Merge tag 'mfd-next-5.18' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-block.git] / fs / xfs / xfs_log.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
7b718769
NS
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
1da177e4 5 */
1da177e4 6#include "xfs.h"
a844f451 7#include "xfs_fs.h"
70a9883c 8#include "xfs_shared.h"
a4fbe6ab 9#include "xfs_format.h"
239880ef
DC
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
1da177e4 12#include "xfs_mount.h"
e9e899a2 13#include "xfs_errortag.h"
1da177e4 14#include "xfs_error.h"
239880ef
DC
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
1da177e4 18#include "xfs_log_priv.h"
0b1b213f 19#include "xfs_trace.h"
baff4e44 20#include "xfs_sysfs.h"
61e63ecb 21#include "xfs_sb.h"
39353ff6 22#include "xfs_health.h"
1da177e4 23
182696fb 24struct kmem_cache *xfs_log_ticket_cache;
1da177e4 25
1da177e4 26/* Local miscellaneous function prototypes */
9a8d2fdb
MT
27STATIC struct xlog *
28xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
ad223e60
MT
33STATIC int
34xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
9a8d2fdb
MT
37STATIC void
38xlog_dealloc_log(
39 struct xlog *log);
1da177e4
LT
40
41/* local state machine functions */
d15cbf2f 42STATIC void xlog_state_done_syncing(
12e6a0f4 43 struct xlog_in_core *iclog);
502a01fa
DC
44STATIC void xlog_state_do_callback(
45 struct xlog *log);
9a8d2fdb
MT
46STATIC int
47xlog_state_get_iclog_space(
48 struct xlog *log,
49 int len,
50 struct xlog_in_core **iclog,
51 struct xlog_ticket *ticket,
52 int *continued_write,
53 int *logoffsetp);
9a8d2fdb 54STATIC void
ad223e60 55xlog_grant_push_ail(
9a8d2fdb
MT
56 struct xlog *log,
57 int need_bytes);
58STATIC void
df732b29
CH
59xlog_sync(
60 struct xlog *log,
61 struct xlog_in_core *iclog);
cfcbbbd0 62#if defined(DEBUG)
9a8d2fdb
MT
63STATIC void
64xlog_verify_dest_ptr(
65 struct xlog *log,
5809d5e0 66 void *ptr);
ad223e60
MT
67STATIC void
68xlog_verify_grant_tail(
9a8d2fdb
MT
69 struct xlog *log);
70STATIC void
71xlog_verify_iclog(
72 struct xlog *log,
73 struct xlog_in_core *iclog,
abca1f33 74 int count);
9a8d2fdb
MT
75STATIC void
76xlog_verify_tail_lsn(
77 struct xlog *log,
9d110014 78 struct xlog_in_core *iclog);
1da177e4
LT
79#else
80#define xlog_verify_dest_ptr(a,b)
3f336c6f 81#define xlog_verify_grant_tail(a)
abca1f33 82#define xlog_verify_iclog(a,b,c)
9d110014 83#define xlog_verify_tail_lsn(a,b)
1da177e4
LT
84#endif
85
9a8d2fdb
MT
86STATIC int
87xlog_iclogs_empty(
88 struct xlog *log);
1da177e4 89
303591a0
BF
90static int
91xfs_log_cover(struct xfs_mount *);
92
dd954c69 93static void
663e496a 94xlog_grant_sub_space(
ad223e60
MT
95 struct xlog *log,
96 atomic64_t *head,
97 int bytes)
dd954c69 98{
d0eb2f38
DC
99 int64_t head_val = atomic64_read(head);
100 int64_t new, old;
a69ed03c 101
d0eb2f38
DC
102 do {
103 int cycle, space;
a69ed03c 104
d0eb2f38 105 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 106
d0eb2f38
DC
107 space -= bytes;
108 if (space < 0) {
109 space += log->l_logsize;
110 cycle--;
111 }
112
113 old = head_val;
114 new = xlog_assign_grant_head_val(cycle, space);
115 head_val = atomic64_cmpxchg(head, old, new);
116 } while (head_val != old);
dd954c69
CH
117}
118
119static void
663e496a 120xlog_grant_add_space(
ad223e60
MT
121 struct xlog *log,
122 atomic64_t *head,
123 int bytes)
dd954c69 124{
d0eb2f38
DC
125 int64_t head_val = atomic64_read(head);
126 int64_t new, old;
a69ed03c 127
d0eb2f38
DC
128 do {
129 int tmp;
130 int cycle, space;
a69ed03c 131
d0eb2f38 132 xlog_crack_grant_head_val(head_val, &cycle, &space);
a69ed03c 133
d0eb2f38
DC
134 tmp = log->l_logsize - space;
135 if (tmp > bytes)
136 space += bytes;
137 else {
138 space = bytes - tmp;
139 cycle++;
140 }
141
142 old = head_val;
143 new = xlog_assign_grant_head_val(cycle, space);
144 head_val = atomic64_cmpxchg(head, old, new);
145 } while (head_val != old);
dd954c69 146}
a69ed03c 147
c303c5b8
CH
148STATIC void
149xlog_grant_head_init(
150 struct xlog_grant_head *head)
151{
152 xlog_assign_grant_head(&head->grant, 1, 0);
153 INIT_LIST_HEAD(&head->waiters);
154 spin_lock_init(&head->lock);
155}
156
a79bf2d7
CH
157STATIC void
158xlog_grant_head_wake_all(
159 struct xlog_grant_head *head)
160{
161 struct xlog_ticket *tic;
162
163 spin_lock(&head->lock);
164 list_for_each_entry(tic, &head->waiters, t_queue)
165 wake_up_process(tic->t_task);
166 spin_unlock(&head->lock);
167}
168
e179840d
CH
169static inline int
170xlog_ticket_reservation(
ad223e60 171 struct xlog *log,
e179840d
CH
172 struct xlog_grant_head *head,
173 struct xlog_ticket *tic)
9f9c19ec 174{
e179840d
CH
175 if (head == &log->l_write_head) {
176 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
177 return tic->t_unit_res;
178 } else {
9f9c19ec 179 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
e179840d 180 return tic->t_unit_res * tic->t_cnt;
9f9c19ec 181 else
e179840d 182 return tic->t_unit_res;
9f9c19ec 183 }
9f9c19ec
CH
184}
185
186STATIC bool
e179840d 187xlog_grant_head_wake(
ad223e60 188 struct xlog *log,
e179840d 189 struct xlog_grant_head *head,
9f9c19ec
CH
190 int *free_bytes)
191{
192 struct xlog_ticket *tic;
193 int need_bytes;
7c107afb 194 bool woken_task = false;
9f9c19ec 195
e179840d 196 list_for_each_entry(tic, &head->waiters, t_queue) {
7c107afb
DC
197
198 /*
199 * There is a chance that the size of the CIL checkpoints in
200 * progress at the last AIL push target calculation resulted in
201 * limiting the target to the log head (l_last_sync_lsn) at the
202 * time. This may not reflect where the log head is now as the
203 * CIL checkpoints may have completed.
204 *
205 * Hence when we are woken here, it may be that the head of the
206 * log that has moved rather than the tail. As the tail didn't
207 * move, there still won't be space available for the
208 * reservation we require. However, if the AIL has already
209 * pushed to the target defined by the old log head location, we
210 * will hang here waiting for something else to update the AIL
211 * push target.
212 *
213 * Therefore, if there isn't space to wake the first waiter on
214 * the grant head, we need to push the AIL again to ensure the
215 * target reflects both the current log tail and log head
216 * position before we wait for the tail to move again.
217 */
218
e179840d 219 need_bytes = xlog_ticket_reservation(log, head, tic);
7c107afb
DC
220 if (*free_bytes < need_bytes) {
221 if (!woken_task)
222 xlog_grant_push_ail(log, need_bytes);
9f9c19ec 223 return false;
7c107afb 224 }
9f9c19ec 225
e179840d
CH
226 *free_bytes -= need_bytes;
227 trace_xfs_log_grant_wake_up(log, tic);
14a7235f 228 wake_up_process(tic->t_task);
7c107afb 229 woken_task = true;
9f9c19ec
CH
230 }
231
232 return true;
233}
234
235STATIC int
23ee3df3 236xlog_grant_head_wait(
ad223e60 237 struct xlog *log,
23ee3df3 238 struct xlog_grant_head *head,
9f9c19ec 239 struct xlog_ticket *tic,
a30b0367
DC
240 int need_bytes) __releases(&head->lock)
241 __acquires(&head->lock)
9f9c19ec 242{
23ee3df3 243 list_add_tail(&tic->t_queue, &head->waiters);
9f9c19ec
CH
244
245 do {
2039a272 246 if (xlog_is_shutdown(log))
9f9c19ec
CH
247 goto shutdown;
248 xlog_grant_push_ail(log, need_bytes);
249
14a7235f 250 __set_current_state(TASK_UNINTERRUPTIBLE);
23ee3df3 251 spin_unlock(&head->lock);
14a7235f 252
ff6d6af2 253 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
9f9c19ec 254
14a7235f
CH
255 trace_xfs_log_grant_sleep(log, tic);
256 schedule();
9f9c19ec
CH
257 trace_xfs_log_grant_wake(log, tic);
258
23ee3df3 259 spin_lock(&head->lock);
2039a272 260 if (xlog_is_shutdown(log))
9f9c19ec 261 goto shutdown;
23ee3df3 262 } while (xlog_space_left(log, &head->grant) < need_bytes);
9f9c19ec
CH
263
264 list_del_init(&tic->t_queue);
265 return 0;
266shutdown:
267 list_del_init(&tic->t_queue);
2451337d 268 return -EIO;
9f9c19ec
CH
269}
270
42ceedb3
CH
271/*
272 * Atomically get the log space required for a log ticket.
273 *
274 * Once a ticket gets put onto head->waiters, it will only return after the
275 * needed reservation is satisfied.
276 *
277 * This function is structured so that it has a lock free fast path. This is
278 * necessary because every new transaction reservation will come through this
279 * path. Hence any lock will be globally hot if we take it unconditionally on
280 * every pass.
281 *
282 * As tickets are only ever moved on and off head->waiters under head->lock, we
283 * only need to take that lock if we are going to add the ticket to the queue
284 * and sleep. We can avoid taking the lock if the ticket was never added to
285 * head->waiters because the t_queue list head will be empty and we hold the
286 * only reference to it so it can safely be checked unlocked.
287 */
288STATIC int
289xlog_grant_head_check(
ad223e60 290 struct xlog *log,
42ceedb3
CH
291 struct xlog_grant_head *head,
292 struct xlog_ticket *tic,
293 int *need_bytes)
294{
295 int free_bytes;
296 int error = 0;
297
e1d06e5f 298 ASSERT(!xlog_in_recovery(log));
42ceedb3
CH
299
300 /*
301 * If there are other waiters on the queue then give them a chance at
302 * logspace before us. Wake up the first waiters, if we do not wake
303 * up all the waiters then go to sleep waiting for more free space,
304 * otherwise try to get some space for this transaction.
305 */
306 *need_bytes = xlog_ticket_reservation(log, head, tic);
307 free_bytes = xlog_space_left(log, &head->grant);
308 if (!list_empty_careful(&head->waiters)) {
309 spin_lock(&head->lock);
310 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
311 free_bytes < *need_bytes) {
312 error = xlog_grant_head_wait(log, head, tic,
313 *need_bytes);
314 }
315 spin_unlock(&head->lock);
316 } else if (free_bytes < *need_bytes) {
317 spin_lock(&head->lock);
318 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
319 spin_unlock(&head->lock);
320 }
321
322 return error;
323}
324
0adba536
CH
325static void
326xlog_tic_reset_res(xlog_ticket_t *tic)
327{
328 tic->t_res_num = 0;
329 tic->t_res_arr_sum = 0;
330 tic->t_res_num_ophdrs = 0;
331}
332
333static void
334xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
335{
336 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
337 /* add to overflow and start again */
338 tic->t_res_o_flow += tic->t_res_arr_sum;
339 tic->t_res_num = 0;
340 tic->t_res_arr_sum = 0;
341 }
342
343 tic->t_res_arr[tic->t_res_num].r_len = len;
344 tic->t_res_arr[tic->t_res_num].r_type = type;
345 tic->t_res_arr_sum += len;
346 tic->t_res_num++;
347}
dd954c69 348
50d25484
BF
349bool
350xfs_log_writable(
351 struct xfs_mount *mp)
352{
353 /*
8e9800f9
DW
354 * Do not write to the log on norecovery mounts, if the data or log
355 * devices are read-only, or if the filesystem is shutdown. Read-only
356 * mounts allow internal writes for log recovery and unmount purposes,
357 * so don't restrict that case.
50d25484 358 */
0560f31a 359 if (xfs_has_norecovery(mp))
50d25484 360 return false;
8e9800f9
DW
361 if (xfs_readonly_buftarg(mp->m_ddev_targp))
362 return false;
50d25484
BF
363 if (xfs_readonly_buftarg(mp->m_log->l_targ))
364 return false;
2039a272 365 if (xlog_is_shutdown(mp->m_log))
50d25484
BF
366 return false;
367 return true;
368}
369
9006fb91
CH
370/*
371 * Replenish the byte reservation required by moving the grant write head.
372 */
373int
374xfs_log_regrant(
375 struct xfs_mount *mp,
376 struct xlog_ticket *tic)
377{
ad223e60 378 struct xlog *log = mp->m_log;
9006fb91
CH
379 int need_bytes;
380 int error = 0;
381
2039a272 382 if (xlog_is_shutdown(log))
2451337d 383 return -EIO;
9006fb91 384
ff6d6af2 385 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
386
387 /*
388 * This is a new transaction on the ticket, so we need to change the
389 * transaction ID so that the next transaction has a different TID in
390 * the log. Just add one to the existing tid so that we can see chains
391 * of rolling transactions in the log easily.
392 */
393 tic->t_tid++;
394
395 xlog_grant_push_ail(log, tic->t_unit_res);
396
397 tic->t_curr_res = tic->t_unit_res;
398 xlog_tic_reset_res(tic);
399
400 if (tic->t_cnt > 0)
401 return 0;
402
403 trace_xfs_log_regrant(log, tic);
404
405 error = xlog_grant_head_check(log, &log->l_write_head, tic,
406 &need_bytes);
407 if (error)
408 goto out_error;
409
410 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
411 trace_xfs_log_regrant_exit(log, tic);
412 xlog_verify_grant_tail(log);
413 return 0;
414
415out_error:
416 /*
417 * If we are failing, make sure the ticket doesn't have any current
418 * reservations. We don't want to add this back when the ticket/
419 * transaction gets cancelled.
420 */
421 tic->t_curr_res = 0;
422 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
423 return error;
424}
425
426/*
a0e336ba 427 * Reserve log space and return a ticket corresponding to the reservation.
9006fb91
CH
428 *
429 * Each reservation is going to reserve extra space for a log record header.
430 * When writes happen to the on-disk log, we don't subtract the length of the
431 * log record header from any reservation. By wasting space in each
432 * reservation, we prevent over allocation problems.
433 */
434int
435xfs_log_reserve(
436 struct xfs_mount *mp,
437 int unit_bytes,
438 int cnt,
439 struct xlog_ticket **ticp,
c8ce540d 440 uint8_t client,
710b1e2c 441 bool permanent)
9006fb91 442{
ad223e60 443 struct xlog *log = mp->m_log;
9006fb91
CH
444 struct xlog_ticket *tic;
445 int need_bytes;
446 int error = 0;
447
448 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
449
2039a272 450 if (xlog_is_shutdown(log))
2451337d 451 return -EIO;
9006fb91 452
ff6d6af2 453 XFS_STATS_INC(mp, xs_try_logspace);
9006fb91
CH
454
455 ASSERT(*ticp == NULL);
ca4f2589 456 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
9006fb91
CH
457 *ticp = tic;
458
437a255a
DC
459 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
460 : tic->t_unit_res);
9006fb91
CH
461
462 trace_xfs_log_reserve(log, tic);
463
464 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
465 &need_bytes);
466 if (error)
467 goto out_error;
468
469 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
470 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
471 trace_xfs_log_reserve_exit(log, tic);
472 xlog_verify_grant_tail(log);
473 return 0;
474
475out_error:
476 /*
477 * If we are failing, make sure the ticket doesn't have any current
478 * reservations. We don't want to add this back when the ticket/
479 * transaction gets cancelled.
480 */
481 tic->t_curr_res = 0;
482 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
483 return error;
484}
485
aad7272a
DC
486/*
487 * Run all the pending iclog callbacks and wake log force waiters and iclog
488 * space waiters so they can process the newly set shutdown state. We really
489 * don't care what order we process callbacks here because the log is shut down
490 * and so state cannot change on disk anymore.
502a01fa
DC
491 *
492 * We avoid processing actively referenced iclogs so that we don't run callbacks
493 * while the iclog owner might still be preparing the iclog for IO submssion.
494 * These will be caught by xlog_state_iclog_release() and call this function
495 * again to process any callbacks that may have been added to that iclog.
aad7272a
DC
496 */
497static void
498xlog_state_shutdown_callbacks(
499 struct xlog *log)
500{
501 struct xlog_in_core *iclog;
502 LIST_HEAD(cb_list);
503
504 spin_lock(&log->l_icloglock);
505 iclog = log->l_iclog;
506 do {
502a01fa
DC
507 if (atomic_read(&iclog->ic_refcnt)) {
508 /* Reference holder will re-run iclog callbacks. */
509 continue;
510 }
aad7272a 511 list_splice_init(&iclog->ic_callbacks, &cb_list);
502a01fa 512 wake_up_all(&iclog->ic_write_wait);
aad7272a
DC
513 wake_up_all(&iclog->ic_force_wait);
514 } while ((iclog = iclog->ic_next) != log->l_iclog);
515
516 wake_up_all(&log->l_flush_wait);
517 spin_unlock(&log->l_icloglock);
518
519 xlog_cil_process_committed(&cb_list);
520}
521
df732b29
CH
522/*
523 * Flush iclog to disk if this is the last reference to the given iclog and the
9d110014
DC
524 * it is in the WANT_SYNC state.
525 *
526 * If the caller passes in a non-zero @old_tail_lsn and the current log tail
527 * does not match, there may be metadata on disk that must be persisted before
528 * this iclog is written. To satisfy that requirement, set the
529 * XLOG_ICL_NEED_FLUSH flag as a condition for writing this iclog with the new
530 * log tail value.
531 *
532 * If XLOG_ICL_NEED_FUA is already set on the iclog, we need to ensure that the
533 * log tail is updated correctly. NEED_FUA indicates that the iclog will be
534 * written to stable storage, and implies that a commit record is contained
535 * within the iclog. We need to ensure that the log tail does not move beyond
536 * the tail that the first commit record in the iclog ordered against, otherwise
537 * correct recovery of that checkpoint becomes dependent on future operations
538 * performed on this iclog.
539 *
540 * Hence if NEED_FUA is set and the current iclog tail lsn is empty, write the
541 * current tail into iclog. Once the iclog tail is set, future operations must
542 * not modify it, otherwise they potentially violate ordering constraints for
543 * the checkpoint commit that wrote the initial tail lsn value. The tail lsn in
544 * the iclog will get zeroed on activation of the iclog after sync, so we
545 * always capture the tail lsn on the iclog on the first NEED_FUA release
546 * regardless of the number of active reference counts on this iclog.
df732b29 547 */
9d110014 548
eef983ff 549int
df732b29
CH
550xlog_state_release_iclog(
551 struct xlog *log,
0dc8f7f1
DC
552 struct xlog_in_core *iclog,
553 xfs_lsn_t old_tail_lsn)
df732b29 554{
9d392064 555 xfs_lsn_t tail_lsn;
502a01fa
DC
556 bool last_ref;
557
df732b29
CH
558 lockdep_assert_held(&log->l_icloglock);
559
956f6daa 560 trace_xlog_iclog_release(iclog, _RET_IP_);
0dc8f7f1
DC
561 /*
562 * Grabbing the current log tail needs to be atomic w.r.t. the writing
563 * of the tail LSN into the iclog so we guarantee that the log tail does
564 * not move between deciding if a cache flush is required and writing
565 * the LSN into the iclog below.
