xfs: connect up write verifiers to new buffers
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
1da177e4 23#include "xfs_log.h"
a844f451 24#include "xfs_inum.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
1da177e4 30#include "xfs_bmap_btree.h"
a844f451 31#include "xfs_alloc_btree.h"
1da177e4 32#include "xfs_ialloc_btree.h"
a844f451 33#include "xfs_attr_sf.h"
1da177e4 34#include "xfs_dinode.h"
1da177e4 35#include "xfs_inode.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451
NS
37#include "xfs_inode_item.h"
38#include "xfs_btree.h"
39#include "xfs_alloc.h"
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
1da177e4 42#include "xfs_error.h"
1da177e4 43#include "xfs_utils.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
739bfb2a 46#include "xfs_vnodeops.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
1da177e4 49
1da177e4
LT
50kmem_zone_t *xfs_ifork_zone;
51kmem_zone_t *xfs_inode_zone;
1da177e4
LT
52
53/*
8f04c47a 54 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
55 * freed from a file in a single transaction.
56 */
57#define XFS_ITRUNC_MAX_EXTENTS 2
58
59STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
60STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
61STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
62STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad
DC
78/*
79 * This is a wrapper routine around the xfs_ilock() routine used to centralize
80 * some grungy code. It is used in places that wish to lock the inode solely
81 * for reading the extents. The reason these places can't just call
82 * xfs_ilock(SHARED) is that the inode lock also guards to bringing in of the
83 * extents from disk for a file in b-tree format. If the inode is in b-tree
84 * format, then we need to lock the inode exclusively until the extents are read
85 * in. Locking it exclusively all the time would limit our parallelism
86 * unnecessarily, though. What we do instead is check to see if the extents
87 * have been read in yet, and only lock the inode exclusively if they have not.
88 *
89 * The function returns a value which should be given to the corresponding
90 * xfs_iunlock_map_shared(). This value is the mode in which the lock was
91 * actually taken.
92 */
93uint
94xfs_ilock_map_shared(
95 xfs_inode_t *ip)
96{
97 uint lock_mode;
98
99 if ((ip->i_d.di_format == XFS_DINODE_FMT_BTREE) &&
100 ((ip->i_df.if_flags & XFS_IFEXTENTS) == 0)) {
101 lock_mode = XFS_ILOCK_EXCL;
102 } else {
103 lock_mode = XFS_ILOCK_SHARED;
104 }
105
106 xfs_ilock(ip, lock_mode);
107
108 return lock_mode;
109}
110
111/*
112 * This is simply the unlock routine to go with xfs_ilock_map_shared().
113 * All it does is call xfs_iunlock() with the given lock_mode.
114 */
115void
116xfs_iunlock_map_shared(
117 xfs_inode_t *ip,
118 unsigned int lock_mode)
119{
120 xfs_iunlock(ip, lock_mode);
121}
122
123/*
124 * The xfs inode contains 2 locks: a multi-reader lock called the
125 * i_iolock and a multi-reader lock called the i_lock. This routine
126 * allows either or both of the locks to be obtained.
127 *
128 * The 2 locks should always be ordered so that the IO lock is
129 * obtained first in order to prevent deadlock.
130 *
131 * ip -- the inode being locked
132 * lock_flags -- this parameter indicates the inode's locks
133 * to be locked. It can be:
134 * XFS_IOLOCK_SHARED,
135 * XFS_IOLOCK_EXCL,
136 * XFS_ILOCK_SHARED,
137 * XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
140 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
141 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
142 */
143void
144xfs_ilock(
145 xfs_inode_t *ip,
146 uint lock_flags)
147{
148 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
149
150 /*
151 * You can't set both SHARED and EXCL for the same lock,
152 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
153 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
154 */
155 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
156 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
157 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
158 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
159 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
160
161 if (lock_flags & XFS_IOLOCK_EXCL)
162 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163 else if (lock_flags & XFS_IOLOCK_SHARED)
164 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
165
166 if (lock_flags & XFS_ILOCK_EXCL)
167 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168 else if (lock_flags & XFS_ILOCK_SHARED)
169 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
170}
171
172/*
173 * This is just like xfs_ilock(), except that the caller
174 * is guaranteed not to sleep. It returns 1 if it gets
175 * the requested locks and 0 otherwise. If the IO lock is
176 * obtained but the inode lock cannot be, then the IO lock
177 * is dropped before returning.
178 *
179 * ip -- the inode being locked
180 * lock_flags -- this parameter indicates the inode's locks to be
181 * to be locked. See the comment for xfs_ilock() for a list
182 * of valid values.
183 */
184int
185xfs_ilock_nowait(
186 xfs_inode_t *ip,
187 uint lock_flags)
188{
189 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
190
191 /*
192 * You can't set both SHARED and EXCL for the same lock,
193 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
194 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
195 */
196 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
197 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
198 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
199 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
200 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
201
202 if (lock_flags & XFS_IOLOCK_EXCL) {
203 if (!mrtryupdate(&ip->i_iolock))
204 goto out;
205 } else if (lock_flags & XFS_IOLOCK_SHARED) {
206 if (!mrtryaccess(&ip->i_iolock))
207 goto out;
208 }
209 if (lock_flags & XFS_ILOCK_EXCL) {
210 if (!mrtryupdate(&ip->i_lock))
211 goto out_undo_iolock;
212 } else if (lock_flags & XFS_ILOCK_SHARED) {
213 if (!mrtryaccess(&ip->i_lock))
214 goto out_undo_iolock;
215 }
216 return 1;
217
218 out_undo_iolock:
219 if (lock_flags & XFS_IOLOCK_EXCL)
220 mrunlock_excl(&ip->i_iolock);
221 else if (lock_flags & XFS_IOLOCK_SHARED)
222 mrunlock_shared(&ip->i_iolock);
223 out:
224 return 0;
225}
226
227/*
228 * xfs_iunlock() is used to drop the inode locks acquired with
229 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
230 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
231 * that we know which locks to drop.
232 *
233 * ip -- the inode being unlocked
234 * lock_flags -- this parameter indicates the inode's locks to be
235 * to be unlocked. See the comment for xfs_ilock() for a list
236 * of valid values for this parameter.
237 *
238 */
239void
240xfs_iunlock(
241 xfs_inode_t *ip,
242 uint lock_flags)
243{
244 /*
245 * You can't set both SHARED and EXCL for the same lock,
246 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
247 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
248 */
249 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
250 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
251 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
252 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
253 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
254 ASSERT(lock_flags != 0);
255
256 if (lock_flags & XFS_IOLOCK_EXCL)
257 mrunlock_excl(&ip->i_iolock);
258 else if (lock_flags & XFS_IOLOCK_SHARED)
259 mrunlock_shared(&ip->i_iolock);
260
261 if (lock_flags & XFS_ILOCK_EXCL)
262 mrunlock_excl(&ip->i_lock);
263 else if (lock_flags & XFS_ILOCK_SHARED)
264 mrunlock_shared(&ip->i_lock);
265
266 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
267}
268
269/*
270 * give up write locks. the i/o lock cannot be held nested
271 * if it is being demoted.
272 */
273void
274xfs_ilock_demote(
275 xfs_inode_t *ip,
276 uint lock_flags)
277{
278 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
279 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
280
281 if (lock_flags & XFS_ILOCK_EXCL)
282 mrdemote(&ip->i_lock);
283 if (lock_flags & XFS_IOLOCK_EXCL)
284 mrdemote(&ip->i_iolock);
285
286 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
287}
288
289#ifdef DEBUG
290int
291xfs_isilocked(
292 xfs_inode_t *ip,
293 uint lock_flags)
294{
295 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
296 if (!(lock_flags & XFS_ILOCK_SHARED))
297 return !!ip->i_lock.mr_writer;
298 return rwsem_is_locked(&ip->i_lock.mr_lock);
299 }
300
301 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
302 if (!(lock_flags & XFS_IOLOCK_SHARED))
303 return !!ip->i_iolock.mr_writer;
304 return rwsem_is_locked(&ip->i_iolock.mr_lock);
305 }
306
307 ASSERT(0);
308 return 0;
309}
310#endif
311
312void
313__xfs_iflock(
314 struct xfs_inode *ip)
315{
316 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
317 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
318
319 do {
320 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
321 if (xfs_isiflocked(ip))
322 io_schedule();
323 } while (!xfs_iflock_nowait(ip));
324
325 finish_wait(wq, &wait.wait);
326}
327
1da177e4
LT
328#ifdef DEBUG
329/*
330 * Make sure that the extents in the given memory buffer
331 * are valid.
332 */
333STATIC void
334xfs_validate_extents(
4eea22f0 335 xfs_ifork_t *ifp,
1da177e4 336 int nrecs,
1da177e4
LT
337 xfs_exntfmt_t fmt)
338{
339 xfs_bmbt_irec_t irec;
a6f64d4a 340 xfs_bmbt_rec_host_t rec;
1da177e4
LT
341 int i;
342
343 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
344 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
345 rec.l0 = get_unaligned(&ep->l0);
346 rec.l1 = get_unaligned(&ep->l1);
347 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
348 if (fmt == XFS_EXTFMT_NOSTATE)
349 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
350 }
351}
352#else /* DEBUG */
a6f64d4a 353#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
354#endif /* DEBUG */
355
356/*
357 * Check that none of the inode's in the buffer have a next
358 * unlinked field of 0.
359 */
360#if defined(DEBUG)
361void
362xfs_inobp_check(
363 xfs_mount_t *mp,
364 xfs_buf_t *bp)
365{
366 int i;
367 int j;
368 xfs_dinode_t *dip;
369
370 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
371
372 for (i = 0; i < j; i++) {
373 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
374 i * mp->m_sb.sb_inodesize);
375 if (!dip->di_next_unlinked) {
53487786
DC
376 xfs_alert(mp,
377 "Detected bogus zero next_unlinked field in incore inode buffer 0x%p.",
1da177e4
LT
378 bp);
379 ASSERT(dip->di_next_unlinked);
380 }
381 }
382}
383#endif
384
612cfbfe 385static void
af133e86
DC
386xfs_inode_buf_verify(
387 struct xfs_buf *bp)
388{
389 struct xfs_mount *mp = bp->b_target->bt_mount;
390 int i;
391 int ni;
392
393 /*
394 * Validate the magic number and version of every inode in the buffer
395 */
396 ni = XFS_BB_TO_FSB(mp, bp->b_length) * mp->m_sb.sb_inopblock;
397 for (i = 0; i < ni; i++) {
398 int di_ok;
399 xfs_dinode_t *dip;
400
401 dip = (struct xfs_dinode *)xfs_buf_offset(bp,
402 (i << mp->m_sb.sb_inodelog));
403 di_ok = dip->di_magic == cpu_to_be16(XFS_DINODE_MAGIC) &&
404 XFS_DINODE_GOOD_VERSION(dip->di_version);
405 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
406 XFS_ERRTAG_ITOBP_INOTOBP,
407 XFS_RANDOM_ITOBP_INOTOBP))) {
408 xfs_buf_ioerror(bp, EFSCORRUPTED);
409 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_HIGH,
410 mp, dip);
411#ifdef DEBUG
412 xfs_emerg(mp,
413 "bad inode magic/vsn daddr %lld #%d (magic=%x)",
414 (unsigned long long)bp->b_bn, i,
415 be16_to_cpu(dip->di_magic));
416 ASSERT(0);
417#endif
418 }
419 }
420 xfs_inobp_check(mp, bp);
612cfbfe
DC
421}
422
b0f539de 423void
612cfbfe
DC
424xfs_inode_buf_write_verify(
425 struct xfs_buf *bp)
426{
427 xfs_inode_buf_verify(bp);
428}
429
430void
431xfs_inode_buf_read_verify(
432 struct xfs_buf *bp)
433{
434 xfs_inode_buf_verify(bp);
435 bp->b_pre_io = xfs_inode_buf_write_verify;
af133e86
DC
436 bp->b_iodone = NULL;
437 xfs_buf_ioend(bp, 0);
438}
439
4ae29b43 440/*
475ee413
CH
441 * This routine is called to map an inode to the buffer containing the on-disk
442 * version of the inode. It returns a pointer to the buffer containing the
443 * on-disk inode in the bpp parameter, and in the dipp parameter it returns a
444 * pointer to the on-disk inode within that buffer.
445 *
446 * If a non-zero error is returned, then the contents of bpp and dipp are
447 * undefined.
4ae29b43 448 */
475ee413 449int
4ae29b43 450xfs_imap_to_bp(
475ee413
CH
451 struct xfs_mount *mp,
452 struct xfs_trans *tp,
453 struct xfs_imap *imap,
af133e86 454 struct xfs_dinode **dipp,
475ee413
CH
455 struct xfs_buf **bpp,
456 uint buf_flags,
457 uint iget_flags)
4ae29b43 458{
475ee413
CH
459 struct xfs_buf *bp;
460 int error;
4ae29b43 461
611c9946 462 buf_flags |= XBF_UNMAPPED;
4ae29b43 463 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
af133e86 464 (int)imap->im_len, buf_flags, &bp,
612cfbfe 465 xfs_inode_buf_read_verify);
4ae29b43 466 if (error) {
af133e86 467 if (error == EAGAIN) {
0cadda1c 468 ASSERT(buf_flags & XBF_TRYLOCK);
af133e86 469 return error;
a3f74ffb 470 }
4ae29b43 471
af133e86
DC
472 if (error == EFSCORRUPTED &&
473 (iget_flags & XFS_IGET_UNTRUSTED))
474 return XFS_ERROR(EINVAL);
4ae29b43 475
af133e86
DC
476 xfs_warn(mp, "%s: xfs_trans_read_buf() returned error %d.",
477 __func__, error);
478 return error;
4ae29b43
DC
479 }
480
4ae29b43 481 *bpp = bp;
475ee413 482 *dipp = (struct xfs_dinode *)xfs_buf_offset(bp, imap->im_boffset);
4ae29b43
DC
483 return 0;
484}
485
1da177e4
LT
486/*
487 * Move inode type and inode format specific information from the
488 * on-disk inode to the in-core inode. For fifos, devs, and sockets
489 * this means set if_rdev to the proper value. For files, directories,
490 * and symlinks this means to bring in the in-line data or extent
491 * pointers. For a file in B-tree format, only the root is immediately
492 * brought in-core. The rest will be in-lined in if_extents when it
493 * is first referenced (see xfs_iread_extents()).
