xfs: remove filestream item xfs_inode reference
[linux-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d 18#include <linux/log2.h>
f0e28280 19#include <linux/iversion.h>
40ebd81d 20
1da177e4 21#include "xfs.h"
a844f451 22#include "xfs_fs.h"
70a9883c 23#include "xfs_shared.h"
239880ef
DC
24#include "xfs_format.h"
25#include "xfs_log_format.h"
26#include "xfs_trans_resv.h"
1da177e4 27#include "xfs_sb.h"
1da177e4 28#include "xfs_mount.h"
3ab78df2 29#include "xfs_defer.h"
a4fbe6ab 30#include "xfs_inode.h"
57062787 31#include "xfs_da_format.h"
c24b5dfa 32#include "xfs_da_btree.h"
c24b5dfa 33#include "xfs_dir2.h"
a844f451 34#include "xfs_attr_sf.h"
c24b5dfa 35#include "xfs_attr.h"
239880ef
DC
36#include "xfs_trans_space.h"
37#include "xfs_trans.h"
1da177e4 38#include "xfs_buf_item.h"
a844f451 39#include "xfs_inode_item.h"
a844f451
NS
40#include "xfs_ialloc.h"
41#include "xfs_bmap.h"
68988114 42#include "xfs_bmap_util.h"
e9e899a2 43#include "xfs_errortag.h"
1da177e4 44#include "xfs_error.h"
1da177e4 45#include "xfs_quota.h"
2a82b8be 46#include "xfs_filestream.h"
93848a99 47#include "xfs_cksum.h"
0b1b213f 48#include "xfs_trace.h"
33479e05 49#include "xfs_icache.h"
c24b5dfa 50#include "xfs_symlink.h"
239880ef
DC
51#include "xfs_trans_priv.h"
52#include "xfs_log.h"
a4fbe6ab 53#include "xfs_bmap_btree.h"
aa8968f2 54#include "xfs_reflink.h"
005c5db8 55#include "xfs_dir2_priv.h"
1da177e4 56
1da177e4 57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
8f04c47a 60 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
54d7b5c1
DC
65STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
66STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
67STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 68
2a0ec1d9
DC
69/*
70 * helper function to extract extent size hint from inode
71 */
72xfs_extlen_t
73xfs_get_extsz_hint(
74 struct xfs_inode *ip)
75{
76 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
77 return ip->i_d.di_extsize;
78 if (XFS_IS_REALTIME_INODE(ip))
79 return ip->i_mount->m_sb.sb_rextsize;
80 return 0;
81}
82
f7ca3522
DW
83/*
84 * Helper function to extract CoW extent size hint from inode.
85 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
86 * return the greater of the two. If the value is zero (automatic),
87 * use the default size.
f7ca3522
DW
88 */
89xfs_extlen_t
90xfs_get_cowextsz_hint(
91 struct xfs_inode *ip)
92{
93 xfs_extlen_t a, b;
94
95 a = 0;
96 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
97 a = ip->i_d.di_cowextsize;
98 b = xfs_get_extsz_hint(ip);
99
e153aa79
DW
100 a = max(a, b);
101 if (a == 0)
102 return XFS_DEFAULT_COWEXTSZ_HINT;
103 return a;
f7ca3522
DW
104}
105
fa96acad 106/*
efa70be1
CH
107 * These two are wrapper routines around the xfs_ilock() routine used to
108 * centralize some grungy code. They are used in places that wish to lock the
109 * inode solely for reading the extents. The reason these places can't just
110 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
111 * bringing in of the extents from disk for a file in b-tree format. If the
112 * inode is in b-tree format, then we need to lock the inode exclusively until
113 * the extents are read in. Locking it exclusively all the time would limit
114 * our parallelism unnecessarily, though. What we do instead is check to see
115 * if the extents have been read in yet, and only lock the inode exclusively
116 * if they have not.
fa96acad 117 *
efa70be1 118 * The functions return a value which should be given to the corresponding
01f4f327 119 * xfs_iunlock() call.
fa96acad
DC
120 */
121uint
309ecac8
CH
122xfs_ilock_data_map_shared(
123 struct xfs_inode *ip)
fa96acad 124{
309ecac8 125 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 126
309ecac8
CH
127 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
128 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 129 lock_mode = XFS_ILOCK_EXCL;
fa96acad 130 xfs_ilock(ip, lock_mode);
fa96acad
DC
131 return lock_mode;
132}
133
efa70be1
CH
134uint
135xfs_ilock_attr_map_shared(
136 struct xfs_inode *ip)
fa96acad 137{
efa70be1
CH
138 uint lock_mode = XFS_ILOCK_SHARED;
139
140 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
141 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
142 lock_mode = XFS_ILOCK_EXCL;
143 xfs_ilock(ip, lock_mode);
144 return lock_mode;
fa96acad
DC
145}
146
147/*
65523218
CH
148 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
149 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
150 * various combinations of the locks to be obtained.
fa96acad 151 *
653c60b6
DC
152 * The 3 locks should always be ordered so that the IO lock is obtained first,
153 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 154 *
653c60b6
DC
155 * Basic locking order:
156 *
65523218 157 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
158 *
159 * mmap_sem locking order:
160 *
65523218 161 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
162 * mmap_sem -> i_mmap_lock -> page_lock
163 *
164 * The difference in mmap_sem locking order mean that we cannot hold the
165 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
166 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
167 * in get_user_pages() to map the user pages into the kernel address space for
65523218 168 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
169 * page faults already hold the mmap_sem.
170 *
171 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 172 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
173 * taken in places where we need to invalidate the page cache in a race
174 * free manner (e.g. truncate, hole punch and other extent manipulation
175 * functions).
fa96acad
DC
176 */
177void
178xfs_ilock(
179 xfs_inode_t *ip,
180 uint lock_flags)
181{
182 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
183
184 /*
185 * You can't set both SHARED and EXCL for the same lock,
186 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
187 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
188 */
189 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
190 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
191 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
192 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
193 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
194 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 195 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 196
65523218
CH
197 if (lock_flags & XFS_IOLOCK_EXCL) {
198 down_write_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 } else if (lock_flags & XFS_IOLOCK_SHARED) {
201 down_read_nested(&VFS_I(ip)->i_rwsem,
202 XFS_IOLOCK_DEP(lock_flags));
203 }
fa96acad 204
653c60b6
DC
205 if (lock_flags & XFS_MMAPLOCK_EXCL)
206 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
207 else if (lock_flags & XFS_MMAPLOCK_SHARED)
208 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
209
fa96acad
DC
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
235 /*
236 * You can't set both SHARED and EXCL for the same lock,
237 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
238 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
239 */
240 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
241 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
242 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
243 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
244 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
245 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 246 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
247
248 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 249 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
250 goto out;
251 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 252 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
253 goto out;
254 }
653c60b6
DC
255
256 if (lock_flags & XFS_MMAPLOCK_EXCL) {
257 if (!mrtryupdate(&ip->i_mmaplock))
258 goto out_undo_iolock;
259 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
260 if (!mrtryaccess(&ip->i_mmaplock))
261 goto out_undo_iolock;
262 }
263
fa96acad
DC
264 if (lock_flags & XFS_ILOCK_EXCL) {
265 if (!mrtryupdate(&ip->i_lock))
653c60b6 266 goto out_undo_mmaplock;
fa96acad
DC
267 } else if (lock_flags & XFS_ILOCK_SHARED) {
268 if (!mrtryaccess(&ip->i_lock))
653c60b6 269 goto out_undo_mmaplock;
fa96acad
DC
270 }
271 return 1;
272
653c60b6
DC
273out_undo_mmaplock:
274 if (lock_flags & XFS_MMAPLOCK_EXCL)
275 mrunlock_excl(&ip->i_mmaplock);
276 else if (lock_flags & XFS_MMAPLOCK_SHARED)
277 mrunlock_shared(&ip->i_mmaplock);
278out_undo_iolock:
fa96acad 279 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 280 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 281 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 282 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 283out:
fa96acad
DC
284 return 0;
285}
286
287/*
288 * xfs_iunlock() is used to drop the inode locks acquired with
289 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
290 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
291 * that we know which locks to drop.
292 *
293 * ip -- the inode being unlocked
294 * lock_flags -- this parameter indicates the inode's locks to be
295 * to be unlocked. See the comment for xfs_ilock() for a list
296 * of valid values for this parameter.
297 *
298 */
299void
300xfs_iunlock(
301 xfs_inode_t *ip,
302 uint lock_flags)
303{
304 /*
305 * You can't set both SHARED and EXCL for the same lock,
306 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
307 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
308 */
309 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
310 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
311 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
312 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
313 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
314 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 315 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
316 ASSERT(lock_flags != 0);
317
318 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 319 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 320 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 321 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 322
653c60b6
DC
323 if (lock_flags & XFS_MMAPLOCK_EXCL)
324 mrunlock_excl(&ip->i_mmaplock);
325 else if (lock_flags & XFS_MMAPLOCK_SHARED)
326 mrunlock_shared(&ip->i_mmaplock);
327
fa96acad
DC
328 if (lock_flags & XFS_ILOCK_EXCL)
329 mrunlock_excl(&ip->i_lock);
330 else if (lock_flags & XFS_ILOCK_SHARED)
331 mrunlock_shared(&ip->i_lock);
332
333 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
334}
335
336/*
337 * give up write locks. the i/o lock cannot be held nested
338 * if it is being demoted.
339 */
340void
341xfs_ilock_demote(
342 xfs_inode_t *ip,
343 uint lock_flags)
344{
653c60b6
DC
345 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
346 ASSERT((lock_flags &
347 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
348
349 if (lock_flags & XFS_ILOCK_EXCL)
350 mrdemote(&ip->i_lock);
653c60b6
DC
351 if (lock_flags & XFS_MMAPLOCK_EXCL)
352 mrdemote(&ip->i_mmaplock);
fa96acad 353 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 354 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
355
356 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
357}
358
742ae1e3 359#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
360int
361xfs_isilocked(
362 xfs_inode_t *ip,
363 uint lock_flags)
364{
365 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
366 if (!(lock_flags & XFS_ILOCK_SHARED))
367 return !!ip->i_lock.mr_writer;
368 return rwsem_is_locked(&ip->i_lock.mr_lock);
369 }
370
653c60b6
DC
371 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
372 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
373 return !!ip->i_mmaplock.mr_writer;
374 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
375 }
376
fa96acad
DC
377 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
378 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
379 return !debug_locks ||
380 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
381 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
382 }
383
384 ASSERT(0);
385 return 0;
386}
387#endif
388
b6a9947e
DC
389/*
390 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
391 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
392 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
393 * errors and warnings.
394 */
395#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
396static bool
397xfs_lockdep_subclass_ok(
398 int subclass)
399{
400 return subclass < MAX_LOCKDEP_SUBCLASSES;
401}
402#else
403#define xfs_lockdep_subclass_ok(subclass) (true)
404#endif
405
c24b5dfa 406/*
653c60b6 407 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
408 * value. This can be called for any type of inode lock combination, including
409 * parent locking. Care must be taken to ensure we don't overrun the subclass
410 * storage fields in the class mask we build.
c24b5dfa
DC
411 */
412static inline int
413xfs_lock_inumorder(int lock_mode, int subclass)
414{
0952c818
DC
415 int class = 0;
416
417 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
418 XFS_ILOCK_RTSUM)));
3403ccc0 419 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 420
653c60b6 421 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 422 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 423 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
424 }
425
426 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
427 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
428 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
429 }
430
0952c818
DC
431 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
432 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
433 class += subclass << XFS_ILOCK_SHIFT;
434 }
c24b5dfa 435
0952c818 436 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
437}
438
439/*
95afcf5c
DC
440 * The following routine will lock n inodes in exclusive mode. We assume the
441 * caller calls us with the inodes in i_ino order.
c24b5dfa 442 *
95afcf5c
DC
443 * We need to detect deadlock where an inode that we lock is in the AIL and we
444 * start waiting for another inode that is locked by a thread in a long running
445 * transaction (such as truncate). This can result in deadlock since the long
446 * running trans might need to wait for the inode we just locked in order to
447 * push the tail and free space in the log.
0952c818
DC
448 *
449 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
450 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
451 * lock more than one at a time, lockdep will report false positives saying we
452 * have violated locking orders.
c24b5dfa 453 */
0d5a75e9 454static void
c24b5dfa
DC
455xfs_lock_inodes(
456 xfs_inode_t **ips,
457 int inodes,
458 uint lock_mode)
459{
460 int attempts = 0, i, j, try_lock;
461 xfs_log_item_t *lp;
462
0952c818
DC
463 /*
464 * Currently supports between 2 and 5 inodes with exclusive locking. We
465 * support an arbitrary depth of locking here, but absolute limits on
466 * inodes depend on the the type of locking and the limits placed by
467 * lockdep annotations in xfs_lock_inumorder. These are all checked by
468 * the asserts.
469 */
95afcf5c 470 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
471 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
472 XFS_ILOCK_EXCL));
473 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
474 XFS_ILOCK_SHARED)));
0952c818
DC
475 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
476 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
477 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
478 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
479
480 if (lock_mode & XFS_IOLOCK_EXCL) {
481 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
482 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
483 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
484
485 try_lock = 0;
486 i = 0;
c24b5dfa
DC
487again:
488 for (; i < inodes; i++) {
489 ASSERT(ips[i]);
490
95afcf5c 491 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
492 continue;
493
494 /*
95afcf5c
DC
495 * If try_lock is not set yet, make sure all locked inodes are
496 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 497 */
c24b5dfa
DC
498 if (!try_lock) {
499 for (j = (i - 1); j >= 0 && !try_lock; j--) {
500 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 501 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 502 try_lock++;
c24b5dfa
DC
503 }
504 }
505
506 /*
507 * If any of the previous locks we have locked is in the AIL,
508 * we must TRY to get the second and subsequent locks. If
509 * we can't get any, we must release all we have
510 * and try again.
