[XFS] Ensure errors from xfs_bdstrat() are correctly checked.
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
1da177e4
LT
47#include "xfs_rw.h"
48#include "xfs_error.h"
1da177e4
LT
49#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
1da177e4 52#include "xfs_acl.h"
2a82b8be 53#include "xfs_filestream.h"
739bfb2a 54#include "xfs_vnodeops.h"
1da177e4 55
1da177e4
LT
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
1da177e4
LT
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
4eea22f0 77 xfs_ifork_t *ifp,
1da177e4 78 int nrecs,
1da177e4
LT
79 xfs_exntfmt_t fmt)
80{
81 xfs_bmbt_irec_t irec;
a6f64d4a 82 xfs_bmbt_rec_host_t rec;
1da177e4
LT
83 int i;
84
85 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
92 }
93}
94#else /* DEBUG */
a6f64d4a 95#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
96#endif /* DEBUG */
97
98/*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102#if defined(DEBUG)
103void
104xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107{
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124}
125#endif
126
4ae29b43
DC
127/*
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
131 */
132STATIC int
133xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
136 xfs_imap_t *imap,
137 xfs_buf_t **bpp,
138 uint buf_flags,
139 uint imap_flags)
140{
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
145
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 147 (int)imap->im_len, buf_flags, &bp);
4ae29b43 148 if (error) {
a3f74ffb
DC
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
a3f74ffb
DC
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 }
4ae29b43
DC
157 return error;
158 }
159
160 /*
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 */
164#ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166#else /* usual case */
167 ni = 1;
168#endif
169
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
173
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
184 }
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187#ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
194#endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
197 }
198 }
199
200 xfs_inobp_check(mp, bp);
201
202 /*
203 * Mark the buffer as an inode buffer now that it looks good
204 */
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206
207 *bpp = bp;
208 return 0;
209}
210
1da177e4
LT
211/*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
ba0f32d4 224STATIC int
1da177e4
LT
225xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
231 int *offset)
232{
1da177e4
LT
233 xfs_imap_t imap;
234 xfs_buf_t *bp;
235 int error;
1da177e4 236
1da177e4
LT
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
4ae29b43 239 if (error)
1da177e4 240 return error;
1da177e4 241
4ae29b43
DC
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 if (error)
1da177e4 244 return error;
1da177e4 245
1da177e4
LT
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
250}
251
252
253/*
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
259 *
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
262 *
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
272 */
273int
274xfs_itobp(
275 xfs_mount_t *mp,
276 xfs_trans_t *tp,
277 xfs_inode_t *ip,
278 xfs_dinode_t **dipp,
279 xfs_buf_t **bpp,
b12dd342 280 xfs_daddr_t bno,
a3f74ffb
DC
281 uint imap_flags,
282 uint buf_flags)
1da177e4 283{
4d1a2ed3 284 xfs_imap_t imap;
1da177e4
LT
285 xfs_buf_t *bp;
286 int error;
1da177e4
LT
287
288 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 289 imap.im_blkno = bno;
4ae29b43
DC
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
292 if (error)
1da177e4 293 return error;
1da177e4 294
1da177e4
LT
295 /*
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
298 */
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
303 /*
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
306 */
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
310 }
311 ASSERT(bno == 0 || bno == imap.im_blkno);
312
a3f74ffb 313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 314 if (error)
1da177e4 315 return error;
1da177e4 316
a3f74ffb
DC
317 if (!bp) {
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 ASSERT(tp == NULL);
320 *bpp = NULL;
321 return EAGAIN;
322 }
323
1da177e4
LT
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 *bpp = bp;
326 return 0;
327}
328
329/*
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
337 */
338STATIC int
339xfs_iformat(
340 xfs_inode_t *ip,
341 xfs_dinode_t *dip)
342{
343 xfs_attr_shortform_t *atp;
344 int size;
345 int error;
346 xfs_fsize_t di_size;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 error = 0;
350
347d1c01
CH
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 356 (unsigned long long)ip->i_ino,
347d1c01
CH
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 359 (unsigned long long)
347d1c01 360 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 ip->i_mount, dip);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365
347d1c01 366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 369 (unsigned long long)ip->i_ino,
347d1c01 370 dip->di_core.di_forkoff);
1da177e4
LT
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 ip->i_mount, dip);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 switch (ip->i_d.di_mode & S_IFMT) {
377 case S_IFIFO:
378 case S_IFCHR:
379 case S_IFBLK:
380 case S_IFSOCK:
347d1c01 381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
385 }
386 ip->i_d.di_size = 0;
ba87ea69 387 ip->i_size = 0;
347d1c01 388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
389 break;
390
391 case S_IFREG:
392 case S_IFLNK:
393 case S_IFDIR:
347d1c01 394 switch (dip->di_core.di_format) {
1da177e4
LT
395 case XFS_DINODE_FMT_LOCAL:
396 /*
397 * no local regular files yet
398 */
347d1c01 399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 "corrupt inode %Lu "
402 "(local format for regular file).",
1da177e4
LT
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 XFS_ERRLEVEL_LOW,
406 ip->i_mount, dip);
407 return XFS_ERROR(EFSCORRUPTED);
408 }
409
347d1c01 410 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt inode %Lu "
414 "(bad size %Ld for local inode).",
1da177e4
LT
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 XFS_ERRLEVEL_LOW,
419 ip->i_mount, dip);
420 return XFS_ERROR(EFSCORRUPTED);
421 }
422
423 size = (int)di_size;
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 break;
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 break;
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 break;
432 default:
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 ip->i_mount);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437 break;
438
439 default:
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
442 }
443 if (error) {
444 return error;
445 }
446 if (!XFS_DFORK_Q(dip))
447 return 0;
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 452 switch (dip->di_core.di_aformat) {
1da177e4
LT
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 455 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 break;
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 break;
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 break;
464 default:
465 error = XFS_ERROR(EFSCORRUPTED);
466 break;
467 }
468 if (error) {
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 ip->i_afp = NULL;
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 }
473 return error;
474}
475
476/*
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
485 */
486STATIC int
487xfs_iformat_local(
488 xfs_inode_t *ip,
489 xfs_dinode_t *dip,
490 int whichfork,
491 int size)
492{
493 xfs_ifork_t *ifp;
494 int real_size;
495
496 /*
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
500 */
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 "corrupt inode %Lu "
504 "(bad size %d for local fork, size = %d).",
1da177e4
LT
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
510 }
511 ifp = XFS_IFORK_PTR(ip, whichfork);
512 real_size = 0;
513 if (size == 0)
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 else {
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 }
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
523 if (size)
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
527 return 0;
528}
529
530/*
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
538 */
539STATIC int
540xfs_iformat_extents(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork)
544{
a6f64d4a 545 xfs_bmbt_rec_t *dp;
1da177e4
LT
546 xfs_ifork_t *ifp;
547 int nex;
1da177e4
LT
548 int size;
549 int i;
550
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554
555 /*
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
559 */
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
567 }
568
4eea22f0 569 ifp->if_real_bytes = 0;
1da177e4
LT
570 if (nex == 0)
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
574 else
575 xfs_iext_add(ifp, 0, nex);
576
1da177e4 577 ifp->if_bytes = size;
1da177e4
LT
578 if (size) {
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 581 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
cd8b0a97
CH
583 ep->l0 = be64_to_cpu(get_unaligned(&dp->l0));
584 ep->l1 = be64_to_cpu(get_unaligned(&dp->l1));
1da177e4 585 }
3a59c94c 586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
4eea22f0 590 ifp, 0, nex))) {
1da177e4
LT
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 XFS_ERRLEVEL_LOW,
593 ip->i_mount);
594 return XFS_ERROR(EFSCORRUPTED);
595 }
596 }
597 ifp->if_flags |= XFS_IFEXTENTS;
598 return 0;
599}
600
601/*
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
608 */
609STATIC int
610xfs_iformat_btree(
611 xfs_inode_t *ip,
612 xfs_dinode_t *dip,
613 int whichfork)
614{
615 xfs_bmdr_block_t *dfp;
616 xfs_ifork_t *ifp;
617 /* REFERENCED */
618 int nrecs;
619 int size;
620
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625
626 /*
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
631 * blocks.
632 */
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
1da177e4
LT
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 ip->i_mount);
642 return XFS_ERROR(EFSCORRUPTED);
643 }
644
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
648 /*
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
651 */
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
656
657 return 0;
658}
659
1da177e4 660void
347d1c01
CH
661xfs_dinode_from_disk(
662 xfs_icdinode_t *to,
663 xfs_dinode_core_t *from)
1da177e4 664{
347d1c01
CH
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
693}
694
695void
696xfs_dinode_to_disk(
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
699{
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
728}
729
730STATIC uint
731_xfs_dic2xflags(
1da177e4
LT
732 __uint16_t di_flags)
733{
734 uint flags = 0;
735
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
765 }
766
767 return flags;
768}
769
770uint
771xfs_ip2xflags(
772 xfs_inode_t *ip)
773{
347d1c01 774 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 775
a916e2bd 776 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
778}
779
780uint
781xfs_dic2xflags(
45ba598e 782 xfs_dinode_t *dip)
1da177e4 783{
45ba598e
CH
784 xfs_dinode_core_t *dic = &dip->di_core;
785
347d1c01 786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
788}
789
790/*
791 * Given a mount structure and an inode number, return a pointer
c41564b5 792 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
793 * inode number.
794 *
795 * Initialize the inode's attributes and extent pointers if it
796 * already has them (it will not if the inode has no links).
797 */
798int
799xfs_iread(
800 xfs_mount_t *mp,
801 xfs_trans_t *tp,
802 xfs_ino_t ino,
803 xfs_inode_t **ipp,
745b1f47
NS
804 xfs_daddr_t bno,
805 uint imap_flags)
1da177e4
LT
806{
807 xfs_buf_t *bp;
808 xfs_dinode_t *dip;
809 xfs_inode_t *ip;
810 int error;
811
812 ASSERT(xfs_inode_zone != NULL);
813
814 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
815 ip->i_ino = ino;
816 ip->i_mount = mp;
b677c210 817 atomic_set(&ip->i_iocount, 0);
f273ab84 818 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
819
820 /*
821 * Get pointer's to the on-disk inode and the buffer containing it.
822 * If the inode number refers to a block outside the file system
823 * then xfs_itobp() will return NULL. In this case we should
824 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
825 * know that this is a new incore inode.
826 */
a3f74ffb 827 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
b12dd342 828 if (error) {
1da177e4
LT
829 kmem_zone_free(xfs_inode_zone, ip);
830 return error;
831 }
832
833 /*
834 * Initialize inode's trace buffers.
835 * Do this before xfs_iformat in case it adds entries.
836 */
cf441eeb
LM
837#ifdef XFS_INODE_TRACE
838 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_SLEEP);
1543d79c 839#endif
1da177e4
LT
840#ifdef XFS_BMAP_TRACE
841 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
842#endif
843#ifdef XFS_BMBT_TRACE
844 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
845#endif
846#ifdef XFS_RW_TRACE
847 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
848#endif
849#ifdef XFS_ILOCK_TRACE
850 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
851#endif
852#ifdef XFS_DIR2_TRACE
853 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
854#endif
855
856 /*
857 * If we got something that isn't an inode it means someone
858 * (nfs or dmi) has a stale handle.
859 */
347d1c01 860 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
1da177e4
LT
861 kmem_zone_free(xfs_inode_zone, ip);
862 xfs_trans_brelse(tp, bp);
863#ifdef DEBUG
864 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
865 "dip->di_core.di_magic (0x%x) != "
866 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 867 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
868 XFS_DINODE_MAGIC);
869#endif /* DEBUG */
870 return XFS_ERROR(EINVAL);
871 }
872
873 /*
874 * If the on-disk inode is already linked to a directory
875 * entry, copy all of the inode into the in-core inode.
876 * xfs_iformat() handles copying in the inode format
877 * specific information.
878 * Otherwise, just get the truly permanent information.
879 */
880 if (dip->di_core.di_mode) {
347d1c01 881 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
882 error = xfs_iformat(ip, dip);
883 if (error) {
884 kmem_zone_free(xfs_inode_zone, ip);
885 xfs_trans_brelse(tp, bp);
886#ifdef DEBUG
887 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
888 "xfs_iformat() returned error %d",
889 error);
890#endif /* DEBUG */
891 return error;
892 }
893 } else {
347d1c01
CH
894 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
895 ip->i_d.di_version = dip->di_core.di_version;
896 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
897 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
898 /*
899 * Make sure to pull in the mode here as well in
900 * case the inode is released without being used.
901 * This ensures that xfs_inactive() will see that
902 * the inode is already free and not try to mess
903 * with the uninitialized part of it.
904 */
905 ip->i_d.di_mode = 0;
906 /*
907 * Initialize the per-fork minima and maxima for a new
908 * inode here. xfs_iformat will do it for old inodes.
909 */
910 ip->i_df.if_ext_max =
911 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
912 }
913
914 INIT_LIST_HEAD(&ip->i_reclaim);
915
916 /*
917 * The inode format changed when we moved the link count and
918 * made it 32 bits long. If this is an old format inode,
919 * convert it in memory to look like a new one. If it gets
920 * flushed to disk we will convert back before flushing or
921 * logging it. We zero out the new projid field and the old link
922 * count field. We'll handle clearing the pad field (the remains
923 * of the old uuid field) when we actually convert the inode to
924 * the new format. We don't change the version number so that we
925 * can distinguish this from a real new format inode.
926 */
927 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
928 ip->i_d.di_nlink = ip->i_d.di_onlink;
929 ip->i_d.di_onlink = 0;
930 ip->i_d.di_projid = 0;
931 }
932
933 ip->i_delayed_blks = 0;
ba87ea69 934 ip->i_size = ip->i_d.di_size;
1da177e4
LT
935
936 /*
937 * Mark the buffer containing the inode as something to keep
938 * around for a while. This helps to keep recently accessed
939 * meta-data in-core longer.
940 */
941 XFS_BUF_SET_REF(bp, XFS_INO_REF);
942
943 /*
944 * Use xfs_trans_brelse() to release the buffer containing the
945 * on-disk inode, because it was acquired with xfs_trans_read_buf()
946 * in xfs_itobp() above. If tp is NULL, this is just a normal
947 * brelse(). If we're within a transaction, then xfs_trans_brelse()
948 * will only release the buffer if it is not dirty within the
949 * transaction. It will be OK to release the buffer in this case,
950 * because inodes on disk are never destroyed and we will be
951 * locking the new in-core inode before putting it in the hash
952 * table where other processes can find it. Thus we don't have
953 * to worry about the inode being changed just because we released
954 * the buffer.
955 */
956 xfs_trans_brelse(tp, bp);
957 *ipp = ip;
958 return 0;
959}
960
961/*
962 * Read in extents from a btree-format inode.
963 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
964 */
965int
966xfs_iread_extents(
967 xfs_trans_t *tp,
968 xfs_inode_t *ip,
969 int whichfork)
970{
971 int error;
972 xfs_ifork_t *ifp;
4eea22f0 973 xfs_extnum_t nextents;
1da177e4
LT
974 size_t size;
975
976 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
977 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
978 ip->i_mount);
979 return XFS_ERROR(EFSCORRUPTED);
980 }
4eea22f0
MK
981 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
982 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 983 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 984
1da177e4
LT
985 /*
986 * We know that the size is valid (it's checked in iformat_btree)
987 */
1da177e4 988 ifp->if_lastex = NULLEXTNUM;
4eea22f0 989 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 990 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 991 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
992 error = xfs_bmap_read_extents(tp, ip, whichfork);
993 if (error) {
4eea22f0 994 xfs_iext_destroy(ifp);
1da177e4
LT
995 ifp->if_flags &= ~XFS_IFEXTENTS;
996 return error;
997 }
a6f64d4a 998 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
999 return 0;
1000}
1001
1002/*
1003 * Allocate an inode on disk and return a copy of its in-core version.
1004 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1005 * appropriately within the inode. The uid and gid for the inode are
1006 * set according to the contents of the given cred structure.
1007 *
1008 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1009 * has a free inode available, call xfs_iget()
1010 * to obtain the in-core version of the allocated inode. Finally,
1011 * fill in the inode and log its initial contents. In this case,
1012 * ialloc_context would be set to NULL and call_again set to false.
1013 *
1014 * If xfs_dialloc() does not have an available inode,
1015 * it will replenish its supply by doing an allocation. Since we can
1016 * only do one allocation within a transaction without deadlocks, we
1017 * must commit the current transaction before returning the inode itself.
1018 * In this case, therefore, we will set call_again to true and return.
1019 * The caller should then commit the current transaction, start a new
1020 * transaction, and call xfs_ialloc() again to actually get the inode.
