052 }
3053
3054 /* Do we have enough room to write the full amount in the remainder
3055 * of this iclog? Or must we continue a write on the next iclog and
3056 * mark this iclog as completely taken? In the case where we switch
3057 * iclogs (to mark it taken), this particular iclog will release/sync
3058 * to disk in xlog_write().
3059 */
3060 if (len <= iclog->ic_size - iclog->ic_offset) {
3061 *continued_write = 0;
3062 iclog->ic_offset += len;
3063 } else {
3064 *continued_write = 1;
3065 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3066 }
3067 *iclogp = iclog;
3068
3069 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3070 spin_unlock(&log->l_icloglock);
1da177e4
LT
3071
3072 *logoffsetp = log_offset;
3073 return 0;
b843299b 3074}
1da177e4 3075
8b41e3f9 3076/*
b843299b
DC
3077 * The first cnt-1 times a ticket goes through here we don't need to move the
3078 * grant write head because the permanent reservation has reserved cnt times the
3079 * unit amount. Release part of current permanent unit reservation and reset
3080 * current reservation to be one units worth. Also move grant reservation head
3081 * forward.
1da177e4 3082 */
8b41e3f9
CH
3083void
3084xfs_log_ticket_regrant(
9a8d2fdb
MT
3085 struct xlog *log,
3086 struct xlog_ticket *ticket)
1da177e4 3087{
8b41e3f9 3088 trace_xfs_log_ticket_regrant(log, ticket);
0b1b213f 3089
1da177e4
LT
3090 if (ticket->t_cnt > 0)
3091 ticket->t_cnt--;
3092
28496968 3093 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3094 ticket->t_curr_res);
28496968 3095 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3096 ticket->t_curr_res);
1da177e4 3097 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3098 xlog_tic_reset_res(ticket);
0b1b213f 3099
8b41e3f9 3100 trace_xfs_log_ticket_regrant_sub(log, ticket);
0b1b213f 3101
1da177e4 3102 /* just return if we still have some of the pre-reserved space */
8b41e3f9
CH
3103 if (!ticket->t_cnt) {
3104 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3105 ticket->t_unit_res);
3106 trace_xfs_log_ticket_regrant_exit(log, ticket);
1da177e4 3107
8b41e3f9
CH
3108 ticket->t_curr_res = ticket->t_unit_res;
3109 xlog_tic_reset_res(ticket);
3110 }
1da177e4 3111
8b41e3f9
CH
3112 xfs_log_ticket_put(ticket);
3113}
1da177e4
LT
3114
3115/*
3116 * Give back the space left from a reservation.
3117 *
3118 * All the information we need to make a correct determination of space left
3119 * is present. For non-permanent reservations, things are quite easy. The
3120 * count should have been decremented to zero. We only need to deal with the
3121 * space remaining in the current reservation part of the ticket. If the
3122 * ticket contains a permanent reservation, there may be left over space which
3123 * needs to be released. A count of N means that N-1 refills of the current
3124 * reservation can be done before we need to ask for more space. The first
3125 * one goes to fill up the first current reservation. Once we run out of
3126 * space, the count will stay at zero and the only space remaining will be
3127 * in the current reservation field.
3128 */
8b41e3f9
CH
3129void
3130xfs_log_ticket_ungrant(
9a8d2fdb
MT
3131 struct xlog *log,
3132 struct xlog_ticket *ticket)
1da177e4 3133{
8b41e3f9
CH
3134 int bytes;
3135
3136 trace_xfs_log_ticket_ungrant(log, ticket);
663e496a 3137
1da177e4
LT
3138 if (ticket->t_cnt > 0)
3139 ticket->t_cnt--;
3140
8b41e3f9 3141 trace_xfs_log_ticket_ungrant_sub(log, ticket);
1da177e4 3142
663e496a
DC
3143 /*
3144 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3145 * up more space based on the remaining count.
3146 */
663e496a 3147 bytes = ticket->t_curr_res;
1da177e4
LT
3148 if (ticket->t_cnt > 0) {
3149 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3150 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3151 }
3152
28496968
CH
3153 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3154 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3155
8b41e3f9 3156 trace_xfs_log_ticket_ungrant_exit(log, ticket);
0b1b213f 3157
cfb7cdca 3158 xfs_log_space_wake(log->l_mp);
8b41e3f9 3159 xfs_log_ticket_put(ticket);
09a423a3 3160}
1da177e4 3161
1da177e4 3162/*
b843299b
DC
3163 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3164 * the current iclog pointer to the next iclog in the ring.