511 */
95afcf5c
DC
512 if (!try_lock) {
513 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
514 continue;
515 }
516
517 /* try_lock means we have an inode locked that is in the AIL. */
518 ASSERT(i != 0);
519 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
520 continue;
c24b5dfa 521
95afcf5c
DC
522 /*
523 * Unlock all previous guys and try again. xfs_iunlock will try
524 * to push the tail if the inode is in the AIL.
525 */
526 attempts++;
527 for (j = i - 1; j >= 0; j--) {
c24b5dfa 528 /*
95afcf5c
DC
529 * Check to see if we've already unlocked this one. Not
530 * the first one going back, and the inode ptr is the
531 * same.
c24b5dfa 532 */
95afcf5c
DC
533 if (j != (i - 1) && ips[j] == ips[j + 1])
534 continue;
c24b5dfa 535
95afcf5c
DC
536 xfs_iunlock(ips[j], lock_mode);
537 }
c24b5dfa 538
95afcf5c
DC
539 if ((attempts % 5) == 0) {
540 delay(1); /* Don't just spin the CPU */
c24b5dfa 541 }
95afcf5c
DC
542 i = 0;
543 try_lock = 0;
544 goto again;
c24b5dfa 545 }
c24b5dfa
DC
546}
547
548/*
653c60b6 549 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
550 * the mmaplock or the ilock, but not more than one type at a time. If we lock
551 * more than one at a time, lockdep will report false positives saying we have
552 * violated locking orders. The iolock must be double-locked separately since
553 * we use i_rwsem for that. We now support taking one lock EXCL and the other
554 * SHARED.
c24b5dfa
DC
555 */
556void
557xfs_lock_two_inodes(
7c2d238a
DW
558 struct xfs_inode *ip0,
559 uint ip0_mode,
560 struct xfs_inode *ip1,
561 uint ip1_mode)
c24b5dfa 562{
7c2d238a
DW
563 struct xfs_inode *temp;
564 uint mode_temp;
c24b5dfa
DC
565 int attempts = 0;
566 xfs_log_item_t *lp;
567
7c2d238a
DW
568 ASSERT(hweight32(ip0_mode) == 1);
569 ASSERT(hweight32(ip1_mode) == 1);
570 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
571 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
572 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
573 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
575 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
577 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
578 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
579 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 580
c24b5dfa
DC
581 ASSERT(ip0->i_ino != ip1->i_ino);
582
583 if (ip0->i_ino > ip1->i_ino) {
584 temp = ip0;
585 ip0 = ip1;
586 ip1 = temp;
7c2d238a
DW
587 mode_temp = ip0_mode;
588 ip0_mode = ip1_mode;
589 ip1_mode = mode_temp;
c24b5dfa
DC
590 }
591
592 again:
7c2d238a 593 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
594
595 /*
596 * If the first lock we have locked is in the AIL, we must TRY to get
597 * the second lock. If we can't get it, we must release the first one
598 * and try again.
599 */
600 lp = (xfs_log_item_t *)ip0->i_itemp;
601 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
7c2d238a
DW
602 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
603 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
604 if ((++attempts % 5) == 0)
605 delay(1); /* Don't just spin the CPU */
606 goto again;
607 }
608 } else {
7c2d238a 609 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
610 }
611}
612
fa96acad
DC
613void
614__xfs_iflock(
615 struct xfs_inode *ip)
616{
617 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
618 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
619
620 do {
21417136 621 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
622 if (xfs_isiflocked(ip))
623 io_schedule();
624 } while (!xfs_iflock_nowait(ip));
625
21417136 626 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
627}
628
1da177e4
LT
629STATIC uint
630_xfs_dic2xflags(
c8ce540d 631 uint16_t di_flags,
58f88ca2
DC
632 uint64_t di_flags2,
633 bool has_attr)
1da177e4
LT
634{
635 uint flags = 0;
636
637 if (di_flags & XFS_DIFLAG_ANY) {
638 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 639 flags |= FS_XFLAG_REALTIME;
1da177e4 640 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 641 flags |= FS_XFLAG_PREALLOC;
1da177e4 642 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 643 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 644 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 645 flags |= FS_XFLAG_APPEND;
1da177e4 646 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 647 flags |= FS_XFLAG_SYNC;
1da177e4 648 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 649 flags |= FS_XFLAG_NOATIME;
1da177e4 650 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 651 flags |= FS_XFLAG_NODUMP;
1da177e4 652 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 653 flags |= FS_XFLAG_RTINHERIT;
1da177e4 654 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 655 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 656 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 657 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 658 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 659 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 660 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 661 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 662 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 663 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 664 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 665 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
666 }
667
58f88ca2
DC
668 if (di_flags2 & XFS_DIFLAG2_ANY) {
669 if (di_flags2 & XFS_DIFLAG2_DAX)
670 flags |= FS_XFLAG_DAX;
f7ca3522
DW
671 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
672 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
673 }
674
675 if (has_attr)
676 flags |= FS_XFLAG_HASATTR;
677
1da177e4
LT
678 return flags;
679}
680
681uint
682xfs_ip2xflags(
58f88ca2 683 struct xfs_inode *ip)
1da177e4 684{
58f88ca2 685 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 686
58f88ca2 687 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
688}
689
c24b5dfa
DC
690/*
691 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
692 * is allowed, otherwise it has to be an exact match. If a CI match is found,
693 * ci_name->name will point to a the actual name (caller must free) or
694 * will be set to NULL if an exact match is found.
695 */
696int
697xfs_lookup(
698 xfs_inode_t *dp,
699 struct xfs_name *name,
700 xfs_inode_t **ipp,
701 struct xfs_name *ci_name)
702{
703 xfs_ino_t inum;
704 int error;
c24b5dfa
DC
705
706 trace_xfs_lookup(dp, name);
707
708 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 709 return -EIO;
c24b5dfa 710
c24b5dfa 711 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 712 if (error)
dbad7c99 713 goto out_unlock;
c24b5dfa
DC
714
715 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
716 if (error)
717 goto out_free_name;
718
719 return 0;
720
721out_free_name:
722 if (ci_name)
723 kmem_free(ci_name->name);
dbad7c99 724out_unlock:
c24b5dfa
DC
725 *ipp = NULL;
726 return error;
727}
728
1da177e4
LT
729/*
730 * Allocate an inode on disk and return a copy of its in-core version.
731 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
732 * appropriately within the inode. The uid and gid for the inode are
733 * set according to the contents of the given cred structure.
734 *
735 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
736 * has a free inode available, call xfs_iget() to obtain the in-core
737 * version of the allocated inode. Finally, fill in the inode and
738 * log its initial contents. In this case, ialloc_context would be
739 * set to NULL.
1da177e4 740 *
cd856db6
CM
741 * If xfs_dialloc() does not have an available inode, it will replenish
742 * its supply by doing an allocation. Since we can only do one
743 * allocation within a transaction without deadlocks, we must commit
744 * the current transaction before returning the inode itself.
745 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
746 * The caller should then commit the current transaction, start a new
747 * transaction, and call xfs_ialloc() again to actually get the inode.
748 *
749 * To ensure that some other process does not grab the inode that
750 * was allocated during the first call to xfs_ialloc(), this routine
751 * also returns the [locked] bp pointing to the head of the freelist
752 * as ialloc_context. The caller should hold this buffer across
753 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
754 *
755 * If we are allocating quota inodes, we do not have a parent inode
756 * to attach to or associate with (i.e. pip == NULL) because they
757 * are not linked into the directory structure - they are attached
758 * directly to the superblock - and so have no parent.
1da177e4 759 */
0d5a75e9 760static int
1da177e4
LT
761xfs_ialloc(
762 xfs_trans_t *tp,
763 xfs_inode_t *pip,
576b1d67 764 umode_t mode,
31b084ae 765 xfs_nlink_t nlink,
66f36464 766 dev_t rdev,
6743099c 767 prid_t prid,
1da177e4 768 xfs_buf_t **ialloc_context,
1da177e4
LT
769 xfs_inode_t **ipp)
770{
93848a99 771 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
772 xfs_ino_t ino;
773 xfs_inode_t *ip;
1da177e4
LT
774 uint flags;
775 int error;
e076b0f3 776 struct timespec tv;
3987848c 777 struct inode *inode;
1da177e4
LT
778
779 /*
780 * Call the space management code to pick
781 * the on-disk inode to be allocated.
782 */
f59cf5c2 783 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 784 ialloc_context, &ino);
bf904248 785 if (error)
1da177e4 786 return error;
08358906 787 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
788 *ipp = NULL;
789 return 0;
790 }
791 ASSERT(*ialloc_context == NULL);
792
793 /*
794 * Get the in-core inode with the lock held exclusively.
795 * This is because we're setting fields here we need
796 * to prevent others from looking at until we're done.
797 */
93848a99 798 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 799 XFS_ILOCK_EXCL, &ip);
bf904248 800 if (error)
1da177e4 801 return error;
1da177e4 802 ASSERT(ip != NULL);
3987848c 803 inode = VFS_I(ip);
1da177e4 804
263997a6
DC
805 /*
806 * We always convert v1 inodes to v2 now - we only support filesystems
807 * with >= v2 inode capability, so there is no reason for ever leaving
808 * an inode in v1 format.
809 */
810 if (ip->i_d.di_version == 1)
811 ip->i_d.di_version = 2;
812
c19b3b05 813 inode->i_mode = mode;
54d7b5c1 814 set_nlink(inode, nlink);
7aab1b28
DE
815 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
816 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 817 inode->i_rdev = rdev;
6743099c 818 xfs_set_projid(ip, prid);
1da177e4 819
bd186aa9 820 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 821 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
822 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
823 inode->i_mode |= S_ISGID;
1da177e4
LT
824 }
825
826 /*
827 * If the group ID of the new file does not match the effective group
828 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
829 * (and only if the irix_sgid_inherit compatibility variable is set).
830 */
831 if ((irix_sgid_inherit) &&
c19b3b05
DC
832 (inode->i_mode & S_ISGID) &&
833 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
834 inode->i_mode &= ~S_ISGID;
1da177e4
LT
835
836 ip->i_d.di_size = 0;
837 ip->i_d.di_nextents = 0;
838 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 839
c2050a45 840 tv = current_time(inode);
3987848c
DC
841 inode->i_mtime = tv;
842 inode->i_atime = tv;
843 inode->i_ctime = tv;
dff35fd4 844
1da177e4
LT
845 ip->i_d.di_extsize = 0;
846 ip->i_d.di_dmevmask = 0;
847 ip->i_d.di_dmstate = 0;
848 ip->i_d.di_flags = 0;
93848a99
CH
849
850 if (ip->i_d.di_version == 3) {
f0e28280 851 inode_set_iversion(inode, 1);
93848a99 852 ip->i_d.di_flags2 = 0;
f7ca3522 853 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
854 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
855 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
856 }
857
858
1da177e4
LT
859 flags = XFS_ILOG_CORE;
860 switch (mode & S_IFMT) {
861 case S_IFIFO:
862 case S_IFCHR:
863 case S_IFBLK:
864 case S_IFSOCK:
865 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
866 ip->i_df.if_flags = 0;
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
b11f94d5 871 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 872 uint di_flags = 0;
365ca83d 873
abbede1b 874 if (S_ISDIR(mode)) {
365ca83d
NS
875 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
876 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
877 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
878 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
879 ip->i_d.di_extsize = pip->i_d.di_extsize;
880 }
9336e3a7
DC
881 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
882 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 883 } else if (S_ISREG(mode)) {
613d7043 884 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 885 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
886 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
887 di_flags |= XFS_DIFLAG_EXTSIZE;
888 ip->i_d.di_extsize = pip->i_d.di_extsize;
889 }
1da177e4
LT
890 }
891 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
892 xfs_inherit_noatime)
365ca83d 893 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
895 xfs_inherit_nodump)
365ca83d 896 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
898 xfs_inherit_sync)
365ca83d 899 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
901 xfs_inherit_nosymlinks)
365ca83d 902 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
904 xfs_inherit_nodefrag)
905 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
906 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
907 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 908
365ca83d 909 ip->i_d.di_flags |= di_flags;
1da177e4 910 }
f7ca3522
DW
911 if (pip &&
912 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
913 pip->i_d.di_version == 3 &&
914 ip->i_d.di_version == 3) {
56bdf855
LC
915 uint64_t di_flags2 = 0;
916
f7ca3522 917 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 918 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
919 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
920 }
56bdf855
LC
921 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
922 di_flags2 |= XFS_DIFLAG2_DAX;
923
924 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 925 }
1da177e4
LT
926 /* FALLTHROUGH */
927 case S_IFLNK:
928 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
929 ip->i_df.if_flags = XFS_IFEXTENTS;
930 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
6bdcf26a 931 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
932 break;
933 default:
934 ASSERT(0);
935 }
936 /*
937 * Attribute fork settings for new inode.
938 */
939 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
940 ip->i_d.di_anextents = 0;
941
942 /*
943 * Log the new values stuffed into the inode.
