xfs: remove xfs_bmapi_write() firstblock param
[linux-block.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
40ebd81d 6#include <linux/log2.h>
f0e28280 7#include <linux/iversion.h>
40ebd81d 8
1da177e4 9#include "xfs.h"
a844f451 10#include "xfs_fs.h"
70a9883c 11#include "xfs_shared.h"
239880ef
DC
12#include "xfs_format.h"
13#include "xfs_log_format.h"
14#include "xfs_trans_resv.h"
1da177e4 15#include "xfs_sb.h"
1da177e4 16#include "xfs_mount.h"
3ab78df2 17#include "xfs_defer.h"
a4fbe6ab 18#include "xfs_inode.h"
57062787 19#include "xfs_da_format.h"
c24b5dfa 20#include "xfs_da_btree.h"
c24b5dfa 21#include "xfs_dir2.h"
a844f451 22#include "xfs_attr_sf.h"
c24b5dfa 23#include "xfs_attr.h"
239880ef
DC
24#include "xfs_trans_space.h"
25#include "xfs_trans.h"
1da177e4 26#include "xfs_buf_item.h"
a844f451 27#include "xfs_inode_item.h"
a844f451
NS
28#include "xfs_ialloc.h"
29#include "xfs_bmap.h"
68988114 30#include "xfs_bmap_util.h"
e9e899a2 31#include "xfs_errortag.h"
1da177e4 32#include "xfs_error.h"
1da177e4 33#include "xfs_quota.h"
2a82b8be 34#include "xfs_filestream.h"
93848a99 35#include "xfs_cksum.h"
0b1b213f 36#include "xfs_trace.h"
33479e05 37#include "xfs_icache.h"
c24b5dfa 38#include "xfs_symlink.h"
239880ef
DC
39#include "xfs_trans_priv.h"
40#include "xfs_log.h"
a4fbe6ab 41#include "xfs_bmap_btree.h"
aa8968f2 42#include "xfs_reflink.h"
005c5db8 43#include "xfs_dir2_priv.h"
1da177e4 44
1da177e4 45kmem_zone_t *xfs_inode_zone;
1da177e4
LT
46
47/*
8f04c47a 48 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
49 * freed from a file in a single transaction.
50 */
51#define XFS_ITRUNC_MAX_EXTENTS 2
52
54d7b5c1
DC
53STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
54STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
55STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 56
2a0ec1d9
DC
57/*
58 * helper function to extract extent size hint from inode
59 */
60xfs_extlen_t
61xfs_get_extsz_hint(
62 struct xfs_inode *ip)
63{
64 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
65 return ip->i_d.di_extsize;
66 if (XFS_IS_REALTIME_INODE(ip))
67 return ip->i_mount->m_sb.sb_rextsize;
68 return 0;
69}
70
f7ca3522
DW
71/*
72 * Helper function to extract CoW extent size hint from inode.
73 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
74 * return the greater of the two. If the value is zero (automatic),
75 * use the default size.
f7ca3522
DW
76 */
77xfs_extlen_t
78xfs_get_cowextsz_hint(
79 struct xfs_inode *ip)
80{
81 xfs_extlen_t a, b;
82
83 a = 0;
84 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
85 a = ip->i_d.di_cowextsize;
86 b = xfs_get_extsz_hint(ip);
87
e153aa79
DW
88 a = max(a, b);
89 if (a == 0)
90 return XFS_DEFAULT_COWEXTSZ_HINT;
91 return a;
f7ca3522
DW
92}
93
fa96acad 94/*
efa70be1
CH
95 * These two are wrapper routines around the xfs_ilock() routine used to
96 * centralize some grungy code. They are used in places that wish to lock the
97 * inode solely for reading the extents. The reason these places can't just
98 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
99 * bringing in of the extents from disk for a file in b-tree format. If the
100 * inode is in b-tree format, then we need to lock the inode exclusively until
101 * the extents are read in. Locking it exclusively all the time would limit
102 * our parallelism unnecessarily, though. What we do instead is check to see
103 * if the extents have been read in yet, and only lock the inode exclusively
104 * if they have not.
fa96acad 105 *
efa70be1 106 * The functions return a value which should be given to the corresponding
01f4f327 107 * xfs_iunlock() call.
fa96acad
DC
108 */
109uint
309ecac8
CH
110xfs_ilock_data_map_shared(
111 struct xfs_inode *ip)
fa96acad 112{
309ecac8 113 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 114
309ecac8
CH
115 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
116 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 117 lock_mode = XFS_ILOCK_EXCL;
fa96acad 118 xfs_ilock(ip, lock_mode);
fa96acad
DC
119 return lock_mode;
120}
121
efa70be1
CH
122uint
123xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
fa96acad 125{
efa70be1
CH
126 uint lock_mode = XFS_ILOCK_SHARED;
127
128 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
129 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
fa96acad
DC
133}
134
135/*
65523218
CH
136 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
137 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
138 * various combinations of the locks to be obtained.
fa96acad 139 *
653c60b6
DC
140 * The 3 locks should always be ordered so that the IO lock is obtained first,
141 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 142 *
653c60b6
DC
143 * Basic locking order:
144 *
65523218 145 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
146 *
147 * mmap_sem locking order:
148 *
65523218 149 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
150 * mmap_sem -> i_mmap_lock -> page_lock
151 *
152 * The difference in mmap_sem locking order mean that we cannot hold the
153 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
154 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
155 * in get_user_pages() to map the user pages into the kernel address space for
65523218 156 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
157 * page faults already hold the mmap_sem.
158 *
159 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 160 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
161 * taken in places where we need to invalidate the page cache in a race
162 * free manner (e.g. truncate, hole punch and other extent manipulation
163 * functions).
fa96acad
DC
164 */
165void
166xfs_ilock(
167 xfs_inode_t *ip,
168 uint lock_flags)
169{
170 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
171
172 /*
173 * You can't set both SHARED and EXCL for the same lock,
174 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
175 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
176 */
177 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
178 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
179 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
180 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
181 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
182 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 183 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 184
65523218
CH
185 if (lock_flags & XFS_IOLOCK_EXCL) {
186 down_write_nested(&VFS_I(ip)->i_rwsem,
187 XFS_IOLOCK_DEP(lock_flags));
188 } else if (lock_flags & XFS_IOLOCK_SHARED) {
189 down_read_nested(&VFS_I(ip)->i_rwsem,
190 XFS_IOLOCK_DEP(lock_flags));
191 }
fa96acad 192
653c60b6
DC
193 if (lock_flags & XFS_MMAPLOCK_EXCL)
194 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
195 else if (lock_flags & XFS_MMAPLOCK_SHARED)
196 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
197
fa96acad
DC
198 if (lock_flags & XFS_ILOCK_EXCL)
199 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
200 else if (lock_flags & XFS_ILOCK_SHARED)
201 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202}
203
204/*
205 * This is just like xfs_ilock(), except that the caller
206 * is guaranteed not to sleep. It returns 1 if it gets
207 * the requested locks and 0 otherwise. If the IO lock is
208 * obtained but the inode lock cannot be, then the IO lock
209 * is dropped before returning.
210 *
211 * ip -- the inode being locked
212 * lock_flags -- this parameter indicates the inode's locks to be
213 * to be locked. See the comment for xfs_ilock() for a list
214 * of valid values.
215 */
216int
217xfs_ilock_nowait(
218 xfs_inode_t *ip,
219 uint lock_flags)
220{
221 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
222
223 /*
224 * You can't set both SHARED and EXCL for the same lock,
225 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
226 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
227 */
228 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
229 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
230 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
231 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
232 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
233 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 234 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
235
236 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 237 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
238 goto out;
239 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 240 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
241 goto out;
242 }
653c60b6
DC
243
244 if (lock_flags & XFS_MMAPLOCK_EXCL) {
245 if (!mrtryupdate(&ip->i_mmaplock))
246 goto out_undo_iolock;
247 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
248 if (!mrtryaccess(&ip->i_mmaplock))
249 goto out_undo_iolock;
250 }
251
fa96acad
DC
252 if (lock_flags & XFS_ILOCK_EXCL) {
253 if (!mrtryupdate(&ip->i_lock))
653c60b6 254 goto out_undo_mmaplock;
fa96acad
DC
255 } else if (lock_flags & XFS_ILOCK_SHARED) {
256 if (!mrtryaccess(&ip->i_lock))
653c60b6 257 goto out_undo_mmaplock;
fa96acad
DC
258 }
259 return 1;
260
653c60b6
DC
261out_undo_mmaplock:
262 if (lock_flags & XFS_MMAPLOCK_EXCL)
263 mrunlock_excl(&ip->i_mmaplock);
264 else if (lock_flags & XFS_MMAPLOCK_SHARED)
265 mrunlock_shared(&ip->i_mmaplock);
266out_undo_iolock:
fa96acad 267 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 268 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 269 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 270 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 271out:
fa96acad
DC
272 return 0;
273}
274
275/*
276 * xfs_iunlock() is used to drop the inode locks acquired with
277 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
278 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
279 * that we know which locks to drop.
280 *
281 * ip -- the inode being unlocked
282 * lock_flags -- this parameter indicates the inode's locks to be
283 * to be unlocked. See the comment for xfs_ilock() for a list
284 * of valid values for this parameter.
285 *
286 */
287void
288xfs_iunlock(
289 xfs_inode_t *ip,
290 uint lock_flags)
291{
292 /*
293 * You can't set both SHARED and EXCL for the same lock,
294 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
295 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
296 */
297 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
298 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
299 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
300 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
301 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
302 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 303 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
304 ASSERT(lock_flags != 0);
305
306 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 307 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 308 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 309 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 310
653c60b6
DC
311 if (lock_flags & XFS_MMAPLOCK_EXCL)
312 mrunlock_excl(&ip->i_mmaplock);
313 else if (lock_flags & XFS_MMAPLOCK_SHARED)
314 mrunlock_shared(&ip->i_mmaplock);
315
fa96acad
DC
316 if (lock_flags & XFS_ILOCK_EXCL)
317 mrunlock_excl(&ip->i_lock);
318 else if (lock_flags & XFS_ILOCK_SHARED)
319 mrunlock_shared(&ip->i_lock);
320
321 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
322}
323
324/*
325 * give up write locks. the i/o lock cannot be held nested
326 * if it is being demoted.
327 */
328void
329xfs_ilock_demote(
330 xfs_inode_t *ip,
331 uint lock_flags)
332{
653c60b6
DC
333 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
334 ASSERT((lock_flags &
335 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
336
337 if (lock_flags & XFS_ILOCK_EXCL)
338 mrdemote(&ip->i_lock);
653c60b6
DC
339 if (lock_flags & XFS_MMAPLOCK_EXCL)
340 mrdemote(&ip->i_mmaplock);
fa96acad 341 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 342 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
343
344 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
345}
346
742ae1e3 347#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
348int
349xfs_isilocked(
350 xfs_inode_t *ip,
351 uint lock_flags)
352{
353 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
354 if (!(lock_flags & XFS_ILOCK_SHARED))
355 return !!ip->i_lock.mr_writer;
356 return rwsem_is_locked(&ip->i_lock.mr_lock);
357 }
358
653c60b6
DC
359 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
360 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
361 return !!ip->i_mmaplock.mr_writer;
362 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
363 }
364
fa96acad
DC
365 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
366 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
367 return !debug_locks ||
368 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
369 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
370 }
371
372 ASSERT(0);
373 return 0;
374}
375#endif
376
b6a9947e
DC
377/*
378 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
379 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
380 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
381 * errors and warnings.
382 */
383#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
384static bool
385xfs_lockdep_subclass_ok(
386 int subclass)
387{
388 return subclass < MAX_LOCKDEP_SUBCLASSES;
389}
390#else
391#define xfs_lockdep_subclass_ok(subclass) (true)
392#endif
393
c24b5dfa 394/*
653c60b6 395 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
396 * value. This can be called for any type of inode lock combination, including
397 * parent locking. Care must be taken to ensure we don't overrun the subclass
398 * storage fields in the class mask we build.
c24b5dfa
DC
399 */
400static inline int
401xfs_lock_inumorder(int lock_mode, int subclass)
402{
0952c818
DC
403 int class = 0;
404
405 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
406 XFS_ILOCK_RTSUM)));
3403ccc0 407 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 408
653c60b6 409 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 410 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 411 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
412 }
413
414 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
415 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
416 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
417 }
418
0952c818
DC
419 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
420 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
421 class += subclass << XFS_ILOCK_SHIFT;
422 }
c24b5dfa 423
0952c818 424 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
425}
426
427/*
95afcf5c
DC
428 * The following routine will lock n inodes in exclusive mode. We assume the
429 * caller calls us with the inodes in i_ino order.
c24b5dfa 430 *
95afcf5c
DC
431 * We need to detect deadlock where an inode that we lock is in the AIL and we
432 * start waiting for another inode that is locked by a thread in a long running
433 * transaction (such as truncate). This can result in deadlock since the long
434 * running trans might need to wait for the inode we just locked in order to
435 * push the tail and free space in the log.
0952c818
DC
436 *
437 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
438 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
439 * lock more than one at a time, lockdep will report false positives saying we
440 * have violated locking orders.
c24b5dfa 441 */
0d5a75e9 442static void
c24b5dfa
DC
443xfs_lock_inodes(
444 xfs_inode_t **ips,
445 int inodes,
446 uint lock_mode)
447{
448 int attempts = 0, i, j, try_lock;
449 xfs_log_item_t *lp;
450
0952c818
DC
451 /*
452 * Currently supports between 2 and 5 inodes with exclusive locking. We
453 * support an arbitrary depth of locking here, but absolute limits on
454 * inodes depend on the the type of locking and the limits placed by
455 * lockdep annotations in xfs_lock_inumorder. These are all checked by
456 * the asserts.