566 */
567 if (old_tail_lsn || iclog->ic_state == XLOG_STATE_WANT_SYNC) {
568 tail_lsn = xlog_assign_tail_lsn(log->l_mp);
569
570 if (old_tail_lsn && tail_lsn != old_tail_lsn)
571 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH;
9d110014
DC
572
573 if ((iclog->ic_flags & XLOG_ICL_NEED_FUA) &&
574 !iclog->ic_header.h_tail_lsn)
575 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
0dc8f7f1
DC
576 }
577
502a01fa
DC
578 last_ref = atomic_dec_and_test(&iclog->ic_refcnt);
579
580 if (xlog_is_shutdown(log)) {
581 /*
582 * If there are no more references to this iclog, process the
583 * pending iclog callbacks that were waiting on the release of
584 * this iclog.
585 */
586 if (last_ref) {
587 spin_unlock(&log->l_icloglock);
588 xlog_state_shutdown_callbacks(log);
589 spin_lock(&log->l_icloglock);
590 }
591 return -EIO;
592 }
593
594 if (!last_ref)
9d392064
DC
595 return 0;
596
597 if (iclog->ic_state != XLOG_STATE_WANT_SYNC) {
598 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
599 return 0;
df732b29
CH
600 }
601
9d392064 602 iclog->ic_state = XLOG_STATE_SYNCING;
9d110014
DC
603 if (!iclog->ic_header.h_tail_lsn)
604 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
605 xlog_verify_tail_lsn(log, iclog);
9d392064
DC
606 trace_xlog_iclog_syncing(iclog, _RET_IP_);
607
608 spin_unlock(&log->l_icloglock);
609 xlog_sync(log, iclog);
610 spin_lock(&log->l_icloglock);
df732b29
CH
611 return 0;
612}
613
1da177e4
LT
614/*
615 * Mount a log filesystem
616 *
617 * mp - ubiquitous xfs mount point structure
618 * log_target - buftarg of on-disk log device
619 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
620 * num_bblocks - Number of BBSIZE blocks in on-disk log
621 *
622 * Return error or zero.
623 */
624int
249a8c11
DC
625xfs_log_mount(
626 xfs_mount_t *mp,
627 xfs_buftarg_t *log_target,
628 xfs_daddr_t blk_offset,
629 int num_bblks)
1da177e4 630{
e1d06e5f 631 struct xlog *log;
38c26bfd 632 bool fatal = xfs_has_crc(mp);
3e7b91cf
JL
633 int error = 0;
634 int min_logfsbs;
249a8c11 635
0560f31a 636 if (!xfs_has_norecovery(mp)) {
c99d609a
DC
637 xfs_notice(mp, "Mounting V%d Filesystem",
638 XFS_SB_VERSION_NUM(&mp->m_sb));
639 } else {
a0fa2b67 640 xfs_notice(mp,
c99d609a
DC
641"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
642 XFS_SB_VERSION_NUM(&mp->m_sb));
2e973b2c 643 ASSERT(xfs_is_readonly(mp));
1da177e4
LT
644 }
645
e1d06e5f
DC
646 log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
647 if (IS_ERR(log)) {
648 error = PTR_ERR(log);
644c3567
DC
649 goto out;
650 }
e1d06e5f 651 mp->m_log = log;
1da177e4 652
3e7b91cf
JL
653 /*
654 * Validate the given log space and drop a critical message via syslog
655 * if the log size is too small that would lead to some unexpected
656 * situations in transaction log space reservation stage.
657 *
658 * Note: we can't just reject the mount if the validation fails. This
659 * would mean that people would have to downgrade their kernel just to
660 * remedy the situation as there is no way to grow the log (short of
661 * black magic surgery with xfs_db).
662 *
663 * We can, however, reject mounts for CRC format filesystems, as the
664 * mkfs binary being used to make the filesystem should never create a
665 * filesystem with a log that is too small.
666 */
667 min_logfsbs = xfs_log_calc_minimum_size(mp);
668
669 if (mp->m_sb.sb_logblocks < min_logfsbs) {
670 xfs_warn(mp,
671 "Log size %d blocks too small, minimum size is %d blocks",
672 mp->m_sb.sb_logblocks, min_logfsbs);
2451337d 673 error = -EINVAL;
3e7b91cf
JL
674 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
675 xfs_warn(mp,
676 "Log size %d blocks too large, maximum size is %lld blocks",
677 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
2451337d 678 error = -EINVAL;
3e7b91cf
JL
679 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
680 xfs_warn(mp,
681 "log size %lld bytes too large, maximum size is %lld bytes",
682 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
683 XFS_MAX_LOG_BYTES);
2451337d 684 error = -EINVAL;
9c92ee20
DW
685 } else if (mp->m_sb.sb_logsunit > 1 &&
686 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
687 xfs_warn(mp,
688 "log stripe unit %u bytes must be a multiple of block size",
689 mp->m_sb.sb_logsunit);
690 error = -EINVAL;
691 fatal = true;
3e7b91cf
JL
692 }
693 if (error) {
9c92ee20
DW
694 /*
695 * Log check errors are always fatal on v5; or whenever bad
696 * metadata leads to a crash.
697 */
698 if (fatal) {
3e7b91cf
JL
699 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
700 ASSERT(0);
701 goto out_free_log;
702 }
f41febd2 703 xfs_crit(mp, "Log size out of supported range.");
3e7b91cf 704 xfs_crit(mp,
f41febd2 705"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
3e7b91cf
JL
706 }
707
249a8c11
DC
708 /*
709 * Initialize the AIL now we have a log.
710 */
249a8c11
DC
711 error = xfs_trans_ail_init(mp);
712 if (error) {
a0fa2b67 713 xfs_warn(mp, "AIL initialisation failed: error %d", error);
26430752 714 goto out_free_log;
249a8c11 715 }
e1d06e5f 716 log->l_ailp = mp->m_ail;
249a8c11 717
1da177e4
LT
718 /*
719 * skip log recovery on a norecovery mount. pretend it all
720 * just worked.
721 */
0560f31a 722 if (!xfs_has_norecovery(mp)) {
2e973b2c
DC
723 /*
724 * log recovery ignores readonly state and so we need to clear
725 * mount-based read only state so it can write to disk.
726 */
727 bool readonly = test_and_clear_bit(XFS_OPSTATE_READONLY,
728 &mp->m_opstate);
e1d06e5f 729 error = xlog_recover(log);
1da177e4 730 if (readonly)
2e973b2c 731 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
1da177e4 732 if (error) {
a0fa2b67
DC
733 xfs_warn(mp, "log mount/recovery failed: error %d",
734 error);
e1d06e5f 735 xlog_recover_cancel(log);
26430752 736 goto out_destroy_ail;
1da177e4
LT
737 }
738 }
739
e1d06e5f 740 error = xfs_sysfs_init(&log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
baff4e44
BF
741 "log");
742 if (error)
743 goto out_destroy_ail;
744
1da177e4 745 /* Normal transactions can now occur */
e1d06e5f 746 clear_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
1da177e4 747
71e330b5
DC
748 /*
749 * Now the log has been fully initialised and we know were our
750 * space grant counters are, we can initialise the permanent ticket
751 * needed for delayed logging to work.
752 */
e1d06e5f 753 xlog_cil_init_post_recovery(log);
71e330b5 754
1da177e4 755 return 0;
26430752
CH
756
757out_destroy_ail:
758 xfs_trans_ail_destroy(mp);
759out_free_log:
e1d06e5f 760 xlog_dealloc_log(log);
644c3567 761out:
249a8c11 762 return error;
26430752 763}
1da177e4
LT
764
765/*
f661f1e0
DC
766 * Finish the recovery of the file system. This is separate from the
767 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
768 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
769 * here.
1da177e4 770 *
f661f1e0
DC
771 * If we finish recovery successfully, start the background log work. If we are
772 * not doing recovery, then we have a RO filesystem and we don't need to start
773 * it.
1da177e4
LT
774 */
775int
f0b2efad
BF
776xfs_log_mount_finish(
777 struct xfs_mount *mp)
1da177e4 778{
fd67d8a0 779 struct xlog *log = mp->m_log;
2e973b2c 780 bool readonly;
fd67d8a0 781 int error = 0;
1da177e4 782
0560f31a 783 if (xfs_has_norecovery(mp)) {
2e973b2c 784 ASSERT(xfs_is_readonly(mp));
f0b2efad 785 return 0;
1da177e4
LT
786 }
787
2e973b2c
DC
788 /*
789 * log recovery ignores readonly state and so we need to clear
790 * mount-based read only state so it can write to disk.
791 */
792 readonly = test_and_clear_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
793
8204f8dd
DW
794 /*
795 * During the second phase of log recovery, we need iget and
796 * iput to behave like they do for an active filesystem.
797 * xfs_fs_drop_inode needs to be able to prevent the deletion
798 * of inodes before we're done replaying log items on those
799 * inodes. Turn it off immediately after recovery finishes
800 * so that we don't leak the quota inodes if subsequent mount
801 * activities fail.
799ea9e9
DW
802 *
803 * We let all inodes involved in redo item processing end up on
804 * the LRU instead of being evicted immediately so that if we do
805 * something to an unlinked inode, the irele won't cause
806 * premature truncation and freeing of the inode, which results
807 * in log recovery failure. We have to evict the unreferenced
1751e8a6 808 * lru inodes after clearing SB_ACTIVE because we don't
799ea9e9
DW
809 * otherwise clean up the lru if there's a subsequent failure in
810 * xfs_mountfs, which leads to us leaking the inodes if nothing
811 * else (e.g. quotacheck) references the inodes before the
812 * mount failure occurs.
8204f8dd 813 */
1751e8a6 814 mp->m_super->s_flags |= SB_ACTIVE;
a9a4bc8c 815 xfs_log_work_queue(mp);
e1d06e5f 816 if (xlog_recovery_needed(log))
fd67d8a0 817 error = xlog_recover_finish(log);
1751e8a6 818 mp->m_super->s_flags &= ~SB_ACTIVE;
799ea9e9 819 evict_inodes(mp->m_super);
f0b2efad 820
f1b92bbc
BF
821 /*
822 * Drain the buffer LRU after log recovery. This is required for v4
823 * filesystems to avoid leaving around buffers with NULL verifier ops,
824 * but we do it unconditionally to make sure we're always in a clean
825 * cache state after mount.
826 *
827 * Don't push in the error case because the AIL may have pending intents
828 * that aren't removed until recovery is cancelled.
829 */
e1d06e5f 830 if (xlog_recovery_needed(log)) {
fd67d8a0
DC
831 if (!error) {
832 xfs_log_force(mp, XFS_LOG_SYNC);
833 xfs_ail_push_all_sync(mp->m_ail);
834 }
835 xfs_notice(mp, "Ending recovery (logdev: %s)",
836 mp->m_logname ? mp->m_logname : "internal");
837 } else {
838 xfs_info(mp, "Ending clean mount");
f1b92bbc 839 }
10fb9ac1 840 xfs_buftarg_drain(mp->m_ddev_targp);
f1b92bbc 841
e1d06e5f 842 clear_bit(XLOG_RECOVERY_NEEDED, &log->l_opstate);
6f4a1eef 843 if (readonly)
2e973b2c 844 set_bit(XFS_OPSTATE_READONLY, &mp->m_opstate);
6f4a1eef 845
4e6b8270 846 /* Make sure the log is dead if we're returning failure. */
fd67d8a0 847 ASSERT(!error || xlog_is_shutdown(log));
4e6b8270 848
f0b2efad
BF
849 return error;
850}
851
852/*
853 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
854 * the log.
855 */
a7a9250e 856void
f0b2efad
BF
857xfs_log_mount_cancel(
858 struct xfs_mount *mp)
859{
a7a9250e 860 xlog_recover_cancel(mp->m_log);
f0b2efad 861 xfs_log_unmount(mp);
1da177e4
LT
862}
863
45eddb41
DC
864/*
865 * Flush out the iclog to disk ensuring that device caches are flushed and
866 * the iclog hits stable storage before any completion waiters are woken.
867 */
868static inline int
869xlog_force_iclog(
870 struct xlog_in_core *iclog)
871{
872 atomic_inc(&iclog->ic_refcnt);
2bf1ec0f 873 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
45eddb41
DC
874 if (iclog->ic_state == XLOG_STATE_ACTIVE)
875 xlog_state_switch_iclogs(iclog->ic_log, iclog, 0);
876 return xlog_state_release_iclog(iclog->ic_log, iclog, 0);
877}
878
81e5b50a 879/*
a79b28c2
DC
880 * Wait for the iclog and all prior iclogs to be written disk as required by the
881 * log force state machine. Waiting on ic_force_wait ensures iclog completions
882 * have been ordered and callbacks run before we are woken here, hence
883 * guaranteeing that all the iclogs up to this one are on stable storage.
81e5b50a 884 */
a79b28c2 885int
81e5b50a
CH
886xlog_wait_on_iclog(
887 struct xlog_in_core *iclog)
888 __releases(iclog->ic_log->l_icloglock)
889{
890 struct xlog *log = iclog->ic_log;
891
956f6daa 892 trace_xlog_iclog_wait_on(iclog, _RET_IP_);
2039a272 893 if (!xlog_is_shutdown(log) &&
81e5b50a
CH
894 iclog->ic_state != XLOG_STATE_ACTIVE &&
895 iclog->ic_state != XLOG_STATE_DIRTY) {
896 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
897 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
898 } else {
899 spin_unlock(&log->l_icloglock);
900 }
901
2039a272 902 if (xlog_is_shutdown(log))
81e5b50a
CH
903 return -EIO;
904 return 0;
905}
906
1da177e4 907/*
3c702f95
DC
908 * Write out an unmount record using the ticket provided. We have to account for
909 * the data space used in the unmount ticket as this write is not done from a
910 * transaction context that has already done the accounting for us.
1da177e4 911 */
3c702f95
DC
912static int
913xlog_write_unmount_record(
914 struct xlog *log,
3468bb1c 915 struct xlog_ticket *ticket)
53235f22 916{
3c702f95 917 struct xfs_unmount_log_format ulf = {
53235f22
DW
918 .magic = XLOG_UNMOUNT_TYPE,
919 };
920 struct xfs_log_iovec reg = {
3c702f95
DC
921 .i_addr = &ulf,
922 .i_len = sizeof(ulf),
53235f22
DW
923 .i_type = XLOG_REG_TYPE_UNMOUNT,
924 };
925 struct xfs_log_vec vec = {
926 .lv_niovecs = 1,
927 .lv_iovecp = &reg,
928 };
3c702f95
DC
929
930 /* account for space used by record data */
931 ticket->t_curr_res -= sizeof(ulf);
eef983ff 932
caa80090 933 return xlog_write(log, NULL, &vec, ticket, XLOG_UNMOUNT_TRANS);
3c702f95
DC
934}
935
936/*
937 * Mark the filesystem clean by writing an unmount record to the head of the
938 * log.
939 */
940static void
941xlog_unmount_write(
942 struct xlog *log)
943{
944 struct xfs_mount *mp = log->l_mp;
53235f22
DW
945 struct xlog_in_core *iclog;
946 struct xlog_ticket *tic = NULL;
53235f22
DW
947 int error;
948
949 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
950 if (error)
951 goto out_err;
952
3468bb1c 953 error = xlog_write_unmount_record(log, tic);
53235f22
DW
954 /*
955 * At this point, we're umounting anyway, so there's no point in
5112e206 956 * transitioning log state to shutdown. Just continue...
53235f22
DW
957 */
958out_err:
959 if (error)
960 xfs_alert(mp, "%s: unmount record failed", __func__);
961
962 spin_lock(&log->l_icloglock);
963 iclog = log->l_iclog;
45eddb41 964 error = xlog_force_iclog(iclog);
81e5b50a 965 xlog_wait_on_iclog(iclog);
53235f22
DW
966
967 if (tic) {
968 trace_xfs_log_umount_write(log, tic);
8b41e3f9 969 xfs_log_ticket_ungrant(log, tic);
53235f22
DW
970 }
971}
972
13859c98
CH
973static void
974xfs_log_unmount_verify_iclog(
975 struct xlog *log)
976{
977 struct xlog_in_core *iclog = log->l_iclog;
978
979 do {
980 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
981 ASSERT(iclog->ic_offset == 0);
982 } while ((iclog = iclog->ic_next) != log->l_iclog);
983}
984
1da177e4
LT
985/*
986 * Unmount record used to have a string "Unmount filesystem--" in the
987 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
988 * We just write the magic number now since that particular field isn't
8e159e72 989 * currently architecture converted and "Unmount" is a bit foo.
1da177e4
LT
990 * As far as I know, there weren't any dependencies on the old behaviour.
991 */
550319e9 992static void
13859c98
CH
993xfs_log_unmount_write(
994 struct xfs_mount *mp)
1da177e4 995{
13859c98 996 struct xlog *log = mp->m_log;
1da177e4 997
50d25484 998 if (!xfs_log_writable(mp))
550319e9 999 return;
1da177e4 1000
550319e9 1001 xfs_log_force(mp, XFS_LOG_SYNC);
1da177e4 1002
2039a272 1003 if (xlog_is_shutdown(log))
6178d104 1004 return;
5cc3c006
DW
1005
1006 /*
1007 * If we think the summary counters are bad, avoid writing the unmount
1008 * record to force log recovery at next mount, after which the summary
1009 * counters will be recalculated. Refer to xlog_check_unmount_rec for
1010 * more details.
1011 */
1012 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
1013 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
1014 xfs_alert(mp, "%s: will fix summary counters at next mount",
1015 __func__);
1016 return;
1017 }
1018
13859c98 1019 xfs_log_unmount_verify_iclog(log);
3c702f95 1020 xlog_unmount_write(log);
550319e9 1021}
1da177e4
LT
1022
1023/*
c75921a7 1024 * Empty the log for unmount/freeze.
cf2931db
DC
1025 *
1026 * To do this, we first need to shut down the background log work so it is not
1027 * trying to cover the log as we clean up. We then need to unpin all objects in
1028 * the log so we can then flush them out. Once they have completed their IO and
303591a0 1029 * run the callbacks removing themselves from the AIL, we can cover the log.
1da177e4 1030 */
303591a0 1031int
c75921a7
DC
1032xfs_log_quiesce(
1033 struct xfs_mount *mp)
1da177e4 1034{
908ce71e
DW
1035 /*
1036 * Clear log incompat features since we're quiescing the log. Report
1037 * failures, though it's not fatal to have a higher log feature
1038 * protection level than the log contents actually require.
1039 */
1040 if (xfs_clear_incompat_log_features(mp)) {
1041 int error;
1042
1043 error = xfs_sync_sb(mp, false);
1044 if (error)
1045 xfs_warn(mp,
1046 "Failed to clear log incompat features on quiesce");
1047 }
1048
f661f1e0 1049 cancel_delayed_work_sync(&mp->m_log->l_work);
cf2931db
DC
1050 xfs_log_force(mp, XFS_LOG_SYNC);
1051
1052 /*
1053 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
8321ddb2 1054 * will push it, xfs_buftarg_wait() will not wait for it. Further,
cf2931db
DC
1055 * xfs_buf_iowait() cannot be used because it was pushed with the
1056 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
1057 * the IO to complete.