944 */
ddc3415a 945 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
946 xfs_trans_log_inode(tp, ip, flags);
947
58c90473 948 /* now that we have an i_mode we can setup the inode structure */
41be8bed 949 xfs_setup_inode(ip);
1da177e4
LT
950
951 *ipp = ip;
952 return 0;
953}
954
e546cb79
DC
955/*
956 * Allocates a new inode from disk and return a pointer to the
957 * incore copy. This routine will internally commit the current
958 * transaction and allocate a new one if the Space Manager needed
959 * to do an allocation to replenish the inode free-list.
960 *
961 * This routine is designed to be called from xfs_create and
962 * xfs_create_dir.
963 *
964 */
965int
966xfs_dir_ialloc(
967 xfs_trans_t **tpp, /* input: current transaction;
968 output: may be a new transaction. */
969 xfs_inode_t *dp, /* directory within whose allocate
970 the inode. */
971 umode_t mode,
972 xfs_nlink_t nlink,
66f36464 973 dev_t rdev,
e546cb79 974 prid_t prid, /* project id */
c959025e 975 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 976 locked. */
e546cb79
DC
977{
978 xfs_trans_t *tp;
e546cb79
DC
979 xfs_inode_t *ip;
980 xfs_buf_t *ialloc_context = NULL;
981 int code;
e546cb79
DC
982 void *dqinfo;
983 uint tflags;
984
985 tp = *tpp;
986 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
987
988 /*
989 * xfs_ialloc will return a pointer to an incore inode if
990 * the Space Manager has an available inode on the free
991 * list. Otherwise, it will do an allocation and replenish
992 * the freelist. Since we can only do one allocation per
993 * transaction without deadlocks, we will need to commit the
994 * current transaction and start a new one. We will then
995 * need to call xfs_ialloc again to get the inode.
996 *
997 * If xfs_ialloc did an allocation to replenish the freelist,
998 * it returns the bp containing the head of the freelist as
999 * ialloc_context. We will hold a lock on it across the
1000 * transaction commit so that no other process can steal
1001 * the inode(s) that we've just allocated.
1002 */
f59cf5c2
CH
1003 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
1004 &ip);
e546cb79
DC
1005
1006 /*
1007 * Return an error if we were unable to allocate a new inode.
1008 * This should only happen if we run out of space on disk or
1009 * encounter a disk error.
1010 */
1011 if (code) {
1012 *ipp = NULL;
1013 return code;
1014 }
1015 if (!ialloc_context && !ip) {
1016 *ipp = NULL;
2451337d 1017 return -ENOSPC;
e546cb79
DC
1018 }
1019
1020 /*
1021 * If the AGI buffer is non-NULL, then we were unable to get an
1022 * inode in one operation. We need to commit the current
1023 * transaction and call xfs_ialloc() again. It is guaranteed
1024 * to succeed the second time.
1025 */
1026 if (ialloc_context) {
1027 /*
1028 * Normally, xfs_trans_commit releases all the locks.
1029 * We call bhold to hang on to the ialloc_context across
1030 * the commit. Holding this buffer prevents any other
1031 * processes from doing any allocations in this
1032 * allocation group.
1033 */
1034 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1035
1036 /*
1037 * We want the quota changes to be associated with the next
1038 * transaction, NOT this one. So, detach the dqinfo from this
1039 * and attach it to the next transaction.
1040 */
1041 dqinfo = NULL;
1042 tflags = 0;
1043 if (tp->t_dqinfo) {
1044 dqinfo = (void *)tp->t_dqinfo;
1045 tp->t_dqinfo = NULL;
1046 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1047 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1048 }
1049
411350df 1050 code = xfs_trans_roll(&tp);
3d3c8b52 1051
e546cb79
DC
1052 /*
1053 * Re-attach the quota info that we detached from prev trx.
1054 */
1055 if (dqinfo) {
1056 tp->t_dqinfo = dqinfo;
1057 tp->t_flags |= tflags;
1058 }
1059
1060 if (code) {
1061 xfs_buf_relse(ialloc_context);
2e6db6c4 1062 *tpp = tp;
e546cb79
DC
1063 *ipp = NULL;
1064 return code;
1065 }
1066 xfs_trans_bjoin(tp, ialloc_context);
1067
1068 /*
1069 * Call ialloc again. Since we've locked out all
1070 * other allocations in this allocation group,
1071 * this call should always succeed.
1072 */
1073 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1074 &ialloc_context, &ip);
e546cb79
DC
1075
1076 /*
1077 * If we get an error at this point, return to the caller
1078 * so that the current transaction can be aborted.
1079 */
1080 if (code) {
1081 *tpp = tp;
1082 *ipp = NULL;
1083 return code;
1084 }
1085 ASSERT(!ialloc_context && ip);
1086
e546cb79
DC
1087 }
1088
1089 *ipp = ip;
1090 *tpp = tp;
1091
1092 return 0;
1093}
1094
1095/*
54d7b5c1
DC
1096 * Decrement the link count on an inode & log the change. If this causes the
1097 * link count to go to zero, move the inode to AGI unlinked list so that it can
1098 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1099 */
0d5a75e9 1100static int /* error */
e546cb79
DC
1101xfs_droplink(
1102 xfs_trans_t *tp,
1103 xfs_inode_t *ip)
1104{
e546cb79
DC
1105 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1106
e546cb79
DC
1107 drop_nlink(VFS_I(ip));
1108 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1109
54d7b5c1
DC
1110 if (VFS_I(ip)->i_nlink)
1111 return 0;
1112
1113 return xfs_iunlink(tp, ip);
e546cb79
DC
1114}
1115
e546cb79
DC
1116/*
1117 * Increment the link count on an inode & log the change.
1118 */
0d5a75e9 1119static int
e546cb79
DC
1120xfs_bumplink(
1121 xfs_trans_t *tp,
1122 xfs_inode_t *ip)
1123{
1124 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1125
263997a6 1126 ASSERT(ip->i_d.di_version > 1);
e546cb79 1127 inc_nlink(VFS_I(ip));
e546cb79
DC
1128 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1129 return 0;
1130}
1131
c24b5dfa
DC
1132int
1133xfs_create(
1134 xfs_inode_t *dp,
1135 struct xfs_name *name,
1136 umode_t mode,
66f36464 1137 dev_t rdev,
c24b5dfa
DC
1138 xfs_inode_t **ipp)
1139{
1140 int is_dir = S_ISDIR(mode);
1141 struct xfs_mount *mp = dp->i_mount;
1142 struct xfs_inode *ip = NULL;
1143 struct xfs_trans *tp = NULL;
1144 int error;
2c3234d1 1145 struct xfs_defer_ops dfops;
c24b5dfa
DC
1146 xfs_fsblock_t first_block;
1147 bool unlock_dp_on_error = false;
c24b5dfa
DC
1148 prid_t prid;
1149 struct xfs_dquot *udqp = NULL;
1150 struct xfs_dquot *gdqp = NULL;
1151 struct xfs_dquot *pdqp = NULL;
062647a8 1152 struct xfs_trans_res *tres;
c24b5dfa 1153 uint resblks;
c24b5dfa
DC
1154
1155 trace_xfs_create(dp, name);
1156
1157 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1158 return -EIO;
c24b5dfa 1159
163467d3 1160 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1161
1162 /*
1163 * Make sure that we have allocated dquot(s) on disk.
1164 */
7aab1b28
DE
1165 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1166 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1167 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1168 &udqp, &gdqp, &pdqp);
1169 if (error)
1170 return error;
1171
1172 if (is_dir) {
c24b5dfa 1173 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1174 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1175 } else {
1176 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1177 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1178 }
1179
c24b5dfa
DC
1180 /*
1181 * Initially assume that the file does not exist and
1182 * reserve the resources for that case. If that is not
1183 * the case we'll drop the one we have and get a more
1184 * appropriate transaction later.
1185 */
253f4911 1186 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1187 if (error == -ENOSPC) {
c24b5dfa
DC
1188 /* flush outstanding delalloc blocks and retry */
1189 xfs_flush_inodes(mp);
253f4911 1190 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1191 }
4906e215 1192 if (error)
253f4911 1193 goto out_release_inode;
c24b5dfa 1194
65523218 1195 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1196 unlock_dp_on_error = true;
1197
2c3234d1 1198 xfs_defer_init(&dfops, &first_block);
c24b5dfa
DC
1199
1200 /*
1201 * Reserve disk quota and the inode.
1202 */
1203 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1204 pdqp, resblks, 1, 0);
1205 if (error)
1206 goto out_trans_cancel;
1207
c24b5dfa
DC
1208 /*
1209 * A newly created regular or special file just has one directory
1210 * entry pointing to them, but a directory also the "." entry
1211 * pointing to itself.
1212 */
c959025e 1213 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1214 if (error)
4906e215 1215 goto out_trans_cancel;
c24b5dfa
DC
1216
1217 /*
1218 * Now we join the directory inode to the transaction. We do not do it
1219 * earlier because xfs_dir_ialloc might commit the previous transaction
1220 * (and release all the locks). An error from here on will result in
1221 * the transaction cancel unlocking dp so don't do it explicitly in the
1222 * error path.
1223 */
65523218 1224 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1225 unlock_dp_on_error = false;
1226
1227 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
2c3234d1 1228 &first_block, &dfops, resblks ?
c24b5dfa
DC
1229 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1230 if (error) {
2451337d 1231 ASSERT(error != -ENOSPC);
4906e215 1232 goto out_trans_cancel;
c24b5dfa
DC
1233 }
1234 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1235 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1236
1237 if (is_dir) {
1238 error = xfs_dir_init(tp, ip, dp);
1239 if (error)
1240 goto out_bmap_cancel;
1241
1242 error = xfs_bumplink(tp, dp);
1243 if (error)
1244 goto out_bmap_cancel;
1245 }
1246
1247 /*
1248 * If this is a synchronous mount, make sure that the
1249 * create transaction goes to disk before returning to
1250 * the user.
1251 */
1252 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1253 xfs_trans_set_sync(tp);
1254
1255 /*
1256 * Attach the dquot(s) to the inodes and modify them incore.
1257 * These ids of the inode couldn't have changed since the new
1258 * inode has been locked ever since it was created.
1259 */
1260 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1261
8ad7c629 1262 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
1263 if (error)
1264 goto out_bmap_cancel;
1265
70393313 1266 error = xfs_trans_commit(tp);
c24b5dfa
DC
1267 if (error)
1268 goto out_release_inode;
1269
1270 xfs_qm_dqrele(udqp);
1271 xfs_qm_dqrele(gdqp);
1272 xfs_qm_dqrele(pdqp);
1273
1274 *ipp = ip;
1275 return 0;
1276
1277 out_bmap_cancel:
2c3234d1 1278 xfs_defer_cancel(&dfops);
c24b5dfa 1279 out_trans_cancel:
4906e215 1280 xfs_trans_cancel(tp);
c24b5dfa
DC
1281 out_release_inode:
1282 /*
58c90473
DC
1283 * Wait until after the current transaction is aborted to finish the
1284 * setup of the inode and release the inode. This prevents recursive
1285 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1286 */
58c90473
DC
1287 if (ip) {
1288 xfs_finish_inode_setup(ip);
c24b5dfa 1289 IRELE(ip);
58c90473 1290 }
c24b5dfa
DC
1291
1292 xfs_qm_dqrele(udqp);
1293 xfs_qm_dqrele(gdqp);
1294 xfs_qm_dqrele(pdqp);
1295
1296 if (unlock_dp_on_error)
65523218 1297 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1298 return error;
1299}
1300
99b6436b
ZYW
1301int
1302xfs_create_tmpfile(
1303 struct xfs_inode *dp,
1304 struct dentry *dentry,
330033d6
BF
1305 umode_t mode,
1306 struct xfs_inode **ipp)
99b6436b
ZYW
1307{
1308 struct xfs_mount *mp = dp->i_mount;
1309 struct xfs_inode *ip = NULL;
1310 struct xfs_trans *tp = NULL;
1311 int error;
99b6436b
ZYW
1312 prid_t prid;
1313 struct xfs_dquot *udqp = NULL;
1314 struct xfs_dquot *gdqp = NULL;
1315 struct xfs_dquot *pdqp = NULL;
1316 struct xfs_trans_res *tres;
1317 uint resblks;
1318
1319 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1320 return -EIO;
99b6436b
ZYW
1321
1322 prid = xfs_get_initial_prid(dp);
1323
1324 /*
1325 * Make sure that we have allocated dquot(s) on disk.
1326 */
1327 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1328 xfs_kgid_to_gid(current_fsgid()), prid,
1329 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1330 &udqp, &gdqp, &pdqp);
1331 if (error)
1332 return error;
1333
1334 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1335 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1336
1337 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1338 if (error)
253f4911 1339 goto out_release_inode;
99b6436b
ZYW
1340
1341 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1342 pdqp, resblks, 1, 0);
1343 if (error)
1344 goto out_trans_cancel;
1345
c959025e 1346 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0, prid, &ip);
d6077aa3 1347 if (error)
4906e215 1348 goto out_trans_cancel;
99b6436b
ZYW
1349
1350 if (mp->m_flags & XFS_MOUNT_WSYNC)
1351 xfs_trans_set_sync(tp);
1352
1353 /*
1354 * Attach the dquot(s) to the inodes and modify them incore.
1355 * These ids of the inode couldn't have changed since the new
1356 * inode has been locked ever since it was created.