494 */
495STATIC int
496xfs_iformat(
497 xfs_inode_t *ip,
498 xfs_dinode_t *dip)
499{
500 xfs_attr_shortform_t *atp;
501 int size;
8096b1eb 502 int error = 0;
1da177e4 503 xfs_fsize_t di_size;
1da177e4 504
81591fe2
CH
505 if (unlikely(be32_to_cpu(dip->di_nextents) +
506 be16_to_cpu(dip->di_anextents) >
507 be64_to_cpu(dip->di_nblocks))) {
65333b4c 508 xfs_warn(ip->i_mount,
3762ec6b 509 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 510 (unsigned long long)ip->i_ino,
81591fe2
CH
511 (int)(be32_to_cpu(dip->di_nextents) +
512 be16_to_cpu(dip->di_anextents)),
1da177e4 513 (unsigned long long)
81591fe2 514 be64_to_cpu(dip->di_nblocks));
1da177e4
LT
515 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
516 ip->i_mount, dip);
517 return XFS_ERROR(EFSCORRUPTED);
518 }
519
81591fe2 520 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
65333b4c 521 xfs_warn(ip->i_mount, "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 522 (unsigned long long)ip->i_ino,
81591fe2 523 dip->di_forkoff);
1da177e4
LT
524 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
525 ip->i_mount, dip);
526 return XFS_ERROR(EFSCORRUPTED);
527 }
528
b89d4208
CH
529 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
530 !ip->i_mount->m_rtdev_targp)) {
65333b4c 531 xfs_warn(ip->i_mount,
b89d4208
CH
532 "corrupt dinode %Lu, has realtime flag set.",
533 ip->i_ino);
534 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
535 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
536 return XFS_ERROR(EFSCORRUPTED);
537 }
538
1da177e4
LT
539 switch (ip->i_d.di_mode & S_IFMT) {
540 case S_IFIFO:
541 case S_IFCHR:
542 case S_IFBLK:
543 case S_IFSOCK:
81591fe2 544 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
545 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
546 ip->i_mount, dip);
547 return XFS_ERROR(EFSCORRUPTED);
548 }
549 ip->i_d.di_size = 0;
81591fe2 550 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
1da177e4
LT
551 break;
552
553 case S_IFREG:
554 case S_IFLNK:
555 case S_IFDIR:
81591fe2 556 switch (dip->di_format) {
1da177e4
LT
557 case XFS_DINODE_FMT_LOCAL:
558 /*
559 * no local regular files yet
560 */
abbede1b 561 if (unlikely(S_ISREG(be16_to_cpu(dip->di_mode)))) {
65333b4c
DC
562 xfs_warn(ip->i_mount,
563 "corrupt inode %Lu (local format for regular file).",
1da177e4
LT
564 (unsigned long long) ip->i_ino);
565 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
566 XFS_ERRLEVEL_LOW,
567 ip->i_mount, dip);
568 return XFS_ERROR(EFSCORRUPTED);
569 }
570
81591fe2 571 di_size = be64_to_cpu(dip->di_size);
1da177e4 572 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
65333b4c
DC
573 xfs_warn(ip->i_mount,
574 "corrupt inode %Lu (bad size %Ld for local inode).",
1da177e4
LT
575 (unsigned long long) ip->i_ino,
576 (long long) di_size);
577 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
578 XFS_ERRLEVEL_LOW,
579 ip->i_mount, dip);
580 return XFS_ERROR(EFSCORRUPTED);
581 }
582
583 size = (int)di_size;
584 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
585 break;
586 case XFS_DINODE_FMT_EXTENTS:
587 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
588 break;
589 case XFS_DINODE_FMT_BTREE:
590 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
591 break;
592 default:
593 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
594 ip->i_mount);
595 return XFS_ERROR(EFSCORRUPTED);
596 }
597 break;
598
599 default:
600 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
601 return XFS_ERROR(EFSCORRUPTED);
602 }
603 if (error) {
604 return error;
605 }
606 if (!XFS_DFORK_Q(dip))
607 return 0;
8096b1eb 608
1da177e4 609 ASSERT(ip->i_afp == NULL);
4a7edddc 610 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
8096b1eb 611
81591fe2 612 switch (dip->di_aformat) {
1da177e4
LT
613 case XFS_DINODE_FMT_LOCAL:
614 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 615 size = be16_to_cpu(atp->hdr.totsize);
2809f76a
CH
616
617 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
65333b4c
DC
618 xfs_warn(ip->i_mount,
619 "corrupt inode %Lu (bad attr fork size %Ld).",
2809f76a
CH
620 (unsigned long long) ip->i_ino,
621 (long long) size);
622 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
623 XFS_ERRLEVEL_LOW,
624 ip->i_mount, dip);
625 return XFS_ERROR(EFSCORRUPTED);
626 }
627
1da177e4
LT
628 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
629 break;
630 case XFS_DINODE_FMT_EXTENTS:
631 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
632 break;
633 case XFS_DINODE_FMT_BTREE:
634 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
635 break;
636 default:
637 error = XFS_ERROR(EFSCORRUPTED);
638 break;
639 }
640 if (error) {
641 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
642 ip->i_afp = NULL;
643 xfs_idestroy_fork(ip, XFS_DATA_FORK);
644 }
645 return error;
646}
647
648/*
649 * The file is in-lined in the on-disk inode.
650 * If it fits into if_inline_data, then copy
651 * it there, otherwise allocate a buffer for it
652 * and copy the data there. Either way, set
653 * if_data to point at the data.
654 * If we allocate a buffer for the data, make
655 * sure that its size is a multiple of 4 and
656 * record the real size in i_real_bytes.
657 */
658STATIC int
659xfs_iformat_local(
660 xfs_inode_t *ip,
661 xfs_dinode_t *dip,
662 int whichfork,
663 int size)
664{
665 xfs_ifork_t *ifp;
666 int real_size;
667
668 /*
669 * If the size is unreasonable, then something
670 * is wrong and we just bail out rather than crash in
671 * kmem_alloc() or memcpy() below.
672 */
673 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c
DC
674 xfs_warn(ip->i_mount,
675 "corrupt inode %Lu (bad size %d for local fork, size = %d).",
1da177e4
LT
676 (unsigned long long) ip->i_ino, size,
677 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
678 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
679 ip->i_mount, dip);
680 return XFS_ERROR(EFSCORRUPTED);
681 }
682 ifp = XFS_IFORK_PTR(ip, whichfork);
683 real_size = 0;
684 if (size == 0)
685 ifp->if_u1.if_data = NULL;
686 else if (size <= sizeof(ifp->if_u2.if_inline_data))
687 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
688 else {
689 real_size = roundup(size, 4);
4a7edddc 690 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
691 }
692 ifp->if_bytes = size;
693 ifp->if_real_bytes = real_size;
694 if (size)
695 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
696 ifp->if_flags &= ~XFS_IFEXTENTS;
697 ifp->if_flags |= XFS_IFINLINE;
698 return 0;
699}
700
701/*
702 * The file consists of a set of extents all
703 * of which fit into the on-disk inode.
704 * If there are few enough extents to fit into
705 * the if_inline_ext, then copy them there.
706 * Otherwise allocate a buffer for them and copy
707 * them into it. Either way, set if_extents
708 * to point at the extents.
709 */
710STATIC int
711xfs_iformat_extents(
712 xfs_inode_t *ip,
713 xfs_dinode_t *dip,
714 int whichfork)
715{
a6f64d4a 716 xfs_bmbt_rec_t *dp;
1da177e4
LT
717 xfs_ifork_t *ifp;
718 int nex;
1da177e4
LT
719 int size;
720 int i;
721
722 ifp = XFS_IFORK_PTR(ip, whichfork);
723 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
724 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
725
726 /*
727 * If the number of extents is unreasonable, then something
728 * is wrong and we just bail out rather than crash in
729 * kmem_alloc() or memcpy() below.
730 */
731 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
65333b4c 732 xfs_warn(ip->i_mount, "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
733 (unsigned long long) ip->i_ino, nex);
734 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
735 ip->i_mount, dip);
736 return XFS_ERROR(EFSCORRUPTED);
737 }
738
4eea22f0 739 ifp->if_real_bytes = 0;
1da177e4
LT
740 if (nex == 0)
741 ifp->if_u1.if_extents = NULL;
742 else if (nex <= XFS_INLINE_EXTS)
743 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
744 else
745 xfs_iext_add(ifp, 0, nex);
746
1da177e4 747 ifp->if_bytes = size;
1da177e4
LT
748 if (size) {
749 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 750 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 751 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 752 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
753 ep->l0 = get_unaligned_be64(&dp->l0);
754 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 755 }
3a59c94c 756 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
757 if (whichfork != XFS_DATA_FORK ||
758 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
759 if (unlikely(xfs_check_nostate_extents(
4eea22f0 760 ifp, 0, nex))) {
1da177e4
LT
761 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
762 XFS_ERRLEVEL_LOW,
763 ip->i_mount);
764 return XFS_ERROR(EFSCORRUPTED);
765 }
766 }
767 ifp->if_flags |= XFS_IFEXTENTS;
768 return 0;
769}
770
771/*
772 * The file has too many extents to fit into
773 * the inode, so they are in B-tree format.
774 * Allocate a buffer for the root of the B-tree
775 * and copy the root into it. The i_extents
776 * field will remain NULL until all of the
777 * extents are read in (when they are needed).
778 */
779STATIC int
780xfs_iformat_btree(
781 xfs_inode_t *ip,
782 xfs_dinode_t *dip,
783 int whichfork)
784{
785 xfs_bmdr_block_t *dfp;
786 xfs_ifork_t *ifp;
787 /* REFERENCED */
788 int nrecs;
789 int size;
790
791 ifp = XFS_IFORK_PTR(ip, whichfork);
792 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
793 size = XFS_BMAP_BROOT_SPACE(dfp);
60197e8d 794 nrecs = be16_to_cpu(dfp->bb_numrecs);
1da177e4
LT
795
796 /*
797 * blow out if -- fork has less extents than can fit in
798 * fork (fork shouldn't be a btree format), root btree
799 * block has more records than can fit into the fork,
800 * or the number of extents is greater than the number of
801 * blocks.
802 */
8096b1eb
CH
803 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <=
804 XFS_IFORK_MAXEXT(ip, whichfork) ||
805 XFS_BMDR_SPACE_CALC(nrecs) >
806 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork) ||
807 XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
65333b4c 808 xfs_warn(ip->i_mount, "corrupt inode %Lu (btree).",
1da177e4 809 (unsigned long long) ip->i_ino);
65333b4c
DC
810 XFS_CORRUPTION_ERROR("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
811 ip->i_mount, dip);
1da177e4
LT
812 return XFS_ERROR(EFSCORRUPTED);
813 }
814
815 ifp->if_broot_bytes = size;
4a7edddc 816 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
1da177e4
LT
817 ASSERT(ifp->if_broot != NULL);
818 /*
819 * Copy and convert from the on-disk structure
820 * to the in-memory structure.
821 */
60197e8d
CH
822 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
823 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
824 ifp->if_broot, size);
1da177e4
LT
825 ifp->if_flags &= ~XFS_IFEXTENTS;
826 ifp->if_flags |= XFS_IFBROOT;
827
828 return 0;
829}
830
d96f8f89 831STATIC void
347d1c01
CH
832xfs_dinode_from_disk(
833 xfs_icdinode_t *to,
81591fe2 834 xfs_dinode_t *from)
1da177e4 835{
347d1c01
CH
836 to->di_magic = be16_to_cpu(from->di_magic);
837 to->di_mode = be16_to_cpu(from->di_mode);
838 to->di_version = from ->di_version;
839 to->di_format = from->di_format;
840 to->di_onlink = be16_to_cpu(from->di_onlink);
841 to->di_uid = be32_to_cpu(from->di_uid);
842 to->di_gid = be32_to_cpu(from->di_gid);
843 to->di_nlink = be32_to_cpu(from->di_nlink);
6743099c
AM
844 to->di_projid_lo = be16_to_cpu(from->di_projid_lo);
845 to->di_projid_hi = be16_to_cpu(from->di_projid_hi);
347d1c01
CH
846 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
847 to->di_flushiter = be16_to_cpu(from->di_flushiter);
848 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
849 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
850 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
851 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
852 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
853 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
854 to->di_size = be64_to_cpu(from->di_size);
855 to->di_nblocks = be64_to_cpu(from->di_nblocks);
856 to->di_extsize = be32_to_cpu(from->di_extsize);
857 to->di_nextents = be32_to_cpu(from->di_nextents);
858 to->di_anextents = be16_to_cpu(from->di_anextents);
859 to->di_forkoff = from->di_forkoff;
860 to->di_aformat = from->di_aformat;
861 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
862 to->di_dmstate = be16_to_cpu(from->di_dmstate);
863 to->di_flags = be16_to_cpu(from->di_flags);
864 to->di_gen = be32_to_cpu(from->di_gen);
865}
866
867void
868xfs_dinode_to_disk(
81591fe2 869 xfs_dinode_t *to,
347d1c01
CH
870 xfs_icdinode_t *from)
871{
872 to->di_magic = cpu_to_be16(from->di_magic);
873 to->di_mode = cpu_to_be16(from->di_mode);
874 to->di_version = from ->di_version;
875 to->di_format = from->di_format;
876 to->di_onlink = cpu_to_be16(from->di_onlink);
877 to->di_uid = cpu_to_be32(from->di_uid);
878 to->di_gid = cpu_to_be32(from->di_gid);
879 to->di_nlink = cpu_to_be32(from->di_nlink);
6743099c
AM
880 to->di_projid_lo = cpu_to_be16(from->di_projid_lo);
881 to->di_projid_hi = cpu_to_be16(from->di_projid_hi);
347d1c01
CH
882 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
883 to->di_flushiter = cpu_to_be16(from->di_flushiter);
884 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
885 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
886 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
887 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
888 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
889 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
890 to->di_size = cpu_to_be64(from->di_size);
891 to->di_nblocks = cpu_to_be64(from->di_nblocks);
892 to->di_extsize = cpu_to_be32(from->di_extsize);
893 to->di_nextents = cpu_to_be32(from->di_nextents);
894 to->di_anextents = cpu_to_be16(from->di_anextents);
895 to->di_forkoff = from->di_forkoff;
896 to->di_aformat = from->di_aformat;
897 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
898 to->di_dmstate = cpu_to_be16(from->di_dmstate);
899 to->di_flags = cpu_to_be16(from->di_flags);
900 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
901}
902
903STATIC uint
904_xfs_dic2xflags(
1da177e4
LT
905 __uint16_t di_flags)
906{
907 uint flags = 0;
908
909 if (di_flags & XFS_DIFLAG_ANY) {
910 if (di_flags & XFS_DIFLAG_REALTIME)
911 flags |= XFS_XFLAG_REALTIME;
912 if (di_flags & XFS_DIFLAG_PREALLOC)
913 flags |= XFS_XFLAG_PREALLOC;
914 if (di_flags & XFS_DIFLAG_IMMUTABLE)
915 flags |= XFS_XFLAG_IMMUTABLE;
916 if (di_flags & XFS_DIFLAG_APPEND)
917 flags |= XFS_XFLAG_APPEND;
918 if (di_flags & XFS_DIFLAG_SYNC)
919 flags |= XFS_XFLAG_SYNC;
920 if (di_flags & XFS_DIFLAG_NOATIME)
921 flags |= XFS_XFLAG_NOATIME;
922 if (di_flags & XFS_DIFLAG_NODUMP)
923 flags |= XFS_XFLAG_NODUMP;
924 if (di_flags & XFS_DIFLAG_RTINHERIT)
925 flags |= XFS_XFLAG_RTINHERIT;
926 if (di_flags & XFS_DIFLAG_PROJINHERIT)
927 flags |= XFS_XFLAG_PROJINHERIT;
928 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
929 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
930 if (di_flags & XFS_DIFLAG_EXTSIZE)
931 flags |= XFS_XFLAG_EXTSIZE;
932 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
933 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
934 if (di_flags & XFS_DIFLAG_NODEFRAG)
935 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
936 if (di_flags & XFS_DIFLAG_FILESTREAM)
937 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
938 }
939
940 return flags;
941}
942
943uint
944xfs_ip2xflags(
945 xfs_inode_t *ip)
946{
347d1c01 947 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 948
a916e2bd 949 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 950 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
951}
952
953uint
954xfs_dic2xflags(
45ba598e 955 xfs_dinode_t *dip)
1da177e4 956{
81591fe2 957 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 958 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
959}
960
07c8f675 961/*
24f211ba 962 * Read the disk inode attributes into the in-core inode structure.
1da177e4
LT
963 */
964int
965xfs_iread(
966 xfs_mount_t *mp,
967 xfs_trans_t *tp,
24f211ba 968 xfs_inode_t *ip,
24f211ba 969 uint iget_flags)
1da177e4
LT
970{
971 xfs_buf_t *bp;
972 xfs_dinode_t *dip;
1da177e4
LT
973 int error;
974
1da177e4 975 /*
92bfc6e7 976 * Fill in the location information in the in-core inode.
1da177e4 977 */
24f211ba 978 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
76d8b277 979 if (error)
24f211ba 980 return error;
76d8b277
CH
981
982 /*
92bfc6e7 983 * Get pointers to the on-disk inode and the buffer containing it.
76d8b277 984 */
475ee413 985 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0, iget_flags);
9ed0451e 986 if (error)
24f211ba 987 return error;
1da177e4 988
1da177e4
LT
989 /*
990 * If we got something that isn't an inode it means someone
991 * (nfs or dmi) has a stale handle.
992 */
69ef921b 993 if (dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC)) {
1da177e4 994#ifdef DEBUG
53487786
DC
995 xfs_alert(mp,
996 "%s: dip->di_magic (0x%x) != XFS_DINODE_MAGIC (0x%x)",
997 __func__, be16_to_cpu(dip->di_magic), XFS_DINODE_MAGIC);
1da177e4 998#endif /* DEBUG */
9ed0451e
CH
999 error = XFS_ERROR(EINVAL);
1000 goto out_brelse;
1da177e4
LT
1001 }
1002
1003 /*
1004 * If the on-disk inode is already linked to a directory
1005 * entry, copy all of the inode into the in-core inode.
1006 * xfs_iformat() handles copying in the inode format
1007 * specific information.
1008 * Otherwise, just get the truly permanent information.
1009 */
81591fe2
CH
1010 if (dip->di_mode) {
1011 xfs_dinode_from_disk(&ip->i_d, dip);
1da177e4
LT
1012 error = xfs_iformat(ip, dip);
1013 if (error) {
1da177e4 1014#ifdef DEBUG
53487786
DC
1015 xfs_alert(mp, "%s: xfs_iformat() returned error %d",
1016 __func__, error);
1da177e4 1017#endif /* DEBUG */
9ed0451e 1018 goto out_brelse;
1da177e4
LT
1019 }
1020 } else {
81591fe2
CH
1021 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
1022 ip->i_d.di_version = dip->di_version;
1023 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
1024 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
1da177e4
LT
1025 /*
1026 * Make sure to pull in the mode here as well in
1027 * case the inode is released without being used.
1028 * This ensures that xfs_inactive() will see that
1029 * the inode is already free and not try to mess
1030 * with the uninitialized part of it.