1058 */
1059 xfs_ail_push_all_sync(mp->m_ail);
8321ddb2 1060 xfs_buftarg_wait(mp->m_ddev_targp);
cf2931db
DC
1061 xfs_buf_lock(mp->m_sb_bp);
1062 xfs_buf_unlock(mp->m_sb_bp);
303591a0
BF
1063
1064 return xfs_log_cover(mp);
9e54ee0f 1065}
cf2931db 1066
9e54ee0f
BF
1067void
1068xfs_log_clean(
1069 struct xfs_mount *mp)
1070{
1071 xfs_log_quiesce(mp);
cf2931db 1072 xfs_log_unmount_write(mp);
c75921a7
DC
1073}
1074
1075/*
1076 * Shut down and release the AIL and Log.
1077 *
1078 * During unmount, we need to ensure we flush all the dirty metadata objects
1079 * from the AIL so that the log is empty before we write the unmount record to
1080 * the log. Once this is done, we can tear down the AIL and the log.
1081 */
1082void
1083xfs_log_unmount(
1084 struct xfs_mount *mp)
1085{
9e54ee0f 1086 xfs_log_clean(mp);
cf2931db 1087
8321ddb2
BF
1088 xfs_buftarg_drain(mp->m_ddev_targp);
1089
249a8c11 1090 xfs_trans_ail_destroy(mp);
baff4e44
BF
1091
1092 xfs_sysfs_del(&mp->m_log->l_kobj);
1093
c41564b5 1094 xlog_dealloc_log(mp->m_log);
1da177e4
LT
1095}
1096
43f5efc5
DC
1097void
1098xfs_log_item_init(
1099 struct xfs_mount *mp,
1100 struct xfs_log_item *item,
1101 int type,
272e42b2 1102 const struct xfs_item_ops *ops)
43f5efc5 1103{
d86142dd 1104 item->li_log = mp->m_log;
43f5efc5
DC
1105 item->li_ailp = mp->m_ail;
1106 item->li_type = type;
1107 item->li_ops = ops;
71e330b5
DC
1108 item->li_lv = NULL;
1109
1110 INIT_LIST_HEAD(&item->li_ail);
1111 INIT_LIST_HEAD(&item->li_cil);
643c8c05 1112 INIT_LIST_HEAD(&item->li_bio_list);
e6631f85 1113 INIT_LIST_HEAD(&item->li_trans);
43f5efc5
DC
1114}
1115
09a423a3
CH
1116/*
1117 * Wake up processes waiting for log space after we have moved the log tail.
09a423a3 1118 */
1da177e4 1119void
09a423a3 1120xfs_log_space_wake(
cfb7cdca 1121 struct xfs_mount *mp)
1da177e4 1122{
ad223e60 1123 struct xlog *log = mp->m_log;
cfb7cdca 1124 int free_bytes;
1da177e4 1125
2039a272 1126 if (xlog_is_shutdown(log))
1da177e4 1127 return;
1da177e4 1128
28496968 1129 if (!list_empty_careful(&log->l_write_head.waiters)) {
e1d06e5f 1130 ASSERT(!xlog_in_recovery(log));
09a423a3 1131
28496968
CH
1132 spin_lock(&log->l_write_head.lock);
1133 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
e179840d 1134 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
28496968 1135 spin_unlock(&log->l_write_head.lock);
1da177e4 1136 }
10547941 1137
28496968 1138 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
e1d06e5f 1139 ASSERT(!xlog_in_recovery(log));
09a423a3 1140
28496968
CH
1141 spin_lock(&log->l_reserve_head.lock);
1142 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
e179840d 1143 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
28496968 1144 spin_unlock(&log->l_reserve_head.lock);
1da177e4 1145 }
3f16b985 1146}
1da177e4
LT
1147
1148/*
2c6e24ce
DC
1149 * Determine if we have a transaction that has gone to disk that needs to be
1150 * covered. To begin the transition to the idle state firstly the log needs to
1151 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1152 * we start attempting to cover the log.
b6f8dd49 1153 *
2c6e24ce
DC
1154 * Only if we are then in a state where covering is needed, the caller is
1155 * informed that dummy transactions are required to move the log into the idle
1156 * state.
1157 *
1158 * If there are any items in the AIl or CIL, then we do not want to attempt to
1159 * cover the log as we may be in a situation where there isn't log space
1160 * available to run a dummy transaction and this can lead to deadlocks when the
1161 * tail of the log is pinned by an item that is modified in the CIL. Hence
1162 * there's no point in running a dummy transaction at this point because we
1163 * can't start trying to idle the log until both the CIL and AIL are empty.
1da177e4 1164 */
37444fc4
BF
1165static bool
1166xfs_log_need_covered(
1167 struct xfs_mount *mp)
1da177e4 1168{
37444fc4
BF
1169 struct xlog *log = mp->m_log;
1170 bool needed = false;
1da177e4 1171
2c6e24ce 1172 if (!xlog_cil_empty(log))
8646b982 1173 return false;
2c6e24ce 1174
b22cd72c 1175 spin_lock(&log->l_icloglock);
b6f8dd49
DC
1176 switch (log->l_covered_state) {
1177 case XLOG_STATE_COVER_DONE:
1178 case XLOG_STATE_COVER_DONE2:
1179 case XLOG_STATE_COVER_IDLE:
1180 break;
1181 case XLOG_STATE_COVER_NEED:
1182 case XLOG_STATE_COVER_NEED2:
2c6e24ce
DC
1183 if (xfs_ail_min_lsn(log->l_ailp))
1184 break;
1185 if (!xlog_iclogs_empty(log))
1186 break;
1187
37444fc4 1188 needed = true;
2c6e24ce
DC
1189 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1190 log->l_covered_state = XLOG_STATE_COVER_DONE;
1191 else
1192 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1193 break;
b6f8dd49 1194 default:
37444fc4 1195 needed = true;
b6f8dd49 1196 break;
1da177e4 1197 }
b22cd72c 1198 spin_unlock(&log->l_icloglock);
014c2544 1199 return needed;
1da177e4
LT
1200}
1201
303591a0
BF
1202/*
1203 * Explicitly cover the log. This is similar to background log covering but
1204 * intended for usage in quiesce codepaths. The caller is responsible to ensure
1205 * the log is idle and suitable for covering. The CIL, iclog buffers and AIL
1206 * must all be empty.
1207 */
1208static int
1209xfs_log_cover(
1210 struct xfs_mount *mp)
1211{
303591a0 1212 int error = 0;
f46e5a17 1213 bool need_covered;
303591a0 1214
4533fc63
BF
1215 ASSERT((xlog_cil_empty(mp->m_log) && xlog_iclogs_empty(mp->m_log) &&
1216 !xfs_ail_min_lsn(mp->m_log->l_ailp)) ||
2039a272 1217 xlog_is_shutdown(mp->m_log));
303591a0
BF
1218
1219 if (!xfs_log_writable(mp))
1220 return 0;
1221
f46e5a17
BF
1222 /*
1223 * xfs_log_need_covered() is not idempotent because it progresses the
1224 * state machine if the log requires covering. Therefore, we must call
1225 * this function once and use the result until we've issued an sb sync.
1226 * Do so first to make that abundantly clear.
1227 *
1228 * Fall into the covering sequence if the log needs covering or the
1229 * mount has lazy superblock accounting to sync to disk. The sb sync
1230 * used for covering accumulates the in-core counters, so covering
1231 * handles this for us.
1232 */
1233 need_covered = xfs_log_need_covered(mp);
38c26bfd 1234 if (!need_covered && !xfs_has_lazysbcount(mp))
f46e5a17
BF
1235 return 0;
1236
303591a0
BF
1237 /*
1238 * To cover the log, commit the superblock twice (at most) in
1239 * independent checkpoints. The first serves as a reference for the
1240 * tail pointer. The sync transaction and AIL push empties the AIL and
1241 * updates the in-core tail to the LSN of the first checkpoint. The
1242 * second commit updates the on-disk tail with the in-core LSN,
1243 * covering the log. Push the AIL one more time to leave it empty, as
1244 * we found it.
1245 */
f46e5a17 1246 do {
303591a0
BF
1247 error = xfs_sync_sb(mp, true);
1248 if (error)
1249 break;
1250 xfs_ail_push_all_sync(mp->m_ail);
f46e5a17 1251 } while (xfs_log_need_covered(mp));
303591a0
BF
1252
1253 return error;
1254}
1255
09a423a3 1256/*
1da177e4
LT
1257 * We may be holding the log iclog lock upon entering this routine.
1258 */
1259xfs_lsn_t
1c304625 1260xlog_assign_tail_lsn_locked(
1c3cb9ec 1261 struct xfs_mount *mp)
1da177e4 1262{
ad223e60 1263 struct xlog *log = mp->m_log;
1c304625
CH
1264 struct xfs_log_item *lip;
1265 xfs_lsn_t tail_lsn;
1266
57e80956 1267 assert_spin_locked(&mp->m_ail->ail_lock);
1da177e4 1268
09a423a3
CH
1269 /*
1270 * To make sure we always have a valid LSN for the log tail we keep
1271 * track of the last LSN which was committed in log->l_last_sync_lsn,
1c304625 1272 * and use that when the AIL was empty.
09a423a3 1273 */
1c304625
CH
1274 lip = xfs_ail_min(mp->m_ail);
1275 if (lip)
1276 tail_lsn = lip->li_lsn;
1277 else
84f3c683 1278 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
750b9c90 1279 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1c3cb9ec 1280 atomic64_set(&log->l_tail_lsn, tail_lsn);
1da177e4 1281 return tail_lsn;
1c3cb9ec 1282}
1da177e4 1283
1c304625
CH
1284xfs_lsn_t
1285xlog_assign_tail_lsn(
1286 struct xfs_mount *mp)
1287{
1288 xfs_lsn_t tail_lsn;
1289
57e80956 1290 spin_lock(&mp->m_ail->ail_lock);
1c304625 1291 tail_lsn = xlog_assign_tail_lsn_locked(mp);
57e80956 1292 spin_unlock(&mp->m_ail->ail_lock);
1c304625
CH
1293
1294 return tail_lsn;
1295}
1296
1da177e4
LT
1297/*
1298 * Return the space in the log between the tail and the head. The head
1299 * is passed in the cycle/bytes formal parms. In the special case where
1300 * the reserve head has wrapped passed the tail, this calculation is no
1301 * longer valid. In this case, just return 0 which means there is no space
1302 * in the log. This works for all places where this function is called
1303 * with the reserve head. Of course, if the write head were to ever
1304 * wrap the tail, we should blow up. Rather than catch this case here,
1305 * we depend on other ASSERTions in other parts of the code. XXXmiken
1306 *
2562c322
DC
1307 * If reservation head is behind the tail, we have a problem. Warn about it,
1308 * but then treat it as if the log is empty.
1309 *
1310 * If the log is shut down, the head and tail may be invalid or out of whack, so
1311 * shortcut invalidity asserts in this case so that we don't trigger them
1312 * falsely.
1da177e4 1313 */
a8272ce0 1314STATIC int
a69ed03c 1315xlog_space_left(
ad223e60 1316 struct xlog *log,
c8a09ff8 1317 atomic64_t *head)
1da177e4 1318{
a69ed03c
DC
1319 int tail_bytes;
1320 int tail_cycle;
1321 int head_cycle;
1322 int head_bytes;
1da177e4 1323
a69ed03c 1324 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1c3cb9ec
DC
1325 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1326 tail_bytes = BBTOB(tail_bytes);
a69ed03c 1327 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
2562c322
DC
1328 return log->l_logsize - (head_bytes - tail_bytes);
1329 if (tail_cycle + 1 < head_cycle)
1da177e4 1330 return 0;
2562c322
DC
1331
1332 /* Ignore potential inconsistency when shutdown. */
1333 if (xlog_is_shutdown(log))
1334 return log->l_logsize;
1335
1336 if (tail_cycle < head_cycle) {
a69ed03c 1337 ASSERT(tail_cycle == (head_cycle - 1));
2562c322 1338 return tail_bytes - head_bytes;
1da177e4 1339 }
2562c322
DC
1340
1341 /*
1342 * The reservation head is behind the tail. In this case we just want to
1343 * return the size of the log as the amount of space left.
1344 */
1345 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1346 xfs_alert(log->l_mp, " tail_cycle = %d, tail_bytes = %d",
1347 tail_cycle, tail_bytes);
1348 xfs_alert(log->l_mp, " GH cycle = %d, GH bytes = %d",
1349 head_cycle, head_bytes);
1350 ASSERT(0);
1351 return log->l_logsize;
a69ed03c 1352}
1da177e4
LT
1353
1354
0d5a75e9 1355static void
79b54d9b
CH
1356xlog_ioend_work(
1357 struct work_struct *work)
1da177e4 1358{
79b54d9b
CH
1359 struct xlog_in_core *iclog =
1360 container_of(work, struct xlog_in_core, ic_end_io_work);
1361 struct xlog *log = iclog->ic_log;
79b54d9b 1362 int error;
1da177e4 1363
79b54d9b 1364 error = blk_status_to_errno(iclog->ic_bio.bi_status);
366fc4b8
CH
1365#ifdef DEBUG
1366 /* treat writes with injected CRC errors as failed */
1367 if (iclog->ic_fail_crc)
79b54d9b 1368 error = -EIO;
366fc4b8
CH
1369#endif
1370
1da177e4 1371 /*
366fc4b8 1372 * Race to shutdown the filesystem if we see an error.
1da177e4 1373 */
79b54d9b
CH
1374 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1375 xfs_alert(log->l_mp, "log I/O error %d", error);
1376 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1da177e4 1377 }
3db296f3 1378
12e6a0f4 1379 xlog_state_done_syncing(iclog);
79b54d9b 1380 bio_uninit(&iclog->ic_bio);
9c23eccc 1381
3db296f3 1382 /*
79b54d9b
CH
1383 * Drop the lock to signal that we are done. Nothing references the
1384 * iclog after this, so an unmount waiting on this lock can now tear it
1385 * down safely. As such, it is unsafe to reference the iclog after the
1386 * unlock as we could race with it being freed.
3db296f3 1387 */
79b54d9b 1388 up(&iclog->ic_sema);
c3f8fc73 1389}
1da177e4 1390
1da177e4
LT
1391/*
1392 * Return size of each in-core log record buffer.
1393 *
9da096fd 1394 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1da177e4
LT
1395 *
1396 * If the filesystem blocksize is too large, we may need to choose a
1397 * larger size since the directory code currently logs entire blocks.
1398 */
1da177e4 1399STATIC void
9a8d2fdb
MT
1400xlog_get_iclog_buffer_size(
1401 struct xfs_mount *mp,
1402 struct xlog *log)
1da177e4 1403{
1cb51258 1404 if (mp->m_logbufs <= 0)
4f62282a
CH
1405 mp->m_logbufs = XLOG_MAX_ICLOGS;
1406 if (mp->m_logbsize <= 0)
1407 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1408
1409 log->l_iclog_bufs = mp->m_logbufs;
1410 log->l_iclog_size = mp->m_logbsize;
1da177e4
LT
1411
1412 /*
4f62282a 1413 * # headers = size / 32k - one header holds cycles from 32k of data.
1da177e4 1414 */
4f62282a
CH
1415 log->l_iclog_heads =
1416 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1417 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1418}
1da177e4 1419
f661f1e0
DC
1420void
1421xfs_log_work_queue(
1422 struct xfs_mount *mp)
1423{
696a5620 1424 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
f661f1e0
DC
1425 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1426}
1427
2b73a2c8
DW
1428/*
1429 * Clear the log incompat flags if we have the opportunity.
1430 *
1431 * This only happens if we're about to log the second dummy transaction as part
1432 * of covering the log and we can get the log incompat feature usage lock.
1433 */
1434static inline void
1435xlog_clear_incompat(
1436 struct xlog *log)
1437{
1438 struct xfs_mount *mp = log->l_mp;
1439
1440 if (!xfs_sb_has_incompat_log_feature(&mp->m_sb,
1441 XFS_SB_FEAT_INCOMPAT_LOG_ALL))
1442 return;
1443
1444 if (log->l_covered_state != XLOG_STATE_COVER_DONE2)
1445 return;
1446
1447 if (!down_write_trylock(&log->l_incompat_users))
1448 return;
1449
1450 xfs_clear_incompat_log_features(mp);
1451 up_write(&log->l_incompat_users);
1452}
1453
f661f1e0
DC
1454/*
1455 * Every sync period we need to unpin all items in the AIL and push them to
1456 * disk. If there is nothing dirty, then we might need to cover the log to
1457 * indicate that the filesystem is idle.
1458 */
0d5a75e9 1459static void
f661f1e0
DC
1460xfs_log_worker(
1461 struct work_struct *work)
1462{
1463 struct xlog *log = container_of(to_delayed_work(work),
1464 struct xlog, l_work);
1465 struct xfs_mount *mp = log->l_mp;
1466
1467 /* dgc: errors ignored - not fatal and nowhere to report them */
37444fc4 1468 if (xfs_fs_writable(mp, SB_FREEZE_WRITE) && xfs_log_need_covered(mp)) {
61e63ecb
DC
1469 /*
1470 * Dump a transaction into the log that contains no real change.
1471 * This is needed to stamp the current tail LSN into the log
1472 * during the covering operation.
1473 *
1474 * We cannot use an inode here for this - that will push dirty
1475 * state back up into the VFS and then periodic inode flushing
1476 * will prevent log covering from making progress. Hence we
1477 * synchronously log the superblock instead to ensure the
1478 * superblock is immediately unpinned and can be written back.
1479 */
2b73a2c8 1480 xlog_clear_incompat(log);
61e63ecb
DC
1481 xfs_sync_sb(mp, true);
1482 } else
f661f1e0
DC
1483 xfs_log_force(mp, 0);
1484
1485 /* start pushing all the metadata that is currently dirty */
1486 xfs_ail_push_all(mp->m_ail);
1487
1488 /* queue us up again */
1489 xfs_log_work_queue(mp);
1490}
1491
1da177e4
LT
1492/*
1493 * This routine initializes some of the log structure for a given mount point.
1494 * Its primary purpose is to fill in enough, so recovery can occur. However,
1495 * some other stuff may be filled in too.