457 */
95afcf5c 458 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
459 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
460 XFS_ILOCK_EXCL));
461 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
462 XFS_ILOCK_SHARED)));
0952c818
DC
463 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
464 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
466 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
467
468 if (lock_mode & XFS_IOLOCK_EXCL) {
469 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
470 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
471 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
472
473 try_lock = 0;
474 i = 0;
c24b5dfa
DC
475again:
476 for (; i < inodes; i++) {
477 ASSERT(ips[i]);
478
95afcf5c 479 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
480 continue;
481
482 /*
95afcf5c
DC
483 * If try_lock is not set yet, make sure all locked inodes are
484 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 485 */
c24b5dfa
DC
486 if (!try_lock) {
487 for (j = (i - 1); j >= 0 && !try_lock; j--) {
488 lp = (xfs_log_item_t *)ips[j]->i_itemp;
22525c17 489 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 490 try_lock++;
c24b5dfa
DC
491 }
492 }
493
494 /*
495 * If any of the previous locks we have locked is in the AIL,
496 * we must TRY to get the second and subsequent locks. If
497 * we can't get any, we must release all we have
498 * and try again.
499 */
95afcf5c
DC
500 if (!try_lock) {
501 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
502 continue;
503 }
504
505 /* try_lock means we have an inode locked that is in the AIL. */
506 ASSERT(i != 0);
507 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
508 continue;
c24b5dfa 509
95afcf5c
DC
510 /*
511 * Unlock all previous guys and try again. xfs_iunlock will try
512 * to push the tail if the inode is in the AIL.
513 */
514 attempts++;
515 for (j = i - 1; j >= 0; j--) {
c24b5dfa 516 /*
95afcf5c
DC
517 * Check to see if we've already unlocked this one. Not
518 * the first one going back, and the inode ptr is the
519 * same.
c24b5dfa 520 */
95afcf5c
DC
521 if (j != (i - 1) && ips[j] == ips[j + 1])
522 continue;
c24b5dfa 523
95afcf5c
DC
524 xfs_iunlock(ips[j], lock_mode);
525 }
c24b5dfa 526
95afcf5c
DC
527 if ((attempts % 5) == 0) {
528 delay(1); /* Don't just spin the CPU */
c24b5dfa 529 }
95afcf5c
DC
530 i = 0;
531 try_lock = 0;
532 goto again;
c24b5dfa 533 }
c24b5dfa
DC
534}
535
536/*
653c60b6 537 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
538 * the mmaplock or the ilock, but not more than one type at a time. If we lock
539 * more than one at a time, lockdep will report false positives saying we have
540 * violated locking orders. The iolock must be double-locked separately since
541 * we use i_rwsem for that. We now support taking one lock EXCL and the other
542 * SHARED.
c24b5dfa
DC
543 */
544void
545xfs_lock_two_inodes(
7c2d238a
DW
546 struct xfs_inode *ip0,
547 uint ip0_mode,
548 struct xfs_inode *ip1,
549 uint ip1_mode)
c24b5dfa 550{
7c2d238a
DW
551 struct xfs_inode *temp;
552 uint mode_temp;
c24b5dfa
DC
553 int attempts = 0;
554 xfs_log_item_t *lp;
555
7c2d238a
DW
556 ASSERT(hweight32(ip0_mode) == 1);
557 ASSERT(hweight32(ip1_mode) == 1);
558 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
559 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
563 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
565 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
566 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
567 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 568
c24b5dfa
DC
569 ASSERT(ip0->i_ino != ip1->i_ino);
570
571 if (ip0->i_ino > ip1->i_ino) {
572 temp = ip0;
573 ip0 = ip1;
574 ip1 = temp;
7c2d238a
DW
575 mode_temp = ip0_mode;
576 ip0_mode = ip1_mode;
577 ip1_mode = mode_temp;
c24b5dfa
DC
578 }
579
580 again:
7c2d238a 581 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
582
583 /*
584 * If the first lock we have locked is in the AIL, we must TRY to get
585 * the second lock. If we can't get it, we must release the first one
586 * and try again.
587 */
588 lp = (xfs_log_item_t *)ip0->i_itemp;
22525c17 589 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
590 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
591 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
592 if ((++attempts % 5) == 0)
593 delay(1); /* Don't just spin the CPU */
594 goto again;
595 }
596 } else {
7c2d238a 597 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
598 }
599}
600
fa96acad
DC
601void
602__xfs_iflock(
603 struct xfs_inode *ip)
604{
605 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
606 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
607
608 do {
21417136 609 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
610 if (xfs_isiflocked(ip))
611 io_schedule();
612 } while (!xfs_iflock_nowait(ip));
613
21417136 614 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
615}
616
1da177e4
LT
617STATIC uint
618_xfs_dic2xflags(
c8ce540d 619 uint16_t di_flags,
58f88ca2
DC
620 uint64_t di_flags2,
621 bool has_attr)
1da177e4
LT
622{
623 uint flags = 0;
624
625 if (di_flags & XFS_DIFLAG_ANY) {
626 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 627 flags |= FS_XFLAG_REALTIME;
1da177e4 628 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 629 flags |= FS_XFLAG_PREALLOC;
1da177e4 630 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 631 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 632 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 633 flags |= FS_XFLAG_APPEND;
1da177e4 634 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 635 flags |= FS_XFLAG_SYNC;
1da177e4 636 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 637 flags |= FS_XFLAG_NOATIME;
1da177e4 638 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 639 flags |= FS_XFLAG_NODUMP;
1da177e4 640 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 641 flags |= FS_XFLAG_RTINHERIT;
1da177e4 642 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 643 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 644 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 645 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 646 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 647 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 648 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 649 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 650 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 651 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 652 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 653 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
654 }
655
58f88ca2
DC
656 if (di_flags2 & XFS_DIFLAG2_ANY) {
657 if (di_flags2 & XFS_DIFLAG2_DAX)
658 flags |= FS_XFLAG_DAX;
f7ca3522
DW
659 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
660 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
661 }
662
663 if (has_attr)
664 flags |= FS_XFLAG_HASATTR;
665
1da177e4
LT
666 return flags;
667}
668
669uint
670xfs_ip2xflags(
58f88ca2 671 struct xfs_inode *ip)
1da177e4 672{
58f88ca2 673 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 674
58f88ca2 675 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
c24b5dfa 699 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 700 if (error)
dbad7c99 701 goto out_unlock;
c24b5dfa
DC
702
703 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
704 if (error)
705 goto out_free_name;
706
707 return 0;
708
709out_free_name:
710 if (ci_name)
711 kmem_free(ci_name->name);
dbad7c99 712out_unlock:
c24b5dfa
DC
713 *ipp = NULL;
714 return error;
715}
716
1da177e4
LT
717/*
718 * Allocate an inode on disk and return a copy of its in-core version.
719 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
720 * appropriately within the inode. The uid and gid for the inode are
721 * set according to the contents of the given cred structure.
722 *
723 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
724 * has a free inode available, call xfs_iget() to obtain the in-core
725 * version of the allocated inode. Finally, fill in the inode and
726 * log its initial contents. In this case, ialloc_context would be
727 * set to NULL.
1da177e4 728 *
cd856db6
CM
729 * If xfs_dialloc() does not have an available inode, it will replenish
730 * its supply by doing an allocation. Since we can only do one
731 * allocation within a transaction without deadlocks, we must commit
732 * the current transaction before returning the inode itself.
733 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
734 * The caller should then commit the current transaction, start a new
735 * transaction, and call xfs_ialloc() again to actually get the inode.
736 *
737 * To ensure that some other process does not grab the inode that
738 * was allocated during the first call to xfs_ialloc(), this routine
739 * also returns the [locked] bp pointing to the head of the freelist
740 * as ialloc_context. The caller should hold this buffer across
741 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
742 *
743 * If we are allocating quota inodes, we do not have a parent inode
744 * to attach to or associate with (i.e. pip == NULL) because they
745 * are not linked into the directory structure - they are attached
746 * directly to the superblock - and so have no parent.
1da177e4 747 */
0d5a75e9 748static int
1da177e4
LT
749xfs_ialloc(
750 xfs_trans_t *tp,
751 xfs_inode_t *pip,
576b1d67 752 umode_t mode,
31b084ae 753 xfs_nlink_t nlink,
66f36464 754 dev_t rdev,
6743099c 755 prid_t prid,
1da177e4 756 xfs_buf_t **ialloc_context,
1da177e4
LT
757 xfs_inode_t **ipp)
758{
93848a99 759 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
760 xfs_ino_t ino;
761 xfs_inode_t *ip;
1da177e4
LT
762 uint flags;
763 int error;
95582b00 764 struct timespec64 tv;
3987848c 765 struct inode *inode;
1da177e4
LT
766
767 /*
768 * Call the space management code to pick
769 * the on-disk inode to be allocated.
770 */
f59cf5c2 771 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 772 ialloc_context, &ino);
bf904248 773 if (error)
1da177e4 774 return error;
08358906 775 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
776 *ipp = NULL;
777 return 0;
778 }
779 ASSERT(*ialloc_context == NULL);
780
8b26984d
DC
781 /*
782 * Protect against obviously corrupt allocation btree records. Later
783 * xfs_iget checks will catch re-allocation of other active in-memory
784 * and on-disk inodes. If we don't catch reallocating the parent inode
785 * here we will deadlock in xfs_iget() so we have to do these checks
786 * first.
787 */
788 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
789 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
790 return -EFSCORRUPTED;
791 }
792
1da177e4
LT
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
93848a99 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 799 XFS_ILOCK_EXCL, &ip);
bf904248 800 if (error)
1da177e4 801 return error;
1da177e4 802 ASSERT(ip != NULL);
3987848c 803 inode = VFS_I(ip);
1da177e4 804
263997a6
DC
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
c19b3b05 813 inode->i_mode = mode;
54d7b5c1 814 set_nlink(inode, nlink);
7aab1b28
DE
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 817 inode->i_rdev = rdev;
6743099c 818 xfs_set_projid(ip, prid);
1da177e4 819
bd186aa9 820 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 821 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
1da177e4
LT
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
c19b3b05
DC
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
1da177e4
LT
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 839
c2050a45 840 tv = current_time(inode);
3987848c
DC
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
dff35fd4 844
1da177e4
LT
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
93848a99
CH
849
850 if (ip->i_d.di_version == 3) {
f0e28280 851 inode_set_iversion(inode, 1);
93848a99 852 ip->i_d.di_flags2 = 0;
f7ca3522 853 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
856 }
857
858
1da177e4
LT
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
b11f94d5 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 872 uint di_flags = 0;
365ca83d 873
abbede1b 874 if (S_ISDIR(mode)) {
365ca83d
NS
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
9336e3a7
DC
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 883 } else if (S_ISREG(mode)) {
613d7043 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 885 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
1da177e4
LT
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
365ca83d 893 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
365ca83d 896 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
365ca83d 899 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
365ca83d 902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 908
365ca83d 909 ip->i_d.di_flags |= di_flags;
1da177e4 910 }
f7ca3522
DW
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
56bdf855
LC
915 uint64_t di_flags2 = 0;
916
f7ca3522 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
56bdf855
LC
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 925 }
1da177e4
LT
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
6bdcf26a 931 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
ddc3415a 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
946 xfs_trans_log_inode(tp, ip, flags);
947
58c90473 948 /* now that we have an i_mode we can setup the inode structure */
41be8bed 949 xfs_setup_inode(ip);
1da177e4
LT
950
951 *ipp = ip;
952 return 0;
953}
954
e546cb79
DC
955/*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965int
966xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
66f36464 973 dev_t rdev,
e546cb79 974 prid_t prid, /* project id */
c959025e 975 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 976 locked. */
e546cb79
DC
977{
978 xfs_trans_t *tp;
e546cb79
DC
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
e546cb79
DC
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
f59cf5c2
CH
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
e546cb79
DC
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
2451337d 1017 return -ENOSPC;
e546cb79
DC
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
411350df 1050 code = xfs_trans_roll(&tp);
3d3c8b52 1051
e546cb79
DC
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
2e6db6c4 1062 *tpp = tp;
e546cb79
DC
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1074 &ialloc_context, &ip);
e546cb79
DC
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
e546cb79
DC
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093}
1094
1095/*
54d7b5c1
DC
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1099 */
0d5a75e9 1100static int /* error */
e546cb79
DC
1101xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104{
e546cb79
DC
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
e546cb79
DC
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
54d7b5c1
DC
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
e546cb79
DC
1114}
1115
e546cb79
DC
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
0d5a75e9 1119static int
e546cb79
DC
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
263997a6 1126 ASSERT(ip->i_d.di_version > 1);
e546cb79 1127 inc_nlink(VFS_I(ip));
e546cb79
DC
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130}
1131
c24b5dfa
DC
1132int
1133xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
66f36464 1137 dev_t rdev,
c24b5dfa
DC
1138 xfs_inode_t **ipp)
1139{
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
2c3234d1 1145 struct xfs_defer_ops dfops;
c24b5dfa 1146 bool unlock_dp_on_error = false;
c24b5dfa
DC
1147 prid_t prid;
1148 struct xfs_dquot *udqp = NULL;
1149 struct xfs_dquot *gdqp = NULL;
1150 struct xfs_dquot *pdqp = NULL;
062647a8 1151 struct xfs_trans_res *tres;
c24b5dfa 1152 uint resblks;
c24b5dfa
DC
1153
1154 trace_xfs_create(dp, name);
1155
1156 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1157 return -EIO;
c24b5dfa 1158
163467d3 1159 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1160
1161 /*
1162 * Make sure that we have allocated dquot(s) on disk.
1163 */
7aab1b28
DE
1164 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1165 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1166 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1167 &udqp, &gdqp, &pdqp);
1168 if (error)
1169 return error;
1170
1171 if (is_dir) {
c24b5dfa 1172 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1173 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1174 } else {
1175 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1176 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1177 }
1178
c24b5dfa
DC
1179 /*
1180 * Initially assume that the file does not exist and
1181 * reserve the resources for that case. If that is not
1182 * the case we'll drop the one we have and get a more
1183 * appropriate transaction later.