1031 */
1032 ip->i_d.di_mode = 0;
1da177e4
LT
1033 }
1034
1da177e4
LT
1035 /*
1036 * The inode format changed when we moved the link count and
1037 * made it 32 bits long. If this is an old format inode,
1038 * convert it in memory to look like a new one. If it gets
1039 * flushed to disk we will convert back before flushing or
1040 * logging it. We zero out the new projid field and the old link
1041 * count field. We'll handle clearing the pad field (the remains
1042 * of the old uuid field) when we actually convert the inode to
1043 * the new format. We don't change the version number so that we
1044 * can distinguish this from a real new format inode.
1045 */
51ce16d5 1046 if (ip->i_d.di_version == 1) {
1da177e4
LT
1047 ip->i_d.di_nlink = ip->i_d.di_onlink;
1048 ip->i_d.di_onlink = 0;
6743099c 1049 xfs_set_projid(ip, 0);
1da177e4
LT
1050 }
1051
1052 ip->i_delayed_blks = 0;
1053
1054 /*
1055 * Mark the buffer containing the inode as something to keep
1056 * around for a while. This helps to keep recently accessed
1057 * meta-data in-core longer.
1058 */
821eb21d 1059 xfs_buf_set_ref(bp, XFS_INO_REF);
1da177e4
LT
1060
1061 /*
1062 * Use xfs_trans_brelse() to release the buffer containing the
1063 * on-disk inode, because it was acquired with xfs_trans_read_buf()
475ee413 1064 * in xfs_imap_to_bp() above. If tp is NULL, this is just a normal
1da177e4
LT
1065 * brelse(). If we're within a transaction, then xfs_trans_brelse()
1066 * will only release the buffer if it is not dirty within the
1067 * transaction. It will be OK to release the buffer in this case,
1068 * because inodes on disk are never destroyed and we will be
1069 * locking the new in-core inode before putting it in the hash
1070 * table where other processes can find it. Thus we don't have
1071 * to worry about the inode being changed just because we released
1072 * the buffer.
1073 */
9ed0451e
CH
1074 out_brelse:
1075 xfs_trans_brelse(tp, bp);
9ed0451e 1076 return error;
1da177e4
LT
1077}
1078
1079/*
1080 * Read in extents from a btree-format inode.
1081 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1082 */
1083int
1084xfs_iread_extents(
1085 xfs_trans_t *tp,
1086 xfs_inode_t *ip,
1087 int whichfork)
1088{
1089 int error;
1090 xfs_ifork_t *ifp;
4eea22f0 1091 xfs_extnum_t nextents;
1da177e4
LT
1092
1093 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1094 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1095 ip->i_mount);
1096 return XFS_ERROR(EFSCORRUPTED);
1097 }
4eea22f0 1098 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1da177e4 1099 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1100
1da177e4
LT
1101 /*
1102 * We know that the size is valid (it's checked in iformat_btree)
1103 */
4eea22f0 1104 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1105 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1106 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1107 error = xfs_bmap_read_extents(tp, ip, whichfork);
1108 if (error) {
4eea22f0 1109 xfs_iext_destroy(ifp);
1da177e4
LT
1110 ifp->if_flags &= ~XFS_IFEXTENTS;
1111 return error;
1112 }
a6f64d4a 1113 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1114 return 0;
1115}
1116
1117/*
1118 * Allocate an inode on disk and return a copy of its in-core version.
1119 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1120 * appropriately within the inode. The uid and gid for the inode are
1121 * set according to the contents of the given cred structure.
1122 *
1123 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
1124 * has a free inode available, call xfs_iget() to obtain the in-core
1125 * version of the allocated inode. Finally, fill in the inode and
1126 * log its initial contents. In this case, ialloc_context would be
1127 * set to NULL.
1da177e4 1128 *
cd856db6
CM
1129 * If xfs_dialloc() does not have an available inode, it will replenish
1130 * its supply by doing an allocation. Since we can only do one
1131 * allocation within a transaction without deadlocks, we must commit
1132 * the current transaction before returning the inode itself.
1133 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
1134 * The caller should then commit the current transaction, start a new
1135 * transaction, and call xfs_ialloc() again to actually get the inode.
1136 *
1137 * To ensure that some other process does not grab the inode that
1138 * was allocated during the first call to xfs_ialloc(), this routine
1139 * also returns the [locked] bp pointing to the head of the freelist
1140 * as ialloc_context. The caller should hold this buffer across
1141 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1142 *
1143 * If we are allocating quota inodes, we do not have a parent inode
1144 * to attach to or associate with (i.e. pip == NULL) because they
1145 * are not linked into the directory structure - they are attached
1146 * directly to the superblock - and so have no parent.
1da177e4
LT
1147 */
1148int
1149xfs_ialloc(
1150 xfs_trans_t *tp,
1151 xfs_inode_t *pip,
576b1d67 1152 umode_t mode,
31b084ae 1153 xfs_nlink_t nlink,
1da177e4 1154 xfs_dev_t rdev,
6743099c 1155 prid_t prid,
1da177e4
LT
1156 int okalloc,
1157 xfs_buf_t **ialloc_context,
1da177e4
LT
1158 xfs_inode_t **ipp)
1159{
1160 xfs_ino_t ino;
1161 xfs_inode_t *ip;
1da177e4
LT
1162 uint flags;
1163 int error;
dff35fd4 1164 timespec_t tv;
bf904248 1165 int filestreams = 0;
1da177e4
LT
1166
1167 /*
1168 * Call the space management code to pick
1169 * the on-disk inode to be allocated.
1170 */
b11f94d5 1171 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 1172 ialloc_context, &ino);
bf904248 1173 if (error)
1da177e4 1174 return error;
08358906 1175 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
1176 *ipp = NULL;
1177 return 0;
1178 }
1179 ASSERT(*ialloc_context == NULL);
1180
1181 /*
1182 * Get the in-core inode with the lock held exclusively.
1183 * This is because we're setting fields here we need
1184 * to prevent others from looking at until we're done.
1185 */
ec3ba85f
CH
1186 error = xfs_iget(tp->t_mountp, tp, ino, XFS_IGET_CREATE,
1187 XFS_ILOCK_EXCL, &ip);
bf904248 1188 if (error)
1da177e4 1189 return error;
1da177e4
LT
1190 ASSERT(ip != NULL);
1191
576b1d67 1192 ip->i_d.di_mode = mode;
1da177e4
LT
1193 ip->i_d.di_onlink = 0;
1194 ip->i_d.di_nlink = nlink;
1195 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1196 ip->i_d.di_uid = current_fsuid();
1197 ip->i_d.di_gid = current_fsgid();
6743099c 1198 xfs_set_projid(ip, prid);
1da177e4
LT
1199 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1200
1201 /*
1202 * If the superblock version is up to where we support new format
1203 * inodes and this is currently an old format inode, then change
1204 * the inode version number now. This way we only do the conversion
1205 * here rather than here and in the flush/logging code.
1206 */
62118709 1207 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
51ce16d5
CH
1208 ip->i_d.di_version == 1) {
1209 ip->i_d.di_version = 2;
1da177e4
LT
1210 /*
1211 * We've already zeroed the old link count, the projid field,
1212 * and the pad field.
1213 */
1214 }
1215
1216 /*
1217 * Project ids won't be stored on disk if we are using a version 1 inode.
1218 */
51ce16d5 1219 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
1220 xfs_bump_ino_vers2(tp, ip);
1221
bd186aa9 1222 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 1223 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 1224 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
1225 ip->i_d.di_mode |= S_ISGID;
1226 }
1227 }
1228
1229 /*
1230 * If the group ID of the new file does not match the effective group
1231 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1232 * (and only if the irix_sgid_inherit compatibility variable is set).
1233 */
1234 if ((irix_sgid_inherit) &&
1235 (ip->i_d.di_mode & S_ISGID) &&
1236 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1237 ip->i_d.di_mode &= ~S_ISGID;
1238 }
1239
1240 ip->i_d.di_size = 0;
1241 ip->i_d.di_nextents = 0;
1242 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1243
1244 nanotime(&tv);
1245 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1246 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1247 ip->i_d.di_atime = ip->i_d.di_mtime;
1248 ip->i_d.di_ctime = ip->i_d.di_mtime;
1249
1da177e4
LT
1250 /*
1251 * di_gen will have been taken care of in xfs_iread.
1252 */
1253 ip->i_d.di_extsize = 0;
1254 ip->i_d.di_dmevmask = 0;
1255 ip->i_d.di_dmstate = 0;
1256 ip->i_d.di_flags = 0;
1257 flags = XFS_ILOG_CORE;
1258 switch (mode & S_IFMT) {
1259 case S_IFIFO:
1260 case S_IFCHR:
1261 case S_IFBLK:
1262 case S_IFSOCK:
1263 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1264 ip->i_df.if_u2.if_rdev = rdev;
1265 ip->i_df.if_flags = 0;
1266 flags |= XFS_ILOG_DEV;
1267 break;
1268 case S_IFREG:
bf904248
DC
1269 /*
1270 * we can't set up filestreams until after the VFS inode
1271 * is set up properly.
1272 */
1273 if (pip && xfs_inode_is_filestream(pip))
1274 filestreams = 1;
2a82b8be 1275 /* fall through */
1da177e4 1276 case S_IFDIR:
b11f94d5 1277 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1278 uint di_flags = 0;
1279
abbede1b 1280 if (S_ISDIR(mode)) {
365ca83d
NS
1281 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1282 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1283 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1284 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1285 ip->i_d.di_extsize = pip->i_d.di_extsize;
1286 }
abbede1b 1287 } else if (S_ISREG(mode)) {
613d7043 1288 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1289 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1290 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1291 di_flags |= XFS_DIFLAG_EXTSIZE;
1292 ip->i_d.di_extsize = pip->i_d.di_extsize;
1293 }
1da177e4
LT
1294 }
1295 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1296 xfs_inherit_noatime)
365ca83d 1297 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1298 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1299 xfs_inherit_nodump)
365ca83d 1300 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1301 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1302 xfs_inherit_sync)
365ca83d 1303 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1304 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1305 xfs_inherit_nosymlinks)
365ca83d
NS
1306 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1307 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1308 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1309 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1310 xfs_inherit_nodefrag)
1311 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1312 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1313 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1314 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1315 }
1316 /* FALLTHROUGH */
1317 case S_IFLNK:
1318 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1319 ip->i_df.if_flags = XFS_IFEXTENTS;
1320 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1321 ip->i_df.if_u1.if_extents = NULL;
1322 break;
1323 default:
1324 ASSERT(0);
1325 }
1326 /*
1327 * Attribute fork settings for new inode.
1328 */
1329 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1330 ip->i_d.di_anextents = 0;
1331
1332 /*
1333 * Log the new values stuffed into the inode.
1334 */
ddc3415a 1335 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
1336 xfs_trans_log_inode(tp, ip, flags);
1337
b83bd138 1338 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1339 xfs_setup_inode(ip);
1da177e4 1340
bf904248
DC
1341 /* now we have set up the vfs inode we can associate the filestream */
1342 if (filestreams) {
1343 error = xfs_filestream_associate(pip, ip);
1344 if (error < 0)
1345 return -error;
1346 if (!error)
1347 xfs_iflags_set(ip, XFS_IFILESTREAM);
1348 }
1349
1da177e4
LT
1350 *ipp = ip;
1351 return 0;
1352}
1353
1da177e4 1354/*
8f04c47a
CH
1355 * Free up the underlying blocks past new_size. The new size must be smaller
1356 * than the current size. This routine can be used both for the attribute and
1357 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1358 *
f6485057
DC
1359 * The transaction passed to this routine must have made a permanent log
1360 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1361 * given transaction and start new ones, so make sure everything involved in
1362 * the transaction is tidy before calling here. Some transaction will be
1363 * returned to the caller to be committed. The incoming transaction must
1364 * already include the inode, and both inode locks must be held exclusively.
1365 * The inode must also be "held" within the transaction. On return the inode
1366 * will be "held" within the returned transaction. This routine does NOT
1367 * require any disk space to be reserved for it within the transaction.
1da177e4 1368 *
f6485057
DC
1369 * If we get an error, we must return with the inode locked and linked into the
1370 * current transaction. This keeps things simple for the higher level code,
1371 * because it always knows that the inode is locked and held in the transaction
1372 * that returns to it whether errors occur or not. We don't mark the inode
1373 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1374 */
1375int
8f04c47a
CH
1376xfs_itruncate_extents(
1377 struct xfs_trans **tpp,
1378 struct xfs_inode *ip,
1379 int whichfork,
1380 xfs_fsize_t new_size)
1da177e4 1381{
8f04c47a
CH
1382 struct xfs_mount *mp = ip->i_mount;
1383 struct xfs_trans *tp = *tpp;
1384 struct xfs_trans *ntp;
1385 xfs_bmap_free_t free_list;
1386 xfs_fsblock_t first_block;
1387 xfs_fileoff_t first_unmap_block;
1388 xfs_fileoff_t last_block;
1389 xfs_filblks_t unmap_len;
1390 int committed;
1391 int error = 0;
1392 int done = 0;
1da177e4 1393
0b56185b
CH
1394 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1395 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1396 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1397 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1398 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1399 ASSERT(ip->i_itemp != NULL);
898621d5 1400 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1401 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1402
673e8e59
CH
1403 trace_xfs_itruncate_extents_start(ip, new_size);
1404
1da177e4
LT
1405 /*
1406 * Since it is possible for space to become allocated beyond
1407 * the end of the file (in a crash where the space is allocated
1408 * but the inode size is not yet updated), simply remove any
1409 * blocks which show up between the new EOF and the maximum
1410 * possible file size. If the first block to be removed is
1411 * beyond the maximum file size (ie it is the same as last_block),
1412 * then there is nothing to do.
1413 */
8f04c47a 1414 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1415 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1416 if (first_unmap_block == last_block)
1417 return 0;
1418
1419 ASSERT(first_unmap_block < last_block);
1420 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1421 while (!done) {
9d87c319 1422 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1423 error = xfs_bunmapi(tp, ip,
3e57ecf6 1424 first_unmap_block, unmap_len,
8f04c47a 1425 xfs_bmapi_aflag(whichfork),
1da177e4 1426 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1427 &first_block, &free_list,
b4e9181e 1428 &done);
8f04c47a
CH
1429 if (error)
1430 goto out_bmap_cancel;
1da177e4
LT
1431
1432 /*
1433 * Duplicate the transaction that has the permanent
1434 * reservation and commit the old transaction.
1435 */
8f04c47a 1436 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1437 if (committed)
ddc3415a 1438 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1439 if (error)
1440 goto out_bmap_cancel;
1da177e4
LT
1441
1442 if (committed) {
1443 /*
f6485057 1444 * Mark the inode dirty so it will be logged and
e5720eec 1445 * moved forward in the log as part of every commit.
1da177e4 1446 */
8f04c47a 1447 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1448 }
f6485057 1449
8f04c47a
CH
1450 ntp = xfs_trans_dup(tp);
1451 error = xfs_trans_commit(tp, 0);
1452 tp = ntp;
e5720eec 1453
ddc3415a 1454 xfs_trans_ijoin(tp, ip, 0);
f6485057 1455
cc09c0dc 1456 if (error)
8f04c47a
CH
1457 goto out;
1458
cc09c0dc 1459 /*
8f04c47a 1460 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1461 * reference that we gained in xfs_trans_dup()
1462 */
8f04c47a
CH
1463 xfs_log_ticket_put(tp->t_ticket);
1464 error = xfs_trans_reserve(tp, 0,
f6485057
DC
1465 XFS_ITRUNCATE_LOG_RES(mp), 0,
1466 XFS_TRANS_PERM_LOG_RES,
1467 XFS_ITRUNCATE_LOG_COUNT);
1468 if (error)
8f04c47a 1469 goto out;
1da177e4 1470 }
8f04c47a 1471
673e8e59
CH
1472 /*
1473 * Always re-log the inode so that our permanent transaction can keep
1474 * on rolling it forward in the log.
1475 */
1476 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1477
1478 trace_xfs_itruncate_extents_end(ip, new_size);
1479
8f04c47a
CH
1480out:
1481 *tpp = tp;
1482 return error;
1483out_bmap_cancel:
1da177e4 1484 /*
8f04c47a
CH
1485 * If the bunmapi call encounters an error, return to the caller where
1486 * the transaction can be properly aborted. We just need to make sure
1487 * we're not holding any resources that we were not when we came in.
1da177e4 1488 */
8f04c47a
CH
1489 xfs_bmap_cancel(&free_list);
1490 goto out;
1491}
1492
1da177e4
LT
1493/*
1494 * This is called when the inode's link count goes to 0.
1495 * We place the on-disk inode on a list in the AGI. It
1496 * will be pulled from this list when the inode is freed.