1496 */
9a8d2fdb
MT
1497STATIC struct xlog *
1498xlog_alloc_log(
1499 struct xfs_mount *mp,
1500 struct xfs_buftarg *log_target,
1501 xfs_daddr_t blk_offset,
1502 int num_bblks)
1da177e4 1503{
9a8d2fdb 1504 struct xlog *log;
1da177e4
LT
1505 xlog_rec_header_t *head;
1506 xlog_in_core_t **iclogp;
1507 xlog_in_core_t *iclog, *prev_iclog=NULL;
1da177e4 1508 int i;
2451337d 1509 int error = -ENOMEM;
69ce58f0 1510 uint log2_size = 0;
1da177e4 1511
9a8d2fdb 1512 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
a6cb767e 1513 if (!log) {
a0fa2b67 1514 xfs_warn(mp, "Log allocation failed: No memory!");
a6cb767e
DC
1515 goto out;
1516 }
1da177e4
LT
1517
1518 log->l_mp = mp;
1519 log->l_targ = log_target;
1520 log->l_logsize = BBTOB(num_bblks);
1521 log->l_logBBstart = blk_offset;
1522 log->l_logBBsize = num_bblks;
1523 log->l_covered_state = XLOG_STATE_COVER_IDLE;
e1d06e5f 1524 set_bit(XLOG_ACTIVE_RECOVERY, &log->l_opstate);
f661f1e0 1525 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1da177e4
LT
1526
1527 log->l_prev_block = -1;
1da177e4 1528 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1c3cb9ec
DC
1529 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1530 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1da177e4 1531 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
c303c5b8 1532
38c26bfd 1533 if (xfs_has_logv2(mp) && mp->m_sb.sb_logsunit > 1)
a6a65fef
DC
1534 log->l_iclog_roundoff = mp->m_sb.sb_logsunit;
1535 else
1536 log->l_iclog_roundoff = BBSIZE;
1537
c303c5b8
CH
1538 xlog_grant_head_init(&log->l_reserve_head);
1539 xlog_grant_head_init(&log->l_write_head);
1da177e4 1540
2451337d 1541 error = -EFSCORRUPTED;
38c26bfd 1542 if (xfs_has_sector(mp)) {
69ce58f0
AE
1543 log2_size = mp->m_sb.sb_logsectlog;
1544 if (log2_size < BBSHIFT) {
a0fa2b67
DC
1545 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1546 log2_size, BBSHIFT);
a6cb767e
DC
1547 goto out_free_log;
1548 }
1549
69ce58f0
AE
1550 log2_size -= BBSHIFT;
1551 if (log2_size > mp->m_sectbb_log) {
a0fa2b67
DC
1552 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1553 log2_size, mp->m_sectbb_log);
a6cb767e
DC
1554 goto out_free_log;
1555 }
69ce58f0
AE
1556
1557 /* for larger sector sizes, must have v2 or external log */
1558 if (log2_size && log->l_logBBstart > 0 &&
38c26bfd 1559 !xfs_has_logv2(mp)) {
a0fa2b67
DC
1560 xfs_warn(mp,
1561 "log sector size (0x%x) invalid for configuration.",
1562 log2_size);
a6cb767e
DC
1563 goto out_free_log;
1564 }
1da177e4 1565 }
69ce58f0 1566 log->l_sectBBsize = 1 << log2_size;
1da177e4 1567
2b73a2c8
DW
1568 init_rwsem(&log->l_incompat_users);
1569
1da177e4
LT
1570 xlog_get_iclog_buffer_size(mp, log);
1571
007c61c6 1572 spin_lock_init(&log->l_icloglock);
eb40a875 1573 init_waitqueue_head(&log->l_flush_wait);
1da177e4 1574
1da177e4
LT
1575 iclogp = &log->l_iclog;
1576 /*
1577 * The amount of memory to allocate for the iclog structure is
1578 * rather funky due to the way the structure is defined. It is
1579 * done this way so that we can use different sizes for machines
1580 * with different amounts of memory. See the definition of
1581 * xlog_in_core_t in xfs_log_priv.h for details.
1582 */
1da177e4 1583 ASSERT(log->l_iclog_size >= 4096);
79b54d9b 1584 for (i = 0; i < log->l_iclog_bufs; i++) {
89b171ac
CH
1585 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1586 sizeof(struct bio_vec);
79b54d9b
CH
1587
1588 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1589 if (!iclog)
644c3567
DC
1590 goto out_free_iclog;
1591
79b54d9b 1592 *iclogp = iclog;
1da177e4
LT
1593 iclog->ic_prev = prev_iclog;
1594 prev_iclog = iclog;
1fa40b01 1595
d634525d
DC
1596 iclog->ic_data = kvzalloc(log->l_iclog_size,
1597 GFP_KERNEL | __GFP_RETRY_MAYFAIL);
79b54d9b 1598 if (!iclog->ic_data)
644c3567 1599 goto out_free_iclog;
4679b2d3 1600#ifdef DEBUG
5809d5e0 1601 log->l_iclog_bak[i] = &iclog->ic_header;
4679b2d3 1602#endif
1da177e4
LT
1603 head = &iclog->ic_header;
1604 memset(head, 0, sizeof(xlog_rec_header_t));
b53e675d
CH
1605 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1606 head->h_version = cpu_to_be32(
38c26bfd 1607 xfs_has_logv2(log->l_mp) ? 2 : 1);
b53e675d 1608 head->h_size = cpu_to_be32(log->l_iclog_size);
1da177e4 1609 /* new fields */
b53e675d 1610 head->h_fmt = cpu_to_be32(XLOG_FMT);
1da177e4
LT
1611 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1612
79b54d9b 1613 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1da177e4
LT
1614 iclog->ic_state = XLOG_STATE_ACTIVE;
1615 iclog->ic_log = log;
114d23aa 1616 atomic_set(&iclog->ic_refcnt, 0);
89ae379d 1617 INIT_LIST_HEAD(&iclog->ic_callbacks);
b28708d6 1618 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1da177e4 1619
eb40a875
DC
1620 init_waitqueue_head(&iclog->ic_force_wait);
1621 init_waitqueue_head(&iclog->ic_write_wait);
79b54d9b
CH
1622 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1623 sema_init(&iclog->ic_sema, 1);
1da177e4
LT
1624
1625 iclogp = &iclog->ic_next;
1626 }
1627 *iclogp = log->l_iclog; /* complete ring */
1628 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1629
1058d0f5 1630 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
05a302a1
DW
1631 XFS_WQFLAGS(WQ_FREEZABLE | WQ_MEM_RECLAIM |
1632 WQ_HIGHPRI),
1633 0, mp->m_super->s_id);
1058d0f5
CH
1634 if (!log->l_ioend_workqueue)
1635 goto out_free_iclog;
1636
71e330b5
DC
1637 error = xlog_cil_init(log);
1638 if (error)
1058d0f5 1639 goto out_destroy_workqueue;
1da177e4 1640 return log;
644c3567 1641
1058d0f5
CH
1642out_destroy_workqueue:
1643 destroy_workqueue(log->l_ioend_workqueue);
644c3567
DC
1644out_free_iclog:
1645 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1646 prev_iclog = iclog->ic_next;
79b54d9b 1647 kmem_free(iclog->ic_data);
644c3567 1648 kmem_free(iclog);
798a9cad
BF
1649 if (prev_iclog == log->l_iclog)
1650 break;
644c3567 1651 }
644c3567
DC
1652out_free_log:
1653 kmem_free(log);
a6cb767e 1654out:
2451337d 1655 return ERR_PTR(error);
1da177e4
LT
1656} /* xlog_alloc_log */
1657
1da177e4 1658/*
ed1575da
DW
1659 * Compute the LSN that we'd need to push the log tail towards in order to have
1660 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1661 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1662 * log free space already meets all three thresholds, this function returns
1663 * NULLCOMMITLSN.
1da177e4 1664 */
ed1575da
DW
1665xfs_lsn_t
1666xlog_grant_push_threshold(
ad223e60 1667 struct xlog *log,
2ced19cb 1668 int need_bytes)
1da177e4 1669{
2ced19cb 1670 xfs_lsn_t threshold_lsn = 0;
84f3c683 1671 xfs_lsn_t last_sync_lsn;
2ced19cb
DC
1672 int free_blocks;
1673 int free_bytes;
1674 int threshold_block;
1675 int threshold_cycle;
1676 int free_threshold;
1677
1678 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1679
28496968 1680 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
2ced19cb
DC
1681 free_blocks = BTOBBT(free_bytes);
1682
1683 /*
1684 * Set the threshold for the minimum number of free blocks in the
1685 * log to the maximum of what the caller needs, one quarter of the
1686 * log, and 256 blocks.
1687 */
1688 free_threshold = BTOBB(need_bytes);
9bb54cb5
DC
1689 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1690 free_threshold = max(free_threshold, 256);
2ced19cb 1691 if (free_blocks >= free_threshold)
ed1575da 1692 return NULLCOMMITLSN;
2ced19cb 1693
1c3cb9ec
DC
1694 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1695 &threshold_block);
1696 threshold_block += free_threshold;
1da177e4 1697 if (threshold_block >= log->l_logBBsize) {
2ced19cb
DC
1698 threshold_block -= log->l_logBBsize;
1699 threshold_cycle += 1;
1da177e4 1700 }
2ced19cb
DC
1701 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1702 threshold_block);
1703 /*
1704 * Don't pass in an lsn greater than the lsn of the last
84f3c683
DC
1705 * log record known to be on disk. Use a snapshot of the last sync lsn
1706 * so that it doesn't change between the compare and the set.
1da177e4 1707 */
84f3c683
DC
1708 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1709 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1710 threshold_lsn = last_sync_lsn;
2ced19cb 1711
ed1575da
DW
1712 return threshold_lsn;
1713}
1714
1715/*
1716 * Push the tail of the log if we need to do so to maintain the free log space
1717 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1718 * policy which pushes on an lsn which is further along in the log once we
1719 * reach the high water mark. In this manner, we would be creating a low water
1720 * mark.
1721 */
1722STATIC void
1723xlog_grant_push_ail(
1724 struct xlog *log,
1725 int need_bytes)
1726{
1727 xfs_lsn_t threshold_lsn;
1728
1729 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
2039a272 1730 if (threshold_lsn == NULLCOMMITLSN || xlog_is_shutdown(log))
ed1575da
DW
1731 return;
1732
2ced19cb
DC
1733 /*
1734 * Get the transaction layer to kick the dirty buffers out to
1735 * disk asynchronously. No point in trying to do this if
1736 * the filesystem is shutting down.
1737 */
ed1575da 1738 xfs_ail_push(log->l_ailp, threshold_lsn);
2ced19cb 1739}
1da177e4 1740
0e446be4
CH
1741/*
1742 * Stamp cycle number in every block
1743 */
1744STATIC void
1745xlog_pack_data(
1746 struct xlog *log,
1747 struct xlog_in_core *iclog,
1748 int roundoff)
1749{
1750 int i, j, k;
1751 int size = iclog->ic_offset + roundoff;
1752 __be32 cycle_lsn;
b2a922cd 1753 char *dp;
0e446be4
CH
1754
1755 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1756
1757 dp = iclog->ic_datap;
1758 for (i = 0; i < BTOBB(size); i++) {
1759 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1760 break;
1761 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1762 *(__be32 *)dp = cycle_lsn;
1763 dp += BBSIZE;
1764 }
1765
38c26bfd 1766 if (xfs_has_logv2(log->l_mp)) {
0e446be4
CH
1767 xlog_in_core_2_t *xhdr = iclog->ic_data;
1768
1769 for ( ; i < BTOBB(size); i++) {
1770 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1771 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1772 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1773 *(__be32 *)dp = cycle_lsn;
1774 dp += BBSIZE;
1775 }
1776
1777 for (i = 1; i < log->l_iclog_heads; i++)
1778 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1779 }
1780}
1781
1782/*
1783 * Calculate the checksum for a log buffer.
1784 *
1785 * This is a little more complicated than it should be because the various
1786 * headers and the actual data are non-contiguous.
1787 */
f9668a09 1788__le32
0e446be4
CH
1789xlog_cksum(
1790 struct xlog *log,
1791 struct xlog_rec_header *rhead,
1792 char *dp,
1793 int size)
1794{
c8ce540d 1795 uint32_t crc;
0e446be4
CH
1796
1797 /* first generate the crc for the record header ... */
cae028df 1798 crc = xfs_start_cksum_update((char *)rhead,
0e446be4
CH
1799 sizeof(struct xlog_rec_header),
1800 offsetof(struct xlog_rec_header, h_crc));
1801
1802 /* ... then for additional cycle data for v2 logs ... */
38c26bfd 1803 if (xfs_has_logv2(log->l_mp)) {
0e446be4
CH
1804 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1805 int i;
a3f20014 1806 int xheads;
0e446be4 1807
0c771b99 1808 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
0e446be4 1809
a3f20014 1810 for (i = 1; i < xheads; i++) {
0e446be4
CH
1811 crc = crc32c(crc, &xhdr[i].hic_xheader,
1812 sizeof(struct xlog_rec_ext_header));
1813 }
1814 }
1815
1816 /* ... and finally for the payload */
1817 crc = crc32c(crc, dp, size);
1818
1819 return xfs_end_cksum(crc);
1820}
1821
79b54d9b
CH
1822static void
1823xlog_bio_end_io(
1824 struct bio *bio)
1825{
1826 struct xlog_in_core *iclog = bio->bi_private;
1827
1058d0f5 1828 queue_work(iclog->ic_log->l_ioend_workqueue,
79b54d9b
CH
1829 &iclog->ic_end_io_work);
1830}
1831
842a42d1 1832static int
79b54d9b
CH
1833xlog_map_iclog_data(
1834 struct bio *bio,
1835 void *data,
1836 size_t count)
1837{
1838 do {
1839 struct page *page = kmem_to_page(data);
1840 unsigned int off = offset_in_page(data);
1841 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1842
842a42d1
BF
1843 if (bio_add_page(bio, page, len, off) != len)
1844 return -EIO;
79b54d9b
CH
1845
1846 data += len;
1847 count -= len;
1848 } while (count);
842a42d1
BF
1849
1850 return 0;
79b54d9b
CH
1851}
1852
94860a30
CH
1853STATIC void
1854xlog_write_iclog(
1855 struct xlog *log,
1856 struct xlog_in_core *iclog,
94860a30 1857 uint64_t bno,
eef983ff 1858 unsigned int count)
873ff550 1859{
94860a30 1860 ASSERT(bno < log->l_logBBsize);
956f6daa 1861 trace_xlog_iclog_write(iclog, _RET_IP_);
94860a30
CH
1862
1863 /*
1864 * We lock the iclogbufs here so that we can serialise against I/O
1865 * completion during unmount. We might be processing a shutdown
1866 * triggered during unmount, and that can occur asynchronously to the
1867 * unmount thread, and hence we need to ensure that completes before
1868 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1869 * across the log IO to archieve that.
1870 */
79b54d9b 1871 down(&iclog->ic_sema);
5112e206 1872 if (xlog_is_shutdown(log)) {
873ff550
CH
1873 /*
1874 * It would seem logical to return EIO here, but we rely on
1875 * the log state machine to propagate I/O errors instead of
79b54d9b
CH
1876 * doing it here. We kick of the state machine and unlock
1877 * the buffer manually, the code needs to be kept in sync
1878 * with the I/O completion path.
873ff550 1879 */
12e6a0f4 1880 xlog_state_done_syncing(iclog);
79b54d9b 1881 up(&iclog->ic_sema);
94860a30 1882 return;
873ff550
CH
1883 }
1884
2def2845
DC
1885 /*
1886 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1887 * IOs coming immediately after this one. This prevents the block layer
1888 * writeback throttle from throttling log writes behind background
1889 * metadata writeback and causing priority inversions.
1890 */
49add496
CH
1891 bio_init(&iclog->ic_bio, log->l_targ->bt_bdev, iclog->ic_bvec,
1892 howmany(count, PAGE_SIZE),
1893 REQ_OP_WRITE | REQ_META | REQ_SYNC | REQ_IDLE);
1894 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1895 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1896 iclog->ic_bio.bi_private = iclog;
1897
b5d721ea 1898 if (iclog->ic_flags & XLOG_ICL_NEED_FLUSH) {
79b54d9b 1899 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
b5d721ea
DC
1900 /*
1901 * For external log devices, we also need to flush the data
1902 * device cache first to ensure all metadata writeback covered
1903 * by the LSN in this iclog is on stable storage. This is slow,
1904 * but it *must* complete before we issue the external log IO.
1905 */
1906 if (log->l_targ != log->l_mp->m_ddev_targp)
1907 blkdev_issue_flush(log->l_mp->m_ddev_targp->bt_bdev);
1908 }
eef983ff
DC
1909 if (iclog->ic_flags & XLOG_ICL_NEED_FUA)
1910 iclog->ic_bio.bi_opf |= REQ_FUA;
b5d721ea 1911
eef983ff 1912 iclog->ic_flags &= ~(XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA);
79b54d9b 1913
842a42d1
BF
1914 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1915 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1916 return;
1917 }
79b54d9b 1918 if (is_vmalloc_addr(iclog->ic_data))
2c68a1df 1919 flush_kernel_vmap_range(iclog->ic_data, count);
79b54d9b
CH
1920
1921 /*
1922 * If this log buffer would straddle the end of the log we will have
1923 * to split it up into two bios, so that we can continue at the start.
1924 */
1925 if (bno + BTOBB(count) > log->l_logBBsize) {
1926 struct bio *split;
1927
1928 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1929 GFP_NOIO, &fs_bio_set);
1930 bio_chain(split, &iclog->ic_bio);
1931 submit_bio(split);
1932
1933 /* restart at logical offset zero for the remainder */
1934 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1935 }
1936
1937 submit_bio(&iclog->ic_bio);
873ff550 1938}
1da177e4 1939
56933848
CH
1940/*
1941 * We need to bump cycle number for the part of the iclog that is
1942 * written to the start of the log. Watch out for the header magic
1943 * number case, though.
1944 */
79b54d9b 1945static void
56933848
CH
1946xlog_split_iclog(
1947 struct xlog *log,
1948 void *data,
1949 uint64_t bno,
1950 unsigned int count)
1951{
1952 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1953 unsigned int i;
1954
1955 for (i = split_offset; i < count; i += BBSIZE) {
1956 uint32_t cycle = get_unaligned_be32(data + i);
1957
1958 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1959 cycle++;
1960 put_unaligned_be32(cycle, data + i);
1961 }
56933848
CH
1962}
1963
db0a6faf
CH
1964static int
1965xlog_calc_iclog_size(
1966 struct xlog *log,
1967 struct xlog_in_core *iclog,
1968 uint32_t *roundoff)
1969{
1970 uint32_t count_init, count;
db0a6faf
CH
1971
1972 /* Add for LR header */
1973 count_init = log->l_iclog_hsize + iclog->ic_offset;
a6a65fef 1974 count = roundup(count_init, log->l_iclog_roundoff);
db0a6faf 1975
db0a6faf
CH
1976 *roundoff = count - count_init;
1977
a6a65fef
DC
1978 ASSERT(count >= count_init);
1979 ASSERT(*roundoff < log->l_iclog_roundoff);
db0a6faf
CH
1980 return count;
1981}
1982
1da177e4
LT
1983/*
1984 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1985 * fashion. Previously, we should have moved the current iclog
1986 * ptr in the log to point to the next available iclog. This allows further
1987 * write to continue while this code syncs out an iclog ready to go.
1988 * Before an in-core log can be written out, the data section must be scanned
1989 * to save away the 1st word of each BBSIZE block into the header. We replace
1990 * it with the current cycle count. Each BBSIZE block is tagged with the
1991 * cycle count because there in an implicit assumption that drives will
1992 * guarantee that entire 512 byte blocks get written at once. In other words,
1993 * we can't have part of a 512 byte block written and part not written. By
1994 * tagging each block, we will know which blocks are valid when recovering
1995 * after an unclean shutdown.
1996 *
1997 * This routine is single threaded on the iclog. No other thread can be in
1998 * this routine with the same iclog. Changing contents of iclog can there-
1999 * fore be done without grabbing the state machine lock. Updating the global
2000 * log will require grabbing the lock though.
2001 *
2002 * The entire log manager uses a logical block numbering scheme. Only
94860a30
CH
2003 * xlog_write_iclog knows about the fact that the log may not start with
2004 * block zero on a given device.