1da177e4
LT
3165 */
3166STATIC void
9a8d2fdb
MT
3167xlog_state_switch_iclogs(
3168 struct xlog *log,
3169 struct xlog_in_core *iclog,
3170 int eventual_size)
1da177e4
LT
3171{
3172 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
69363999 3173 assert_spin_locked(&log->l_icloglock);
956f6daa 3174 trace_xlog_iclog_switch(iclog, _RET_IP_);
69363999 3175
1da177e4
LT
3176 if (!eventual_size)
3177 eventual_size = iclog->ic_offset;
3178 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3179 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3180 log->l_prev_block = log->l_curr_block;
3181 log->l_prev_cycle = log->l_curr_cycle;
3182
3183 /* roll log?: ic_offset changed later */
3184 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3185
3186 /* Round up to next log-sunit */
a6a65fef 3187 if (log->l_iclog_roundoff > BBSIZE) {
18842e0a 3188 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
1da177e4
LT
3189 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3190 }
3191
3192 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3193 /*
3194 * Rewind the current block before the cycle is bumped to make
3195 * sure that the combined LSN never transiently moves forward
3196 * when the log wraps to the next cycle. This is to support the
3197 * unlocked sample of these fields from xlog_valid_lsn(). Most
3198 * other cases should acquire l_icloglock.
3199 */
3200 log->l_curr_block -= log->l_logBBsize;
3201 ASSERT(log->l_curr_block >= 0);
3202 smp_wmb();
1da177e4
LT
3203 log->l_curr_cycle++;
3204 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3205 log->l_curr_cycle++;
1da177e4
LT
3206 }
3207 ASSERT(iclog == log->l_iclog);
3208 log->l_iclog = iclog->ic_next;
b843299b 3209}
1da177e4 3210
8191d822
DC
3211/*
3212 * Force the iclog to disk and check if the iclog has been completed before
3213 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3214 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3215 * If completion has already occurred, tell the caller so that it can avoid an
3216 * unnecessary wait on the iclog.
3217 */
3218static int
3219xlog_force_and_check_iclog(
3220 struct xlog_in_core *iclog,
3221 bool *completed)
3222{
3223 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3224 int error;
3225
3226 *completed = false;
3227 error = xlog_force_iclog(iclog);
3228 if (error)
3229 return error;
3230
3231 /*
3232 * If the iclog has already been completed and reused the header LSN
3233 * will have been rewritten by completion
3234 */
3235 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3236 *completed = true;
3237 return 0;
3238}
3239
1da177e4
LT
3240/*
3241 * Write out all data in the in-core log as of this exact moment in time.
3242 *
3243 * Data may be written to the in-core log during this call. However,
3244 * we don't guarantee this data will be written out. A change from past
3245 * implementation means this routine will *not* write out zero length LRs.
3246 *
3247 * Basically, we try and perform an intelligent scan of the in-core logs.
3248 * If we determine there is no flushable data, we just return. There is no
3249 * flushable data if:
3250 *
3251 * 1. the current iclog is active and has no data; the previous iclog
3252 * is in the active or dirty state.
3253 * 2. the current iclog is drity, and the previous iclog is in the
3254 * active or dirty state.
3255 *
12017faf 3256 * We may sleep if:
1da177e4
LT
3257 *
3258 * 1. the current iclog is not in the active nor dirty state.
3259 * 2. the current iclog dirty, and the previous iclog is not in the
3260 * active nor dirty state.
3261 * 3. the current iclog is active, and there is another thread writing
3262 * to this particular iclog.
3263 * 4. a) the current iclog is active and has no other writers
3264 * b) when we return from flushing out this iclog, it is still
3265 * not in the active nor dirty state.