1021 *
1022 * To ensure that some other process does not grab the inode that
1023 * was allocated during the first call to xfs_ialloc(), this routine
1024 * also returns the [locked] bp pointing to the head of the freelist
1025 * as ialloc_context. The caller should hold this buffer across
1026 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1027 *
1028 * If we are allocating quota inodes, we do not have a parent inode
1029 * to attach to or associate with (i.e. pip == NULL) because they
1030 * are not linked into the directory structure - they are attached
1031 * directly to the superblock - and so have no parent.
1da177e4
LT
1032 */
1033int
1034xfs_ialloc(
1035 xfs_trans_t *tp,
1036 xfs_inode_t *pip,
1037 mode_t mode,
31b084ae 1038 xfs_nlink_t nlink,
1da177e4
LT
1039 xfs_dev_t rdev,
1040 cred_t *cr,
1041 xfs_prid_t prid,
1042 int okalloc,
1043 xfs_buf_t **ialloc_context,
1044 boolean_t *call_again,
1045 xfs_inode_t **ipp)
1046{
1047 xfs_ino_t ino;
1048 xfs_inode_t *ip;
67fcaa73 1049 bhv_vnode_t *vp;
1da177e4
LT
1050 uint flags;
1051 int error;
1052
1053 /*
1054 * Call the space management code to pick
1055 * the on-disk inode to be allocated.
1056 */
b11f94d5 1057 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1058 ialloc_context, call_again, &ino);
1059 if (error != 0) {
1060 return error;
1061 }
1062 if (*call_again || ino == NULLFSINO) {
1063 *ipp = NULL;
1064 return 0;
1065 }
1066 ASSERT(*ialloc_context == NULL);
1067
1068 /*
1069 * Get the in-core inode with the lock held exclusively.
1070 * This is because we're setting fields here we need
1071 * to prevent others from looking at until we're done.
1072 */
1073 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1074 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1075 if (error != 0) {
1076 return error;
1077 }
1078 ASSERT(ip != NULL);
1079
1080 vp = XFS_ITOV(ip);
1da177e4
LT
1081 ip->i_d.di_mode = (__uint16_t)mode;
1082 ip->i_d.di_onlink = 0;
1083 ip->i_d.di_nlink = nlink;
1084 ASSERT(ip->i_d.di_nlink == nlink);
1085 ip->i_d.di_uid = current_fsuid(cr);
1086 ip->i_d.di_gid = current_fsgid(cr);
1087 ip->i_d.di_projid = prid;
1088 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1089
1090 /*
1091 * If the superblock version is up to where we support new format
1092 * inodes and this is currently an old format inode, then change
1093 * the inode version number now. This way we only do the conversion
1094 * here rather than here and in the flush/logging code.
1095 */
62118709 1096 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1097 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1098 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1099 /*
1100 * We've already zeroed the old link count, the projid field,
1101 * and the pad field.
1102 */
1103 }
1104
1105 /*
1106 * Project ids won't be stored on disk if we are using a version 1 inode.
1107 */
2a82b8be 1108 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1109 xfs_bump_ino_vers2(tp, ip);
1110
bd186aa9 1111 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1112 ip->i_d.di_gid = pip->i_d.di_gid;
1113 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1114 ip->i_d.di_mode |= S_ISGID;
1115 }
1116 }
1117
1118 /*
1119 * If the group ID of the new file does not match the effective group
1120 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1121 * (and only if the irix_sgid_inherit compatibility variable is set).
1122 */
1123 if ((irix_sgid_inherit) &&
1124 (ip->i_d.di_mode & S_ISGID) &&
1125 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1126 ip->i_d.di_mode &= ~S_ISGID;
1127 }
1128
1129 ip->i_d.di_size = 0;
ba87ea69 1130 ip->i_size = 0;
1da177e4
LT
1131 ip->i_d.di_nextents = 0;
1132 ASSERT(ip->i_d.di_nblocks == 0);
1133 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1134 /*
1135 * di_gen will have been taken care of in xfs_iread.
1136 */
1137 ip->i_d.di_extsize = 0;
1138 ip->i_d.di_dmevmask = 0;
1139 ip->i_d.di_dmstate = 0;
1140 ip->i_d.di_flags = 0;
1141 flags = XFS_ILOG_CORE;
1142 switch (mode & S_IFMT) {
1143 case S_IFIFO:
1144 case S_IFCHR:
1145 case S_IFBLK:
1146 case S_IFSOCK:
1147 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1148 ip->i_df.if_u2.if_rdev = rdev;
1149 ip->i_df.if_flags = 0;
1150 flags |= XFS_ILOG_DEV;
1151 break;
1152 case S_IFREG:
b11f94d5 1153 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1154 error = xfs_filestream_associate(pip, ip);
1155 if (error < 0)
1156 return -error;
1157 if (!error)
1158 xfs_iflags_set(ip, XFS_IFILESTREAM);
1159 }
1160 /* fall through */
1da177e4 1161 case S_IFDIR:
b11f94d5 1162 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1163 uint di_flags = 0;
1164
1165 if ((mode & S_IFMT) == S_IFDIR) {
1166 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1167 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1168 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1169 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1170 ip->i_d.di_extsize = pip->i_d.di_extsize;
1171 }
1172 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1173 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1174 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1175 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1176 di_flags |= XFS_DIFLAG_EXTSIZE;
1177 ip->i_d.di_extsize = pip->i_d.di_extsize;
1178 }
1da177e4
LT
1179 }
1180 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1181 xfs_inherit_noatime)
365ca83d 1182 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1183 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1184 xfs_inherit_nodump)
365ca83d 1185 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1186 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1187 xfs_inherit_sync)
365ca83d 1188 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1189 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1190 xfs_inherit_nosymlinks)
365ca83d
NS
1191 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1192 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1193 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1194 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1195 xfs_inherit_nodefrag)
1196 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1197 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1198 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1199 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1200 }
1201 /* FALLTHROUGH */
1202 case S_IFLNK:
1203 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1204 ip->i_df.if_flags = XFS_IFEXTENTS;
1205 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1206 ip->i_df.if_u1.if_extents = NULL;
1207 break;
1208 default:
1209 ASSERT(0);
1210 }
1211 /*
1212 * Attribute fork settings for new inode.
1213 */
1214 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1215 ip->i_d.di_anextents = 0;
1216
1217 /*
1218 * Log the new values stuffed into the inode.
1219 */
1220 xfs_trans_log_inode(tp, ip, flags);
1221
b83bd138 1222 /* now that we have an i_mode we can setup inode ops and unlock */
745f6919 1223 xfs_initialize_vnode(tp->t_mountp, vp, ip);
1da177e4
LT
1224
1225 *ipp = ip;
1226 return 0;
1227}
1228
1229/*
1230 * Check to make sure that there are no blocks allocated to the
1231 * file beyond the size of the file. We don't check this for
1232 * files with fixed size extents or real time extents, but we
1233 * at least do it for regular files.
1234 */
1235#ifdef DEBUG
1236void
1237xfs_isize_check(
1238 xfs_mount_t *mp,
1239 xfs_inode_t *ip,
1240 xfs_fsize_t isize)
1241{
1242 xfs_fileoff_t map_first;
1243 int nimaps;
1244 xfs_bmbt_irec_t imaps[2];
1245
1246 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1247 return;
1248
71ddabb9
ES
1249 if (XFS_IS_REALTIME_INODE(ip))
1250 return;
1251
1252 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1253 return;
1254
1255 nimaps = 2;
1256 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1257 /*
1258 * The filesystem could be shutting down, so bmapi may return
1259 * an error.
1260 */
1261 if (xfs_bmapi(NULL, ip, map_first,
1262 (XFS_B_TO_FSB(mp,
1263 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1264 map_first),
1265 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1266 NULL, NULL))
1da177e4
LT
1267 return;
1268 ASSERT(nimaps == 1);
1269 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1270}
1271#endif /* DEBUG */
1272
1273/*
1274 * Calculate the last possible buffered byte in a file. This must
1275 * include data that was buffered beyond the EOF by the write code.
1276 * This also needs to deal with overflowing the xfs_fsize_t type
1277 * which can happen for sizes near the limit.
1278 *
1279 * We also need to take into account any blocks beyond the EOF. It
1280 * may be the case that they were buffered by a write which failed.
1281 * In that case the pages will still be in memory, but the inode size
1282 * will never have been updated.
1283 */
1284xfs_fsize_t
1285xfs_file_last_byte(
1286 xfs_inode_t *ip)
1287{
1288 xfs_mount_t *mp;
1289 xfs_fsize_t last_byte;
1290 xfs_fileoff_t last_block;
1291 xfs_fileoff_t size_last_block;
1292 int error;
1293
1294 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1295
1296 mp = ip->i_mount;
1297 /*
1298 * Only check for blocks beyond the EOF if the extents have
1299 * been read in. This eliminates the need for the inode lock,
1300 * and it also saves us from looking when it really isn't
1301 * necessary.
1302 */
1303 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1304 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1305 XFS_DATA_FORK);
1306 if (error) {
1307 last_block = 0;
1308 }
1309 } else {
1310 last_block = 0;
1311 }
ba87ea69 1312 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1313 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1314
1315 last_byte = XFS_FSB_TO_B(mp, last_block);
1316 if (last_byte < 0) {
1317 return XFS_MAXIOFFSET(mp);
1318 }
1319 last_byte += (1 << mp->m_writeio_log);
1320 if (last_byte < 0) {
1321 return XFS_MAXIOFFSET(mp);
1322 }
1323 return last_byte;
1324}
1325
1326#if defined(XFS_RW_TRACE)
1327STATIC void
1328xfs_itrunc_trace(
1329 int tag,
1330 xfs_inode_t *ip,
1331 int flag,
1332 xfs_fsize_t new_size,
1333 xfs_off_t toss_start,
1334 xfs_off_t toss_finish)
1335{
1336 if (ip->i_rwtrace == NULL) {
1337 return;
1338 }
1339
1340 ktrace_enter(ip->i_rwtrace,
1341 (void*)((long)tag),
1342 (void*)ip,
1343 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1344 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1345 (void*)((long)flag),
1346 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1347 (void*)(unsigned long)(new_size & 0xffffffff),
1348 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1349 (void*)(unsigned long)(toss_start & 0xffffffff),
1350 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1351 (void*)(unsigned long)(toss_finish & 0xffffffff),
1352 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1353 (void*)(unsigned long)current_pid(),
1354 (void*)NULL,
1355 (void*)NULL,
1356 (void*)NULL);
1da177e4
LT
1357}
1358#else
1359#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1360#endif
1361
1362/*
1363 * Start the truncation of the file to new_size. The new size
1364 * must be smaller than the current size. This routine will
1365 * clear the buffer and page caches of file data in the removed
1366 * range, and xfs_itruncate_finish() will remove the underlying
1367 * disk blocks.
1368 *
1369 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1370 * must NOT have the inode lock held at all. This is because we're
1371 * calling into the buffer/page cache code and we can't hold the
1372 * inode lock when we do so.
1373 *
38e2299a
DC
1374 * We need to wait for any direct I/Os in flight to complete before we
1375 * proceed with the truncate. This is needed to prevent the extents
1376 * being read or written by the direct I/Os from being removed while the
1377 * I/O is in flight as there is no other method of synchronising
1378 * direct I/O with the truncate operation. Also, because we hold
1379 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1380 * started until the truncate completes and drops the lock. Essentially,
1381 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1382 * between direct I/Os and the truncate operation.
1383 *
1da177e4
LT
1384 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1385 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1386 * in the case that the caller is locking things out of order and
1387 * may not be able to call xfs_itruncate_finish() with the inode lock
1388 * held without dropping the I/O lock. If the caller must drop the
1389 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1390 * must be called again with all the same restrictions as the initial
1391 * call.
1392 */
d3cf2094 1393int
1da177e4
LT
1394xfs_itruncate_start(
1395 xfs_inode_t *ip,
1396 uint flags,
1397 xfs_fsize_t new_size)
1398{
1399 xfs_fsize_t last_byte;
1400 xfs_off_t toss_start;
1401 xfs_mount_t *mp;
67fcaa73 1402 bhv_vnode_t *vp;
d3cf2094 1403 int error = 0;
1da177e4
LT
1404
1405 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
ba87ea69 1406 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1407 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1408 (flags == XFS_ITRUNC_MAYBE));
1409
1410 mp = ip->i_mount;
1411 vp = XFS_ITOV(ip);
9fa8046f 1412
c734c79b
LM
1413 /* wait for the completion of any pending DIOs */
1414 if (new_size < ip->i_size)
1415 vn_iowait(ip);
1416
1da177e4 1417 /*
67fcaa73 1418 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1419 * overlapping the region being removed. We have to use
67fcaa73 1420 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1421 * caller may not be able to finish the truncate without
1422 * dropping the inode's I/O lock. Make sure
1423 * to catch any pages brought in by buffers overlapping
1424 * the EOF by searching out beyond the isize by our
1425 * block size. We round new_size up to a block boundary
1426 * so that we don't toss things on the same block as
1427 * new_size but before it.
1428 *
67fcaa73 1429 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1430 * call remapf() over the same region if the file is mapped.
1431 * This frees up mapped file references to the pages in the
67fcaa73 1432 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1433 * that we get the latest mapped changes flushed out.
1434 */
1435 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1436 toss_start = XFS_FSB_TO_B(mp, toss_start);
1437 if (toss_start < 0) {
1438 /*
1439 * The place to start tossing is beyond our maximum
1440 * file size, so there is no way that the data extended
1441 * out there.
1442 */
d3cf2094 1443 return 0;
1da177e4
LT
1444 }
1445 last_byte = xfs_file_last_byte(ip);
1446 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1447 last_byte);
1448 if (last_byte > toss_start) {
1449 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1450 xfs_tosspages(ip, toss_start,
1451 -1, FI_REMAPF_LOCKED);
1da177e4 1452 } else {
739bfb2a
CH
1453 error = xfs_flushinval_pages(ip, toss_start,
1454 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1455 }
1456 }
1457
1458#ifdef DEBUG
1459 if (new_size == 0) {
1460 ASSERT(VN_CACHED(vp) == 0);
1461 }
1462#endif
d3cf2094 1463 return error;
1da177e4
LT
1464}
1465
1466/*
1467 * Shrink the file to the given new_size. The new
1468 * size must be smaller than the current size.
1469 * This will free up the underlying blocks
1470 * in the removed range after a call to xfs_itruncate_start()
1471 * or xfs_atruncate_start().
1472 *
1473 * The transaction passed to this routine must have made
1474 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1475 * This routine may commit the given transaction and
1476 * start new ones, so make sure everything involved in
1477 * the transaction is tidy before calling here.
1478 * Some transaction will be returned to the caller to be
1479 * committed. The incoming transaction must already include
1480 * the inode, and both inode locks must be held exclusively.
1481 * The inode must also be "held" within the transaction. On
1482 * return the inode will be "held" within the returned transaction.
1483 * This routine does NOT require any disk space to be reserved
1484 * for it within the transaction.
1485 *
1486 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1487 * and it indicates the fork which is to be truncated. For the
1488 * attribute fork we only support truncation to size 0.
1489 *
1490 * We use the sync parameter to indicate whether or not the first
1491 * transaction we perform might have to be synchronous. For the attr fork,
1492 * it needs to be so if the unlink of the inode is not yet known to be
1493 * permanent in the log. This keeps us from freeing and reusing the
1494 * blocks of the attribute fork before the unlink of the inode becomes
1495 * permanent.
1496 *
1497 * For the data fork, we normally have to run synchronously if we're
1498 * being called out of the inactive path or we're being called
1499 * out of the create path where we're truncating an existing file.
1500 * Either way, the truncate needs to be sync so blocks don't reappear
1501 * in the file with altered data in case of a crash. wsync filesystems
1502 * can run the first case async because anything that shrinks the inode
1503 * has to run sync so by the time we're called here from inactive, the
1504 * inode size is permanently set to 0.
1505 *
1506 * Calls from the truncate path always need to be sync unless we're
1507 * in a wsync filesystem and the file has already been unlinked.
1508 *
1509 * The caller is responsible for correctly setting the sync parameter.
1510 * It gets too hard for us to guess here which path we're being called
1511 * out of just based on inode state.
1512 */
1513int
1514xfs_itruncate_finish(
1515 xfs_trans_t **tp,
1516 xfs_inode_t *ip,
1517 xfs_fsize_t new_size,
1518 int fork,
1519 int sync)
1520{
1521 xfs_fsblock_t first_block;
1522 xfs_fileoff_t first_unmap_block;
1523 xfs_fileoff_t last_block;
1524 xfs_filblks_t unmap_len=0;
1525 xfs_mount_t *mp;
1526 xfs_trans_t *ntp;
1527 int done;
1528 int committed;
1529 xfs_bmap_free_t free_list;
1530 int error;
1531
1532 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1533 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
ba87ea69 1534 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1535 ASSERT(*tp != NULL);
1536 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1537 ASSERT(ip->i_transp == *tp);
1538 ASSERT(ip->i_itemp != NULL);
1539 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1540
1541
1542 ntp = *tp;
1543 mp = (ntp)->t_mountp;
1544 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1545
1546 /*
1547 * We only support truncating the entire attribute fork.