1497 */
1498int
1499xfs_iunlink(
1500 xfs_trans_t *tp,
1501 xfs_inode_t *ip)
1502{
1503 xfs_mount_t *mp;
1504 xfs_agi_t *agi;
1505 xfs_dinode_t *dip;
1506 xfs_buf_t *agibp;
1507 xfs_buf_t *ibp;
1da177e4
LT
1508 xfs_agino_t agino;
1509 short bucket_index;
1510 int offset;
1511 int error;
1da177e4
LT
1512
1513 ASSERT(ip->i_d.di_nlink == 0);
1514 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1515
1516 mp = tp->t_mountp;
1517
1da177e4
LT
1518 /*
1519 * Get the agi buffer first. It ensures lock ordering
1520 * on the list.
1521 */
5e1be0fb 1522 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1523 if (error)
1da177e4 1524 return error;
1da177e4 1525 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1526
1da177e4
LT
1527 /*
1528 * Get the index into the agi hash table for the
1529 * list this inode will go on.
1530 */
1531 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1532 ASSERT(agino != 0);
1533 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1534 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1535 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1536
69ef921b 1537 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1538 /*
1539 * There is already another inode in the bucket we need
1540 * to add ourselves to. Add us at the front of the list.
1541 * Here we put the head pointer into our next pointer,
1542 * and then we fall through to point the head at us.
1543 */
475ee413
CH
1544 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1545 0, 0);
c319b58b
VA
1546 if (error)
1547 return error;
1548
69ef921b 1549 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 1550 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 1551 offset = ip->i_imap.im_boffset +
1da177e4
LT
1552 offsetof(xfs_dinode_t, di_next_unlinked);
1553 xfs_trans_inode_buf(tp, ibp);
1554 xfs_trans_log_buf(tp, ibp, offset,
1555 (offset + sizeof(xfs_agino_t) - 1));
1556 xfs_inobp_check(mp, ibp);
1557 }
1558
1559 /*
1560 * Point the bucket head pointer at the inode being inserted.
1561 */
1562 ASSERT(agino != 0);
16259e7d 1563 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1564 offset = offsetof(xfs_agi_t, agi_unlinked) +
1565 (sizeof(xfs_agino_t) * bucket_index);
1566 xfs_trans_log_buf(tp, agibp, offset,
1567 (offset + sizeof(xfs_agino_t) - 1));
1568 return 0;
1569}
1570
1571/*
1572 * Pull the on-disk inode from the AGI unlinked list.
1573 */
1574STATIC int
1575xfs_iunlink_remove(
1576 xfs_trans_t *tp,
1577 xfs_inode_t *ip)
1578{
1579 xfs_ino_t next_ino;
1580 xfs_mount_t *mp;
1581 xfs_agi_t *agi;
1582 xfs_dinode_t *dip;
1583 xfs_buf_t *agibp;
1584 xfs_buf_t *ibp;
1585 xfs_agnumber_t agno;
1da177e4
LT
1586 xfs_agino_t agino;
1587 xfs_agino_t next_agino;
1588 xfs_buf_t *last_ibp;
6fdf8ccc 1589 xfs_dinode_t *last_dip = NULL;
1da177e4 1590 short bucket_index;
6fdf8ccc 1591 int offset, last_offset = 0;
1da177e4 1592 int error;
1da177e4 1593
1da177e4 1594 mp = tp->t_mountp;
1da177e4 1595 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
1596
1597 /*
1598 * Get the agi buffer first. It ensures lock ordering
1599 * on the list.
1600 */
5e1be0fb
CH
1601 error = xfs_read_agi(mp, tp, agno, &agibp);
1602 if (error)
1da177e4 1603 return error;
5e1be0fb 1604
1da177e4 1605 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1606
1da177e4
LT
1607 /*
1608 * Get the index into the agi hash table for the
1609 * list this inode will go on.
1610 */
1611 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1612 ASSERT(agino != 0);
1613 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 1614 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
1615 ASSERT(agi->agi_unlinked[bucket_index]);
1616
16259e7d 1617 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 1618 /*
475ee413
CH
1619 * We're at the head of the list. Get the inode's on-disk
1620 * buffer to see if there is anyone after us on the list.
1621 * Only modify our next pointer if it is not already NULLAGINO.
1622 * This saves us the overhead of dealing with the buffer when
1623 * there is no need to change it.
1da177e4 1624 */
475ee413
CH
1625 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1626 0, 0);
1da177e4 1627 if (error) {
475ee413 1628 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1629 __func__, error);
1da177e4
LT
1630 return error;
1631 }
347d1c01 1632 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1633 ASSERT(next_agino != 0);
1634 if (next_agino != NULLAGINO) {
347d1c01 1635 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1636 offset = ip->i_imap.im_boffset +
1da177e4
LT
1637 offsetof(xfs_dinode_t, di_next_unlinked);
1638 xfs_trans_inode_buf(tp, ibp);
1639 xfs_trans_log_buf(tp, ibp, offset,
1640 (offset + sizeof(xfs_agino_t) - 1));
1641 xfs_inobp_check(mp, ibp);
1642 } else {
1643 xfs_trans_brelse(tp, ibp);
1644 }
1645 /*
1646 * Point the bucket head pointer at the next inode.
1647 */
1648 ASSERT(next_agino != 0);
1649 ASSERT(next_agino != agino);
16259e7d 1650 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
1651 offset = offsetof(xfs_agi_t, agi_unlinked) +
1652 (sizeof(xfs_agino_t) * bucket_index);
1653 xfs_trans_log_buf(tp, agibp, offset,
1654 (offset + sizeof(xfs_agino_t) - 1));
1655 } else {
1656 /*
1657 * We need to search the list for the inode being freed.
1658 */
16259e7d 1659 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
1660 last_ibp = NULL;
1661 while (next_agino != agino) {
129dbc9a
CH
1662 struct xfs_imap imap;
1663
1664 if (last_ibp)
1da177e4 1665 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
1666
1667 imap.im_blkno = 0;
1da177e4 1668 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
1669
1670 error = xfs_imap(mp, tp, next_ino, &imap, 0);
1671 if (error) {
1672 xfs_warn(mp,
1673 "%s: xfs_imap returned error %d.",
1674 __func__, error);
1675 return error;
1676 }
1677
1678 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
1679 &last_ibp, 0, 0);
1da177e4 1680 if (error) {
0b932ccc 1681 xfs_warn(mp,
129dbc9a 1682 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 1683 __func__, error);
1da177e4
LT
1684 return error;
1685 }
129dbc9a
CH
1686
1687 last_offset = imap.im_boffset;
347d1c01 1688 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
1689 ASSERT(next_agino != NULLAGINO);
1690 ASSERT(next_agino != 0);
1691 }
475ee413 1692
1da177e4 1693 /*
475ee413
CH
1694 * Now last_ibp points to the buffer previous to us on the
1695 * unlinked list. Pull us from the list.
1da177e4 1696 */
475ee413
CH
1697 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
1698 0, 0);
1da177e4 1699 if (error) {
475ee413 1700 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 1701 __func__, error);
1da177e4
LT
1702 return error;
1703 }
347d1c01 1704 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1705 ASSERT(next_agino != 0);
1706 ASSERT(next_agino != agino);
1707 if (next_agino != NULLAGINO) {
347d1c01 1708 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 1709 offset = ip->i_imap.im_boffset +
1da177e4
LT
1710 offsetof(xfs_dinode_t, di_next_unlinked);
1711 xfs_trans_inode_buf(tp, ibp);
1712 xfs_trans_log_buf(tp, ibp, offset,
1713 (offset + sizeof(xfs_agino_t) - 1));
1714 xfs_inobp_check(mp, ibp);
1715 } else {
1716 xfs_trans_brelse(tp, ibp);
1717 }
1718 /*
1719 * Point the previous inode on the list to the next inode.
1720 */
347d1c01 1721 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
1722 ASSERT(next_agino != 0);
1723 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1724 xfs_trans_inode_buf(tp, last_ibp);
1725 xfs_trans_log_buf(tp, last_ibp, offset,
1726 (offset + sizeof(xfs_agino_t) - 1));
1727 xfs_inobp_check(mp, last_ibp);
1728 }
1729 return 0;
1730}
1731
5b3eed75
DC
1732/*
1733 * A big issue when freeing the inode cluster is is that we _cannot_ skip any
1734 * inodes that are in memory - they all must be marked stale and attached to
1735 * the cluster buffer.
1736 */
2a30f36d 1737STATIC int
1da177e4
LT
1738xfs_ifree_cluster(
1739 xfs_inode_t *free_ip,
1740 xfs_trans_t *tp,
1741 xfs_ino_t inum)
1742{
1743 xfs_mount_t *mp = free_ip->i_mount;
1744 int blks_per_cluster;
1745 int nbufs;
1746 int ninodes;
5b257b4a 1747 int i, j;
1da177e4
LT
1748 xfs_daddr_t blkno;
1749 xfs_buf_t *bp;
5b257b4a 1750 xfs_inode_t *ip;
1da177e4
LT
1751 xfs_inode_log_item_t *iip;
1752 xfs_log_item_t *lip;
5017e97d 1753 struct xfs_perag *pag;
1da177e4 1754
5017e97d 1755 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1da177e4
LT
1756 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1757 blks_per_cluster = 1;
1758 ninodes = mp->m_sb.sb_inopblock;
1759 nbufs = XFS_IALLOC_BLOCKS(mp);
1760 } else {
1761 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1762 mp->m_sb.sb_blocksize;
1763 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1764 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1765 }
1766
1da177e4
LT
1767 for (j = 0; j < nbufs; j++, inum += ninodes) {
1768 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1769 XFS_INO_TO_AGBNO(mp, inum));
1770
5b257b4a
DC
1771 /*
1772 * We obtain and lock the backing buffer first in the process
1773 * here, as we have to ensure that any dirty inode that we
1774 * can't get the flush lock on is attached to the buffer.
1775 * If we scan the in-memory inodes first, then buffer IO can
1776 * complete before we get a lock on it, and hence we may fail
1777 * to mark all the active inodes on the buffer stale.
1778 */
1779 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
1780 mp->m_bsize * blks_per_cluster,
1781 XBF_UNMAPPED);
5b257b4a 1782
2a30f36d
CS
1783 if (!bp)
1784 return ENOMEM;
b0f539de
DC
1785
1786 /*
1787 * This buffer may not have been correctly initialised as we
1788 * didn't read it from disk. That's not important because we are
1789 * only using to mark the buffer as stale in the log, and to
1790 * attach stale cached inodes on it. That means it will never be
1791 * dispatched for IO. If it is, we want to know about it, and we
1792 * want it to fail. We can acheive this by adding a write
1793 * verifier to the buffer.
1794 */
1795 bp->b_pre_io = xfs_inode_buf_write_verify;
1796
5b257b4a
DC
1797 /*
1798 * Walk the inodes already attached to the buffer and mark them
1799 * stale. These will all have the flush locks held, so an
5b3eed75
DC
1800 * in-memory inode walk can't lock them. By marking them all
1801 * stale first, we will not attempt to lock them in the loop
1802 * below as the XFS_ISTALE flag will be set.
5b257b4a 1803 */
adadbeef 1804 lip = bp->b_fspriv;
5b257b4a
DC
1805 while (lip) {
1806 if (lip->li_type == XFS_LI_INODE) {
1807 iip = (xfs_inode_log_item_t *)lip;
1808 ASSERT(iip->ili_logged == 1);
ca30b2a7 1809 lip->li_cb = xfs_istale_done;
5b257b4a
DC
1810 xfs_trans_ail_copy_lsn(mp->m_ail,
1811 &iip->ili_flush_lsn,
1812 &iip->ili_item.li_lsn);
1813 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
1814 }
1815 lip = lip->li_bio_list;
1816 }
1da177e4 1817
5b3eed75 1818
1da177e4 1819 /*
5b257b4a
DC
1820 * For each inode in memory attempt to add it to the inode
1821 * buffer and set it up for being staled on buffer IO
1822 * completion. This is safe as we've locked out tail pushing
1823 * and flushing by locking the buffer.
1da177e4 1824 *
5b257b4a
DC
1825 * We have already marked every inode that was part of a
1826 * transaction stale above, which means there is no point in
1827 * even trying to lock them.
1da177e4 1828 */
1da177e4 1829 for (i = 0; i < ninodes; i++) {
5b3eed75 1830retry:
1a3e8f3d 1831 rcu_read_lock();
da353b0d
DC
1832 ip = radix_tree_lookup(&pag->pag_ici_root,
1833 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 1834
1a3e8f3d
DC
1835 /* Inode not in memory, nothing to do */
1836 if (!ip) {
1837 rcu_read_unlock();
1da177e4
LT
1838 continue;
1839 }
1840
1a3e8f3d
DC
1841 /*
1842 * because this is an RCU protected lookup, we could
1843 * find a recently freed or even reallocated inode
1844 * during the lookup. We need to check under the
1845 * i_flags_lock for a valid inode here. Skip it if it
1846 * is not valid, the wrong inode or stale.
1847 */
1848 spin_lock(&ip->i_flags_lock);
1849 if (ip->i_ino != inum + i ||
1850 __xfs_iflags_test(ip, XFS_ISTALE)) {
1851 spin_unlock(&ip->i_flags_lock);
1852 rcu_read_unlock();
1853 continue;
1854 }
1855 spin_unlock(&ip->i_flags_lock);
1856
5b3eed75
DC
1857 /*
1858 * Don't try to lock/unlock the current inode, but we
1859 * _cannot_ skip the other inodes that we did not find
1860 * in the list attached to the buffer and are not
1861 * already marked stale. If we can't lock it, back off
1862 * and retry.
1863 */
5b257b4a
DC
1864 if (ip != free_ip &&
1865 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 1866 rcu_read_unlock();
5b3eed75
DC
1867 delay(1);
1868 goto retry;
1da177e4 1869 }
1a3e8f3d 1870 rcu_read_unlock();
1da177e4 1871
5b3eed75 1872 xfs_iflock(ip);
5b257b4a 1873 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 1874
5b3eed75
DC
1875 /*
1876 * we don't need to attach clean inodes or those only
1877 * with unlogged changes (which we throw away, anyway).
1878 */
1da177e4 1879 iip = ip->i_itemp;
5b3eed75 1880 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 1881 ASSERT(ip != free_ip);
1da177e4
LT
1882 xfs_ifunlock(ip);
1883 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1884 continue;
1885 }
1886
f5d8d5c4
CH
1887 iip->ili_last_fields = iip->ili_fields;
1888 iip->ili_fields = 0;
1da177e4 1889 iip->ili_logged = 1;
7b2e2a31
DC
1890 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
1891 &iip->ili_item.li_lsn);
1da177e4 1892
ca30b2a7
CH
1893 xfs_buf_attach_iodone(bp, xfs_istale_done,
1894 &iip->ili_item);
5b257b4a
DC
1895
1896 if (ip != free_ip)
1da177e4 1897 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
1898 }
1899
5b3eed75 1900 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
1901 xfs_trans_binval(tp, bp);
1902 }
1903
5017e97d 1904 xfs_perag_put(pag);
2a30f36d 1905 return 0;
1da177e4
LT
1906}
1907
1908/*
1909 * This is called to return an inode to the inode free list.
1910 * The inode should already be truncated to 0 length and have
1911 * no pages associated with it. This routine also assumes that
1912 * the inode is already a part of the transaction.
1913 *
1914 * The on-disk copy of the inode will have been added to the list
1915 * of unlinked inodes in the AGI. We need to remove the inode from
1916 * that list atomically with respect to freeing it here.
1917 */
1918int
1919xfs_ifree(
1920 xfs_trans_t *tp,
1921 xfs_inode_t *ip,
1922 xfs_bmap_free_t *flist)
1923{
1924 int error;
1925 int delete;
1926 xfs_ino_t first_ino;
c319b58b
VA
1927 xfs_dinode_t *dip;
1928 xfs_buf_t *ibp;
1da177e4 1929
579aa9ca 1930 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
1931 ASSERT(ip->i_d.di_nlink == 0);
1932 ASSERT(ip->i_d.di_nextents == 0);
1933 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 1934 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
1935 ASSERT(ip->i_d.di_nblocks == 0);
1936
1937 /*
1938 * Pull the on-disk inode from the AGI unlinked list.
1939 */
1940 error = xfs_iunlink_remove(tp, ip);
1941 if (error != 0) {
1942 return error;
1943 }
1944
1945 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1946 if (error != 0) {
1947 return error;
1948 }
1949 ip->i_d.di_mode = 0; /* mark incore inode as free */
1950 ip->i_d.di_flags = 0;
1951 ip->i_d.di_dmevmask = 0;
1952 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
1953 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1954 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1955 /*
1956 * Bump the generation count so no one will be confused
1957 * by reincarnations of this inode.