3266 */
a14a348b 3267int
60e5bb78 3268xfs_log_force(
a14a348b 3269 struct xfs_mount *mp,
60e5bb78 3270 uint flags)
1da177e4 3271{
ad223e60 3272 struct xlog *log = mp->m_log;
a14a348b 3273 struct xlog_in_core *iclog;
a14a348b 3274
ff6d6af2 3275 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3276 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3277
93b8a585 3278 xlog_cil_force(log);
71e330b5 3279
b22cd72c 3280 spin_lock(&log->l_icloglock);
5112e206 3281 if (xlog_is_shutdown(log))
e6b96570 3282 goto out_error;
1da177e4 3283
5112e206 3284 iclog = log->l_iclog;
956f6daa
DC
3285 trace_xlog_iclog_force(iclog, _RET_IP_);
3286
e6b96570
CH
3287 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3288 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3289 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3290 /*
e6b96570
CH
3291 * If the head is dirty or (active and empty), then we need to
3292 * look at the previous iclog.
3293 *
3294 * If the previous iclog is active or dirty we are done. There
3295 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3296 * previous iclog and go to sleep.
3297 */
e6b96570 3298 iclog = iclog->ic_prev;
e6b96570
CH
3299 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3300 if (atomic_read(&iclog->ic_refcnt) == 0) {
45eddb41 3301 /* We have exclusive access to this iclog. */
8191d822
DC
3302 bool completed;
3303
3304 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3305 goto out_error;
1da177e4 3306
8191d822 3307 if (completed)
e6b96570
CH
3308 goto out_unlock;
3309 } else {
3310 /*
2bf1ec0f
DC
3311 * Someone else is still writing to this iclog, so we
3312 * need to ensure that when they release the iclog it
3313 * gets synced immediately as we may be waiting on it.
e6b96570
CH
3314 */
3315 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3316 }
1da177e4 3317 }
e6b96570 3318
2bf1ec0f
DC
3319 /*
3320 * The iclog we are about to wait on may contain the checkpoint pushed
3321 * by the above xlog_cil_force() call, but it may not have been pushed
3322 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3323 * are flushed when this iclog is written.
3324 */
3325 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3326 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3327
81e5b50a
CH
3328 if (flags & XFS_LOG_SYNC)
3329 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3330out_unlock:
3331 spin_unlock(&log->l_icloglock);
3332 return 0;
3333out_error:
3334 spin_unlock(&log->l_icloglock);
3335 return -EIO;
a14a348b 3336}
1da177e4 3337
3e4da466 3338static int
5f9b4b0d
DC
3339xlog_force_lsn(
3340 struct xlog *log,
a14a348b
CH
3341 xfs_lsn_t lsn,
3342 uint flags,
3e4da466
CH
3343 int *log_flushed,
3344 bool already_slept)
1da177e4 3345{
a14a348b 3346 struct xlog_in_core *iclog;
8191d822 3347 bool completed;
71e330b5 3348
a14a348b 3349 spin_lock(&log->l_icloglock);
5112e206 3350 if (xlog_is_shutdown(log))
93806299 3351 goto out_error;
1da177e4 3352
5112e206 3353 iclog = log->l_iclog;
93806299 3354 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
956f6daa 3355 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
93806299
CH
3356 iclog = iclog->ic_next;
3357 if (iclog == log->l_iclog)
3358 goto out_unlock;
3359 }
a14a348b 3360
2bf1ec0f
DC
3361 switch (iclog->ic_state) {
3362 case XLOG_STATE_ACTIVE:
93806299
CH
3363 /*
3364 * We sleep here if we haven't already slept (e.g. this is the
3365 * first time we've looked at the correct iclog buf) and the
3366 * buffer before us is going to be sync'ed. The reason for this
3367 * is that if we are doing sync transactions here, by waiting
3368 * for the previous I/O to complete, we can allow a few more
3369 * transactions into this iclog before we close it down.
3370 *
3371 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3372 * refcnt so we can release the log (which drops the ref count).
3373 * The state switch keeps new transaction commits from using
3374 * this buffer. When the current commits finish writing into
3375 * the buffer, the refcount will drop to zero and the buffer
3376 * will go out then.
3377 */
3378 if (!already_slept &&
1858bb0b
CH
3379 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3380 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299
CH
3381 xlog_wait(&iclog->ic_prev->ic_write_wait,
3382 &log->l_icloglock);
3e4da466 3383 return -EAGAIN;
1da177e4 3384 }
8191d822 3385 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3386 goto out_error;
93806299
CH
3387 if (log_flushed)
3388 *log_flushed = 1;
8191d822
DC
3389 if (completed)
3390 goto out_unlock;
2bf1ec0f
DC
3391 break;
3392 case XLOG_STATE_WANT_SYNC:
3393 /*
3394 * This iclog may contain the checkpoint pushed by the
3395 * xlog_cil_force_seq() call, but there are other writers still
3396 * accessing it so it hasn't been pushed to disk yet. Like the
3397 * ACTIVE case above, we need to make sure caches are flushed
3398 * when this iclog is written.