1357 */
1358 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1359
99b6436b
ZYW
1360 error = xfs_iunlink(tp, ip);
1361 if (error)
4906e215 1362 goto out_trans_cancel;
99b6436b 1363
70393313 1364 error = xfs_trans_commit(tp);
99b6436b
ZYW
1365 if (error)
1366 goto out_release_inode;
1367
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1371
330033d6 1372 *ipp = ip;
99b6436b
ZYW
1373 return 0;
1374
99b6436b 1375 out_trans_cancel:
4906e215 1376 xfs_trans_cancel(tp);
99b6436b
ZYW
1377 out_release_inode:
1378 /*
58c90473
DC
1379 * Wait until after the current transaction is aborted to finish the
1380 * setup of the inode and release the inode. This prevents recursive
1381 * transactions and deadlocks from xfs_inactive.
99b6436b 1382 */
58c90473
DC
1383 if (ip) {
1384 xfs_finish_inode_setup(ip);
99b6436b 1385 IRELE(ip);
58c90473 1386 }
99b6436b
ZYW
1387
1388 xfs_qm_dqrele(udqp);
1389 xfs_qm_dqrele(gdqp);
1390 xfs_qm_dqrele(pdqp);
1391
1392 return error;
1393}
1394
c24b5dfa
DC
1395int
1396xfs_link(
1397 xfs_inode_t *tdp,
1398 xfs_inode_t *sip,
1399 struct xfs_name *target_name)
1400{
1401 xfs_mount_t *mp = tdp->i_mount;
1402 xfs_trans_t *tp;
1403 int error;
2c3234d1 1404 struct xfs_defer_ops dfops;
c24b5dfa 1405 xfs_fsblock_t first_block;
c24b5dfa
DC
1406 int resblks;
1407
1408 trace_xfs_link(tdp, target_name);
1409
c19b3b05 1410 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1411
1412 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1413 return -EIO;
c24b5dfa
DC
1414
1415 error = xfs_qm_dqattach(sip, 0);
1416 if (error)
1417 goto std_return;
1418
1419 error = xfs_qm_dqattach(tdp, 0);
1420 if (error)
1421 goto std_return;
1422
c24b5dfa 1423 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1424 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1425 if (error == -ENOSPC) {
c24b5dfa 1426 resblks = 0;
253f4911 1427 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1428 }
4906e215 1429 if (error)
253f4911 1430 goto std_return;
c24b5dfa 1431
7c2d238a 1432 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1433
1434 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1435 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1436
1437 /*
1438 * If we are using project inheritance, we only allow hard link
1439 * creation in our tree when the project IDs are the same; else
1440 * the tree quota mechanism could be circumvented.
1441 */
1442 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1443 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1444 error = -EXDEV;
c24b5dfa
DC
1445 goto error_return;
1446 }
1447
94f3cad5
ES
1448 if (!resblks) {
1449 error = xfs_dir_canenter(tp, tdp, target_name);
1450 if (error)
1451 goto error_return;
1452 }
c24b5dfa 1453
2c3234d1 1454 xfs_defer_init(&dfops, &first_block);
c24b5dfa 1455
54d7b5c1
DC
1456 /*
1457 * Handle initial link state of O_TMPFILE inode
1458 */
1459 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1460 error = xfs_iunlink_remove(tp, sip);
1461 if (error)
4906e215 1462 goto error_return;
ab297431
ZYW
1463 }
1464
c24b5dfa 1465 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
2c3234d1 1466 &first_block, &dfops, resblks);
c24b5dfa 1467 if (error)
4906e215 1468 goto error_return;
c24b5dfa
DC
1469 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1470 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1471
1472 error = xfs_bumplink(tp, sip);
1473 if (error)
4906e215 1474 goto error_return;
c24b5dfa
DC
1475
1476 /*
1477 * If this is a synchronous mount, make sure that the
1478 * link transaction goes to disk before returning to
1479 * the user.
1480 */
f6106efa 1481 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1482 xfs_trans_set_sync(tp);
c24b5dfa 1483
8ad7c629 1484 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa 1485 if (error) {
2c3234d1 1486 xfs_defer_cancel(&dfops);
4906e215 1487 goto error_return;
c24b5dfa
DC
1488 }
1489
70393313 1490 return xfs_trans_commit(tp);
c24b5dfa 1491
c24b5dfa 1492 error_return:
4906e215 1493 xfs_trans_cancel(tp);
c24b5dfa
DC
1494 std_return:
1495 return error;
1496}
1497
363e59ba
DW
1498/* Clear the reflink flag and the cowblocks tag if possible. */
1499static void
1500xfs_itruncate_clear_reflink_flags(
1501 struct xfs_inode *ip)
1502{
1503 struct xfs_ifork *dfork;
1504 struct xfs_ifork *cfork;
1505
1506 if (!xfs_is_reflink_inode(ip))
1507 return;
1508 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1509 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1510 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1511 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1512 if (cfork->if_bytes == 0)
1513 xfs_inode_clear_cowblocks_tag(ip);
1514}
1515
1da177e4 1516/*
8f04c47a
CH
1517 * Free up the underlying blocks past new_size. The new size must be smaller
1518 * than the current size. This routine can be used both for the attribute and
1519 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1520 *
f6485057
DC
1521 * The transaction passed to this routine must have made a permanent log
1522 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1523 * given transaction and start new ones, so make sure everything involved in
1524 * the transaction is tidy before calling here. Some transaction will be
1525 * returned to the caller to be committed. The incoming transaction must
1526 * already include the inode, and both inode locks must be held exclusively.
1527 * The inode must also be "held" within the transaction. On return the inode
1528 * will be "held" within the returned transaction. This routine does NOT
1529 * require any disk space to be reserved for it within the transaction.
1da177e4 1530 *
f6485057
DC
1531 * If we get an error, we must return with the inode locked and linked into the
1532 * current transaction. This keeps things simple for the higher level code,
1533 * because it always knows that the inode is locked and held in the transaction
1534 * that returns to it whether errors occur or not. We don't mark the inode
1535 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1536 */
1537int
8f04c47a
CH
1538xfs_itruncate_extents(
1539 struct xfs_trans **tpp,
1540 struct xfs_inode *ip,
1541 int whichfork,
1542 xfs_fsize_t new_size)
1da177e4 1543{
8f04c47a
CH
1544 struct xfs_mount *mp = ip->i_mount;
1545 struct xfs_trans *tp = *tpp;
2c3234d1 1546 struct xfs_defer_ops dfops;
8f04c47a
CH
1547 xfs_fsblock_t first_block;
1548 xfs_fileoff_t first_unmap_block;
1549 xfs_fileoff_t last_block;
1550 xfs_filblks_t unmap_len;
8f04c47a
CH
1551 int error = 0;
1552 int done = 0;
1da177e4 1553
0b56185b
CH
1554 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1555 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1556 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1557 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1558 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1559 ASSERT(ip->i_itemp != NULL);
898621d5 1560 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1561 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1562
673e8e59
CH
1563 trace_xfs_itruncate_extents_start(ip, new_size);
1564
1da177e4
LT
1565 /*
1566 * Since it is possible for space to become allocated beyond
1567 * the end of the file (in a crash where the space is allocated
1568 * but the inode size is not yet updated), simply remove any
1569 * blocks which show up between the new EOF and the maximum
1570 * possible file size. If the first block to be removed is
1571 * beyond the maximum file size (ie it is the same as last_block),
1572 * then there is nothing to do.
1573 */
8f04c47a 1574 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1575 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1576 if (first_unmap_block == last_block)
1577 return 0;
1578
1579 ASSERT(first_unmap_block < last_block);
1580 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1581 while (!done) {
2c3234d1 1582 xfs_defer_init(&dfops, &first_block);
8f04c47a 1583 error = xfs_bunmapi(tp, ip,
3e57ecf6 1584 first_unmap_block, unmap_len,
8f04c47a 1585 xfs_bmapi_aflag(whichfork),
1da177e4 1586 XFS_ITRUNC_MAX_EXTENTS,
2c3234d1 1587 &first_block, &dfops,
b4e9181e 1588 &done);
8f04c47a
CH
1589 if (error)
1590 goto out_bmap_cancel;
1da177e4
LT
1591
1592 /*
1593 * Duplicate the transaction that has the permanent
1594 * reservation and commit the old transaction.
1595 */
8ad7c629
CH
1596 xfs_defer_ijoin(&dfops, ip);
1597 error = xfs_defer_finish(&tp, &dfops);
8f04c47a
CH
1598 if (error)
1599 goto out_bmap_cancel;
1da177e4 1600
411350df 1601 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1602 if (error)
8f04c47a 1603 goto out;
1da177e4 1604 }
8f04c47a 1605
aa8968f2
DW
1606 /* Remove all pending CoW reservations. */
1607 error = xfs_reflink_cancel_cow_blocks(ip, &tp, first_unmap_block,
3802a345 1608 last_block, true);
aa8968f2
DW
1609 if (error)
1610 goto out;
1611
363e59ba 1612 xfs_itruncate_clear_reflink_flags(ip);
aa8968f2 1613
673e8e59
CH
1614 /*
1615 * Always re-log the inode so that our permanent transaction can keep
1616 * on rolling it forward in the log.
1617 */
1618 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1619
1620 trace_xfs_itruncate_extents_end(ip, new_size);
1621
8f04c47a
CH
1622out:
1623 *tpp = tp;
1624 return error;
1625out_bmap_cancel:
1da177e4 1626 /*
8f04c47a
CH
1627 * If the bunmapi call encounters an error, return to the caller where
1628 * the transaction can be properly aborted. We just need to make sure
1629 * we're not holding any resources that we were not when we came in.
1da177e4 1630 */
2c3234d1 1631 xfs_defer_cancel(&dfops);
8f04c47a
CH
1632 goto out;
1633}
1634
c24b5dfa
DC
1635int
1636xfs_release(
1637 xfs_inode_t *ip)
1638{
1639 xfs_mount_t *mp = ip->i_mount;
1640 int error;
1641
c19b3b05 1642 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1643 return 0;
1644
1645 /* If this is a read-only mount, don't do this (would generate I/O) */
1646 if (mp->m_flags & XFS_MOUNT_RDONLY)
1647 return 0;
1648
1649 if (!XFS_FORCED_SHUTDOWN(mp)) {
1650 int truncated;
1651
c24b5dfa
DC
1652 /*
1653 * If we previously truncated this file and removed old data
1654 * in the process, we want to initiate "early" writeout on
1655 * the last close. This is an attempt to combat the notorious
1656 * NULL files problem which is particularly noticeable from a
1657 * truncate down, buffered (re-)write (delalloc), followed by
1658 * a crash. What we are effectively doing here is
1659 * significantly reducing the time window where we'd otherwise
1660 * be exposed to that problem.
1661 */
1662 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1663 if (truncated) {
1664 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1665 if (ip->i_delayed_blks > 0) {
2451337d 1666 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1667 if (error)
1668 return error;
1669 }
1670 }
1671 }
1672
54d7b5c1 1673 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1674 return 0;
1675
1676 if (xfs_can_free_eofblocks(ip, false)) {
1677
a36b9261
BF
1678 /*
1679 * Check if the inode is being opened, written and closed
1680 * frequently and we have delayed allocation blocks outstanding
1681 * (e.g. streaming writes from the NFS server), truncating the
1682 * blocks past EOF will cause fragmentation to occur.
1683 *
1684 * In this case don't do the truncation, but we have to be
1685 * careful how we detect this case. Blocks beyond EOF show up as
1686 * i_delayed_blks even when the inode is clean, so we need to
1687 * truncate them away first before checking for a dirty release.
1688 * Hence on the first dirty close we will still remove the
1689 * speculative allocation, but after that we will leave it in
1690 * place.
1691 */
1692 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1693 return 0;
c24b5dfa
DC
1694 /*
1695 * If we can't get the iolock just skip truncating the blocks
1696 * past EOF because we could deadlock with the mmap_sem
a36b9261 1697 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1698 * last reference to the inode is dropped, so we'll never leak
1699 * blocks permanently.
c24b5dfa 1700 */
a36b9261
BF
1701 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1702 error = xfs_free_eofblocks(ip);
1703 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1704 if (error)
1705 return error;
1706 }
c24b5dfa
DC
1707
1708 /* delalloc blocks after truncation means it really is dirty */
1709 if (ip->i_delayed_blks)
1710 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1711 }
1712 return 0;
1713}
1714
f7be2d7f
BF
1715/*
1716 * xfs_inactive_truncate
1717 *
1718 * Called to perform a truncate when an inode becomes unlinked.
1719 */
1720STATIC int
1721xfs_inactive_truncate(
1722 struct xfs_inode *ip)
1723{
1724 struct xfs_mount *mp = ip->i_mount;
1725 struct xfs_trans *tp;
1726 int error;
1727
253f4911 1728 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1729 if (error) {
1730 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1731 return error;
1732 }
1733
1734 xfs_ilock(ip, XFS_ILOCK_EXCL);
1735 xfs_trans_ijoin(tp, ip, 0);
1736
1737 /*
1738 * Log the inode size first to prevent stale data exposure in the event
1739 * of a system crash before the truncate completes. See the related
69bca807 1740 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1741 */
1742 ip->i_d.di_size = 0;
1743 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1744
1745 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1746 if (error)
1747 goto error_trans_cancel;
1748
1749 ASSERT(ip->i_d.di_nextents == 0);
1750
70393313 1751 error = xfs_trans_commit(tp);
f7be2d7f
BF
1752 if (error)
1753 goto error_unlock;
1754
1755 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1756 return 0;
1757
1758error_trans_cancel:
4906e215 1759 xfs_trans_cancel(tp);
f7be2d7f
BF
1760error_unlock:
1761 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1762 return error;
1763}
1764
88877d2b
BF
1765/*
1766 * xfs_inactive_ifree()
1767 *
1768 * Perform the inode free when an inode is unlinked.