1958 */
1959 ip->i_d.di_gen++;
c319b58b 1960
1da177e4
LT
1961 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1962
475ee413
CH
1963 error = xfs_imap_to_bp(ip->i_mount, tp, &ip->i_imap, &dip, &ibp,
1964 0, 0);
c319b58b
VA
1965 if (error)
1966 return error;
1967
1968 /*
1969 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
1970 * from picking up this inode when it is reclaimed (its incore state
1971 * initialzed but not flushed to disk yet). The in-core di_mode is
1972 * already cleared and a corresponding transaction logged.
1973 * The hack here just synchronizes the in-core to on-disk
1974 * di_mode value in advance before the actual inode sync to disk.
1975 * This is OK because the inode is already unlinked and would never
1976 * change its di_mode again for this inode generation.
1977 * This is a temporary hack that would require a proper fix
1978 * in the future.
1979 */
81591fe2 1980 dip->di_mode = 0;
c319b58b 1981
1da177e4 1982 if (delete) {
2a30f36d 1983 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4
LT
1984 }
1985
2a30f36d 1986 return error;
1da177e4
LT
1987}
1988
1989/*
1990 * Reallocate the space for if_broot based on the number of records
1991 * being added or deleted as indicated in rec_diff. Move the records
1992 * and pointers in if_broot to fit the new size. When shrinking this
1993 * will eliminate holes between the records and pointers created by
1994 * the caller. When growing this will create holes to be filled in
1995 * by the caller.
1996 *
1997 * The caller must not request to add more records than would fit in
1998 * the on-disk inode root. If the if_broot is currently NULL, then
1999 * if we adding records one will be allocated. The caller must also
2000 * not request that the number of records go below zero, although
2001 * it can go to zero.
2002 *
2003 * ip -- the inode whose if_broot area is changing
2004 * ext_diff -- the change in the number of records, positive or negative,
2005 * requested for the if_broot array.
2006 */
2007void
2008xfs_iroot_realloc(
2009 xfs_inode_t *ip,
2010 int rec_diff,
2011 int whichfork)
2012{
60197e8d 2013 struct xfs_mount *mp = ip->i_mount;
1da177e4
LT
2014 int cur_max;
2015 xfs_ifork_t *ifp;
7cc95a82 2016 struct xfs_btree_block *new_broot;
1da177e4
LT
2017 int new_max;
2018 size_t new_size;
2019 char *np;
2020 char *op;
2021
2022 /*
2023 * Handle the degenerate case quietly.
2024 */
2025 if (rec_diff == 0) {
2026 return;
2027 }
2028
2029 ifp = XFS_IFORK_PTR(ip, whichfork);
2030 if (rec_diff > 0) {
2031 /*
2032 * If there wasn't any memory allocated before, just
2033 * allocate it now and get out.
2034 */
2035 if (ifp->if_broot_bytes == 0) {
2036 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
4a7edddc 2037 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2038 ifp->if_broot_bytes = (int)new_size;
2039 return;
2040 }
2041
2042 /*
2043 * If there is already an existing if_broot, then we need
2044 * to realloc() it and shift the pointers to their new
2045 * location. The records don't change location because
2046 * they are kept butted up against the btree block header.
2047 */
60197e8d 2048 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2049 new_max = cur_max + rec_diff;
2050 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
7cc95a82 2051 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
1da177e4 2052 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
4a7edddc 2053 KM_SLEEP | KM_NOFS);
60197e8d
CH
2054 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2055 ifp->if_broot_bytes);
2056 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2057 (int)new_size);
1da177e4
LT
2058 ifp->if_broot_bytes = (int)new_size;
2059 ASSERT(ifp->if_broot_bytes <=
2060 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2061 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2062 return;
2063 }
2064
2065 /*
2066 * rec_diff is less than 0. In this case, we are shrinking the
2067 * if_broot buffer. It must already exist. If we go to zero
2068 * records, just get rid of the root and clear the status bit.
2069 */
2070 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
60197e8d 2071 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
1da177e4
LT
2072 new_max = cur_max + rec_diff;
2073 ASSERT(new_max >= 0);
2074 if (new_max > 0)
2075 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2076 else
2077 new_size = 0;
2078 if (new_size > 0) {
4a7edddc 2079 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
1da177e4
LT
2080 /*
2081 * First copy over the btree block header.
2082 */
7cc95a82 2083 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
1da177e4
LT
2084 } else {
2085 new_broot = NULL;
2086 ifp->if_flags &= ~XFS_IFBROOT;
2087 }
2088
2089 /*
2090 * Only copy the records and pointers if there are any.
2091 */
2092 if (new_max > 0) {
2093 /*
2094 * First copy the records.
2095 */
136341b4
CH
2096 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2097 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
1da177e4
LT
2098 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2099
2100 /*
2101 * Then copy the pointers.
2102 */
60197e8d 2103 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
1da177e4 2104 ifp->if_broot_bytes);
60197e8d 2105 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
1da177e4
LT
2106 (int)new_size);
2107 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2108 }
f0e2d93c 2109 kmem_free(ifp->if_broot);
1da177e4
LT
2110 ifp->if_broot = new_broot;
2111 ifp->if_broot_bytes = (int)new_size;
2112 ASSERT(ifp->if_broot_bytes <=
2113 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2114 return;
2115}
2116
2117
1da177e4
LT
2118/*
2119 * This is called when the amount of space needed for if_data
2120 * is increased or decreased. The change in size is indicated by
2121 * the number of bytes that need to be added or deleted in the
2122 * byte_diff parameter.
2123 *
2124 * If the amount of space needed has decreased below the size of the
2125 * inline buffer, then switch to using the inline buffer. Otherwise,
2126 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2127 * to what is needed.
2128 *
2129 * ip -- the inode whose if_data area is changing
2130 * byte_diff -- the change in the number of bytes, positive or negative,
2131 * requested for the if_data array.
2132 */
2133void
2134xfs_idata_realloc(
2135 xfs_inode_t *ip,
2136 int byte_diff,
2137 int whichfork)
2138{
2139 xfs_ifork_t *ifp;
2140 int new_size;
2141 int real_size;
2142
2143 if (byte_diff == 0) {
2144 return;
2145 }
2146
2147 ifp = XFS_IFORK_PTR(ip, whichfork);
2148 new_size = (int)ifp->if_bytes + byte_diff;
2149 ASSERT(new_size >= 0);
2150
2151 if (new_size == 0) {
2152 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2153 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2154 }
2155 ifp->if_u1.if_data = NULL;
2156 real_size = 0;
2157 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2158 /*
2159 * If the valid extents/data can fit in if_inline_ext/data,
2160 * copy them from the malloc'd vector and free it.
2161 */
2162 if (ifp->if_u1.if_data == NULL) {
2163 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2164 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2165 ASSERT(ifp->if_real_bytes != 0);
2166 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2167 new_size);
f0e2d93c 2168 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2169 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2170 }
2171 real_size = 0;
2172 } else {
2173 /*
2174 * Stuck with malloc/realloc.
2175 * For inline data, the underlying buffer must be
2176 * a multiple of 4 bytes in size so that it can be
2177 * logged and stay on word boundaries. We enforce
2178 * that here.
2179 */
2180 real_size = roundup(new_size, 4);
2181 if (ifp->if_u1.if_data == NULL) {
2182 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2183 ifp->if_u1.if_data = kmem_alloc(real_size,
2184 KM_SLEEP | KM_NOFS);
1da177e4
LT
2185 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2186 /*
2187 * Only do the realloc if the underlying size
2188 * is really changing.
2189 */
2190 if (ifp->if_real_bytes != real_size) {
2191 ifp->if_u1.if_data =
2192 kmem_realloc(ifp->if_u1.if_data,
2193 real_size,
2194 ifp->if_real_bytes,
4a7edddc 2195 KM_SLEEP | KM_NOFS);
1da177e4
LT
2196 }
2197 } else {
2198 ASSERT(ifp->if_real_bytes == 0);
4a7edddc
DC
2199 ifp->if_u1.if_data = kmem_alloc(real_size,
2200 KM_SLEEP | KM_NOFS);
1da177e4
LT
2201 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2202 ifp->if_bytes);
2203 }
2204 }
2205 ifp->if_real_bytes = real_size;
2206 ifp->if_bytes = new_size;
2207 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2208}
2209
1da177e4
LT
2210void
2211xfs_idestroy_fork(
2212 xfs_inode_t *ip,
2213 int whichfork)
2214{
2215 xfs_ifork_t *ifp;
2216
2217 ifp = XFS_IFORK_PTR(ip, whichfork);
2218 if (ifp->if_broot != NULL) {
f0e2d93c 2219 kmem_free(ifp->if_broot);
1da177e4
LT
2220 ifp->if_broot = NULL;
2221 }
2222
2223 /*
2224 * If the format is local, then we can't have an extents
2225 * array so just look for an inline data array. If we're
2226 * not local then we may or may not have an extents list,
2227 * so check and free it up if we do.
2228 */
2229 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2230 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2231 (ifp->if_u1.if_data != NULL)) {
2232 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2233 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2234 ifp->if_u1.if_data = NULL;
2235 ifp->if_real_bytes = 0;
2236 }
2237 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2238 ((ifp->if_flags & XFS_IFEXTIREC) ||
2239 ((ifp->if_u1.if_extents != NULL) &&
2240 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2241 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2242 xfs_iext_destroy(ifp);
1da177e4
LT
2243 }
2244 ASSERT(ifp->if_u1.if_extents == NULL ||
2245 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2246 ASSERT(ifp->if_real_bytes == 0);
2247 if (whichfork == XFS_ATTR_FORK) {
2248 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2249 ip->i_afp = NULL;
2250 }
2251}
2252
1da177e4 2253/*
60ec6783
CH
2254 * This is called to unpin an inode. The caller must have the inode locked
2255 * in at least shared mode so that the buffer cannot be subsequently pinned
2256 * once someone is waiting for it to be unpinned.
1da177e4 2257 */
60ec6783 2258static void
f392e631 2259xfs_iunpin(
60ec6783 2260 struct xfs_inode *ip)
1da177e4 2261{
579aa9ca 2262 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2263
4aaf15d1
DC
2264 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2265
a3f74ffb 2266 /* Give the log a push to start the unpinning I/O */
60ec6783 2267 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2268
a3f74ffb 2269}
1da177e4 2270
f392e631
CH
2271static void
2272__xfs_iunpin_wait(
2273 struct xfs_inode *ip)
2274{
2275 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2276 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2277
2278 xfs_iunpin(ip);
2279
2280 do {
2281 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2282 if (xfs_ipincount(ip))
2283 io_schedule();
2284 } while (xfs_ipincount(ip));
2285 finish_wait(wq, &wait.wait);
2286}
2287
777df5af 2288void
a3f74ffb 2289xfs_iunpin_wait(
60ec6783 2290 struct xfs_inode *ip)
a3f74ffb 2291{
f392e631
CH
2292 if (xfs_ipincount(ip))
2293 __xfs_iunpin_wait(ip);
1da177e4
LT
2294}
2295
1da177e4
LT
2296/*
2297 * xfs_iextents_copy()
2298 *
2299 * This is called to copy the REAL extents (as opposed to the delayed
2300 * allocation extents) from the inode into the given buffer. It
2301 * returns the number of bytes copied into the buffer.
2302 *
2303 * If there are no delayed allocation extents, then we can just
2304 * memcpy() the extents into the buffer. Otherwise, we need to
2305 * examine each extent in turn and skip those which are delayed.
2306 */
2307int
2308xfs_iextents_copy(
2309 xfs_inode_t *ip,
a6f64d4a 2310 xfs_bmbt_rec_t *dp,
1da177e4
LT
2311 int whichfork)
2312{
2313 int copied;
1da177e4
LT
2314 int i;
2315 xfs_ifork_t *ifp;
2316 int nrecs;
2317 xfs_fsblock_t start_block;
2318
2319 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2320 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2321 ASSERT(ifp->if_bytes > 0);
2322
2323 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2324 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2325 ASSERT(nrecs > 0);
2326
2327 /*
2328 * There are some delayed allocation extents in the
2329 * inode, so copy the extents one at a time and skip
2330 * the delayed ones. There must be at least one
2331 * non-delayed extent.
2332 */
1da177e4
LT
2333 copied = 0;
2334 for (i = 0; i < nrecs; i++) {
a6f64d4a 2335 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4 2336 start_block = xfs_bmbt_get_startblock(ep);
9d87c319 2337 if (isnullstartblock(start_block)) {
1da177e4
LT
2338 /*
2339 * It's a delayed allocation extent, so skip it.
2340 */
1da177e4
LT
2341 continue;
2342 }
2343
2344 /* Translate to on disk format */
cd8b0a97
CH
2345 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2346 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2347 dp++;
1da177e4
LT
2348 copied++;
2349 }
2350 ASSERT(copied != 0);
a6f64d4a 2351 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2352
2353 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2354}
2355
2356/*
2357 * Each of the following cases stores data into the same region
2358 * of the on-disk inode, so only one of them can be valid at
2359 * any given time. While it is possible to have conflicting formats
2360 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2361 * in EXTENTS format, this can only happen when the fork has
2362 * changed formats after being modified but before being flushed.
2363 * In these cases, the format always takes precedence, because the
2364 * format indicates the current state of the fork.
2365 */
2366/*ARGSUSED*/
e4ac967b 2367STATIC void
1da177e4
LT
2368xfs_iflush_fork(
2369 xfs_inode_t *ip,
2370 xfs_dinode_t *dip,
2371 xfs_inode_log_item_t *iip,
2372 int whichfork,
2373 xfs_buf_t *bp)
2374{
2375 char *cp;
2376 xfs_ifork_t *ifp;
2377 xfs_mount_t *mp;
2378#ifdef XFS_TRANS_DEBUG
2379 int first;
2380#endif
2381 static const short brootflag[2] =
2382 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2383 static const short dataflag[2] =
2384 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2385 static const short extflag[2] =
2386 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2387
e4ac967b
DC
2388 if (!iip)
2389 return;
1da177e4
LT
2390 ifp = XFS_IFORK_PTR(ip, whichfork);
2391 /*
2392 * This can happen if we gave up in iformat in an error path,
2393 * for the attribute fork.
2394 */
e4ac967b 2395 if (!ifp) {
1da177e4 2396 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2397 return;
1da177e4
LT
2398 }
2399 cp = XFS_DFORK_PTR(dip, whichfork);
2400 mp = ip->i_mount;
2401 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2402 case XFS_DINODE_FMT_LOCAL:
f5d8d5c4 2403 if ((iip->ili_fields & dataflag[whichfork]) &&
1da177e4
LT
2404 (ifp->if_bytes > 0)) {
2405 ASSERT(ifp->if_u1.if_data != NULL);
2406 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2407 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2408 }
1da177e4
LT
2409 break;
2410
2411 case XFS_DINODE_FMT_EXTENTS:
2412 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
f5d8d5c4
CH
2413 !(iip->ili_fields & extflag[whichfork]));
2414 if ((iip->ili_fields & extflag[whichfork]) &&
1da177e4 2415 (ifp->if_bytes > 0)) {
ab1908a5 2416 ASSERT(xfs_iext_get_ext(ifp, 0));
1da177e4
LT
2417 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2418 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2419 whichfork);
2420 }
2421 break;
2422
2423 case XFS_DINODE_FMT_BTREE:
f5d8d5c4 2424 if ((iip->ili_fields & brootflag[whichfork]) &&
1da177e4
LT
2425 (ifp->if_broot_bytes > 0)) {
2426 ASSERT(ifp->if_broot != NULL);
2427 ASSERT(ifp->if_broot_bytes <=
2428 (XFS_IFORK_SIZE(ip, whichfork) +
2429 XFS_BROOT_SIZE_ADJ));
60197e8d 2430 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
1da177e4
LT
2431 (xfs_bmdr_block_t *)cp,
2432 XFS_DFORK_SIZE(dip, mp, whichfork));
2433 }
2434 break;
2435
2436 case XFS_DINODE_FMT_DEV:
f5d8d5c4 2437 if (iip->ili_fields & XFS_ILOG_DEV) {
1da177e4 2438 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2 2439 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
1da177e4
LT
2440 }
2441 break;
2442
2443 case XFS_DINODE_FMT_UUID:
f5d8d5c4 2444 if (iip->ili_fields & XFS_ILOG_UUID) {
1da177e4 2445 ASSERT(whichfork == XFS_DATA_FORK);
81591fe2
CH
2446 memcpy(XFS_DFORK_DPTR(dip),
2447 &ip->i_df.if_u2.if_uuid,
2448 sizeof(uuid_t));
1da177e4
LT
2449 }
2450 break;
2451
2452 default:
2453 ASSERT(0);
2454 break;
2455 }
1da177e4
LT
2456}
2457
bad55843
DC
2458STATIC int
2459xfs_iflush_cluster(
2460 xfs_inode_t *ip,
2461 xfs_buf_t *bp)
2462{
2463 xfs_mount_t *mp = ip->i_mount;
5017e97d 2464 struct xfs_perag *pag;
bad55843 2465 unsigned long first_index, mask;
c8f5f12e 2466 unsigned long inodes_per_cluster;
bad55843
DC
2467 int ilist_size;
2468 xfs_inode_t **ilist;
2469 xfs_inode_t *iq;
bad55843
DC
2470 int nr_found;
2471 int clcount = 0;
2472 int bufwasdelwri;
2473 int i;
2474
5017e97d 2475 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
bad55843 2476
c8f5f12e
DC
2477 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2478 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2479 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843 2480 if (!ilist)
44b56e0a 2481 goto out_put;
bad55843
DC
2482
2483 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2484 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
1a3e8f3d 2485 rcu_read_lock();
bad55843
DC
2486 /* really need a gang lookup range call here */
2487 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2488 first_index, inodes_per_cluster);
bad55843
DC
2489 if (nr_found == 0)
2490 goto out_free;
2491
2492 for (i = 0; i < nr_found; i++) {
2493 iq = ilist[i];
2494 if (iq == ip)
2495 continue;
1a3e8f3d
DC
2496
2497 /*
2498 * because this is an RCU protected lookup, we could find a
2499 * recently freed or even reallocated inode during the lookup.