1184 */
253f4911 1185 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1186 if (error == -ENOSPC) {
c24b5dfa
DC
1187 /* flush outstanding delalloc blocks and retry */
1188 xfs_flush_inodes(mp);
253f4911 1189 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1190 }
4906e215 1191 if (error)
253f4911 1192 goto out_release_inode;
c24b5dfa 1193
65523218 1194 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1195 unlock_dp_on_error = true;
1196
f16dea54 1197 xfs_defer_init(tp, &dfops, &tp->t_firstblock);
c24b5dfa
DC
1198
1199 /*
1200 * Reserve disk quota and the inode.
1201 */
1202 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1203 pdqp, resblks, 1, 0);
1204 if (error)
1205 goto out_trans_cancel;
1206
c24b5dfa
DC
1207 /*
1208 * A newly created regular or special file just has one directory
1209 * entry pointing to them, but a directory also the "." entry
1210 * pointing to itself.
1211 */
c959025e 1212 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1213 if (error)
4906e215 1214 goto out_trans_cancel;
c24b5dfa
DC
1215
1216 /*
1217 * Now we join the directory inode to the transaction. We do not do it
1218 * earlier because xfs_dir_ialloc might commit the previous transaction
1219 * (and release all the locks). An error from here on will result in
1220 * the transaction cancel unlocking dp so don't do it explicitly in the
1221 * error path.
1222 */
65523218 1223 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1224 unlock_dp_on_error = false;
1225
381eee69 1226 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
c9cfdb38 1227 resblks ?
c24b5dfa
DC
1228 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1229 if (error) {
2451337d 1230 ASSERT(error != -ENOSPC);
4906e215 1231 goto out_trans_cancel;
c24b5dfa
DC
1232 }
1233 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1234 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1235
1236 if (is_dir) {
1237 error = xfs_dir_init(tp, ip, dp);
1238 if (error)
1239 goto out_bmap_cancel;
1240
1241 error = xfs_bumplink(tp, dp);
1242 if (error)
1243 goto out_bmap_cancel;
1244 }
1245
1246 /*
1247 * If this is a synchronous mount, make sure that the
1248 * create transaction goes to disk before returning to
1249 * the user.
1250 */
1251 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1252 xfs_trans_set_sync(tp);
1253
1254 /*
1255 * Attach the dquot(s) to the inodes and modify them incore.
1256 * These ids of the inode couldn't have changed since the new
1257 * inode has been locked ever since it was created.
1258 */
1259 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1260
8ad7c629 1261 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
1262 if (error)
1263 goto out_bmap_cancel;
1264
70393313 1265 error = xfs_trans_commit(tp);
c24b5dfa
DC
1266 if (error)
1267 goto out_release_inode;
1268
1269 xfs_qm_dqrele(udqp);
1270 xfs_qm_dqrele(gdqp);
1271 xfs_qm_dqrele(pdqp);
1272
1273 *ipp = ip;
1274 return 0;
1275
1276 out_bmap_cancel:
2c3234d1 1277 xfs_defer_cancel(&dfops);
c24b5dfa 1278 out_trans_cancel:
4906e215 1279 xfs_trans_cancel(tp);
c24b5dfa
DC
1280 out_release_inode:
1281 /*
58c90473
DC
1282 * Wait until after the current transaction is aborted to finish the
1283 * setup of the inode and release the inode. This prevents recursive
1284 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1285 */
58c90473
DC
1286 if (ip) {
1287 xfs_finish_inode_setup(ip);
c24b5dfa 1288 IRELE(ip);
58c90473 1289 }
c24b5dfa
DC
1290
1291 xfs_qm_dqrele(udqp);
1292 xfs_qm_dqrele(gdqp);
1293 xfs_qm_dqrele(pdqp);
1294
1295 if (unlock_dp_on_error)
65523218 1296 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1297 return error;
1298}
1299
99b6436b
ZYW
1300int
1301xfs_create_tmpfile(
1302 struct xfs_inode *dp,
330033d6
BF
1303 umode_t mode,
1304 struct xfs_inode **ipp)
99b6436b
ZYW
1305{
1306 struct xfs_mount *mp = dp->i_mount;
1307 struct xfs_inode *ip = NULL;
1308 struct xfs_trans *tp = NULL;
1309 int error;
99b6436b
ZYW
1310 prid_t prid;
1311 struct xfs_dquot *udqp = NULL;
1312 struct xfs_dquot *gdqp = NULL;
1313 struct xfs_dquot *pdqp = NULL;
1314 struct xfs_trans_res *tres;
1315 uint resblks;
1316
1317 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1318 return -EIO;
99b6436b
ZYW
1319
1320 prid = xfs_get_initial_prid(dp);
1321
1322 /*
1323 * Make sure that we have allocated dquot(s) on disk.
1324 */
1325 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1326 xfs_kgid_to_gid(current_fsgid()), prid,
1327 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1328 &udqp, &gdqp, &pdqp);
1329 if (error)
1330 return error;
1331
1332 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1333 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1334
1335 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1336 if (error)
253f4911 1337 goto out_release_inode;
99b6436b
ZYW
1338
1339 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1340 pdqp, resblks, 1, 0);
1341 if (error)
1342 goto out_trans_cancel;
1343
c959025e 1344 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
d6077aa3 1345 if (error)
4906e215 1346 goto out_trans_cancel;
99b6436b
ZYW
1347
1348 if (mp->m_flags & XFS_MOUNT_WSYNC)
1349 xfs_trans_set_sync(tp);
1350
1351 /*
1352 * Attach the dquot(s) to the inodes and modify them incore.
1353 * These ids of the inode couldn't have changed since the new
1354 * inode has been locked ever since it was created.
1355 */
1356 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1357
99b6436b
ZYW
1358 error = xfs_iunlink(tp, ip);
1359 if (error)
4906e215 1360 goto out_trans_cancel;
99b6436b 1361
70393313 1362 error = xfs_trans_commit(tp);
99b6436b
ZYW
1363 if (error)
1364 goto out_release_inode;
1365
1366 xfs_qm_dqrele(udqp);
1367 xfs_qm_dqrele(gdqp);
1368 xfs_qm_dqrele(pdqp);
1369
330033d6 1370 *ipp = ip;
99b6436b
ZYW
1371 return 0;
1372
99b6436b 1373 out_trans_cancel:
4906e215 1374 xfs_trans_cancel(tp);
99b6436b
ZYW
1375 out_release_inode:
1376 /*
58c90473
DC
1377 * Wait until after the current transaction is aborted to finish the
1378 * setup of the inode and release the inode. This prevents recursive
1379 * transactions and deadlocks from xfs_inactive.
99b6436b 1380 */
58c90473
DC
1381 if (ip) {
1382 xfs_finish_inode_setup(ip);
99b6436b 1383 IRELE(ip);
58c90473 1384 }
99b6436b
ZYW
1385
1386 xfs_qm_dqrele(udqp);
1387 xfs_qm_dqrele(gdqp);
1388 xfs_qm_dqrele(pdqp);
1389
1390 return error;
1391}
1392
c24b5dfa
DC
1393int
1394xfs_link(
1395 xfs_inode_t *tdp,
1396 xfs_inode_t *sip,
1397 struct xfs_name *target_name)
1398{
1399 xfs_mount_t *mp = tdp->i_mount;
1400 xfs_trans_t *tp;
1401 int error;
2c3234d1 1402 struct xfs_defer_ops dfops;
c24b5dfa
DC
1403 int resblks;
1404
1405 trace_xfs_link(tdp, target_name);
1406
c19b3b05 1407 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1408
1409 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1410 return -EIO;
c24b5dfa 1411
c14cfcca 1412 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1413 if (error)
1414 goto std_return;
1415
c14cfcca 1416 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1417 if (error)
1418 goto std_return;
1419
c24b5dfa 1420 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1421 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1422 if (error == -ENOSPC) {
c24b5dfa 1423 resblks = 0;
253f4911 1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1425 }
4906e215 1426 if (error)
253f4911 1427 goto std_return;
c24b5dfa 1428
7c2d238a 1429 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1430
1431 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1432 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1433
1434 /*
1435 * If we are using project inheritance, we only allow hard link
1436 * creation in our tree when the project IDs are the same; else
1437 * the tree quota mechanism could be circumvented.
1438 */
1439 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1440 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1441 error = -EXDEV;
c24b5dfa
DC
1442 goto error_return;
1443 }
1444
94f3cad5
ES
1445 if (!resblks) {
1446 error = xfs_dir_canenter(tp, tdp, target_name);
1447 if (error)
1448 goto error_return;
1449 }
c24b5dfa 1450
f16dea54 1451 xfs_defer_init(tp, &dfops, &tp->t_firstblock);
c24b5dfa 1452
54d7b5c1
DC
1453 /*
1454 * Handle initial link state of O_TMPFILE inode
1455 */
1456 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1457 error = xfs_iunlink_remove(tp, sip);
1458 if (error)
4906e215 1459 goto error_return;
ab297431
ZYW
1460 }
1461
c24b5dfa 1462 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1463 resblks);
c24b5dfa 1464 if (error)
4906e215 1465 goto error_return;
c24b5dfa
DC
1466 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1467 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1468
1469 error = xfs_bumplink(tp, sip);
1470 if (error)
4906e215 1471 goto error_return;
c24b5dfa
DC
1472
1473 /*
1474 * If this is a synchronous mount, make sure that the
1475 * link transaction goes to disk before returning to
1476 * the user.
1477 */
f6106efa 1478 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1479 xfs_trans_set_sync(tp);
c24b5dfa 1480
8ad7c629 1481 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa 1482 if (error) {
2c3234d1 1483 xfs_defer_cancel(&dfops);
4906e215 1484 goto error_return;
c24b5dfa
DC
1485 }
1486
70393313 1487 return xfs_trans_commit(tp);
c24b5dfa 1488
c24b5dfa 1489 error_return:
4906e215 1490 xfs_trans_cancel(tp);
c24b5dfa
DC
1491 std_return:
1492 return error;
1493}
1494
363e59ba
DW
1495/* Clear the reflink flag and the cowblocks tag if possible. */
1496static void
1497xfs_itruncate_clear_reflink_flags(
1498 struct xfs_inode *ip)
1499{
1500 struct xfs_ifork *dfork;
1501 struct xfs_ifork *cfork;
1502
1503 if (!xfs_is_reflink_inode(ip))
1504 return;
1505 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1506 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1507 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1508 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1509 if (cfork->if_bytes == 0)
1510 xfs_inode_clear_cowblocks_tag(ip);
1511}
1512
1da177e4 1513/*
8f04c47a
CH
1514 * Free up the underlying blocks past new_size. The new size must be smaller
1515 * than the current size. This routine can be used both for the attribute and
1516 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1517 *
f6485057
DC
1518 * The transaction passed to this routine must have made a permanent log
1519 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1520 * given transaction and start new ones, so make sure everything involved in
1521 * the transaction is tidy before calling here. Some transaction will be
1522 * returned to the caller to be committed. The incoming transaction must
1523 * already include the inode, and both inode locks must be held exclusively.
1524 * The inode must also be "held" within the transaction. On return the inode
1525 * will be "held" within the returned transaction. This routine does NOT
1526 * require any disk space to be reserved for it within the transaction.
1da177e4 1527 *
f6485057
DC
1528 * If we get an error, we must return with the inode locked and linked into the
1529 * current transaction. This keeps things simple for the higher level code,
1530 * because it always knows that the inode is locked and held in the transaction
1531 * that returns to it whether errors occur or not. We don't mark the inode
1532 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1533 */
1534int
4e529339 1535xfs_itruncate_extents_flags(
8f04c47a
CH
1536 struct xfs_trans **tpp,
1537 struct xfs_inode *ip,
1538 int whichfork,
13b86fc3 1539 xfs_fsize_t new_size,
4e529339 1540 int flags)
1da177e4 1541{
8f04c47a
CH
1542 struct xfs_mount *mp = ip->i_mount;
1543 struct xfs_trans *tp = *tpp;
4bcfa613 1544 struct xfs_defer_ops *odfops = tp->t_dfops;
2c3234d1 1545 struct xfs_defer_ops dfops;
8f04c47a
CH
1546 xfs_fileoff_t first_unmap_block;
1547 xfs_fileoff_t last_block;
1548 xfs_filblks_t unmap_len;
8f04c47a
CH
1549 int error = 0;
1550 int done = 0;
1da177e4 1551
0b56185b
CH
1552 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1553 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1554 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1555 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1556 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1557 ASSERT(ip->i_itemp != NULL);
898621d5 1558 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1559 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1560
673e8e59
CH
1561 trace_xfs_itruncate_extents_start(ip, new_size);
1562
4e529339 1563 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1564
1da177e4
LT
1565 /*
1566 * Since it is possible for space to become allocated beyond
1567 * the end of the file (in a crash where the space is allocated
1568 * but the inode size is not yet updated), simply remove any
1569 * blocks which show up between the new EOF and the maximum
1570 * possible file size. If the first block to be removed is
1571 * beyond the maximum file size (ie it is the same as last_block),
1572 * then there is nothing to do.
1573 */
8f04c47a 1574 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1575 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1576 if (first_unmap_block == last_block)
1577 return 0;
1578
1579 ASSERT(first_unmap_block < last_block);
1580 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1581 while (!done) {
37283797 1582 xfs_defer_init(tp, &dfops, &tp->t_firstblock);
13b86fc3 1583 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
37283797 1584 XFS_ITRUNC_MAX_EXTENTS, &tp->t_firstblock,
ccd9d911 1585 &done);
8f04c47a
CH
1586 if (error)
1587 goto out_bmap_cancel;
1da177e4
LT
1588
1589 /*
1590 * Duplicate the transaction that has the permanent
1591 * reservation and commit the old transaction.