1548 */
1549 if (fork == XFS_ATTR_FORK) {
1550 new_size = 0LL;
1551 }
1552 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1553 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1554 /*
1555 * The first thing we do is set the size to new_size permanently
1556 * on disk. This way we don't have to worry about anyone ever
1557 * being able to look at the data being freed even in the face
1558 * of a crash. What we're getting around here is the case where
1559 * we free a block, it is allocated to another file, it is written
1560 * to, and then we crash. If the new data gets written to the
1561 * file but the log buffers containing the free and reallocation
1562 * don't, then we'd end up with garbage in the blocks being freed.
1563 * As long as we make the new_size permanent before actually
1564 * freeing any blocks it doesn't matter if they get writtten to.
1565 *
1566 * The callers must signal into us whether or not the size
1567 * setting here must be synchronous. There are a few cases
1568 * where it doesn't have to be synchronous. Those cases
1569 * occur if the file is unlinked and we know the unlink is
1570 * permanent or if the blocks being truncated are guaranteed
1571 * to be beyond the inode eof (regardless of the link count)
1572 * and the eof value is permanent. Both of these cases occur
1573 * only on wsync-mounted filesystems. In those cases, we're
1574 * guaranteed that no user will ever see the data in the blocks
1575 * that are being truncated so the truncate can run async.
1576 * In the free beyond eof case, the file may wind up with
1577 * more blocks allocated to it than it needs if we crash
1578 * and that won't get fixed until the next time the file
1579 * is re-opened and closed but that's ok as that shouldn't
1580 * be too many blocks.
1581 *
1582 * However, we can't just make all wsync xactions run async
1583 * because there's one call out of the create path that needs
1584 * to run sync where it's truncating an existing file to size
1585 * 0 whose size is > 0.
1586 *
1587 * It's probably possible to come up with a test in this
1588 * routine that would correctly distinguish all the above
1589 * cases from the values of the function parameters and the
1590 * inode state but for sanity's sake, I've decided to let the
1591 * layers above just tell us. It's simpler to correctly figure
1592 * out in the layer above exactly under what conditions we
1593 * can run async and I think it's easier for others read and
1594 * follow the logic in case something has to be changed.
1595 * cscope is your friend -- rcc.
1596 *
1597 * The attribute fork is much simpler.
1598 *
1599 * For the attribute fork we allow the caller to tell us whether
1600 * the unlink of the inode that led to this call is yet permanent
1601 * in the on disk log. If it is not and we will be freeing extents
1602 * in this inode then we make the first transaction synchronous
1603 * to make sure that the unlink is permanent by the time we free
1604 * the blocks.
1605 */
1606 if (fork == XFS_DATA_FORK) {
1607 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1608 /*
1609 * If we are not changing the file size then do
1610 * not update the on-disk file size - we may be
1611 * called from xfs_inactive_free_eofblocks(). If we
1612 * update the on-disk file size and then the system
1613 * crashes before the contents of the file are
1614 * flushed to disk then the files may be full of
1615 * holes (ie NULL files bug).
1616 */
1617 if (ip->i_size != new_size) {
1618 ip->i_d.di_size = new_size;
1619 ip->i_size = new_size;
1620 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1621 }
1da177e4
LT
1622 }
1623 } else if (sync) {
1624 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1625 if (ip->i_d.di_anextents > 0)
1626 xfs_trans_set_sync(ntp);
1627 }
1628 ASSERT(fork == XFS_DATA_FORK ||
1629 (fork == XFS_ATTR_FORK &&
1630 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1631 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1632
1633 /*
1634 * Since it is possible for space to become allocated beyond
1635 * the end of the file (in a crash where the space is allocated
1636 * but the inode size is not yet updated), simply remove any
1637 * blocks which show up between the new EOF and the maximum
1638 * possible file size. If the first block to be removed is
1639 * beyond the maximum file size (ie it is the same as last_block),
1640 * then there is nothing to do.
1641 */
1642 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1643 ASSERT(first_unmap_block <= last_block);
1644 done = 0;
1645 if (last_block == first_unmap_block) {
1646 done = 1;
1647 } else {
1648 unmap_len = last_block - first_unmap_block + 1;
1649 }
1650 while (!done) {
1651 /*
1652 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1653 * will tell us whether it freed the entire range or
1654 * not. If this is a synchronous mount (wsync),
1655 * then we can tell bunmapi to keep all the
1656 * transactions asynchronous since the unlink
1657 * transaction that made this inode inactive has
1658 * already hit the disk. There's no danger of
1659 * the freed blocks being reused, there being a
1660 * crash, and the reused blocks suddenly reappearing
1661 * in this file with garbage in them once recovery
1662 * runs.
1663 */
1664 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1665 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1666 first_unmap_block, unmap_len,
1da177e4
LT
1667 XFS_BMAPI_AFLAG(fork) |
1668 (sync ? 0 : XFS_BMAPI_ASYNC),
1669 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1670 &first_block, &free_list,
1671 NULL, &done);
1da177e4
LT
1672 if (error) {
1673 /*
1674 * If the bunmapi call encounters an error,
1675 * return to the caller where the transaction
1676 * can be properly aborted. We just need to
1677 * make sure we're not holding any resources
1678 * that we were not when we came in.
1679 */
1680 xfs_bmap_cancel(&free_list);
1681 return error;
1682 }
1683
1684 /*
1685 * Duplicate the transaction that has the permanent
1686 * reservation and commit the old transaction.
1687 */
f7c99b6f 1688 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4
LT
1689 ntp = *tp;
1690 if (error) {
1691 /*
1692 * If the bmap finish call encounters an error,
1693 * return to the caller where the transaction
1694 * can be properly aborted. We just need to
1695 * make sure we're not holding any resources
1696 * that we were not when we came in.
1697 *
1698 * Aborting from this point might lose some
1699 * blocks in the file system, but oh well.
1700 */
1701 xfs_bmap_cancel(&free_list);
e5720eec
DC
1702 if (committed)
1703 goto error_join;
1da177e4
LT
1704 return error;
1705 }
1706
1707 if (committed) {
1708 /*
e5720eec
DC
1709 * The first xact was committed, so add the inode to
1710 * the new one. Mark it dirty so it will be logged and
1711 * moved forward in the log as part of every commit.
1da177e4
LT
1712 */
1713 xfs_trans_ijoin(ntp, ip,
1714 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1715 xfs_trans_ihold(ntp, ip);
1716 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1717 }
1718 ntp = xfs_trans_dup(ntp);
e5720eec 1719 error = xfs_trans_commit(*tp, 0);
1da177e4 1720 *tp = ntp;
e5720eec
DC
1721 if (error)
1722 goto error_join;
1da177e4
LT
1723 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1724 XFS_TRANS_PERM_LOG_RES,
1725 XFS_ITRUNCATE_LOG_COUNT);
1da177e4 1726 if (error)
e5720eec
DC
1727 goto error_join;
1728
1da177e4
LT
1729 }
1730 /*
1731 * Only update the size in the case of the data fork, but
1732 * always re-log the inode so that our permanent transaction
1733 * can keep on rolling it forward in the log.
1734 */
1735 if (fork == XFS_DATA_FORK) {
1736 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1737 /*
1738 * If we are not changing the file size then do
1739 * not update the on-disk file size - we may be
1740 * called from xfs_inactive_free_eofblocks(). If we
1741 * update the on-disk file size and then the system
1742 * crashes before the contents of the file are
1743 * flushed to disk then the files may be full of
1744 * holes (ie NULL files bug).
1745 */
1746 if (ip->i_size != new_size) {
1747 ip->i_d.di_size = new_size;
1748 ip->i_size = new_size;
1749 }
1da177e4
LT
1750 }
1751 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1752 ASSERT((new_size != 0) ||
1753 (fork == XFS_ATTR_FORK) ||
1754 (ip->i_delayed_blks == 0));
1755 ASSERT((new_size != 0) ||
1756 (fork == XFS_ATTR_FORK) ||
1757 (ip->i_d.di_nextents == 0));
1758 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1759 return 0;
e5720eec
DC
1760
1761error_join:
1762 /*
1763 * Add the inode being truncated to the next chained transaction. This
1764 * keeps things simple for the higher level code, because it always
1765 * knows that the inode is locked and held in the transaction that
1766 * returns to it whether errors occur or not. We don't mark the inode
1767 * dirty so that this transaction can be easily aborted if possible.
1768 */
1769 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1770 xfs_trans_ihold(ntp, ip);
1771 return error;
1da177e4
LT
1772}
1773
1774
1775/*
1776 * xfs_igrow_start
1777 *
1778 * Do the first part of growing a file: zero any data in the last
1779 * block that is beyond the old EOF. We need to do this before
1780 * the inode is joined to the transaction to modify the i_size.
1781 * That way we can drop the inode lock and call into the buffer
1782 * cache to get the buffer mapping the EOF.
1783 */
1784int
1785xfs_igrow_start(
1786 xfs_inode_t *ip,
1787 xfs_fsize_t new_size,
1788 cred_t *credp)
1789{
1da177e4
LT
1790 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1791 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
ba87ea69 1792 ASSERT(new_size > ip->i_size);
1da177e4 1793
1da177e4
LT
1794 /*
1795 * Zero any pages that may have been created by
1796 * xfs_write_file() beyond the end of the file
1797 * and any blocks between the old and new file sizes.
1798 */
541d7d3c 1799 return xfs_zero_eof(ip, new_size, ip->i_size);
1da177e4
LT
1800}
1801
1802/*
1803 * xfs_igrow_finish
1804 *
1805 * This routine is called to extend the size of a file.
1806 * The inode must have both the iolock and the ilock locked
1807 * for update and it must be a part of the current transaction.
1808 * The xfs_igrow_start() function must have been called previously.
1809 * If the change_flag is not zero, the inode change timestamp will
1810 * be updated.
1811 */
1812void
1813xfs_igrow_finish(
1814 xfs_trans_t *tp,
1815 xfs_inode_t *ip,
1816 xfs_fsize_t new_size,
1817 int change_flag)
1818{
1819 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1820 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1821 ASSERT(ip->i_transp == tp);
ba87ea69 1822 ASSERT(new_size > ip->i_size);
1da177e4
LT
1823
1824 /*
1825 * Update the file size. Update the inode change timestamp
1826 * if change_flag set.
1827 */
1828 ip->i_d.di_size = new_size;
ba87ea69 1829 ip->i_size = new_size;
1da177e4
LT
1830 if (change_flag)
1831 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1832 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1833
1834}
1835
1836
1837/*
1838 * This is called when the inode's link count goes to 0.
1839 * We place the on-disk inode on a list in the AGI. It
1840 * will be pulled from this list when the inode is freed.
1841 */
1842int
1843xfs_iunlink(
1844 xfs_trans_t *tp,
1845 xfs_inode_t *ip)
1846{
1847 xfs_mount_t *mp;
1848 xfs_agi_t *agi;
1849 xfs_dinode_t *dip;
1850 xfs_buf_t *agibp;
1851 xfs_buf_t *ibp;
1852 xfs_agnumber_t agno;
1853 xfs_daddr_t agdaddr;
1854 xfs_agino_t agino;
1855 short bucket_index;
1856 int offset;
1857 int error;
1858 int agi_ok;
1859
1860 ASSERT(ip->i_d.di_nlink == 0);
1861 ASSERT(ip->i_d.di_mode != 0);
1862 ASSERT(ip->i_transp == tp);
1863
1864 mp = tp->t_mountp;
1865
1866 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1867 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1868
1869 /*
1870 * Get the agi buffer first. It ensures lock ordering
1871 * on the list.
1872 */
1873 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1874 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1875 if (error)
1da177e4 1876 return error;
859d7182 1877
1da177e4
LT
1878 /*
1879 * Validate the magic number of the agi block.
1880 */
1881 agi = XFS_BUF_TO_AGI(agibp);
1882 agi_ok =
16259e7d
CH
1883 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1884 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1885 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1886 XFS_RANDOM_IUNLINK))) {
1887 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1888 xfs_trans_brelse(tp, agibp);
1889 return XFS_ERROR(EFSCORRUPTED);
1890 }
1891 /*
1892 * Get the index into the agi hash table for the
1893 * list this inode will go on.
1894 */
1895 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1896 ASSERT(agino != 0);
1897 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1898 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1899 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1900
16259e7d 1901 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1902 /*
1903 * There is already another inode in the bucket we need
1904 * to add ourselves to. Add us at the front of the list.
1905 * Here we put the head pointer into our next pointer,
1906 * and then we fall through to point the head at us.
1907 */
a3f74ffb 1908 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1909 if (error)
1910 return error;
1911
347d1c01 1912 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1913 /* both on-disk, don't endian flip twice */
1914 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1915 offset = ip->i_boffset +
1916 offsetof(xfs_dinode_t, di_next_unlinked);
1917 xfs_trans_inode_buf(tp, ibp);
1918 xfs_trans_log_buf(tp, ibp, offset,
1919 (offset + sizeof(xfs_agino_t) - 1));
1920 xfs_inobp_check(mp, ibp);
1921 }
1922
1923 /*
1924 * Point the bucket head pointer at the inode being inserted.
1925 */
1926 ASSERT(agino != 0);
16259e7d 1927 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1928 offset = offsetof(xfs_agi_t, agi_unlinked) +
1929 (sizeof(xfs_agino_t) * bucket_index);
1930 xfs_trans_log_buf(tp, agibp, offset,
1931 (offset + sizeof(xfs_agino_t) - 1));
1932 return 0;
1933}
1934
1935/*
1936 * Pull the on-disk inode from the AGI unlinked list.
1937 */
1938STATIC int
1939xfs_iunlink_remove(
1940 xfs_trans_t *tp,
1941 xfs_inode_t *ip)
1942{
1943 xfs_ino_t next_ino;
1944 xfs_mount_t *mp;
1945 xfs_agi_t *agi;
1946 xfs_dinode_t *dip;
1947 xfs_buf_t *agibp;
1948 xfs_buf_t *ibp;
1949 xfs_agnumber_t agno;
1950 xfs_daddr_t agdaddr;
1951 xfs_agino_t agino;
1952 xfs_agino_t next_agino;
1953 xfs_buf_t *last_ibp;
6fdf8ccc 1954 xfs_dinode_t *last_dip = NULL;
1da177e4 1955 short bucket_index;
6fdf8ccc 1956 int offset, last_offset = 0;
1da177e4
LT
1957 int error;
1958 int agi_ok;
1959
1960 /*
1961 * First pull the on-disk inode from the AGI unlinked list.
1962 */
1963 mp = tp->t_mountp;
1964
1965 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1966 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1967
1968 /*
1969 * Get the agi buffer first. It ensures lock ordering
1970 * on the list.
1971 */
1972 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1973 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1974 if (error) {
1975 cmn_err(CE_WARN,
1976 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1977 error, mp->m_fsname);
1978 return error;
1979 }
1980 /*
1981 * Validate the magic number of the agi block.
1982 */
1983 agi = XFS_BUF_TO_AGI(agibp);
1984 agi_ok =
16259e7d
CH
1985 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1986 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1987 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1988 XFS_RANDOM_IUNLINK_REMOVE))) {
1989 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1990 mp, agi);
1991 xfs_trans_brelse(tp, agibp);
1992 cmn_err(CE_WARN,
1993 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1994 mp->m_fsname);
1995 return XFS_ERROR(EFSCORRUPTED);
1996 }
1997 /*
1998 * Get the index into the agi hash table for the
1999 * list this inode will go on.
2000 */
2001 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2002 ASSERT(agino != 0);
2003 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2004 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2005 ASSERT(agi->agi_unlinked[bucket_index]);
2006
16259e7d 2007 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2008 /*
2009 * We're at the head of the list. Get the inode's
2010 * on-disk buffer to see if there is anyone after us
2011 * on the list. Only modify our next pointer if it
2012 * is not already NULLAGINO. This saves us the overhead
2013 * of dealing with the buffer when there is no need to
2014 * change it.
2015 */
a3f74ffb 2016 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2017 if (error) {
2018 cmn_err(CE_WARN,
2019 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2020 error, mp->m_fsname);
2021 return error;
2022 }
347d1c01 2023 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2024 ASSERT(next_agino != 0);
2025 if (next_agino != NULLAGINO) {
347d1c01 2026 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2027 offset = ip->i_boffset +
2028 offsetof(xfs_dinode_t, di_next_unlinked);
2029 xfs_trans_inode_buf(tp, ibp);
2030 xfs_trans_log_buf(tp, ibp, offset,
2031 (offset + sizeof(xfs_agino_t) - 1));
2032 xfs_inobp_check(mp, ibp);
2033 } else {
2034 xfs_trans_brelse(tp, ibp);
2035 }
2036 /*
2037 * Point the bucket head pointer at the next inode.
