xfs: fix buffer use after free on IO error
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
a844f451 26#include "xfs_inum.h"
1da177e4
LT
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4 29#include "xfs_mount.h"
a4fbe6ab 30#include "xfs_inode.h"
57062787 31#include "xfs_da_format.h"
c24b5dfa 32#include "xfs_da_btree.h"
c24b5dfa 33#include "xfs_dir2.h"
a844f451 34#include "xfs_attr_sf.h"
c24b5dfa 35#include "xfs_attr.h"
239880ef
DC
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
1da177e4 38#include "xfs_buf_item.h"
a844f451 39#include "xfs_inode_item.h"
a844f451
NS
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
68988114 42#include "xfs_bmap_util.h"
1da177e4 43#include "xfs_error.h"
1da177e4 44#include "xfs_quota.h"
2a82b8be 45#include "xfs_filestream.h"
93848a99 46#include "xfs_cksum.h"
0b1b213f 47#include "xfs_trace.h"
33479e05 48#include "xfs_icache.h"
c24b5dfa 49#include "xfs_symlink.h"
239880ef
DC
50#include "xfs_trans_priv.h"
51#include "xfs_log.h"
a4fbe6ab 52#include "xfs_bmap_btree.h"
1da177e4 53
1da177e4 54kmem_zone_t *xfs_inode_zone;
1da177e4
LT
55
56/*
8f04c47a 57 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
58 * freed from a file in a single transaction.
59 */
60#define XFS_ITRUNC_MAX_EXTENTS 2
61
62STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 63
ab297431
ZYW
64STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
65
2a0ec1d9
DC
66/*
67 * helper function to extract extent size hint from inode
68 */
69xfs_extlen_t
70xfs_get_extsz_hint(
71 struct xfs_inode *ip)
72{
73 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
74 return ip->i_d.di_extsize;
75 if (XFS_IS_REALTIME_INODE(ip))
76 return ip->i_mount->m_sb.sb_rextsize;
77 return 0;
78}
79
fa96acad 80/*
efa70be1
CH
81 * These two are wrapper routines around the xfs_ilock() routine used to
82 * centralize some grungy code. They are used in places that wish to lock the
83 * inode solely for reading the extents. The reason these places can't just
84 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
85 * bringing in of the extents from disk for a file in b-tree format. If the
86 * inode is in b-tree format, then we need to lock the inode exclusively until
87 * the extents are read in. Locking it exclusively all the time would limit
88 * our parallelism unnecessarily, though. What we do instead is check to see
89 * if the extents have been read in yet, and only lock the inode exclusively
90 * if they have not.
fa96acad 91 *
efa70be1 92 * The functions return a value which should be given to the corresponding
01f4f327 93 * xfs_iunlock() call.
fa96acad
DC
94 */
95uint
309ecac8
CH
96xfs_ilock_data_map_shared(
97 struct xfs_inode *ip)
fa96acad 98{
309ecac8 99 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 100
309ecac8
CH
101 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
102 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 103 lock_mode = XFS_ILOCK_EXCL;
fa96acad 104 xfs_ilock(ip, lock_mode);
fa96acad
DC
105 return lock_mode;
106}
107
efa70be1
CH
108uint
109xfs_ilock_attr_map_shared(
110 struct xfs_inode *ip)
fa96acad 111{
efa70be1
CH
112 uint lock_mode = XFS_ILOCK_SHARED;
113
114 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
115 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
116 lock_mode = XFS_ILOCK_EXCL;
117 xfs_ilock(ip, lock_mode);
118 return lock_mode;
fa96acad
DC
119}
120
121/*
122 * The xfs inode contains 2 locks: a multi-reader lock called the
123 * i_iolock and a multi-reader lock called the i_lock. This routine
124 * allows either or both of the locks to be obtained.
125 *
126 * The 2 locks should always be ordered so that the IO lock is
127 * obtained first in order to prevent deadlock.
128 *
129 * ip -- the inode being locked
130 * lock_flags -- this parameter indicates the inode's locks
131 * to be locked. It can be:
132 * XFS_IOLOCK_SHARED,
133 * XFS_IOLOCK_EXCL,
134 * XFS_ILOCK_SHARED,
135 * XFS_ILOCK_EXCL,
136 * XFS_IOLOCK_SHARED | XFS_ILOCK_SHARED,
137 * XFS_IOLOCK_SHARED | XFS_ILOCK_EXCL,
138 * XFS_IOLOCK_EXCL | XFS_ILOCK_SHARED,
139 * XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL
140 */
141void
142xfs_ilock(
143 xfs_inode_t *ip,
144 uint lock_flags)
145{
146 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
147
148 /*
149 * You can't set both SHARED and EXCL for the same lock,
150 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
151 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
152 */
153 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
154 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
155 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
156 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
157 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
158
159 if (lock_flags & XFS_IOLOCK_EXCL)
160 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
161 else if (lock_flags & XFS_IOLOCK_SHARED)
162 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
163
164 if (lock_flags & XFS_ILOCK_EXCL)
165 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
166 else if (lock_flags & XFS_ILOCK_SHARED)
167 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
168}
169
170/*
171 * This is just like xfs_ilock(), except that the caller
172 * is guaranteed not to sleep. It returns 1 if it gets
173 * the requested locks and 0 otherwise. If the IO lock is
174 * obtained but the inode lock cannot be, then the IO lock
175 * is dropped before returning.
176 *
177 * ip -- the inode being locked
178 * lock_flags -- this parameter indicates the inode's locks to be
179 * to be locked. See the comment for xfs_ilock() for a list
180 * of valid values.
181 */
182int
183xfs_ilock_nowait(
184 xfs_inode_t *ip,
185 uint lock_flags)
186{
187 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
188
189 /*
190 * You can't set both SHARED and EXCL for the same lock,
191 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
192 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
193 */
194 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
195 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
196 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
197 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
198 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
199
200 if (lock_flags & XFS_IOLOCK_EXCL) {
201 if (!mrtryupdate(&ip->i_iolock))
202 goto out;
203 } else if (lock_flags & XFS_IOLOCK_SHARED) {
204 if (!mrtryaccess(&ip->i_iolock))
205 goto out;
206 }
207 if (lock_flags & XFS_ILOCK_EXCL) {
208 if (!mrtryupdate(&ip->i_lock))
209 goto out_undo_iolock;
210 } else if (lock_flags & XFS_ILOCK_SHARED) {
211 if (!mrtryaccess(&ip->i_lock))
212 goto out_undo_iolock;
213 }
214 return 1;
215
216 out_undo_iolock:
217 if (lock_flags & XFS_IOLOCK_EXCL)
218 mrunlock_excl(&ip->i_iolock);
219 else if (lock_flags & XFS_IOLOCK_SHARED)
220 mrunlock_shared(&ip->i_iolock);
221 out:
222 return 0;
223}
224
225/*
226 * xfs_iunlock() is used to drop the inode locks acquired with
227 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
228 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
229 * that we know which locks to drop.
230 *
231 * ip -- the inode being unlocked
232 * lock_flags -- this parameter indicates the inode's locks to be
233 * to be unlocked. See the comment for xfs_ilock() for a list
234 * of valid values for this parameter.
235 *
236 */
237void
238xfs_iunlock(
239 xfs_inode_t *ip,
240 uint lock_flags)
241{
242 /*
243 * You can't set both SHARED and EXCL for the same lock,
244 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
245 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
246 */
247 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
248 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
249 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
250 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
251 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
252 ASSERT(lock_flags != 0);
253
254 if (lock_flags & XFS_IOLOCK_EXCL)
255 mrunlock_excl(&ip->i_iolock);
256 else if (lock_flags & XFS_IOLOCK_SHARED)
257 mrunlock_shared(&ip->i_iolock);
258
259 if (lock_flags & XFS_ILOCK_EXCL)
260 mrunlock_excl(&ip->i_lock);
261 else if (lock_flags & XFS_ILOCK_SHARED)
262 mrunlock_shared(&ip->i_lock);
263
264 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
265}
266
267/*
268 * give up write locks. the i/o lock cannot be held nested
269 * if it is being demoted.
270 */
271void
272xfs_ilock_demote(
273 xfs_inode_t *ip,
274 uint lock_flags)
275{
276 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL));
277 ASSERT((lock_flags & ~(XFS_IOLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
278
279 if (lock_flags & XFS_ILOCK_EXCL)
280 mrdemote(&ip->i_lock);
281 if (lock_flags & XFS_IOLOCK_EXCL)
282 mrdemote(&ip->i_iolock);
283
284 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
285}
286
742ae1e3 287#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
288int
289xfs_isilocked(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
293 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
294 if (!(lock_flags & XFS_ILOCK_SHARED))
295 return !!ip->i_lock.mr_writer;
296 return rwsem_is_locked(&ip->i_lock.mr_lock);
297 }
298
299 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
300 if (!(lock_flags & XFS_IOLOCK_SHARED))
301 return !!ip->i_iolock.mr_writer;
302 return rwsem_is_locked(&ip->i_iolock.mr_lock);
303 }
304
305 ASSERT(0);
306 return 0;
307}
308#endif
309
c24b5dfa
DC
310#ifdef DEBUG
311int xfs_locked_n;
312int xfs_small_retries;
313int xfs_middle_retries;
314int xfs_lots_retries;
315int xfs_lock_delays;
316#endif
317
318/*
319 * Bump the subclass so xfs_lock_inodes() acquires each lock with
320 * a different value
321 */
322static inline int
323xfs_lock_inumorder(int lock_mode, int subclass)
324{
325 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
326 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
327 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
328 lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
329
330 return lock_mode;
331}
332
333/*
334 * The following routine will lock n inodes in exclusive mode.
335 * We assume the caller calls us with the inodes in i_ino order.
336 *
337 * We need to detect deadlock where an inode that we lock
338 * is in the AIL and we start waiting for another inode that is locked
339 * by a thread in a long running transaction (such as truncate). This can
340 * result in deadlock since the long running trans might need to wait
341 * for the inode we just locked in order to push the tail and free space
342 * in the log.
343 */
344void
345xfs_lock_inodes(
346 xfs_inode_t **ips,
347 int inodes,
348 uint lock_mode)
349{
350 int attempts = 0, i, j, try_lock;
351 xfs_log_item_t *lp;
352
353 ASSERT(ips && (inodes >= 2)); /* we need at least two */
354
355 try_lock = 0;
356 i = 0;
357
358again:
359 for (; i < inodes; i++) {
360 ASSERT(ips[i]);
361
362 if (i && (ips[i] == ips[i-1])) /* Already locked */
363 continue;
364
365 /*
366 * If try_lock is not set yet, make sure all locked inodes
367 * are not in the AIL.
368 * If any are, set try_lock to be used later.
369 */
370
371 if (!try_lock) {
372 for (j = (i - 1); j >= 0 && !try_lock; j--) {
373 lp = (xfs_log_item_t *)ips[j]->i_itemp;
374 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
375 try_lock++;
376 }
377 }
378 }
379
380 /*
381 * If any of the previous locks we have locked is in the AIL,
382 * we must TRY to get the second and subsequent locks. If
383 * we can't get any, we must release all we have
384 * and try again.
385 */
386
387 if (try_lock) {
388 /* try_lock must be 0 if i is 0. */
389 /*
390 * try_lock means we have an inode locked
391 * that is in the AIL.
392 */
393 ASSERT(i != 0);
394 if (!xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i))) {
395 attempts++;
396
397 /*
398 * Unlock all previous guys and try again.
399 * xfs_iunlock will try to push the tail
400 * if the inode is in the AIL.
401 */
402
403 for(j = i - 1; j >= 0; j--) {
404
405 /*
406 * Check to see if we've already
407 * unlocked this one.
408 * Not the first one going back,
409 * and the inode ptr is the same.
410 */
411 if ((j != (i - 1)) && ips[j] ==
412 ips[j+1])
413 continue;
414
415 xfs_iunlock(ips[j], lock_mode);
416 }
417
418 if ((attempts % 5) == 0) {
419 delay(1); /* Don't just spin the CPU */
420#ifdef DEBUG
421 xfs_lock_delays++;
422#endif
423 }
424 i = 0;
425 try_lock = 0;
426 goto again;
427 }
428 } else {
429 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
430 }
431 }
432
433#ifdef DEBUG
434 if (attempts) {
435 if (attempts < 5) xfs_small_retries++;
436 else if (attempts < 100) xfs_middle_retries++;
437 else xfs_lots_retries++;
438 } else {
439 xfs_locked_n++;
440 }
441#endif
442}
443
444/*
445 * xfs_lock_two_inodes() can only be used to lock one type of lock
446 * at a time - the iolock or the ilock, but not both at once. If
447 * we lock both at once, lockdep will report false positives saying
448 * we have violated locking orders.
449 */
450void
451xfs_lock_two_inodes(
452 xfs_inode_t *ip0,
453 xfs_inode_t *ip1,
454 uint lock_mode)
455{
456 xfs_inode_t *temp;
457 int attempts = 0;
458 xfs_log_item_t *lp;
459
460 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL))
461 ASSERT((lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) == 0);
462 ASSERT(ip0->i_ino != ip1->i_ino);
463
464 if (ip0->i_ino > ip1->i_ino) {
465 temp = ip0;
466 ip0 = ip1;
467 ip1 = temp;
468 }
469
470 again:
471 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
472
473 /*
474 * If the first lock we have locked is in the AIL, we must TRY to get
475 * the second lock. If we can't get it, we must release the first one
476 * and try again.