3399 */
3400 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3401 break;
3402 default:
3403 /*
3404 * The entire checkpoint was written by the CIL force and is on
3405 * its way to disk already. It will be stable when it
3406 * completes, so we don't need to manipulate caches here at all.
3407 * We just need to wait for completion if necessary.
3408 */
3409 break;
93806299 3410 }
1da177e4 3411
81e5b50a
CH
3412 if (flags & XFS_LOG_SYNC)
3413 return xlog_wait_on_iclog(iclog);
93806299 3414out_unlock:
a14a348b
CH
3415 spin_unlock(&log->l_icloglock);
3416 return 0;
93806299
CH
3417out_error:
3418 spin_unlock(&log->l_icloglock);
3419 return -EIO;
a14a348b
CH
3420}
3421
3e4da466
CH
3422/*
3423 * Force the in-core log to disk for a specific LSN.
3424 *
3425 * Find in-core log with lsn.
3426 * If it is in the DIRTY state, just return.
3427 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3428 * state and go to sleep or return.
3429 * If it is in any other state, go to sleep or return.
3430 *
3431 * Synchronous forces are implemented with a wait queue. All callers trying
3432 * to force a given lsn to disk must wait on the queue attached to the
3433 * specific in-core log. When given in-core log finally completes its write
3434 * to disk, that thread will wake up all threads waiting on the queue.
3435 */
3436int
5f9b4b0d 3437xfs_log_force_seq(
3e4da466 3438 struct xfs_mount *mp,
5f9b4b0d 3439 xfs_csn_t seq,
3e4da466
CH
3440 uint flags,
3441 int *log_flushed)
3442{
5f9b4b0d
DC
3443 struct xlog *log = mp->m_log;
3444 xfs_lsn_t lsn;
3e4da466 3445 int ret;
5f9b4b0d 3446 ASSERT(seq != 0);
3e4da466
CH
3447
3448 XFS_STATS_INC(mp, xs_log_force);
5f9b4b0d 3449 trace_xfs_log_force(mp, seq, _RET_IP_);
3e4da466 3450
5f9b4b0d 3451 lsn = xlog_cil_force_seq(log, seq);
3e4da466
CH
3452 if (lsn == NULLCOMMITLSN)
3453 return 0;
3454
5f9b4b0d
DC
3455 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3456 if (ret == -EAGAIN) {
3457 XFS_STATS_INC(mp, xs_log_force_sleep);
3458 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3459 }
3e4da466
CH
3460 return ret;
3461}
3462
1da177e4 3463/*
9da096fd 3464 * Free a used ticket when its refcount falls to zero.
1da177e4 3465 */
cc09c0dc
DC
3466void
3467xfs_log_ticket_put(
3468 xlog_ticket_t *ticket)
1da177e4 3469{
cc09c0dc 3470 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3471 if (atomic_dec_and_test(&ticket->t_ref))
377bcd5f 3472 kmem_cache_free(xfs_log_ticket_zone, ticket);
cc09c0dc 3473}
1da177e4 3474
cc09c0dc
DC
3475xlog_ticket_t *
3476xfs_log_ticket_get(
3477 xlog_ticket_t *ticket)
3478{
3479 ASSERT(atomic_read(&ticket->t_ref) > 0);
3480 atomic_inc(&ticket->t_ref);
3481 return ticket;
3482}
1da177e4
LT
3483
3484/*
e773fc93
JL
3485 * Figure out the total log space unit (in bytes) that would be
3486 * required for a log ticket.
1da177e4 3487 */
a6a65fef
DC
3488static int
3489xlog_calc_unit_res(
3490 struct xlog *log,
e773fc93 3491 int unit_bytes)
1da177e4 3492{
e773fc93
JL
3493 int iclog_space;
3494 uint num_headers;
1da177e4
LT
3495
3496 /*
3497 * Permanent reservations have up to 'cnt'-1 active log operations
3498 * in the log. A unit in this case is the amount of space for one
3499 * of these log operations. Normal reservations have a cnt of 1
3500 * and their unit amount is the total amount of space required.