2038 */
2039 ASSERT(next_agino != 0);
2040 ASSERT(next_agino != agino);
16259e7d 2041 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2042 offset = offsetof(xfs_agi_t, agi_unlinked) +
2043 (sizeof(xfs_agino_t) * bucket_index);
2044 xfs_trans_log_buf(tp, agibp, offset,
2045 (offset + sizeof(xfs_agino_t) - 1));
2046 } else {
2047 /*
2048 * We need to search the list for the inode being freed.
2049 */
16259e7d 2050 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2051 last_ibp = NULL;
2052 while (next_agino != agino) {
2053 /*
2054 * If the last inode wasn't the one pointing to
2055 * us, then release its buffer since we're not
2056 * going to do anything with it.
2057 */
2058 if (last_ibp != NULL) {
2059 xfs_trans_brelse(tp, last_ibp);
2060 }
2061 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2062 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2063 &last_ibp, &last_offset);
2064 if (error) {
2065 cmn_err(CE_WARN,
2066 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2067 error, mp->m_fsname);
2068 return error;
2069 }
347d1c01 2070 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2071 ASSERT(next_agino != NULLAGINO);
2072 ASSERT(next_agino != 0);
2073 }
2074 /*
2075 * Now last_ibp points to the buffer previous to us on
2076 * the unlinked list. Pull us from the list.
2077 */
a3f74ffb 2078 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2079 if (error) {
2080 cmn_err(CE_WARN,
2081 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2082 error, mp->m_fsname);
2083 return error;
2084 }
347d1c01 2085 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2086 ASSERT(next_agino != 0);
2087 ASSERT(next_agino != agino);
2088 if (next_agino != NULLAGINO) {
347d1c01 2089 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2090 offset = ip->i_boffset +
2091 offsetof(xfs_dinode_t, di_next_unlinked);
2092 xfs_trans_inode_buf(tp, ibp);
2093 xfs_trans_log_buf(tp, ibp, offset,
2094 (offset + sizeof(xfs_agino_t) - 1));
2095 xfs_inobp_check(mp, ibp);
2096 } else {
2097 xfs_trans_brelse(tp, ibp);
2098 }
2099 /*
2100 * Point the previous inode on the list to the next inode.
2101 */
347d1c01 2102 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2103 ASSERT(next_agino != 0);
2104 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2105 xfs_trans_inode_buf(tp, last_ibp);
2106 xfs_trans_log_buf(tp, last_ibp, offset,
2107 (offset + sizeof(xfs_agino_t) - 1));
2108 xfs_inobp_check(mp, last_ibp);
2109 }
2110 return 0;
2111}
2112
ba0f32d4 2113STATIC void
1da177e4
LT
2114xfs_ifree_cluster(
2115 xfs_inode_t *free_ip,
2116 xfs_trans_t *tp,
2117 xfs_ino_t inum)
2118{
2119 xfs_mount_t *mp = free_ip->i_mount;
2120 int blks_per_cluster;
2121 int nbufs;
2122 int ninodes;
2123 int i, j, found, pre_flushed;
2124 xfs_daddr_t blkno;
2125 xfs_buf_t *bp;
1da177e4
LT
2126 xfs_inode_t *ip, **ip_found;
2127 xfs_inode_log_item_t *iip;
2128 xfs_log_item_t *lip;
da353b0d 2129 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2130
2131 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2132 blks_per_cluster = 1;
2133 ninodes = mp->m_sb.sb_inopblock;
2134 nbufs = XFS_IALLOC_BLOCKS(mp);
2135 } else {
2136 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2137 mp->m_sb.sb_blocksize;
2138 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2139 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2140 }
2141
2142 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2143
2144 for (j = 0; j < nbufs; j++, inum += ninodes) {
2145 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2146 XFS_INO_TO_AGBNO(mp, inum));
2147
2148
2149 /*
2150 * Look for each inode in memory and attempt to lock it,
2151 * we can be racing with flush and tail pushing here.
2152 * any inode we get the locks on, add to an array of
2153 * inode items to process later.
2154 *
2155 * The get the buffer lock, we could beat a flush
2156 * or tail pushing thread to the lock here, in which
2157 * case they will go looking for the inode buffer
2158 * and fail, we need some other form of interlock
2159 * here.
2160 */
2161 found = 0;
2162 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2163 read_lock(&pag->pag_ici_lock);
2164 ip = radix_tree_lookup(&pag->pag_ici_root,
2165 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2166
2167 /* Inode not in memory or we found it already,
2168 * nothing to do
2169 */
7a18c386 2170 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2171 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2172 continue;
2173 }
2174
2175 if (xfs_inode_clean(ip)) {
da353b0d 2176 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2177 continue;
2178 }
2179
2180 /* If we can get the locks then add it to the
2181 * list, otherwise by the time we get the bp lock
2182 * below it will already be attached to the
2183 * inode buffer.
2184 */
2185
2186 /* This inode will already be locked - by us, lets
2187 * keep it that way.
2188 */
2189
2190 if (ip == free_ip) {
2191 if (xfs_iflock_nowait(ip)) {
7a18c386 2192 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2193 if (xfs_inode_clean(ip)) {
2194 xfs_ifunlock(ip);
2195 } else {
2196 ip_found[found++] = ip;
2197 }
2198 }
da353b0d 2199 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2200 continue;
2201 }
2202
2203 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2204 if (xfs_iflock_nowait(ip)) {
7a18c386 2205 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2206
2207 if (xfs_inode_clean(ip)) {
2208 xfs_ifunlock(ip);
2209 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2210 } else {
2211 ip_found[found++] = ip;
2212 }
2213 } else {
2214 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2215 }
2216 }
da353b0d 2217 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2218 }
2219
2220 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2221 mp->m_bsize * blks_per_cluster,
2222 XFS_BUF_LOCK);
2223
2224 pre_flushed = 0;
2225 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2226 while (lip) {
2227 if (lip->li_type == XFS_LI_INODE) {
2228 iip = (xfs_inode_log_item_t *)lip;
2229 ASSERT(iip->ili_logged == 1);
2230 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2231 spin_lock(&mp->m_ail_lock);
1da177e4 2232 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2233 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2234 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2235 pre_flushed++;
2236 }
2237 lip = lip->li_bio_list;
2238 }
2239
2240 for (i = 0; i < found; i++) {
2241 ip = ip_found[i];
2242 iip = ip->i_itemp;
2243
2244 if (!iip) {
2245 ip->i_update_core = 0;
2246 xfs_ifunlock(ip);
2247 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2248 continue;
2249 }
2250
2251 iip->ili_last_fields = iip->ili_format.ilf_fields;
2252 iip->ili_format.ilf_fields = 0;
2253 iip->ili_logged = 1;
287f3dad 2254 spin_lock(&mp->m_ail_lock);
1da177e4 2255 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2256 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2257
2258 xfs_buf_attach_iodone(bp,
2259 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2260 xfs_istale_done, (xfs_log_item_t *)iip);
2261 if (ip != free_ip) {
2262 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2263 }
2264 }
2265
2266 if (found || pre_flushed)
2267 xfs_trans_stale_inode_buf(tp, bp);
2268 xfs_trans_binval(tp, bp);
2269 }
2270
2271 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
da353b0d 2272 xfs_put_perag(mp, pag);
1da177e4
LT
2273}
2274
2275/*
2276 * This is called to return an inode to the inode free list.
2277 * The inode should already be truncated to 0 length and have
2278 * no pages associated with it. This routine also assumes that
2279 * the inode is already a part of the transaction.
2280 *
2281 * The on-disk copy of the inode will have been added to the list
2282 * of unlinked inodes in the AGI. We need to remove the inode from
2283 * that list atomically with respect to freeing it here.
2284 */
2285int
2286xfs_ifree(
2287 xfs_trans_t *tp,
2288 xfs_inode_t *ip,
2289 xfs_bmap_free_t *flist)
2290{
2291 int error;
2292 int delete;
2293 xfs_ino_t first_ino;
c319b58b
VA
2294 xfs_dinode_t *dip;
2295 xfs_buf_t *ibp;
1da177e4
LT
2296
2297 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2298 ASSERT(ip->i_transp == tp);
2299 ASSERT(ip->i_d.di_nlink == 0);
2300 ASSERT(ip->i_d.di_nextents == 0);
2301 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2302 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2303 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2304 ASSERT(ip->i_d.di_nblocks == 0);
2305
2306 /*
2307 * Pull the on-disk inode from the AGI unlinked list.
2308 */
2309 error = xfs_iunlink_remove(tp, ip);
2310 if (error != 0) {
2311 return error;
2312 }
2313
2314 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2315 if (error != 0) {
2316 return error;
2317 }
2318 ip->i_d.di_mode = 0; /* mark incore inode as free */
2319 ip->i_d.di_flags = 0;
2320 ip->i_d.di_dmevmask = 0;
2321 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2322 ip->i_df.if_ext_max =
2323 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2324 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2325 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2326 /*
2327 * Bump the generation count so no one will be confused
2328 * by reincarnations of this inode.
2329 */
2330 ip->i_d.di_gen++;
c319b58b 2331
1da177e4
LT
2332 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2333
a3f74ffb 2334 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2335 if (error)
2336 return error;
2337
2338 /*
2339 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2340 * from picking up this inode when it is reclaimed (its incore state
2341 * initialzed but not flushed to disk yet). The in-core di_mode is
2342 * already cleared and a corresponding transaction logged.
2343 * The hack here just synchronizes the in-core to on-disk
2344 * di_mode value in advance before the actual inode sync to disk.
2345 * This is OK because the inode is already unlinked and would never
2346 * change its di_mode again for this inode generation.
2347 * This is a temporary hack that would require a proper fix
2348 * in the future.
2349 */
2350 dip->di_core.di_mode = 0;
2351
1da177e4
LT
2352 if (delete) {
2353 xfs_ifree_cluster(ip, tp, first_ino);
2354 }
2355
2356 return 0;
2357}
2358
2359/*
2360 * Reallocate the space for if_broot based on the number of records
2361 * being added or deleted as indicated in rec_diff. Move the records
2362 * and pointers in if_broot to fit the new size. When shrinking this
2363 * will eliminate holes between the records and pointers created by
2364 * the caller. When growing this will create holes to be filled in
2365 * by the caller.
2366 *
2367 * The caller must not request to add more records than would fit in
2368 * the on-disk inode root. If the if_broot is currently NULL, then
2369 * if we adding records one will be allocated. The caller must also
2370 * not request that the number of records go below zero, although
2371 * it can go to zero.
2372 *
2373 * ip -- the inode whose if_broot area is changing
2374 * ext_diff -- the change in the number of records, positive or negative,
2375 * requested for the if_broot array.
2376 */
2377void
2378xfs_iroot_realloc(
2379 xfs_inode_t *ip,
2380 int rec_diff,
2381 int whichfork)
2382{
2383 int cur_max;
2384 xfs_ifork_t *ifp;
2385 xfs_bmbt_block_t *new_broot;
2386 int new_max;
2387 size_t new_size;
2388 char *np;
2389 char *op;
2390
2391 /*
2392 * Handle the degenerate case quietly.
2393 */
2394 if (rec_diff == 0) {
2395 return;
2396 }
2397
2398 ifp = XFS_IFORK_PTR(ip, whichfork);
2399 if (rec_diff > 0) {
2400 /*
2401 * If there wasn't any memory allocated before, just
2402 * allocate it now and get out.
2403 */
2404 if (ifp->if_broot_bytes == 0) {
2405 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2406 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2407 KM_SLEEP);
2408 ifp->if_broot_bytes = (int)new_size;
2409 return;
2410 }
2411
2412 /*
2413 * If there is already an existing if_broot, then we need
2414 * to realloc() it and shift the pointers to their new
2415 * location. The records don't change location because
2416 * they are kept butted up against the btree block header.
2417 */
2418 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2419 new_max = cur_max + rec_diff;
2420 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2421 ifp->if_broot = (xfs_bmbt_block_t *)
2422 kmem_realloc(ifp->if_broot,
2423 new_size,
2424 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2425 KM_SLEEP);
2426 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2427 ifp->if_broot_bytes);
2428 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2429 (int)new_size);
2430 ifp->if_broot_bytes = (int)new_size;
2431 ASSERT(ifp->if_broot_bytes <=
2432 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2433 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2434 return;
2435 }
2436
2437 /*
2438 * rec_diff is less than 0. In this case, we are shrinking the
2439 * if_broot buffer. It must already exist. If we go to zero
2440 * records, just get rid of the root and clear the status bit.
2441 */
2442 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2443 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2444 new_max = cur_max + rec_diff;
2445 ASSERT(new_max >= 0);
2446 if (new_max > 0)
2447 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2448 else
2449 new_size = 0;
2450 if (new_size > 0) {
2451 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2452 /*
2453 * First copy over the btree block header.
2454 */
2455 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2456 } else {
2457 new_broot = NULL;
2458 ifp->if_flags &= ~XFS_IFBROOT;
2459 }
2460
2461 /*
2462 * Only copy the records and pointers if there are any.
2463 */
2464 if (new_max > 0) {
2465 /*
2466 * First copy the records.
2467 */
2468 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2469 ifp->if_broot_bytes);
2470 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2471 (int)new_size);
2472 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2473
2474 /*
2475 * Then copy the pointers.
2476 */
2477 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2478 ifp->if_broot_bytes);
2479 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2480 (int)new_size);
2481 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2482 }
2483 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2484 ifp->if_broot = new_broot;
2485 ifp->if_broot_bytes = (int)new_size;
2486 ASSERT(ifp->if_broot_bytes <=
2487 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2488 return;
2489}
2490
2491
1da177e4
LT
2492/*
2493 * This is called when the amount of space needed for if_data
2494 * is increased or decreased. The change in size is indicated by
2495 * the number of bytes that need to be added or deleted in the
2496 * byte_diff parameter.
2497 *
2498 * If the amount of space needed has decreased below the size of the
2499 * inline buffer, then switch to using the inline buffer. Otherwise,
2500 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2501 * to what is needed.
2502 *
2503 * ip -- the inode whose if_data area is changing
2504 * byte_diff -- the change in the number of bytes, positive or negative,
2505 * requested for the if_data array.
2506 */
2507void
2508xfs_idata_realloc(
2509 xfs_inode_t *ip,
2510 int byte_diff,
2511 int whichfork)
2512{
2513 xfs_ifork_t *ifp;
2514 int new_size;
2515 int real_size;
2516
2517 if (byte_diff == 0) {
2518 return;
2519 }
2520
2521 ifp = XFS_IFORK_PTR(ip, whichfork);
2522 new_size = (int)ifp->if_bytes + byte_diff;
2523 ASSERT(new_size >= 0);
2524
2525 if (new_size == 0) {
2526 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2527 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2528 }
2529 ifp->if_u1.if_data = NULL;
2530 real_size = 0;
2531 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2532 /*
2533 * If the valid extents/data can fit in if_inline_ext/data,
2534 * copy them from the malloc'd vector and free it.
2535 */
2536 if (ifp->if_u1.if_data == NULL) {
2537 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2538 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2539 ASSERT(ifp->if_real_bytes != 0);
2540 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2541 new_size);
2542 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2543 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2544 }
2545 real_size = 0;
2546 } else {
2547 /*
2548 * Stuck with malloc/realloc.
2549 * For inline data, the underlying buffer must be
2550 * a multiple of 4 bytes in size so that it can be
2551 * logged and stay on word boundaries. We enforce
2552 * that here.
2553 */
2554 real_size = roundup(new_size, 4);
2555 if (ifp->if_u1.if_data == NULL) {
2556 ASSERT(ifp->if_real_bytes == 0);
2557 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2558 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2559 /*
2560 * Only do the realloc if the underlying size
2561 * is really changing.
2562 */
2563 if (ifp->if_real_bytes != real_size) {
2564 ifp->if_u1.if_data =
2565 kmem_realloc(ifp->if_u1.if_data,
2566 real_size,
2567 ifp->if_real_bytes,
2568 KM_SLEEP);
2569 }
2570 } else {
2571 ASSERT(ifp->if_real_bytes == 0);
2572 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2573 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2574 ifp->if_bytes);
2575 }
2576 }
2577 ifp->if_real_bytes = real_size;
2578 ifp->if_bytes = new_size;
2579 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2580}
2581
2582
2583
2584
2585/*
2586 * Map inode to disk block and offset.