477 */
478 lp = (xfs_log_item_t *)ip0->i_itemp;
479 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
480 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
481 xfs_iunlock(ip0, lock_mode);
482 if ((++attempts % 5) == 0)
483 delay(1); /* Don't just spin the CPU */
484 goto again;
485 }
486 } else {
487 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
488 }
489}
490
491
fa96acad
DC
492void
493__xfs_iflock(
494 struct xfs_inode *ip)
495{
496 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
497 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
498
499 do {
500 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
501 if (xfs_isiflocked(ip))
502 io_schedule();
503 } while (!xfs_iflock_nowait(ip));
504
505 finish_wait(wq, &wait.wait);
506}
507
1da177e4
LT
508STATIC uint
509_xfs_dic2xflags(
1da177e4
LT
510 __uint16_t di_flags)
511{
512 uint flags = 0;
513
514 if (di_flags & XFS_DIFLAG_ANY) {
515 if (di_flags & XFS_DIFLAG_REALTIME)
516 flags |= XFS_XFLAG_REALTIME;
517 if (di_flags & XFS_DIFLAG_PREALLOC)
518 flags |= XFS_XFLAG_PREALLOC;
519 if (di_flags & XFS_DIFLAG_IMMUTABLE)
520 flags |= XFS_XFLAG_IMMUTABLE;
521 if (di_flags & XFS_DIFLAG_APPEND)
522 flags |= XFS_XFLAG_APPEND;
523 if (di_flags & XFS_DIFLAG_SYNC)
524 flags |= XFS_XFLAG_SYNC;
525 if (di_flags & XFS_DIFLAG_NOATIME)
526 flags |= XFS_XFLAG_NOATIME;
527 if (di_flags & XFS_DIFLAG_NODUMP)
528 flags |= XFS_XFLAG_NODUMP;
529 if (di_flags & XFS_DIFLAG_RTINHERIT)
530 flags |= XFS_XFLAG_RTINHERIT;
531 if (di_flags & XFS_DIFLAG_PROJINHERIT)
532 flags |= XFS_XFLAG_PROJINHERIT;
533 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
534 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
535 if (di_flags & XFS_DIFLAG_EXTSIZE)
536 flags |= XFS_XFLAG_EXTSIZE;
537 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
538 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
539 if (di_flags & XFS_DIFLAG_NODEFRAG)
540 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
541 if (di_flags & XFS_DIFLAG_FILESTREAM)
542 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
543 }
544
545 return flags;
546}
547
548uint
549xfs_ip2xflags(
550 xfs_inode_t *ip)
551{
347d1c01 552 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 553
a916e2bd 554 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 555 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
556}
557
558uint
559xfs_dic2xflags(
45ba598e 560 xfs_dinode_t *dip)
1da177e4 561{
81591fe2 562 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
45ba598e 563 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
564}
565
c24b5dfa
DC
566/*
567 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
568 * is allowed, otherwise it has to be an exact match. If a CI match is found,
569 * ci_name->name will point to a the actual name (caller must free) or
570 * will be set to NULL if an exact match is found.
571 */
572int
573xfs_lookup(
574 xfs_inode_t *dp,
575 struct xfs_name *name,
576 xfs_inode_t **ipp,
577 struct xfs_name *ci_name)
578{
579 xfs_ino_t inum;
580 int error;
581 uint lock_mode;
582
583 trace_xfs_lookup(dp, name);
584
585 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
586 return XFS_ERROR(EIO);
587
309ecac8 588 lock_mode = xfs_ilock_data_map_shared(dp);
c24b5dfa 589 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
01f4f327 590 xfs_iunlock(dp, lock_mode);
c24b5dfa
DC
591
592 if (error)
593 goto out;
594
595 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
596 if (error)
597 goto out_free_name;
598
599 return 0;
600
601out_free_name:
602 if (ci_name)
603 kmem_free(ci_name->name);
604out:
605 *ipp = NULL;
606 return error;
607}
608
1da177e4
LT
609/*
610 * Allocate an inode on disk and return a copy of its in-core version.
611 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
612 * appropriately within the inode. The uid and gid for the inode are
613 * set according to the contents of the given cred structure.
614 *
615 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
616 * has a free inode available, call xfs_iget() to obtain the in-core
617 * version of the allocated inode. Finally, fill in the inode and
618 * log its initial contents. In this case, ialloc_context would be
619 * set to NULL.
1da177e4 620 *
cd856db6
CM
621 * If xfs_dialloc() does not have an available inode, it will replenish
622 * its supply by doing an allocation. Since we can only do one
623 * allocation within a transaction without deadlocks, we must commit
624 * the current transaction before returning the inode itself.
625 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
626 * The caller should then commit the current transaction, start a new
627 * transaction, and call xfs_ialloc() again to actually get the inode.
628 *
629 * To ensure that some other process does not grab the inode that
630 * was allocated during the first call to xfs_ialloc(), this routine
631 * also returns the [locked] bp pointing to the head of the freelist
632 * as ialloc_context. The caller should hold this buffer across
633 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
634 *
635 * If we are allocating quota inodes, we do not have a parent inode
636 * to attach to or associate with (i.e. pip == NULL) because they
637 * are not linked into the directory structure - they are attached
638 * directly to the superblock - and so have no parent.
1da177e4
LT
639 */
640int
641xfs_ialloc(
642 xfs_trans_t *tp,
643 xfs_inode_t *pip,
576b1d67 644 umode_t mode,
31b084ae 645 xfs_nlink_t nlink,
1da177e4 646 xfs_dev_t rdev,
6743099c 647 prid_t prid,
1da177e4
LT
648 int okalloc,
649 xfs_buf_t **ialloc_context,
1da177e4
LT
650 xfs_inode_t **ipp)
651{
93848a99 652 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
653 xfs_ino_t ino;
654 xfs_inode_t *ip;
1da177e4
LT
655 uint flags;
656 int error;
dff35fd4 657 timespec_t tv;
bf904248 658 int filestreams = 0;
1da177e4
LT
659
660 /*
661 * Call the space management code to pick
662 * the on-disk inode to be allocated.
663 */
b11f94d5 664 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 665 ialloc_context, &ino);
bf904248 666 if (error)
1da177e4 667 return error;
08358906 668 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
669 *ipp = NULL;
670 return 0;
671 }
672 ASSERT(*ialloc_context == NULL);
673
674 /*
675 * Get the in-core inode with the lock held exclusively.
676 * This is because we're setting fields here we need
677 * to prevent others from looking at until we're done.
678 */
93848a99 679 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 680 XFS_ILOCK_EXCL, &ip);
bf904248 681 if (error)
1da177e4 682 return error;
1da177e4
LT
683 ASSERT(ip != NULL);
684
576b1d67 685 ip->i_d.di_mode = mode;
1da177e4
LT
686 ip->i_d.di_onlink = 0;
687 ip->i_d.di_nlink = nlink;
688 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
689 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
690 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 691 xfs_set_projid(ip, prid);
1da177e4
LT
692 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
693
694 /*
695 * If the superblock version is up to where we support new format
696 * inodes and this is currently an old format inode, then change
697 * the inode version number now. This way we only do the conversion
698 * here rather than here and in the flush/logging code.
699 */
93848a99 700 if (xfs_sb_version_hasnlink(&mp->m_sb) &&
51ce16d5
CH
701 ip->i_d.di_version == 1) {
702 ip->i_d.di_version = 2;
1da177e4
LT
703 /*
704 * We've already zeroed the old link count, the projid field,
705 * and the pad field.
706 */
707 }
708
709 /*
710 * Project ids won't be stored on disk if we are using a version 1 inode.
711 */
51ce16d5 712 if ((prid != 0) && (ip->i_d.di_version == 1))
1da177e4
LT
713 xfs_bump_ino_vers2(tp, ip);
714
bd186aa9 715 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 716 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 717 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
718 ip->i_d.di_mode |= S_ISGID;
719 }
720 }
721
722 /*
723 * If the group ID of the new file does not match the effective group
724 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
725 * (and only if the irix_sgid_inherit compatibility variable is set).
726 */
727 if ((irix_sgid_inherit) &&
728 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 729 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
730 ip->i_d.di_mode &= ~S_ISGID;
731 }
732
733 ip->i_d.di_size = 0;
734 ip->i_d.di_nextents = 0;
735 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
736
737 nanotime(&tv);
738 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
739 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
740 ip->i_d.di_atime = ip->i_d.di_mtime;
741 ip->i_d.di_ctime = ip->i_d.di_mtime;
742
1da177e4
LT
743 /*
744 * di_gen will have been taken care of in xfs_iread.
745 */
746 ip->i_d.di_extsize = 0;
747 ip->i_d.di_dmevmask = 0;
748 ip->i_d.di_dmstate = 0;
749 ip->i_d.di_flags = 0;
93848a99
CH
750
751 if (ip->i_d.di_version == 3) {
752 ASSERT(ip->i_d.di_ino == ino);
753 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
754 ip->i_d.di_crc = 0;
755 ip->i_d.di_changecount = 1;
756 ip->i_d.di_lsn = 0;
757 ip->i_d.di_flags2 = 0;
758 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
759 ip->i_d.di_crtime = ip->i_d.di_mtime;
760 }
761
762
1da177e4
LT
763 flags = XFS_ILOG_CORE;
764 switch (mode & S_IFMT) {
765 case S_IFIFO:
766 case S_IFCHR:
767 case S_IFBLK:
768 case S_IFSOCK:
769 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
770 ip->i_df.if_u2.if_rdev = rdev;
771 ip->i_df.if_flags = 0;
772 flags |= XFS_ILOG_DEV;
773 break;
774 case S_IFREG:
bf904248
DC
775 /*
776 * we can't set up filestreams until after the VFS inode
777 * is set up properly.
778 */
779 if (pip && xfs_inode_is_filestream(pip))
780 filestreams = 1;
2a82b8be 781 /* fall through */
1da177e4 782 case S_IFDIR:
b11f94d5 783 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
784 uint di_flags = 0;
785
abbede1b 786 if (S_ISDIR(mode)) {
365ca83d
NS
787 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
788 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
789 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
790 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
791 ip->i_d.di_extsize = pip->i_d.di_extsize;
792 }
abbede1b 793 } else if (S_ISREG(mode)) {
613d7043 794 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 795 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
796 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
797 di_flags |= XFS_DIFLAG_EXTSIZE;
798 ip->i_d.di_extsize = pip->i_d.di_extsize;
799 }
1da177e4
LT
800 }
801 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
802 xfs_inherit_noatime)
365ca83d 803 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
804 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
805 xfs_inherit_nodump)
365ca83d 806 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
807 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
808 xfs_inherit_sync)
365ca83d 809 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
810 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
811 xfs_inherit_nosymlinks)
365ca83d
NS
812 di_flags |= XFS_DIFLAG_NOSYMLINKS;
813 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
814 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
815 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
816 xfs_inherit_nodefrag)
817 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
818 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
819 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 820 ip->i_d.di_flags |= di_flags;
1da177e4
LT
821 }
822 /* FALLTHROUGH */
823 case S_IFLNK:
824 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
825 ip->i_df.if_flags = XFS_IFEXTENTS;
826 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
827 ip->i_df.if_u1.if_extents = NULL;
828 break;
829 default:
830 ASSERT(0);
831 }
832 /*
833 * Attribute fork settings for new inode.
834 */
835 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
836 ip->i_d.di_anextents = 0;
837
838 /*
839 * Log the new values stuffed into the inode.
840 */
ddc3415a 841 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
842 xfs_trans_log_inode(tp, ip, flags);
843
b83bd138 844 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 845 xfs_setup_inode(ip);
1da177e4 846
bf904248
DC
847 /* now we have set up the vfs inode we can associate the filestream */
848 if (filestreams) {
849 error = xfs_filestream_associate(pip, ip);
850 if (error < 0)
851 return -error;
852 if (!error)
853 xfs_iflags_set(ip, XFS_IFILESTREAM);
854 }
855
1da177e4
LT
856 *ipp = ip;
857 return 0;
858}
859
e546cb79
DC
860/*
861 * Allocates a new inode from disk and return a pointer to the
862 * incore copy. This routine will internally commit the current
863 * transaction and allocate a new one if the Space Manager needed
864 * to do an allocation to replenish the inode free-list.
865 *
866 * This routine is designed to be called from xfs_create and
867 * xfs_create_dir.
868 *
869 */
870int
871xfs_dir_ialloc(
872 xfs_trans_t **tpp, /* input: current transaction;
873 output: may be a new transaction. */
874 xfs_inode_t *dp, /* directory within whose allocate
875 the inode. */
876 umode_t mode,
877 xfs_nlink_t nlink,
878 xfs_dev_t rdev,
879 prid_t prid, /* project id */
880 int okalloc, /* ok to allocate new space */
881 xfs_inode_t **ipp, /* pointer to inode; it will be
882 locked. */
883 int *committed)
884
885{
886 xfs_trans_t *tp;
887 xfs_trans_t *ntp;
888 xfs_inode_t *ip;
889 xfs_buf_t *ialloc_context = NULL;
890 int code;
e546cb79
DC
891 void *dqinfo;
892 uint tflags;
893
894 tp = *tpp;
895 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
896
897 /*
898 * xfs_ialloc will return a pointer to an incore inode if
899 * the Space Manager has an available inode on the free
900 * list. Otherwise, it will do an allocation and replenish
901 * the freelist. Since we can only do one allocation per
902 * transaction without deadlocks, we will need to commit the
903 * current transaction and start a new one. We will then
904 * need to call xfs_ialloc again to get the inode.
905 *
906 * If xfs_ialloc did an allocation to replenish the freelist,
907 * it returns the bp containing the head of the freelist as
908 * ialloc_context. We will hold a lock on it across the
909 * transaction commit so that no other process can steal
910 * the inode(s) that we've just allocated.
911 */
912 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
913 &ialloc_context, &ip);
914
915 /*
916 * Return an error if we were unable to allocate a new inode.