1769 */
1770STATIC int
1771xfs_inactive_ifree(
1772 struct xfs_inode *ip)
1773{
2c3234d1 1774 struct xfs_defer_ops dfops;
88877d2b 1775 xfs_fsblock_t first_block;
88877d2b
BF
1776 struct xfs_mount *mp = ip->i_mount;
1777 struct xfs_trans *tp;
1778 int error;
1779
9d43b180 1780 /*
76d771b4
CH
1781 * We try to use a per-AG reservation for any block needed by the finobt
1782 * tree, but as the finobt feature predates the per-AG reservation
1783 * support a degraded file system might not have enough space for the
1784 * reservation at mount time. In that case try to dip into the reserved
1785 * pool and pray.
9d43b180
BF
1786 *
1787 * Send a warning if the reservation does happen to fail, as the inode
1788 * now remains allocated and sits on the unlinked list until the fs is
1789 * repaired.
1790 */
76d771b4
CH
1791 if (unlikely(mp->m_inotbt_nores)) {
1792 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1793 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1794 &tp);
1795 } else {
1796 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1797 }
88877d2b 1798 if (error) {
2451337d 1799 if (error == -ENOSPC) {
9d43b180
BF
1800 xfs_warn_ratelimited(mp,
1801 "Failed to remove inode(s) from unlinked list. "
1802 "Please free space, unmount and run xfs_repair.");
1803 } else {
1804 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1805 }
88877d2b
BF
1806 return error;
1807 }
1808
1809 xfs_ilock(ip, XFS_ILOCK_EXCL);
1810 xfs_trans_ijoin(tp, ip, 0);
1811
2c3234d1
DW
1812 xfs_defer_init(&dfops, &first_block);
1813 error = xfs_ifree(tp, ip, &dfops);
88877d2b
BF
1814 if (error) {
1815 /*
1816 * If we fail to free the inode, shut down. The cancel
1817 * might do that, we need to make sure. Otherwise the
1818 * inode might be lost for a long time or forever.
1819 */
1820 if (!XFS_FORCED_SHUTDOWN(mp)) {
1821 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1822 __func__, error);
1823 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1824 }
4906e215 1825 xfs_trans_cancel(tp);
88877d2b
BF
1826 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1827 return error;
1828 }
1829
1830 /*
1831 * Credit the quota account(s). The inode is gone.
1832 */
1833 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1834
1835 /*
d4a97a04
BF
1836 * Just ignore errors at this point. There is nothing we can do except
1837 * to try to keep going. Make sure it's not a silent error.
88877d2b 1838 */
8ad7c629 1839 error = xfs_defer_finish(&tp, &dfops);
d4a97a04 1840 if (error) {
310a75a3 1841 xfs_notice(mp, "%s: xfs_defer_finish returned error %d",
88877d2b 1842 __func__, error);
2c3234d1 1843 xfs_defer_cancel(&dfops);
d4a97a04 1844 }
70393313 1845 error = xfs_trans_commit(tp);
88877d2b
BF
1846 if (error)
1847 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1848 __func__, error);
1849
1850 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1851 return 0;
1852}
1853
c24b5dfa
DC
1854/*
1855 * xfs_inactive
1856 *
1857 * This is called when the vnode reference count for the vnode
1858 * goes to zero. If the file has been unlinked, then it must
1859 * now be truncated. Also, we clear all of the read-ahead state
1860 * kept for the inode here since the file is now closed.
1861 */
74564fb4 1862void
c24b5dfa
DC
1863xfs_inactive(
1864 xfs_inode_t *ip)
1865{
3d3c8b52 1866 struct xfs_mount *mp;
6231848c 1867 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
3d3c8b52
JL
1868 int error;
1869 int truncate = 0;
c24b5dfa
DC
1870
1871 /*
1872 * If the inode is already free, then there can be nothing
1873 * to clean up here.
1874 */
c19b3b05 1875 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa
DC
1876 ASSERT(ip->i_df.if_real_bytes == 0);
1877 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1878 return;
c24b5dfa
DC
1879 }
1880
1881 mp = ip->i_mount;
17c12bcd 1882 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1883
c24b5dfa
DC
1884 /* If this is a read-only mount, don't do this (would generate I/O) */
1885 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1886 return;
c24b5dfa 1887
6231848c
DW
1888 /* Try to clean out the cow blocks if there are any. */
1889 if (xfs_is_reflink_inode(ip) && cow_ifp->if_bytes > 0)
1890 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1891
54d7b5c1 1892 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1893 /*
1894 * force is true because we are evicting an inode from the
1895 * cache. Post-eof blocks must be freed, lest we end up with
1896 * broken free space accounting.
3b4683c2
BF
1897 *
1898 * Note: don't bother with iolock here since lockdep complains
1899 * about acquiring it in reclaim context. We have the only
1900 * reference to the inode at this point anyways.
c24b5dfa 1901 */
3b4683c2 1902 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1903 xfs_free_eofblocks(ip);
74564fb4
BF
1904
1905 return;
c24b5dfa
DC
1906 }
1907
c19b3b05 1908 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1909 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1910 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1911 truncate = 1;
1912
1913 error = xfs_qm_dqattach(ip, 0);
1914 if (error)
74564fb4 1915 return;
c24b5dfa 1916
c19b3b05 1917 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1918 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1919 else if (truncate)
1920 error = xfs_inactive_truncate(ip);
1921 if (error)
74564fb4 1922 return;
c24b5dfa
DC
1923
1924 /*
1925 * If there are attributes associated with the file then blow them away
1926 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1927 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1928 */
6dfe5a04 1929 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1930 error = xfs_attr_inactive(ip);
1931 if (error)
74564fb4 1932 return;
c24b5dfa
DC
1933 }
1934
6dfe5a04 1935 ASSERT(!ip->i_afp);
c24b5dfa 1936 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1937 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1938
1939 /*
1940 * Free the inode.
1941 */
88877d2b
BF
1942 error = xfs_inactive_ifree(ip);
1943 if (error)
74564fb4 1944 return;
c24b5dfa
DC
1945
1946 /*
1947 * Release the dquots held by inode, if any.
1948 */
1949 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1950}
1951
1da177e4 1952/*
54d7b5c1
DC
1953 * This is called when the inode's link count goes to 0 or we are creating a
1954 * tmpfile via O_TMPFILE. In the case of a tmpfile, @ignore_linkcount will be
1955 * set to true as the link count is dropped to zero by the VFS after we've
1956 * created the file successfully, so we have to add it to the unlinked list
1957 * while the link count is non-zero.
1958 *
1959 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1960 * list when the inode is freed.
1da177e4 1961 */
54d7b5c1 1962STATIC int
1da177e4 1963xfs_iunlink(
54d7b5c1
DC
1964 struct xfs_trans *tp,
1965 struct xfs_inode *ip)
1da177e4 1966{
54d7b5c1 1967 xfs_mount_t *mp = tp->t_mountp;
1da177e4
LT
1968 xfs_agi_t *agi;
1969 xfs_dinode_t *dip;
1970 xfs_buf_t *agibp;
1971 xfs_buf_t *ibp;
1da177e4
LT
1972 xfs_agino_t agino;
1973 short bucket_index;
1974 int offset;
1975 int error;
1da177e4 1976
c19b3b05 1977 ASSERT(VFS_I(ip)->i_mode != 0);
1da177e4 1978
1da177e4
LT
1979 /*
1980 * Get the agi buffer first. It ensures lock ordering
1981 * on the list.
1982 */
5e1be0fb 1983 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1984 if (error)
1da177e4 1985 return error;
1da177e4 1986 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1987
1da177e4
LT
1988 /*
1989 * Get the index into the agi hash table for the
1990 * list this inode will go on.
1991 */
1992 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1993 ASSERT(agino != 0);
1994 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1995 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1996 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1997
69ef921b 1998 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1999 /*
2000 * There is already another inode in the bucket we need
2001 * to add ourselves to. Add us at the front of the list.
2002 * Here we put the head pointer into our next pointer,
2003 * and then we fall through to point the head at us.
2004 */
475ee413
CH
2005 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2006 0, 0);
c319b58b
VA
2007 if (error)
2008 return error;
2009
69ef921b 2010 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2011 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2012 offset = ip->i_imap.im_boffset +
1da177e4 2013 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2014
2015 /* need to recalc the inode CRC if appropriate */
2016 xfs_dinode_calc_crc(mp, dip);
2017
1da177e4
LT
2018 xfs_trans_inode_buf(tp, ibp);
2019 xfs_trans_log_buf(tp, ibp, offset,
2020 (offset + sizeof(xfs_agino_t) - 1));
2021 xfs_inobp_check(mp, ibp);
2022 }
2023
2024 /*
2025 * Point the bucket head pointer at the inode being inserted.
2026 */
2027 ASSERT(agino != 0);
16259e7d 2028 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2029 offset = offsetof(xfs_agi_t, agi_unlinked) +
2030 (sizeof(xfs_agino_t) * bucket_index);
2031 xfs_trans_log_buf(tp, agibp, offset,
2032 (offset + sizeof(xfs_agino_t) - 1));
2033 return 0;
2034}
2035
2036/*
2037 * Pull the on-disk inode from the AGI unlinked list.
2038 */
2039STATIC int
2040xfs_iunlink_remove(
2041 xfs_trans_t *tp,
2042 xfs_inode_t *ip)
2043{
2044 xfs_ino_t next_ino;
2045 xfs_mount_t *mp;
2046 xfs_agi_t *agi;
2047 xfs_dinode_t *dip;
2048 xfs_buf_t *agibp;
2049 xfs_buf_t *ibp;
2050 xfs_agnumber_t agno;
1da177e4
LT
2051 xfs_agino_t agino;
2052 xfs_agino_t next_agino;
2053 xfs_buf_t *last_ibp;
6fdf8ccc 2054 xfs_dinode_t *last_dip = NULL;
1da177e4 2055 short bucket_index;
6fdf8ccc 2056 int offset, last_offset = 0;
1da177e4 2057 int error;
1da177e4 2058
1da177e4 2059 mp = tp->t_mountp;
1da177e4 2060 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2061
2062 /*
2063 * Get the agi buffer first. It ensures lock ordering
2064 * on the list.
2065 */
5e1be0fb
CH
2066 error = xfs_read_agi(mp, tp, agno, &agibp);
2067 if (error)
1da177e4 2068 return error;
5e1be0fb 2069
1da177e4 2070 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2071
1da177e4
LT
2072 /*
2073 * Get the index into the agi hash table for the
2074 * list this inode will go on.
2075 */
2076 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2077 ASSERT(agino != 0);
2078 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2079 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2080 ASSERT(agi->agi_unlinked[bucket_index]);
2081
16259e7d 2082 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2083 /*
475ee413
CH
2084 * We're at the head of the list. Get the inode's on-disk
2085 * buffer to see if there is anyone after us on the list.
2086 * Only modify our next pointer if it is not already NULLAGINO.
2087 * This saves us the overhead of dealing with the buffer when
2088 * there is no need to change it.
1da177e4 2089 */
475ee413
CH
2090 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2091 0, 0);
1da177e4 2092 if (error) {
475ee413 2093 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2094 __func__, error);
1da177e4
LT
2095 return error;
2096 }
347d1c01 2097 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2098 ASSERT(next_agino != 0);
2099 if (next_agino != NULLAGINO) {
347d1c01 2100 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2101 offset = ip->i_imap.im_boffset +
1da177e4 2102 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2103
2104 /* need to recalc the inode CRC if appropriate */
2105 xfs_dinode_calc_crc(mp, dip);
2106
1da177e4
LT
2107 xfs_trans_inode_buf(tp, ibp);
2108 xfs_trans_log_buf(tp, ibp, offset,
2109 (offset + sizeof(xfs_agino_t) - 1));
2110 xfs_inobp_check(mp, ibp);
2111 } else {
2112 xfs_trans_brelse(tp, ibp);
2113 }
2114 /*
2115 * Point the bucket head pointer at the next inode.
2116 */
2117 ASSERT(next_agino != 0);
2118 ASSERT(next_agino != agino);
16259e7d 2119 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2120 offset = offsetof(xfs_agi_t, agi_unlinked) +
2121 (sizeof(xfs_agino_t) * bucket_index);
2122 xfs_trans_log_buf(tp, agibp, offset,
2123 (offset + sizeof(xfs_agino_t) - 1));
2124 } else {
2125 /*
2126 * We need to search the list for the inode being freed.
2127 */
16259e7d 2128 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2129 last_ibp = NULL;
2130 while (next_agino != agino) {
129dbc9a
CH
2131 struct xfs_imap imap;
2132
2133 if (last_ibp)
1da177e4 2134 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2135
2136 imap.im_blkno = 0;
1da177e4 2137 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2138
2139 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2140 if (error) {
2141 xfs_warn(mp,
2142 "%s: xfs_imap returned error %d.",
2143 __func__, error);
2144 return error;
2145 }
2146
2147 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2148 &last_ibp, 0, 0);
1da177e4 2149 if (error) {
0b932ccc 2150 xfs_warn(mp,
129dbc9a 2151 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2152 __func__, error);
1da177e4
LT
2153 return error;
2154 }
129dbc9a
CH
2155
2156 last_offset = imap.im_boffset;
347d1c01 2157 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2158 ASSERT(next_agino != NULLAGINO);
2159 ASSERT(next_agino != 0);
2160 }
475ee413 2161
1da177e4 2162 /*
475ee413
CH
2163 * Now last_ibp points to the buffer previous to us on the
2164 * unlinked list. Pull us from the list.