2587 *
2588 * mp -- the mount point structure for the current file system
2589 * tp -- the current transaction
2590 * ino -- the inode number of the inode to be located
2591 * imap -- this structure is filled in with the information necessary
2592 * to retrieve the given inode from disk
2593 * flags -- flags to pass to xfs_dilocate indicating whether or not
2594 * lookups in the inode btree were OK or not
2595 */
2596int
2597xfs_imap(
2598 xfs_mount_t *mp,
2599 xfs_trans_t *tp,
2600 xfs_ino_t ino,
2601 xfs_imap_t *imap,
2602 uint flags)
2603{
2604 xfs_fsblock_t fsbno;
2605 int len;
2606 int off;
2607 int error;
2608
2609 fsbno = imap->im_blkno ?
2610 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2611 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2612 if (error)
1da177e4 2613 return error;
4ae29b43 2614
1da177e4
LT
2615 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2616 imap->im_len = XFS_FSB_TO_BB(mp, len);
2617 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2618 imap->im_ioffset = (ushort)off;
2619 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2620
2621 /*
2622 * If the inode number maps to a block outside the bounds
2623 * of the file system then return NULL rather than calling
2624 * read_buf and panicing when we get an error from the
2625 * driver.
2626 */
2627 if ((imap->im_blkno + imap->im_len) >
2628 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2629 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2630 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2631 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2632 (unsigned long long) imap->im_blkno,
2633 (unsigned long long) imap->im_len,
2634 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2635 return EINVAL;
2636 }
1da177e4
LT
2637 return 0;
2638}
2639
2640void
2641xfs_idestroy_fork(
2642 xfs_inode_t *ip,
2643 int whichfork)
2644{
2645 xfs_ifork_t *ifp;
2646
2647 ifp = XFS_IFORK_PTR(ip, whichfork);
2648 if (ifp->if_broot != NULL) {
2649 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2650 ifp->if_broot = NULL;
2651 }
2652
2653 /*
2654 * If the format is local, then we can't have an extents
2655 * array so just look for an inline data array. If we're
2656 * not local then we may or may not have an extents list,
2657 * so check and free it up if we do.
2658 */
2659 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2660 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2661 (ifp->if_u1.if_data != NULL)) {
2662 ASSERT(ifp->if_real_bytes != 0);
2663 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2664 ifp->if_u1.if_data = NULL;
2665 ifp->if_real_bytes = 0;
2666 }
2667 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2668 ((ifp->if_flags & XFS_IFEXTIREC) ||
2669 ((ifp->if_u1.if_extents != NULL) &&
2670 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2671 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2672 xfs_iext_destroy(ifp);
1da177e4
LT
2673 }
2674 ASSERT(ifp->if_u1.if_extents == NULL ||
2675 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2676 ASSERT(ifp->if_real_bytes == 0);
2677 if (whichfork == XFS_ATTR_FORK) {
2678 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2679 ip->i_afp = NULL;
2680 }
2681}
2682
2683/*
2684 * This is called free all the memory associated with an inode.
2685 * It must free the inode itself and any buffers allocated for
2686 * if_extents/if_data and if_broot. It must also free the lock
2687 * associated with the inode.
2688 */
2689void
2690xfs_idestroy(
2691 xfs_inode_t *ip)
2692{
1da177e4
LT
2693 switch (ip->i_d.di_mode & S_IFMT) {
2694 case S_IFREG:
2695 case S_IFDIR:
2696 case S_IFLNK:
2697 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2698 break;
2699 }
2700 if (ip->i_afp)
2701 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2702 mrfree(&ip->i_lock);
2703 mrfree(&ip->i_iolock);
2704 freesema(&ip->i_flock);
1543d79c 2705
cf441eeb 2706#ifdef XFS_INODE_TRACE
1543d79c
CH
2707 ktrace_free(ip->i_trace);
2708#endif
1da177e4
LT
2709#ifdef XFS_BMAP_TRACE
2710 ktrace_free(ip->i_xtrace);
2711#endif
2712#ifdef XFS_BMBT_TRACE
2713 ktrace_free(ip->i_btrace);
2714#endif
2715#ifdef XFS_RW_TRACE
2716 ktrace_free(ip->i_rwtrace);
2717#endif
2718#ifdef XFS_ILOCK_TRACE
2719 ktrace_free(ip->i_lock_trace);
2720#endif
2721#ifdef XFS_DIR2_TRACE
2722 ktrace_free(ip->i_dir_trace);
2723#endif
2724 if (ip->i_itemp) {
f74eaf59
DC
2725 /*
2726 * Only if we are shutting down the fs will we see an
2727 * inode still in the AIL. If it is there, we should remove
2728 * it to prevent a use-after-free from occurring.
2729 */
2730 xfs_mount_t *mp = ip->i_mount;
2731 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2732
2733 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2734 XFS_FORCED_SHUTDOWN(ip->i_mount));
2735 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2736 spin_lock(&mp->m_ail_lock);
f74eaf59 2737 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2738 xfs_trans_delete_ail(mp, lip);
f74eaf59 2739 else
287f3dad 2740 spin_unlock(&mp->m_ail_lock);
f74eaf59 2741 }
1da177e4
LT
2742 xfs_inode_item_destroy(ip);
2743 }
2744 kmem_zone_free(xfs_inode_zone, ip);
2745}
2746
2747
2748/*
2749 * Increment the pin count of the given buffer.
2750 * This value is protected by ipinlock spinlock in the mount structure.
2751 */
2752void
2753xfs_ipin(
2754 xfs_inode_t *ip)
2755{
2756 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2757
2758 atomic_inc(&ip->i_pincount);
2759}
2760
2761/*
2762 * Decrement the pin count of the given inode, and wake up
2763 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2764 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2765 */
2766void
2767xfs_iunpin(
2768 xfs_inode_t *ip)
2769{
2770 ASSERT(atomic_read(&ip->i_pincount) > 0);
2771
5d51eff4 2772 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2773 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2774}
2775
2776/*
a3f74ffb
DC
2777 * This is called to unpin an inode. It can be directed to wait or to return
2778 * immediately without waiting for the inode to be unpinned. The caller must
2779 * have the inode locked in at least shared mode so that the buffer cannot be
2780 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2781 */
ba0f32d4 2782STATIC void
a3f74ffb
DC
2783__xfs_iunpin_wait(
2784 xfs_inode_t *ip,
2785 int wait)
1da177e4 2786{
a3f74ffb 2787 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4
LT
2788
2789 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
a3f74ffb 2790 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2791 return;
1da177e4 2792
a3f74ffb
DC
2793 /* Give the log a push to start the unpinning I/O */
2794 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2795 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2796 if (wait)
2797 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2798}
1da177e4 2799
a3f74ffb
DC
2800static inline void
2801xfs_iunpin_wait(
2802 xfs_inode_t *ip)
2803{
2804 __xfs_iunpin_wait(ip, 1);
2805}
1da177e4 2806
a3f74ffb
DC
2807static inline void
2808xfs_iunpin_nowait(
2809 xfs_inode_t *ip)
2810{
2811 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2812}
2813
2814
2815/*
2816 * xfs_iextents_copy()
2817 *
2818 * This is called to copy the REAL extents (as opposed to the delayed
2819 * allocation extents) from the inode into the given buffer. It
2820 * returns the number of bytes copied into the buffer.
2821 *
2822 * If there are no delayed allocation extents, then we can just
2823 * memcpy() the extents into the buffer. Otherwise, we need to
2824 * examine each extent in turn and skip those which are delayed.
2825 */
2826int
2827xfs_iextents_copy(
2828 xfs_inode_t *ip,
a6f64d4a 2829 xfs_bmbt_rec_t *dp,
1da177e4
LT
2830 int whichfork)
2831{
2832 int copied;
1da177e4
LT
2833 int i;
2834 xfs_ifork_t *ifp;
2835 int nrecs;
2836 xfs_fsblock_t start_block;
2837
2838 ifp = XFS_IFORK_PTR(ip, whichfork);
2839 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2840 ASSERT(ifp->if_bytes > 0);
2841
2842 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2843 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2844 ASSERT(nrecs > 0);
2845
2846 /*
2847 * There are some delayed allocation extents in the
2848 * inode, so copy the extents one at a time and skip
2849 * the delayed ones. There must be at least one
2850 * non-delayed extent.
2851 */
1da177e4
LT
2852 copied = 0;
2853 for (i = 0; i < nrecs; i++) {
a6f64d4a 2854 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2855 start_block = xfs_bmbt_get_startblock(ep);
2856 if (ISNULLSTARTBLOCK(start_block)) {
2857 /*
2858 * It's a delayed allocation extent, so skip it.
2859 */
1da177e4
LT
2860 continue;
2861 }
2862
2863 /* Translate to on disk format */
cd8b0a97
CH
2864 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2865 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2866 dp++;
1da177e4
LT
2867 copied++;
2868 }
2869 ASSERT(copied != 0);
a6f64d4a 2870 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2871
2872 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2873}
2874
2875/*
2876 * Each of the following cases stores data into the same region
2877 * of the on-disk inode, so only one of them can be valid at
2878 * any given time. While it is possible to have conflicting formats
2879 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2880 * in EXTENTS format, this can only happen when the fork has
2881 * changed formats after being modified but before being flushed.
2882 * In these cases, the format always takes precedence, because the
2883 * format indicates the current state of the fork.
2884 */
2885/*ARGSUSED*/
2886STATIC int
2887xfs_iflush_fork(
2888 xfs_inode_t *ip,
2889 xfs_dinode_t *dip,
2890 xfs_inode_log_item_t *iip,
2891 int whichfork,
2892 xfs_buf_t *bp)
2893{
2894 char *cp;
2895 xfs_ifork_t *ifp;
2896 xfs_mount_t *mp;
2897#ifdef XFS_TRANS_DEBUG
2898 int first;
2899#endif
2900 static const short brootflag[2] =
2901 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2902 static const short dataflag[2] =
2903 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2904 static const short extflag[2] =
2905 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2906
2907 if (iip == NULL)
2908 return 0;
2909 ifp = XFS_IFORK_PTR(ip, whichfork);
2910 /*
2911 * This can happen if we gave up in iformat in an error path,
2912 * for the attribute fork.
2913 */
2914 if (ifp == NULL) {
2915 ASSERT(whichfork == XFS_ATTR_FORK);
2916 return 0;
2917 }
2918 cp = XFS_DFORK_PTR(dip, whichfork);
2919 mp = ip->i_mount;
2920 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2921 case XFS_DINODE_FMT_LOCAL:
2922 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2923 (ifp->if_bytes > 0)) {
2924 ASSERT(ifp->if_u1.if_data != NULL);
2925 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2926 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2927 }
1da177e4
LT
2928 break;
2929
2930 case XFS_DINODE_FMT_EXTENTS:
2931 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2932 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2933 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2934 (ifp->if_bytes == 0));
2935 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2936 (ifp->if_bytes > 0));
1da177e4
LT
2937 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2938 (ifp->if_bytes > 0)) {
2939 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2940 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2941 whichfork);
2942 }
2943 break;
2944
2945 case XFS_DINODE_FMT_BTREE:
2946 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2947 (ifp->if_broot_bytes > 0)) {
2948 ASSERT(ifp->if_broot != NULL);
2949 ASSERT(ifp->if_broot_bytes <=
2950 (XFS_IFORK_SIZE(ip, whichfork) +
2951 XFS_BROOT_SIZE_ADJ));
2952 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2953 (xfs_bmdr_block_t *)cp,
2954 XFS_DFORK_SIZE(dip, mp, whichfork));
2955 }
2956 break;
2957
2958 case XFS_DINODE_FMT_DEV:
2959 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2960 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2961 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2962 }
2963 break;
2964
2965 case XFS_DINODE_FMT_UUID:
2966 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2967 ASSERT(whichfork == XFS_DATA_FORK);
2968 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2969 sizeof(uuid_t));
2970 }
2971 break;
2972
2973 default:
2974 ASSERT(0);
2975 break;
2976 }
2977
2978 return 0;
2979}
2980
bad55843
DC
2981STATIC int
2982xfs_iflush_cluster(
2983 xfs_inode_t *ip,
2984 xfs_buf_t *bp)
2985{
2986 xfs_mount_t *mp = ip->i_mount;
2987 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2988 unsigned long first_index, mask;
2989 int ilist_size;
2990 xfs_inode_t **ilist;
2991 xfs_inode_t *iq;
bad55843
DC
2992 int nr_found;
2993 int clcount = 0;
2994 int bufwasdelwri;
2995 int i;
2996
2997 ASSERT(pag->pagi_inodeok);
2998 ASSERT(pag->pag_ici_init);
2999
3000 ilist_size = XFS_INODE_CLUSTER_SIZE(mp) * sizeof(xfs_inode_t *);
3001 ilist = kmem_alloc(ilist_size, KM_MAYFAIL);
3002 if (!ilist)
3003 return 0;
3004
3005 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
3006 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3007 read_lock(&pag->pag_ici_lock);
3008 /* really need a gang lookup range call here */
3009 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3010 first_index,
3011 XFS_INODE_CLUSTER_SIZE(mp));
3012 if (nr_found == 0)
3013 goto out_free;
3014
3015 for (i = 0; i < nr_found; i++) {
3016 iq = ilist[i];
3017 if (iq == ip)
3018 continue;
3019 /* if the inode lies outside this cluster, we're done. */
3020 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
3021 break;
3022 /*
3023 * Do an un-protected check to see if the inode is dirty and
3024 * is a candidate for flushing. These checks will be repeated
3025 * later after the appropriate locks are acquired.
3026 */
33540408 3027 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3028 continue;
bad55843
DC
3029
3030 /*
3031 * Try to get locks. If any are unavailable or it is pinned,
3032 * then this inode cannot be flushed and is skipped.
3033 */
3034
3035 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3036 continue;
3037 if (!xfs_iflock_nowait(iq)) {
3038 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3039 continue;
3040 }
3041 if (xfs_ipincount(iq)) {
3042 xfs_ifunlock(iq);
3043 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3044 continue;
3045 }
3046
3047 /*
3048 * arriving here means that this inode can be flushed. First
3049 * re-check that it's dirty before flushing.
3050 */
33540408
DC
3051 if (!xfs_inode_clean(iq)) {
3052 int error;
bad55843
DC
3053 error = xfs_iflush_int(iq, bp);
3054 if (error) {
3055 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3056 goto cluster_corrupt_out;
3057 }
3058 clcount++;
3059 } else {
3060 xfs_ifunlock(iq);
3061 }
3062 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3063 }
3064
3065 if (clcount) {
3066 XFS_STATS_INC(xs_icluster_flushcnt);
3067 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3068 }
3069
3070out_free:
3071 read_unlock(&pag->pag_ici_lock);
3072 kmem_free(ilist, ilist_size);
3073 return 0;
3074
3075
3076cluster_corrupt_out:
3077 /*
3078 * Corruption detected in the clustering loop. Invalidate the
3079 * inode buffer and shut down the filesystem.
3080 */
3081 read_unlock(&pag->pag_ici_lock);
3082 /*
3083 * Clean up the buffer. If it was B_DELWRI, just release it --
3084 * brelse can handle it with no problems. If not, shut down the
3085 * filesystem before releasing the buffer.
3086 */
3087 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3088 if (bufwasdelwri)
3089 xfs_buf_relse(bp);
3090
3091 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3092
3093 if (!bufwasdelwri) {
3094 /*
3095 * Just like incore_relse: if we have b_iodone functions,
3096 * mark the buffer as an error and call them. Otherwise
3097 * mark it as stale and brelse.
3098 */
3099 if (XFS_BUF_IODONE_FUNC(bp)) {
3100 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3101 XFS_BUF_UNDONE(bp);
3102 XFS_BUF_STALE(bp);
3103 XFS_BUF_SHUT(bp);
3104 XFS_BUF_ERROR(bp,EIO);
3105 xfs_biodone(bp);
3106 } else {
3107 XFS_BUF_STALE(bp);
3108 xfs_buf_relse(bp);
3109 }
3110 }
3111
3112 /*
3113 * Unlocks the flush lock
3114 */
3115 xfs_iflush_abort(iq);
3116 kmem_free(ilist, ilist_size);
3117 return XFS_ERROR(EFSCORRUPTED);
3118}
3119
1da177e4
LT
3120/*
3121 * xfs_iflush() will write a modified inode's changes out to the
3122 * inode's on disk home. The caller must have the inode lock held
3123 * in at least shared mode and the inode flush semaphore must be
3124 * held as well. The inode lock will still be held upon return from
3125 * the call and the caller is free to unlock it.
3126 * The inode flush lock will be unlocked when the inode reaches the disk.
3127 * The flags indicate how the inode's buffer should be written out.