1da177e4 2005 */
94860a30 2006STATIC void
9a8d2fdb
MT
2007xlog_sync(
2008 struct xlog *log,
2009 struct xlog_in_core *iclog)
1da177e4 2010{
db0a6faf
CH
2011 unsigned int count; /* byte count of bwrite */
2012 unsigned int roundoff; /* roundoff to BB or stripe */
2013 uint64_t bno;
db0a6faf 2014 unsigned int size;
1da177e4 2015
155cc6b7 2016 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 2017 trace_xlog_iclog_sync(iclog, _RET_IP_);
1da177e4 2018
db0a6faf 2019 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1da177e4
LT
2020
2021 /* move grant heads by roundoff in sync */
28496968
CH
2022 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
2023 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1da177e4
LT
2024
2025 /* put cycle number in every block */
2026 xlog_pack_data(log, iclog, roundoff);
2027
2028 /* real byte length */
0e446be4 2029 size = iclog->ic_offset;
38c26bfd 2030 if (xfs_has_logv2(log->l_mp))
0e446be4
CH
2031 size += roundoff;
2032 iclog->ic_header.h_len = cpu_to_be32(size);
1da177e4 2033
9b0489c1 2034 XFS_STATS_INC(log->l_mp, xs_log_writes);
ff6d6af2 2035 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1da177e4 2036
94860a30
CH
2037 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
2038
1da177e4 2039 /* Do we need to split this write into 2 parts? */
eef983ff 2040 if (bno + BTOBB(count) > log->l_logBBsize)
79b54d9b 2041 xlog_split_iclog(log, &iclog->ic_header, bno, count);
0e446be4
CH
2042
2043 /* calculcate the checksum */
2044 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
2045 iclog->ic_datap, size);
609adfc2
BF
2046 /*
2047 * Intentionally corrupt the log record CRC based on the error injection
2048 * frequency, if defined. This facilitates testing log recovery in the
2049 * event of torn writes. Hence, set the IOABORT state to abort the log
2050 * write on I/O completion and shutdown the fs. The subsequent mount
2051 * detects the bad CRC and attempts to recover.
2052 */
366fc4b8 2053#ifdef DEBUG
3e88a007 2054 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
e2a64192 2055 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
366fc4b8 2056 iclog->ic_fail_crc = true;
609adfc2
BF
2057 xfs_warn(log->l_mp,
2058 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
2059 be64_to_cpu(iclog->ic_header.h_lsn));
2060 }
366fc4b8 2061#endif
abca1f33 2062 xlog_verify_iclog(log, iclog, count);
eef983ff 2063 xlog_write_iclog(log, iclog, bno, count);
94860a30 2064}
1da177e4 2065
1da177e4 2066/*
c41564b5 2067 * Deallocate a log structure
1da177e4 2068 */
a8272ce0 2069STATIC void
9a8d2fdb
MT
2070xlog_dealloc_log(
2071 struct xlog *log)
1da177e4
LT
2072{
2073 xlog_in_core_t *iclog, *next_iclog;
1da177e4
LT
2074 int i;
2075
71e330b5
DC
2076 xlog_cil_destroy(log);
2077
44396476 2078 /*
9c23eccc
DC
2079 * Cycle all the iclogbuf locks to make sure all log IO completion
2080 * is done before we tear down these buffers.
2081 */
2082 iclog = log->l_iclog;
2083 for (i = 0; i < log->l_iclog_bufs; i++) {
79b54d9b
CH
2084 down(&iclog->ic_sema);
2085 up(&iclog->ic_sema);
9c23eccc
DC
2086 iclog = iclog->ic_next;
2087 }
2088
1da177e4 2089 iclog = log->l_iclog;
9c23eccc 2090 for (i = 0; i < log->l_iclog_bufs; i++) {
1da177e4 2091 next_iclog = iclog->ic_next;
79b54d9b 2092 kmem_free(iclog->ic_data);
f0e2d93c 2093 kmem_free(iclog);
1da177e4
LT
2094 iclog = next_iclog;
2095 }
1da177e4 2096
1da177e4 2097 log->l_mp->m_log = NULL;
1058d0f5 2098 destroy_workqueue(log->l_ioend_workqueue);
f0e2d93c 2099 kmem_free(log);
b843299b 2100}
1da177e4
LT
2101
2102/*
2103 * Update counters atomically now that memcpy is done.
2104 */
1da177e4 2105static inline void
9a8d2fdb
MT
2106xlog_state_finish_copy(
2107 struct xlog *log,
2108 struct xlog_in_core *iclog,
2109 int record_cnt,
2110 int copy_bytes)
1da177e4 2111{
390aab0a 2112 lockdep_assert_held(&log->l_icloglock);
1da177e4 2113
413d57c9 2114 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1da177e4 2115 iclog->ic_offset += copy_bytes;
390aab0a 2116}
1da177e4 2117
7e9c6396
TS
2118/*
2119 * print out info relating to regions written which consume
2120 * the reservation
2121 */
71e330b5
DC
2122void
2123xlog_print_tic_res(
2124 struct xfs_mount *mp,
2125 struct xlog_ticket *ticket)
7e9c6396
TS
2126{
2127 uint i;
2128 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2129
2130 /* match with XLOG_REG_TYPE_* in xfs_log.h */
5110cd82 2131#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
d31d7185 2132 static char *res_type_str[] = {
5110cd82
DW
2133 REG_TYPE_STR(BFORMAT, "bformat"),
2134 REG_TYPE_STR(BCHUNK, "bchunk"),
2135 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2136 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2137 REG_TYPE_STR(IFORMAT, "iformat"),
2138 REG_TYPE_STR(ICORE, "icore"),
2139 REG_TYPE_STR(IEXT, "iext"),
2140 REG_TYPE_STR(IBROOT, "ibroot"),
2141 REG_TYPE_STR(ILOCAL, "ilocal"),
2142 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2143 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2144 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2145 REG_TYPE_STR(QFORMAT, "qformat"),
2146 REG_TYPE_STR(DQUOT, "dquot"),
2147 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2148 REG_TYPE_STR(LRHEADER, "LR header"),
2149 REG_TYPE_STR(UNMOUNT, "unmount"),
2150 REG_TYPE_STR(COMMIT, "commit"),
2151 REG_TYPE_STR(TRANSHDR, "trans header"),
d31d7185
DW
2152 REG_TYPE_STR(ICREATE, "inode create"),
2153 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2154 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2155 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2156 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2157 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2158 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
7e9c6396 2159 };
d31d7185 2160 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
5110cd82 2161#undef REG_TYPE_STR
7e9c6396 2162
7d2d5653 2163 xfs_warn(mp, "ticket reservation summary:");
f41febd2
JP
2164 xfs_warn(mp, " unit res = %d bytes",
2165 ticket->t_unit_res);
2166 xfs_warn(mp, " current res = %d bytes",
2167 ticket->t_curr_res);
2168 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2169 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2170 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2171 ticket->t_res_num_ophdrs, ophdr_spc);
2172 xfs_warn(mp, " ophdr + reg = %u bytes",
2173 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2174 xfs_warn(mp, " num regions = %u",
2175 ticket->t_res_num);
7e9c6396
TS
2176
2177 for (i = 0; i < ticket->t_res_num; i++) {
a0fa2b67 2178 uint r_type = ticket->t_res_arr[i].r_type;
08e96e1a 2179 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
7e9c6396 2180 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
5110cd82 2181 "bad-rtype" : res_type_str[r_type]),
7e9c6396
TS
2182 ticket->t_res_arr[i].r_len);
2183 }
2184}
7e9c6396 2185
d4ca1d55
BF
2186/*
2187 * Print a summary of the transaction.
2188 */
2189void
2190xlog_print_trans(
e6631f85 2191 struct xfs_trans *tp)
d4ca1d55 2192{
e6631f85
DC
2193 struct xfs_mount *mp = tp->t_mountp;
2194 struct xfs_log_item *lip;
d4ca1d55
BF
2195
2196 /* dump core transaction and ticket info */
2197 xfs_warn(mp, "transaction summary:");
2c8f6265
BF
2198 xfs_warn(mp, " log res = %d", tp->t_log_res);
2199 xfs_warn(mp, " log count = %d", tp->t_log_count);
2200 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
d4ca1d55
BF
2201
2202 xlog_print_tic_res(mp, tp->t_ticket);
2203
2204 /* dump each log item */
e6631f85 2205 list_for_each_entry(lip, &tp->t_items, li_trans) {
d4ca1d55
BF
2206 struct xfs_log_vec *lv = lip->li_lv;
2207 struct xfs_log_iovec *vec;
2208 int i;
2209
2210 xfs_warn(mp, "log item: ");
2211 xfs_warn(mp, " type = 0x%x", lip->li_type);
22525c17 2212 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
d4ca1d55
BF
2213 if (!lv)
2214 continue;
2215 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2216 xfs_warn(mp, " size = %d", lv->lv_size);
2217 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2218 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2219
2220 /* dump each iovec for the log item */
2221 vec = lv->lv_iovecp;
2222 for (i = 0; i < lv->lv_niovecs; i++) {
2223 int dumplen = min(vec->i_len, 32);
2224
2225 xfs_warn(mp, " iovec[%d]", i);
2226 xfs_warn(mp, " type = 0x%x", vec->i_type);
2227 xfs_warn(mp, " len = %d", vec->i_len);
2228 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
244e3dea 2229 xfs_hex_dump(vec->i_addr, dumplen);
d4ca1d55
BF
2230
2231 vec++;
2232 }
2233 }
2234}
2235
b5203cd0 2236/*
7ec94921
DC
2237 * Calculate the potential space needed by the log vector. We may need a start
2238 * record, and each region gets its own struct xlog_op_header and may need to be
2239 * double word aligned.
b5203cd0
DC
2240 */
2241static int
2242xlog_write_calc_vec_length(
2243 struct xlog_ticket *ticket,
7ec94921 2244 struct xfs_log_vec *log_vector,
3468bb1c 2245 uint optype)
b5203cd0 2246{
55b66332 2247 struct xfs_log_vec *lv;
3468bb1c 2248 int headers = 0;
b5203cd0
DC
2249 int len = 0;
2250 int i;
2251
3468bb1c
DC
2252 if (optype & XLOG_START_TRANS)
2253 headers++;
2254
55b66332 2255 for (lv = log_vector; lv; lv = lv->lv_next) {
fd63875c
DC
2256 /* we don't write ordered log vectors */
2257 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2258 continue;
2259
55b66332
DC
2260 headers += lv->lv_niovecs;
2261
2262 for (i = 0; i < lv->lv_niovecs; i++) {
2263 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
b5203cd0 2264
55b66332
DC
2265 len += vecp->i_len;
2266 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2267 }
b5203cd0
DC
2268 }
2269
2270 ticket->t_res_num_ophdrs += headers;
2271 len += headers * sizeof(struct xlog_op_header);
2272
2273 return len;
2274}
2275
7ec94921 2276static void
b5203cd0 2277xlog_write_start_rec(
e6b1f273 2278 struct xlog_op_header *ophdr,
b5203cd0
DC
2279 struct xlog_ticket *ticket)
2280{
b5203cd0
DC
2281 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2282 ophdr->oh_clientid = ticket->t_clientid;
2283 ophdr->oh_len = 0;
2284 ophdr->oh_flags = XLOG_START_TRANS;
2285 ophdr->oh_res2 = 0;
b5203cd0
DC
2286}
2287
2288static xlog_op_header_t *
2289xlog_write_setup_ophdr(
ad223e60 2290 struct xlog *log,
e6b1f273 2291 struct xlog_op_header *ophdr,
b5203cd0
DC
2292 struct xlog_ticket *ticket,
2293 uint flags)
2294{
b5203cd0
DC
2295 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2296 ophdr->oh_clientid = ticket->t_clientid;
2297 ophdr->oh_res2 = 0;
2298
2299 /* are we copying a commit or unmount record? */
2300 ophdr->oh_flags = flags;
2301
2302 /*
2303 * We've seen logs corrupted with bad transaction client ids. This
2304 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2305 * and shut down the filesystem.
2306 */
2307 switch (ophdr->oh_clientid) {
2308 case XFS_TRANSACTION:
2309 case XFS_VOLUME:
2310 case XFS_LOG:
2311 break;
2312 default:
a0fa2b67 2313 xfs_warn(log->l_mp,
c9690043 2314 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
b5203cd0
DC
2315 ophdr->oh_clientid, ticket);
2316 return NULL;
2317 }
2318
2319 return ophdr;
2320}
2321
2322/*
2323 * Set up the parameters of the region copy into the log. This has
2324 * to handle region write split across multiple log buffers - this
2325 * state is kept external to this function so that this code can
ac0e300f 2326 * be written in an obvious, self documenting manner.
b5203cd0
DC
2327 */
2328static int
2329xlog_write_setup_copy(
2330 struct xlog_ticket *ticket,
2331 struct xlog_op_header *ophdr,
2332 int space_available,
2333 int space_required,
2334 int *copy_off,
2335 int *copy_len,
2336 int *last_was_partial_copy,
2337 int *bytes_consumed)
2338{
2339 int still_to_copy;
2340
2341 still_to_copy = space_required - *bytes_consumed;
2342 *copy_off = *bytes_consumed;
2343
2344 if (still_to_copy <= space_available) {
2345 /* write of region completes here */
2346 *copy_len = still_to_copy;
2347 ophdr->oh_len = cpu_to_be32(*copy_len);
2348 if (*last_was_partial_copy)
2349 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2350 *last_was_partial_copy = 0;
2351 *bytes_consumed = 0;
2352 return 0;
2353 }
2354
2355 /* partial write of region, needs extra log op header reservation */
2356 *copy_len = space_available;
2357 ophdr->oh_len = cpu_to_be32(*copy_len);
2358 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2359 if (*last_was_partial_copy)
2360 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2361 *bytes_consumed += *copy_len;
2362 (*last_was_partial_copy)++;
2363
2364 /* account for new log op header */
2365 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2366 ticket->t_res_num_ophdrs++;
2367
2368 return sizeof(struct xlog_op_header);
2369}
2370
2371static int
2372xlog_write_copy_finish(
ad223e60 2373 struct xlog *log,
b5203cd0
DC
2374 struct xlog_in_core *iclog,
2375 uint flags,
2376 int *record_cnt,
2377 int *data_cnt,
2378 int *partial_copy,
2379 int *partial_copy_len,
caa80090 2380 int log_offset)
b5203cd0 2381{
df732b29
CH
2382 int error;
2383
b5203cd0
DC
2384 if (*partial_copy) {
2385 /*
2386 * This iclog has already been marked WANT_SYNC by
2387 * xlog_state_get_iclog_space.
2388 */
390aab0a 2389 spin_lock(&log->l_icloglock);
b5203cd0
DC
2390 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2391 *record_cnt = 0;
2392 *data_cnt = 0;
df732b29 2393 goto release_iclog;
b5203cd0
DC
2394 }
2395
2396 *partial_copy = 0;
2397 *partial_copy_len = 0;
2398
caa80090
DC
2399 if (iclog->ic_size - log_offset > sizeof(xlog_op_header_t))
2400 return 0;
b5203cd0 2401
caa80090
DC
2402 /* no more space in this iclog - push it. */
2403 spin_lock(&log->l_icloglock);
2404 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2405 *record_cnt = 0;
2406 *data_cnt = 0;
df732b29 2407
caa80090
DC
2408 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2409 xlog_state_switch_iclogs(log, iclog, 0);
2410 else
2411 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2412 xlog_is_shutdown(log));
df732b29 2413release_iclog:
0dc8f7f1 2414 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
2415 spin_unlock(&log->l_icloglock);
2416 return error;
b5203cd0
DC
2417}
2418
1da177e4
LT
2419/*
2420 * Write some region out to in-core log
2421 *
2422 * This will be called when writing externally provided regions or when
2423 * writing out a commit record for a given transaction.
2424 *
2425 * General algorithm:
2426 * 1. Find total length of this write. This may include adding to the
2427 * lengths passed in.
2428 * 2. Check whether we violate the tickets reservation.
2429 * 3. While writing to this iclog
2430 * A. Reserve as much space in this iclog as can get
2431 * B. If this is first write, save away start lsn
2432 * C. While writing this region:
2433 * 1. If first write of transaction, write start record
2434 * 2. Write log operation header (header per region)
2435 * 3. Find out if we can fit entire region into this iclog
2436 * 4. Potentially, verify destination memcpy ptr
2437 * 5. Memcpy (partial) region
2438 * 6. If partial copy, release iclog; otherwise, continue
2439 * copying more regions into current iclog
2440 * 4. Mark want sync bit (in simulation mode)
2441 * 5. Release iclog for potential flush to on-disk log.
2442 *
2443 * ERRORS:
2444 * 1. Panic if reservation is overrun. This should never happen since
2445 * reservation amounts are generated internal to the filesystem.
2446 * NOTES:
2447 * 1. Tickets are single threaded data structures.
2448 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2449 * syncing routine. When a single log_write region needs to span
2450 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2451 * on all log operation writes which don't contain the end of the
2452 * region. The XLOG_END_TRANS bit is used for the in-core log
2453 * operation which contains the end of the continued log_write region.
2454 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2455 * we don't really know exactly how much space will be used. As a result,
2456 * we don't update ic_offset until the end when we know exactly how many
2457 * bytes have been written out.
2458 */
71e330b5 2459int
35a8a72f 2460xlog_write(
ad223e60 2461 struct xlog *log,
c45aba40 2462 struct xfs_cil_ctx *ctx,
55b66332 2463 struct xfs_log_vec *log_vector,
35a8a72f 2464 struct xlog_ticket *ticket,
3468bb1c 2465 uint optype)
1da177e4 2466{
99428ad0 2467 struct xlog_in_core *iclog = NULL;
9590e9c6
DC
2468 struct xfs_log_vec *lv = log_vector;
2469 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2470 int index = 0;
99428ad0 2471 int len;
99428ad0
CH
2472 int partial_copy = 0;
2473 int partial_copy_len = 0;
2474 int contwr = 0;
2475 int record_cnt = 0;
2476 int data_cnt = 0;
df732b29 2477 int error = 0;
99428ad0 2478
93b8a585 2479 /*
9590e9c6
DC
2480 * If this is a commit or unmount transaction, we don't need a start
2481 * record to be written. We do, however, have to account for the
2482 * commit or unmount header that gets written. Hence we always have
2483 * to account for an extra xlog_op_header here.
93b8a585 2484 */
9590e9c6 2485 ticket->t_curr_res -= sizeof(struct xlog_op_header);
7d2d5653
BF
2486 if (ticket->t_curr_res < 0) {
2487 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2488 "ctx ticket reservation ran out. Need to up reservation");
55b66332 2489 xlog_print_tic_res(log->l_mp, ticket);
7d2d5653
BF
2490 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2491 }
1da177e4 2492
3468bb1c 2493 len = xlog_write_calc_vec_length(ticket, log_vector, optype);
fd63875c 2494 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
e6b1f273 2495 void *ptr;
99428ad0 2496 int log_offset;
1da177e4 2497
99428ad0
CH
2498 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2499 &contwr, &log_offset);
2500 if (error)
2501 return error;
1da177e4 2502
99428ad0 2503 ASSERT(log_offset <= iclog->ic_size - 1);
e6b1f273 2504 ptr = iclog->ic_datap + log_offset;
1da177e4 2505
c45aba40
DC
2506 /*
2507 * If we have a context pointer, pass it the first iclog we are
2508 * writing to so it can record state needed for iclog write
2509 * ordering.
2510 */
2511 if (ctx) {
2512 xlog_cil_set_ctx_write_state(ctx, iclog);
2513 ctx = NULL;
2514 }
b5203cd0 2515
99428ad0
CH
2516 /*
2517 * This loop writes out as many regions as can fit in the amount
2518 * of space which was allocated by xlog_state_get_iclog_space().