3501 *
3502 * The following lines of code account for non-transaction data
32fb9b57
TS
3503 * which occupy space in the on-disk log.
3504 *
3505 * Normal form of a transaction is:
3506 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3507 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3508 *
3509 * We need to account for all the leadup data and trailer data
3510 * around the transaction data.
3511 * And then we need to account for the worst case in terms of using
3512 * more space.
3513 * The worst case will happen if:
3514 * - the placement of the transaction happens to be such that the
3515 * roundoff is at its maximum
3516 * - the transaction data is synced before the commit record is synced
3517 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3518 * Therefore the commit record is in its own Log Record.
3519 * This can happen as the commit record is called with its
3520 * own region to xlog_write().
3521 * This then means that in the worst case, roundoff can happen for
3522 * the commit-rec as well.
3523 * The commit-rec is smaller than padding in this scenario and so it is
3524 * not added separately.
1da177e4
LT
3525 */
3526
32fb9b57
TS
3527 /* for trans header */
3528 unit_bytes += sizeof(xlog_op_header_t);
3529 unit_bytes += sizeof(xfs_trans_header_t);
3530
1da177e4 3531 /* for start-rec */
32fb9b57
TS
3532 unit_bytes += sizeof(xlog_op_header_t);
3533
9b9fc2b7
DC
3534 /*
3535 * for LR headers - the space for data in an iclog is the size minus
3536 * the space used for the headers. If we use the iclog size, then we
3537 * undercalculate the number of headers required.
3538 *
3539 * Furthermore - the addition of op headers for split-recs might
3540 * increase the space required enough to require more log and op
3541 * headers, so take that into account too.
3542 *
3543 * IMPORTANT: This reservation makes the assumption that if this
3544 * transaction is the first in an iclog and hence has the LR headers
3545 * accounted to it, then the remaining space in the iclog is
3546 * exclusively for this transaction. i.e. if the transaction is larger
3547 * than the iclog, it will be the only thing in that iclog.
3548 * Fundamentally, this means we must pass the entire log vector to
3549 * xlog_write to guarantee this.
3550 */
3551 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3552 num_headers = howmany(unit_bytes, iclog_space);
3553
3554 /* for split-recs - ophdrs added when data split over LRs */
3555 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3556
3557 /* add extra header reservations if we overrun */
3558 while (!num_headers ||
3559 howmany(unit_bytes, iclog_space) > num_headers) {
3560 unit_bytes += sizeof(xlog_op_header_t);
3561 num_headers++;
3562 }
32fb9b57 3563 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3564
32fb9b57
TS
3565 /* for commit-rec LR header - note: padding will subsume the ophdr */
3566 unit_bytes += log->l_iclog_hsize;
3567
a6a65fef
DC
3568 /* roundoff padding for transaction data and one for commit record */
3569 unit_bytes += 2 * log->l_iclog_roundoff;
1da177e4 3570
e773fc93
JL
3571 return unit_bytes;
3572}
3573
a6a65fef
DC
3574int
3575xfs_log_calc_unit_res(
3576 struct xfs_mount *mp,
3577 int unit_bytes)
3578{
3579 return xlog_calc_unit_res(mp->m_log, unit_bytes);
3580}
3581
e773fc93
JL
3582/*
3583 * Allocate and initialise a new log ticket.
3584 */
3585struct xlog_ticket *
3586xlog_ticket_alloc(
3587 struct xlog *log,
3588 int unit_bytes,
3589 int cnt,
3590 char client,
ca4f2589 3591 bool permanent)
e773fc93
JL
3592{
3593 struct xlog_ticket *tic;
3594 int unit_res;
3595
ca4f2589 3596 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
e773fc93 3597
a6a65fef 3598 unit_res = xlog_calc_unit_res(log, unit_bytes);
e773fc93 3599
cc09c0dc 3600 atomic_set(&tic->t_ref, 1);
14a7235f 3601 tic->t_task = current;
10547941 3602 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3603 tic->t_unit_res = unit_res;
3604 tic->t_curr_res = unit_res;
1da177e4
LT
3605 tic->t_cnt = cnt;
3606 tic->t_ocnt = cnt;
ecb3403d 3607 tic->t_tid = prandom_u32();
1da177e4 3608 tic->t_clientid = client;
9006fb91 3609 if (permanent)
1da177e4 3610 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3611
0adba536 3612 xlog_tic_reset_res(tic);
7e9c6396 3613
1da177e4 3614 return tic;
cc09c0dc 3615}
1da177e4 3616
cfcbbbd0 3617#if defined(DEBUG)
1da177e4
LT
3618/*
3619 * Make sure that the destination ptr is within the valid data region of
3620 * one of the iclogs. This uses backup pointers stored in a different
3621 * part of the log in case we trash the log structure.