917 * This should only happen if we run out of space on disk or
918 * encounter a disk error.
919 */
920 if (code) {
921 *ipp = NULL;
922 return code;
923 }
924 if (!ialloc_context && !ip) {
925 *ipp = NULL;
926 return XFS_ERROR(ENOSPC);
927 }
928
929 /*
930 * If the AGI buffer is non-NULL, then we were unable to get an
931 * inode in one operation. We need to commit the current
932 * transaction and call xfs_ialloc() again. It is guaranteed
933 * to succeed the second time.
934 */
935 if (ialloc_context) {
3d3c8b52
JL
936 struct xfs_trans_res tres;
937
e546cb79
DC
938 /*
939 * Normally, xfs_trans_commit releases all the locks.
940 * We call bhold to hang on to the ialloc_context across
941 * the commit. Holding this buffer prevents any other
942 * processes from doing any allocations in this
943 * allocation group.
944 */
945 xfs_trans_bhold(tp, ialloc_context);
946 /*
947 * Save the log reservation so we can use
948 * them in the next transaction.
949 */
3d3c8b52
JL
950 tres.tr_logres = xfs_trans_get_log_res(tp);
951 tres.tr_logcount = xfs_trans_get_log_count(tp);
e546cb79
DC
952
953 /*
954 * We want the quota changes to be associated with the next
955 * transaction, NOT this one. So, detach the dqinfo from this
956 * and attach it to the next transaction.
957 */
958 dqinfo = NULL;
959 tflags = 0;
960 if (tp->t_dqinfo) {
961 dqinfo = (void *)tp->t_dqinfo;
962 tp->t_dqinfo = NULL;
963 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
964 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
965 }
966
967 ntp = xfs_trans_dup(tp);
968 code = xfs_trans_commit(tp, 0);
969 tp = ntp;
970 if (committed != NULL) {
971 *committed = 1;
972 }
973 /*
974 * If we get an error during the commit processing,
975 * release the buffer that is still held and return
976 * to the caller.
977 */
978 if (code) {
979 xfs_buf_relse(ialloc_context);
980 if (dqinfo) {
981 tp->t_dqinfo = dqinfo;
982 xfs_trans_free_dqinfo(tp);
983 }
984 *tpp = ntp;
985 *ipp = NULL;
986 return code;
987 }
988
989 /*
990 * transaction commit worked ok so we can drop the extra ticket
991 * reference that we gained in xfs_trans_dup()
992 */
993 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52
JL
994 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
995 code = xfs_trans_reserve(tp, &tres, 0, 0);
996
e546cb79
DC
997 /*
998 * Re-attach the quota info that we detached from prev trx.
999 */
1000 if (dqinfo) {
1001 tp->t_dqinfo = dqinfo;
1002 tp->t_flags |= tflags;
1003 }
1004
1005 if (code) {
1006 xfs_buf_relse(ialloc_context);
1007 *tpp = ntp;
1008 *ipp = NULL;
1009 return code;
1010 }
1011 xfs_trans_bjoin(tp, ialloc_context);
1012
1013 /*
1014 * Call ialloc again. Since we've locked out all
1015 * other allocations in this allocation group,
1016 * this call should always succeed.
1017 */
1018 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1019 okalloc, &ialloc_context, &ip);
1020
1021 /*
1022 * If we get an error at this point, return to the caller
1023 * so that the current transaction can be aborted.
1024 */
1025 if (code) {
1026 *tpp = tp;
1027 *ipp = NULL;
1028 return code;
1029 }
1030 ASSERT(!ialloc_context && ip);
1031
1032 } else {
1033 if (committed != NULL)
1034 *committed = 0;
1035 }
1036
1037 *ipp = ip;
1038 *tpp = tp;
1039
1040 return 0;
1041}
1042
1043/*
1044 * Decrement the link count on an inode & log the change.
1045 * If this causes the link count to go to zero, initiate the
1046 * logging activity required to truncate a file.
1047 */
1048int /* error */
1049xfs_droplink(
1050 xfs_trans_t *tp,
1051 xfs_inode_t *ip)
1052{
1053 int error;
1054
1055 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1056
1057 ASSERT (ip->i_d.di_nlink > 0);
1058 ip->i_d.di_nlink--;
1059 drop_nlink(VFS_I(ip));
1060 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1061
1062 error = 0;
1063 if (ip->i_d.di_nlink == 0) {
1064 /*
1065 * We're dropping the last link to this file.
1066 * Move the on-disk inode to the AGI unlinked list.
1067 * From xfs_inactive() we will pull the inode from
1068 * the list and free it.
1069 */
1070 error = xfs_iunlink(tp, ip);
1071 }
1072 return error;
1073}
1074
1075/*
1076 * This gets called when the inode's version needs to be changed from 1 to 2.
1077 * Currently this happens when the nlink field overflows the old 16-bit value
1078 * or when chproj is called to change the project for the first time.
1079 * As a side effect the superblock version will also get rev'd
1080 * to contain the NLINK bit.
1081 */
1082void
1083xfs_bump_ino_vers2(
1084 xfs_trans_t *tp,
1085 xfs_inode_t *ip)
1086{
1087 xfs_mount_t *mp;
1088
1089 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1090 ASSERT(ip->i_d.di_version == 1);
1091
1092 ip->i_d.di_version = 2;
1093 ip->i_d.di_onlink = 0;
1094 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1095 mp = tp->t_mountp;
1096 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1097 spin_lock(&mp->m_sb_lock);
1098 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1099 xfs_sb_version_addnlink(&mp->m_sb);
1100 spin_unlock(&mp->m_sb_lock);
1101 xfs_mod_sb(tp, XFS_SB_VERSIONNUM);
1102 } else {
1103 spin_unlock(&mp->m_sb_lock);
1104 }
1105 }
1106 /* Caller must log the inode */
1107}
1108
1109/*
1110 * Increment the link count on an inode & log the change.
1111 */
1112int
1113xfs_bumplink(
1114 xfs_trans_t *tp,
1115 xfs_inode_t *ip)
1116{
1117 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1118
ab297431 1119 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1120 ip->i_d.di_nlink++;
1121 inc_nlink(VFS_I(ip));
1122 if ((ip->i_d.di_version == 1) &&
1123 (ip->i_d.di_nlink > XFS_MAXLINK_1)) {
1124 /*
1125 * The inode has increased its number of links beyond
1126 * what can fit in an old format inode. It now needs
1127 * to be converted to a version 2 inode with a 32 bit
1128 * link count. If this is the first inode in the file
1129 * system to do this, then we need to bump the superblock
1130 * version number as well.
1131 */
1132 xfs_bump_ino_vers2(tp, ip);
1133 }
1134
1135 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1136 return 0;
1137}
1138
c24b5dfa
DC
1139int
1140xfs_create(
1141 xfs_inode_t *dp,
1142 struct xfs_name *name,
1143 umode_t mode,
1144 xfs_dev_t rdev,
1145 xfs_inode_t **ipp)
1146{
1147 int is_dir = S_ISDIR(mode);
1148 struct xfs_mount *mp = dp->i_mount;
1149 struct xfs_inode *ip = NULL;
1150 struct xfs_trans *tp = NULL;
1151 int error;
1152 xfs_bmap_free_t free_list;
1153 xfs_fsblock_t first_block;
1154 bool unlock_dp_on_error = false;
1155 uint cancel_flags;
1156 int committed;
1157 prid_t prid;
1158 struct xfs_dquot *udqp = NULL;
1159 struct xfs_dquot *gdqp = NULL;
1160 struct xfs_dquot *pdqp = NULL;
3d3c8b52 1161 struct xfs_trans_res tres;
c24b5dfa 1162 uint resblks;
c24b5dfa
DC
1163
1164 trace_xfs_create(dp, name);
1165
1166 if (XFS_FORCED_SHUTDOWN(mp))
1167 return XFS_ERROR(EIO);
1168
163467d3 1169 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1170
1171 /*
1172 * Make sure that we have allocated dquot(s) on disk.
1173 */
7aab1b28
DE
1174 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1175 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1176 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1177 &udqp, &gdqp, &pdqp);
1178 if (error)
1179 return error;
1180
1181 if (is_dir) {
1182 rdev = 0;
1183 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
3d3c8b52
JL
1184 tres.tr_logres = M_RES(mp)->tr_mkdir.tr_logres;
1185 tres.tr_logcount = XFS_MKDIR_LOG_COUNT;
c24b5dfa
DC
1186 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1187 } else {
1188 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
3d3c8b52
JL
1189 tres.tr_logres = M_RES(mp)->tr_create.tr_logres;
1190 tres.tr_logcount = XFS_CREATE_LOG_COUNT;
c24b5dfa
DC
1191 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1192 }
1193
1194 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1195
1196 /*
1197 * Initially assume that the file does not exist and
1198 * reserve the resources for that case. If that is not
1199 * the case we'll drop the one we have and get a more
1200 * appropriate transaction later.
1201 */
3d3c8b52
JL
1202 tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1203 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1204 if (error == ENOSPC) {
1205 /* flush outstanding delalloc blocks and retry */
1206 xfs_flush_inodes(mp);
3d3c8b52 1207 error = xfs_trans_reserve(tp, &tres, resblks, 0);
c24b5dfa
DC
1208 }
1209 if (error == ENOSPC) {
1210 /* No space at all so try a "no-allocation" reservation */
1211 resblks = 0;
3d3c8b52 1212 error = xfs_trans_reserve(tp, &tres, 0, 0);
c24b5dfa
DC
1213 }
1214 if (error) {
1215 cancel_flags = 0;
1216 goto out_trans_cancel;
1217 }
1218
1219 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1220 unlock_dp_on_error = true;
1221
1222 xfs_bmap_init(&free_list, &first_block);
1223
1224 /*
1225 * Reserve disk quota and the inode.
1226 */
1227 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1228 pdqp, resblks, 1, 0);
1229 if (error)
1230 goto out_trans_cancel;
1231
1232 error = xfs_dir_canenter(tp, dp, name, resblks);
1233 if (error)
1234 goto out_trans_cancel;
1235
1236 /*
1237 * A newly created regular or special file just has one directory
1238 * entry pointing to them, but a directory also the "." entry
1239 * pointing to itself.
1240 */
1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1242 prid, resblks > 0, &ip, &committed);
1243 if (error) {
1244 if (error == ENOSPC)
1245 goto out_trans_cancel;
1246 goto out_trans_abort;
1247 }
1248
1249 /*
1250 * Now we join the directory inode to the transaction. We do not do it
1251 * earlier because xfs_dir_ialloc might commit the previous transaction
1252 * (and release all the locks). An error from here on will result in
1253 * the transaction cancel unlocking dp so don't do it explicitly in the
1254 * error path.
1255 */
1256 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1257 unlock_dp_on_error = false;
1258
1259 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1260 &first_block, &free_list, resblks ?
1261 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1262 if (error) {
1263 ASSERT(error != ENOSPC);
1264 goto out_trans_abort;
1265 }
1266 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1267 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1268
1269 if (is_dir) {
1270 error = xfs_dir_init(tp, ip, dp);
1271 if (error)
1272 goto out_bmap_cancel;
1273
1274 error = xfs_bumplink(tp, dp);
1275 if (error)
1276 goto out_bmap_cancel;
1277 }
1278
1279 /*
1280 * If this is a synchronous mount, make sure that the
1281 * create transaction goes to disk before returning to
1282 * the user.
1283 */
1284 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1285 xfs_trans_set_sync(tp);
1286
1287 /*
1288 * Attach the dquot(s) to the inodes and modify them incore.
1289 * These ids of the inode couldn't have changed since the new
1290 * inode has been locked ever since it was created.
1291 */
1292 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1293
1294 error = xfs_bmap_finish(&tp, &free_list, &committed);
1295 if (error)
1296 goto out_bmap_cancel;
1297
1298 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1299 if (error)
1300 goto out_release_inode;
1301
1302 xfs_qm_dqrele(udqp);
1303 xfs_qm_dqrele(gdqp);
1304 xfs_qm_dqrele(pdqp);
1305
1306 *ipp = ip;
1307 return 0;
1308
1309 out_bmap_cancel:
1310 xfs_bmap_cancel(&free_list);
1311 out_trans_abort:
1312 cancel_flags |= XFS_TRANS_ABORT;
1313 out_trans_cancel:
1314 xfs_trans_cancel(tp, cancel_flags);
1315 out_release_inode:
1316 /*
1317 * Wait until after the current transaction is aborted to
1318 * release the inode. This prevents recursive transactions
1319 * and deadlocks from xfs_inactive.
1320 */
1321 if (ip)
1322 IRELE(ip);
1323
1324 xfs_qm_dqrele(udqp);
1325 xfs_qm_dqrele(gdqp);
1326 xfs_qm_dqrele(pdqp);
1327
1328 if (unlock_dp_on_error)
1329 xfs_iunlock(dp, XFS_ILOCK_EXCL);
1330 return error;
1331}
1332
99b6436b
ZYW
1333int
1334xfs_create_tmpfile(
1335 struct xfs_inode *dp,
1336 struct dentry *dentry,
1337 umode_t mode)
1338{
1339 struct xfs_mount *mp = dp->i_mount;
1340 struct xfs_inode *ip = NULL;
1341 struct xfs_trans *tp = NULL;
1342 int error;
1343 uint cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1344 prid_t prid;
1345 struct xfs_dquot *udqp = NULL;
1346 struct xfs_dquot *gdqp = NULL;
1347 struct xfs_dquot *pdqp = NULL;
1348 struct xfs_trans_res *tres;
1349 uint resblks;
1350
1351 if (XFS_FORCED_SHUTDOWN(mp))
1352 return XFS_ERROR(EIO);
1353
1354 prid = xfs_get_initial_prid(dp);
1355
1356 /*
1357 * Make sure that we have allocated dquot(s) on disk.