2519 */
fd63875c
DC
2520 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2521 struct xfs_log_iovec *reg;
99428ad0 2522 struct xlog_op_header *ophdr;
99428ad0
CH
2523 int copy_len;
2524 int copy_off;
fd63875c 2525 bool ordered = false;
3468bb1c 2526 bool wrote_start_rec = false;
fd63875c
DC
2527
2528 /* ordered log vectors have no regions to write */
2529 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2530 ASSERT(lv->lv_niovecs == 0);
2531 ordered = true;
2532 goto next_lv;
2533 }
99428ad0 2534
fd63875c 2535 reg = &vecp[index];
c8ce540d
DW
2536 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2537 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
99428ad0 2538
7ec94921
DC
2539 /*
2540 * Before we start formatting log vectors, we need to
2541 * write a start record. Only do this for the first
2542 * iclog we write to.
2543 */
3468bb1c 2544 if (optype & XLOG_START_TRANS) {
7ec94921 2545 xlog_write_start_rec(ptr, ticket);
e6b1f273 2546 xlog_write_adv_cnt(&ptr, &len, &log_offset,
7ec94921 2547 sizeof(struct xlog_op_header));
3468bb1c
DC
2548 optype &= ~XLOG_START_TRANS;
2549 wrote_start_rec = true;
99428ad0 2550 }
b5203cd0 2551
3468bb1c 2552 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, optype);
99428ad0 2553 if (!ophdr)
2451337d 2554 return -EIO;
99428ad0 2555
e6b1f273 2556 xlog_write_adv_cnt(&ptr, &len, &log_offset,
99428ad0
CH
2557 sizeof(struct xlog_op_header));
2558
2559 len += xlog_write_setup_copy(ticket, ophdr,
2560 iclog->ic_size-log_offset,
55b66332 2561 reg->i_len,
99428ad0
CH
2562 &copy_off, &copy_len,
2563 &partial_copy,
2564 &partial_copy_len);
2565 xlog_verify_dest_ptr(log, ptr);
2566
91f9f5fe
ES
2567 /*
2568 * Copy region.
2569 *
2570 * Unmount records just log an opheader, so can have
2571 * empty payloads with no data region to copy. Hence we
2572 * only copy the payload if the vector says it has data
2573 * to copy.
2574 */
99428ad0 2575 ASSERT(copy_len >= 0);
91f9f5fe
ES
2576 if (copy_len > 0) {
2577 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2578 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2579 copy_len);
2580 }
7ec94921 2581 copy_len += sizeof(struct xlog_op_header);
99428ad0 2582 record_cnt++;
3468bb1c 2583 if (wrote_start_rec) {
7ec94921
DC
2584 copy_len += sizeof(struct xlog_op_header);
2585 record_cnt++;
7ec94921 2586 }
99428ad0
CH
2587 data_cnt += contwr ? copy_len : 0;
2588
3468bb1c 2589 error = xlog_write_copy_finish(log, iclog, optype,
99428ad0
CH
2590 &record_cnt, &data_cnt,
2591 &partial_copy,
2592 &partial_copy_len,
caa80090 2593 log_offset);
99428ad0
CH
2594 if (error)
2595 return error;
2596
2597 /*
2598 * if we had a partial copy, we need to get more iclog
2599 * space but we don't want to increment the region
2600 * index because there is still more is this region to
2601 * write.
2602 *
2603 * If we completed writing this region, and we flushed
2604 * the iclog (indicated by resetting of the record
2605 * count), then we also need to get more log space. If
2606 * this was the last record, though, we are done and
2607 * can just return.
2608 */
2609 if (partial_copy)
2610 break;
2611
55b66332 2612 if (++index == lv->lv_niovecs) {
fd63875c 2613next_lv:
55b66332
DC
2614 lv = lv->lv_next;
2615 index = 0;
2616 if (lv)
2617 vecp = lv->lv_iovecp;
2618 }
749f24f3 2619 if (record_cnt == 0 && !ordered) {
55b66332 2620 if (!lv)
99428ad0
CH
2621 return 0;
2622 break;
2623 }
2624 }
2625 }
2626
2627 ASSERT(len == 0);
2628
390aab0a 2629 spin_lock(&log->l_icloglock);
99428ad0 2630 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
caa80090 2631 error = xlog_state_release_iclog(log, iclog, 0);
390aab0a 2632 spin_unlock(&log->l_icloglock);
1da177e4 2633
df732b29 2634 return error;
99428ad0 2635}
1da177e4 2636
c814b4f2
CH
2637static void
2638xlog_state_activate_iclog(
2639 struct xlog_in_core *iclog,
2640 int *iclogs_changed)
2641{
2642 ASSERT(list_empty_careful(&iclog->ic_callbacks));
956f6daa 2643 trace_xlog_iclog_activate(iclog, _RET_IP_);
c814b4f2
CH
2644
2645 /*
2646 * If the number of ops in this iclog indicate it just contains the
2647 * dummy transaction, we can change state into IDLE (the second time
2648 * around). Otherwise we should change the state into NEED a dummy.
2649 * We don't need to cover the dummy.
2650 */
2651 if (*iclogs_changed == 0 &&
2652 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2653 *iclogs_changed = 1;
2654 } else {
2655 /*
2656 * We have two dirty iclogs so start over. This could also be
2657 * num of ops indicating this is not the dummy going out.
2658 */
2659 *iclogs_changed = 2;
2660 }
2661
2662 iclog->ic_state = XLOG_STATE_ACTIVE;
2663 iclog->ic_offset = 0;
2664 iclog->ic_header.h_num_logops = 0;
2665 memset(iclog->ic_header.h_cycle_data, 0,
2666 sizeof(iclog->ic_header.h_cycle_data));
2667 iclog->ic_header.h_lsn = 0;
9d110014 2668 iclog->ic_header.h_tail_lsn = 0;
c814b4f2
CH
2669}
2670
0383f543 2671/*
c814b4f2
CH
2672 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2673 * ACTIVE after iclog I/O has completed.
1da177e4 2674 */
c814b4f2
CH
2675static void
2676xlog_state_activate_iclogs(
0383f543 2677 struct xlog *log,
c814b4f2 2678 int *iclogs_changed)
1da177e4 2679{
c814b4f2 2680 struct xlog_in_core *iclog = log->l_iclog;
1da177e4 2681
1da177e4 2682 do {
c814b4f2
CH
2683 if (iclog->ic_state == XLOG_STATE_DIRTY)
2684 xlog_state_activate_iclog(iclog, iclogs_changed);
2685 /*
2686 * The ordering of marking iclogs ACTIVE must be maintained, so
2687 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2688 */
2689 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2690 break;
2691 } while ((iclog = iclog->ic_next) != log->l_iclog);
2692}
0383f543 2693
c814b4f2
CH
2694static int
2695xlog_covered_state(
2696 int prev_state,
2697 int iclogs_changed)
2698{
0383f543 2699 /*
b0eb9e11
BF
2700 * We go to NEED for any non-covering writes. We go to NEED2 if we just
2701 * wrote the first covering record (DONE). We go to IDLE if we just
2702 * wrote the second covering record (DONE2) and remain in IDLE until a
2703 * non-covering write occurs.
0383f543 2704 */
c814b4f2
CH
2705 switch (prev_state) {
2706 case XLOG_STATE_COVER_IDLE:
b0eb9e11
BF
2707 if (iclogs_changed == 1)
2708 return XLOG_STATE_COVER_IDLE;
53004ee7 2709 fallthrough;
c814b4f2
CH
2710 case XLOG_STATE_COVER_NEED:
2711 case XLOG_STATE_COVER_NEED2:
2712 break;
2713 case XLOG_STATE_COVER_DONE:
2714 if (iclogs_changed == 1)
2715 return XLOG_STATE_COVER_NEED2;
2716 break;
2717 case XLOG_STATE_COVER_DONE2:
2718 if (iclogs_changed == 1)
2719 return XLOG_STATE_COVER_IDLE;
2720 break;
2721 default:
2722 ASSERT(0);
2723 }
0383f543 2724
c814b4f2
CH
2725 return XLOG_STATE_COVER_NEED;
2726}
1da177e4 2727
c814b4f2
CH
2728STATIC void
2729xlog_state_clean_iclog(
2730 struct xlog *log,
2731 struct xlog_in_core *dirty_iclog)
2732{
2733 int iclogs_changed = 0;
1da177e4 2734
956f6daa
DC
2735 trace_xlog_iclog_clean(dirty_iclog, _RET_IP_);
2736
5781464b 2737 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
1da177e4 2738
c814b4f2
CH
2739 xlog_state_activate_iclogs(log, &iclogs_changed);
2740 wake_up_all(&dirty_iclog->ic_force_wait);
2741
2742 if (iclogs_changed) {
2743 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2744 iclogs_changed);
1da177e4 2745 }
0383f543 2746}
1da177e4
LT
2747
2748STATIC xfs_lsn_t
2749xlog_get_lowest_lsn(
9bff3132 2750 struct xlog *log)
1da177e4 2751{
9bff3132
CH
2752 struct xlog_in_core *iclog = log->l_iclog;
2753 xfs_lsn_t lowest_lsn = 0, lsn;
1da177e4 2754
1da177e4 2755 do {
1858bb0b
CH
2756 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2757 iclog->ic_state == XLOG_STATE_DIRTY)
9bff3132
CH
2758 continue;
2759
2760 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2761 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
1da177e4 2762 lowest_lsn = lsn;
9bff3132
CH
2763 } while ((iclog = iclog->ic_next) != log->l_iclog);
2764
014c2544 2765 return lowest_lsn;
1da177e4
LT
2766}
2767
14e15f1b
DC
2768/*
2769 * Completion of a iclog IO does not imply that a transaction has completed, as
2770 * transactions can be large enough to span many iclogs. We cannot change the
2771 * tail of the log half way through a transaction as this may be the only
2772 * transaction in the log and moving the tail to point to the middle of it
2773 * will prevent recovery from finding the start of the transaction. Hence we
2774 * should only update the last_sync_lsn if this iclog contains transaction
2775 * completion callbacks on it.
2776 *
2777 * We have to do this before we drop the icloglock to ensure we are the only one
2778 * that can update it.
2779 *
2780 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2781 * the reservation grant head pushing. This is due to the fact that the push
2782 * target is bound by the current last_sync_lsn value. Hence if we have a large
2783 * amount of log space bound up in this committing transaction then the
2784 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2785 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2786 * should push the AIL to ensure the push target (and hence the grant head) is
2787 * no longer bound by the old log head location and can move forwards and make
2788 * progress again.
2789 */
2790static void
2791xlog_state_set_callback(
2792 struct xlog *log,
2793 struct xlog_in_core *iclog,
2794 xfs_lsn_t header_lsn)
2795{
956f6daa 2796 trace_xlog_iclog_callback(iclog, _RET_IP_);
14e15f1b
DC
2797 iclog->ic_state = XLOG_STATE_CALLBACK;
2798
2799 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2800 header_lsn) <= 0);
2801
2802 if (list_empty_careful(&iclog->ic_callbacks))
2803 return;
2804
2805 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2806 xlog_grant_push_ail(log, 0);
2807}
2808
5e96fa8d
DC
2809/*
2810 * Return true if we need to stop processing, false to continue to the next
2811 * iclog. The caller will need to run callbacks if the iclog is returned in the
2812 * XLOG_STATE_CALLBACK state.
2813 */
2814static bool
2815xlog_state_iodone_process_iclog(
2816 struct xlog *log,
5112e206 2817 struct xlog_in_core *iclog)
5e96fa8d
DC
2818{
2819 xfs_lsn_t lowest_lsn;
14e15f1b 2820 xfs_lsn_t header_lsn;
5e96fa8d 2821
1858bb0b
CH
2822 switch (iclog->ic_state) {
2823 case XLOG_STATE_ACTIVE:
2824 case XLOG_STATE_DIRTY:
2825 /*
2826 * Skip all iclogs in the ACTIVE & DIRTY states:
2827 */
5e96fa8d 2828 return false;
1858bb0b 2829 case XLOG_STATE_DONE_SYNC:
1858bb0b 2830 /*
4b29ab04
CH
2831 * Now that we have an iclog that is in the DONE_SYNC state, do
2832 * one more check here to see if we have chased our tail around.
2833 * If this is not the lowest lsn iclog, then we will leave it
2834 * for another completion to process.
1858bb0b
CH
2835 */
2836 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2837 lowest_lsn = xlog_get_lowest_lsn(log);
2838 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2839 return false;
2840 xlog_state_set_callback(log, iclog, header_lsn);
2841 return false;
2842 default:
2843 /*
2844 * Can only perform callbacks in order. Since this iclog is not
4b29ab04
CH
2845 * in the DONE_SYNC state, we skip the rest and just try to
2846 * clean up.
1858bb0b 2847 */
5e96fa8d
DC
2848 return true;
2849 }
5e96fa8d
DC
2850}
2851
8bb92005
DC
2852/*
2853 * Loop over all the iclogs, running attached callbacks on them. Return true if
aad7272a
DC
2854 * we ran any callbacks, indicating that we dropped the icloglock. We don't need
2855 * to handle transient shutdown state here at all because
2856 * xlog_state_shutdown_callbacks() will be run to do the necessary shutdown
2857 * cleanup of the callbacks.
8bb92005
DC
2858 */
2859static bool
2860xlog_state_do_iclog_callbacks(
2861 struct xlog *log)
2862 __releases(&log->l_icloglock)
2863 __acquires(&log->l_icloglock)
2864{
2865 struct xlog_in_core *first_iclog = log->l_iclog;
2866 struct xlog_in_core *iclog = first_iclog;
2867 bool ran_callback = false;
2868
2869 do {
2870 LIST_HEAD(cb_list);
2871
aad7272a
DC
2872 if (xlog_state_iodone_process_iclog(log, iclog))
2873 break;
2874 if (iclog->ic_state != XLOG_STATE_CALLBACK) {
2875 iclog = iclog->ic_next;
2876 continue;
8bb92005
DC
2877 }
2878 list_splice_init(&iclog->ic_callbacks, &cb_list);
2879 spin_unlock(&log->l_icloglock);
2880
2881 trace_xlog_iclog_callbacks_start(iclog, _RET_IP_);
2882 xlog_cil_process_committed(&cb_list);
2883 trace_xlog_iclog_callbacks_done(iclog, _RET_IP_);
2884 ran_callback = true;
2885
2886 spin_lock(&log->l_icloglock);
aad7272a 2887 xlog_state_clean_iclog(log, iclog);
8bb92005
DC
2888 iclog = iclog->ic_next;
2889 } while (iclog != first_iclog);
2890
2891 return ran_callback;
2892}
2893
2894
2895/*
2896 * Loop running iclog completion callbacks until there are no more iclogs in a
2897 * state that can run callbacks.
2898 */
1da177e4
LT
2899STATIC void
2900xlog_state_do_callback(
12e6a0f4 2901 struct xlog *log)
1da177e4 2902{
5e96fa8d
DC
2903 int flushcnt = 0;
2904 int repeats = 0;
1da177e4 2905
b22cd72c 2906 spin_lock(&log->l_icloglock);
8bb92005
DC
2907 while (xlog_state_do_iclog_callbacks(log)) {
2908 if (xlog_is_shutdown(log))
2909 break;
a3c6685e 2910
5112e206 2911 if (++repeats > 5000) {
a3c6685e
NS
2912 flushcnt += repeats;
2913 repeats = 0;
a0fa2b67 2914 xfs_warn(log->l_mp,
a3c6685e 2915 "%s: possible infinite loop (%d iterations)",
34a622b2 2916 __func__, flushcnt);
1da177e4 2917 }
8bb92005 2918 }
1da177e4 2919
aad7272a 2920 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE)
eb40a875 2921 wake_up_all(&log->l_flush_wait);
cdea5459
RR
2922
2923 spin_unlock(&log->l_icloglock);
d748c623 2924}
1da177e4
LT
2925
2926
2927/*
2928 * Finish transitioning this iclog to the dirty state.
2929 *
1da177e4 2930 * Callbacks could take time, so they are done outside the scope of the
12017faf 2931 * global state machine log lock.
1da177e4 2932 */
a8272ce0 2933STATIC void
1da177e4 2934xlog_state_done_syncing(
12e6a0f4 2935 struct xlog_in_core *iclog)
1da177e4 2936{
d15cbf2f 2937 struct xlog *log = iclog->ic_log;
1da177e4 2938
b22cd72c 2939 spin_lock(&log->l_icloglock);
155cc6b7 2940 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
956f6daa 2941 trace_xlog_iclog_sync_done(iclog, _RET_IP_);
1da177e4
LT
2942
2943 /*
2944 * If we got an error, either on the first buffer, or in the case of
12e6a0f4
CH
2945 * split log writes, on the second, we shut down the file system and
2946 * no iclogs should ever be attempted to be written to disk again.
1da177e4 2947 */
2039a272 2948 if (!xlog_is_shutdown(log)) {
12e6a0f4 2949 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
1da177e4 2950 iclog->ic_state = XLOG_STATE_DONE_SYNC;
12e6a0f4 2951 }
1da177e4
LT
2952
2953 /*
2954 * Someone could be sleeping prior to writing out the next
2955 * iclog buffer, we wake them all, one will get to do the
2956 * I/O, the others get to wait for the result.
2957 */
eb40a875 2958 wake_up_all(&iclog->ic_write_wait);
b22cd72c 2959 spin_unlock(&log->l_icloglock);
b843299b 2960 xlog_state_do_callback(log);
12e6a0f4 2961}
1da177e4
LT
2962
2963/*
2964 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
12017faf
DC
2965 * sleep. We wait on the flush queue on the head iclog as that should be
2966 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2967 * we will wait here and all new writes will sleep until a sync completes.
1da177e4
LT
2968 *
2969 * The in-core logs are used in a circular fashion. They are not used
2970 * out-of-order even when an iclog past the head is free.
2971 *
2972 * return:
2973 * * log_offset where xlog_write() can start writing into the in-core
2974 * log's data space.
2975 * * in-core log pointer to which xlog_write() should write.
2976 * * boolean indicating this is a continued write to an in-core log.
2977 * If this is the last write, then the in-core log's offset field
2978 * needs to be incremented, depending on the amount of data which
2979 * is copied.
2980 */
a8272ce0 2981STATIC int
9a8d2fdb
MT
2982xlog_state_get_iclog_space(
2983 struct xlog *log,
2984 int len,
2985 struct xlog_in_core **iclogp,
2986 struct xlog_ticket *ticket,
2987 int *continued_write,
2988 int *logoffsetp)
1da177e4 2989{
1da177e4
LT
2990 int log_offset;
2991 xlog_rec_header_t *head;
2992 xlog_in_core_t *iclog;
1da177e4
LT
2993
2994restart:
b22cd72c 2995 spin_lock(&log->l_icloglock);
2039a272 2996 if (xlog_is_shutdown(log)) {
b22cd72c 2997 spin_unlock(&log->l_icloglock);
2451337d 2998 return -EIO;
1da177e4
LT
2999 }
3000
3001 iclog = log->l_iclog;
d748c623 3002 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
ff6d6af2 3003 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
d748c623
MW
3004
3005 /* Wait for log writes to have flushed */
eb40a875 3006 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
1da177e4
LT
3007 goto restart;
3008 }
d748c623 3009
1da177e4
LT
3010 head = &iclog->ic_header;
3011
155cc6b7 3012 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
1da177e4
LT
3013 log_offset = iclog->ic_offset;
3014
956f6daa
DC
3015 trace_xlog_iclog_get_space(iclog, _RET_IP_);
3016
1da177e4
LT
3017 /* On the 1st write to an iclog, figure out lsn. This works
3018 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
3019 * committing to. If the offset is set, that's how many blocks
3020 * must be written.