3622 */
181fdfe6 3623STATIC void
e6b1f273 3624xlog_verify_dest_ptr(
ad223e60 3625 struct xlog *log,
5809d5e0 3626 void *ptr)
1da177e4
LT
3627{
3628 int i;
3629 int good_ptr = 0;
3630
e6b1f273
CH
3631 for (i = 0; i < log->l_iclog_bufs; i++) {
3632 if (ptr >= log->l_iclog_bak[i] &&
3633 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3634 good_ptr++;
3635 }
e6b1f273
CH
3636
3637 if (!good_ptr)
a0fa2b67 3638 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3639}
1da177e4 3640
da8a1a4a
DC
3641/*
3642 * Check to make sure the grant write head didn't just over lap the tail. If
3643 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3644 * the cycles differ by exactly one and check the byte count.
3645 *
3646 * This check is run unlocked, so can give false positives. Rather than assert
3647 * on failures, use a warn-once flag and a panic tag to allow the admin to
3648 * determine if they want to panic the machine when such an error occurs. For
3649 * debug kernels this will have the same effect as using an assert but, unlinke
3650 * an assert, it can be turned off at runtime.
3651 */
3f336c6f
DC
3652STATIC void
3653xlog_verify_grant_tail(
ad223e60 3654 struct xlog *log)
3f336c6f 3655{
1c3cb9ec 3656 int tail_cycle, tail_blocks;
a69ed03c 3657 int cycle, space;
3f336c6f 3658
28496968 3659 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3660 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3661 if (tail_cycle != cycle) {
da8a1a4a 3662 if (cycle - 1 != tail_cycle &&
e1d06e5f 3663 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
da8a1a4a
DC
3664 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3665 "%s: cycle - 1 != tail_cycle", __func__);
da8a1a4a
DC
3666 }
3667
3668 if (space > BBTOB(tail_blocks) &&
e1d06e5f 3669 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
da8a1a4a
DC
3670 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3671 "%s: space > BBTOB(tail_blocks)", __func__);
da8a1a4a 3672 }
3f336c6f
DC
3673 }
3674}
3675
1da177e4
LT
3676/* check if it will fit */
3677STATIC void
9a8d2fdb
MT
3678xlog_verify_tail_lsn(
3679 struct xlog *log,
9d110014 3680 struct xlog_in_core *iclog)
1da177e4 3681{
9d110014
DC
3682 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3683 int blocks;
1da177e4
LT
3684
3685 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3686 blocks =
3687 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3688 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3689 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3690 } else {
3691 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3692
3693 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3694 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3695
3696 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3697 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3698 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4 3699 }
b843299b 3700}
1da177e4
LT
3701
3702/*
3703 * Perform a number of checks on the iclog before writing to disk.
3704 *
3705 * 1. Make sure the iclogs are still circular
3706 * 2. Make sure we have a good magic number
3707 * 3. Make sure we don't have magic numbers in the data
3708 * 4. Check fields of each log operation header for:
3709 * A. Valid client identifier
3710 * B. tid ptr value falls in valid ptr space (user space code)
3711 * C. Length in log record header is correct according to the
3712 * individual operation headers within record.
3713 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3714 * log, check the preceding blocks of the physical log to make sure all
3715 * the cycle numbers agree with the current cycle number.