3128 */
3129int
3130xfs_iflush(
3131 xfs_inode_t *ip,
3132 uint flags)
3133{
3134 xfs_inode_log_item_t *iip;
3135 xfs_buf_t *bp;
3136 xfs_dinode_t *dip;
3137 xfs_mount_t *mp;
3138 int error;
a3f74ffb 3139 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3140 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3141
3142 XFS_STATS_INC(xs_iflush_count);
3143
3144 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3145 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3146 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3147 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3148
3149 iip = ip->i_itemp;
3150 mp = ip->i_mount;
3151
3152 /*
3153 * If the inode isn't dirty, then just release the inode
3154 * flush lock and do nothing.
3155 */
33540408 3156 if (xfs_inode_clean(ip)) {
1da177e4
LT
3157 ASSERT((iip != NULL) ?
3158 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3159 xfs_ifunlock(ip);
3160 return 0;
3161 }
3162
3163 /*
a3f74ffb
DC
3164 * We can't flush the inode until it is unpinned, so wait for it if we
3165 * are allowed to block. We know noone new can pin it, because we are
3166 * holding the inode lock shared and you need to hold it exclusively to
3167 * pin the inode.
3168 *
3169 * If we are not allowed to block, force the log out asynchronously so
3170 * that when we come back the inode will be unpinned. If other inodes
3171 * in the same cluster are dirty, they will probably write the inode
3172 * out for us if they occur after the log force completes.
1da177e4 3173 */
a3f74ffb
DC
3174 if (noblock && xfs_ipincount(ip)) {
3175 xfs_iunpin_nowait(ip);
3176 xfs_ifunlock(ip);
3177 return EAGAIN;
3178 }
1da177e4
LT
3179 xfs_iunpin_wait(ip);
3180
3181 /*
3182 * This may have been unpinned because the filesystem is shutting
3183 * down forcibly. If that's the case we must not write this inode
3184 * to disk, because the log record didn't make it to disk!
3185 */
3186 if (XFS_FORCED_SHUTDOWN(mp)) {
3187 ip->i_update_core = 0;
3188 if (iip)
3189 iip->ili_format.ilf_fields = 0;
3190 xfs_ifunlock(ip);
3191 return XFS_ERROR(EIO);
3192 }
3193
1da177e4
LT
3194 /*
3195 * Decide how buffer will be flushed out. This is done before
3196 * the call to xfs_iflush_int because this field is zeroed by it.
3197 */
3198 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3199 /*
3200 * Flush out the inode buffer according to the directions
3201 * of the caller. In the cases where the caller has given
3202 * us a choice choose the non-delwri case. This is because
3203 * the inode is in the AIL and we need to get it out soon.
3204 */
3205 switch (flags) {
3206 case XFS_IFLUSH_SYNC:
3207 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3208 flags = 0;
3209 break;
a3f74ffb 3210 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3211 case XFS_IFLUSH_ASYNC:
3212 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3213 flags = INT_ASYNC;
3214 break;
3215 case XFS_IFLUSH_DELWRI:
3216 flags = INT_DELWRI;
3217 break;
3218 default:
3219 ASSERT(0);
3220 flags = 0;
3221 break;
3222 }
3223 } else {
3224 switch (flags) {
3225 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3226 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3227 case XFS_IFLUSH_DELWRI:
3228 flags = INT_DELWRI;
3229 break;
a3f74ffb 3230 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3231 case XFS_IFLUSH_ASYNC:
3232 flags = INT_ASYNC;
3233 break;
3234 case XFS_IFLUSH_SYNC:
3235 flags = 0;
3236 break;
3237 default:
3238 ASSERT(0);
3239 flags = 0;
3240 break;
3241 }
3242 }
3243
a3f74ffb
DC
3244 /*
3245 * Get the buffer containing the on-disk inode.
3246 */
3247 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3248 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3249 if (error || !bp) {
3250 xfs_ifunlock(ip);
3251 return error;
3252 }
3253
1da177e4
LT
3254 /*
3255 * First flush out the inode that xfs_iflush was called with.
3256 */
3257 error = xfs_iflush_int(ip, bp);
bad55843 3258 if (error)
1da177e4 3259 goto corrupt_out;
1da177e4 3260
a3f74ffb
DC
3261 /*
3262 * If the buffer is pinned then push on the log now so we won't
3263 * get stuck waiting in the write for too long.
3264 */
3265 if (XFS_BUF_ISPINNED(bp))
3266 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3267
1da177e4
LT
3268 /*
3269 * inode clustering:
3270 * see if other inodes can be gathered into this write
3271 */
bad55843
DC
3272 error = xfs_iflush_cluster(ip, bp);
3273 if (error)
3274 goto cluster_corrupt_out;
1da177e4 3275
1da177e4
LT
3276 if (flags & INT_DELWRI) {
3277 xfs_bdwrite(mp, bp);
3278 } else if (flags & INT_ASYNC) {
3279 xfs_bawrite(mp, bp);
3280 } else {
3281 error = xfs_bwrite(mp, bp);
3282 }
3283 return error;
3284
3285corrupt_out:
3286 xfs_buf_relse(bp);
7d04a335 3287 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3288cluster_corrupt_out:
1da177e4
LT
3289 /*
3290 * Unlocks the flush lock
3291 */
bad55843 3292 xfs_iflush_abort(ip);
1da177e4
LT
3293 return XFS_ERROR(EFSCORRUPTED);
3294}
3295
3296
3297STATIC int
3298xfs_iflush_int(
3299 xfs_inode_t *ip,
3300 xfs_buf_t *bp)
3301{
3302 xfs_inode_log_item_t *iip;
3303 xfs_dinode_t *dip;
3304 xfs_mount_t *mp;
3305#ifdef XFS_TRANS_DEBUG
3306 int first;
3307#endif
1da177e4
LT
3308
3309 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3310 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3311 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3312 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3313
3314 iip = ip->i_itemp;
3315 mp = ip->i_mount;
3316
3317
3318 /*
3319 * If the inode isn't dirty, then just release the inode
3320 * flush lock and do nothing.
3321 */
33540408 3322 if (xfs_inode_clean(ip)) {
1da177e4
LT
3323 xfs_ifunlock(ip);
3324 return 0;
3325 }
3326
3327 /* set *dip = inode's place in the buffer */
3328 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3329
3330 /*
3331 * Clear i_update_core before copying out the data.
3332 * This is for coordination with our timestamp updates
3333 * that don't hold the inode lock. They will always
3334 * update the timestamps BEFORE setting i_update_core,
3335 * so if we clear i_update_core after they set it we
3336 * are guaranteed to see their updates to the timestamps.
3337 * I believe that this depends on strongly ordered memory
3338 * semantics, but we have that. We use the SYNCHRONIZE
3339 * macro to make sure that the compiler does not reorder
3340 * the i_update_core access below the data copy below.
3341 */
3342 ip->i_update_core = 0;
3343 SYNCHRONIZE();
3344
42fe2b1f
CH
3345 /*
3346 * Make sure to get the latest atime from the Linux inode.
3347 */
3348 xfs_synchronize_atime(ip);
3349
347d1c01 3350 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3351 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3352 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3353 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3354 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3355 goto corrupt_out;
3356 }
3357 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3358 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3359 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3360 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3361 ip->i_ino, ip, ip->i_d.di_magic);
3362 goto corrupt_out;
3363 }
3364 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3365 if (XFS_TEST_ERROR(
3366 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3367 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3368 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3369 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3370 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3371 ip->i_ino, ip);
3372 goto corrupt_out;
3373 }
3374 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3375 if (XFS_TEST_ERROR(
3376 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3377 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3378 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3379 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3380 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3381 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3382 ip->i_ino, ip);
3383 goto corrupt_out;
3384 }
3385 }
3386 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3387 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3388 XFS_RANDOM_IFLUSH_5)) {
3389 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3390 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3391 ip->i_ino,
3392 ip->i_d.di_nextents + ip->i_d.di_anextents,
3393 ip->i_d.di_nblocks,
3394 ip);
3395 goto corrupt_out;
3396 }
3397 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3398 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3399 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3400 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3401 ip->i_ino, ip->i_d.di_forkoff, ip);
3402 goto corrupt_out;
3403 }
3404 /*
3405 * bump the flush iteration count, used to detect flushes which
3406 * postdate a log record during recovery.
3407 */
3408
3409 ip->i_d.di_flushiter++;
3410
3411 /*
3412 * Copy the dirty parts of the inode into the on-disk
3413 * inode. We always copy out the core of the inode,
3414 * because if the inode is dirty at all the core must
3415 * be.
3416 */
347d1c01 3417 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3418
3419 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3420 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3421 ip->i_d.di_flushiter = 0;
3422
3423 /*
3424 * If this is really an old format inode and the superblock version
3425 * has not been updated to support only new format inodes, then
3426 * convert back to the old inode format. If the superblock version
3427 * has been updated, then make the conversion permanent.
3428 */
3429 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3430 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3431 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3432 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3433 /*
3434 * Convert it back.
3435 */
3436 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3437 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3438 } else {
3439 /*
3440 * The superblock version has already been bumped,
3441 * so just make the conversion to the new inode
3442 * format permanent.
3443 */
3444 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3445 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3446 ip->i_d.di_onlink = 0;
3447 dip->di_core.di_onlink = 0;
3448 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3449 memset(&(dip->di_core.di_pad[0]), 0,
3450 sizeof(dip->di_core.di_pad));
3451 ASSERT(ip->i_d.di_projid == 0);
3452 }
3453 }
3454
3455 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3456 goto corrupt_out;
3457 }
3458
3459 if (XFS_IFORK_Q(ip)) {
3460 /*
3461 * The only error from xfs_iflush_fork is on the data fork.
3462 */
3463 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3464 }
3465 xfs_inobp_check(mp, bp);
3466
3467 /*
3468 * We've recorded everything logged in the inode, so we'd
3469 * like to clear the ilf_fields bits so we don't log and
3470 * flush things unnecessarily. However, we can't stop
3471 * logging all this information until the data we've copied
3472 * into the disk buffer is written to disk. If we did we might
3473 * overwrite the copy of the inode in the log with all the
3474 * data after re-logging only part of it, and in the face of
3475 * a crash we wouldn't have all the data we need to recover.
3476 *
3477 * What we do is move the bits to the ili_last_fields field.
3478 * When logging the inode, these bits are moved back to the
3479 * ilf_fields field. In the xfs_iflush_done() routine we
3480 * clear ili_last_fields, since we know that the information
3481 * those bits represent is permanently on disk. As long as
3482 * the flush completes before the inode is logged again, then
3483 * both ilf_fields and ili_last_fields will be cleared.
3484 *
3485 * We can play with the ilf_fields bits here, because the inode
3486 * lock must be held exclusively in order to set bits there
3487 * and the flush lock protects the ili_last_fields bits.
3488 * Set ili_logged so the flush done
3489 * routine can tell whether or not to look in the AIL.
3490 * Also, store the current LSN of the inode so that we can tell
3491 * whether the item has moved in the AIL from xfs_iflush_done().
3492 * In order to read the lsn we need the AIL lock, because
3493 * it is a 64 bit value that cannot be read atomically.
3494 */
3495 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3496 iip->ili_last_fields = iip->ili_format.ilf_fields;
3497 iip->ili_format.ilf_fields = 0;
3498 iip->ili_logged = 1;
3499
3500 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3501 spin_lock(&mp->m_ail_lock);
1da177e4 3502 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3503 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3504
3505 /*
3506 * Attach the function xfs_iflush_done to the inode's
3507 * buffer. This will remove the inode from the AIL
3508 * and unlock the inode's flush lock when the inode is
3509 * completely written to disk.
3510 */
3511 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3512 xfs_iflush_done, (xfs_log_item_t *)iip);
3513
3514 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3515 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3516 } else {
3517 /*
3518 * We're flushing an inode which is not in the AIL and has
3519 * not been logged but has i_update_core set. For this
3520 * case we can use a B_DELWRI flush and immediately drop
3521 * the inode flush lock because we can avoid the whole
3522 * AIL state thing. It's OK to drop the flush lock now,
3523 * because we've already locked the buffer and to do anything
3524 * you really need both.
3525 */
3526 if (iip != NULL) {
3527 ASSERT(iip->ili_logged == 0);
3528 ASSERT(iip->ili_last_fields == 0);
3529 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3530 }
3531 xfs_ifunlock(ip);
3532 }
3533
3534 return 0;
3535
3536corrupt_out:
3537 return XFS_ERROR(EFSCORRUPTED);
3538}
3539
3540
3541/*
efa80278 3542 * Flush all inactive inodes in mp.
1da177e4 3543 */
efa80278 3544void
1da177e4 3545xfs_iflush_all(
efa80278 3546 xfs_mount_t *mp)
1da177e4 3547{
1da177e4 3548 xfs_inode_t *ip;
67fcaa73 3549 bhv_vnode_t *vp;
1da177e4 3550
efa80278
CH
3551 again:
3552 XFS_MOUNT_ILOCK(mp);
3553 ip = mp->m_inodes;
3554 if (ip == NULL)
3555 goto out;
1da177e4 3556
efa80278
CH
3557 do {
3558 /* Make sure we skip markers inserted by sync */
3559 if (ip->i_mount == NULL) {
3560 ip = ip->i_mnext;
3561 continue;
3562 }
1da177e4 3563
efa80278
CH
3564 vp = XFS_ITOV_NULL(ip);
3565 if (!vp) {
1da177e4 3566 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3567 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3568 goto again;
3569 }
1da177e4 3570
efa80278 3571 ASSERT(vn_count(vp) == 0);
1da177e4 3572
efa80278
CH
3573 ip = ip->i_mnext;
3574 } while (ip != mp->m_inodes);
3575 out:
1da177e4 3576 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3577}
3578
1da177e4
LT
3579#ifdef XFS_ILOCK_TRACE
3580ktrace_t *xfs_ilock_trace_buf;
3581
3582void
3583xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3584{
3585 ktrace_enter(ip->i_lock_trace,
3586 (void *)ip,
3587 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3588 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3589 (void *)ra, /* caller of ilock */
3590 (void *)(unsigned long)current_cpu(),
3591 (void *)(unsigned long)current_pid(),
3592 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3593}
3594#endif
4eea22f0
MK
3595
3596/*
3597 * Return a pointer to the extent record at file index idx.
3598 */
a6f64d4a 3599xfs_bmbt_rec_host_t *
4eea22f0
MK
3600xfs_iext_get_ext(
3601 xfs_ifork_t *ifp, /* inode fork pointer */
3602 xfs_extnum_t idx) /* index of target extent */
3603{
3604 ASSERT(idx >= 0);
0293ce3a
MK
3605 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3606 return ifp->if_u1.if_ext_irec->er_extbuf;
3607 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3608 xfs_ext_irec_t *erp; /* irec pointer */
3609 int erp_idx = 0; /* irec index */
3610 xfs_extnum_t page_idx = idx; /* ext index in target list */
3611
3612 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3613 return &erp->er_extbuf[page_idx];
3614 } else if (ifp->if_bytes) {
4eea22f0
MK
3615 return &ifp->if_u1.if_extents[idx];
3616 } else {
3617 return NULL;
3618 }
3619}
3620
3621/*
3622 * Insert new item(s) into the extent records for incore inode
3623 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3624 */
3625void
3626xfs_iext_insert(
3627 xfs_ifork_t *ifp, /* inode fork pointer */
3628 xfs_extnum_t idx, /* starting index of new items */
3629 xfs_extnum_t count, /* number of inserted items */
3630 xfs_bmbt_irec_t *new) /* items to insert */
3631{
4eea22f0
MK
3632 xfs_extnum_t i; /* extent record index */
3633
3634 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3635 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3636 for (i = idx; i < idx + count; i++, new++)
3637 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3638}
3639
3640/*
3641 * This is called when the amount of space required for incore file
3642 * extents needs to be increased. The ext_diff parameter stores the
3643 * number of new extents being added and the idx parameter contains
3644 * the extent index where the new extents will be added. If the new
3645 * extents are being appended, then we just need to (re)allocate and
3646 * initialize the space. Otherwise, if the new extents are being
3647 * inserted into the middle of the existing entries, a bit more work
3648 * is required to make room for the new extents to be inserted. The
3649 * caller is responsible for filling in the new extent entries upon
3650 * return.
3651 */
3652void
3653xfs_iext_add(
3654 xfs_ifork_t *ifp, /* inode fork pointer */
3655 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3656 int ext_diff) /* number of extents to add */
4eea22f0
MK
3657{
3658 int byte_diff; /* new bytes being added */
3659 int new_size; /* size of extents after adding */
3660 xfs_extnum_t nextents; /* number of extents in file */
3661
3662 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3663 ASSERT((idx >= 0) && (idx <= nextents));
3664 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3665 new_size = ifp->if_bytes + byte_diff;
3666 /*
3667 * If the new number of extents (nextents + ext_diff)
3668 * fits inside the inode, then continue to use the inline
3669 * extent buffer.