1358 */
1359 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1360 xfs_kgid_to_gid(current_fsgid()), prid,
1361 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1362 &udqp, &gdqp, &pdqp);
1363 if (error)
1364 return error;
1365
1366 resblks = XFS_IALLOC_SPACE_RES(mp);
1367 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1368
1369 tres = &M_RES(mp)->tr_create_tmpfile;
1370 error = xfs_trans_reserve(tp, tres, resblks, 0);
1371 if (error == ENOSPC) {
1372 /* No space at all so try a "no-allocation" reservation */
1373 resblks = 0;
1374 error = xfs_trans_reserve(tp, tres, 0, 0);
1375 }
1376 if (error) {
1377 cancel_flags = 0;
1378 goto out_trans_cancel;
1379 }
1380
1381 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1382 pdqp, resblks, 1, 0);
1383 if (error)
1384 goto out_trans_cancel;
1385
1386 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1387 prid, resblks > 0, &ip, NULL);
1388 if (error) {
1389 if (error == ENOSPC)
1390 goto out_trans_cancel;
1391 goto out_trans_abort;
1392 }
1393
1394 if (mp->m_flags & XFS_MOUNT_WSYNC)
1395 xfs_trans_set_sync(tp);
1396
1397 /*
1398 * Attach the dquot(s) to the inodes and modify them incore.
1399 * These ids of the inode couldn't have changed since the new
1400 * inode has been locked ever since it was created.
1401 */
1402 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1403
1404 ip->i_d.di_nlink--;
1405 d_tmpfile(dentry, VFS_I(ip));
1406 error = xfs_iunlink(tp, ip);
1407 if (error)
1408 goto out_trans_abort;
1409
1410 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1411 if (error)
1412 goto out_release_inode;
1413
1414 xfs_qm_dqrele(udqp);
1415 xfs_qm_dqrele(gdqp);
1416 xfs_qm_dqrele(pdqp);
1417
1418 return 0;
1419
1420 out_trans_abort:
1421 cancel_flags |= XFS_TRANS_ABORT;
1422 out_trans_cancel:
1423 xfs_trans_cancel(tp, cancel_flags);
1424 out_release_inode:
1425 /*
1426 * Wait until after the current transaction is aborted to
1427 * release the inode. This prevents recursive transactions
1428 * and deadlocks from xfs_inactive.
1429 */
1430 if (ip)
1431 IRELE(ip);
1432
1433 xfs_qm_dqrele(udqp);
1434 xfs_qm_dqrele(gdqp);
1435 xfs_qm_dqrele(pdqp);
1436
1437 return error;
1438}
1439
c24b5dfa
DC
1440int
1441xfs_link(
1442 xfs_inode_t *tdp,
1443 xfs_inode_t *sip,
1444 struct xfs_name *target_name)
1445{
1446 xfs_mount_t *mp = tdp->i_mount;
1447 xfs_trans_t *tp;
1448 int error;
1449 xfs_bmap_free_t free_list;
1450 xfs_fsblock_t first_block;
1451 int cancel_flags;
1452 int committed;
1453 int resblks;
1454
1455 trace_xfs_link(tdp, target_name);
1456
1457 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1458
1459 if (XFS_FORCED_SHUTDOWN(mp))
1460 return XFS_ERROR(EIO);
1461
1462 error = xfs_qm_dqattach(sip, 0);
1463 if (error)
1464 goto std_return;
1465
1466 error = xfs_qm_dqattach(tdp, 0);
1467 if (error)
1468 goto std_return;
1469
1470 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1471 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1472 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1473 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
c24b5dfa
DC
1474 if (error == ENOSPC) {
1475 resblks = 0;
3d3c8b52 1476 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa
DC
1477 }
1478 if (error) {
1479 cancel_flags = 0;
1480 goto error_return;
1481 }
1482
1483 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1484
1485 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1486 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1487
1488 /*
1489 * If we are using project inheritance, we only allow hard link
1490 * creation in our tree when the project IDs are the same; else
1491 * the tree quota mechanism could be circumvented.
1492 */
1493 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1494 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1495 error = XFS_ERROR(EXDEV);
1496 goto error_return;
1497 }
1498
1499 error = xfs_dir_canenter(tp, tdp, target_name, resblks);
1500 if (error)
1501 goto error_return;
1502
1503 xfs_bmap_init(&free_list, &first_block);
1504
ab297431
ZYW
1505 if (sip->i_d.di_nlink == 0) {
1506 error = xfs_iunlink_remove(tp, sip);
1507 if (error)
1508 goto abort_return;
1509 }
1510
c24b5dfa
DC
1511 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1512 &first_block, &free_list, resblks);
1513 if (error)
1514 goto abort_return;
1515 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1516 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1517
1518 error = xfs_bumplink(tp, sip);
1519 if (error)
1520 goto abort_return;
1521
1522 /*
1523 * If this is a synchronous mount, make sure that the
1524 * link transaction goes to disk before returning to
1525 * the user.
1526 */
1527 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1528 xfs_trans_set_sync(tp);
1529 }
1530
1531 error = xfs_bmap_finish (&tp, &free_list, &committed);
1532 if (error) {
1533 xfs_bmap_cancel(&free_list);
1534 goto abort_return;
1535 }
1536
1537 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1538
1539 abort_return:
1540 cancel_flags |= XFS_TRANS_ABORT;
1541 error_return:
1542 xfs_trans_cancel(tp, cancel_flags);
1543 std_return:
1544 return error;
1545}
1546
1da177e4 1547/*
8f04c47a
CH
1548 * Free up the underlying blocks past new_size. The new size must be smaller
1549 * than the current size. This routine can be used both for the attribute and
1550 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1551 *
f6485057
DC
1552 * The transaction passed to this routine must have made a permanent log
1553 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1554 * given transaction and start new ones, so make sure everything involved in
1555 * the transaction is tidy before calling here. Some transaction will be
1556 * returned to the caller to be committed. The incoming transaction must
1557 * already include the inode, and both inode locks must be held exclusively.
1558 * The inode must also be "held" within the transaction. On return the inode
1559 * will be "held" within the returned transaction. This routine does NOT
1560 * require any disk space to be reserved for it within the transaction.
1da177e4 1561 *
f6485057
DC
1562 * If we get an error, we must return with the inode locked and linked into the
1563 * current transaction. This keeps things simple for the higher level code,
1564 * because it always knows that the inode is locked and held in the transaction
1565 * that returns to it whether errors occur or not. We don't mark the inode
1566 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1567 */
1568int
8f04c47a
CH
1569xfs_itruncate_extents(
1570 struct xfs_trans **tpp,
1571 struct xfs_inode *ip,
1572 int whichfork,
1573 xfs_fsize_t new_size)
1da177e4 1574{
8f04c47a
CH
1575 struct xfs_mount *mp = ip->i_mount;
1576 struct xfs_trans *tp = *tpp;
1577 struct xfs_trans *ntp;
1578 xfs_bmap_free_t free_list;
1579 xfs_fsblock_t first_block;
1580 xfs_fileoff_t first_unmap_block;
1581 xfs_fileoff_t last_block;
1582 xfs_filblks_t unmap_len;
1583 int committed;
1584 int error = 0;
1585 int done = 0;
1da177e4 1586
0b56185b
CH
1587 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1588 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1589 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1590 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1591 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1592 ASSERT(ip->i_itemp != NULL);
898621d5 1593 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1594 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1595
673e8e59
CH
1596 trace_xfs_itruncate_extents_start(ip, new_size);
1597
1da177e4
LT
1598 /*
1599 * Since it is possible for space to become allocated beyond
1600 * the end of the file (in a crash where the space is allocated
1601 * but the inode size is not yet updated), simply remove any
1602 * blocks which show up between the new EOF and the maximum
1603 * possible file size. If the first block to be removed is
1604 * beyond the maximum file size (ie it is the same as last_block),
1605 * then there is nothing to do.
1606 */
8f04c47a 1607 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1608 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1609 if (first_unmap_block == last_block)
1610 return 0;
1611
1612 ASSERT(first_unmap_block < last_block);
1613 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1614 while (!done) {
9d87c319 1615 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1616 error = xfs_bunmapi(tp, ip,
3e57ecf6 1617 first_unmap_block, unmap_len,
8f04c47a 1618 xfs_bmapi_aflag(whichfork),
1da177e4 1619 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1620 &first_block, &free_list,
b4e9181e 1621 &done);
8f04c47a
CH
1622 if (error)
1623 goto out_bmap_cancel;
1da177e4
LT
1624
1625 /*
1626 * Duplicate the transaction that has the permanent
1627 * reservation and commit the old transaction.
1628 */
8f04c47a 1629 error = xfs_bmap_finish(&tp, &free_list, &committed);
898621d5 1630 if (committed)
ddc3415a 1631 xfs_trans_ijoin(tp, ip, 0);
8f04c47a
CH
1632 if (error)
1633 goto out_bmap_cancel;
1da177e4
LT
1634
1635 if (committed) {
1636 /*
f6485057 1637 * Mark the inode dirty so it will be logged and
e5720eec 1638 * moved forward in the log as part of every commit.
1da177e4 1639 */
8f04c47a 1640 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1da177e4 1641 }
f6485057 1642
8f04c47a
CH
1643 ntp = xfs_trans_dup(tp);
1644 error = xfs_trans_commit(tp, 0);
1645 tp = ntp;
e5720eec 1646
ddc3415a 1647 xfs_trans_ijoin(tp, ip, 0);
f6485057 1648
cc09c0dc 1649 if (error)
8f04c47a
CH
1650 goto out;
1651
cc09c0dc 1652 /*
8f04c47a 1653 * Transaction commit worked ok so we can drop the extra ticket
cc09c0dc
DC
1654 * reference that we gained in xfs_trans_dup()
1655 */
8f04c47a 1656 xfs_log_ticket_put(tp->t_ticket);
3d3c8b52 1657 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
f6485057 1658 if (error)
8f04c47a 1659 goto out;
1da177e4 1660 }
8f04c47a 1661
673e8e59
CH
1662 /*
1663 * Always re-log the inode so that our permanent transaction can keep
1664 * on rolling it forward in the log.
1665 */
1666 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1667
1668 trace_xfs_itruncate_extents_end(ip, new_size);
1669
8f04c47a
CH
1670out:
1671 *tpp = tp;
1672 return error;
1673out_bmap_cancel:
1da177e4 1674 /*
8f04c47a
CH
1675 * If the bunmapi call encounters an error, return to the caller where
1676 * the transaction can be properly aborted. We just need to make sure
1677 * we're not holding any resources that we were not when we came in.
1da177e4 1678 */
8f04c47a
CH
1679 xfs_bmap_cancel(&free_list);
1680 goto out;
1681}
1682
c24b5dfa
DC
1683int
1684xfs_release(
1685 xfs_inode_t *ip)
1686{
1687 xfs_mount_t *mp = ip->i_mount;
1688 int error;
1689
1690 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1691 return 0;
1692
1693 /* If this is a read-only mount, don't do this (would generate I/O) */
1694 if (mp->m_flags & XFS_MOUNT_RDONLY)
1695 return 0;
1696
1697 if (!XFS_FORCED_SHUTDOWN(mp)) {
1698 int truncated;
1699
1700 /*
1701 * If we are using filestreams, and we have an unlinked
1702 * file that we are processing the last close on, then nothing
1703 * will be able to reopen and write to this file. Purge this
1704 * inode from the filestreams cache so that it doesn't delay
1705 * teardown of the inode.
1706 */
1707 if ((ip->i_d.di_nlink == 0) && xfs_inode_is_filestream(ip))
1708 xfs_filestream_deassociate(ip);
1709
1710 /*
1711 * If we previously truncated this file and removed old data
1712 * in the process, we want to initiate "early" writeout on
1713 * the last close. This is an attempt to combat the notorious
1714 * NULL files problem which is particularly noticeable from a
1715 * truncate down, buffered (re-)write (delalloc), followed by
1716 * a crash. What we are effectively doing here is
1717 * significantly reducing the time window where we'd otherwise
1718 * be exposed to that problem.
1719 */
1720 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1721 if (truncated) {
1722 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1723 if (VN_DIRTY(VFS_I(ip)) && ip->i_delayed_blks > 0) {
1724 error = -filemap_flush(VFS_I(ip)->i_mapping);
1725 if (error)
1726 return error;
1727 }
1728 }
1729 }
1730
1731 if (ip->i_d.di_nlink == 0)
1732 return 0;
1733
1734 if (xfs_can_free_eofblocks(ip, false)) {
1735
1736 /*
1737 * If we can't get the iolock just skip truncating the blocks
1738 * past EOF because we could deadlock with the mmap_sem
1739 * otherwise. We'll get another chance to drop them once the
1740 * last reference to the inode is dropped, so we'll never leak
1741 * blocks permanently.
1742 *
1743 * Further, check if the inode is being opened, written and
1744 * closed frequently and we have delayed allocation blocks
1745 * outstanding (e.g. streaming writes from the NFS server),
1746 * truncating the blocks past EOF will cause fragmentation to
1747 * occur.
1748 *
1749 * In this case don't do the truncation, either, but we have to
1750 * be careful how we detect this case. Blocks beyond EOF show
1751 * up as i_delayed_blks even when the inode is clean, so we
1752 * need to truncate them away first before checking for a dirty
1753 * release. Hence on the first dirty close we will still remove
1754 * the speculative allocation, but after that we will leave it
1755 * in place.