1592 */
4bcfa613
BF
1593 xfs_defer_ijoin(tp->t_dfops, ip);
1594 error = xfs_defer_finish(&tp, tp->t_dfops);
8f04c47a
CH
1595 if (error)
1596 goto out_bmap_cancel;
1da177e4 1597
411350df 1598 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1599 if (error)
8f04c47a 1600 goto out;
1da177e4 1601 }
8f04c47a 1602
4919d42a
DW
1603 if (whichfork == XFS_DATA_FORK) {
1604 /* Remove all pending CoW reservations. */
1605 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1606 first_unmap_block, last_block, true);
1607 if (error)
1608 goto out;
aa8968f2 1609
4919d42a
DW
1610 xfs_itruncate_clear_reflink_flags(ip);
1611 }
aa8968f2 1612
673e8e59
CH
1613 /*
1614 * Always re-log the inode so that our permanent transaction can keep
1615 * on rolling it forward in the log.
1616 */
1617 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1618
1619 trace_xfs_itruncate_extents_end(ip, new_size);
1620
8f04c47a 1621out:
4bcfa613
BF
1622 /* ->t_dfops points to local stack, don't leak it! */
1623 tp->t_dfops = odfops;
8f04c47a
CH
1624 *tpp = tp;
1625 return error;
1626out_bmap_cancel:
1da177e4 1627 /*
8f04c47a
CH
1628 * If the bunmapi call encounters an error, return to the caller where
1629 * the transaction can be properly aborted. We just need to make sure
1630 * we're not holding any resources that we were not when we came in.
1da177e4 1631 */
4bcfa613 1632 xfs_defer_cancel(tp->t_dfops);
8f04c47a
CH
1633 goto out;
1634}
1635
c24b5dfa
DC
1636int
1637xfs_release(
1638 xfs_inode_t *ip)
1639{
1640 xfs_mount_t *mp = ip->i_mount;
1641 int error;
1642
c19b3b05 1643 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1644 return 0;
1645
1646 /* If this is a read-only mount, don't do this (would generate I/O) */
1647 if (mp->m_flags & XFS_MOUNT_RDONLY)
1648 return 0;
1649
1650 if (!XFS_FORCED_SHUTDOWN(mp)) {
1651 int truncated;
1652
c24b5dfa
DC
1653 /*
1654 * If we previously truncated this file and removed old data
1655 * in the process, we want to initiate "early" writeout on
1656 * the last close. This is an attempt to combat the notorious
1657 * NULL files problem which is particularly noticeable from a
1658 * truncate down, buffered (re-)write (delalloc), followed by
1659 * a crash. What we are effectively doing here is
1660 * significantly reducing the time window where we'd otherwise
1661 * be exposed to that problem.
1662 */
1663 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1664 if (truncated) {
1665 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1666 if (ip->i_delayed_blks > 0) {
2451337d 1667 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1668 if (error)
1669 return error;
1670 }
1671 }
1672 }
1673
54d7b5c1 1674 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1675 return 0;
1676
1677 if (xfs_can_free_eofblocks(ip, false)) {
1678
a36b9261
BF
1679 /*
1680 * Check if the inode is being opened, written and closed
1681 * frequently and we have delayed allocation blocks outstanding
1682 * (e.g. streaming writes from the NFS server), truncating the
1683 * blocks past EOF will cause fragmentation to occur.
1684 *
1685 * In this case don't do the truncation, but we have to be
1686 * careful how we detect this case. Blocks beyond EOF show up as
1687 * i_delayed_blks even when the inode is clean, so we need to
1688 * truncate them away first before checking for a dirty release.
1689 * Hence on the first dirty close we will still remove the
1690 * speculative allocation, but after that we will leave it in
1691 * place.
1692 */
1693 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1694 return 0;
c24b5dfa
DC
1695 /*
1696 * If we can't get the iolock just skip truncating the blocks
1697 * past EOF because we could deadlock with the mmap_sem
a36b9261 1698 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1699 * last reference to the inode is dropped, so we'll never leak
1700 * blocks permanently.
c24b5dfa 1701 */
a36b9261
BF
1702 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1703 error = xfs_free_eofblocks(ip);
1704 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1705 if (error)
1706 return error;
1707 }
c24b5dfa
DC
1708
1709 /* delalloc blocks after truncation means it really is dirty */
1710 if (ip->i_delayed_blks)
1711 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1712 }
1713 return 0;
1714}
1715
f7be2d7f
BF
1716/*
1717 * xfs_inactive_truncate
1718 *
1719 * Called to perform a truncate when an inode becomes unlinked.
1720 */
1721STATIC int
1722xfs_inactive_truncate(
1723 struct xfs_inode *ip)
1724{
1725 struct xfs_mount *mp = ip->i_mount;
1726 struct xfs_trans *tp;
1727 int error;
1728
253f4911 1729 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1730 if (error) {
1731 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1732 return error;
1733 }
1734
1735 xfs_ilock(ip, XFS_ILOCK_EXCL);
1736 xfs_trans_ijoin(tp, ip, 0);
1737
1738 /*
1739 * Log the inode size first to prevent stale data exposure in the event
1740 * of a system crash before the truncate completes. See the related
69bca807 1741 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1742 */
1743 ip->i_d.di_size = 0;
1744 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1745
1746 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1747 if (error)
1748 goto error_trans_cancel;
1749
1750 ASSERT(ip->i_d.di_nextents == 0);
1751
70393313 1752 error = xfs_trans_commit(tp);
f7be2d7f
BF
1753 if (error)
1754 goto error_unlock;
1755
1756 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1757 return 0;
1758
1759error_trans_cancel:
4906e215 1760 xfs_trans_cancel(tp);
f7be2d7f
BF
1761error_unlock:
1762 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1763 return error;
1764}
1765
88877d2b
BF
1766/*
1767 * xfs_inactive_ifree()
1768 *
1769 * Perform the inode free when an inode is unlinked.
1770 */
1771STATIC int
1772xfs_inactive_ifree(
1773 struct xfs_inode *ip)
1774{
2c3234d1 1775 struct xfs_defer_ops dfops;
88877d2b 1776 xfs_fsblock_t first_block;
88877d2b
BF
1777 struct xfs_mount *mp = ip->i_mount;
1778 struct xfs_trans *tp;
1779 int error;
1780
9d43b180 1781 /*
76d771b4
CH
1782 * We try to use a per-AG reservation for any block needed by the finobt
1783 * tree, but as the finobt feature predates the per-AG reservation
1784 * support a degraded file system might not have enough space for the
1785 * reservation at mount time. In that case try to dip into the reserved
1786 * pool and pray.
9d43b180
BF
1787 *
1788 * Send a warning if the reservation does happen to fail, as the inode
1789 * now remains allocated and sits on the unlinked list until the fs is
1790 * repaired.
1791 */
76d771b4
CH
1792 if (unlikely(mp->m_inotbt_nores)) {
1793 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1794 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1795 &tp);
1796 } else {
1797 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1798 }
88877d2b 1799 if (error) {
2451337d 1800 if (error == -ENOSPC) {
9d43b180
BF
1801 xfs_warn_ratelimited(mp,
1802 "Failed to remove inode(s) from unlinked list. "
1803 "Please free space, unmount and run xfs_repair.");
1804 } else {
1805 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1806 }
88877d2b
BF
1807 return error;
1808 }
1809
1810 xfs_ilock(ip, XFS_ILOCK_EXCL);
1811 xfs_trans_ijoin(tp, ip, 0);
1812
bcd2c9f3 1813 xfs_defer_init(tp, &dfops, &first_block);
0e0417f3 1814 error = xfs_ifree(tp, ip);
88877d2b
BF
1815 if (error) {
1816 /*
1817 * If we fail to free the inode, shut down. The cancel
1818 * might do that, we need to make sure. Otherwise the
1819 * inode might be lost for a long time or forever.
1820 */
1821 if (!XFS_FORCED_SHUTDOWN(mp)) {
1822 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1823 __func__, error);
1824 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1825 }
4906e215 1826 xfs_trans_cancel(tp);
88877d2b
BF
1827 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1828 return error;
1829 }
1830
1831 /*
1832 * Credit the quota account(s). The inode is gone.
1833 */
1834 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1835
1836 /*
d4a97a04
BF
1837 * Just ignore errors at this point. There is nothing we can do except
1838 * to try to keep going. Make sure it's not a silent error.
88877d2b 1839 */
8ad7c629 1840 error = xfs_defer_finish(&tp, &dfops);
d4a97a04 1841 if (error) {
310a75a3 1842 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1843 __func__, error);
2c3234d1 1844 xfs_defer_cancel(&dfops);
d4a97a04 1845 }
70393313 1846 error = xfs_trans_commit(tp);
88877d2b
BF
1847 if (error)
1848 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1849 __func__, error);
1850
1851 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1852 return 0;
1853}
1854
c24b5dfa
DC
1855/*
1856 * xfs_inactive
1857 *
1858 * This is called when the vnode reference count for the vnode
1859 * goes to zero. If the file has been unlinked, then it must
1860 * now be truncated. Also, we clear all of the read-ahead state
1861 * kept for the inode here since the file is now closed.
1862 */
74564fb4 1863void
c24b5dfa
DC
1864xfs_inactive(
1865 xfs_inode_t *ip)
1866{
3d3c8b52 1867 struct xfs_mount *mp;
6231848c 1868 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
3d3c8b52
JL
1869 int error;
1870 int truncate = 0;
c24b5dfa
DC
1871
1872 /*
1873 * If the inode is already free, then there can be nothing
1874 * to clean up here.
1875 */
c19b3b05 1876 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1877 ASSERT(ip->i_df.if_real_bytes == 0);
1878 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1879 return;
c24b5dfa
DC
1880 }
1881
1882 mp = ip->i_mount;
17c12bcd 1883 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1884
c24b5dfa
DC
1885 /* If this is a read-only mount, don't do this (would generate I/O) */
1886 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1887 return;
c24b5dfa 1888
6231848c
DW
1889 /* Try to clean out the cow blocks if there are any. */
1890 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1891 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1892
54d7b5c1 1893 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1894 /*
1895 * force is true because we are evicting an inode from the
1896 * cache. Post-eof blocks must be freed, lest we end up with
1897 * broken free space accounting.
3b4683c2
BF
1898 *
1899 * Note: don't bother with iolock here since lockdep complains
1900 * about acquiring it in reclaim context. We have the only
1901 * reference to the inode at this point anyways.
c24b5dfa 1902 */
3b4683c2 1903 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1904 xfs_free_eofblocks(ip);
74564fb4
BF
1905
1906 return;
c24b5dfa
DC
1907 }
1908
c19b3b05 1909 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1910 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1911 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1912 truncate = 1;
1913
c14cfcca 1914 error = xfs_qm_dqattach(ip);
c24b5dfa 1915 if (error)
74564fb4 1916 return;
c24b5dfa 1917
c19b3b05 1918 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1919 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1920 else if (truncate)
1921 error = xfs_inactive_truncate(ip);
1922 if (error)
74564fb4 1923 return;
c24b5dfa
DC
1924
1925 /*
1926 * If there are attributes associated with the file then blow them away
1927 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1928 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1929 */
6dfe5a04 1930 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1931 error = xfs_attr_inactive(ip);
1932 if (error)
74564fb4 1933 return;
c24b5dfa
DC
1934 }
1935
6dfe5a04 1936 ASSERT(!ip->i_afp);
c24b5dfa 1937 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1938 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1939
1940 /*
1941 * Free the inode.
1942 */
88877d2b
BF
1943 error = xfs_inactive_ifree(ip);
1944 if (error)
74564fb4 1945 return;
c24b5dfa
DC
1946
1947 /*
1948 * Release the dquots held by inode, if any.
1949 */
1950 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1951}
1952
1da177e4 1953/*
54d7b5c1
DC
1954 * This is called when the inode's link count goes to 0 or we are creating a
1955 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1956 * set to true as the link count is dropped to zero by the VFS after we've
1957 * created the file successfully, so we have to add it to the unlinked list
1958 * while the link count is non-zero.
1959 *
1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1961 * list when the inode is freed.
1da177e4 1962 */
54d7b5c1 1963STATIC int
1da177e4 1964xfs_iunlink(
54d7b5c1
DC
1965 struct xfs_trans *tp,
1966 struct xfs_inode *ip)
1da177e4 1967{
54d7b5c1 1968 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1969 xfs_agi_t *agi;
1970 xfs_dinode_t *dip;
1971 xfs_buf_t *agibp;
1972 xfs_buf_t *ibp;
1da177e4
LT
1973 xfs_agino_t agino;
1974 short bucket_index;
1975 int offset;
1976 int error;
1da177e4 1977
c19b3b05 1978 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1979
1da177e4
LT
1980 /*
1981 * Get the agi buffer first. It ensures lock ordering
1982 * on the list.
1983 */
5e1be0fb 1984 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1985 if (error)
1da177e4 1986 return error;
1da177e4 1987 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1988
1da177e4
LT
1989 /*
1990 * Get the index into the agi hash table for the
1991 * list this inode will go on.
1992 */
1993 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1994 ASSERT(agino != 0);
1995 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1996 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1997 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1998
69ef921b 1999 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2000 /*
2001 * There is already another inode in the bucket we need
2002 * to add ourselves to. Add us at the front of the list.
2003 * Here we put the head pointer into our next pointer,
2004 * and then we fall through to point the head at us.
2005 */
475ee413
CH
2006 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2007 0, 0);
c319b58b
VA
2008 if (error)
2009 return error;
2010
69ef921b 2011 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2012 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2013 offset = ip->i_imap.im_boffset +
1da177e4 2014 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2015
2016 /* need to recalc the inode CRC if appropriate */
2017 xfs_dinode_calc_crc(mp, dip);
2018
1da177e4
LT
2019 xfs_trans_inode_buf(tp, ibp);
2020 xfs_trans_log_buf(tp, ibp, offset,
2021 (offset + sizeof(xfs_agino_t) - 1));
2022 xfs_inobp_check(mp, ibp);
2023 }
2024
2025 /*
2026 * Point the bucket head pointer at the inode being inserted.