1da177e4 2165 */
475ee413
CH
2166 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2167 0, 0);
1da177e4 2168 if (error) {
475ee413 2169 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2170 __func__, error);
1da177e4
LT
2171 return error;
2172 }
347d1c01 2173 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2174 ASSERT(next_agino != 0);
2175 ASSERT(next_agino != agino);
2176 if (next_agino != NULLAGINO) {
347d1c01 2177 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2178 offset = ip->i_imap.im_boffset +
1da177e4 2179 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2180
2181 /* need to recalc the inode CRC if appropriate */
2182 xfs_dinode_calc_crc(mp, dip);
2183
1da177e4
LT
2184 xfs_trans_inode_buf(tp, ibp);
2185 xfs_trans_log_buf(tp, ibp, offset,
2186 (offset + sizeof(xfs_agino_t) - 1));
2187 xfs_inobp_check(mp, ibp);
2188 } else {
2189 xfs_trans_brelse(tp, ibp);
2190 }
2191 /*
2192 * Point the previous inode on the list to the next inode.
2193 */
347d1c01 2194 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2195 ASSERT(next_agino != 0);
2196 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2197
2198 /* need to recalc the inode CRC if appropriate */
2199 xfs_dinode_calc_crc(mp, last_dip);
2200
1da177e4
LT
2201 xfs_trans_inode_buf(tp, last_ibp);
2202 xfs_trans_log_buf(tp, last_ibp, offset,
2203 (offset + sizeof(xfs_agino_t) - 1));
2204 xfs_inobp_check(mp, last_ibp);
2205 }
2206 return 0;
2207}
2208
5b3eed75 2209/*
0b8182db 2210 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2211 * inodes that are in memory - they all must be marked stale and attached to
2212 * the cluster buffer.
2213 */
2a30f36d 2214STATIC int
1da177e4 2215xfs_ifree_cluster(
09b56604
BF
2216 xfs_inode_t *free_ip,
2217 xfs_trans_t *tp,
2218 struct xfs_icluster *xic)
1da177e4
LT
2219{
2220 xfs_mount_t *mp = free_ip->i_mount;
2221 int blks_per_cluster;
982e939e 2222 int inodes_per_cluster;
1da177e4 2223 int nbufs;
5b257b4a 2224 int i, j;
3cdaa189 2225 int ioffset;
1da177e4
LT
2226 xfs_daddr_t blkno;
2227 xfs_buf_t *bp;
5b257b4a 2228 xfs_inode_t *ip;
1da177e4 2229 xfs_inode_log_item_t *iip;
643c8c05 2230 struct xfs_log_item *lip;
5017e97d 2231 struct xfs_perag *pag;
09b56604 2232 xfs_ino_t inum;
1da177e4 2233
09b56604 2234 inum = xic->first_ino;
5017e97d 2235 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2236 blks_per_cluster = xfs_icluster_size_fsb(mp);
2237 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2238 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2239
982e939e 2240 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2241 /*
2242 * The allocation bitmap tells us which inodes of the chunk were
2243 * physically allocated. Skip the cluster if an inode falls into
2244 * a sparse region.
2245 */
3cdaa189
BF
2246 ioffset = inum - xic->first_ino;
2247 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2248 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2249 continue;
2250 }
2251
1da177e4
LT
2252 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2253 XFS_INO_TO_AGBNO(mp, inum));
2254
5b257b4a
DC
2255 /*
2256 * We obtain and lock the backing buffer first in the process
2257 * here, as we have to ensure that any dirty inode that we
2258 * can't get the flush lock on is attached to the buffer.
2259 * If we scan the in-memory inodes first, then buffer IO can
2260 * complete before we get a lock on it, and hence we may fail
2261 * to mark all the active inodes on the buffer stale.
2262 */
2263 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2264 mp->m_bsize * blks_per_cluster,
2265 XBF_UNMAPPED);
5b257b4a 2266
2a30f36d 2267 if (!bp)
2451337d 2268 return -ENOMEM;
b0f539de
DC
2269
2270 /*
2271 * This buffer may not have been correctly initialised as we
2272 * didn't read it from disk. That's not important because we are
2273 * only using to mark the buffer as stale in the log, and to
2274 * attach stale cached inodes on it. That means it will never be
2275 * dispatched for IO. If it is, we want to know about it, and we
2276 * want it to fail. We can acheive this by adding a write
2277 * verifier to the buffer.
2278 */
1813dd64 2279 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2280
5b257b4a
DC
2281 /*
2282 * Walk the inodes already attached to the buffer and mark them
2283 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2284 * in-memory inode walk can't lock them. By marking them all
2285 * stale first, we will not attempt to lock them in the loop
2286 * below as the XFS_ISTALE flag will be set.
5b257b4a 2287 */
643c8c05 2288 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2289 if (lip->li_type == XFS_LI_INODE) {
2290 iip = (xfs_inode_log_item_t *)lip;
2291 ASSERT(iip->ili_logged == 1);
ca30b2a7 2292 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2293 xfs_trans_ail_copy_lsn(mp->m_ail,
2294 &iip->ili_flush_lsn,
2295 &iip->ili_item.li_lsn);
2296 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2297 }
5b257b4a 2298 }
1da177e4 2299
5b3eed75 2300
1da177e4 2301 /*
5b257b4a
DC
2302 * For each inode in memory attempt to add it to the inode
2303 * buffer and set it up for being staled on buffer IO
2304 * completion. This is safe as we've locked out tail pushing
2305 * and flushing by locking the buffer.
1da177e4 2306 *
5b257b4a
DC
2307 * We have already marked every inode that was part of a
2308 * transaction stale above, which means there is no point in
2309 * even trying to lock them.
1da177e4 2310 */
982e939e 2311 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2312retry:
1a3e8f3d 2313 rcu_read_lock();
da353b0d
DC
2314 ip = radix_tree_lookup(&pag->pag_ici_root,
2315 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2316
1a3e8f3d
DC
2317 /* Inode not in memory, nothing to do */
2318 if (!ip) {
2319 rcu_read_unlock();
1da177e4
LT
2320 continue;
2321 }
2322
1a3e8f3d
DC
2323 /*
2324 * because this is an RCU protected lookup, we could
2325 * find a recently freed or even reallocated inode
2326 * during the lookup. We need to check under the
2327 * i_flags_lock for a valid inode here. Skip it if it
2328 * is not valid, the wrong inode or stale.
2329 */
2330 spin_lock(&ip->i_flags_lock);
2331 if (ip->i_ino != inum + i ||
2332 __xfs_iflags_test(ip, XFS_ISTALE)) {
2333 spin_unlock(&ip->i_flags_lock);
2334 rcu_read_unlock();
2335 continue;
2336 }
2337 spin_unlock(&ip->i_flags_lock);
2338
5b3eed75
DC
2339 /*
2340 * Don't try to lock/unlock the current inode, but we
2341 * _cannot_ skip the other inodes that we did not find
2342 * in the list attached to the buffer and are not
2343 * already marked stale. If we can't lock it, back off
2344 * and retry.
2345 */
f2e9ad21
OS
2346 if (ip != free_ip) {
2347 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2348 rcu_read_unlock();
2349 delay(1);
2350 goto retry;
2351 }
2352
2353 /*
2354 * Check the inode number again in case we're
2355 * racing with freeing in xfs_reclaim_inode().
2356 * See the comments in that function for more
2357 * information as to why the initial check is
2358 * not sufficient.
2359 */
2360 if (ip->i_ino != inum + i) {
2361 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2362 rcu_read_unlock();
f2e9ad21
OS
2363 continue;
2364 }
1da177e4 2365 }
1a3e8f3d 2366 rcu_read_unlock();
1da177e4 2367
5b3eed75 2368 xfs_iflock(ip);
5b257b4a 2369 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2370
5b3eed75
DC
2371 /*
2372 * we don't need to attach clean inodes or those only
2373 * with unlogged changes (which we throw away, anyway).
2374 */
1da177e4 2375 iip = ip->i_itemp;
5b3eed75 2376 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2377 ASSERT(ip != free_ip);
1da177e4
LT
2378 xfs_ifunlock(ip);
2379 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2380 continue;
2381 }
2382
f5d8d5c4
CH
2383 iip->ili_last_fields = iip->ili_fields;
2384 iip->ili_fields = 0;
fc0561ce 2385 iip->ili_fsync_fields = 0;
1da177e4 2386 iip->ili_logged = 1;
7b2e2a31
DC
2387 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2388 &iip->ili_item.li_lsn);
1da177e4 2389
ca30b2a7
CH
2390 xfs_buf_attach_iodone(bp, xfs_istale_done,
2391 &iip->ili_item);
5b257b4a
DC
2392
2393 if (ip != free_ip)
1da177e4 2394 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2395 }
2396
5b3eed75 2397 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2398 xfs_trans_binval(tp, bp);
2399 }
2400
5017e97d 2401 xfs_perag_put(pag);
2a30f36d 2402 return 0;
1da177e4
LT
2403}
2404
98c4f78d
DW
2405/*
2406 * Free any local-format buffers sitting around before we reset to
2407 * extents format.
2408 */
2409static inline void
2410xfs_ifree_local_data(
2411 struct xfs_inode *ip,
2412 int whichfork)
2413{
2414 struct xfs_ifork *ifp;
2415
2416 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2417 return;
2418
2419 ifp = XFS_IFORK_PTR(ip, whichfork);
2420 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2421}
2422
1da177e4
LT
2423/*
2424 * This is called to return an inode to the inode free list.
2425 * The inode should already be truncated to 0 length and have
2426 * no pages associated with it. This routine also assumes that
2427 * the inode is already a part of the transaction.
2428 *
2429 * The on-disk copy of the inode will have been added to the list
2430 * of unlinked inodes in the AGI. We need to remove the inode from
2431 * that list atomically with respect to freeing it here.
2432 */
2433int
2434xfs_ifree(
2435 xfs_trans_t *tp,
2436 xfs_inode_t *ip,
2c3234d1 2437 struct xfs_defer_ops *dfops)
1da177e4
LT
2438{
2439 int error;
09b56604 2440 struct xfs_icluster xic = { 0 };
1da177e4 2441
579aa9ca 2442 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2443 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2444 ASSERT(ip->i_d.di_nextents == 0);
2445 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2446 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2447 ASSERT(ip->i_d.di_nblocks == 0);
2448
2449 /*
2450 * Pull the on-disk inode from the AGI unlinked list.
2451 */
2452 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2453 if (error)
1da177e4 2454 return error;
1da177e4 2455
2c3234d1 2456 error = xfs_difree(tp, ip->i_ino, dfops, &xic);
1baaed8f 2457 if (error)
1da177e4 2458 return error;
1baaed8f 2459
98c4f78d
DW
2460 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2461 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2462
c19b3b05 2463 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2464 ip->i_d.di_flags = 0;
beaae8cd 2465 ip->i_d.di_flags2 = 0;
1da177e4
LT
2466 ip->i_d.di_dmevmask = 0;
2467 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2468 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2469 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2470
2471 /* Don't attempt to replay owner changes for a deleted inode */
2472 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2473
1da177e4
LT
2474 /*
2475 * Bump the generation count so no one will be confused
2476 * by reincarnations of this inode.
2477 */
9e9a2674 2478 VFS_I(ip)->i_generation++;
1da177e4
LT
2479 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2480
09b56604
BF
2481 if (xic.deleted)
2482 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2483
2a30f36d 2484 return error;
1da177e4
LT
2485}
2486
1da177e4 2487/*
60ec6783
CH
2488 * This is called to unpin an inode. The caller must have the inode locked
2489 * in at least shared mode so that the buffer cannot be subsequently pinned
2490 * once someone is waiting for it to be unpinned.
1da177e4 2491 */
60ec6783 2492static void
f392e631 2493xfs_iunpin(
60ec6783 2494 struct xfs_inode *ip)
1da177e4 2495{
579aa9ca 2496 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2497
4aaf15d1
DC
2498 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2499
a3f74ffb 2500 /* Give the log a push to start the unpinning I/O */
656de4ff 2501 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2502
a3f74ffb 2503}
1da177e4 2504
f392e631
CH
2505static void
2506__xfs_iunpin_wait(
2507 struct xfs_inode *ip)
2508{
2509 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2510 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2511
2512 xfs_iunpin(ip);
2513
2514 do {
21417136 2515 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2516 if (xfs_ipincount(ip))
2517 io_schedule();
2518 } while (xfs_ipincount(ip));
21417136 2519 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2520}
2521
777df5af 2522void
a3f74ffb 2523xfs_iunpin_wait(
60ec6783 2524 struct xfs_inode *ip)
a3f74ffb 2525{
f392e631
CH
2526 if (xfs_ipincount(ip))
2527 __xfs_iunpin_wait(ip);
1da177e4
LT
2528}
2529
27320369
DC
2530/*
2531 * Removing an inode from the namespace involves removing the directory entry
2532 * and dropping the link count on the inode. Removing the directory entry can
2533 * result in locking an AGF (directory blocks were freed) and removing a link
2534 * count can result in placing the inode on an unlinked list which results in
2535 * locking an AGI.