2500 * We need to check under the i_flags_lock for a valid inode
2501 * here. Skip it if it is not valid or the wrong inode.
2502 */
2503 spin_lock(&ip->i_flags_lock);
2504 if (!ip->i_ino ||
2505 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
2506 spin_unlock(&ip->i_flags_lock);
2507 continue;
2508 }
2509 spin_unlock(&ip->i_flags_lock);
2510
bad55843
DC
2511 /*
2512 * Do an un-protected check to see if the inode is dirty and
2513 * is a candidate for flushing. These checks will be repeated
2514 * later after the appropriate locks are acquired.
2515 */
33540408 2516 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2517 continue;
bad55843
DC
2518
2519 /*
2520 * Try to get locks. If any are unavailable or it is pinned,
2521 * then this inode cannot be flushed and is skipped.
2522 */
2523
2524 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2525 continue;
2526 if (!xfs_iflock_nowait(iq)) {
2527 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2528 continue;
2529 }
2530 if (xfs_ipincount(iq)) {
2531 xfs_ifunlock(iq);
2532 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2533 continue;
2534 }
2535
2536 /*
2537 * arriving here means that this inode can be flushed. First
2538 * re-check that it's dirty before flushing.
2539 */
33540408
DC
2540 if (!xfs_inode_clean(iq)) {
2541 int error;
bad55843
DC
2542 error = xfs_iflush_int(iq, bp);
2543 if (error) {
2544 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2545 goto cluster_corrupt_out;
2546 }
2547 clcount++;
2548 } else {
2549 xfs_ifunlock(iq);
2550 }
2551 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2552 }
2553
2554 if (clcount) {
2555 XFS_STATS_INC(xs_icluster_flushcnt);
2556 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2557 }
2558
2559out_free:
1a3e8f3d 2560 rcu_read_unlock();
f0e2d93c 2561 kmem_free(ilist);
44b56e0a
DC
2562out_put:
2563 xfs_perag_put(pag);
bad55843
DC
2564 return 0;
2565
2566
2567cluster_corrupt_out:
2568 /*
2569 * Corruption detected in the clustering loop. Invalidate the
2570 * inode buffer and shut down the filesystem.
2571 */
1a3e8f3d 2572 rcu_read_unlock();
bad55843 2573 /*
43ff2122 2574 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
2575 * brelse can handle it with no problems. If not, shut down the
2576 * filesystem before releasing the buffer.
2577 */
43ff2122 2578 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
2579 if (bufwasdelwri)
2580 xfs_buf_relse(bp);
2581
2582 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2583
2584 if (!bufwasdelwri) {
2585 /*
2586 * Just like incore_relse: if we have b_iodone functions,
2587 * mark the buffer as an error and call them. Otherwise
2588 * mark it as stale and brelse.
2589 */
cb669ca5 2590 if (bp->b_iodone) {
bad55843 2591 XFS_BUF_UNDONE(bp);
c867cb61 2592 xfs_buf_stale(bp);
5a52c2a5 2593 xfs_buf_ioerror(bp, EIO);
1a1a3e97 2594 xfs_buf_ioend(bp, 0);
bad55843 2595 } else {
c867cb61 2596 xfs_buf_stale(bp);
bad55843
DC
2597 xfs_buf_relse(bp);
2598 }
2599 }
2600
2601 /*
2602 * Unlocks the flush lock
2603 */
04913fdd 2604 xfs_iflush_abort(iq, false);
f0e2d93c 2605 kmem_free(ilist);
44b56e0a 2606 xfs_perag_put(pag);
bad55843
DC
2607 return XFS_ERROR(EFSCORRUPTED);
2608}
2609
1da177e4 2610/*
4c46819a
CH
2611 * Flush dirty inode metadata into the backing buffer.
2612 *
2613 * The caller must have the inode lock and the inode flush lock held. The
2614 * inode lock will still be held upon return to the caller, and the inode
2615 * flush lock will be released after the inode has reached the disk.
2616 *
2617 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
2618 */
2619int
2620xfs_iflush(
4c46819a
CH
2621 struct xfs_inode *ip,
2622 struct xfs_buf **bpp)
1da177e4 2623{
4c46819a
CH
2624 struct xfs_mount *mp = ip->i_mount;
2625 struct xfs_buf *bp;
2626 struct xfs_dinode *dip;
1da177e4 2627 int error;
1da177e4
LT
2628
2629 XFS_STATS_INC(xs_iflush_count);
2630
579aa9ca 2631 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2632 ASSERT(xfs_isiflocked(ip));
1da177e4 2633 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2634 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 2635
4c46819a 2636 *bpp = NULL;
1da177e4 2637
1da177e4
LT
2638 xfs_iunpin_wait(ip);
2639
4b6a4688
DC
2640 /*
2641 * For stale inodes we cannot rely on the backing buffer remaining
2642 * stale in cache for the remaining life of the stale inode and so
475ee413 2643 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
2644 * inodes below. We have to check this after ensuring the inode is
2645 * unpinned so that it is safe to reclaim the stale inode after the
2646 * flush call.
2647 */
2648 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2649 xfs_ifunlock(ip);
2650 return 0;
2651 }
2652
1da177e4
LT
2653 /*
2654 * This may have been unpinned because the filesystem is shutting
2655 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
2656 * to disk, because the log record didn't make it to disk.
2657 *
2658 * We also have to remove the log item from the AIL in this case,
2659 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
2660 */
2661 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
2662 error = XFS_ERROR(EIO);
2663 goto abort_out;
1da177e4
LT
2664 }
2665
a3f74ffb
DC
2666 /*
2667 * Get the buffer containing the on-disk inode.
2668 */
475ee413
CH
2669 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
2670 0);
a3f74ffb
DC
2671 if (error || !bp) {
2672 xfs_ifunlock(ip);
2673 return error;
2674 }
2675
1da177e4
LT
2676 /*
2677 * First flush out the inode that xfs_iflush was called with.
2678 */
2679 error = xfs_iflush_int(ip, bp);
bad55843 2680 if (error)
1da177e4 2681 goto corrupt_out;
1da177e4 2682
a3f74ffb
DC
2683 /*
2684 * If the buffer is pinned then push on the log now so we won't
2685 * get stuck waiting in the write for too long.
2686 */
811e64c7 2687 if (xfs_buf_ispinned(bp))
a14a348b 2688 xfs_log_force(mp, 0);
a3f74ffb 2689
1da177e4
LT
2690 /*
2691 * inode clustering:
2692 * see if other inodes can be gathered into this write
2693 */
bad55843
DC
2694 error = xfs_iflush_cluster(ip, bp);
2695 if (error)
2696 goto cluster_corrupt_out;
1da177e4 2697
4c46819a
CH
2698 *bpp = bp;
2699 return 0;
1da177e4
LT
2700
2701corrupt_out:
2702 xfs_buf_relse(bp);
7d04a335 2703 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 2704cluster_corrupt_out:
32ce90a4
CH
2705 error = XFS_ERROR(EFSCORRUPTED);
2706abort_out:
1da177e4
LT
2707 /*
2708 * Unlocks the flush lock
2709 */
04913fdd 2710 xfs_iflush_abort(ip, false);
32ce90a4 2711 return error;
1da177e4
LT
2712}
2713
2714
2715STATIC int
2716xfs_iflush_int(
2717 xfs_inode_t *ip,
2718 xfs_buf_t *bp)
2719{
2720 xfs_inode_log_item_t *iip;
2721 xfs_dinode_t *dip;
2722 xfs_mount_t *mp;
2723#ifdef XFS_TRANS_DEBUG
2724 int first;
2725#endif
1da177e4 2726
579aa9ca 2727 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 2728 ASSERT(xfs_isiflocked(ip));
1da177e4 2729 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 2730 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4
LT
2731
2732 iip = ip->i_itemp;
2733 mp = ip->i_mount;
2734
1da177e4 2735 /* set *dip = inode's place in the buffer */
92bfc6e7 2736 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 2737
69ef921b 2738 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 2739 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
2740 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2741 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2742 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
2743 goto corrupt_out;
2744 }
2745 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2746 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
2747 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2748 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2749 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
2750 goto corrupt_out;
2751 }
abbede1b 2752 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
2753 if (XFS_TEST_ERROR(
2754 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2755 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2756 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
2757 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2758 "%s: Bad regular inode %Lu, ptr 0x%p",
2759 __func__, ip->i_ino, ip);
1da177e4
LT
2760 goto corrupt_out;
2761 }
abbede1b 2762 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
2763 if (XFS_TEST_ERROR(
2764 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2765 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2766 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2767 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
2768 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2769 "%s: Bad directory inode %Lu, ptr 0x%p",
2770 __func__, ip->i_ino, ip);
1da177e4
LT
2771 goto corrupt_out;
2772 }
2773 }
2774 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2775 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2776 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
2777 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2778 "%s: detected corrupt incore inode %Lu, "
2779 "total extents = %d, nblocks = %Ld, ptr 0x%p",
2780 __func__, ip->i_ino,
1da177e4 2781 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 2782 ip->i_d.di_nblocks, ip);
1da177e4
LT
2783 goto corrupt_out;
2784 }
2785 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2786 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
2787 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
2788 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2789 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
2790 goto corrupt_out;
2791 }
2792 /*
2793 * bump the flush iteration count, used to detect flushes which
2794 * postdate a log record during recovery.
2795 */
2796
2797 ip->i_d.di_flushiter++;
2798
2799 /*
2800 * Copy the dirty parts of the inode into the on-disk
2801 * inode. We always copy out the core of the inode,
2802 * because if the inode is dirty at all the core must
2803 * be.
2804 */
81591fe2 2805 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
2806
2807 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2808 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2809 ip->i_d.di_flushiter = 0;
2810
2811 /*
2812 * If this is really an old format inode and the superblock version
2813 * has not been updated to support only new format inodes, then
2814 * convert back to the old inode format. If the superblock version
2815 * has been updated, then make the conversion permanent.
2816 */
51ce16d5
CH
2817 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2818 if (ip->i_d.di_version == 1) {
62118709 2819 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
2820 /*
2821 * Convert it back.
2822 */
2823 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 2824 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
2825 } else {
2826 /*
2827 * The superblock version has already been bumped,
2828 * so just make the conversion to the new inode
2829 * format permanent.
2830 */
51ce16d5
CH
2831 ip->i_d.di_version = 2;
2832 dip->di_version = 2;
1da177e4 2833 ip->i_d.di_onlink = 0;
81591fe2 2834 dip->di_onlink = 0;
1da177e4 2835 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
2836 memset(&(dip->di_pad[0]), 0,
2837 sizeof(dip->di_pad));
6743099c 2838 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
2839 }
2840 }
2841
e4ac967b
DC
2842 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
2843 if (XFS_IFORK_Q(ip))
2844 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
2845 xfs_inobp_check(mp, bp);
2846
2847 /*
f5d8d5c4
CH
2848 * We've recorded everything logged in the inode, so we'd like to clear
2849 * the ili_fields bits so we don't log and flush things unnecessarily.
2850 * However, we can't stop logging all this information until the data
2851 * we've copied into the disk buffer is written to disk. If we did we
2852 * might overwrite the copy of the inode in the log with all the data
2853 * after re-logging only part of it, and in the face of a crash we
2854 * wouldn't have all the data we need to recover.
1da177e4 2855 *
f5d8d5c4
CH
2856 * What we do is move the bits to the ili_last_fields field. When
2857 * logging the inode, these bits are moved back to the ili_fields field.
2858 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
2859 * know that the information those bits represent is permanently on
2860 * disk. As long as the flush completes before the inode is logged
2861 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 2862 *
f5d8d5c4
CH
2863 * We can play with the ili_fields bits here, because the inode lock
2864 * must be held exclusively in order to set bits there and the flush
2865 * lock protects the ili_last_fields bits. Set ili_logged so the flush
2866 * done routine can tell whether or not to look in the AIL. Also, store
2867 * the current LSN of the inode so that we can tell whether the item has
2868 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
2869 * need the AIL lock, because it is a 64 bit value that cannot be read
2870 * atomically.
1da177e4 2871 */
f5d8d5c4
CH
2872 if (iip != NULL && iip->ili_fields != 0) {
2873 iip->ili_last_fields = iip->ili_fields;
2874 iip->ili_fields = 0;
1da177e4
LT
2875 iip->ili_logged = 1;
2876
7b2e2a31
DC
2877 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2878 &iip->ili_item.li_lsn);
1da177e4
LT
2879
2880 /*
2881 * Attach the function xfs_iflush_done to the inode's
2882 * buffer. This will remove the inode from the AIL
2883 * and unlock the inode's flush lock when the inode is
2884 * completely written to disk.
2885 */
ca30b2a7 2886 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 2887
adadbeef 2888 ASSERT(bp->b_fspriv != NULL);
cb669ca5 2889 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
2890 } else {
2891 /*
2892 * We're flushing an inode which is not in the AIL and has
8a9c9980 2893 * not been logged. For this case we can immediately drop
1da177e4
LT
2894 * the inode flush lock because we can avoid the whole
2895 * AIL state thing. It's OK to drop the flush lock now,
2896 * because we've already locked the buffer and to do anything
2897 * you really need both.
2898 */
2899 if (iip != NULL) {
2900 ASSERT(iip->ili_logged == 0);
2901 ASSERT(iip->ili_last_fields == 0);
2902 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
2903 }
2904 xfs_ifunlock(ip);
2905 }
2906
2907 return 0;
2908
2909corrupt_out:
2910 return XFS_ERROR(EFSCORRUPTED);
2911}
2912
4eea22f0
MK
2913/*
2914 * Return a pointer to the extent record at file index idx.
2915 */
a6f64d4a 2916xfs_bmbt_rec_host_t *
4eea22f0
MK
2917xfs_iext_get_ext(
2918 xfs_ifork_t *ifp, /* inode fork pointer */
2919 xfs_extnum_t idx) /* index of target extent */
2920{
2921 ASSERT(idx >= 0);
87bef181
CH
2922 ASSERT(idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
2923
0293ce3a
MK
2924 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
2925 return ifp->if_u1.if_ext_irec->er_extbuf;
2926 } else if (ifp->if_flags & XFS_IFEXTIREC) {
2927 xfs_ext_irec_t *erp; /* irec pointer */
2928 int erp_idx = 0; /* irec index */
2929 xfs_extnum_t page_idx = idx; /* ext index in target list */
2930
2931 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
2932 return &erp->er_extbuf[page_idx];
2933 } else if (ifp->if_bytes) {
4eea22f0
MK
2934 return &ifp->if_u1.if_extents[idx];
2935 } else {
2936 return NULL;
2937 }
2938}
2939
2940/*
2941 * Insert new item(s) into the extent records for incore inode
2942 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
2943 */
2944void
2945xfs_iext_insert(
6ef35544 2946 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0
MK
2947 xfs_extnum_t idx, /* starting index of new items */
2948 xfs_extnum_t count, /* number of inserted items */
6ef35544
CH
2949 xfs_bmbt_irec_t *new, /* items to insert */
2950 int state) /* type of extent conversion */
4eea22f0 2951{
6ef35544 2952 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
2953 xfs_extnum_t i; /* extent record index */
2954
0b1b213f
CH
2955 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
2956
4eea22f0
MK
2957 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
2958 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
2959 for (i = idx; i < idx + count; i++, new++)
2960 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
2961}
2962
2963/*
2964 * This is called when the amount of space required for incore file
2965 * extents needs to be increased. The ext_diff parameter stores the
2966 * number of new extents being added and the idx parameter contains
2967 * the extent index where the new extents will be added. If the new
2968 * extents are being appended, then we just need to (re)allocate and
2969 * initialize the space. Otherwise, if the new extents are being
2970 * inserted into the middle of the existing entries, a bit more work
2971 * is required to make room for the new extents to be inserted. The
2972 * caller is responsible for filling in the new extent entries upon
2973 * return.