2027 */
2028 ASSERT(agino != 0);
16259e7d 2029 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2030 offset = offsetof(xfs_agi_t, agi_unlinked) +
2031 (sizeof(xfs_agino_t) * bucket_index);
2032 xfs_trans_log_buf(tp, agibp, offset,
2033 (offset + sizeof(xfs_agino_t) - 1));
2034 return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042 xfs_trans_t *tp,
2043 xfs_inode_t *ip)
2044{
2045 xfs_ino_t next_ino;
2046 xfs_mount_t *mp;
2047 xfs_agi_t *agi;
2048 xfs_dinode_t *dip;
2049 xfs_buf_t *agibp;
2050 xfs_buf_t *ibp;
2051 xfs_agnumber_t agno;
1da177e4
LT
2052 xfs_agino_t agino;
2053 xfs_agino_t next_agino;
2054 xfs_buf_t *last_ibp;
6fdf8ccc 2055 xfs_dinode_t *last_dip = NULL;
1da177e4 2056 short bucket_index;
6fdf8ccc 2057 int offset, last_offset = 0;
1da177e4 2058 int error;
1da177e4 2059
1da177e4 2060 mp = tp->t_mountp;
1da177e4 2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2062
2063 /*
2064 * Get the agi buffer first. It ensures lock ordering
2065 * on the list.
2066 */
5e1be0fb
CH
2067 error = xfs_read_agi(mp, tp, agno, &agibp);
2068 if (error)
1da177e4 2069 return error;
5e1be0fb 2070
1da177e4 2071 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2072
1da177e4
LT
2073 /*
2074 * Get the index into the agi hash table for the
2075 * list this inode will go on.
2076 */
2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
d2e73665
DW
2078 if (!xfs_verify_agino(mp, agno, agino))
2079 return -EFSCORRUPTED;
1da177e4 2080 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
d2e73665
DW
2081 if (!xfs_verify_agino(mp, agno,
2082 be32_to_cpu(agi->agi_unlinked[bucket_index]))) {
2083 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2084 agi, sizeof(*agi));
2085 return -EFSCORRUPTED;
2086 }
1da177e4 2087
16259e7d 2088 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2089 /*
475ee413
CH
2090 * We're at the head of the list. Get the inode's on-disk
2091 * buffer to see if there is anyone after us on the list.
2092 * Only modify our next pointer if it is not already NULLAGINO.
2093 * This saves us the overhead of dealing with the buffer when
2094 * there is no need to change it.
1da177e4 2095 */
475ee413
CH
2096 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2097 0, 0);
1da177e4 2098 if (error) {
475ee413 2099 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2100 __func__, error);
1da177e4
LT
2101 return error;
2102 }
347d1c01 2103 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2104 ASSERT(next_agino != 0);
2105 if (next_agino != NULLAGINO) {
347d1c01 2106 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2107 offset = ip->i_imap.im_boffset +
1da177e4 2108 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2109
2110 /* need to recalc the inode CRC if appropriate */
2111 xfs_dinode_calc_crc(mp, dip);
2112
1da177e4
LT
2113 xfs_trans_inode_buf(tp, ibp);
2114 xfs_trans_log_buf(tp, ibp, offset,
2115 (offset + sizeof(xfs_agino_t) - 1));
2116 xfs_inobp_check(mp, ibp);
2117 } else {
2118 xfs_trans_brelse(tp, ibp);
2119 }
2120 /*
2121 * Point the bucket head pointer at the next inode.
2122 */
2123 ASSERT(next_agino != 0);
2124 ASSERT(next_agino != agino);
16259e7d 2125 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2126 offset = offsetof(xfs_agi_t, agi_unlinked) +
2127 (sizeof(xfs_agino_t) * bucket_index);
2128 xfs_trans_log_buf(tp, agibp, offset,
2129 (offset + sizeof(xfs_agino_t) - 1));
2130 } else {
2131 /*
2132 * We need to search the list for the inode being freed.
2133 */
16259e7d 2134 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2135 last_ibp = NULL;
2136 while (next_agino != agino) {
129dbc9a
CH
2137 struct xfs_imap imap;
2138
2139 if (last_ibp)
1da177e4 2140 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2141
2142 imap.im_blkno = 0;
1da177e4 2143 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2144
2145 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2146 if (error) {
2147 xfs_warn(mp,
2148 "%s: xfs_imap returned error %d.",
2149 __func__, error);
2150 return error;
2151 }
2152
2153 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2154 &last_ibp, 0, 0);
1da177e4 2155 if (error) {
0b932ccc 2156 xfs_warn(mp,
129dbc9a 2157 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2158 __func__, error);
1da177e4
LT
2159 return error;
2160 }
129dbc9a
CH
2161
2162 last_offset = imap.im_boffset;
347d1c01 2163 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
d2e73665
DW
2164 if (!xfs_verify_agino(mp, agno, next_agino)) {
2165 XFS_CORRUPTION_ERROR(__func__,
2166 XFS_ERRLEVEL_LOW, mp,
2167 last_dip, sizeof(*last_dip));
2168 return -EFSCORRUPTED;
2169 }
1da177e4 2170 }
475ee413 2171
1da177e4 2172 /*
475ee413
CH
2173 * Now last_ibp points to the buffer previous to us on the
2174 * unlinked list. Pull us from the list.
1da177e4 2175 */
475ee413
CH
2176 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2177 0, 0);
1da177e4 2178 if (error) {
475ee413 2179 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2180 __func__, error);
1da177e4
LT
2181 return error;
2182 }
347d1c01 2183 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2184 ASSERT(next_agino != 0);
2185 ASSERT(next_agino != agino);
2186 if (next_agino != NULLAGINO) {
347d1c01 2187 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2188 offset = ip->i_imap.im_boffset +
1da177e4 2189 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2190
2191 /* need to recalc the inode CRC if appropriate */
2192 xfs_dinode_calc_crc(mp, dip);
2193
1da177e4
LT
2194 xfs_trans_inode_buf(tp, ibp);
2195 xfs_trans_log_buf(tp, ibp, offset,
2196 (offset + sizeof(xfs_agino_t) - 1));
2197 xfs_inobp_check(mp, ibp);
2198 } else {
2199 xfs_trans_brelse(tp, ibp);
2200 }
2201 /*
2202 * Point the previous inode on the list to the next inode.
2203 */
347d1c01 2204 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2205 ASSERT(next_agino != 0);
2206 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2207
2208 /* need to recalc the inode CRC if appropriate */
2209 xfs_dinode_calc_crc(mp, last_dip);
2210
1da177e4
LT
2211 xfs_trans_inode_buf(tp, last_ibp);
2212 xfs_trans_log_buf(tp, last_ibp, offset,
2213 (offset + sizeof(xfs_agino_t) - 1));
2214 xfs_inobp_check(mp, last_ibp);
2215 }
2216 return 0;
2217}
2218
5b3eed75 2219/*
0b8182db 2220 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2221 * inodes that are in memory - they all must be marked stale and attached to
2222 * the cluster buffer.
2223 */
2a30f36d 2224STATIC int
1da177e4 2225xfs_ifree_cluster(
09b56604
BF
2226 xfs_inode_t *free_ip,
2227 xfs_trans_t *tp,
2228 struct xfs_icluster *xic)
1da177e4
LT
2229{
2230 xfs_mount_t *mp = free_ip->i_mount;
2231 int blks_per_cluster;
982e939e 2232 int inodes_per_cluster;
1da177e4 2233 int nbufs;
5b257b4a 2234 int i, j;
3cdaa189 2235 int ioffset;
1da177e4
LT
2236 xfs_daddr_t blkno;
2237 xfs_buf_t *bp;
5b257b4a 2238 xfs_inode_t *ip;
1da177e4 2239 xfs_inode_log_item_t *iip;
643c8c05 2240 struct xfs_log_item *lip;
5017e97d 2241 struct xfs_perag *pag;
09b56604 2242 xfs_ino_t inum;
1da177e4 2243
09b56604 2244 inum = xic->first_ino;
5017e97d 2245 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2246 blks_per_cluster = xfs_icluster_size_fsb(mp);
2247 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2248 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2249
982e939e 2250 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2251 /*
2252 * The allocation bitmap tells us which inodes of the chunk were
2253 * physically allocated. Skip the cluster if an inode falls into
2254 * a sparse region.
2255 */
3cdaa189
BF
2256 ioffset = inum - xic->first_ino;
2257 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
0703a8e1 2258 ASSERT(ioffset % inodes_per_cluster == 0);
09b56604
BF
2259 continue;
2260 }
2261
1da177e4
LT
2262 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2263 XFS_INO_TO_AGBNO(mp, inum));
2264
5b257b4a
DC
2265 /*
2266 * We obtain and lock the backing buffer first in the process
2267 * here, as we have to ensure that any dirty inode that we
2268 * can't get the flush lock on is attached to the buffer.
2269 * If we scan the in-memory inodes first, then buffer IO can
2270 * complete before we get a lock on it, and hence we may fail
2271 * to mark all the active inodes on the buffer stale.
2272 */
2273 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2274 mp->m_bsize * blks_per_cluster,
2275 XBF_UNMAPPED);
5b257b4a 2276
2a30f36d 2277 if (!bp)
2451337d 2278 return -ENOMEM;
b0f539de
DC
2279
2280 /*
2281 * This buffer may not have been correctly initialised as we
2282 * didn't read it from disk. That's not important because we are
2283 * only using to mark the buffer as stale in the log, and to
2284 * attach stale cached inodes on it. That means it will never be
2285 * dispatched for IO. If it is, we want to know about it, and we
2286 * want it to fail. We can acheive this by adding a write
2287 * verifier to the buffer.
2288 */
1813dd64 2289 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2290
5b257b4a
DC
2291 /*
2292 * Walk the inodes already attached to the buffer and mark them
2293 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2294 * in-memory inode walk can't lock them. By marking them all
2295 * stale first, we will not attempt to lock them in the loop
2296 * below as the XFS_ISTALE flag will be set.
5b257b4a 2297 */
643c8c05 2298 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2299 if (lip->li_type == XFS_LI_INODE) {
2300 iip = (xfs_inode_log_item_t *)lip;
2301 ASSERT(iip->ili_logged == 1);
ca30b2a7 2302 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2303 xfs_trans_ail_copy_lsn(mp->m_ail,
2304 &iip->ili_flush_lsn,
2305 &iip->ili_item.li_lsn);
2306 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2307 }
5b257b4a 2308 }
1da177e4 2309
5b3eed75 2310
1da177e4 2311 /*
5b257b4a
DC
2312 * For each inode in memory attempt to add it to the inode
2313 * buffer and set it up for being staled on buffer IO
2314 * completion. This is safe as we've locked out tail pushing
2315 * and flushing by locking the buffer.
1da177e4 2316 *
5b257b4a
DC
2317 * We have already marked every inode that was part of a
2318 * transaction stale above, which means there is no point in
2319 * even trying to lock them.
1da177e4 2320 */
982e939e 2321 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2322retry:
1a3e8f3d 2323 rcu_read_lock();
da353b0d
DC
2324 ip = radix_tree_lookup(&pag->pag_ici_root,
2325 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2326
1a3e8f3d
DC
2327 /* Inode not in memory, nothing to do */
2328 if (!ip) {
2329 rcu_read_unlock();
1da177e4
LT
2330 continue;
2331 }
2332
1a3e8f3d
DC
2333 /*
2334 * because this is an RCU protected lookup, we could
2335 * find a recently freed or even reallocated inode
2336 * during the lookup. We need to check under the
2337 * i_flags_lock for a valid inode here. Skip it if it
2338 * is not valid, the wrong inode or stale.
2339 */
2340 spin_lock(&ip->i_flags_lock);
2341 if (ip->i_ino != inum + i ||
2342 __xfs_iflags_test(ip, XFS_ISTALE)) {
2343 spin_unlock(&ip->i_flags_lock);
2344 rcu_read_unlock();
2345 continue;
2346 }
2347 spin_unlock(&ip->i_flags_lock);
2348
5b3eed75
DC
2349 /*
2350 * Don't try to lock/unlock the current inode, but we
2351 * _cannot_ skip the other inodes that we did not find
2352 * in the list attached to the buffer and are not
2353 * already marked stale. If we can't lock it, back off
2354 * and retry.
2355 */
f2e9ad21
OS
2356 if (ip != free_ip) {
2357 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2358 rcu_read_unlock();
2359 delay(1);
2360 goto retry;
2361 }
2362
2363 /*
2364 * Check the inode number again in case we're
2365 * racing with freeing in xfs_reclaim_inode().
2366 * See the comments in that function for more
2367 * information as to why the initial check is
2368 * not sufficient.
2369 */
2370 if (ip->i_ino != inum + i) {
2371 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2372 rcu_read_unlock();
f2e9ad21
OS
2373 continue;
2374 }
1da177e4 2375 }
1a3e8f3d 2376 rcu_read_unlock();
1da177e4 2377
5b3eed75 2378 xfs_iflock(ip);
5b257b4a 2379 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2380
5b3eed75
DC
2381 /*
2382 * we don't need to attach clean inodes or those only
2383 * with unlogged changes (which we throw away, anyway).