2536 *
2537 * The big problem here is that we have an ordering constraint on AGF and AGI
2538 * locking - inode allocation locks the AGI, then can allocate a new extent for
2539 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2540 * removes the inode from the unlinked list, requiring that we lock the AGI
2541 * first, and then freeing the inode can result in an inode chunk being freed
2542 * and hence freeing disk space requiring that we lock an AGF.
2543 *
2544 * Hence the ordering that is imposed by other parts of the code is AGI before
2545 * AGF. This means we cannot remove the directory entry before we drop the inode
2546 * reference count and put it on the unlinked list as this results in a lock
2547 * order of AGF then AGI, and this can deadlock against inode allocation and
2548 * freeing. Therefore we must drop the link counts before we remove the
2549 * directory entry.
2550 *
2551 * This is still safe from a transactional point of view - it is not until we
310a75a3 2552 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2553 * transactions in this operation. Hence as long as we remove the directory
2554 * entry and drop the link count in the first transaction of the remove
2555 * operation, there are no transactional constraints on the ordering here.
2556 */
c24b5dfa
DC
2557int
2558xfs_remove(
2559 xfs_inode_t *dp,
2560 struct xfs_name *name,
2561 xfs_inode_t *ip)
2562{
2563 xfs_mount_t *mp = dp->i_mount;
2564 xfs_trans_t *tp = NULL;
c19b3b05 2565 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2566 int error = 0;
2c3234d1 2567 struct xfs_defer_ops dfops;
c24b5dfa 2568 xfs_fsblock_t first_block;
c24b5dfa 2569 uint resblks;
c24b5dfa
DC
2570
2571 trace_xfs_remove(dp, name);
2572
2573 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2574 return -EIO;
c24b5dfa
DC
2575
2576 error = xfs_qm_dqattach(dp, 0);
2577 if (error)
2578 goto std_return;
2579
2580 error = xfs_qm_dqattach(ip, 0);
2581 if (error)
2582 goto std_return;
2583
c24b5dfa
DC
2584 /*
2585 * We try to get the real space reservation first,
2586 * allowing for directory btree deletion(s) implying
2587 * possible bmap insert(s). If we can't get the space
2588 * reservation then we use 0 instead, and avoid the bmap
2589 * btree insert(s) in the directory code by, if the bmap
2590 * insert tries to happen, instead trimming the LAST
2591 * block from the directory.
2592 */
2593 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2594 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2595 if (error == -ENOSPC) {
c24b5dfa 2596 resblks = 0;
253f4911
CH
2597 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2598 &tp);
c24b5dfa
DC
2599 }
2600 if (error) {
2451337d 2601 ASSERT(error != -ENOSPC);
253f4911 2602 goto std_return;
c24b5dfa
DC
2603 }
2604
7c2d238a 2605 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2606
65523218 2607 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2608 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2609
2610 /*
2611 * If we're removing a directory perform some additional validation.
2612 */
2613 if (is_dir) {
54d7b5c1
DC
2614 ASSERT(VFS_I(ip)->i_nlink >= 2);
2615 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2616 error = -ENOTEMPTY;
c24b5dfa
DC
2617 goto out_trans_cancel;
2618 }
2619 if (!xfs_dir_isempty(ip)) {
2451337d 2620 error = -ENOTEMPTY;
c24b5dfa
DC
2621 goto out_trans_cancel;
2622 }
c24b5dfa 2623
27320369 2624 /* Drop the link from ip's "..". */
c24b5dfa
DC
2625 error = xfs_droplink(tp, dp);
2626 if (error)
27320369 2627 goto out_trans_cancel;
c24b5dfa 2628
27320369 2629 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2630 error = xfs_droplink(tp, ip);
2631 if (error)
27320369 2632 goto out_trans_cancel;
c24b5dfa
DC
2633 } else {
2634 /*
2635 * When removing a non-directory we need to log the parent
2636 * inode here. For a directory this is done implicitly
2637 * by the xfs_droplink call for the ".." entry.
2638 */
2639 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2640 }
27320369 2641 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2642
27320369 2643 /* Drop the link from dp to ip. */
c24b5dfa
DC
2644 error = xfs_droplink(tp, ip);
2645 if (error)
27320369 2646 goto out_trans_cancel;
c24b5dfa 2647
2c3234d1 2648 xfs_defer_init(&dfops, &first_block);
27320369 2649 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2c3234d1 2650 &first_block, &dfops, resblks);
27320369 2651 if (error) {
2451337d 2652 ASSERT(error != -ENOENT);
27320369
DC
2653 goto out_bmap_cancel;
2654 }
2655
c24b5dfa
DC
2656 /*
2657 * If this is a synchronous mount, make sure that the
2658 * remove transaction goes to disk before returning to
2659 * the user.
2660 */
2661 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2662 xfs_trans_set_sync(tp);
2663
8ad7c629 2664 error = xfs_defer_finish(&tp, &dfops);
c24b5dfa
DC
2665 if (error)
2666 goto out_bmap_cancel;
2667
70393313 2668 error = xfs_trans_commit(tp);
c24b5dfa
DC
2669 if (error)
2670 goto std_return;
2671
2cd2ef6a 2672 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2673 xfs_filestream_deassociate(ip);
2674
2675 return 0;
2676
2677 out_bmap_cancel:
2c3234d1 2678 xfs_defer_cancel(&dfops);
c24b5dfa 2679 out_trans_cancel:
4906e215 2680 xfs_trans_cancel(tp);
c24b5dfa
DC
2681 std_return:
2682 return error;
2683}
2684
f6bba201
DC
2685/*
2686 * Enter all inodes for a rename transaction into a sorted array.
2687 */
95afcf5c 2688#define __XFS_SORT_INODES 5
f6bba201
DC
2689STATIC void
2690xfs_sort_for_rename(
95afcf5c
DC
2691 struct xfs_inode *dp1, /* in: old (source) directory inode */
2692 struct xfs_inode *dp2, /* in: new (target) directory inode */
2693 struct xfs_inode *ip1, /* in: inode of old entry */
2694 struct xfs_inode *ip2, /* in: inode of new entry */
2695 struct xfs_inode *wip, /* in: whiteout inode */
2696 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2697 int *num_inodes) /* in/out: inodes in array */
f6bba201 2698{
f6bba201
DC
2699 int i, j;
2700
95afcf5c
DC
2701 ASSERT(*num_inodes == __XFS_SORT_INODES);
2702 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2703
f6bba201
DC
2704 /*
2705 * i_tab contains a list of pointers to inodes. We initialize
2706 * the table here & we'll sort it. We will then use it to
2707 * order the acquisition of the inode locks.
2708 *
2709 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2710 */
95afcf5c
DC
2711 i = 0;
2712 i_tab[i++] = dp1;
2713 i_tab[i++] = dp2;
2714 i_tab[i++] = ip1;
2715 if (ip2)
2716 i_tab[i++] = ip2;
2717 if (wip)
2718 i_tab[i++] = wip;
2719 *num_inodes = i;
f6bba201
DC
2720
2721 /*
2722 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2723 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2724 */
2725 for (i = 0; i < *num_inodes; i++) {
2726 for (j = 1; j < *num_inodes; j++) {
2727 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2728 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2729 i_tab[j] = i_tab[j-1];
2730 i_tab[j-1] = temp;
2731 }
2732 }
2733 }
2734}
2735
310606b0
DC
2736static int
2737xfs_finish_rename(
2738 struct xfs_trans *tp,
2c3234d1 2739 struct xfs_defer_ops *dfops)
310606b0 2740{
310606b0
DC
2741 int error;
2742
2743 /*
2744 * If this is a synchronous mount, make sure that the rename transaction
2745 * goes to disk before returning to the user.
2746 */
2747 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2748 xfs_trans_set_sync(tp);
2749
8ad7c629 2750 error = xfs_defer_finish(&tp, dfops);
310606b0 2751 if (error) {
2c3234d1 2752 xfs_defer_cancel(dfops);
4906e215 2753 xfs_trans_cancel(tp);
310606b0
DC
2754 return error;
2755 }
2756
70393313 2757 return xfs_trans_commit(tp);
310606b0
DC
2758}
2759
d31a1825
CM
2760/*
2761 * xfs_cross_rename()
2762 *
2763 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2764 */
2765STATIC int
2766xfs_cross_rename(
2767 struct xfs_trans *tp,
2768 struct xfs_inode *dp1,
2769 struct xfs_name *name1,
2770 struct xfs_inode *ip1,
2771 struct xfs_inode *dp2,
2772 struct xfs_name *name2,
2773 struct xfs_inode *ip2,
2c3234d1 2774 struct xfs_defer_ops *dfops,
d31a1825
CM
2775 xfs_fsblock_t *first_block,
2776 int spaceres)
2777{
2778 int error = 0;
2779 int ip1_flags = 0;
2780 int ip2_flags = 0;
2781 int dp2_flags = 0;
2782
2783 /* Swap inode number for dirent in first parent */
2784 error = xfs_dir_replace(tp, dp1, name1,
2785 ip2->i_ino,
2c3234d1 2786 first_block, dfops, spaceres);
d31a1825 2787 if (error)
eeacd321 2788 goto out_trans_abort;
d31a1825
CM
2789
2790 /* Swap inode number for dirent in second parent */
2791 error = xfs_dir_replace(tp, dp2, name2,
2792 ip1->i_ino,
2c3234d1 2793 first_block, dfops, spaceres);
d31a1825 2794 if (error)
eeacd321 2795 goto out_trans_abort;
d31a1825
CM
2796
2797 /*
2798 * If we're renaming one or more directories across different parents,
2799 * update the respective ".." entries (and link counts) to match the new
2800 * parents.
2801 */
2802 if (dp1 != dp2) {
2803 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2804
c19b3b05 2805 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2806 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2807 dp1->i_ino, first_block,
2c3234d1 2808 dfops, spaceres);
d31a1825 2809 if (error)
eeacd321 2810 goto out_trans_abort;
d31a1825
CM
2811
2812 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2813 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2814 error = xfs_droplink(tp, dp2);
2815 if (error)
eeacd321 2816 goto out_trans_abort;
d31a1825
CM
2817 error = xfs_bumplink(tp, dp1);
2818 if (error)
eeacd321 2819 goto out_trans_abort;
d31a1825
CM
2820 }
2821
2822 /*
2823 * Although ip1 isn't changed here, userspace needs
2824 * to be warned about the change, so that applications
2825 * relying on it (like backup ones), will properly
2826 * notify the change
2827 */
2828 ip1_flags |= XFS_ICHGTIME_CHG;
2829 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2830 }
2831
c19b3b05 2832 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2833 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2834 dp2->i_ino, first_block,
2c3234d1 2835 dfops, spaceres);
d31a1825 2836 if (error)
eeacd321 2837 goto out_trans_abort;
d31a1825
CM
2838
2839 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2840 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2841 error = xfs_droplink(tp, dp1);
2842 if (error)
eeacd321 2843 goto out_trans_abort;
d31a1825
CM
2844 error = xfs_bumplink(tp, dp2);
2845 if (error)
eeacd321 2846 goto out_trans_abort;
d31a1825
CM
2847 }
2848
2849 /*
2850 * Although ip2 isn't changed here, userspace needs
2851 * to be warned about the change, so that applications
2852 * relying on it (like backup ones), will properly
2853 * notify the change
2854 */
2855 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2856 ip2_flags |= XFS_ICHGTIME_CHG;
2857 }
2858 }
2859
2860 if (ip1_flags) {
2861 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2862 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2863 }
2864 if (ip2_flags) {
2865 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2866 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2867 }
2868 if (dp2_flags) {
2869 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2870 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2871 }
2872 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2873 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2c3234d1 2874 return xfs_finish_rename(tp, dfops);
eeacd321
DC
2875
2876out_trans_abort:
2c3234d1 2877 xfs_defer_cancel(dfops);
4906e215 2878 xfs_trans_cancel(tp);
d31a1825
CM
2879 return error;
2880}
2881
7dcf5c3e
DC
2882/*
2883 * xfs_rename_alloc_whiteout()
2884 *
2885 * Return a referenced, unlinked, unlocked inode that that can be used as a
2886 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2887 * crash between allocating the inode and linking it into the rename transaction
2888 * recovery will free the inode and we won't leak it.
2889 */
2890static int
2891xfs_rename_alloc_whiteout(
2892 struct xfs_inode *dp,
2893 struct xfs_inode **wip)
2894{
2895 struct xfs_inode *tmpfile;
2896 int error;
2897
2898 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2899 if (error)
2900 return error;
2901
22419ac9
BF
2902 /*
2903 * Prepare the tmpfile inode as if it were created through the VFS.
2904 * Otherwise, the link increment paths will complain about nlink 0->1.
2905 * Drop the link count as done by d_tmpfile(), complete the inode setup
2906 * and flag it as linkable.
2907 */
2908 drop_nlink(VFS_I(tmpfile));
2b3d1d41 2909 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2910 xfs_finish_inode_setup(tmpfile);
2911 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2912
2913 *wip = tmpfile;
2914 return 0;
2915}
2916
f6bba201
DC
2917/*
2918 * xfs_rename
2919 */
2920int
2921xfs_rename(
7dcf5c3e
DC
2922 struct xfs_inode *src_dp,
2923 struct xfs_name *src_name,
2924 struct xfs_inode *src_ip,
2925 struct xfs_inode *target_dp,
2926 struct xfs_name *target_name,
2927 struct xfs_inode *target_ip,
2928 unsigned int flags)
f6bba201 2929{
7dcf5c3e
DC
2930 struct xfs_mount *mp = src_dp->i_mount;
2931 struct xfs_trans *tp;
2c3234d1 2932 struct xfs_defer_ops dfops;
7dcf5c3e
DC
2933 xfs_fsblock_t first_block;
2934 struct xfs_inode *wip = NULL; /* whiteout inode */
2935 struct xfs_inode *inodes[__XFS_SORT_INODES];
2936 int num_inodes = __XFS_SORT_INODES;
2b93681f 2937 bool new_parent = (src_dp != target_dp);
c19b3b05 2938 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
2939 int spaceres;
2940 int error;
f6bba201
DC
2941
2942 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2943
eeacd321
DC
2944 if ((flags & RENAME_EXCHANGE) && !target_ip)
2945 return -EINVAL;
2946
7dcf5c3e
DC
2947 /*
2948 * If we are doing a whiteout operation, allocate the whiteout inode
2949 * we will be placing at the target and ensure the type is set
2950 * appropriately.