1756 */
1757 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1758 return 0;
1759
1760 error = xfs_free_eofblocks(mp, ip, true);
1761 if (error && error != EAGAIN)
1762 return error;
1763
1764 /* delalloc blocks after truncation means it really is dirty */
1765 if (ip->i_delayed_blks)
1766 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1767 }
1768 return 0;
1769}
1770
f7be2d7f
BF
1771/*
1772 * xfs_inactive_truncate
1773 *
1774 * Called to perform a truncate when an inode becomes unlinked.
1775 */
1776STATIC int
1777xfs_inactive_truncate(
1778 struct xfs_inode *ip)
1779{
1780 struct xfs_mount *mp = ip->i_mount;
1781 struct xfs_trans *tp;
1782 int error;
1783
1784 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1785 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1786 if (error) {
1787 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1788 xfs_trans_cancel(tp, 0);
1789 return error;
1790 }
1791
1792 xfs_ilock(ip, XFS_ILOCK_EXCL);
1793 xfs_trans_ijoin(tp, ip, 0);
1794
1795 /*
1796 * Log the inode size first to prevent stale data exposure in the event
1797 * of a system crash before the truncate completes. See the related
1798 * comment in xfs_setattr_size() for details.
1799 */
1800 ip->i_d.di_size = 0;
1801 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1802
1803 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1804 if (error)
1805 goto error_trans_cancel;
1806
1807 ASSERT(ip->i_d.di_nextents == 0);
1808
1809 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1810 if (error)
1811 goto error_unlock;
1812
1813 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1814 return 0;
1815
1816error_trans_cancel:
1817 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1818error_unlock:
1819 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1820 return error;
1821}
1822
88877d2b
BF
1823/*
1824 * xfs_inactive_ifree()
1825 *
1826 * Perform the inode free when an inode is unlinked.
1827 */
1828STATIC int
1829xfs_inactive_ifree(
1830 struct xfs_inode *ip)
1831{
1832 xfs_bmap_free_t free_list;
1833 xfs_fsblock_t first_block;
1834 int committed;
1835 struct xfs_mount *mp = ip->i_mount;
1836 struct xfs_trans *tp;
1837 int error;
1838
1839 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1840 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree, 0, 0);
1841 if (error) {
1842 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1843 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1844 return error;
1845 }
1846
1847 xfs_ilock(ip, XFS_ILOCK_EXCL);
1848 xfs_trans_ijoin(tp, ip, 0);
1849
1850 xfs_bmap_init(&free_list, &first_block);
1851 error = xfs_ifree(tp, ip, &free_list);
1852 if (error) {
1853 /*
1854 * If we fail to free the inode, shut down. The cancel
1855 * might do that, we need to make sure. Otherwise the
1856 * inode might be lost for a long time or forever.
1857 */
1858 if (!XFS_FORCED_SHUTDOWN(mp)) {
1859 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1860 __func__, error);
1861 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1862 }
1863 xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1864 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1865 return error;
1866 }
1867
1868 /*
1869 * Credit the quota account(s). The inode is gone.
1870 */
1871 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1872
1873 /*
1874 * Just ignore errors at this point. There is nothing we can
1875 * do except to try to keep going. Make sure it's not a silent
1876 * error.
1877 */
1878 error = xfs_bmap_finish(&tp, &free_list, &committed);
1879 if (error)
1880 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1881 __func__, error);
1882 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1883 if (error)
1884 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1885 __func__, error);
1886
1887 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1888 return 0;
1889}
1890
c24b5dfa
DC
1891/*
1892 * xfs_inactive
1893 *
1894 * This is called when the vnode reference count for the vnode
1895 * goes to zero. If the file has been unlinked, then it must
1896 * now be truncated. Also, we clear all of the read-ahead state
1897 * kept for the inode here since the file is now closed.
1898 */
74564fb4 1899void
c24b5dfa
DC
1900xfs_inactive(
1901 xfs_inode_t *ip)
1902{
3d3c8b52 1903 struct xfs_mount *mp;
3d3c8b52
JL
1904 int error;
1905 int truncate = 0;
c24b5dfa
DC
1906
1907 /*
1908 * If the inode is already free, then there can be nothing
1909 * to clean up here.
1910 */
d948709b 1911 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1912 ASSERT(ip->i_df.if_real_bytes == 0);
1913 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1914 return;
c24b5dfa
DC
1915 }
1916
1917 mp = ip->i_mount;
1918
c24b5dfa
DC
1919 /* If this is a read-only mount, don't do this (would generate I/O) */
1920 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1921 return;
c24b5dfa
DC
1922
1923 if (ip->i_d.di_nlink != 0) {
1924 /*
1925 * force is true because we are evicting an inode from the
1926 * cache. Post-eof blocks must be freed, lest we end up with
1927 * broken free space accounting.
1928 */
74564fb4
BF
1929 if (xfs_can_free_eofblocks(ip, true))
1930 xfs_free_eofblocks(mp, ip, false);
1931
1932 return;
c24b5dfa
DC
1933 }
1934
1935 if (S_ISREG(ip->i_d.di_mode) &&
1936 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1937 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1938 truncate = 1;
1939
1940 error = xfs_qm_dqattach(ip, 0);
1941 if (error)
74564fb4 1942 return;
c24b5dfa 1943
f7be2d7f 1944 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1945 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1946 else if (truncate)
1947 error = xfs_inactive_truncate(ip);
1948 if (error)
74564fb4 1949 return;
c24b5dfa
DC
1950
1951 /*
1952 * If there are attributes associated with the file then blow them away
1953 * now. The code calls a routine that recursively deconstructs the
1954 * attribute fork. We need to just commit the current transaction
1955 * because we can't use it for xfs_attr_inactive().
1956 */
1957 if (ip->i_d.di_anextents > 0) {
1958 ASSERT(ip->i_d.di_forkoff != 0);
1959
c24b5dfa
DC
1960 error = xfs_attr_inactive(ip);
1961 if (error)
74564fb4 1962 return;
c24b5dfa
DC
1963 }
1964
1965 if (ip->i_afp)
1966 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1967
1968 ASSERT(ip->i_d.di_anextents == 0);
1969
1970 /*
1971 * Free the inode.
1972 */
88877d2b
BF
1973 error = xfs_inactive_ifree(ip);
1974 if (error)
74564fb4 1975 return;
c24b5dfa
DC
1976
1977 /*
1978 * Release the dquots held by inode, if any.
1979 */
1980 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1981}
1982
1da177e4
LT
1983/*
1984 * This is called when the inode's link count goes to 0.
1985 * We place the on-disk inode on a list in the AGI. It
1986 * will be pulled from this list when the inode is freed.
1987 */
1988int
1989xfs_iunlink(
1990 xfs_trans_t *tp,
1991 xfs_inode_t *ip)
1992{
1993 xfs_mount_t *mp;
1994 xfs_agi_t *agi;
1995 xfs_dinode_t *dip;
1996 xfs_buf_t *agibp;
1997 xfs_buf_t *ibp;
1da177e4
LT
1998 xfs_agino_t agino;
1999 short bucket_index;
2000 int offset;
2001 int error;
1da177e4
LT
2002
2003 ASSERT(ip->i_d.di_nlink == 0);
2004 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
2005
2006 mp = tp->t_mountp;
2007
1da177e4
LT
2008 /*
2009 * Get the agi buffer first. It ensures lock ordering
2010 * on the list.
2011 */
5e1be0fb 2012 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 2013 if (error)
1da177e4 2014 return error;
1da177e4 2015 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2016
1da177e4
LT
2017 /*
2018 * Get the index into the agi hash table for the
2019 * list this inode will go on.
2020 */
2021 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2022 ASSERT(agino != 0);
2023 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2024 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 2025 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 2026
69ef921b 2027 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
2028 /*
2029 * There is already another inode in the bucket we need
2030 * to add ourselves to. Add us at the front of the list.
2031 * Here we put the head pointer into our next pointer,
2032 * and then we fall through to point the head at us.
2033 */
475ee413
CH
2034 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2035 0, 0);
c319b58b
VA
2036 if (error)
2037 return error;
2038
69ef921b 2039 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2040 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2041 offset = ip->i_imap.im_boffset +
1da177e4 2042 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2043
2044 /* need to recalc the inode CRC if appropriate */
2045 xfs_dinode_calc_crc(mp, dip);
2046
1da177e4
LT
2047 xfs_trans_inode_buf(tp, ibp);
2048 xfs_trans_log_buf(tp, ibp, offset,
2049 (offset + sizeof(xfs_agino_t) - 1));
2050 xfs_inobp_check(mp, ibp);
2051 }
2052
2053 /*
2054 * Point the bucket head pointer at the inode being inserted.
2055 */
2056 ASSERT(agino != 0);
16259e7d 2057 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2058 offset = offsetof(xfs_agi_t, agi_unlinked) +
2059 (sizeof(xfs_agino_t) * bucket_index);
2060 xfs_trans_log_buf(tp, agibp, offset,
2061 (offset + sizeof(xfs_agino_t) - 1));
2062 return 0;
2063}
2064
2065/*
2066 * Pull the on-disk inode from the AGI unlinked list.
2067 */
2068STATIC int
2069xfs_iunlink_remove(
2070 xfs_trans_t *tp,
2071 xfs_inode_t *ip)
2072{
2073 xfs_ino_t next_ino;
2074 xfs_mount_t *mp;
2075 xfs_agi_t *agi;
2076 xfs_dinode_t *dip;
2077 xfs_buf_t *agibp;
2078 xfs_buf_t *ibp;
2079 xfs_agnumber_t agno;
1da177e4
LT
2080 xfs_agino_t agino;
2081 xfs_agino_t next_agino;
2082 xfs_buf_t *last_ibp;
6fdf8ccc 2083 xfs_dinode_t *last_dip = NULL;
1da177e4 2084 short bucket_index;
6fdf8ccc 2085 int offset, last_offset = 0;
1da177e4 2086 int error;
1da177e4 2087
1da177e4 2088 mp = tp->t_mountp;
1da177e4 2089 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2090
2091 /*
2092 * Get the agi buffer first. It ensures lock ordering
2093 * on the list.
2094 */
5e1be0fb
CH
2095 error = xfs_read_agi(mp, tp, agno, &agibp);
2096 if (error)
1da177e4 2097 return error;
5e1be0fb 2098
1da177e4 2099 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2100
1da177e4
LT
2101 /*
2102 * Get the index into the agi hash table for the
2103 * list this inode will go on.
2104 */
2105 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2106 ASSERT(agino != 0);
2107 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2108 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2109 ASSERT(agi->agi_unlinked[bucket_index]);
2110
16259e7d 2111 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2112 /*
475ee413
CH
2113 * We're at the head of the list. Get the inode's on-disk
2114 * buffer to see if there is anyone after us on the list.
2115 * Only modify our next pointer if it is not already NULLAGINO.
2116 * This saves us the overhead of dealing with the buffer when
2117 * there is no need to change it.
1da177e4 2118 */
475ee413
CH
2119 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2120 0, 0);
1da177e4 2121 if (error) {
475ee413 2122 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2123 __func__, error);
1da177e4
LT
2124 return error;
2125 }
347d1c01 2126 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2127 ASSERT(next_agino != 0);
2128 if (next_agino != NULLAGINO) {
347d1c01 2129 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2130 offset = ip->i_imap.im_boffset +
1da177e4 2131 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2132
2133 /* need to recalc the inode CRC if appropriate */
2134 xfs_dinode_calc_crc(mp, dip);
2135
1da177e4
LT
2136 xfs_trans_inode_buf(tp, ibp);
2137 xfs_trans_log_buf(tp, ibp, offset,
2138 (offset + sizeof(xfs_agino_t) - 1));
2139 xfs_inobp_check(mp, ibp);
2140 } else {
2141 xfs_trans_brelse(tp, ibp);
2142 }
2143 /*
2144 * Point the bucket head pointer at the next inode.
2145 */
2146 ASSERT(next_agino != 0);
2147 ASSERT(next_agino != agino);
16259e7d 2148 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2149 offset = offsetof(xfs_agi_t, agi_unlinked) +
2150 (sizeof(xfs_agino_t) * bucket_index);
2151 xfs_trans_log_buf(tp, agibp, offset,
2152 (offset + sizeof(xfs_agino_t) - 1));
2153 } else {
2154 /*
2155 * We need to search the list for the inode being freed.
2156 */
16259e7d 2157 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2158 last_ibp = NULL;
2159 while (next_agino != agino) {
129dbc9a
CH
2160 struct xfs_imap imap;
2161
2162 if (last_ibp)
1da177e4 2163 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2164
2165 imap.im_blkno = 0;
1da177e4 2166 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2167
2168 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2169 if (error) {
2170 xfs_warn(mp,
2171 "%s: xfs_imap returned error %d.",
2172 __func__, error);
2173 return error;
2174 }
2175
2176 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2177 &last_ibp, 0, 0);
1da177e4 2178 if (error) {
0b932ccc 2179 xfs_warn(mp,
129dbc9a 2180 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2181 __func__, error);
1da177e4
LT
2182 return error;
2183 }
129dbc9a
CH
2184
2185 last_offset = imap.im_boffset;
347d1c01 2186 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2187 ASSERT(next_agino != NULLAGINO);
2188 ASSERT(next_agino != 0);
2189 }
475ee413 2190
1da177e4 2191 /*
475ee413
CH
2192 * Now last_ibp points to the buffer previous to us on the
2193 * unlinked list. Pull us from the list.