2384 */
1da177e4 2385 iip = ip->i_itemp;
5b3eed75 2386 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2387 ASSERT(ip != free_ip);
1da177e4
LT
2388 xfs_ifunlock(ip);
2389 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2390 continue;
2391 }
2392
f5d8d5c4
CH
2393 iip->ili_last_fields = iip->ili_fields;
2394 iip->ili_fields = 0;
fc0561ce 2395 iip->ili_fsync_fields = 0;
1da177e4 2396 iip->ili_logged = 1;
7b2e2a31
DC
2397 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2398 &iip->ili_item.li_lsn);
1da177e4 2399
ca30b2a7
CH
2400 xfs_buf_attach_iodone(bp, xfs_istale_done,
2401 &iip->ili_item);
5b257b4a
DC
2402
2403 if (ip != free_ip)
1da177e4 2404 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2405 }
2406
5b3eed75 2407 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2408 xfs_trans_binval(tp, bp);
2409 }
2410
5017e97d 2411 xfs_perag_put(pag);
2a30f36d 2412 return 0;
1da177e4
LT
2413}
2414
98c4f78d
DW
2415/*
2416 * Free any local-format buffers sitting around before we reset to
2417 * extents format.
2418 */
2419static inline void
2420xfs_ifree_local_data(
2421 struct xfs_inode *ip,
2422 int whichfork)
2423{
2424 struct xfs_ifork *ifp;
2425
2426 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2427 return;
2428
2429 ifp = XFS_IFORK_PTR(ip, whichfork);
2430 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2431}
2432
1da177e4
LT
2433/*
2434 * This is called to return an inode to the inode free list.
2435 * The inode should already be truncated to 0 length and have
2436 * no pages associated with it. This routine also assumes that
2437 * the inode is already a part of the transaction.
2438 *
2439 * The on-disk copy of the inode will have been added to the list
2440 * of unlinked inodes in the AGI. We need to remove the inode from
2441 * that list atomically with respect to freeing it here.
2442 */
2443int
2444xfs_ifree(
0e0417f3
BF
2445 struct xfs_trans *tp,
2446 struct xfs_inode *ip)
1da177e4
LT
2447{
2448 int error;
09b56604 2449 struct xfs_icluster xic = { 0 };
1da177e4 2450
579aa9ca 2451 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2452 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2453 ASSERT(ip->i_d.di_nextents == 0);
2454 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2455 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2456 ASSERT(ip->i_d.di_nblocks == 0);
2457
2458 /*
2459 * Pull the on-disk inode from the AGI unlinked list.
2460 */
2461 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2462 if (error)
1da177e4 2463 return error;
1da177e4 2464
0e0417f3 2465 error = xfs_difree(tp, ip->i_ino, &xic);
1baaed8f 2466 if (error)
1da177e4 2467 return error;
1baaed8f 2468
98c4f78d
DW
2469 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2470 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2471
c19b3b05 2472 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2473 ip->i_d.di_flags = 0;
beaae8cd 2474 ip->i_d.di_flags2 = 0;
1da177e4
LT
2475 ip->i_d.di_dmevmask = 0;
2476 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2477 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2478 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2479
2480 /* Don't attempt to replay owner changes for a deleted inode */
2481 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2482
1da177e4
LT
2483 /*
2484 * Bump the generation count so no one will be confused
2485 * by reincarnations of this inode.
2486 */
9e9a2674 2487 VFS_I(ip)->i_generation++;
1da177e4
LT
2488 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2489
09b56604
BF
2490 if (xic.deleted)
2491 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2492
2a30f36d 2493 return error;
1da177e4
LT
2494}
2495
1da177e4 2496/*
60ec6783
CH
2497 * This is called to unpin an inode. The caller must have the inode locked
2498 * in at least shared mode so that the buffer cannot be subsequently pinned
2499 * once someone is waiting for it to be unpinned.
1da177e4 2500 */
60ec6783 2501static void
f392e631 2502xfs_iunpin(
60ec6783 2503 struct xfs_inode *ip)
1da177e4 2504{
579aa9ca 2505 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2506
4aaf15d1
DC
2507 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2508
a3f74ffb 2509 /* Give the log a push to start the unpinning I/O */
656de4ff 2510 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2511
a3f74ffb 2512}
1da177e4 2513
f392e631
CH
2514static void
2515__xfs_iunpin_wait(
2516 struct xfs_inode *ip)
2517{
2518 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2519 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2520
2521 xfs_iunpin(ip);
2522
2523 do {
21417136 2524 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2525 if (xfs_ipincount(ip))
2526 io_schedule();
2527 } while (xfs_ipincount(ip));
21417136 2528 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2529}
2530
777df5af 2531void
a3f74ffb 2532xfs_iunpin_wait(
60ec6783 2533 struct xfs_inode *ip)
a3f74ffb 2534{
f392e631
CH
2535 if (xfs_ipincount(ip))
2536 __xfs_iunpin_wait(ip);
1da177e4
LT
2537}
2538
27320369
DC
2539/*
2540 * Removing an inode from the namespace involves removing the directory entry
2541 * and dropping the link count on the inode. Removing the directory entry can
2542 * result in locking an AGF (directory blocks were freed) and removing a link
2543 * count can result in placing the inode on an unlinked list which results in
2544 * locking an AGI.
2545 *
2546 * The big problem here is that we have an ordering constraint on AGF and AGI
2547 * locking - inode allocation locks the AGI, then can allocate a new extent for
2548 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2549 * removes the inode from the unlinked list, requiring that we lock the AGI
2550 * first, and then freeing the inode can result in an inode chunk being freed
2551 * and hence freeing disk space requiring that we lock an AGF.
2552 *
2553 * Hence the ordering that is imposed by other parts of the code is AGI before
2554 * AGF. This means we cannot remove the directory entry before we drop the inode
2555 * reference count and put it on the unlinked list as this results in a lock
2556 * order of AGF then AGI, and this can deadlock against inode allocation and
2557 * freeing. Therefore we must drop the link counts before we remove the
2558 * directory entry.
2559 *
2560 * This is still safe from a transactional point of view - it is not until we
310a75a3 2561 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2562 * transactions in this operation. Hence as long as we remove the directory
2563 * entry and drop the link count in the first transaction of the remove
2564 * operation, there are no transactional constraints on the ordering here.
2565 */
c24b5dfa
DC
2566int
2567xfs_remove(
2568 xfs_inode_t *dp,
2569 struct xfs_name *name,
2570 xfs_inode_t *ip)
2571{
2572 xfs_mount_t *mp = dp->i_mount;
2573 xfs_trans_t *tp = NULL;
c19b3b05 2574 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2575 int error = 0;
2c3234d1 2576 struct xfs_defer_ops dfops;
c24b5dfa 2577 uint resblks;
c24b5dfa
DC
2578
2579 trace_xfs_remove(dp, name);
2580
2581 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2582 return -EIO;
c24b5dfa 2583
c14cfcca 2584 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2585 if (error)
2586 goto std_return;
2587
c14cfcca 2588 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2589 if (error)
2590 goto std_return;
2591
c24b5dfa
DC
2592 /*
2593 * We try to get the real space reservation first,
2594 * allowing for directory btree deletion(s) implying
2595 * possible bmap insert(s). If we can't get the space
2596 * reservation then we use 0 instead, and avoid the bmap
2597 * btree insert(s) in the directory code by, if the bmap
2598 * insert tries to happen, instead trimming the LAST
2599 * block from the directory.
2600 */
2601 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2602 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2603 if (error == -ENOSPC) {
c24b5dfa 2604 resblks = 0;
253f4911
CH
2605 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2606 &tp);
c24b5dfa
DC
2607 }
2608 if (error) {
2451337d 2609 ASSERT(error != -ENOSPC);
253f4911 2610 goto std_return;
c24b5dfa
DC
2611 }
2612
7c2d238a 2613 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2614
65523218 2615 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2616 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2617
2618 /*
2619 * If we're removing a directory perform some additional validation.
2620 */
2621 if (is_dir) {
54d7b5c1
DC
2622 ASSERT(VFS_I(ip)->i_nlink >= 2);
2623 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2624 error = -ENOTEMPTY;
c24b5dfa
DC
2625 goto out_trans_cancel;
2626 }
2627 if (!xfs_dir_isempty(ip)) {
2451337d 2628 error = -ENOTEMPTY;
c24b5dfa
DC
2629 goto out_trans_cancel;
2630 }
c24b5dfa 2631
27320369 2632 /* Drop the link from ip's "..". */
c24b5dfa
DC
2633 error = xfs_droplink(tp, dp);
2634 if (error)
27320369 2635 goto out_trans_cancel;
c24b5dfa 2636
27320369 2637 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2638 error = xfs_droplink(tp, ip);
2639 if (error)
27320369 2640 goto out_trans_cancel;
c24b5dfa
DC
2641 } else {
2642 /*
2643 * When removing a non-directory we need to log the parent
2644 * inode here. For a directory this is done implicitly
2645 * by the xfs_droplink call for the ".." entry.
2646 */
2647 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2648 }
27320369 2649 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2650
27320369 2651 /* Drop the link from dp to ip. */
c24b5dfa
DC
2652 error = xfs_droplink(tp, ip);
2653 if (error)
27320369 2654 goto out_trans_cancel;
c24b5dfa 2655
f16dea54 2656 xfs_defer_init(tp, &dfops, &tp->t_firstblock);
381eee69 2657 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2658 if (error) {
2451337d 2659 ASSERT(error != -ENOENT);
27320369
DC
2660 goto out_bmap_cancel;
2661 }
2662
c24b5dfa
DC
2663 /*
2664 * If this is a synchronous mount, make sure that the
2665 * remove transaction goes to disk before returning to
2666 * the user.
2667 */
2668 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2669 xfs_trans_set_sync(tp);
2670
8ad7c629 2671 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
2672 if (error)
2673 goto out_bmap_cancel;
2674
70393313 2675 error = xfs_trans_commit(tp);
c24b5dfa
DC
2676 if (error)
2677 goto std_return;
2678
2cd2ef6a 2679 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2680 xfs_filestream_deassociate(ip);
2681
2682 return 0;
2683
2684 out_bmap_cancel:
2c3234d1 2685 xfs_defer_cancel(&dfops);
c24b5dfa 2686 out_trans_cancel:
4906e215 2687 xfs_trans_cancel(tp);
c24b5dfa
DC
2688 std_return:
2689 return error;
2690}
2691
f6bba201
DC
2692/*
2693 * Enter all inodes for a rename transaction into a sorted array.
2694 */
95afcf5c 2695#define __XFS_SORT_INODES 5
f6bba201
DC
2696STATIC void
2697xfs_sort_for_rename(
95afcf5c
DC
2698 struct xfs_inode *dp1, /* in: old (source) directory inode */
2699 struct xfs_inode *dp2, /* in: new (target) directory inode */
2700 struct xfs_inode *ip1, /* in: inode of old entry */
2701 struct xfs_inode *ip2, /* in: inode of new entry */
2702 struct xfs_inode *wip, /* in: whiteout inode */
2703 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2704 int *num_inodes) /* in/out: inodes in array */
f6bba201 2705{
f6bba201
DC
2706 int i, j;
2707
95afcf5c
DC
2708 ASSERT(*num_inodes == __XFS_SORT_INODES);
2709 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2710
f6bba201
DC
2711 /*
2712 * i_tab contains a list of pointers to inodes. We initialize
2713 * the table here & we'll sort it. We will then use it to
2714 * order the acquisition of the inode locks.
2715 *
2716 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2717 */
95afcf5c
DC
2718 i = 0;
2719 i_tab[i++] = dp1;
2720 i_tab[i++] = dp2;
2721 i_tab[i++] = ip1;
2722 if (ip2)
2723 i_tab[i++] = ip2;
2724 if (wip)
2725 i_tab[i++] = wip;
2726 *num_inodes = i;
f6bba201
DC
2727
2728 /*
2729 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2730 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2731 */
2732 for (i = 0; i < *num_inodes; i++) {
2733 for (j = 1; j < *num_inodes; j++) {
2734 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2735 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2736 i_tab[j] = i_tab[j-1];
2737 i_tab[j-1] = temp;
2738 }
2739 }
2740 }
2741}
2742
310606b0
DC
2743static int
2744xfs_finish_rename(
c9cfdb38 2745 struct xfs_trans *tp)
310606b0 2746{
c9cfdb38 2747 struct xfs_defer_ops *dfops = tp->t_dfops;
310606b0
DC
2748 int error;
2749
2750 /*
2751 * If this is a synchronous mount, make sure that the rename transaction
2752 * goes to disk before returning to the user.
2753 */
2754 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2755 xfs_trans_set_sync(tp);
2756
8ad7c629 2757 error = xfs_defer_finish(&tp, dfops);
310606b0 2758 if (error) {
2c3234d1 2759 xfs_defer_cancel(dfops);
4906e215 2760 xfs_trans_cancel(tp);
310606b0
DC
2761 return error;
2762 }
2763
70393313 2764 return xfs_trans_commit(tp);
310606b0
DC
2765}
2766
d31a1825
CM
2767/*
2768 * xfs_cross_rename()
2769 *
2770 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2771 */
2772STATIC int
2773xfs_cross_rename(
2774 struct xfs_trans *tp,
2775 struct xfs_inode *dp1,
2776 struct xfs_name *name1,
2777 struct xfs_inode *ip1,
2778 struct xfs_inode *dp2,
2779 struct xfs_name *name2,
2780 struct xfs_inode *ip2,
d31a1825
CM
2781 int spaceres)
2782{
2783 int error = 0;
2784 int ip1_flags = 0;
2785 int ip2_flags = 0;
2786 int dp2_flags = 0;
2787
2788 /* Swap inode number for dirent in first parent */
381eee69 2789 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 2790 if (error)
eeacd321 2791 goto out_trans_abort;
d31a1825
CM
2792
2793 /* Swap inode number for dirent in second parent */
381eee69 2794 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 2795 if (error)
eeacd321 2796 goto out_trans_abort;
d31a1825
CM
2797
2798 /*
2799 * If we're renaming one or more directories across different parents,
2800 * update the respective ".." entries (and link counts) to match the new
2801 * parents.