3716 */
3717STATIC void
9a8d2fdb
MT
3718xlog_verify_iclog(
3719 struct xlog *log,
3720 struct xlog_in_core *iclog,
abca1f33 3721 int count)
1da177e4
LT
3722{
3723 xlog_op_header_t *ophead;
3724 xlog_in_core_t *icptr;
3725 xlog_in_core_2_t *xhdr;
5809d5e0 3726 void *base_ptr, *ptr, *p;
db9d67d6 3727 ptrdiff_t field_offset;
c8ce540d 3728 uint8_t clientid;
1da177e4
LT
3729 int len, i, j, k, op_len;
3730 int idx;
1da177e4
LT
3731
3732 /* check validity of iclog pointers */
b22cd72c 3733 spin_lock(&log->l_icloglock);
1da177e4 3734 icptr = log->l_iclog;
643f7c4e
GB
3735 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3736 ASSERT(icptr);
3737
1da177e4 3738 if (icptr != log->l_iclog)
a0fa2b67 3739 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3740 spin_unlock(&log->l_icloglock);
1da177e4
LT
3741
3742 /* check log magic numbers */
69ef921b 3743 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3744 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3745
5809d5e0
CH
3746 base_ptr = ptr = &iclog->ic_header;
3747 p = &iclog->ic_header;
3748 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3749 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3750 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3751 __func__);
1da177e4
LT
3752 }
3753
3754 /* check fields */
b53e675d 3755 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3756 base_ptr = ptr = iclog->ic_datap;
3757 ophead = ptr;
b28708d6 3758 xhdr = iclog->ic_data;
1da177e4 3759 for (i = 0; i < len; i++) {
5809d5e0 3760 ophead = ptr;
1da177e4
LT
3761
3762 /* clientid is only 1 byte */
5809d5e0
CH
3763 p = &ophead->oh_clientid;
3764 field_offset = p - base_ptr;
abca1f33 3765 if (field_offset & 0x1ff) {
1da177e4
LT
3766 clientid = ophead->oh_clientid;
3767 } else {
b2a922cd 3768 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3769 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3770 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3771 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3772 clientid = xlog_get_client_id(
3773 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3774 } else {
03bea6fe
CH
3775 clientid = xlog_get_client_id(
3776 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3777 }
3778 }
3779 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3780 xfs_warn(log->l_mp,
c9690043 3781 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3782 __func__, clientid, ophead,
3783 (unsigned long)field_offset);
1da177e4
LT
3784
3785 /* check length */
5809d5e0
CH
3786 p = &ophead->oh_len;
3787 field_offset = p - base_ptr;
abca1f33 3788 if (field_offset & 0x1ff) {
67fcb7bf 3789 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3790 } else {
db9d67d6
CH
3791 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3792 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3793 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3794 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3795 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3796 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3797 } else {
b53e675d 3798 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3799 }
3800 }
3801 ptr += sizeof(xlog_op_header_t) + op_len;
3802 }
b843299b 3803}
cfcbbbd0 3804#endif
1da177e4 3805
1da177e4 3806/*
b36d4651
DC
3807 * Perform a forced shutdown on the log. This should be called once and once
3808 * only by the high level filesystem shutdown code to shut the log subsystem
3809 * down cleanly.
9da1ab18 3810 *
b36d4651
DC
3811 * Our main objectives here are to make sure that:
3812 * a. if the shutdown was not due to a log IO error, flush the logs to
3813 * disk. Anything modified after this is ignored.
3814 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3815 * parties to find out. Nothing new gets queued after this is done.
3816 * c. Tasks sleeping on log reservations, pinned objects and
3817 * other resources get woken up.
5112e206 3818 *
b36d4651
DC
3819 * Return true if the shutdown cause was a log IO error and we actually shut the
3820 * log down.
1da177e4 3821 */
b36d4651
DC
3822bool
3823xlog_force_shutdown(
3824 struct xlog *log,
3825 int shutdown_flags)
1da177e4 3826{
b36d4651 3827 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
3828
3829 /*
b36d4651
DC
3830 * If this happens during log recovery then we aren't using the runtime
3831 * log mechanisms yet so there's nothing to shut down.
1da177e4 3832 */
b36d4651
DC
3833 if (!log || xlog_in_recovery(log))
3834 return false;
1da177e4 3835
b36d4651 3836 ASSERT(!xlog_is_shutdown(log));
9da1ab18
DC
3837
3838 /*
a870fe6d 3839 * Flush all the completed transactions to disk before marking the log
b36d4651
DC
3840 * being shut down. We need to do this first as shutting down the log
3841 * before the force will prevent the log force from flushing the iclogs
3842 * to disk.
3843 *
3844 * Re-entry due to a log IO error shutdown during the log force is
3845 * prevented by the atomicity of higher level shutdown code.