2974 */
2975void
2976xfs_iext_add(
2977 xfs_ifork_t *ifp, /* inode fork pointer */
2978 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 2979 int ext_diff) /* number of extents to add */
4eea22f0
MK
2980{
2981 int byte_diff; /* new bytes being added */
2982 int new_size; /* size of extents after adding */
2983 xfs_extnum_t nextents; /* number of extents in file */
2984
2985 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2986 ASSERT((idx >= 0) && (idx <= nextents));
2987 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
2988 new_size = ifp->if_bytes + byte_diff;
2989 /*
2990 * If the new number of extents (nextents + ext_diff)
2991 * fits inside the inode, then continue to use the inline
2992 * extent buffer.
2993 */
2994 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
2995 if (idx < nextents) {
2996 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
2997 &ifp->if_u2.if_inline_ext[idx],
2998 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
2999 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3000 }
3001 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3002 ifp->if_real_bytes = 0;
3003 }
3004 /*
3005 * Otherwise use a linear (direct) extent list.
3006 * If the extents are currently inside the inode,
3007 * xfs_iext_realloc_direct will switch us from
3008 * inline to direct extent allocation mode.
3009 */
0293ce3a 3010 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3011 xfs_iext_realloc_direct(ifp, new_size);
3012 if (idx < nextents) {
3013 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3014 &ifp->if_u1.if_extents[idx],
3015 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3016 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3017 }
3018 }
0293ce3a
MK
3019 /* Indirection array */
3020 else {
3021 xfs_ext_irec_t *erp;
3022 int erp_idx = 0;
3023 int page_idx = idx;
3024
3025 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3026 if (ifp->if_flags & XFS_IFEXTIREC) {
3027 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3028 } else {
3029 xfs_iext_irec_init(ifp);
3030 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3031 erp = ifp->if_u1.if_ext_irec;
3032 }
3033 /* Extents fit in target extent page */
3034 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3035 if (page_idx < erp->er_extcount) {
3036 memmove(&erp->er_extbuf[page_idx + ext_diff],
3037 &erp->er_extbuf[page_idx],
3038 (erp->er_extcount - page_idx) *
3039 sizeof(xfs_bmbt_rec_t));
3040 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3041 }
3042 erp->er_extcount += ext_diff;
3043 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3044 }
3045 /* Insert a new extent page */
3046 else if (erp) {
3047 xfs_iext_add_indirect_multi(ifp,
3048 erp_idx, page_idx, ext_diff);
3049 }
3050 /*
3051 * If extent(s) are being appended to the last page in
3052 * the indirection array and the new extent(s) don't fit
3053 * in the page, then erp is NULL and erp_idx is set to
3054 * the next index needed in the indirection array.
3055 */
3056 else {
3057 int count = ext_diff;
3058
3059 while (count) {
3060 erp = xfs_iext_irec_new(ifp, erp_idx);
3061 erp->er_extcount = count;
3062 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3063 if (count) {
3064 erp_idx++;
3065 }
3066 }
3067 }
3068 }
4eea22f0
MK
3069 ifp->if_bytes = new_size;
3070}
3071
0293ce3a
MK
3072/*
3073 * This is called when incore extents are being added to the indirection
3074 * array and the new extents do not fit in the target extent list. The
3075 * erp_idx parameter contains the irec index for the target extent list
3076 * in the indirection array, and the idx parameter contains the extent
3077 * index within the list. The number of extents being added is stored
3078 * in the count parameter.
3079 *
3080 * |-------| |-------|
3081 * | | | | idx - number of extents before idx
3082 * | idx | | count |
3083 * | | | | count - number of extents being inserted at idx
3084 * |-------| |-------|
3085 * | count | | nex2 | nex2 - number of extents after idx + count
3086 * |-------| |-------|
3087 */
3088void
3089xfs_iext_add_indirect_multi(
3090 xfs_ifork_t *ifp, /* inode fork pointer */
3091 int erp_idx, /* target extent irec index */
3092 xfs_extnum_t idx, /* index within target list */
3093 int count) /* new extents being added */
3094{
3095 int byte_diff; /* new bytes being added */
3096 xfs_ext_irec_t *erp; /* pointer to irec entry */
3097 xfs_extnum_t ext_diff; /* number of extents to add */
3098 xfs_extnum_t ext_cnt; /* new extents still needed */
3099 xfs_extnum_t nex2; /* extents after idx + count */
3100 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3101 int nlists; /* number of irec's (lists) */
3102
3103 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3104 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3105 nex2 = erp->er_extcount - idx;
3106 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3107
3108 /*
3109 * Save second part of target extent list
3110 * (all extents past */
3111 if (nex2) {
3112 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3113 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3114 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3115 erp->er_extcount -= nex2;
3116 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3117 memset(&erp->er_extbuf[idx], 0, byte_diff);
3118 }
3119
3120 /*
3121 * Add the new extents to the end of the target
3122 * list, then allocate new irec record(s) and
3123 * extent buffer(s) as needed to store the rest
3124 * of the new extents.
3125 */
3126 ext_cnt = count;
3127 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3128 if (ext_diff) {
3129 erp->er_extcount += ext_diff;
3130 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3131 ext_cnt -= ext_diff;
3132 }
3133 while (ext_cnt) {
3134 erp_idx++;
3135 erp = xfs_iext_irec_new(ifp, erp_idx);
3136 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3137 erp->er_extcount = ext_diff;
3138 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3139 ext_cnt -= ext_diff;
3140 }
3141
3142 /* Add nex2 extents back to indirection array */
3143 if (nex2) {
3144 xfs_extnum_t ext_avail;
3145 int i;
3146
3147 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3148 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3149 i = 0;
3150 /*
3151 * If nex2 extents fit in the current page, append
3152 * nex2_ep after the new extents.
3153 */
3154 if (nex2 <= ext_avail) {
3155 i = erp->er_extcount;
3156 }
3157 /*
3158 * Otherwise, check if space is available in the
3159 * next page.
3160 */
3161 else if ((erp_idx < nlists - 1) &&
3162 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3163 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3164 erp_idx++;
3165 erp++;
3166 /* Create a hole for nex2 extents */
3167 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3168 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3169 }
3170 /*
3171 * Final choice, create a new extent page for
3172 * nex2 extents.
3173 */
3174 else {
3175 erp_idx++;
3176 erp = xfs_iext_irec_new(ifp, erp_idx);
3177 }
3178 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3179 kmem_free(nex2_ep);
0293ce3a
MK
3180 erp->er_extcount += nex2;
3181 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3182 }
3183}
3184
4eea22f0
MK
3185/*
3186 * This is called when the amount of space required for incore file
3187 * extents needs to be decreased. The ext_diff parameter stores the
3188 * number of extents to be removed and the idx parameter contains
3189 * the extent index where the extents will be removed from.
0293ce3a
MK
3190 *
3191 * If the amount of space needed has decreased below the linear
3192 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3193 * extent array. Otherwise, use kmem_realloc() to adjust the
3194 * size to what is needed.
4eea22f0
MK
3195 */
3196void
3197xfs_iext_remove(
6ef35544 3198 xfs_inode_t *ip, /* incore inode pointer */
4eea22f0 3199 xfs_extnum_t idx, /* index to begin removing exts */
6ef35544
CH
3200 int ext_diff, /* number of extents to remove */
3201 int state) /* type of extent conversion */
4eea22f0 3202{
6ef35544 3203 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
4eea22f0
MK
3204 xfs_extnum_t nextents; /* number of extents in file */
3205 int new_size; /* size of extents after removal */
3206
0b1b213f
CH
3207 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3208
4eea22f0
MK
3209 ASSERT(ext_diff > 0);
3210 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3211 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3212
3213 if (new_size == 0) {
3214 xfs_iext_destroy(ifp);
0293ce3a
MK
3215 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3216 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3217 } else if (ifp->if_real_bytes) {
3218 xfs_iext_remove_direct(ifp, idx, ext_diff);
3219 } else {
3220 xfs_iext_remove_inline(ifp, idx, ext_diff);
3221 }
3222 ifp->if_bytes = new_size;
3223}
3224
3225/*
3226 * This removes ext_diff extents from the inline buffer, beginning
3227 * at extent index idx.
3228 */
3229void
3230xfs_iext_remove_inline(
3231 xfs_ifork_t *ifp, /* inode fork pointer */
3232 xfs_extnum_t idx, /* index to begin removing exts */
3233 int ext_diff) /* number of extents to remove */
3234{
3235 int nextents; /* number of extents in file */
3236
0293ce3a 3237 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3238 ASSERT(idx < XFS_INLINE_EXTS);
3239 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3240 ASSERT(((nextents - ext_diff) > 0) &&
3241 (nextents - ext_diff) < XFS_INLINE_EXTS);
3242
3243 if (idx + ext_diff < nextents) {
3244 memmove(&ifp->if_u2.if_inline_ext[idx],
3245 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3246 (nextents - (idx + ext_diff)) *
3247 sizeof(xfs_bmbt_rec_t));
3248 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3249 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3250 } else {
3251 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3252 ext_diff * sizeof(xfs_bmbt_rec_t));
3253 }
3254}
3255
3256/*
3257 * This removes ext_diff extents from a linear (direct) extent list,
3258 * beginning at extent index idx. If the extents are being removed
3259 * from the end of the list (ie. truncate) then we just need to re-
3260 * allocate the list to remove the extra space. Otherwise, if the
3261 * extents are being removed from the middle of the existing extent
3262 * entries, then we first need to move the extent records beginning
3263 * at idx + ext_diff up in the list to overwrite the records being
3264 * removed, then remove the extra space via kmem_realloc.
3265 */
3266void
3267xfs_iext_remove_direct(
3268 xfs_ifork_t *ifp, /* inode fork pointer */
3269 xfs_extnum_t idx, /* index to begin removing exts */
3270 int ext_diff) /* number of extents to remove */
3271{
3272 xfs_extnum_t nextents; /* number of extents in file */
3273 int new_size; /* size of extents after removal */
3274
0293ce3a 3275 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3276 new_size = ifp->if_bytes -
3277 (ext_diff * sizeof(xfs_bmbt_rec_t));
3278 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3279
3280 if (new_size == 0) {
3281 xfs_iext_destroy(ifp);
3282 return;
3283 }
3284 /* Move extents up in the list (if needed) */
3285 if (idx + ext_diff < nextents) {
3286 memmove(&ifp->if_u1.if_extents[idx],
3287 &ifp->if_u1.if_extents[idx + ext_diff],
3288 (nextents - (idx + ext_diff)) *
3289 sizeof(xfs_bmbt_rec_t));
3290 }
3291 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3292 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3293 /*
3294 * Reallocate the direct extent list. If the extents
3295 * will fit inside the inode then xfs_iext_realloc_direct
3296 * will switch from direct to inline extent allocation
3297 * mode for us.
3298 */
3299 xfs_iext_realloc_direct(ifp, new_size);
3300 ifp->if_bytes = new_size;
3301}
3302
0293ce3a
MK
3303/*
3304 * This is called when incore extents are being removed from the
3305 * indirection array and the extents being removed span multiple extent
3306 * buffers. The idx parameter contains the file extent index where we
3307 * want to begin removing extents, and the count parameter contains
3308 * how many extents need to be removed.
3309 *
3310 * |-------| |-------|
3311 * | nex1 | | | nex1 - number of extents before idx
3312 * |-------| | count |
3313 * | | | | count - number of extents being removed at idx
3314 * | count | |-------|
3315 * | | | nex2 | nex2 - number of extents after idx + count
3316 * |-------| |-------|
3317 */
3318void
3319xfs_iext_remove_indirect(
3320 xfs_ifork_t *ifp, /* inode fork pointer */
3321 xfs_extnum_t idx, /* index to begin removing extents */
3322 int count) /* number of extents to remove */
3323{
3324 xfs_ext_irec_t *erp; /* indirection array pointer */
3325 int erp_idx = 0; /* indirection array index */
3326 xfs_extnum_t ext_cnt; /* extents left to remove */
3327 xfs_extnum_t ext_diff; /* extents to remove in current list */
3328 xfs_extnum_t nex1; /* number of extents before idx */
3329 xfs_extnum_t nex2; /* extents after idx + count */
0293ce3a
MK
3330 int page_idx = idx; /* index in target extent list */
3331
3332 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3333 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3334 ASSERT(erp != NULL);
0293ce3a
MK
3335 nex1 = page_idx;
3336 ext_cnt = count;
3337 while (ext_cnt) {
3338 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3339 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3340 /*
3341 * Check for deletion of entire list;
3342 * xfs_iext_irec_remove() updates extent offsets.
3343 */
3344 if (ext_diff == erp->er_extcount) {
3345 xfs_iext_irec_remove(ifp, erp_idx);
3346 ext_cnt -= ext_diff;
3347 nex1 = 0;
3348 if (ext_cnt) {
3349 ASSERT(erp_idx < ifp->if_real_bytes /
3350 XFS_IEXT_BUFSZ);
3351 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3352 nex1 = 0;
3353 continue;
3354 } else {
3355 break;
3356 }
3357 }
3358 /* Move extents up (if needed) */
3359 if (nex2) {
3360 memmove(&erp->er_extbuf[nex1],
3361 &erp->er_extbuf[nex1 + ext_diff],
3362 nex2 * sizeof(xfs_bmbt_rec_t));
3363 }
3364 /* Zero out rest of page */
3365 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3366 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3367 /* Update remaining counters */
3368 erp->er_extcount -= ext_diff;
3369 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3370 ext_cnt -= ext_diff;
3371 nex1 = 0;
3372 erp_idx++;
3373 erp++;
3374 }
3375 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3376 xfs_iext_irec_compact(ifp);
3377}
3378
4eea22f0
MK
3379/*
3380 * Create, destroy, or resize a linear (direct) block of extents.
3381 */
3382void
3383xfs_iext_realloc_direct(
3384 xfs_ifork_t *ifp, /* inode fork pointer */
3385 int new_size) /* new size of extents */
3386{
3387 int rnew_size; /* real new size of extents */
3388
3389 rnew_size = new_size;
3390
0293ce3a
MK
3391 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3392 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3393 (new_size != ifp->if_real_bytes)));
3394
4eea22f0
MK
3395 /* Free extent records */
3396 if (new_size == 0) {
3397 xfs_iext_destroy(ifp);
3398 }
3399 /* Resize direct extent list and zero any new bytes */
3400 else if (ifp->if_real_bytes) {
3401 /* Check if extents will fit inside the inode */
3402 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3403 xfs_iext_direct_to_inline(ifp, new_size /
3404 (uint)sizeof(xfs_bmbt_rec_t));
3405 ifp->if_bytes = new_size;
3406 return;
3407 }
16a087d8 3408 if (!is_power_of_2(new_size)){
40ebd81d 3409 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3410 }
3411 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 3412 ifp->if_u1.if_extents =
4eea22f0
MK
3413 kmem_realloc(ifp->if_u1.if_extents,
3414 rnew_size,
6785073b 3415 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
3416 }
3417 if (rnew_size > ifp->if_real_bytes) {
3418 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3419 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3420 rnew_size - ifp->if_real_bytes);
3421 }
3422 }
3423 /*
3424 * Switch from the inline extent buffer to a direct
3425 * extent list. Be sure to include the inline extent
3426 * bytes in new_size.
3427 */
3428 else {
3429 new_size += ifp->if_bytes;
16a087d8 3430 if (!is_power_of_2(new_size)) {
40ebd81d 3431 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
3432 }
3433 xfs_iext_inline_to_direct(ifp, rnew_size);
3434 }
3435 ifp->if_real_bytes = rnew_size;
3436 ifp->if_bytes = new_size;
3437}
3438
3439/*
3440 * Switch from linear (direct) extent records to inline buffer.
3441 */
3442void
3443xfs_iext_direct_to_inline(
3444 xfs_ifork_t *ifp, /* inode fork pointer */
3445 xfs_extnum_t nextents) /* number of extents in file */
3446{
3447 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3448 ASSERT(nextents <= XFS_INLINE_EXTS);
3449 /*
3450 * The inline buffer was zeroed when we switched
3451 * from inline to direct extent allocation mode,
3452 * so we don't need to clear it here.
3453 */
3454 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3455 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 3456 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3457 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3458 ifp->if_real_bytes = 0;
3459}
3460
3461/*
3462 * Switch from inline buffer to linear (direct) extent records.
3463 * new_size should already be rounded up to the next power of 2
3464 * by the caller (when appropriate), so use new_size as it is.
3465 * However, since new_size may be rounded up, we can't update
3466 * if_bytes here. It is the caller's responsibility to update
3467 * if_bytes upon return.