2802 */
2803 if (dp1 != dp2) {
2804 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2805
c19b3b05 2806 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 2807 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 2808 dp1->i_ino, spaceres);
d31a1825 2809 if (error)
eeacd321 2810 goto out_trans_abort;
d31a1825
CM
2811
2812 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2813 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2814 error = xfs_droplink(tp, dp2);
2815 if (error)
eeacd321 2816 goto out_trans_abort;
d31a1825
CM
2817 error = xfs_bumplink(tp, dp1);
2818 if (error)
eeacd321 2819 goto out_trans_abort;
d31a1825
CM
2820 }
2821
2822 /*
2823 * Although ip1 isn't changed here, userspace needs
2824 * to be warned about the change, so that applications
2825 * relying on it (like backup ones), will properly
2826 * notify the change
2827 */
2828 ip1_flags |= XFS_ICHGTIME_CHG;
2829 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2830 }
2831
c19b3b05 2832 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 2833 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 2834 dp2->i_ino, spaceres);
d31a1825 2835 if (error)
eeacd321 2836 goto out_trans_abort;
d31a1825
CM
2837
2838 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2839 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2840 error = xfs_droplink(tp, dp1);
2841 if (error)
eeacd321 2842 goto out_trans_abort;
d31a1825
CM
2843 error = xfs_bumplink(tp, dp2);
2844 if (error)
eeacd321 2845 goto out_trans_abort;
d31a1825
CM
2846 }
2847
2848 /*
2849 * Although ip2 isn't changed here, userspace needs
2850 * to be warned about the change, so that applications
2851 * relying on it (like backup ones), will properly
2852 * notify the change
2853 */
2854 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2855 ip2_flags |= XFS_ICHGTIME_CHG;
2856 }
2857 }
2858
2859 if (ip1_flags) {
2860 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2861 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2862 }
2863 if (ip2_flags) {
2864 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2865 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2866 }
2867 if (dp2_flags) {
2868 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2869 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2870 }
2871 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2872 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 2873 return xfs_finish_rename(tp);
eeacd321
DC
2874
2875out_trans_abort:
c9cfdb38 2876 xfs_defer_cancel(tp->t_dfops);
4906e215 2877 xfs_trans_cancel(tp);
d31a1825
CM
2878 return error;
2879}
2880
7dcf5c3e
DC
2881/*
2882 * xfs_rename_alloc_whiteout()
2883 *
2884 * Return a referenced, unlinked, unlocked inode that that can be used as a
2885 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2886 * crash between allocating the inode and linking it into the rename transaction
2887 * recovery will free the inode and we won't leak it.
2888 */
2889static int
2890xfs_rename_alloc_whiteout(
2891 struct xfs_inode *dp,
2892 struct xfs_inode **wip)
2893{
2894 struct xfs_inode *tmpfile;
2895 int error;
2896
a1f69417 2897 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
2898 if (error)
2899 return error;
2900
22419ac9
BF
2901 /*
2902 * Prepare the tmpfile inode as if it were created through the VFS.
2903 * Otherwise, the link increment paths will complain about nlink 0->1.
2904 * Drop the link count as done by d_tmpfile(), complete the inode setup
2905 * and flag it as linkable.
2906 */
2907 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2908 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2909 xfs_finish_inode_setup(tmpfile);
2910 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2911
2912 *wip = tmpfile;
2913 return 0;
2914}
2915
f6bba201
DC
2916/*
2917 * xfs_rename
2918 */
2919int
2920xfs_rename(
7dcf5c3e
DC
2921 struct xfs_inode *src_dp,
2922 struct xfs_name *src_name,
2923 struct xfs_inode *src_ip,
2924 struct xfs_inode *target_dp,
2925 struct xfs_name *target_name,
2926 struct xfs_inode *target_ip,
2927 unsigned int flags)
f6bba201 2928{
7dcf5c3e
DC
2929 struct xfs_mount *mp = src_dp->i_mount;
2930 struct xfs_trans *tp;
2c3234d1 2931 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2932 struct xfs_inode *wip = NULL; /* whiteout inode */
2933 struct xfs_inode *inodes[__XFS_SORT_INODES];
2934 int num_inodes = __XFS_SORT_INODES;
2b93681f 2935 bool new_parent = (src_dp != target_dp);
c19b3b05 2936 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2937 int spaceres;
2938 int error;
f6bba201
DC
2939
2940 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2941
eeacd321
DC
2942 if ((flags & RENAME_EXCHANGE) && !target_ip)
2943 return -EINVAL;
2944
7dcf5c3e
DC
2945 /*
2946 * If we are doing a whiteout operation, allocate the whiteout inode
2947 * we will be placing at the target and ensure the type is set
2948 * appropriately.
2949 */
2950 if (flags & RENAME_WHITEOUT) {
2951 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2952 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2953 if (error)
2954 return error;
2955
2956 /* setup target dirent info as whiteout */
2957 src_name->type = XFS_DIR3_FT_CHRDEV;
2958 }
f6bba201 2959
7dcf5c3e 2960 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2961 inodes, &num_inodes);
2962
f6bba201 2963 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2964 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2965 if (error == -ENOSPC) {
f6bba201 2966 spaceres = 0;
253f4911
CH
2967 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2968 &tp);
f6bba201 2969 }
445883e8 2970 if (error)
253f4911 2971 goto out_release_wip;
f6bba201
DC
2972
2973 /*
2974 * Attach the dquots to the inodes
2975 */
2976 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2977 if (error)
2978 goto out_trans_cancel;
f6bba201
DC
2979
2980 /*
2981 * Lock all the participating inodes. Depending upon whether
2982 * the target_name exists in the target directory, and
2983 * whether the target directory is the same as the source
2984 * directory, we can lock from 2 to 4 inodes.
2985 */
2986 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2987
2988 /*
2989 * Join all the inodes to the transaction. From this point on,
2990 * we can rely on either trans_commit or trans_cancel to unlock
2991 * them.
2992 */
65523218 2993 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2994 if (new_parent)
65523218 2995 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2996 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2997 if (target_ip)
2998 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2999 if (wip)
3000 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3001
3002 /*
3003 * If we are using project inheritance, we only allow renames
3004 * into our tree when the project IDs are the same; else the
3005 * tree quota mechanism would be circumvented.
3006 */
3007 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3008 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3009 error = -EXDEV;
445883e8 3010 goto out_trans_cancel;
f6bba201
DC
3011 }
3012
f16dea54 3013 xfs_defer_init(tp, &dfops, &tp->t_firstblock);
445883e8 3014
eeacd321
DC
3015 /* RENAME_EXCHANGE is unique from here on. */
3016 if (flags & RENAME_EXCHANGE)
3017 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3018 target_dp, target_name, target_ip,
f16dea54 3019 spaceres);
d31a1825 3020
f6bba201
DC
3021 /*
3022 * Set up the target.
3023 */
3024 if (target_ip == NULL) {
3025 /*
3026 * If there's no space reservation, check the entry will
3027 * fit before actually inserting it.
3028 */
94f3cad5
ES
3029 if (!spaceres) {
3030 error = xfs_dir_canenter(tp, target_dp, target_name);
3031 if (error)
445883e8 3032 goto out_trans_cancel;
94f3cad5 3033 }
f6bba201
DC
3034 /*
3035 * If target does not exist and the rename crosses
3036 * directories, adjust the target directory link count
3037 * to account for the ".." reference from the new entry.
3038 */
3039 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3040 src_ip->i_ino, spaceres);
f6bba201 3041 if (error)
4906e215 3042 goto out_bmap_cancel;
f6bba201
DC
3043
3044 xfs_trans_ichgtime(tp, target_dp,
3045 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3046
3047 if (new_parent && src_is_directory) {
3048 error = xfs_bumplink(tp, target_dp);
3049 if (error)
4906e215 3050 goto out_bmap_cancel;
f6bba201
DC
3051 }
3052 } else { /* target_ip != NULL */
3053 /*
3054 * If target exists and it's a directory, check that both
3055 * target and source are directories and that target can be
3056 * destroyed, or that neither is a directory.
3057 */
c19b3b05 3058 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3059 /*
3060 * Make sure target dir is empty.
3061 */
3062 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3063 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3064 error = -EEXIST;
445883e8 3065 goto out_trans_cancel;
f6bba201
DC
3066 }
3067 }
3068
3069 /*
3070 * Link the source inode under the target name.
3071 * If the source inode is a directory and we are moving
3072 * it across directories, its ".." entry will be
3073 * inconsistent until we replace that down below.
3074 *
3075 * In case there is already an entry with the same
3076 * name at the destination directory, remove it first.
3077 */
3078 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3079 src_ip->i_ino, spaceres);
f6bba201 3080 if (error)
4906e215 3081 goto out_bmap_cancel;
f6bba201
DC
3082
3083 xfs_trans_ichgtime(tp, target_dp,
3084 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3085
3086 /*
3087 * Decrement the link count on the target since the target
3088 * dir no longer points to it.
3089 */
3090 error = xfs_droplink(tp, target_ip);
3091 if (error)
4906e215 3092 goto out_bmap_cancel;
f6bba201
DC
3093
3094 if (src_is_directory) {
3095 /*
3096 * Drop the link from the old "." entry.
3097 */
3098 error = xfs_droplink(tp, target_ip);
3099 if (error)
4906e215 3100 goto out_bmap_cancel;
f6bba201
DC
3101 }
3102 } /* target_ip != NULL */
3103
3104 /*
3105 * Remove the source.
3106 */
3107 if (new_parent && src_is_directory) {
3108 /*
3109 * Rewrite the ".." entry to point to the new
3110 * directory.
3111 */
3112 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3113 target_dp->i_ino, spaceres);
2451337d 3114 ASSERT(error != -EEXIST);
f6bba201 3115 if (error)
4906e215 3116 goto out_bmap_cancel;
f6bba201
DC
3117 }
3118
3119 /*
3120 * We always want to hit the ctime on the source inode.
3121 *
3122 * This isn't strictly required by the standards since the source
3123 * inode isn't really being changed, but old unix file systems did
3124 * it and some incremental backup programs won't work without it.
3125 */
3126 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3127 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3128
3129 /*
3130 * Adjust the link count on src_dp. This is necessary when
3131 * renaming a directory, either within one parent when
3132 * the target existed, or across two parent directories.
3133 */
3134 if (src_is_directory && (new_parent || target_ip != NULL)) {
3135
3136 /*
3137 * Decrement link count on src_directory since the
3138 * entry that's moved no longer points to it.
3139 */
3140 error = xfs_droplink(tp, src_dp);
3141 if (error)
4906e215 3142 goto out_bmap_cancel;
f6bba201
DC
3143 }
3144
7dcf5c3e
DC
3145 /*
3146 * For whiteouts, we only need to update the source dirent with the
3147 * inode number of the whiteout inode rather than removing it
3148 * altogether.
3149 */
3150 if (wip) {
3151 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3152 spaceres);
7dcf5c3e
DC
3153 } else
3154 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3155 spaceres);
f6bba201 3156 if (error)
4906e215 3157 goto out_bmap_cancel;
f6bba201
DC
3158
3159 /*
7dcf5c3e
DC
3160 * For whiteouts, we need to bump the link count on the whiteout inode.
3161 * This means that failures all the way up to this point leave the inode
3162 * on the unlinked list and so cleanup is a simple matter of dropping
3163 * the remaining reference to it. If we fail here after bumping the link
3164 * count, we're shutting down the filesystem so we'll never see the
3165 * intermediate state on disk.
f6bba201 3166 */
7dcf5c3e 3167 if (wip) {
54d7b5c1 3168 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3169 error = xfs_bumplink(tp, wip);
3170 if (error)
4906e215 3171 goto out_bmap_cancel;
7dcf5c3e
DC
3172 error = xfs_iunlink_remove(tp, wip);
3173 if (error)
4906e215 3174 goto out_bmap_cancel;
7dcf5c3e 3175 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3176
7dcf5c3e
DC
3177 /*
3178 * Now we have a real link, clear the "I'm a tmpfile" state
3179 * flag from the inode so it doesn't accidentally get misused in
3180 * future.
3181 */
3182 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3183 }
3184
f6bba201
DC
3185 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3186 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3187 if (new_parent)
3188 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3189
c9cfdb38 3190 error = xfs_finish_rename(tp);
7dcf5c3e
DC
3191 if (wip)
3192 IRELE(wip);
3193 return error;
f6bba201 3194
445883e8 3195out_bmap_cancel:
2c3234d1 3196 xfs_defer_cancel(&dfops);
445883e8 3197out_trans_cancel:
4906e215 3198 xfs_trans_cancel(tp);
253f4911 3199out_release_wip:
7dcf5c3e
DC
3200 if (wip)
3201 IRELE(wip);
f6bba201
DC
3202 return error;
3203}
3204
5c4d97d0
DC
3205STATIC int
3206xfs_iflush_cluster(
19429363
DC
3207 struct xfs_inode *ip,
3208 struct xfs_buf *bp)
1da177e4 3209{
19429363 3210 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3211 struct xfs_perag *pag;
3212 unsigned long first_index, mask;
3213 unsigned long inodes_per_cluster;
19429363
DC
3214 int cilist_size;
3215 struct xfs_inode **cilist;
3216 struct xfs_inode *cip;
5c4d97d0
DC
3217 int nr_found;
3218 int clcount = 0;
1da177e4 3219 int i;
1da177e4 3220
5c4d97d0 3221 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3222
0f49efd8 3223 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3224 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3225 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3226 if (!cilist)
5c4d97d0 3227 goto out_put;
1da177e4 3228
0f49efd8 3229 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3230 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3231 rcu_read_lock();
3232 /* really need a gang lookup range call here */
19429363 3233 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3234 first_index, inodes_per_cluster);
3235 if (nr_found == 0)
3236 goto out_free;
3237
3238 for (i = 0; i < nr_found; i++) {
19429363
DC
3239 cip = cilist[i];
3240 if (cip == ip)
bad55843 3241 continue;
1a3e8f3d
DC
3242
3243 /*
3244 * because this is an RCU protected lookup, we could find a
3245 * recently freed or even reallocated inode during the lookup.