1da177e4 2194 */
475ee413
CH
2195 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2196 0, 0);
1da177e4 2197 if (error) {
475ee413 2198 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2199 __func__, error);
1da177e4
LT
2200 return error;
2201 }
347d1c01 2202 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2203 ASSERT(next_agino != 0);
2204 ASSERT(next_agino != agino);
2205 if (next_agino != NULLAGINO) {
347d1c01 2206 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2207 offset = ip->i_imap.im_boffset +
1da177e4 2208 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2209
2210 /* need to recalc the inode CRC if appropriate */
2211 xfs_dinode_calc_crc(mp, dip);
2212
1da177e4
LT
2213 xfs_trans_inode_buf(tp, ibp);
2214 xfs_trans_log_buf(tp, ibp, offset,
2215 (offset + sizeof(xfs_agino_t) - 1));
2216 xfs_inobp_check(mp, ibp);
2217 } else {
2218 xfs_trans_brelse(tp, ibp);
2219 }
2220 /*
2221 * Point the previous inode on the list to the next inode.
2222 */
347d1c01 2223 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2224 ASSERT(next_agino != 0);
2225 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2226
2227 /* need to recalc the inode CRC if appropriate */
2228 xfs_dinode_calc_crc(mp, last_dip);
2229
1da177e4
LT
2230 xfs_trans_inode_buf(tp, last_ibp);
2231 xfs_trans_log_buf(tp, last_ibp, offset,
2232 (offset + sizeof(xfs_agino_t) - 1));
2233 xfs_inobp_check(mp, last_ibp);
2234 }
2235 return 0;
2236}
2237
5b3eed75 2238/*
0b8182db 2239 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2240 * inodes that are in memory - they all must be marked stale and attached to
2241 * the cluster buffer.
2242 */
2a30f36d 2243STATIC int
1da177e4
LT
2244xfs_ifree_cluster(
2245 xfs_inode_t *free_ip,
2246 xfs_trans_t *tp,
2247 xfs_ino_t inum)
2248{
2249 xfs_mount_t *mp = free_ip->i_mount;
2250 int blks_per_cluster;
982e939e 2251 int inodes_per_cluster;
1da177e4 2252 int nbufs;
5b257b4a 2253 int i, j;
1da177e4
LT
2254 xfs_daddr_t blkno;
2255 xfs_buf_t *bp;
5b257b4a 2256 xfs_inode_t *ip;
1da177e4
LT
2257 xfs_inode_log_item_t *iip;
2258 xfs_log_item_t *lip;
5017e97d 2259 struct xfs_perag *pag;
1da177e4 2260
5017e97d 2261 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2262 blks_per_cluster = xfs_icluster_size_fsb(mp);
2263 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2264 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2265
982e939e 2266 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
1da177e4
LT
2267 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2268 XFS_INO_TO_AGBNO(mp, inum));
2269
5b257b4a
DC
2270 /*
2271 * We obtain and lock the backing buffer first in the process
2272 * here, as we have to ensure that any dirty inode that we
2273 * can't get the flush lock on is attached to the buffer.
2274 * If we scan the in-memory inodes first, then buffer IO can
2275 * complete before we get a lock on it, and hence we may fail
2276 * to mark all the active inodes on the buffer stale.
2277 */
2278 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2279 mp->m_bsize * blks_per_cluster,
2280 XBF_UNMAPPED);
5b257b4a 2281
2a30f36d
CS
2282 if (!bp)
2283 return ENOMEM;
b0f539de
DC
2284
2285 /*
2286 * This buffer may not have been correctly initialised as we
2287 * didn't read it from disk. That's not important because we are
2288 * only using to mark the buffer as stale in the log, and to
2289 * attach stale cached inodes on it. That means it will never be
2290 * dispatched for IO. If it is, we want to know about it, and we
2291 * want it to fail. We can acheive this by adding a write
2292 * verifier to the buffer.
2293 */
1813dd64 2294 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2295
5b257b4a
DC
2296 /*
2297 * Walk the inodes already attached to the buffer and mark them
2298 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2299 * in-memory inode walk can't lock them. By marking them all
2300 * stale first, we will not attempt to lock them in the loop
2301 * below as the XFS_ISTALE flag will be set.
5b257b4a 2302 */
adadbeef 2303 lip = bp->b_fspriv;
5b257b4a
DC
2304 while (lip) {
2305 if (lip->li_type == XFS_LI_INODE) {
2306 iip = (xfs_inode_log_item_t *)lip;
2307 ASSERT(iip->ili_logged == 1);
ca30b2a7 2308 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2309 xfs_trans_ail_copy_lsn(mp->m_ail,
2310 &iip->ili_flush_lsn,
2311 &iip->ili_item.li_lsn);
2312 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2313 }
2314 lip = lip->li_bio_list;
2315 }
1da177e4 2316
5b3eed75 2317
1da177e4 2318 /*
5b257b4a
DC
2319 * For each inode in memory attempt to add it to the inode
2320 * buffer and set it up for being staled on buffer IO
2321 * completion. This is safe as we've locked out tail pushing
2322 * and flushing by locking the buffer.
1da177e4 2323 *
5b257b4a
DC
2324 * We have already marked every inode that was part of a
2325 * transaction stale above, which means there is no point in
2326 * even trying to lock them.
1da177e4 2327 */
982e939e 2328 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2329retry:
1a3e8f3d 2330 rcu_read_lock();
da353b0d
DC
2331 ip = radix_tree_lookup(&pag->pag_ici_root,
2332 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2333
1a3e8f3d
DC
2334 /* Inode not in memory, nothing to do */
2335 if (!ip) {
2336 rcu_read_unlock();
1da177e4
LT
2337 continue;
2338 }
2339
1a3e8f3d
DC
2340 /*
2341 * because this is an RCU protected lookup, we could
2342 * find a recently freed or even reallocated inode
2343 * during the lookup. We need to check under the
2344 * i_flags_lock for a valid inode here. Skip it if it
2345 * is not valid, the wrong inode or stale.
2346 */
2347 spin_lock(&ip->i_flags_lock);
2348 if (ip->i_ino != inum + i ||
2349 __xfs_iflags_test(ip, XFS_ISTALE)) {
2350 spin_unlock(&ip->i_flags_lock);
2351 rcu_read_unlock();
2352 continue;
2353 }
2354 spin_unlock(&ip->i_flags_lock);
2355
5b3eed75
DC
2356 /*
2357 * Don't try to lock/unlock the current inode, but we
2358 * _cannot_ skip the other inodes that we did not find
2359 * in the list attached to the buffer and are not
2360 * already marked stale. If we can't lock it, back off
2361 * and retry.
2362 */
5b257b4a
DC
2363 if (ip != free_ip &&
2364 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2365 rcu_read_unlock();
5b3eed75
DC
2366 delay(1);
2367 goto retry;
1da177e4 2368 }
1a3e8f3d 2369 rcu_read_unlock();
1da177e4 2370
5b3eed75 2371 xfs_iflock(ip);
5b257b4a 2372 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2373
5b3eed75
DC
2374 /*
2375 * we don't need to attach clean inodes or those only
2376 * with unlogged changes (which we throw away, anyway).
2377 */
1da177e4 2378 iip = ip->i_itemp;
5b3eed75 2379 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2380 ASSERT(ip != free_ip);
1da177e4
LT
2381 xfs_ifunlock(ip);
2382 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2383 continue;
2384 }
2385
f5d8d5c4
CH
2386 iip->ili_last_fields = iip->ili_fields;
2387 iip->ili_fields = 0;
1da177e4 2388 iip->ili_logged = 1;
7b2e2a31
DC
2389 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2390 &iip->ili_item.li_lsn);
1da177e4 2391
ca30b2a7
CH
2392 xfs_buf_attach_iodone(bp, xfs_istale_done,
2393 &iip->ili_item);
5b257b4a
DC
2394
2395 if (ip != free_ip)
1da177e4 2396 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2397 }
2398
5b3eed75 2399 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2400 xfs_trans_binval(tp, bp);
2401 }
2402
5017e97d 2403 xfs_perag_put(pag);
2a30f36d 2404 return 0;
1da177e4
LT
2405}
2406
2407/*
2408 * This is called to return an inode to the inode free list.
2409 * The inode should already be truncated to 0 length and have
2410 * no pages associated with it. This routine also assumes that
2411 * the inode is already a part of the transaction.
2412 *
2413 * The on-disk copy of the inode will have been added to the list
2414 * of unlinked inodes in the AGI. We need to remove the inode from
2415 * that list atomically with respect to freeing it here.
2416 */
2417int
2418xfs_ifree(
2419 xfs_trans_t *tp,
2420 xfs_inode_t *ip,
2421 xfs_bmap_free_t *flist)
2422{
2423 int error;
2424 int delete;
2425 xfs_ino_t first_ino;
2426
579aa9ca 2427 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2428 ASSERT(ip->i_d.di_nlink == 0);
2429 ASSERT(ip->i_d.di_nextents == 0);
2430 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2431 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2432 ASSERT(ip->i_d.di_nblocks == 0);
2433
2434 /*
2435 * Pull the on-disk inode from the AGI unlinked list.
2436 */
2437 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2438 if (error)
1da177e4 2439 return error;
1da177e4
LT
2440
2441 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
1baaed8f 2442 if (error)
1da177e4 2443 return error;
1baaed8f 2444
1da177e4
LT
2445 ip->i_d.di_mode = 0; /* mark incore inode as free */
2446 ip->i_d.di_flags = 0;
2447 ip->i_d.di_dmevmask = 0;
2448 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2449 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2450 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2451 /*
2452 * Bump the generation count so no one will be confused
2453 * by reincarnations of this inode.
2454 */
2455 ip->i_d.di_gen++;
2456 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2457
1baaed8f 2458 if (delete)
2a30f36d 2459 error = xfs_ifree_cluster(ip, tp, first_ino);
1da177e4 2460
2a30f36d 2461 return error;
1da177e4
LT
2462}
2463
1da177e4 2464/*
60ec6783
CH
2465 * This is called to unpin an inode. The caller must have the inode locked
2466 * in at least shared mode so that the buffer cannot be subsequently pinned
2467 * once someone is waiting for it to be unpinned.
1da177e4 2468 */
60ec6783 2469static void
f392e631 2470xfs_iunpin(
60ec6783 2471 struct xfs_inode *ip)
1da177e4 2472{
579aa9ca 2473 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2474
4aaf15d1
DC
2475 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2476
a3f74ffb 2477 /* Give the log a push to start the unpinning I/O */
60ec6783 2478 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2479
a3f74ffb 2480}
1da177e4 2481
f392e631
CH
2482static void
2483__xfs_iunpin_wait(
2484 struct xfs_inode *ip)
2485{
2486 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2487 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2488
2489 xfs_iunpin(ip);
2490
2491 do {
2492 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2493 if (xfs_ipincount(ip))
2494 io_schedule();
2495 } while (xfs_ipincount(ip));
2496 finish_wait(wq, &wait.wait);
2497}
2498
777df5af 2499void
a3f74ffb 2500xfs_iunpin_wait(
60ec6783 2501 struct xfs_inode *ip)
a3f74ffb 2502{
f392e631
CH
2503 if (xfs_ipincount(ip))
2504 __xfs_iunpin_wait(ip);
1da177e4
LT
2505}
2506
27320369
DC
2507/*
2508 * Removing an inode from the namespace involves removing the directory entry
2509 * and dropping the link count on the inode. Removing the directory entry can
2510 * result in locking an AGF (directory blocks were freed) and removing a link
2511 * count can result in placing the inode on an unlinked list which results in
2512 * locking an AGI.
2513 *
2514 * The big problem here is that we have an ordering constraint on AGF and AGI
2515 * locking - inode allocation locks the AGI, then can allocate a new extent for
2516 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2517 * removes the inode from the unlinked list, requiring that we lock the AGI
2518 * first, and then freeing the inode can result in an inode chunk being freed
2519 * and hence freeing disk space requiring that we lock an AGF.
2520 *
2521 * Hence the ordering that is imposed by other parts of the code is AGI before
2522 * AGF. This means we cannot remove the directory entry before we drop the inode
2523 * reference count and put it on the unlinked list as this results in a lock
2524 * order of AGF then AGI, and this can deadlock against inode allocation and
2525 * freeing. Therefore we must drop the link counts before we remove the
2526 * directory entry.
2527 *
2528 * This is still safe from a transactional point of view - it is not until we
2529 * get to xfs_bmap_finish() that we have the possibility of multiple
2530 * transactions in this operation. Hence as long as we remove the directory
2531 * entry and drop the link count in the first transaction of the remove
2532 * operation, there are no transactional constraints on the ordering here.
2533 */
c24b5dfa
DC
2534int
2535xfs_remove(
2536 xfs_inode_t *dp,
2537 struct xfs_name *name,
2538 xfs_inode_t *ip)
2539{
2540 xfs_mount_t *mp = dp->i_mount;
2541 xfs_trans_t *tp = NULL;
2542 int is_dir = S_ISDIR(ip->i_d.di_mode);
2543 int error = 0;
2544 xfs_bmap_free_t free_list;
2545 xfs_fsblock_t first_block;
2546 int cancel_flags;
2547 int committed;
2548 int link_zero;
2549 uint resblks;
2550 uint log_count;
2551
2552 trace_xfs_remove(dp, name);
2553
2554 if (XFS_FORCED_SHUTDOWN(mp))
2555 return XFS_ERROR(EIO);
2556
2557 error = xfs_qm_dqattach(dp, 0);
2558 if (error)
2559 goto std_return;
2560
2561 error = xfs_qm_dqattach(ip, 0);
2562 if (error)
2563 goto std_return;
2564
2565 if (is_dir) {
2566 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2567 log_count = XFS_DEFAULT_LOG_COUNT;
2568 } else {
2569 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2570 log_count = XFS_REMOVE_LOG_COUNT;
2571 }
2572 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2573
2574 /*
2575 * We try to get the real space reservation first,
2576 * allowing for directory btree deletion(s) implying
2577 * possible bmap insert(s). If we can't get the space
2578 * reservation then we use 0 instead, and avoid the bmap
2579 * btree insert(s) in the directory code by, if the bmap
2580 * insert tries to happen, instead trimming the LAST
2581 * block from the directory.