3468 */
3469void
3470xfs_iext_inline_to_direct(
3471 xfs_ifork_t *ifp, /* inode fork pointer */
3472 int new_size) /* number of extents in file */
3473{
6785073b 3474 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
3475 memset(ifp->if_u1.if_extents, 0, new_size);
3476 if (ifp->if_bytes) {
3477 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3478 ifp->if_bytes);
3479 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3480 sizeof(xfs_bmbt_rec_t));
3481 }
3482 ifp->if_real_bytes = new_size;
3483}
3484
0293ce3a
MK
3485/*
3486 * Resize an extent indirection array to new_size bytes.
3487 */
d96f8f89 3488STATIC void
0293ce3a
MK
3489xfs_iext_realloc_indirect(
3490 xfs_ifork_t *ifp, /* inode fork pointer */
3491 int new_size) /* new indirection array size */
3492{
3493 int nlists; /* number of irec's (ex lists) */
3494 int size; /* current indirection array size */
3495
3496 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3497 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3498 size = nlists * sizeof(xfs_ext_irec_t);
3499 ASSERT(ifp->if_real_bytes);
3500 ASSERT((new_size >= 0) && (new_size != size));
3501 if (new_size == 0) {
3502 xfs_iext_destroy(ifp);
3503 } else {
3504 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3505 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 3506 new_size, size, KM_NOFS);
0293ce3a
MK
3507 }
3508}
3509
3510/*
3511 * Switch from indirection array to linear (direct) extent allocations.
3512 */
d96f8f89 3513STATIC void
0293ce3a
MK
3514xfs_iext_indirect_to_direct(
3515 xfs_ifork_t *ifp) /* inode fork pointer */
3516{
a6f64d4a 3517 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
3518 xfs_extnum_t nextents; /* number of extents in file */
3519 int size; /* size of file extents */
3520
3521 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3522 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3523 ASSERT(nextents <= XFS_LINEAR_EXTS);
3524 size = nextents * sizeof(xfs_bmbt_rec_t);
3525
71a8c87f 3526 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
3527 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3528
3529 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 3530 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3531 ifp->if_flags &= ~XFS_IFEXTIREC;
3532 ifp->if_u1.if_extents = ep;
3533 ifp->if_bytes = size;
3534 if (nextents < XFS_LINEAR_EXTS) {
3535 xfs_iext_realloc_direct(ifp, size);
3536 }
3537}
3538
4eea22f0
MK
3539/*
3540 * Free incore file extents.
3541 */
3542void
3543xfs_iext_destroy(
3544 xfs_ifork_t *ifp) /* inode fork pointer */
3545{
0293ce3a
MK
3546 if (ifp->if_flags & XFS_IFEXTIREC) {
3547 int erp_idx;
3548 int nlists;
3549
3550 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3551 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3552 xfs_iext_irec_remove(ifp, erp_idx);
3553 }
3554 ifp->if_flags &= ~XFS_IFEXTIREC;
3555 } else if (ifp->if_real_bytes) {
f0e2d93c 3556 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
3557 } else if (ifp->if_bytes) {
3558 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3559 sizeof(xfs_bmbt_rec_t));
3560 }
3561 ifp->if_u1.if_extents = NULL;
3562 ifp->if_real_bytes = 0;
3563 ifp->if_bytes = 0;
3564}
0293ce3a 3565
8867bc9b
MK
3566/*
3567 * Return a pointer to the extent record for file system block bno.
3568 */
a6f64d4a 3569xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
3570xfs_iext_bno_to_ext(
3571 xfs_ifork_t *ifp, /* inode fork pointer */
3572 xfs_fileoff_t bno, /* block number to search for */
3573 xfs_extnum_t *idxp) /* index of target extent */
3574{
a6f64d4a 3575 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 3576 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 3577 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 3578 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 3579 int high; /* upper boundary in search */
8867bc9b 3580 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 3581 int low; /* lower boundary in search */
8867bc9b
MK
3582 xfs_extnum_t nextents; /* number of file extents */
3583 xfs_fileoff_t startoff = 0; /* start offset of extent */
3584
3585 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3586 if (nextents == 0) {
3587 *idxp = 0;
3588 return NULL;
3589 }
3590 low = 0;
3591 if (ifp->if_flags & XFS_IFEXTIREC) {
3592 /* Find target extent list */
3593 int erp_idx = 0;
3594 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3595 base = erp->er_extbuf;
3596 high = erp->er_extcount - 1;
3597 } else {
3598 base = ifp->if_u1.if_extents;
3599 high = nextents - 1;
3600 }
3601 /* Binary search extent records */
3602 while (low <= high) {
3603 idx = (low + high) >> 1;
3604 ep = base + idx;
3605 startoff = xfs_bmbt_get_startoff(ep);
3606 blockcount = xfs_bmbt_get_blockcount(ep);
3607 if (bno < startoff) {
3608 high = idx - 1;
3609 } else if (bno >= startoff + blockcount) {
3610 low = idx + 1;
3611 } else {
3612 /* Convert back to file-based extent index */
3613 if (ifp->if_flags & XFS_IFEXTIREC) {
3614 idx += erp->er_extoff;
3615 }
3616 *idxp = idx;
3617 return ep;
3618 }
3619 }
3620 /* Convert back to file-based extent index */
3621 if (ifp->if_flags & XFS_IFEXTIREC) {
3622 idx += erp->er_extoff;
3623 }
3624 if (bno >= startoff + blockcount) {
3625 if (++idx == nextents) {
3626 ep = NULL;
3627 } else {
3628 ep = xfs_iext_get_ext(ifp, idx);
3629 }
3630 }
3631 *idxp = idx;
3632 return ep;
3633}
3634
0293ce3a
MK
3635/*
3636 * Return a pointer to the indirection array entry containing the
3637 * extent record for filesystem block bno. Store the index of the
3638 * target irec in *erp_idxp.
3639 */
8867bc9b 3640xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
3641xfs_iext_bno_to_irec(
3642 xfs_ifork_t *ifp, /* inode fork pointer */
3643 xfs_fileoff_t bno, /* block number to search for */
3644 int *erp_idxp) /* irec index of target ext list */
3645{
3646 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3647 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 3648 int erp_idx; /* indirection array index */
0293ce3a
MK
3649 int nlists; /* number of extent irec's (lists) */
3650 int high; /* binary search upper limit */
3651 int low; /* binary search lower limit */
3652
3653 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3654 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3655 erp_idx = 0;
3656 low = 0;
3657 high = nlists - 1;
3658 while (low <= high) {
3659 erp_idx = (low + high) >> 1;
3660 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3661 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3662 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3663 high = erp_idx - 1;
3664 } else if (erp_next && bno >=
3665 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3666 low = erp_idx + 1;
3667 } else {
3668 break;
3669 }
3670 }
3671 *erp_idxp = erp_idx;
3672 return erp;
3673}
3674
3675/*
3676 * Return a pointer to the indirection array entry containing the
3677 * extent record at file extent index *idxp. Store the index of the
3678 * target irec in *erp_idxp and store the page index of the target
3679 * extent record in *idxp.
3680 */
3681xfs_ext_irec_t *
3682xfs_iext_idx_to_irec(
3683 xfs_ifork_t *ifp, /* inode fork pointer */
3684 xfs_extnum_t *idxp, /* extent index (file -> page) */
3685 int *erp_idxp, /* pointer to target irec */
3686 int realloc) /* new bytes were just added */
3687{
3688 xfs_ext_irec_t *prev; /* pointer to previous irec */
3689 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3690 int erp_idx; /* indirection array index */
3691 int nlists; /* number of irec's (ex lists) */
3692 int high; /* binary search upper limit */
3693 int low; /* binary search lower limit */
3694 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3695
3696 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
87bef181
CH
3697 ASSERT(page_idx >= 0);
3698 ASSERT(page_idx <= ifp->if_bytes / sizeof(xfs_bmbt_rec_t));
3699 ASSERT(page_idx < ifp->if_bytes / sizeof(xfs_bmbt_rec_t) || realloc);
3700
0293ce3a
MK
3701 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3702 erp_idx = 0;
3703 low = 0;
3704 high = nlists - 1;
3705
3706 /* Binary search extent irec's */
3707 while (low <= high) {
3708 erp_idx = (low + high) >> 1;
3709 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3710 prev = erp_idx > 0 ? erp - 1 : NULL;
3711 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3712 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3713 high = erp_idx - 1;
3714 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3715 (page_idx == erp->er_extoff + erp->er_extcount &&
3716 !realloc)) {
3717 low = erp_idx + 1;
3718 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3719 erp->er_extcount == XFS_LINEAR_EXTS) {
3720 ASSERT(realloc);
3721 page_idx = 0;
3722 erp_idx++;
3723 erp = erp_idx < nlists ? erp + 1 : NULL;
3724 break;
3725 } else {
3726 page_idx -= erp->er_extoff;
3727 break;
3728 }
3729 }
3730 *idxp = page_idx;
3731 *erp_idxp = erp_idx;
3732 return(erp);
3733}
3734
3735/*
3736 * Allocate and initialize an indirection array once the space needed
3737 * for incore extents increases above XFS_IEXT_BUFSZ.
3738 */
3739void
3740xfs_iext_irec_init(
3741 xfs_ifork_t *ifp) /* inode fork pointer */
3742{
3743 xfs_ext_irec_t *erp; /* indirection array pointer */
3744 xfs_extnum_t nextents; /* number of extents in file */
3745
3746 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3747 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3748 ASSERT(nextents <= XFS_LINEAR_EXTS);
3749
6785073b 3750 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
3751
3752 if (nextents == 0) {
6785073b 3753 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3754 } else if (!ifp->if_real_bytes) {
3755 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3756 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3757 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3758 }
3759 erp->er_extbuf = ifp->if_u1.if_extents;
3760 erp->er_extcount = nextents;
3761 erp->er_extoff = 0;
3762
3763 ifp->if_flags |= XFS_IFEXTIREC;
3764 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3765 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3766 ifp->if_u1.if_ext_irec = erp;
3767
3768 return;
3769}
3770
3771/*
3772 * Allocate and initialize a new entry in the indirection array.
3773 */
3774xfs_ext_irec_t *
3775xfs_iext_irec_new(
3776 xfs_ifork_t *ifp, /* inode fork pointer */
3777 int erp_idx) /* index for new irec */
3778{
3779 xfs_ext_irec_t *erp; /* indirection array pointer */
3780 int i; /* loop counter */
3781 int nlists; /* number of irec's (ex lists) */
3782
3783 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3784 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3785
3786 /* Resize indirection array */
3787 xfs_iext_realloc_indirect(ifp, ++nlists *
3788 sizeof(xfs_ext_irec_t));
3789 /*
3790 * Move records down in the array so the
3791 * new page can use erp_idx.
3792 */
3793 erp = ifp->if_u1.if_ext_irec;
3794 for (i = nlists - 1; i > erp_idx; i--) {
3795 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3796 }
3797 ASSERT(i == erp_idx);
3798
3799 /* Initialize new extent record */
3800 erp = ifp->if_u1.if_ext_irec;
6785073b 3801 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
3802 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3803 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3804 erp[erp_idx].er_extcount = 0;
3805 erp[erp_idx].er_extoff = erp_idx > 0 ?
3806 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3807 return (&erp[erp_idx]);
3808}
3809
3810/*
3811 * Remove a record from the indirection array.
3812 */
3813void
3814xfs_iext_irec_remove(
3815 xfs_ifork_t *ifp, /* inode fork pointer */
3816 int erp_idx) /* irec index to remove */
3817{
3818 xfs_ext_irec_t *erp; /* indirection array pointer */
3819 int i; /* loop counter */
3820 int nlists; /* number of irec's (ex lists) */
3821
3822 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3823 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3824 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3825 if (erp->er_extbuf) {
3826 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3827 -erp->er_extcount);
f0e2d93c 3828 kmem_free(erp->er_extbuf);
0293ce3a
MK
3829 }
3830 /* Compact extent records */
3831 erp = ifp->if_u1.if_ext_irec;
3832 for (i = erp_idx; i < nlists - 1; i++) {
3833 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
3834 }
3835 /*
3836 * Manually free the last extent record from the indirection
3837 * array. A call to xfs_iext_realloc_indirect() with a size
3838 * of zero would result in a call to xfs_iext_destroy() which
3839 * would in turn call this function again, creating a nasty
3840 * infinite loop.
3841 */
3842 if (--nlists) {
3843 xfs_iext_realloc_indirect(ifp,
3844 nlists * sizeof(xfs_ext_irec_t));
3845 } else {
f0e2d93c 3846 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
3847 }
3848 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3849}
3850
3851/*
3852 * This is called to clean up large amounts of unused memory allocated
3853 * by the indirection array. Before compacting anything though, verify
3854 * that the indirection array is still needed and switch back to the
3855 * linear extent list (or even the inline buffer) if possible. The
3856 * compaction policy is as follows:
3857 *
3858 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 3859 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
3860 * No Compaction: Extents occupy at least 50% of allocated space
3861 */
3862void
3863xfs_iext_irec_compact(
3864 xfs_ifork_t *ifp) /* inode fork pointer */
3865{
3866 xfs_extnum_t nextents; /* number of extents in file */
3867 int nlists; /* number of irec's (ex lists) */
3868
3869 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3870 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3871 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3872
3873 if (nextents == 0) {
3874 xfs_iext_destroy(ifp);
3875 } else if (nextents <= XFS_INLINE_EXTS) {
3876 xfs_iext_indirect_to_direct(ifp);
3877 xfs_iext_direct_to_inline(ifp, nextents);
3878 } else if (nextents <= XFS_LINEAR_EXTS) {
3879 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
3880 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
3881 xfs_iext_irec_compact_pages(ifp);
3882 }
3883}
3884
3885/*
3886 * Combine extents from neighboring extent pages.
3887 */
3888void
3889xfs_iext_irec_compact_pages(
3890 xfs_ifork_t *ifp) /* inode fork pointer */
3891{
3892 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
3893 int erp_idx = 0; /* indirection array index */
3894 int nlists; /* number of irec's (ex lists) */
3895
3896 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3897 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3898 while (erp_idx < nlists - 1) {
3899 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3900 erp_next = erp + 1;
3901 if (erp_next->er_extcount <=
3902 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 3903 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
3904 erp_next->er_extbuf, erp_next->er_extcount *
3905 sizeof(xfs_bmbt_rec_t));
3906 erp->er_extcount += erp_next->er_extcount;
3907 /*
3908 * Free page before removing extent record
3909 * so er_extoffs don't get modified in
3910 * xfs_iext_irec_remove.
3911 */
f0e2d93c 3912 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
3913 erp_next->er_extbuf = NULL;
3914 xfs_iext_irec_remove(ifp, erp_idx + 1);
3915 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3916 } else {
3917 erp_idx++;
3918 }
3919 }
3920}
3921
0293ce3a
MK
3922/*
3923 * This is called to update the er_extoff field in the indirection
3924 * array when extents have been added or removed from one of the
3925 * extent lists. erp_idx contains the irec index to begin updating
3926 * at and ext_diff contains the number of extents that were added
3927 * or removed.
3928 */
3929void
3930xfs_iext_irec_update_extoffs(
3931 xfs_ifork_t *ifp, /* inode fork pointer */
3932 int erp_idx, /* irec index to update */
3933 int ext_diff) /* number of new extents */
3934{
3935 int i; /* loop counter */
3936 int nlists; /* number of irec's (ex lists */
3937
3938 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3939 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3940 for (i = erp_idx; i < nlists; i++) {
3941 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
3942 }
3943}
72b53efa
BF
3944
3945/*
3946 * Test whether it is appropriate to check an inode for and free post EOF
3947 * blocks. The 'force' parameter determines whether we should also consider
3948 * regular files that are marked preallocated or append-only.
3949 */
3950bool
3951xfs_can_free_eofblocks(struct xfs_inode *ip, bool force)
3952{
3953 /* prealloc/delalloc exists only on regular files */
3954 if (!S_ISREG(ip->i_d.di_mode))
3955 return false;
3956
3957 /*
3958 * Zero sized files with no cached pages and delalloc blocks will not
3959 * have speculative prealloc/delalloc blocks to remove.
3960 */
3961 if (VFS_I(ip)->i_size == 0 &&
3962 VN_CACHED(VFS_I(ip)) == 0 &&
3963 ip->i_delayed_blks == 0)
3964 return false;
3965
3966 /* If we haven't read in the extent list, then don't do it now. */
3967 if (!(ip->i_df.if_flags & XFS_IFEXTENTS))
3968 return false;
3969
3970 /*
3971 * Do not free real preallocated or append-only files unless the file
3972 * has delalloc blocks and we are forced to remove them.
3973 */
3974 if (ip->i_d.di_flags & (XFS_DIFLAG_PREALLOC | XFS_DIFLAG_APPEND))
3975 if (!force || ip->i_delayed_blks == 0)
3976 return false;
3977
3978 return true;
3979}
3980