3021 */
3022 if (log_offset == 0) {
3023 ticket->t_curr_res -= log->l_iclog_hsize;
0adba536 3024 xlog_tic_add_region(ticket,
7e9c6396
TS
3025 log->l_iclog_hsize,
3026 XLOG_REG_TYPE_LRHEADER);
b53e675d
CH
3027 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
3028 head->h_lsn = cpu_to_be64(
03bea6fe 3029 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
1da177e4
LT
3030 ASSERT(log->l_curr_block >= 0);
3031 }
3032
3033 /* If there is enough room to write everything, then do it. Otherwise,
3034 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
3035 * bit is on, so this will get flushed out. Don't update ic_offset
3036 * until you know exactly how many bytes get copied. Therefore, wait
3037 * until later to update ic_offset.
3038 *
3039 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
3040 * can fit into remaining data section.
3041 */
3042 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
df732b29
CH
3043 int error = 0;
3044
1da177e4
LT
3045 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3046
49641f1a 3047 /*
df732b29
CH
3048 * If we are the only one writing to this iclog, sync it to
3049 * disk. We need to do an atomic compare and decrement here to
3050 * avoid racing with concurrent atomic_dec_and_lock() calls in
49641f1a
DC
3051 * xlog_state_release_iclog() when there is more than one
3052 * reference to the iclog.
3053 */
df732b29 3054 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
0dc8f7f1 3055 error = xlog_state_release_iclog(log, iclog, 0);
df732b29
CH
3056 spin_unlock(&log->l_icloglock);
3057 if (error)
3058 return error;
1da177e4
LT
3059 goto restart;
3060 }
3061
3062 /* Do we have enough room to write the full amount in the remainder
3063 * of this iclog? Or must we continue a write on the next iclog and
3064 * mark this iclog as completely taken? In the case where we switch
3065 * iclogs (to mark it taken), this particular iclog will release/sync
3066 * to disk in xlog_write().
3067 */
3068 if (len <= iclog->ic_size - iclog->ic_offset) {
3069 *continued_write = 0;
3070 iclog->ic_offset += len;
3071 } else {
3072 *continued_write = 1;
3073 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3074 }
3075 *iclogp = iclog;
3076
3077 ASSERT(iclog->ic_offset <= iclog->ic_size);
b22cd72c 3078 spin_unlock(&log->l_icloglock);
1da177e4
LT
3079
3080 *logoffsetp = log_offset;
3081 return 0;
b843299b 3082}
1da177e4 3083
8b41e3f9 3084/*
b843299b
DC
3085 * The first cnt-1 times a ticket goes through here we don't need to move the
3086 * grant write head because the permanent reservation has reserved cnt times the
3087 * unit amount. Release part of current permanent unit reservation and reset
3088 * current reservation to be one units worth. Also move grant reservation head
3089 * forward.
1da177e4 3090 */
8b41e3f9
CH
3091void
3092xfs_log_ticket_regrant(
9a8d2fdb
MT
3093 struct xlog *log,
3094 struct xlog_ticket *ticket)
1da177e4 3095{
8b41e3f9 3096 trace_xfs_log_ticket_regrant(log, ticket);
0b1b213f 3097
1da177e4
LT
3098 if (ticket->t_cnt > 0)
3099 ticket->t_cnt--;
3100
28496968 3101 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
a69ed03c 3102 ticket->t_curr_res);
28496968 3103 xlog_grant_sub_space(log, &log->l_write_head.grant,
a69ed03c 3104 ticket->t_curr_res);
1da177e4 3105 ticket->t_curr_res = ticket->t_unit_res;
0adba536 3106 xlog_tic_reset_res(ticket);
0b1b213f 3107
8b41e3f9 3108 trace_xfs_log_ticket_regrant_sub(log, ticket);
0b1b213f 3109
1da177e4 3110 /* just return if we still have some of the pre-reserved space */
8b41e3f9
CH
3111 if (!ticket->t_cnt) {
3112 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3113 ticket->t_unit_res);
3114 trace_xfs_log_ticket_regrant_exit(log, ticket);
1da177e4 3115
8b41e3f9
CH
3116 ticket->t_curr_res = ticket->t_unit_res;
3117 xlog_tic_reset_res(ticket);
3118 }
1da177e4 3119
8b41e3f9
CH
3120 xfs_log_ticket_put(ticket);
3121}
1da177e4
LT
3122
3123/*
3124 * Give back the space left from a reservation.
3125 *
3126 * All the information we need to make a correct determination of space left
3127 * is present. For non-permanent reservations, things are quite easy. The
3128 * count should have been decremented to zero. We only need to deal with the
3129 * space remaining in the current reservation part of the ticket. If the
3130 * ticket contains a permanent reservation, there may be left over space which
3131 * needs to be released. A count of N means that N-1 refills of the current
3132 * reservation can be done before we need to ask for more space. The first
3133 * one goes to fill up the first current reservation. Once we run out of
3134 * space, the count will stay at zero and the only space remaining will be
3135 * in the current reservation field.
3136 */
8b41e3f9
CH
3137void
3138xfs_log_ticket_ungrant(
9a8d2fdb
MT
3139 struct xlog *log,
3140 struct xlog_ticket *ticket)
1da177e4 3141{
8b41e3f9
CH
3142 int bytes;
3143
3144 trace_xfs_log_ticket_ungrant(log, ticket);
663e496a 3145
1da177e4
LT
3146 if (ticket->t_cnt > 0)
3147 ticket->t_cnt--;
3148
8b41e3f9 3149 trace_xfs_log_ticket_ungrant_sub(log, ticket);
1da177e4 3150
663e496a
DC
3151 /*
3152 * If this is a permanent reservation ticket, we may be able to free
1da177e4
LT
3153 * up more space based on the remaining count.
3154 */
663e496a 3155 bytes = ticket->t_curr_res;
1da177e4
LT
3156 if (ticket->t_cnt > 0) {
3157 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
663e496a 3158 bytes += ticket->t_unit_res*ticket->t_cnt;
1da177e4
LT
3159 }
3160
28496968
CH
3161 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3162 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
663e496a 3163
8b41e3f9 3164 trace_xfs_log_ticket_ungrant_exit(log, ticket);
0b1b213f 3165
cfb7cdca 3166 xfs_log_space_wake(log->l_mp);
8b41e3f9 3167 xfs_log_ticket_put(ticket);
09a423a3 3168}
1da177e4 3169
1da177e4 3170/*
b843299b
DC
3171 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3172 * the current iclog pointer to the next iclog in the ring.
1da177e4 3173 */
0020a190 3174void
9a8d2fdb
MT
3175xlog_state_switch_iclogs(
3176 struct xlog *log,
3177 struct xlog_in_core *iclog,
3178 int eventual_size)
1da177e4
LT
3179{
3180 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
69363999 3181 assert_spin_locked(&log->l_icloglock);
956f6daa 3182 trace_xlog_iclog_switch(iclog, _RET_IP_);
69363999 3183
1da177e4
LT
3184 if (!eventual_size)
3185 eventual_size = iclog->ic_offset;
3186 iclog->ic_state = XLOG_STATE_WANT_SYNC;
b53e675d 3187 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
1da177e4
LT
3188 log->l_prev_block = log->l_curr_block;
3189 log->l_prev_cycle = log->l_curr_cycle;
3190
3191 /* roll log?: ic_offset changed later */
3192 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3193
3194 /* Round up to next log-sunit */
a6a65fef 3195 if (log->l_iclog_roundoff > BBSIZE) {
18842e0a 3196 uint32_t sunit_bb = BTOBB(log->l_iclog_roundoff);
1da177e4
LT
3197 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3198 }
3199
3200 if (log->l_curr_block >= log->l_logBBsize) {
a45086e2
BF
3201 /*
3202 * Rewind the current block before the cycle is bumped to make
3203 * sure that the combined LSN never transiently moves forward
3204 * when the log wraps to the next cycle. This is to support the
3205 * unlocked sample of these fields from xlog_valid_lsn(). Most
3206 * other cases should acquire l_icloglock.
3207 */
3208 log->l_curr_block -= log->l_logBBsize;
3209 ASSERT(log->l_curr_block >= 0);
3210 smp_wmb();
1da177e4
LT
3211 log->l_curr_cycle++;
3212 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3213 log->l_curr_cycle++;
1da177e4
LT
3214 }
3215 ASSERT(iclog == log->l_iclog);
3216 log->l_iclog = iclog->ic_next;
b843299b 3217}
1da177e4 3218
8191d822
DC
3219/*
3220 * Force the iclog to disk and check if the iclog has been completed before
3221 * xlog_force_iclog() returns. This can happen on synchronous (e.g.
3222 * pmem) or fast async storage because we drop the icloglock to issue the IO.
3223 * If completion has already occurred, tell the caller so that it can avoid an
3224 * unnecessary wait on the iclog.
3225 */
3226static int
3227xlog_force_and_check_iclog(
3228 struct xlog_in_core *iclog,
3229 bool *completed)
3230{
3231 xfs_lsn_t lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3232 int error;
3233
3234 *completed = false;
3235 error = xlog_force_iclog(iclog);
3236 if (error)
3237 return error;
3238
3239 /*
3240 * If the iclog has already been completed and reused the header LSN
3241 * will have been rewritten by completion
3242 */
3243 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3244 *completed = true;
3245 return 0;
3246}
3247
1da177e4
LT
3248/*
3249 * Write out all data in the in-core log as of this exact moment in time.
3250 *
3251 * Data may be written to the in-core log during this call. However,
3252 * we don't guarantee this data will be written out. A change from past
3253 * implementation means this routine will *not* write out zero length LRs.
3254 *
3255 * Basically, we try and perform an intelligent scan of the in-core logs.
3256 * If we determine there is no flushable data, we just return. There is no
3257 * flushable data if:
3258 *
3259 * 1. the current iclog is active and has no data; the previous iclog
3260 * is in the active or dirty state.
3261 * 2. the current iclog is drity, and the previous iclog is in the
3262 * active or dirty state.
3263 *
12017faf 3264 * We may sleep if:
1da177e4
LT
3265 *
3266 * 1. the current iclog is not in the active nor dirty state.
3267 * 2. the current iclog dirty, and the previous iclog is not in the
3268 * active nor dirty state.
3269 * 3. the current iclog is active, and there is another thread writing
3270 * to this particular iclog.
3271 * 4. a) the current iclog is active and has no other writers
3272 * b) when we return from flushing out this iclog, it is still
3273 * not in the active nor dirty state.
3274 */
a14a348b 3275int
60e5bb78 3276xfs_log_force(
a14a348b 3277 struct xfs_mount *mp,
60e5bb78 3278 uint flags)
1da177e4 3279{
ad223e60 3280 struct xlog *log = mp->m_log;
a14a348b 3281 struct xlog_in_core *iclog;
a14a348b 3282
ff6d6af2 3283 XFS_STATS_INC(mp, xs_log_force);
60e5bb78 3284 trace_xfs_log_force(mp, 0, _RET_IP_);
1da177e4 3285
93b8a585 3286 xlog_cil_force(log);
71e330b5 3287
b22cd72c 3288 spin_lock(&log->l_icloglock);
5112e206 3289 if (xlog_is_shutdown(log))
e6b96570 3290 goto out_error;
1da177e4 3291
5112e206 3292 iclog = log->l_iclog;
956f6daa
DC
3293 trace_xlog_iclog_force(iclog, _RET_IP_);
3294
e6b96570
CH
3295 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3296 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3297 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
1da177e4 3298 /*
e6b96570
CH
3299 * If the head is dirty or (active and empty), then we need to
3300 * look at the previous iclog.
3301 *
3302 * If the previous iclog is active or dirty we are done. There
3303 * is nothing to sync out. Otherwise, we attach ourselves to the
1da177e4
LT
3304 * previous iclog and go to sleep.
3305 */
e6b96570 3306 iclog = iclog->ic_prev;
e6b96570
CH
3307 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3308 if (atomic_read(&iclog->ic_refcnt) == 0) {
45eddb41 3309 /* We have exclusive access to this iclog. */
8191d822
DC
3310 bool completed;
3311
3312 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3313 goto out_error;
1da177e4 3314
8191d822 3315 if (completed)
e6b96570
CH
3316 goto out_unlock;
3317 } else {
3318 /*
2bf1ec0f
DC
3319 * Someone else is still writing to this iclog, so we
3320 * need to ensure that when they release the iclog it
3321 * gets synced immediately as we may be waiting on it.
e6b96570
CH
3322 */
3323 xlog_state_switch_iclogs(log, iclog, 0);
1da177e4 3324 }
1da177e4 3325 }
e6b96570 3326
2bf1ec0f
DC
3327 /*
3328 * The iclog we are about to wait on may contain the checkpoint pushed
3329 * by the above xlog_cil_force() call, but it may not have been pushed
3330 * to disk yet. Like the ACTIVE case above, we need to make sure caches
3331 * are flushed when this iclog is written.
3332 */
3333 if (iclog->ic_state == XLOG_STATE_WANT_SYNC)
3334 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3335
81e5b50a
CH
3336 if (flags & XFS_LOG_SYNC)
3337 return xlog_wait_on_iclog(iclog);
e6b96570
CH
3338out_unlock:
3339 spin_unlock(&log->l_icloglock);
3340 return 0;
3341out_error:
3342 spin_unlock(&log->l_icloglock);
3343 return -EIO;
a14a348b 3344}
1da177e4 3345
0020a190
DC
3346/*
3347 * Force the log to a specific LSN.
3348 *
3349 * If an iclog with that lsn can be found:
3350 * If it is in the DIRTY state, just return.
3351 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3352 * state and go to sleep or return.
3353 * If it is in any other state, go to sleep or return.
3354 *
3355 * Synchronous forces are implemented with a wait queue. All callers trying
3356 * to force a given lsn to disk must wait on the queue attached to the
3357 * specific in-core log. When given in-core log finally completes its write
3358 * to disk, that thread will wake up all threads waiting on the queue.
3359 */
3e4da466 3360static int
5f9b4b0d
DC
3361xlog_force_lsn(
3362 struct xlog *log,
a14a348b
CH
3363 xfs_lsn_t lsn,
3364 uint flags,
3e4da466
CH
3365 int *log_flushed,
3366 bool already_slept)
1da177e4 3367{
a14a348b 3368 struct xlog_in_core *iclog;
8191d822 3369 bool completed;
71e330b5 3370
a14a348b 3371 spin_lock(&log->l_icloglock);
5112e206 3372 if (xlog_is_shutdown(log))
93806299 3373 goto out_error;
1da177e4 3374
5112e206 3375 iclog = log->l_iclog;
93806299 3376 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
956f6daa 3377 trace_xlog_iclog_force_lsn(iclog, _RET_IP_);
93806299
CH
3378 iclog = iclog->ic_next;
3379 if (iclog == log->l_iclog)
3380 goto out_unlock;
3381 }
a14a348b 3382
2bf1ec0f
DC
3383 switch (iclog->ic_state) {
3384 case XLOG_STATE_ACTIVE:
93806299
CH
3385 /*
3386 * We sleep here if we haven't already slept (e.g. this is the
3387 * first time we've looked at the correct iclog buf) and the
3388 * buffer before us is going to be sync'ed. The reason for this
3389 * is that if we are doing sync transactions here, by waiting
3390 * for the previous I/O to complete, we can allow a few more
3391 * transactions into this iclog before we close it down.
3392 *
3393 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3394 * refcnt so we can release the log (which drops the ref count).
3395 * The state switch keeps new transaction commits from using
3396 * this buffer. When the current commits finish writing into
3397 * the buffer, the refcount will drop to zero and the buffer
3398 * will go out then.
3399 */
3400 if (!already_slept &&
1858bb0b
CH
3401 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3402 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
93806299
CH
3403 xlog_wait(&iclog->ic_prev->ic_write_wait,
3404 &log->l_icloglock);
3e4da466 3405 return -EAGAIN;
1da177e4 3406 }
8191d822 3407 if (xlog_force_and_check_iclog(iclog, &completed))
df732b29 3408 goto out_error;
93806299
CH
3409 if (log_flushed)
3410 *log_flushed = 1;
8191d822
DC
3411 if (completed)
3412 goto out_unlock;
2bf1ec0f
DC
3413 break;
3414 case XLOG_STATE_WANT_SYNC:
3415 /*
3416 * This iclog may contain the checkpoint pushed by the
3417 * xlog_cil_force_seq() call, but there are other writers still
3418 * accessing it so it hasn't been pushed to disk yet. Like the
3419 * ACTIVE case above, we need to make sure caches are flushed
3420 * when this iclog is written.
3421 */
3422 iclog->ic_flags |= XLOG_ICL_NEED_FLUSH | XLOG_ICL_NEED_FUA;
3423 break;
3424 default:
3425 /*
3426 * The entire checkpoint was written by the CIL force and is on
3427 * its way to disk already. It will be stable when it
3428 * completes, so we don't need to manipulate caches here at all.
3429 * We just need to wait for completion if necessary.
3430 */
3431 break;
93806299 3432 }
1da177e4 3433
81e5b50a
CH
3434 if (flags & XFS_LOG_SYNC)
3435 return xlog_wait_on_iclog(iclog);
93806299 3436out_unlock:
a14a348b
CH
3437 spin_unlock(&log->l_icloglock);
3438 return 0;
93806299
CH
3439out_error:
3440 spin_unlock(&log->l_icloglock);
3441 return -EIO;
a14a348b
CH
3442}
3443
3e4da466 3444/*
0020a190 3445 * Force the log to a specific checkpoint sequence.
3e4da466 3446 *
0020a190
DC
3447 * First force the CIL so that all the required changes have been flushed to the
3448 * iclogs. If the CIL force completed it will return a commit LSN that indicates
3449 * the iclog that needs to be flushed to stable storage. If the caller needs
3450 * a synchronous log force, we will wait on the iclog with the LSN returned by
3451 * xlog_cil_force_seq() to be completed.
3e4da466
CH
3452 */
3453int
5f9b4b0d 3454xfs_log_force_seq(
3e4da466 3455 struct xfs_mount *mp,
5f9b4b0d 3456 xfs_csn_t seq,
3e4da466
CH
3457 uint flags,
3458 int *log_flushed)
3459{
5f9b4b0d
DC
3460 struct xlog *log = mp->m_log;
3461 xfs_lsn_t lsn;
3e4da466 3462 int ret;
5f9b4b0d 3463 ASSERT(seq != 0);
3e4da466
CH
3464
3465 XFS_STATS_INC(mp, xs_log_force);
5f9b4b0d 3466 trace_xfs_log_force(mp, seq, _RET_IP_);
3e4da466 3467
5f9b4b0d 3468 lsn = xlog_cil_force_seq(log, seq);
3e4da466
CH
3469 if (lsn == NULLCOMMITLSN)
3470 return 0;
3471
5f9b4b0d
DC
3472 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3473 if (ret == -EAGAIN) {
3474 XFS_STATS_INC(mp, xs_log_force_sleep);
3475 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3476 }
3e4da466
CH
3477 return ret;
3478}
3479
1da177e4 3480/*
9da096fd 3481 * Free a used ticket when its refcount falls to zero.
1da177e4 3482 */
cc09c0dc
DC
3483void
3484xfs_log_ticket_put(
3485 xlog_ticket_t *ticket)
1da177e4 3486{
cc09c0dc 3487 ASSERT(atomic_read(&ticket->t_ref) > 0);
eb40a875 3488 if (atomic_dec_and_test(&ticket->t_ref))
182696fb 3489 kmem_cache_free(xfs_log_ticket_cache, ticket);
cc09c0dc 3490}
1da177e4 3491
cc09c0dc
DC
3492xlog_ticket_t *
3493xfs_log_ticket_get(
3494 xlog_ticket_t *ticket)
3495{
3496 ASSERT(atomic_read(&ticket->t_ref) > 0);
3497 atomic_inc(&ticket->t_ref);
3498 return ticket;
3499}
1da177e4
LT
3500
3501/*
e773fc93
JL
3502 * Figure out the total log space unit (in bytes) that would be
3503 * required for a log ticket.