3670 */
3671 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3672 if (idx < nextents) {
3673 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3674 &ifp->if_u2.if_inline_ext[idx],
3675 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3676 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3677 }
3678 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3679 ifp->if_real_bytes = 0;
0293ce3a 3680 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3681 }
3682 /*
3683 * Otherwise use a linear (direct) extent list.
3684 * If the extents are currently inside the inode,
3685 * xfs_iext_realloc_direct will switch us from
3686 * inline to direct extent allocation mode.
3687 */
0293ce3a 3688 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3689 xfs_iext_realloc_direct(ifp, new_size);
3690 if (idx < nextents) {
3691 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3692 &ifp->if_u1.if_extents[idx],
3693 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3694 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3695 }
3696 }
0293ce3a
MK
3697 /* Indirection array */
3698 else {
3699 xfs_ext_irec_t *erp;
3700 int erp_idx = 0;
3701 int page_idx = idx;
3702
3703 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3704 if (ifp->if_flags & XFS_IFEXTIREC) {
3705 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3706 } else {
3707 xfs_iext_irec_init(ifp);
3708 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3709 erp = ifp->if_u1.if_ext_irec;
3710 }
3711 /* Extents fit in target extent page */
3712 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3713 if (page_idx < erp->er_extcount) {
3714 memmove(&erp->er_extbuf[page_idx + ext_diff],
3715 &erp->er_extbuf[page_idx],
3716 (erp->er_extcount - page_idx) *
3717 sizeof(xfs_bmbt_rec_t));
3718 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3719 }
3720 erp->er_extcount += ext_diff;
3721 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3722 }
3723 /* Insert a new extent page */
3724 else if (erp) {
3725 xfs_iext_add_indirect_multi(ifp,
3726 erp_idx, page_idx, ext_diff);
3727 }
3728 /*
3729 * If extent(s) are being appended to the last page in
3730 * the indirection array and the new extent(s) don't fit
3731 * in the page, then erp is NULL and erp_idx is set to
3732 * the next index needed in the indirection array.
3733 */
3734 else {
3735 int count = ext_diff;
3736
3737 while (count) {
3738 erp = xfs_iext_irec_new(ifp, erp_idx);
3739 erp->er_extcount = count;
3740 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3741 if (count) {
3742 erp_idx++;
3743 }
3744 }
3745 }
3746 }
4eea22f0
MK
3747 ifp->if_bytes = new_size;
3748}
3749
0293ce3a
MK
3750/*
3751 * This is called when incore extents are being added to the indirection
3752 * array and the new extents do not fit in the target extent list. The
3753 * erp_idx parameter contains the irec index for the target extent list
3754 * in the indirection array, and the idx parameter contains the extent
3755 * index within the list. The number of extents being added is stored
3756 * in the count parameter.
3757 *
3758 * |-------| |-------|
3759 * | | | | idx - number of extents before idx
3760 * | idx | | count |
3761 * | | | | count - number of extents being inserted at idx
3762 * |-------| |-------|
3763 * | count | | nex2 | nex2 - number of extents after idx + count
3764 * |-------| |-------|
3765 */
3766void
3767xfs_iext_add_indirect_multi(
3768 xfs_ifork_t *ifp, /* inode fork pointer */
3769 int erp_idx, /* target extent irec index */
3770 xfs_extnum_t idx, /* index within target list */
3771 int count) /* new extents being added */
3772{
3773 int byte_diff; /* new bytes being added */
3774 xfs_ext_irec_t *erp; /* pointer to irec entry */
3775 xfs_extnum_t ext_diff; /* number of extents to add */
3776 xfs_extnum_t ext_cnt; /* new extents still needed */
3777 xfs_extnum_t nex2; /* extents after idx + count */
3778 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3779 int nlists; /* number of irec's (lists) */
3780
3781 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3782 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3783 nex2 = erp->er_extcount - idx;
3784 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3785
3786 /*
3787 * Save second part of target extent list
3788 * (all extents past */
3789 if (nex2) {
3790 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3791 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3792 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3793 erp->er_extcount -= nex2;
3794 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3795 memset(&erp->er_extbuf[idx], 0, byte_diff);
3796 }
3797
3798 /*
3799 * Add the new extents to the end of the target
3800 * list, then allocate new irec record(s) and
3801 * extent buffer(s) as needed to store the rest
3802 * of the new extents.
3803 */
3804 ext_cnt = count;
3805 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3806 if (ext_diff) {
3807 erp->er_extcount += ext_diff;
3808 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3809 ext_cnt -= ext_diff;
3810 }
3811 while (ext_cnt) {
3812 erp_idx++;
3813 erp = xfs_iext_irec_new(ifp, erp_idx);
3814 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3815 erp->er_extcount = ext_diff;
3816 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3817 ext_cnt -= ext_diff;
3818 }
3819
3820 /* Add nex2 extents back to indirection array */
3821 if (nex2) {
3822 xfs_extnum_t ext_avail;
3823 int i;
3824
3825 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3826 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3827 i = 0;
3828 /*
3829 * If nex2 extents fit in the current page, append
3830 * nex2_ep after the new extents.
3831 */
3832 if (nex2 <= ext_avail) {
3833 i = erp->er_extcount;
3834 }
3835 /*
3836 * Otherwise, check if space is available in the
3837 * next page.
3838 */
3839 else if ((erp_idx < nlists - 1) &&
3840 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3841 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3842 erp_idx++;
3843 erp++;
3844 /* Create a hole for nex2 extents */
3845 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3846 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3847 }
3848 /*
3849 * Final choice, create a new extent page for
3850 * nex2 extents.
3851 */
3852 else {
3853 erp_idx++;
3854 erp = xfs_iext_irec_new(ifp, erp_idx);
3855 }
3856 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3857 kmem_free(nex2_ep, byte_diff);
3858 erp->er_extcount += nex2;
3859 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3860 }
3861}
3862
4eea22f0
MK
3863/*
3864 * This is called when the amount of space required for incore file
3865 * extents needs to be decreased. The ext_diff parameter stores the
3866 * number of extents to be removed and the idx parameter contains
3867 * the extent index where the extents will be removed from.
0293ce3a
MK
3868 *
3869 * If the amount of space needed has decreased below the linear
3870 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3871 * extent array. Otherwise, use kmem_realloc() to adjust the
3872 * size to what is needed.
4eea22f0
MK
3873 */
3874void
3875xfs_iext_remove(
3876 xfs_ifork_t *ifp, /* inode fork pointer */
3877 xfs_extnum_t idx, /* index to begin removing exts */
3878 int ext_diff) /* number of extents to remove */
3879{
3880 xfs_extnum_t nextents; /* number of extents in file */
3881 int new_size; /* size of extents after removal */
3882
3883 ASSERT(ext_diff > 0);
3884 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3885 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3886
3887 if (new_size == 0) {
3888 xfs_iext_destroy(ifp);
0293ce3a
MK
3889 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3890 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3891 } else if (ifp->if_real_bytes) {
3892 xfs_iext_remove_direct(ifp, idx, ext_diff);
3893 } else {
3894 xfs_iext_remove_inline(ifp, idx, ext_diff);
3895 }
3896 ifp->if_bytes = new_size;
3897}
3898
3899/*
3900 * This removes ext_diff extents from the inline buffer, beginning
3901 * at extent index idx.
3902 */
3903void
3904xfs_iext_remove_inline(
3905 xfs_ifork_t *ifp, /* inode fork pointer */
3906 xfs_extnum_t idx, /* index to begin removing exts */
3907 int ext_diff) /* number of extents to remove */
3908{
3909 int nextents; /* number of extents in file */
3910
0293ce3a 3911 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3912 ASSERT(idx < XFS_INLINE_EXTS);
3913 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3914 ASSERT(((nextents - ext_diff) > 0) &&
3915 (nextents - ext_diff) < XFS_INLINE_EXTS);
3916
3917 if (idx + ext_diff < nextents) {
3918 memmove(&ifp->if_u2.if_inline_ext[idx],
3919 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3920 (nextents - (idx + ext_diff)) *
3921 sizeof(xfs_bmbt_rec_t));
3922 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3923 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3924 } else {
3925 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3926 ext_diff * sizeof(xfs_bmbt_rec_t));
3927 }
3928}
3929
3930/*
3931 * This removes ext_diff extents from a linear (direct) extent list,
3932 * beginning at extent index idx. If the extents are being removed
3933 * from the end of the list (ie. truncate) then we just need to re-
3934 * allocate the list to remove the extra space. Otherwise, if the
3935 * extents are being removed from the middle of the existing extent
3936 * entries, then we first need to move the extent records beginning
3937 * at idx + ext_diff up in the list to overwrite the records being
3938 * removed, then remove the extra space via kmem_realloc.
3939 */
3940void
3941xfs_iext_remove_direct(
3942 xfs_ifork_t *ifp, /* inode fork pointer */
3943 xfs_extnum_t idx, /* index to begin removing exts */
3944 int ext_diff) /* number of extents to remove */
3945{
3946 xfs_extnum_t nextents; /* number of extents in file */
3947 int new_size; /* size of extents after removal */
3948
0293ce3a 3949 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3950 new_size = ifp->if_bytes -
3951 (ext_diff * sizeof(xfs_bmbt_rec_t));
3952 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3953
3954 if (new_size == 0) {
3955 xfs_iext_destroy(ifp);
3956 return;
3957 }
3958 /* Move extents up in the list (if needed) */
3959 if (idx + ext_diff < nextents) {
3960 memmove(&ifp->if_u1.if_extents[idx],
3961 &ifp->if_u1.if_extents[idx + ext_diff],
3962 (nextents - (idx + ext_diff)) *
3963 sizeof(xfs_bmbt_rec_t));
3964 }
3965 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3966 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3967 /*
3968 * Reallocate the direct extent list. If the extents
3969 * will fit inside the inode then xfs_iext_realloc_direct
3970 * will switch from direct to inline extent allocation
3971 * mode for us.
3972 */
3973 xfs_iext_realloc_direct(ifp, new_size);
3974 ifp->if_bytes = new_size;
3975}
3976
0293ce3a
MK
3977/*
3978 * This is called when incore extents are being removed from the
3979 * indirection array and the extents being removed span multiple extent
3980 * buffers. The idx parameter contains the file extent index where we
3981 * want to begin removing extents, and the count parameter contains
3982 * how many extents need to be removed.
3983 *
3984 * |-------| |-------|
3985 * | nex1 | | | nex1 - number of extents before idx
3986 * |-------| | count |
3987 * | | | | count - number of extents being removed at idx
3988 * | count | |-------|
3989 * | | | nex2 | nex2 - number of extents after idx + count
3990 * |-------| |-------|
3991 */
3992void
3993xfs_iext_remove_indirect(
3994 xfs_ifork_t *ifp, /* inode fork pointer */
3995 xfs_extnum_t idx, /* index to begin removing extents */
3996 int count) /* number of extents to remove */
3997{
3998 xfs_ext_irec_t *erp; /* indirection array pointer */
3999 int erp_idx = 0; /* indirection array index */
4000 xfs_extnum_t ext_cnt; /* extents left to remove */
4001 xfs_extnum_t ext_diff; /* extents to remove in current list */
4002 xfs_extnum_t nex1; /* number of extents before idx */
4003 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4004 int nlists; /* entries in indirection array */
0293ce3a
MK
4005 int page_idx = idx; /* index in target extent list */
4006
4007 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4008 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4009 ASSERT(erp != NULL);
4010 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4011 nex1 = page_idx;
4012 ext_cnt = count;
4013 while (ext_cnt) {
4014 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4015 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4016 /*
4017 * Check for deletion of entire list;
4018 * xfs_iext_irec_remove() updates extent offsets.
4019 */
4020 if (ext_diff == erp->er_extcount) {
4021 xfs_iext_irec_remove(ifp, erp_idx);
4022 ext_cnt -= ext_diff;
4023 nex1 = 0;
4024 if (ext_cnt) {
4025 ASSERT(erp_idx < ifp->if_real_bytes /
4026 XFS_IEXT_BUFSZ);
4027 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4028 nex1 = 0;
4029 continue;
4030 } else {
4031 break;
4032 }
4033 }
4034 /* Move extents up (if needed) */
4035 if (nex2) {
4036 memmove(&erp->er_extbuf[nex1],
4037 &erp->er_extbuf[nex1 + ext_diff],
4038 nex2 * sizeof(xfs_bmbt_rec_t));
4039 }
4040 /* Zero out rest of page */
4041 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4042 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4043 /* Update remaining counters */
4044 erp->er_extcount -= ext_diff;
4045 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4046 ext_cnt -= ext_diff;
4047 nex1 = 0;
4048 erp_idx++;
4049 erp++;
4050 }
4051 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4052 xfs_iext_irec_compact(ifp);
4053}
4054
4eea22f0
MK
4055/*
4056 * Create, destroy, or resize a linear (direct) block of extents.
4057 */
4058void
4059xfs_iext_realloc_direct(
4060 xfs_ifork_t *ifp, /* inode fork pointer */
4061 int new_size) /* new size of extents */
4062{
4063 int rnew_size; /* real new size of extents */
4064
4065 rnew_size = new_size;
4066
0293ce3a
MK
4067 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4068 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4069 (new_size != ifp->if_real_bytes)));
4070
4eea22f0
MK
4071 /* Free extent records */
4072 if (new_size == 0) {
4073 xfs_iext_destroy(ifp);
4074 }
4075 /* Resize direct extent list and zero any new bytes */
4076 else if (ifp->if_real_bytes) {
4077 /* Check if extents will fit inside the inode */
4078 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4079 xfs_iext_direct_to_inline(ifp, new_size /
4080 (uint)sizeof(xfs_bmbt_rec_t));
4081 ifp->if_bytes = new_size;
4082 return;
4083 }
16a087d8 4084 if (!is_power_of_2(new_size)){
40ebd81d 4085 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4086 }
4087 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4088 ifp->if_u1.if_extents =
4eea22f0
MK
4089 kmem_realloc(ifp->if_u1.if_extents,
4090 rnew_size,
4091 ifp->if_real_bytes,
4092 KM_SLEEP);
4093 }
4094 if (rnew_size > ifp->if_real_bytes) {
4095 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4096 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4097 rnew_size - ifp->if_real_bytes);
4098 }
4099 }
4100 /*
4101 * Switch from the inline extent buffer to a direct
4102 * extent list. Be sure to include the inline extent
4103 * bytes in new_size.
4104 */
4105 else {
4106 new_size += ifp->if_bytes;
16a087d8 4107 if (!is_power_of_2(new_size)) {
40ebd81d 4108 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4109 }
4110 xfs_iext_inline_to_direct(ifp, rnew_size);
4111 }
4112 ifp->if_real_bytes = rnew_size;
4113 ifp->if_bytes = new_size;
4114}
4115
4116/*
4117 * Switch from linear (direct) extent records to inline buffer.
4118 */
4119void
4120xfs_iext_direct_to_inline(
4121 xfs_ifork_t *ifp, /* inode fork pointer */
4122 xfs_extnum_t nextents) /* number of extents in file */
4123{
4124 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4125 ASSERT(nextents <= XFS_INLINE_EXTS);
4126 /*
4127 * The inline buffer was zeroed when we switched
4128 * from inline to direct extent allocation mode,
4129 * so we don't need to clear it here.
4130 */
4131 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4132 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4133 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4134 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4135 ifp->if_real_bytes = 0;
4136}
4137
4138/*
4139 * Switch from inline buffer to linear (direct) extent records.
4140 * new_size should already be rounded up to the next power of 2
4141 * by the caller (when appropriate), so use new_size as it is.
4142 * However, since new_size may be rounded up, we can't update
4143 * if_bytes here. It is the caller's responsibility to update
4144 * if_bytes upon return.
4145 */
4146void
4147xfs_iext_inline_to_direct(
4148 xfs_ifork_t *ifp, /* inode fork pointer */
4149 int new_size) /* number of extents in file */
4150{
a6f64d4a 4151 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_SLEEP);
4eea22f0
MK
4152 memset(ifp->if_u1.if_extents, 0, new_size);
4153 if (ifp->if_bytes) {
4154 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4155 ifp->if_bytes);
4156 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4157 sizeof(xfs_bmbt_rec_t));
4158 }
4159 ifp->if_real_bytes = new_size;
4160}
4161
0293ce3a
MK
4162/*
4163 * Resize an extent indirection array to new_size bytes.