2582 */
2583 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2584 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
c24b5dfa
DC
2585 if (error == ENOSPC) {
2586 resblks = 0;
3d3c8b52 2587 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2588 }
2589 if (error) {
2590 ASSERT(error != ENOSPC);
2591 cancel_flags = 0;
2592 goto out_trans_cancel;
2593 }
2594
2595 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2596
2597 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2598 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2599
2600 /*
2601 * If we're removing a directory perform some additional validation.
2602 */
27320369 2603 cancel_flags |= XFS_TRANS_ABORT;
c24b5dfa
DC
2604 if (is_dir) {
2605 ASSERT(ip->i_d.di_nlink >= 2);
2606 if (ip->i_d.di_nlink != 2) {
2607 error = XFS_ERROR(ENOTEMPTY);
2608 goto out_trans_cancel;
2609 }
2610 if (!xfs_dir_isempty(ip)) {
2611 error = XFS_ERROR(ENOTEMPTY);
2612 goto out_trans_cancel;
2613 }
c24b5dfa 2614
27320369 2615 /* Drop the link from ip's "..". */
c24b5dfa
DC
2616 error = xfs_droplink(tp, dp);
2617 if (error)
27320369 2618 goto out_trans_cancel;
c24b5dfa 2619
27320369 2620 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2621 error = xfs_droplink(tp, ip);
2622 if (error)
27320369 2623 goto out_trans_cancel;
c24b5dfa
DC
2624 } else {
2625 /*
2626 * When removing a non-directory we need to log the parent
2627 * inode here. For a directory this is done implicitly
2628 * by the xfs_droplink call for the ".." entry.
2629 */
2630 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2631 }
27320369 2632 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2633
27320369 2634 /* Drop the link from dp to ip. */
c24b5dfa
DC
2635 error = xfs_droplink(tp, ip);
2636 if (error)
27320369 2637 goto out_trans_cancel;
c24b5dfa 2638
27320369 2639 /* Determine if this is the last link while the inode is locked */
c24b5dfa
DC
2640 link_zero = (ip->i_d.di_nlink == 0);
2641
27320369
DC
2642 xfs_bmap_init(&free_list, &first_block);
2643 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2644 &first_block, &free_list, resblks);
2645 if (error) {
2646 ASSERT(error != ENOENT);
2647 goto out_bmap_cancel;
2648 }
2649
c24b5dfa
DC
2650 /*
2651 * If this is a synchronous mount, make sure that the
2652 * remove transaction goes to disk before returning to
2653 * the user.
2654 */
2655 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2656 xfs_trans_set_sync(tp);
2657
2658 error = xfs_bmap_finish(&tp, &free_list, &committed);
2659 if (error)
2660 goto out_bmap_cancel;
2661
2662 error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2663 if (error)
2664 goto std_return;
2665
2666 /*
2667 * If we are using filestreams, kill the stream association.
2668 * If the file is still open it may get a new one but that
2669 * will get killed on last close in xfs_close() so we don't
2670 * have to worry about that.
2671 */
2672 if (!is_dir && link_zero && xfs_inode_is_filestream(ip))
2673 xfs_filestream_deassociate(ip);
2674
2675 return 0;
2676
2677 out_bmap_cancel:
2678 xfs_bmap_cancel(&free_list);
c24b5dfa
DC
2679 out_trans_cancel:
2680 xfs_trans_cancel(tp, cancel_flags);
2681 std_return:
2682 return error;
2683}
2684
f6bba201
DC
2685/*
2686 * Enter all inodes for a rename transaction into a sorted array.
2687 */
2688STATIC void
2689xfs_sort_for_rename(
2690 xfs_inode_t *dp1, /* in: old (source) directory inode */
2691 xfs_inode_t *dp2, /* in: new (target) directory inode */
2692 xfs_inode_t *ip1, /* in: inode of old entry */
2693 xfs_inode_t *ip2, /* in: inode of new entry, if it
2694 already exists, NULL otherwise. */
2695 xfs_inode_t **i_tab,/* out: array of inode returned, sorted */
2696 int *num_inodes) /* out: number of inodes in array */
2697{
2698 xfs_inode_t *temp;
2699 int i, j;
2700
2701 /*
2702 * i_tab contains a list of pointers to inodes. We initialize
2703 * the table here & we'll sort it. We will then use it to
2704 * order the acquisition of the inode locks.
2705 *
2706 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2707 */
2708 i_tab[0] = dp1;
2709 i_tab[1] = dp2;
2710 i_tab[2] = ip1;
2711 if (ip2) {
2712 *num_inodes = 4;
2713 i_tab[3] = ip2;
2714 } else {
2715 *num_inodes = 3;
2716 i_tab[3] = NULL;
2717 }
2718
2719 /*
2720 * Sort the elements via bubble sort. (Remember, there are at
2721 * most 4 elements to sort, so this is adequate.)
2722 */
2723 for (i = 0; i < *num_inodes; i++) {
2724 for (j = 1; j < *num_inodes; j++) {
2725 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2726 temp = i_tab[j];
2727 i_tab[j] = i_tab[j-1];
2728 i_tab[j-1] = temp;
2729 }
2730 }
2731 }
2732}
2733
2734/*
2735 * xfs_rename
2736 */
2737int
2738xfs_rename(
2739 xfs_inode_t *src_dp,
2740 struct xfs_name *src_name,
2741 xfs_inode_t *src_ip,
2742 xfs_inode_t *target_dp,
2743 struct xfs_name *target_name,
2744 xfs_inode_t *target_ip)
2745{
2746 xfs_trans_t *tp = NULL;
2747 xfs_mount_t *mp = src_dp->i_mount;
2748 int new_parent; /* moving to a new dir */
2749 int src_is_directory; /* src_name is a directory */
2750 int error;
2751 xfs_bmap_free_t free_list;
2752 xfs_fsblock_t first_block;
2753 int cancel_flags;
2754 int committed;
2755 xfs_inode_t *inodes[4];
2756 int spaceres;
2757 int num_inodes;
2758
2759 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2760
2761 new_parent = (src_dp != target_dp);
2762 src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2763
2764 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip,
2765 inodes, &num_inodes);
2766
2767 xfs_bmap_init(&free_list, &first_block);
2768 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2769 cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2770 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2771 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
f6bba201
DC
2772 if (error == ENOSPC) {
2773 spaceres = 0;
3d3c8b52 2774 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201
DC
2775 }
2776 if (error) {
2777 xfs_trans_cancel(tp, 0);
2778 goto std_return;
2779 }
2780
2781 /*
2782 * Attach the dquots to the inodes
2783 */
2784 error = xfs_qm_vop_rename_dqattach(inodes);
2785 if (error) {
2786 xfs_trans_cancel(tp, cancel_flags);
2787 goto std_return;
2788 }
2789
2790 /*
2791 * Lock all the participating inodes. Depending upon whether
2792 * the target_name exists in the target directory, and
2793 * whether the target directory is the same as the source
2794 * directory, we can lock from 2 to 4 inodes.
2795 */
2796 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2797
2798 /*
2799 * Join all the inodes to the transaction. From this point on,
2800 * we can rely on either trans_commit or trans_cancel to unlock
2801 * them.
2802 */
2803 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2804 if (new_parent)
2805 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2806 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2807 if (target_ip)
2808 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2809
2810 /*
2811 * If we are using project inheritance, we only allow renames
2812 * into our tree when the project IDs are the same; else the
2813 * tree quota mechanism would be circumvented.
2814 */
2815 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2816 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2817 error = XFS_ERROR(EXDEV);
2818 goto error_return;
2819 }
2820
2821 /*
2822 * Set up the target.
2823 */
2824 if (target_ip == NULL) {
2825 /*
2826 * If there's no space reservation, check the entry will
2827 * fit before actually inserting it.
2828 */
2829 error = xfs_dir_canenter(tp, target_dp, target_name, spaceres);
2830 if (error)
2831 goto error_return;
2832 /*
2833 * If target does not exist and the rename crosses
2834 * directories, adjust the target directory link count
2835 * to account for the ".." reference from the new entry.
2836 */
2837 error = xfs_dir_createname(tp, target_dp, target_name,
2838 src_ip->i_ino, &first_block,
2839 &free_list, spaceres);
2840 if (error == ENOSPC)
2841 goto error_return;
2842 if (error)
2843 goto abort_return;
2844
2845 xfs_trans_ichgtime(tp, target_dp,
2846 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2847
2848 if (new_parent && src_is_directory) {
2849 error = xfs_bumplink(tp, target_dp);
2850 if (error)
2851 goto abort_return;
2852 }
2853 } else { /* target_ip != NULL */
2854 /*
2855 * If target exists and it's a directory, check that both
2856 * target and source are directories and that target can be
2857 * destroyed, or that neither is a directory.
2858 */
2859 if (S_ISDIR(target_ip->i_d.di_mode)) {
2860 /*
2861 * Make sure target dir is empty.
2862 */
2863 if (!(xfs_dir_isempty(target_ip)) ||
2864 (target_ip->i_d.di_nlink > 2)) {
2865 error = XFS_ERROR(EEXIST);
2866 goto error_return;
2867 }
2868 }
2869
2870 /*
2871 * Link the source inode under the target name.
2872 * If the source inode is a directory and we are moving
2873 * it across directories, its ".." entry will be
2874 * inconsistent until we replace that down below.
2875 *
2876 * In case there is already an entry with the same
2877 * name at the destination directory, remove it first.
2878 */
2879 error = xfs_dir_replace(tp, target_dp, target_name,
2880 src_ip->i_ino,
2881 &first_block, &free_list, spaceres);
2882 if (error)
2883 goto abort_return;
2884
2885 xfs_trans_ichgtime(tp, target_dp,
2886 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2887
2888 /*
2889 * Decrement the link count on the target since the target
2890 * dir no longer points to it.
2891 */
2892 error = xfs_droplink(tp, target_ip);
2893 if (error)
2894 goto abort_return;
2895
2896 if (src_is_directory) {
2897 /*
2898 * Drop the link from the old "." entry.
2899 */
2900 error = xfs_droplink(tp, target_ip);
2901 if (error)
2902 goto abort_return;
2903 }
2904 } /* target_ip != NULL */
2905
2906 /*
2907 * Remove the source.
2908 */
2909 if (new_parent && src_is_directory) {
2910 /*
2911 * Rewrite the ".." entry to point to the new
2912 * directory.
2913 */
2914 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
2915 target_dp->i_ino,
2916 &first_block, &free_list, spaceres);
2917 ASSERT(error != EEXIST);
2918 if (error)
2919 goto abort_return;
2920 }
2921
2922 /*
2923 * We always want to hit the ctime on the source inode.
2924 *
2925 * This isn't strictly required by the standards since the source
2926 * inode isn't really being changed, but old unix file systems did
2927 * it and some incremental backup programs won't work without it.
2928 */
2929 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
2930 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
2931
2932 /*
2933 * Adjust the link count on src_dp. This is necessary when
2934 * renaming a directory, either within one parent when
2935 * the target existed, or across two parent directories.
2936 */
2937 if (src_is_directory && (new_parent || target_ip != NULL)) {
2938
2939 /*
2940 * Decrement link count on src_directory since the
2941 * entry that's moved no longer points to it.
2942 */
2943 error = xfs_droplink(tp, src_dp);
2944 if (error)
2945 goto abort_return;
2946 }
2947
2948 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2949 &first_block, &free_list, spaceres);
2950 if (error)
2951 goto abort_return;
2952
2953 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2954 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
2955 if (new_parent)
2956 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
2957
2958 /*
2959 * If this is a synchronous mount, make sure that the
2960 * rename transaction goes to disk before returning to
2961 * the user.
2962 */
2963 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
2964 xfs_trans_set_sync(tp);
2965 }
2966
2967 error = xfs_bmap_finish(&tp, &free_list, &committed);
2968 if (error) {
2969 xfs_bmap_cancel(&free_list);
2970 xfs_trans_cancel(tp, (XFS_TRANS_RELEASE_LOG_RES |
2971 XFS_TRANS_ABORT));
2972 goto std_return;
2973 }
2974
2975 /*
2976 * trans_commit will unlock src_ip, target_ip & decrement
2977 * the vnode references.
2978 */
2979 return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2980
2981 abort_return:
2982 cancel_flags |= XFS_TRANS_ABORT;
2983 error_return:
2984 xfs_bmap_cancel(&free_list);
2985 xfs_trans_cancel(tp, cancel_flags);
2986 std_return:
2987 return error;
2988}
2989
5c4d97d0
DC
2990STATIC int
2991xfs_iflush_cluster(
2992 xfs_inode_t *ip,
2993 xfs_buf_t *bp)
1da177e4 2994{
5c4d97d0
DC
2995 xfs_mount_t *mp = ip->i_mount;
2996 struct xfs_perag *pag;
2997 unsigned long first_index, mask;
2998 unsigned long inodes_per_cluster;
2999 int ilist_size;
3000 xfs_inode_t **ilist;
3001 xfs_inode_t *iq;
3002 int nr_found;
3003 int clcount = 0;
3004 int bufwasdelwri;
1da177e4 3005 int i;
1da177e4 3006
5c4d97d0 3007 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3008
0f49efd8 3009 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3010 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3011 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3012 if (!ilist)
3013 goto out_put;
1da177e4 3014
0f49efd8 3015 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3016 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3017 rcu_read_lock();
3018 /* really need a gang lookup range call here */
3019 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3020 first_index, inodes_per_cluster);
3021 if (nr_found == 0)
3022 goto out_free;
3023
3024 for (i = 0; i < nr_found; i++) {
3025 iq = ilist[i];
3026 if (iq == ip)
bad55843 3027 continue;
1a3e8f3d
DC
3028
3029 /*
3030 * because this is an RCU protected lookup, we could find a
3031 * recently freed or even reallocated inode during the lookup.