1da177e4 3504 */
a6a65fef
DC
3505static int
3506xlog_calc_unit_res(
3507 struct xlog *log,
e773fc93 3508 int unit_bytes)
1da177e4 3509{
e773fc93
JL
3510 int iclog_space;
3511 uint num_headers;
1da177e4
LT
3512
3513 /*
3514 * Permanent reservations have up to 'cnt'-1 active log operations
3515 * in the log. A unit in this case is the amount of space for one
3516 * of these log operations. Normal reservations have a cnt of 1
3517 * and their unit amount is the total amount of space required.
3518 *
3519 * The following lines of code account for non-transaction data
32fb9b57
TS
3520 * which occupy space in the on-disk log.
3521 *
3522 * Normal form of a transaction is:
3523 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3524 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3525 *
3526 * We need to account for all the leadup data and trailer data
3527 * around the transaction data.
3528 * And then we need to account for the worst case in terms of using
3529 * more space.
3530 * The worst case will happen if:
3531 * - the placement of the transaction happens to be such that the
3532 * roundoff is at its maximum
3533 * - the transaction data is synced before the commit record is synced
3534 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3535 * Therefore the commit record is in its own Log Record.
3536 * This can happen as the commit record is called with its
3537 * own region to xlog_write().
3538 * This then means that in the worst case, roundoff can happen for
3539 * the commit-rec as well.
3540 * The commit-rec is smaller than padding in this scenario and so it is
3541 * not added separately.
1da177e4
LT
3542 */
3543
32fb9b57
TS
3544 /* for trans header */
3545 unit_bytes += sizeof(xlog_op_header_t);
3546 unit_bytes += sizeof(xfs_trans_header_t);
3547
1da177e4 3548 /* for start-rec */
32fb9b57
TS
3549 unit_bytes += sizeof(xlog_op_header_t);
3550
9b9fc2b7
DC
3551 /*
3552 * for LR headers - the space for data in an iclog is the size minus
3553 * the space used for the headers. If we use the iclog size, then we
3554 * undercalculate the number of headers required.
3555 *
3556 * Furthermore - the addition of op headers for split-recs might
3557 * increase the space required enough to require more log and op
3558 * headers, so take that into account too.
3559 *
3560 * IMPORTANT: This reservation makes the assumption that if this
3561 * transaction is the first in an iclog and hence has the LR headers
3562 * accounted to it, then the remaining space in the iclog is
3563 * exclusively for this transaction. i.e. if the transaction is larger
3564 * than the iclog, it will be the only thing in that iclog.
3565 * Fundamentally, this means we must pass the entire log vector to
3566 * xlog_write to guarantee this.
3567 */
3568 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3569 num_headers = howmany(unit_bytes, iclog_space);
3570
3571 /* for split-recs - ophdrs added when data split over LRs */
3572 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3573
3574 /* add extra header reservations if we overrun */
3575 while (!num_headers ||
3576 howmany(unit_bytes, iclog_space) > num_headers) {
3577 unit_bytes += sizeof(xlog_op_header_t);
3578 num_headers++;
3579 }
32fb9b57 3580 unit_bytes += log->l_iclog_hsize * num_headers;
1da177e4 3581
32fb9b57
TS
3582 /* for commit-rec LR header - note: padding will subsume the ophdr */
3583 unit_bytes += log->l_iclog_hsize;
3584
a6a65fef
DC
3585 /* roundoff padding for transaction data and one for commit record */
3586 unit_bytes += 2 * log->l_iclog_roundoff;
1da177e4 3587
e773fc93
JL
3588 return unit_bytes;
3589}
3590
a6a65fef
DC
3591int
3592xfs_log_calc_unit_res(
3593 struct xfs_mount *mp,
3594 int unit_bytes)
3595{
3596 return xlog_calc_unit_res(mp->m_log, unit_bytes);
3597}
3598
e773fc93
JL
3599/*
3600 * Allocate and initialise a new log ticket.
3601 */
3602struct xlog_ticket *
3603xlog_ticket_alloc(
3604 struct xlog *log,
3605 int unit_bytes,
3606 int cnt,
3607 char client,
ca4f2589 3608 bool permanent)
e773fc93
JL
3609{
3610 struct xlog_ticket *tic;
3611 int unit_res;
3612
182696fb 3613 tic = kmem_cache_zalloc(xfs_log_ticket_cache, GFP_NOFS | __GFP_NOFAIL);
e773fc93 3614
a6a65fef 3615 unit_res = xlog_calc_unit_res(log, unit_bytes);
e773fc93 3616
cc09c0dc 3617 atomic_set(&tic->t_ref, 1);
14a7235f 3618 tic->t_task = current;
10547941 3619 INIT_LIST_HEAD(&tic->t_queue);
e773fc93
JL
3620 tic->t_unit_res = unit_res;
3621 tic->t_curr_res = unit_res;
1da177e4
LT
3622 tic->t_cnt = cnt;
3623 tic->t_ocnt = cnt;
ecb3403d 3624 tic->t_tid = prandom_u32();
1da177e4 3625 tic->t_clientid = client;
9006fb91 3626 if (permanent)
1da177e4 3627 tic->t_flags |= XLOG_TIC_PERM_RESERV;
1da177e4 3628
0adba536 3629 xlog_tic_reset_res(tic);
7e9c6396 3630
1da177e4 3631 return tic;
cc09c0dc 3632}
1da177e4 3633
cfcbbbd0 3634#if defined(DEBUG)
1da177e4
LT
3635/*
3636 * Make sure that the destination ptr is within the valid data region of
3637 * one of the iclogs. This uses backup pointers stored in a different
3638 * part of the log in case we trash the log structure.
3639 */
181fdfe6 3640STATIC void
e6b1f273 3641xlog_verify_dest_ptr(
ad223e60 3642 struct xlog *log,
5809d5e0 3643 void *ptr)
1da177e4
LT
3644{
3645 int i;
3646 int good_ptr = 0;
3647
e6b1f273
CH
3648 for (i = 0; i < log->l_iclog_bufs; i++) {
3649 if (ptr >= log->l_iclog_bak[i] &&
3650 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
1da177e4
LT
3651 good_ptr++;
3652 }
e6b1f273
CH
3653
3654 if (!good_ptr)
a0fa2b67 3655 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
e6b1f273 3656}
1da177e4 3657
da8a1a4a
DC
3658/*
3659 * Check to make sure the grant write head didn't just over lap the tail. If
3660 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3661 * the cycles differ by exactly one and check the byte count.
3662 *
3663 * This check is run unlocked, so can give false positives. Rather than assert
3664 * on failures, use a warn-once flag and a panic tag to allow the admin to
3665 * determine if they want to panic the machine when such an error occurs. For
3666 * debug kernels this will have the same effect as using an assert but, unlinke
3667 * an assert, it can be turned off at runtime.
3668 */
3f336c6f
DC
3669STATIC void
3670xlog_verify_grant_tail(
ad223e60 3671 struct xlog *log)
3f336c6f 3672{
1c3cb9ec 3673 int tail_cycle, tail_blocks;
a69ed03c 3674 int cycle, space;
3f336c6f 3675
28496968 3676 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
1c3cb9ec
DC
3677 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3678 if (tail_cycle != cycle) {
da8a1a4a 3679 if (cycle - 1 != tail_cycle &&
e1d06e5f 3680 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
da8a1a4a
DC
3681 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3682 "%s: cycle - 1 != tail_cycle", __func__);
da8a1a4a
DC
3683 }
3684
3685 if (space > BBTOB(tail_blocks) &&
e1d06e5f 3686 !test_and_set_bit(XLOG_TAIL_WARN, &log->l_opstate)) {
da8a1a4a
DC
3687 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3688 "%s: space > BBTOB(tail_blocks)", __func__);
da8a1a4a 3689 }
3f336c6f
DC
3690 }
3691}
3692
1da177e4
LT
3693/* check if it will fit */
3694STATIC void
9a8d2fdb
MT
3695xlog_verify_tail_lsn(
3696 struct xlog *log,
9d110014 3697 struct xlog_in_core *iclog)
1da177e4 3698{
9d110014
DC
3699 xfs_lsn_t tail_lsn = be64_to_cpu(iclog->ic_header.h_tail_lsn);
3700 int blocks;
1da177e4
LT
3701
3702 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3703 blocks =
3704 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3705 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
a0fa2b67 3706 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4
LT
3707 } else {
3708 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3709
3710 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
a0fa2b67 3711 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
1da177e4
LT
3712
3713 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3714 if (blocks < BTOBB(iclog->ic_offset) + 1)
a0fa2b67 3715 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
1da177e4 3716 }
b843299b 3717}
1da177e4
LT
3718
3719/*
3720 * Perform a number of checks on the iclog before writing to disk.
3721 *
3722 * 1. Make sure the iclogs are still circular
3723 * 2. Make sure we have a good magic number
3724 * 3. Make sure we don't have magic numbers in the data
3725 * 4. Check fields of each log operation header for:
3726 * A. Valid client identifier
3727 * B. tid ptr value falls in valid ptr space (user space code)
3728 * C. Length in log record header is correct according to the
3729 * individual operation headers within record.
3730 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3731 * log, check the preceding blocks of the physical log to make sure all
3732 * the cycle numbers agree with the current cycle number.
3733 */
3734STATIC void
9a8d2fdb
MT
3735xlog_verify_iclog(
3736 struct xlog *log,
3737 struct xlog_in_core *iclog,
abca1f33 3738 int count)
1da177e4
LT
3739{
3740 xlog_op_header_t *ophead;
3741 xlog_in_core_t *icptr;
3742 xlog_in_core_2_t *xhdr;
5809d5e0 3743 void *base_ptr, *ptr, *p;
db9d67d6 3744 ptrdiff_t field_offset;
c8ce540d 3745 uint8_t clientid;
1da177e4
LT
3746 int len, i, j, k, op_len;
3747 int idx;
1da177e4
LT
3748
3749 /* check validity of iclog pointers */
b22cd72c 3750 spin_lock(&log->l_icloglock);
1da177e4 3751 icptr = log->l_iclog;
643f7c4e
GB
3752 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3753 ASSERT(icptr);
3754
1da177e4 3755 if (icptr != log->l_iclog)
a0fa2b67 3756 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
b22cd72c 3757 spin_unlock(&log->l_icloglock);
1da177e4
LT
3758
3759 /* check log magic numbers */
69ef921b 3760 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67 3761 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
1da177e4 3762
5809d5e0
CH
3763 base_ptr = ptr = &iclog->ic_header;
3764 p = &iclog->ic_header;
3765 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
69ef921b 3766 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
a0fa2b67
DC
3767 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3768 __func__);
1da177e4
LT
3769 }
3770
3771 /* check fields */
b53e675d 3772 len = be32_to_cpu(iclog->ic_header.h_num_logops);
5809d5e0
CH
3773 base_ptr = ptr = iclog->ic_datap;
3774 ophead = ptr;
b28708d6 3775 xhdr = iclog->ic_data;
1da177e4 3776 for (i = 0; i < len; i++) {
5809d5e0 3777 ophead = ptr;
1da177e4
LT
3778
3779 /* clientid is only 1 byte */
5809d5e0
CH
3780 p = &ophead->oh_clientid;
3781 field_offset = p - base_ptr;
abca1f33 3782 if (field_offset & 0x1ff) {
1da177e4
LT
3783 clientid = ophead->oh_clientid;
3784 } else {
b2a922cd 3785 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
1da177e4
LT
3786 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3787 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3788 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
03bea6fe
CH
3789 clientid = xlog_get_client_id(
3790 xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3791 } else {
03bea6fe
CH
3792 clientid = xlog_get_client_id(
3793 iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3794 }
3795 }
3796 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
a0fa2b67 3797 xfs_warn(log->l_mp,
c9690043 3798 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
a0fa2b67
DC
3799 __func__, clientid, ophead,
3800 (unsigned long)field_offset);
1da177e4
LT
3801
3802 /* check length */
5809d5e0
CH
3803 p = &ophead->oh_len;
3804 field_offset = p - base_ptr;
abca1f33 3805 if (field_offset & 0x1ff) {
67fcb7bf 3806 op_len = be32_to_cpu(ophead->oh_len);
1da177e4 3807 } else {
db9d67d6
CH
3808 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3809 (uintptr_t)iclog->ic_datap);
1da177e4
LT
3810 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3811 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3812 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
b53e675d 3813 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
1da177e4 3814 } else {
b53e675d 3815 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
1da177e4
LT
3816 }
3817 }
3818 ptr += sizeof(xlog_op_header_t) + op_len;
3819 }
b843299b 3820}
cfcbbbd0 3821#endif
1da177e4 3822
1da177e4 3823/*
b36d4651
DC
3824 * Perform a forced shutdown on the log. This should be called once and once
3825 * only by the high level filesystem shutdown code to shut the log subsystem
3826 * down cleanly.
9da1ab18 3827 *
b36d4651
DC
3828 * Our main objectives here are to make sure that:
3829 * a. if the shutdown was not due to a log IO error, flush the logs to
3830 * disk. Anything modified after this is ignored.
3831 * b. the log gets atomically marked 'XLOG_IO_ERROR' for all interested
3832 * parties to find out. Nothing new gets queued after this is done.
3833 * c. Tasks sleeping on log reservations, pinned objects and
3834 * other resources get woken up.
5112e206 3835 *
b36d4651
DC
3836 * Return true if the shutdown cause was a log IO error and we actually shut the
3837 * log down.
1da177e4 3838 */
b36d4651
DC
3839bool
3840xlog_force_shutdown(
3841 struct xlog *log,
3842 int shutdown_flags)
1da177e4 3843{
b36d4651 3844 bool log_error = (shutdown_flags & SHUTDOWN_LOG_IO_ERROR);
1da177e4
LT
3845
3846 /*
b36d4651
DC
3847 * If this happens during log recovery then we aren't using the runtime
3848 * log mechanisms yet so there's nothing to shut down.
1da177e4 3849 */
b36d4651
DC
3850 if (!log || xlog_in_recovery(log))
3851 return false;
1da177e4 3852
b36d4651 3853 ASSERT(!xlog_is_shutdown(log));
9da1ab18
DC
3854
3855 /*
a870fe6d 3856 * Flush all the completed transactions to disk before marking the log
b36d4651
DC
3857 * being shut down. We need to do this first as shutting down the log
3858 * before the force will prevent the log force from flushing the iclogs
3859 * to disk.
3860 *
3861 * Re-entry due to a log IO error shutdown during the log force is
3862 * prevented by the atomicity of higher level shutdown code.
9da1ab18 3863 */
b36d4651
DC
3864 if (!log_error)
3865 xfs_log_force(log->l_mp, XFS_LOG_SYNC);
9da1ab18 3866
1da177e4 3867 /*
b36d4651
DC
3868 * Atomically set the shutdown state. If the shutdown state is already
3869 * set, there someone else is performing the shutdown and so we are done
3870 * here. This should never happen because we should only ever get called
3871 * once by the first shutdown caller.
3872 *
3873 * Much of the log state machine transitions assume that shutdown state
3874 * cannot change once they hold the log->l_icloglock. Hence we need to
3875 * hold that lock here, even though we use the atomic test_and_set_bit()
3876 * operation to set the shutdown state.
1da177e4 3877 */
b22cd72c 3878 spin_lock(&log->l_icloglock);
b36d4651
DC
3879 if (test_and_set_bit(XLOG_IO_ERROR, &log->l_opstate)) {
3880 spin_unlock(&log->l_icloglock);
3881 ASSERT(0);
3882 return false;
3883 }
b22cd72c 3884 spin_unlock(&log->l_icloglock);
1da177e4
LT
3885
3886 /*
10547941
DC
3887 * We don't want anybody waiting for log reservations after this. That
3888 * means we have to wake up everybody queued up on reserveq as well as
3889 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3890 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3f16b985 3891 * action is protected by the grant locks.
1da177e4 3892 */
a79bf2d7
CH
3893 xlog_grant_head_wake_all(&log->l_reserve_head);
3894 xlog_grant_head_wake_all(&log->l_write_head);
1da177e4 3895
1da177e4 3896 /*
ac983517
DC
3897 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3898 * as if the log writes were completed. The abort handling in the log
3899 * item committed callback functions will do this again under lock to
3900 * avoid races.
1da177e4 3901 */
cdea5459 3902 spin_lock(&log->l_cilp->xc_push_lock);
68a74dca 3903 wake_up_all(&log->l_cilp->xc_start_wait);
ac983517 3904 wake_up_all(&log->l_cilp->xc_commit_wait);
cdea5459 3905 spin_unlock(&log->l_cilp->xc_push_lock);
aad7272a 3906 xlog_state_shutdown_callbacks(log);
1da177e4 3907
b36d4651 3908 return log_error;
1da177e4
LT
3909}
3910
ba0f32d4 3911STATIC int
9a8d2fdb
MT
3912xlog_iclogs_empty(
3913 struct xlog *log)
1da177e4
LT
3914{
3915 xlog_in_core_t *iclog;
3916
3917 iclog = log->l_iclog;
3918 do {
3919 /* endianness does not matter here, zero is zero in
3920 * any language.
3921 */
3922 if (iclog->ic_header.h_num_logops)
014c2544 3923 return 0;
1da177e4
LT
3924 iclog = iclog->ic_next;
3925 } while (iclog != log->l_iclog);
014c2544 3926 return 1;
1da177e4 3927}
f661f1e0 3928
a45086e2
BF
3929/*
3930 * Verify that an LSN stamped into a piece of metadata is valid. This is
3931 * intended for use in read verifiers on v5 superblocks.
3932 */
3933bool
3934xfs_log_check_lsn(
3935 struct xfs_mount *mp,
3936 xfs_lsn_t lsn)
3937{
3938 struct xlog *log = mp->m_log;
3939 bool valid;
3940
3941 /*
3942 * norecovery mode skips mount-time log processing and unconditionally
3943 * resets the in-core LSN. We can't validate in this mode, but
3944 * modifications are not allowed anyways so just return true.
3945 */
0560f31a 3946 if (xfs_has_norecovery(mp))
a45086e2
BF
3947 return true;
3948
3949 /*
3950 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3951 * handled by recovery and thus safe to ignore here.
3952 */
3953 if (lsn == NULLCOMMITLSN)
3954 return true;
3955
3956 valid = xlog_valid_lsn(mp->m_log, lsn);
3957
3958 /* warn the user about what's gone wrong before verifier failure */
3959 if (!valid) {
3960 spin_lock(&log->l_icloglock);
3961 xfs_warn(mp,
3962"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3963"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3964 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3965 log->l_curr_cycle, log->l_curr_block);
3966 spin_unlock(&log->l_icloglock);
3967 }
3968
3969 return valid;
3970}
0c60d3aa 3971
2b73a2c8
DW
3972/*
3973 * Notify the log that we're about to start using a feature that is protected
3974 * by a log incompat feature flag. This will prevent log covering from
3975 * clearing those flags.
3976 */
3977void
3978xlog_use_incompat_feat(
3979 struct xlog *log)
3980{
3981 down_read(&log->l_incompat_users);
3982}
3983
3984/* Notify the log that we've finished using log incompat features. */
3985void
3986xlog_drop_incompat_feat(
3987 struct xlog *log)
3988{
3989 up_read(&log->l_incompat_users);
3990}