9da1ab18 3846 */
b36d4651
DC
3847 if (!log_error)
3848 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
9da1ab18 3849
1da177e4 3850 /*
b36d4651
DC
3851 * Atomically set the shutdown state. If the shutdown state is already
3852 * set, there someone else is performing the shutdown and so we are done
3853 * here. This should never happen because we should only ever get called
3854 * once by the first shutdown caller.
3855 *
3856 * Much of the log state machine transitions assume that shutdown state
3857 * cannot change once they hold the log->l_icloglock. Hence we need to
3858 * hold that lock here, even though we use the atomic test_and_set_bit()
3859 * operation to set the shutdown state.
1da177e4 3860 */
b22cd72c 3861 spin_lock(&log->l_icloglock);
b36d4651
DC
3862 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3863 spin_unlock(&log->l_icloglock);
3864 ASSERT(0);
3865 return false;
3866 }
b22cd72c 3867 spin_unlock(&log->l_icloglock);
1da177e4
LT
3868
3869 /*
10547941
DC
3870 * We don't want anybody waiting for log reservations after this. That
3871 * means we have to wake up everybody queued up on reserveq as well as
3872 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3873 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3874 * action is protected by the grant locks.
1da177e4 3875 */
a79bf2d7
CH
3876 xlog_grant_head_wake_all(&log->l_reserve_head);
3877 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3878
1da177e4 3879 /*
ac983517
DC
3880 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3881 * as if the log writes were completed. The abort handling in the log
3882 * item committed callback functions will do this again under lock to
3883 * avoid races.
1da177e4 3884 */
cdea5459 3885 spin_lock(&log->l_cilp->xc_push_lock);
ac983517 3886 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3887 spin_unlock(&log->l_cilp->xc_push_lock);
12e6a0f4 3888 xlog_state_do_callback(log);
1da177e4 3889
b36d4651 3890 return log_error;
1da177e4
LT
3891}
3892
ba0f32d4 3893STATIC int
9a8d2fdb
MT
3894xlog_iclogs_empty(
3895 struct xlog *log)
1da177e4
LT
3896{
3897 xlog_in_core_t *iclog;
3898
3899 iclog = log->l_iclog;
3900 do {
3901 /* endianness does not matter here, zero is zero in
3902 * any language.
3903 */
3904 if (iclog->ic_header.h_num_logops)
014c2544 3905 return 0;
1da177e4
LT
3906 iclog = iclog->ic_next;
3907 } while (iclog != log->l_iclog);
014c2544 3908 return 1;
1da177e4 3909}
f661f1e0 3910
a45086e2
BF
3911/*
3912 * Verify that an LSN stamped into a piece of metadata is valid. This is
3913 * intended for use in read verifiers on v5 superblocks.
3914 */
3915bool
3916xfs_log_check_lsn(
3917 struct xfs_mount *mp,
3918 xfs_lsn_t lsn)
3919{
3920 struct xlog *log = mp->m_log;
3921 bool valid;
3922
3923 /*
3924 * norecovery mode skips mount-time log processing and unconditionally
3925 * resets the in-core LSN. We can't validate in this mode, but
3926 * modifications are not allowed anyways so just return true.
3927 */
3928 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3929 return true;
3930
3931 /*
3932 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3933 * handled by recovery and thus safe to ignore here.
3934 */
3935 if (lsn == NULLCOMMITLSN)
3936 return true;
3937
3938 valid = xlog_valid_lsn(mp->m_log, lsn);
3939
3940 /* warn the user about what's gone wrong before verifier failure */
3941 if (!valid) {
3942 spin_lock(&log->l_icloglock);
3943 xfs_warn(mp,
3944"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3945"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3946 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3947 log->l_curr_cycle, log->l_curr_block);
3948 spin_unlock(&log->l_icloglock);
3949 }
3950
3951 return valid;
3952}
0c60d3aa 3953
2b73a2c8
DW
3954/*
3955 * Notify the log that we're about to start using a feature that is protected
3956 * by a log incompat feature flag. This will prevent log covering from
3957 * clearing those flags.
3958 */
3959void
3960xlog_use_incompat_feat(
3961 struct xlog *log)
3962{
3963 down_read(&log->l_incompat_users);
3964}
3965
3966/* Notify the log that we've finished using log incompat features. */
3967void
3968xlog_drop_incompat_feat(
3969 struct xlog *log)
3970{
3971 up_read(&log->l_incompat_users);
3972}