3032 * We need to check under the i_flags_lock for a valid inode
3033 * here. Skip it if it is not valid or the wrong inode.
3034 */
3035 spin_lock(&ip->i_flags_lock);
3036 if (!ip->i_ino ||
3037 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3038 spin_unlock(&ip->i_flags_lock);
3039 continue;
3040 }
3041 spin_unlock(&ip->i_flags_lock);
3042
bad55843
DC
3043 /*
3044 * Do an un-protected check to see if the inode is dirty and
3045 * is a candidate for flushing. These checks will be repeated
3046 * later after the appropriate locks are acquired.
3047 */
33540408 3048 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3049 continue;
bad55843
DC
3050
3051 /*
3052 * Try to get locks. If any are unavailable or it is pinned,
3053 * then this inode cannot be flushed and is skipped.
3054 */
3055
3056 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3057 continue;
3058 if (!xfs_iflock_nowait(iq)) {
3059 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3060 continue;
3061 }
3062 if (xfs_ipincount(iq)) {
3063 xfs_ifunlock(iq);
3064 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3065 continue;
3066 }
3067
3068 /*
3069 * arriving here means that this inode can be flushed. First
3070 * re-check that it's dirty before flushing.
3071 */
33540408
DC
3072 if (!xfs_inode_clean(iq)) {
3073 int error;
bad55843
DC
3074 error = xfs_iflush_int(iq, bp);
3075 if (error) {
3076 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3077 goto cluster_corrupt_out;
3078 }
3079 clcount++;
3080 } else {
3081 xfs_ifunlock(iq);
3082 }
3083 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3084 }
3085
3086 if (clcount) {
3087 XFS_STATS_INC(xs_icluster_flushcnt);
3088 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3089 }
3090
3091out_free:
1a3e8f3d 3092 rcu_read_unlock();
f0e2d93c 3093 kmem_free(ilist);
44b56e0a
DC
3094out_put:
3095 xfs_perag_put(pag);
bad55843
DC
3096 return 0;
3097
3098
3099cluster_corrupt_out:
3100 /*
3101 * Corruption detected in the clustering loop. Invalidate the
3102 * inode buffer and shut down the filesystem.
3103 */
1a3e8f3d 3104 rcu_read_unlock();
bad55843 3105 /*
43ff2122 3106 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3107 * brelse can handle it with no problems. If not, shut down the
3108 * filesystem before releasing the buffer.
3109 */
43ff2122 3110 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3111 if (bufwasdelwri)
3112 xfs_buf_relse(bp);
3113
3114 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3115
3116 if (!bufwasdelwri) {
3117 /*
3118 * Just like incore_relse: if we have b_iodone functions,
3119 * mark the buffer as an error and call them. Otherwise
3120 * mark it as stale and brelse.
3121 */
cb669ca5 3122 if (bp->b_iodone) {
bad55843 3123 XFS_BUF_UNDONE(bp);
c867cb61 3124 xfs_buf_stale(bp);
5a52c2a5 3125 xfs_buf_ioerror(bp, EIO);
1a1a3e97 3126 xfs_buf_ioend(bp, 0);
bad55843 3127 } else {
c867cb61 3128 xfs_buf_stale(bp);
bad55843
DC
3129 xfs_buf_relse(bp);
3130 }
3131 }
3132
3133 /*
3134 * Unlocks the flush lock
3135 */
04913fdd 3136 xfs_iflush_abort(iq, false);
f0e2d93c 3137 kmem_free(ilist);
44b56e0a 3138 xfs_perag_put(pag);
bad55843
DC
3139 return XFS_ERROR(EFSCORRUPTED);
3140}
3141
1da177e4 3142/*
4c46819a
CH
3143 * Flush dirty inode metadata into the backing buffer.
3144 *
3145 * The caller must have the inode lock and the inode flush lock held. The
3146 * inode lock will still be held upon return to the caller, and the inode
3147 * flush lock will be released after the inode has reached the disk.
3148 *
3149 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3150 */
3151int
3152xfs_iflush(
4c46819a
CH
3153 struct xfs_inode *ip,
3154 struct xfs_buf **bpp)
1da177e4 3155{
4c46819a
CH
3156 struct xfs_mount *mp = ip->i_mount;
3157 struct xfs_buf *bp;
3158 struct xfs_dinode *dip;
1da177e4 3159 int error;
1da177e4
LT
3160
3161 XFS_STATS_INC(xs_iflush_count);
3162
579aa9ca 3163 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3164 ASSERT(xfs_isiflocked(ip));
1da177e4 3165 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3166 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3167
4c46819a 3168 *bpp = NULL;
1da177e4 3169
1da177e4
LT
3170 xfs_iunpin_wait(ip);
3171
4b6a4688
DC
3172 /*
3173 * For stale inodes we cannot rely on the backing buffer remaining
3174 * stale in cache for the remaining life of the stale inode and so
475ee413 3175 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3176 * inodes below. We have to check this after ensuring the inode is
3177 * unpinned so that it is safe to reclaim the stale inode after the
3178 * flush call.
3179 */
3180 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3181 xfs_ifunlock(ip);
3182 return 0;
3183 }
3184
1da177e4
LT
3185 /*
3186 * This may have been unpinned because the filesystem is shutting
3187 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3188 * to disk, because the log record didn't make it to disk.
3189 *
3190 * We also have to remove the log item from the AIL in this case,
3191 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3192 */
3193 if (XFS_FORCED_SHUTDOWN(mp)) {
32ce90a4
CH
3194 error = XFS_ERROR(EIO);
3195 goto abort_out;
1da177e4
LT
3196 }
3197
a3f74ffb
DC
3198 /*
3199 * Get the buffer containing the on-disk inode.
3200 */
475ee413
CH
3201 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3202 0);
a3f74ffb
DC
3203 if (error || !bp) {
3204 xfs_ifunlock(ip);
3205 return error;
3206 }
3207
1da177e4
LT
3208 /*
3209 * First flush out the inode that xfs_iflush was called with.
3210 */
3211 error = xfs_iflush_int(ip, bp);
bad55843 3212 if (error)
1da177e4 3213 goto corrupt_out;
1da177e4 3214
a3f74ffb
DC
3215 /*
3216 * If the buffer is pinned then push on the log now so we won't
3217 * get stuck waiting in the write for too long.
3218 */
811e64c7 3219 if (xfs_buf_ispinned(bp))
a14a348b 3220 xfs_log_force(mp, 0);
a3f74ffb 3221
1da177e4
LT
3222 /*
3223 * inode clustering:
3224 * see if other inodes can be gathered into this write
3225 */
bad55843
DC
3226 error = xfs_iflush_cluster(ip, bp);
3227 if (error)
3228 goto cluster_corrupt_out;
1da177e4 3229
4c46819a
CH
3230 *bpp = bp;
3231 return 0;
1da177e4
LT
3232
3233corrupt_out:
3234 xfs_buf_relse(bp);
7d04a335 3235 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3236cluster_corrupt_out:
32ce90a4
CH
3237 error = XFS_ERROR(EFSCORRUPTED);
3238abort_out:
1da177e4
LT
3239 /*
3240 * Unlocks the flush lock
3241 */
04913fdd 3242 xfs_iflush_abort(ip, false);
32ce90a4 3243 return error;
1da177e4
LT
3244}
3245
1da177e4
LT
3246STATIC int
3247xfs_iflush_int(
93848a99
CH
3248 struct xfs_inode *ip,
3249 struct xfs_buf *bp)
1da177e4 3250{
93848a99
CH
3251 struct xfs_inode_log_item *iip = ip->i_itemp;
3252 struct xfs_dinode *dip;
3253 struct xfs_mount *mp = ip->i_mount;
1da177e4 3254
579aa9ca 3255 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3256 ASSERT(xfs_isiflocked(ip));
1da177e4 3257 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3258 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3259 ASSERT(iip != NULL && iip->ili_fields != 0);
1da177e4 3260
1da177e4 3261 /* set *dip = inode's place in the buffer */
92bfc6e7 3262 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3263
69ef921b 3264 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3265 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3266 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3267 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3268 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3269 goto corrupt_out;
3270 }
3271 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3272 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3273 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3274 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3275 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3276 goto corrupt_out;
3277 }
abbede1b 3278 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3279 if (XFS_TEST_ERROR(
3280 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3281 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3282 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3283 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3284 "%s: Bad regular inode %Lu, ptr 0x%p",
3285 __func__, ip->i_ino, ip);
1da177e4
LT
3286 goto corrupt_out;
3287 }
abbede1b 3288 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3289 if (XFS_TEST_ERROR(
3290 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3291 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3292 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3293 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3294 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3295 "%s: Bad directory inode %Lu, ptr 0x%p",
3296 __func__, ip->i_ino, ip);
1da177e4
LT
3297 goto corrupt_out;
3298 }
3299 }
3300 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3301 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3302 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3303 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3304 "%s: detected corrupt incore inode %Lu, "
3305 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3306 __func__, ip->i_ino,
1da177e4 3307 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3308 ip->i_d.di_nblocks, ip);
1da177e4
LT
3309 goto corrupt_out;
3310 }
3311 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3312 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3313 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3314 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3315 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3316 goto corrupt_out;
3317 }
e60896d8 3318
1da177e4 3319 /*
e60896d8
DC
3320 * Inode item log recovery for v1/v2 inodes are dependent on the
3321 * di_flushiter count for correct sequencing. We bump the flush
3322 * iteration count so we can detect flushes which postdate a log record
3323 * during recovery. This is redundant as we now log every change and
3324 * hence this can't happen but we need to still do it to ensure
3325 * backwards compatibility with old kernels that predate logging all
3326 * inode changes.
1da177e4 3327 */
e60896d8
DC
3328 if (ip->i_d.di_version < 3)
3329 ip->i_d.di_flushiter++;
1da177e4
LT
3330
3331 /*
3332 * Copy the dirty parts of the inode into the on-disk
3333 * inode. We always copy out the core of the inode,
3334 * because if the inode is dirty at all the core must
3335 * be.
3336 */
81591fe2 3337 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3338
3339 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3340 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3341 ip->i_d.di_flushiter = 0;
3342
3343 /*
3344 * If this is really an old format inode and the superblock version
3345 * has not been updated to support only new format inodes, then
3346 * convert back to the old inode format. If the superblock version
3347 * has been updated, then make the conversion permanent.
3348 */
51ce16d5
CH
3349 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
3350 if (ip->i_d.di_version == 1) {
62118709 3351 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3352 /*
3353 * Convert it back.
3354 */
3355 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
81591fe2 3356 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3357 } else {
3358 /*
3359 * The superblock version has already been bumped,
3360 * so just make the conversion to the new inode
3361 * format permanent.
3362 */
51ce16d5
CH
3363 ip->i_d.di_version = 2;
3364 dip->di_version = 2;
1da177e4 3365 ip->i_d.di_onlink = 0;
81591fe2 3366 dip->di_onlink = 0;
1da177e4 3367 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
81591fe2
CH
3368 memset(&(dip->di_pad[0]), 0,
3369 sizeof(dip->di_pad));
6743099c 3370 ASSERT(xfs_get_projid(ip) == 0);
1da177e4
LT
3371 }
3372 }
3373
e4ac967b
DC
3374 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3375 if (XFS_IFORK_Q(ip))
3376 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3377 xfs_inobp_check(mp, bp);
3378
3379 /*
f5d8d5c4
CH
3380 * We've recorded everything logged in the inode, so we'd like to clear
3381 * the ili_fields bits so we don't log and flush things unnecessarily.
3382 * However, we can't stop logging all this information until the data
3383 * we've copied into the disk buffer is written to disk. If we did we
3384 * might overwrite the copy of the inode in the log with all the data
3385 * after re-logging only part of it, and in the face of a crash we
3386 * wouldn't have all the data we need to recover.
1da177e4 3387 *
f5d8d5c4
CH
3388 * What we do is move the bits to the ili_last_fields field. When
3389 * logging the inode, these bits are moved back to the ili_fields field.
3390 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3391 * know that the information those bits represent is permanently on
3392 * disk. As long as the flush completes before the inode is logged
3393 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3394 *
f5d8d5c4
CH
3395 * We can play with the ili_fields bits here, because the inode lock
3396 * must be held exclusively in order to set bits there and the flush
3397 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3398 * done routine can tell whether or not to look in the AIL. Also, store
3399 * the current LSN of the inode so that we can tell whether the item has
3400 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3401 * need the AIL lock, because it is a 64 bit value that cannot be read
3402 * atomically.
1da177e4 3403 */
93848a99
CH
3404 iip->ili_last_fields = iip->ili_fields;
3405 iip->ili_fields = 0;
3406 iip->ili_logged = 1;
1da177e4 3407
93848a99
CH
3408 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3409 &iip->ili_item.li_lsn);
1da177e4 3410
93848a99
CH
3411 /*
3412 * Attach the function xfs_iflush_done to the inode's
3413 * buffer. This will remove the inode from the AIL
3414 * and unlock the inode's flush lock when the inode is
3415 * completely written to disk.
3416 */
3417 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3418
93848a99
CH
3419 /* update the lsn in the on disk inode if required */
3420 if (ip->i_d.di_version == 3)
3421 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3422
3423 /* generate the checksum. */
3424 xfs_dinode_calc_crc(mp, dip);
1da177e4 3425
93848a99
CH
3426 ASSERT(bp->b_fspriv != NULL);
3427 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3428 return 0;
3429
3430corrupt_out:
3431 return XFS_ERROR(EFSCORRUPTED);
3432}