4164 */
4165void
4166xfs_iext_realloc_indirect(
4167 xfs_ifork_t *ifp, /* inode fork pointer */
4168 int new_size) /* new indirection array size */
4169{
4170 int nlists; /* number of irec's (ex lists) */
4171 int size; /* current indirection array size */
4172
4173 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4174 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4175 size = nlists * sizeof(xfs_ext_irec_t);
4176 ASSERT(ifp->if_real_bytes);
4177 ASSERT((new_size >= 0) && (new_size != size));
4178 if (new_size == 0) {
4179 xfs_iext_destroy(ifp);
4180 } else {
4181 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4182 kmem_realloc(ifp->if_u1.if_ext_irec,
4183 new_size, size, KM_SLEEP);
4184 }
4185}
4186
4187/*
4188 * Switch from indirection array to linear (direct) extent allocations.
4189 */
4190void
4191xfs_iext_indirect_to_direct(
4192 xfs_ifork_t *ifp) /* inode fork pointer */
4193{
a6f64d4a 4194 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4195 xfs_extnum_t nextents; /* number of extents in file */
4196 int size; /* size of file extents */
4197
4198 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4199 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4200 ASSERT(nextents <= XFS_LINEAR_EXTS);
4201 size = nextents * sizeof(xfs_bmbt_rec_t);
4202
4203 xfs_iext_irec_compact_full(ifp);
4204 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4205
4206 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4207 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4208 ifp->if_flags &= ~XFS_IFEXTIREC;
4209 ifp->if_u1.if_extents = ep;
4210 ifp->if_bytes = size;
4211 if (nextents < XFS_LINEAR_EXTS) {
4212 xfs_iext_realloc_direct(ifp, size);
4213 }
4214}
4215
4eea22f0
MK
4216/*
4217 * Free incore file extents.
4218 */
4219void
4220xfs_iext_destroy(
4221 xfs_ifork_t *ifp) /* inode fork pointer */
4222{
0293ce3a
MK
4223 if (ifp->if_flags & XFS_IFEXTIREC) {
4224 int erp_idx;
4225 int nlists;
4226
4227 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4228 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4229 xfs_iext_irec_remove(ifp, erp_idx);
4230 }
4231 ifp->if_flags &= ~XFS_IFEXTIREC;
4232 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4233 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4234 } else if (ifp->if_bytes) {
4235 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4236 sizeof(xfs_bmbt_rec_t));
4237 }
4238 ifp->if_u1.if_extents = NULL;
4239 ifp->if_real_bytes = 0;
4240 ifp->if_bytes = 0;
4241}
0293ce3a 4242
8867bc9b
MK
4243/*
4244 * Return a pointer to the extent record for file system block bno.
4245 */
a6f64d4a 4246xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4247xfs_iext_bno_to_ext(
4248 xfs_ifork_t *ifp, /* inode fork pointer */
4249 xfs_fileoff_t bno, /* block number to search for */
4250 xfs_extnum_t *idxp) /* index of target extent */
4251{
a6f64d4a 4252 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4253 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4254 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4255 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4256 int high; /* upper boundary in search */
8867bc9b 4257 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4258 int low; /* lower boundary in search */
8867bc9b
MK
4259 xfs_extnum_t nextents; /* number of file extents */
4260 xfs_fileoff_t startoff = 0; /* start offset of extent */
4261
4262 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4263 if (nextents == 0) {
4264 *idxp = 0;
4265 return NULL;
4266 }
4267 low = 0;
4268 if (ifp->if_flags & XFS_IFEXTIREC) {
4269 /* Find target extent list */
4270 int erp_idx = 0;
4271 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4272 base = erp->er_extbuf;
4273 high = erp->er_extcount - 1;
4274 } else {
4275 base = ifp->if_u1.if_extents;
4276 high = nextents - 1;
4277 }
4278 /* Binary search extent records */
4279 while (low <= high) {
4280 idx = (low + high) >> 1;
4281 ep = base + idx;
4282 startoff = xfs_bmbt_get_startoff(ep);
4283 blockcount = xfs_bmbt_get_blockcount(ep);
4284 if (bno < startoff) {
4285 high = idx - 1;
4286 } else if (bno >= startoff + blockcount) {
4287 low = idx + 1;
4288 } else {
4289 /* Convert back to file-based extent index */
4290 if (ifp->if_flags & XFS_IFEXTIREC) {
4291 idx += erp->er_extoff;
4292 }
4293 *idxp = idx;
4294 return ep;
4295 }
4296 }
4297 /* Convert back to file-based extent index */
4298 if (ifp->if_flags & XFS_IFEXTIREC) {
4299 idx += erp->er_extoff;
4300 }
4301 if (bno >= startoff + blockcount) {
4302 if (++idx == nextents) {
4303 ep = NULL;
4304 } else {
4305 ep = xfs_iext_get_ext(ifp, idx);
4306 }
4307 }
4308 *idxp = idx;
4309 return ep;
4310}
4311
0293ce3a
MK
4312/*
4313 * Return a pointer to the indirection array entry containing the
4314 * extent record for filesystem block bno. Store the index of the
4315 * target irec in *erp_idxp.
4316 */
8867bc9b 4317xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4318xfs_iext_bno_to_irec(
4319 xfs_ifork_t *ifp, /* inode fork pointer */
4320 xfs_fileoff_t bno, /* block number to search for */
4321 int *erp_idxp) /* irec index of target ext list */
4322{
4323 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4324 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4325 int erp_idx; /* indirection array index */
0293ce3a
MK
4326 int nlists; /* number of extent irec's (lists) */
4327 int high; /* binary search upper limit */
4328 int low; /* binary search lower limit */
4329
4330 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4331 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4332 erp_idx = 0;
4333 low = 0;
4334 high = nlists - 1;
4335 while (low <= high) {
4336 erp_idx = (low + high) >> 1;
4337 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4338 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4339 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4340 high = erp_idx - 1;
4341 } else if (erp_next && bno >=
4342 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4343 low = erp_idx + 1;
4344 } else {
4345 break;
4346 }
4347 }
4348 *erp_idxp = erp_idx;
4349 return erp;
4350}
4351
4352/*
4353 * Return a pointer to the indirection array entry containing the
4354 * extent record at file extent index *idxp. Store the index of the
4355 * target irec in *erp_idxp and store the page index of the target
4356 * extent record in *idxp.
4357 */
4358xfs_ext_irec_t *
4359xfs_iext_idx_to_irec(
4360 xfs_ifork_t *ifp, /* inode fork pointer */
4361 xfs_extnum_t *idxp, /* extent index (file -> page) */
4362 int *erp_idxp, /* pointer to target irec */
4363 int realloc) /* new bytes were just added */
4364{
4365 xfs_ext_irec_t *prev; /* pointer to previous irec */
4366 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4367 int erp_idx; /* indirection array index */
4368 int nlists; /* number of irec's (ex lists) */
4369 int high; /* binary search upper limit */
4370 int low; /* binary search lower limit */
4371 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4372
4373 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4374 ASSERT(page_idx >= 0 && page_idx <=
4375 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4376 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4377 erp_idx = 0;
4378 low = 0;
4379 high = nlists - 1;
4380
4381 /* Binary search extent irec's */
4382 while (low <= high) {
4383 erp_idx = (low + high) >> 1;
4384 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4385 prev = erp_idx > 0 ? erp - 1 : NULL;
4386 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4387 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4388 high = erp_idx - 1;
4389 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4390 (page_idx == erp->er_extoff + erp->er_extcount &&
4391 !realloc)) {
4392 low = erp_idx + 1;
4393 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4394 erp->er_extcount == XFS_LINEAR_EXTS) {
4395 ASSERT(realloc);
4396 page_idx = 0;
4397 erp_idx++;
4398 erp = erp_idx < nlists ? erp + 1 : NULL;
4399 break;
4400 } else {
4401 page_idx -= erp->er_extoff;
4402 break;
4403 }
4404 }
4405 *idxp = page_idx;
4406 *erp_idxp = erp_idx;
4407 return(erp);
4408}
4409
4410/*
4411 * Allocate and initialize an indirection array once the space needed
4412 * for incore extents increases above XFS_IEXT_BUFSZ.
4413 */
4414void
4415xfs_iext_irec_init(
4416 xfs_ifork_t *ifp) /* inode fork pointer */
4417{
4418 xfs_ext_irec_t *erp; /* indirection array pointer */
4419 xfs_extnum_t nextents; /* number of extents in file */
4420
4421 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4422 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4423 ASSERT(nextents <= XFS_LINEAR_EXTS);
4424
4425 erp = (xfs_ext_irec_t *)
4426 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4427
4428 if (nextents == 0) {
a6f64d4a 4429 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4430 } else if (!ifp->if_real_bytes) {
4431 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4432 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4433 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4434 }
4435 erp->er_extbuf = ifp->if_u1.if_extents;
4436 erp->er_extcount = nextents;
4437 erp->er_extoff = 0;
4438
4439 ifp->if_flags |= XFS_IFEXTIREC;
4440 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4441 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4442 ifp->if_u1.if_ext_irec = erp;
4443
4444 return;
4445}
4446
4447/*
4448 * Allocate and initialize a new entry in the indirection array.
4449 */
4450xfs_ext_irec_t *
4451xfs_iext_irec_new(
4452 xfs_ifork_t *ifp, /* inode fork pointer */
4453 int erp_idx) /* index for new irec */
4454{
4455 xfs_ext_irec_t *erp; /* indirection array pointer */
4456 int i; /* loop counter */
4457 int nlists; /* number of irec's (ex lists) */
4458
4459 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4460 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4461
4462 /* Resize indirection array */
4463 xfs_iext_realloc_indirect(ifp, ++nlists *
4464 sizeof(xfs_ext_irec_t));
4465 /*
4466 * Move records down in the array so the
4467 * new page can use erp_idx.
4468 */
4469 erp = ifp->if_u1.if_ext_irec;
4470 for (i = nlists - 1; i > erp_idx; i--) {
4471 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4472 }
4473 ASSERT(i == erp_idx);
4474
4475 /* Initialize new extent record */
4476 erp = ifp->if_u1.if_ext_irec;
a6f64d4a 4477 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
0293ce3a
MK
4478 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4479 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4480 erp[erp_idx].er_extcount = 0;
4481 erp[erp_idx].er_extoff = erp_idx > 0 ?
4482 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4483 return (&erp[erp_idx]);
4484}
4485
4486/*
4487 * Remove a record from the indirection array.
4488 */
4489void
4490xfs_iext_irec_remove(
4491 xfs_ifork_t *ifp, /* inode fork pointer */
4492 int erp_idx) /* irec index to remove */
4493{
4494 xfs_ext_irec_t *erp; /* indirection array pointer */
4495 int i; /* loop counter */
4496 int nlists; /* number of irec's (ex lists) */
4497
4498 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4499 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4500 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4501 if (erp->er_extbuf) {
4502 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4503 -erp->er_extcount);
4504 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4505 }
4506 /* Compact extent records */
4507 erp = ifp->if_u1.if_ext_irec;
4508 for (i = erp_idx; i < nlists - 1; i++) {
4509 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4510 }
4511 /*
4512 * Manually free the last extent record from the indirection
4513 * array. A call to xfs_iext_realloc_indirect() with a size
4514 * of zero would result in a call to xfs_iext_destroy() which
4515 * would in turn call this function again, creating a nasty
4516 * infinite loop.
4517 */
4518 if (--nlists) {
4519 xfs_iext_realloc_indirect(ifp,
4520 nlists * sizeof(xfs_ext_irec_t));
4521 } else {
4522 kmem_free(ifp->if_u1.if_ext_irec,
4523 sizeof(xfs_ext_irec_t));
4524 }
4525 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4526}
4527
4528/*
4529 * This is called to clean up large amounts of unused memory allocated
4530 * by the indirection array. Before compacting anything though, verify
4531 * that the indirection array is still needed and switch back to the
4532 * linear extent list (or even the inline buffer) if possible. The
4533 * compaction policy is as follows:
4534 *
4535 * Full Compaction: Extents fit into a single page (or inline buffer)
4536 * Full Compaction: Extents occupy less than 10% of allocated space
4537 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4538 * No Compaction: Extents occupy at least 50% of allocated space
4539 */
4540void
4541xfs_iext_irec_compact(
4542 xfs_ifork_t *ifp) /* inode fork pointer */
4543{
4544 xfs_extnum_t nextents; /* number of extents in file */
4545 int nlists; /* number of irec's (ex lists) */
4546
4547 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4548 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4549 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4550
4551 if (nextents == 0) {
4552 xfs_iext_destroy(ifp);
4553 } else if (nextents <= XFS_INLINE_EXTS) {
4554 xfs_iext_indirect_to_direct(ifp);
4555 xfs_iext_direct_to_inline(ifp, nextents);
4556 } else if (nextents <= XFS_LINEAR_EXTS) {
4557 xfs_iext_indirect_to_direct(ifp);
4558 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4559 xfs_iext_irec_compact_full(ifp);
4560 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4561 xfs_iext_irec_compact_pages(ifp);
4562 }
4563}
4564
4565/*
4566 * Combine extents from neighboring extent pages.
4567 */
4568void
4569xfs_iext_irec_compact_pages(
4570 xfs_ifork_t *ifp) /* inode fork pointer */
4571{
4572 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4573 int erp_idx = 0; /* indirection array index */
4574 int nlists; /* number of irec's (ex lists) */
4575
4576 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4577 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4578 while (erp_idx < nlists - 1) {
4579 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4580 erp_next = erp + 1;
4581 if (erp_next->er_extcount <=
4582 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4583 memmove(&erp->er_extbuf[erp->er_extcount],
4584 erp_next->er_extbuf, erp_next->er_extcount *
4585 sizeof(xfs_bmbt_rec_t));
4586 erp->er_extcount += erp_next->er_extcount;
4587 /*
4588 * Free page before removing extent record
4589 * so er_extoffs don't get modified in
4590 * xfs_iext_irec_remove.
4591 */
4592 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4593 erp_next->er_extbuf = NULL;
4594 xfs_iext_irec_remove(ifp, erp_idx + 1);
4595 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4596 } else {
4597 erp_idx++;
4598 }
4599 }
4600}
4601
4602/*
4603 * Fully compact the extent records managed by the indirection array.
4604 */
4605void
4606xfs_iext_irec_compact_full(
4607 xfs_ifork_t *ifp) /* inode fork pointer */
4608{
a6f64d4a 4609 xfs_bmbt_rec_host_t *ep, *ep_next; /* extent record pointers */
0293ce3a
MK
4610 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4611 int erp_idx = 0; /* extent irec index */
4612 int ext_avail; /* empty entries in ex list */
4613 int ext_diff; /* number of exts to add */
4614 int nlists; /* number of irec's (ex lists) */
4615
4616 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4617 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4618 erp = ifp->if_u1.if_ext_irec;
4619 ep = &erp->er_extbuf[erp->er_extcount];
4620 erp_next = erp + 1;
4621 ep_next = erp_next->er_extbuf;
4622 while (erp_idx < nlists - 1) {
4623 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4624 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4625 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4626 erp->er_extcount += ext_diff;
4627 erp_next->er_extcount -= ext_diff;
4628 /* Remove next page */
4629 if (erp_next->er_extcount == 0) {
4630 /*
4631 * Free page before removing extent record
4632 * so er_extoffs don't get modified in
4633 * xfs_iext_irec_remove.
4634 */
4635 kmem_free(erp_next->er_extbuf,
4636 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4637 erp_next->er_extbuf = NULL;
4638 xfs_iext_irec_remove(ifp, erp_idx + 1);
4639 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4640 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4641 /* Update next page */
4642 } else {
4643 /* Move rest of page up to become next new page */
4644 memmove(erp_next->er_extbuf, ep_next,
4645 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4646 ep_next = erp_next->er_extbuf;
4647 memset(&ep_next[erp_next->er_extcount], 0,
4648 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4649 sizeof(xfs_bmbt_rec_t));
4650 }
4651 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4652 erp_idx++;
4653 if (erp_idx < nlists)
4654 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4655 else
4656 break;
4657 }
4658 ep = &erp->er_extbuf[erp->er_extcount];
4659 erp_next = erp + 1;
4660 ep_next = erp_next->er_extbuf;
4661 }
4662}
4663
4664/*
4665 * This is called to update the er_extoff field in the indirection
4666 * array when extents have been added or removed from one of the
4667 * extent lists. erp_idx contains the irec index to begin updating
4668 * at and ext_diff contains the number of extents that were added
4669 * or removed.
4670 */
4671void
4672xfs_iext_irec_update_extoffs(
4673 xfs_ifork_t *ifp, /* inode fork pointer */
4674 int erp_idx, /* irec index to update */
4675 int ext_diff) /* number of new extents */
4676{
4677 int i; /* loop counter */
4678 int nlists; /* number of irec's (ex lists */
4679
4680 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4681 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4682 for (i = erp_idx; i < nlists; i++) {
4683 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4684 }
4685}