3246 * We need to check under the i_flags_lock for a valid inode
3247 * here. Skip it if it is not valid or the wrong inode.
3248 */
19429363
DC
3249 spin_lock(&cip->i_flags_lock);
3250 if (!cip->i_ino ||
3251 __xfs_iflags_test(cip, XFS_ISTALE)) {
3252 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3253 continue;
3254 }
5a90e53e
DC
3255
3256 /*
3257 * Once we fall off the end of the cluster, no point checking
3258 * any more inodes in the list because they will also all be
3259 * outside the cluster.
3260 */
19429363
DC
3261 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3262 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3263 break;
3264 }
19429363 3265 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3266
bad55843
DC
3267 /*
3268 * Do an un-protected check to see if the inode is dirty and
3269 * is a candidate for flushing. These checks will be repeated
3270 * later after the appropriate locks are acquired.
3271 */
19429363 3272 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3273 continue;
bad55843
DC
3274
3275 /*
3276 * Try to get locks. If any are unavailable or it is pinned,
3277 * then this inode cannot be flushed and is skipped.
3278 */
3279
19429363 3280 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3281 continue;
19429363
DC
3282 if (!xfs_iflock_nowait(cip)) {
3283 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3284 continue;
3285 }
19429363
DC
3286 if (xfs_ipincount(cip)) {
3287 xfs_ifunlock(cip);
3288 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3289 continue;
3290 }
3291
8a17d7dd
DC
3292
3293 /*
3294 * Check the inode number again, just to be certain we are not
3295 * racing with freeing in xfs_reclaim_inode(). See the comments
3296 * in that function for more information as to why the initial
3297 * check is not sufficient.
3298 */
19429363
DC
3299 if (!cip->i_ino) {
3300 xfs_ifunlock(cip);
3301 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3302 continue;
3303 }
3304
3305 /*
3306 * arriving here means that this inode can be flushed. First
3307 * re-check that it's dirty before flushing.
3308 */
19429363 3309 if (!xfs_inode_clean(cip)) {
33540408 3310 int error;
19429363 3311 error = xfs_iflush_int(cip, bp);
bad55843 3312 if (error) {
19429363 3313 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3314 goto cluster_corrupt_out;
3315 }
3316 clcount++;
3317 } else {
19429363 3318 xfs_ifunlock(cip);
bad55843 3319 }
19429363 3320 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3321 }
3322
3323 if (clcount) {
ff6d6af2
BD
3324 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3325 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3326 }
3327
3328out_free:
1a3e8f3d 3329 rcu_read_unlock();
19429363 3330 kmem_free(cilist);
44b56e0a
DC
3331out_put:
3332 xfs_perag_put(pag);
bad55843
DC
3333 return 0;
3334
3335
3336cluster_corrupt_out:
3337 /*
3338 * Corruption detected in the clustering loop. Invalidate the
3339 * inode buffer and shut down the filesystem.
3340 */
1a3e8f3d 3341 rcu_read_unlock();
bad55843
DC
3342 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3343
bad55843 3344 /*
e53946db
DC
3345 * We'll always have an inode attached to the buffer for completion
3346 * process by the time we are called from xfs_iflush(). Hence we have
3347 * always need to do IO completion processing to abort the inodes
3348 * attached to the buffer. handle them just like the shutdown case in
3349 * xfs_buf_submit().
bad55843 3350 */
e53946db
DC
3351 ASSERT(bp->b_iodone);
3352 bp->b_flags &= ~XBF_DONE;
3353 xfs_buf_stale(bp);
3354 xfs_buf_ioerror(bp, -EIO);
3355 xfs_buf_ioend(bp);
3356
3357 /* abort the corrupt inode, as it was not attached to the buffer */
19429363
DC
3358 xfs_iflush_abort(cip, false);
3359 kmem_free(cilist);
44b56e0a 3360 xfs_perag_put(pag);
2451337d 3361 return -EFSCORRUPTED;
bad55843
DC
3362}
3363
1da177e4 3364/*
4c46819a
CH
3365 * Flush dirty inode metadata into the backing buffer.
3366 *
3367 * The caller must have the inode lock and the inode flush lock held. The
3368 * inode lock will still be held upon return to the caller, and the inode
3369 * flush lock will be released after the inode has reached the disk.
3370 *
3371 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3372 */
3373int
3374xfs_iflush(
4c46819a
CH
3375 struct xfs_inode *ip,
3376 struct xfs_buf **bpp)
1da177e4 3377{
4c46819a 3378 struct xfs_mount *mp = ip->i_mount;
b1438f47 3379 struct xfs_buf *bp = NULL;
4c46819a 3380 struct xfs_dinode *dip;
1da177e4 3381 int error;
1da177e4 3382
ff6d6af2 3383 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3384
579aa9ca 3385 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3386 ASSERT(xfs_isiflocked(ip));
1da177e4 3387 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3388 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3389
4c46819a 3390 *bpp = NULL;
1da177e4 3391
1da177e4
LT
3392 xfs_iunpin_wait(ip);
3393
4b6a4688
DC
3394 /*
3395 * For stale inodes we cannot rely on the backing buffer remaining
3396 * stale in cache for the remaining life of the stale inode and so
475ee413 3397 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3398 * inodes below. We have to check this after ensuring the inode is
3399 * unpinned so that it is safe to reclaim the stale inode after the
3400 * flush call.
3401 */
3402 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3403 xfs_ifunlock(ip);
3404 return 0;
3405 }
3406
1da177e4
LT
3407 /*
3408 * This may have been unpinned because the filesystem is shutting
3409 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3410 * to disk, because the log record didn't make it to disk.
3411 *
3412 * We also have to remove the log item from the AIL in this case,
3413 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3414 */
3415 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3416 error = -EIO;
32ce90a4 3417 goto abort_out;
1da177e4
LT
3418 }
3419
a3f74ffb 3420 /*
b1438f47
DC
3421 * Get the buffer containing the on-disk inode. We are doing a try-lock
3422 * operation here, so we may get an EAGAIN error. In that case, we
3423 * simply want to return with the inode still dirty.
3424 *
3425 * If we get any other error, we effectively have a corruption situation
3426 * and we cannot flush the inode, so we treat it the same as failing
3427 * xfs_iflush_int().
a3f74ffb 3428 */
475ee413
CH
3429 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3430 0);
b1438f47 3431 if (error == -EAGAIN) {
a3f74ffb
DC
3432 xfs_ifunlock(ip);
3433 return error;
3434 }
b1438f47
DC
3435 if (error)
3436 goto corrupt_out;
a3f74ffb 3437
1da177e4
LT
3438 /*
3439 * First flush out the inode that xfs_iflush was called with.
3440 */
3441 error = xfs_iflush_int(ip, bp);
bad55843 3442 if (error)
1da177e4 3443 goto corrupt_out;
1da177e4 3444
a3f74ffb
DC
3445 /*
3446 * If the buffer is pinned then push on the log now so we won't
3447 * get stuck waiting in the write for too long.
3448 */
811e64c7 3449 if (xfs_buf_ispinned(bp))
a14a348b 3450 xfs_log_force(mp, 0);
a3f74ffb 3451
1da177e4 3452 /*
e53946db
DC
3453 * inode clustering: try to gather other inodes into this write
3454 *
3455 * Note: Any error during clustering will result in the filesystem
3456 * being shut down and completion callbacks run on the cluster buffer.
3457 * As we have already flushed and attached this inode to the buffer,
3458 * it has already been aborted and released by xfs_iflush_cluster() and
3459 * so we have no further error handling to do here.
1da177e4 3460 */
bad55843
DC
3461 error = xfs_iflush_cluster(ip, bp);
3462 if (error)
e53946db 3463 return error;
1da177e4 3464
4c46819a
CH
3465 *bpp = bp;
3466 return 0;
1da177e4
LT
3467
3468corrupt_out:
b1438f47
DC
3469 if (bp)
3470 xfs_buf_relse(bp);
7d04a335 3471 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
32ce90a4 3472abort_out:
e53946db 3473 /* abort the corrupt inode, as it was not attached to the buffer */
04913fdd 3474 xfs_iflush_abort(ip, false);
32ce90a4 3475 return error;
1da177e4
LT
3476}
3477
9cfb9b47
DW
3478/*
3479 * If there are inline format data / attr forks attached to this inode,
3480 * make sure they're not corrupt.
3481 */
3482bool
3483xfs_inode_verify_forks(
3484 struct xfs_inode *ip)
3485{
22431bf3 3486 struct xfs_ifork *ifp;
9cfb9b47
DW
3487 xfs_failaddr_t fa;
3488
3489 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3490 if (fa) {
22431bf3
DW
3491 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3492 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3493 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3494 return false;
3495 }
3496
3497 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3498 if (fa) {
22431bf3
DW
3499 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3500 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3501 ifp ? ifp->if_u1.if_data : NULL,
3502 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3503 return false;
3504 }
3505 return true;
3506}
3507
1da177e4
LT
3508STATIC int
3509xfs_iflush_int(
93848a99
CH
3510 struct xfs_inode *ip,
3511 struct xfs_buf *bp)
1da177e4 3512{
93848a99
CH
3513 struct xfs_inode_log_item *iip = ip->i_itemp;
3514 struct xfs_dinode *dip;
3515 struct xfs_mount *mp = ip->i_mount;
1da177e4 3516
579aa9ca 3517 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3518 ASSERT(xfs_isiflocked(ip));
1da177e4 3519 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3520 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3521 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3522 ASSERT(ip->i_d.di_version > 1);
1da177e4 3523
1da177e4 3524 /* set *dip = inode's place in the buffer */
88ee2df7 3525 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3526
69ef921b 3527 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3528 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3529 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3530 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3531 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3532 goto corrupt_out;
3533 }
c19b3b05 3534 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3535 if (XFS_TEST_ERROR(
3536 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3537 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3538 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3539 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3540 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3541 __func__, ip->i_ino, ip);
1da177e4
LT
3542 goto corrupt_out;
3543 }
c19b3b05 3544 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3545 if (XFS_TEST_ERROR(
3546 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3547 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3548 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3549 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3550 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3551 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3552 __func__, ip->i_ino, ip);
1da177e4
LT
3553 goto corrupt_out;
3554 }
3555 }
3556 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3557 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3558 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3559 "%s: detected corrupt incore inode %Lu, "
c9690043 3560 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3561 __func__, ip->i_ino,
1da177e4 3562 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3563 ip->i_d.di_nblocks, ip);
1da177e4
LT
3564 goto corrupt_out;
3565 }
3566 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3567 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3568 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3569 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3570 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3571 goto corrupt_out;
3572 }
e60896d8 3573
1da177e4 3574 /*
263997a6 3575 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3576 * di_flushiter count for correct sequencing. We bump the flush
3577 * iteration count so we can detect flushes which postdate a log record
3578 * during recovery. This is redundant as we now log every change and
3579 * hence this can't happen but we need to still do it to ensure
3580 * backwards compatibility with old kernels that predate logging all
3581 * inode changes.
1da177e4 3582 */
e60896d8
DC
3583 if (ip->i_d.di_version < 3)
3584 ip->i_d.di_flushiter++;
1da177e4 3585
9cfb9b47
DW
3586 /* Check the inline fork data before we write out. */
3587 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3588 goto corrupt_out;
3589
1da177e4 3590 /*
3987848c
DC
3591 * Copy the dirty parts of the inode into the on-disk inode. We always
3592 * copy out the core of the inode, because if the inode is dirty at all
3593 * the core must be.
1da177e4 3594 */
93f958f9 3595 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3596
3597 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3598 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3599 ip->i_d.di_flushiter = 0;
3600
005c5db8
DW
3601 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3602 if (XFS_IFORK_Q(ip))
3603 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3604 xfs_inobp_check(mp, bp);
3605
3606 /*
f5d8d5c4
CH
3607 * We've recorded everything logged in the inode, so we'd like to clear
3608 * the ili_fields bits so we don't log and flush things unnecessarily.
3609 * However, we can't stop logging all this information until the data
3610 * we've copied into the disk buffer is written to disk. If we did we
3611 * might overwrite the copy of the inode in the log with all the data
3612 * after re-logging only part of it, and in the face of a crash we
3613 * wouldn't have all the data we need to recover.
1da177e4 3614 *
f5d8d5c4
CH
3615 * What we do is move the bits to the ili_last_fields field. When
3616 * logging the inode, these bits are moved back to the ili_fields field.
3617 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3618 * know that the information those bits represent is permanently on
3619 * disk. As long as the flush completes before the inode is logged
3620 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3621 *
f5d8d5c4
CH
3622 * We can play with the ili_fields bits here, because the inode lock
3623 * must be held exclusively in order to set bits there and the flush
3624 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3625 * done routine can tell whether or not to look in the AIL. Also, store
3626 * the current LSN of the inode so that we can tell whether the item has
3627 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3628 * need the AIL lock, because it is a 64 bit value that cannot be read
3629 * atomically.
1da177e4 3630 */
93848a99
CH
3631 iip->ili_last_fields = iip->ili_fields;
3632 iip->ili_fields = 0;
fc0561ce 3633 iip->ili_fsync_fields = 0;
93848a99 3634 iip->ili_logged = 1;
1da177e4 3635
93848a99
CH
3636 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3637 &iip->ili_item.li_lsn);
1da177e4 3638
93848a99
CH
3639 /*
3640 * Attach the function xfs_iflush_done to the inode's
3641 * buffer. This will remove the inode from the AIL
3642 * and unlock the inode's flush lock when the inode is
3643 * completely written to disk.
3644 */
3645 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3646
93848a99
CH
3647 /* generate the checksum. */
3648 xfs_dinode_calc_crc(mp, dip);
1da177e4 3649
643c8c05 3650 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3651 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3652 return 0;
3653
3654corrupt_out:
2451337d 3655 return -EFSCORRUPTED;
1da177e4 3656}