2951 */
2952 if (flags & RENAME_WHITEOUT) {
2953 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2954 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2955 if (error)
2956 return error;
2957
2958 /* setup target dirent info as whiteout */
2959 src_name->type = XFS_DIR3_FT_CHRDEV;
2960 }
f6bba201 2961
7dcf5c3e 2962 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2963 inodes, &num_inodes);
2964
f6bba201 2965 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2966 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2967 if (error == -ENOSPC) {
f6bba201 2968 spaceres = 0;
253f4911
CH
2969 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2970 &tp);
f6bba201 2971 }
445883e8 2972 if (error)
253f4911 2973 goto out_release_wip;
f6bba201
DC
2974
2975 /*
2976 * Attach the dquots to the inodes
2977 */
2978 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2979 if (error)
2980 goto out_trans_cancel;
f6bba201
DC
2981
2982 /*
2983 * Lock all the participating inodes. Depending upon whether
2984 * the target_name exists in the target directory, and
2985 * whether the target directory is the same as the source
2986 * directory, we can lock from 2 to 4 inodes.
2987 */
2988 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2989
2990 /*
2991 * Join all the inodes to the transaction. From this point on,
2992 * we can rely on either trans_commit or trans_cancel to unlock
2993 * them.
2994 */
65523218 2995 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2996 if (new_parent)
65523218 2997 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2998 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2999 if (target_ip)
3000 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3001 if (wip)
3002 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3003
3004 /*
3005 * If we are using project inheritance, we only allow renames
3006 * into our tree when the project IDs are the same; else the
3007 * tree quota mechanism would be circumvented.
3008 */
3009 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3010 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3011 error = -EXDEV;
445883e8 3012 goto out_trans_cancel;
f6bba201
DC
3013 }
3014
2c3234d1 3015 xfs_defer_init(&dfops, &first_block);
445883e8 3016
eeacd321
DC
3017 /* RENAME_EXCHANGE is unique from here on. */
3018 if (flags & RENAME_EXCHANGE)
3019 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3020 target_dp, target_name, target_ip,
2c3234d1 3021 &dfops, &first_block, spaceres);
d31a1825 3022
f6bba201
DC
3023 /*
3024 * Set up the target.
3025 */
3026 if (target_ip == NULL) {
3027 /*
3028 * If there's no space reservation, check the entry will
3029 * fit before actually inserting it.
3030 */
94f3cad5
ES
3031 if (!spaceres) {
3032 error = xfs_dir_canenter(tp, target_dp, target_name);
3033 if (error)
445883e8 3034 goto out_trans_cancel;
94f3cad5 3035 }
f6bba201
DC
3036 /*
3037 * If target does not exist and the rename crosses
3038 * directories, adjust the target directory link count
3039 * to account for the ".." reference from the new entry.
3040 */
3041 error = xfs_dir_createname(tp, target_dp, target_name,
3042 src_ip->i_ino, &first_block,
2c3234d1 3043 &dfops, spaceres);
f6bba201 3044 if (error)
4906e215 3045 goto out_bmap_cancel;
f6bba201
DC
3046
3047 xfs_trans_ichgtime(tp, target_dp,
3048 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3049
3050 if (new_parent && src_is_directory) {
3051 error = xfs_bumplink(tp, target_dp);
3052 if (error)
4906e215 3053 goto out_bmap_cancel;
f6bba201
DC
3054 }
3055 } else { /* target_ip != NULL */
3056 /*
3057 * If target exists and it's a directory, check that both
3058 * target and source are directories and that target can be
3059 * destroyed, or that neither is a directory.
3060 */
c19b3b05 3061 if (S_ISDIR(VFS_I(target_ip)->i_mode)) {
f6bba201
DC
3062 /*
3063 * Make sure target dir is empty.
3064 */
3065 if (!(xfs_dir_isempty(target_ip)) ||
54d7b5c1 3066 (VFS_I(target_ip)->i_nlink > 2)) {
2451337d 3067 error = -EEXIST;
445883e8 3068 goto out_trans_cancel;
f6bba201
DC
3069 }
3070 }
3071
3072 /*
3073 * Link the source inode under the target name.
3074 * If the source inode is a directory and we are moving
3075 * it across directories, its ".." entry will be
3076 * inconsistent until we replace that down below.
3077 *
3078 * In case there is already an entry with the same
3079 * name at the destination directory, remove it first.
3080 */
3081 error = xfs_dir_replace(tp, target_dp, target_name,
3082 src_ip->i_ino,
2c3234d1 3083 &first_block, &dfops, spaceres);
f6bba201 3084 if (error)
4906e215 3085 goto out_bmap_cancel;
f6bba201
DC
3086
3087 xfs_trans_ichgtime(tp, target_dp,
3088 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3089
3090 /*
3091 * Decrement the link count on the target since the target
3092 * dir no longer points to it.
3093 */
3094 error = xfs_droplink(tp, target_ip);
3095 if (error)
4906e215 3096 goto out_bmap_cancel;
f6bba201
DC
3097
3098 if (src_is_directory) {
3099 /*
3100 * Drop the link from the old "." entry.
3101 */
3102 error = xfs_droplink(tp, target_ip);
3103 if (error)
4906e215 3104 goto out_bmap_cancel;
f6bba201
DC
3105 }
3106 } /* target_ip != NULL */
3107
3108 /*
3109 * Remove the source.
3110 */
3111 if (new_parent && src_is_directory) {
3112 /*
3113 * Rewrite the ".." entry to point to the new
3114 * directory.
3115 */
3116 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3117 target_dp->i_ino,
2c3234d1 3118 &first_block, &dfops, spaceres);
2451337d 3119 ASSERT(error != -EEXIST);
f6bba201 3120 if (error)
4906e215 3121 goto out_bmap_cancel;
f6bba201
DC
3122 }
3123
3124 /*
3125 * We always want to hit the ctime on the source inode.
3126 *
3127 * This isn't strictly required by the standards since the source
3128 * inode isn't really being changed, but old unix file systems did
3129 * it and some incremental backup programs won't work without it.
3130 */
3131 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3132 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3133
3134 /*
3135 * Adjust the link count on src_dp. This is necessary when
3136 * renaming a directory, either within one parent when
3137 * the target existed, or across two parent directories.
3138 */
3139 if (src_is_directory && (new_parent || target_ip != NULL)) {
3140
3141 /*
3142 * Decrement link count on src_directory since the
3143 * entry that's moved no longer points to it.
3144 */
3145 error = xfs_droplink(tp, src_dp);
3146 if (error)
4906e215 3147 goto out_bmap_cancel;
f6bba201
DC
3148 }
3149
7dcf5c3e
DC
3150 /*
3151 * For whiteouts, we only need to update the source dirent with the
3152 * inode number of the whiteout inode rather than removing it
3153 * altogether.
3154 */
3155 if (wip) {
3156 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
2c3234d1 3157 &first_block, &dfops, spaceres);
7dcf5c3e
DC
3158 } else
3159 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
2c3234d1 3160 &first_block, &dfops, spaceres);
f6bba201 3161 if (error)
4906e215 3162 goto out_bmap_cancel;
f6bba201
DC
3163
3164 /*
7dcf5c3e
DC
3165 * For whiteouts, we need to bump the link count on the whiteout inode.
3166 * This means that failures all the way up to this point leave the inode
3167 * on the unlinked list and so cleanup is a simple matter of dropping
3168 * the remaining reference to it. If we fail here after bumping the link
3169 * count, we're shutting down the filesystem so we'll never see the
3170 * intermediate state on disk.
f6bba201 3171 */
7dcf5c3e 3172 if (wip) {
54d7b5c1 3173 ASSERT(VFS_I(wip)->i_nlink == 0);
7dcf5c3e
DC
3174 error = xfs_bumplink(tp, wip);
3175 if (error)
4906e215 3176 goto out_bmap_cancel;
7dcf5c3e
DC
3177 error = xfs_iunlink_remove(tp, wip);
3178 if (error)
4906e215 3179 goto out_bmap_cancel;
7dcf5c3e 3180 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3181
7dcf5c3e
DC
3182 /*
3183 * Now we have a real link, clear the "I'm a tmpfile" state
3184 * flag from the inode so it doesn't accidentally get misused in
3185 * future.
3186 */
3187 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3188 }
3189
f6bba201
DC
3190 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3191 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3192 if (new_parent)
3193 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3194
2c3234d1 3195 error = xfs_finish_rename(tp, &dfops);
7dcf5c3e
DC
3196 if (wip)
3197 IRELE(wip);
3198 return error;
f6bba201 3199
445883e8 3200out_bmap_cancel:
2c3234d1 3201 xfs_defer_cancel(&dfops);
445883e8 3202out_trans_cancel:
4906e215 3203 xfs_trans_cancel(tp);
253f4911 3204out_release_wip:
7dcf5c3e
DC
3205 if (wip)
3206 IRELE(wip);
f6bba201
DC
3207 return error;
3208}
3209
5c4d97d0
DC
3210STATIC int
3211xfs_iflush_cluster(
19429363
DC
3212 struct xfs_inode *ip,
3213 struct xfs_buf *bp)
1da177e4 3214{
19429363 3215 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3216 struct xfs_perag *pag;
3217 unsigned long first_index, mask;
3218 unsigned long inodes_per_cluster;
19429363
DC
3219 int cilist_size;
3220 struct xfs_inode **cilist;
3221 struct xfs_inode *cip;
5c4d97d0
DC
3222 int nr_found;
3223 int clcount = 0;
3224 int bufwasdelwri;
1da177e4 3225 int i;
1da177e4 3226
5c4d97d0 3227 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3228
0f49efd8 3229 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
19429363
DC
3230 cilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3231 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3232 if (!cilist)
5c4d97d0 3233 goto out_put;
1da177e4 3234
0f49efd8 3235 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3236 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3237 rcu_read_lock();
3238 /* really need a gang lookup range call here */
19429363 3239 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
5c4d97d0
DC
3240 first_index, inodes_per_cluster);
3241 if (nr_found == 0)
3242 goto out_free;
3243
3244 for (i = 0; i < nr_found; i++) {
19429363
DC
3245 cip = cilist[i];
3246 if (cip == ip)
bad55843 3247 continue;
1a3e8f3d
DC
3248
3249 /*
3250 * because this is an RCU protected lookup, we could find a
3251 * recently freed or even reallocated inode during the lookup.
3252 * We need to check under the i_flags_lock for a valid inode
3253 * here. Skip it if it is not valid or the wrong inode.
3254 */
19429363
DC
3255 spin_lock(&cip->i_flags_lock);
3256 if (!cip->i_ino ||
3257 __xfs_iflags_test(cip, XFS_ISTALE)) {
3258 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3259 continue;
3260 }
5a90e53e
DC
3261
3262 /*
3263 * Once we fall off the end of the cluster, no point checking
3264 * any more inodes in the list because they will also all be
3265 * outside the cluster.
3266 */
19429363
DC
3267 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3268 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3269 break;
3270 }
19429363 3271 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3272
bad55843
DC
3273 /*
3274 * Do an un-protected check to see if the inode is dirty and
3275 * is a candidate for flushing. These checks will be repeated
3276 * later after the appropriate locks are acquired.
3277 */
19429363 3278 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3279 continue;
bad55843
DC
3280
3281 /*
3282 * Try to get locks. If any are unavailable or it is pinned,
3283 * then this inode cannot be flushed and is skipped.
3284 */
3285
19429363 3286 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3287 continue;
19429363
DC
3288 if (!xfs_iflock_nowait(cip)) {
3289 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3290 continue;
3291 }
19429363
DC
3292 if (xfs_ipincount(cip)) {
3293 xfs_ifunlock(cip);
3294 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3295 continue;
3296 }
3297
8a17d7dd
DC
3298
3299 /*
3300 * Check the inode number again, just to be certain we are not
3301 * racing with freeing in xfs_reclaim_inode(). See the comments
3302 * in that function for more information as to why the initial
3303 * check is not sufficient.
3304 */
19429363
DC
3305 if (!cip->i_ino) {
3306 xfs_ifunlock(cip);
3307 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3308 continue;
3309 }
3310
3311 /*
3312 * arriving here means that this inode can be flushed. First
3313 * re-check that it's dirty before flushing.
3314 */
19429363 3315 if (!xfs_inode_clean(cip)) {
33540408 3316 int error;
19429363 3317 error = xfs_iflush_int(cip, bp);
bad55843 3318 if (error) {
19429363 3319 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3320 goto cluster_corrupt_out;
3321 }
3322 clcount++;
3323 } else {
19429363 3324 xfs_ifunlock(cip);
bad55843 3325 }
19429363 3326 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3327 }
3328
3329 if (clcount) {
ff6d6af2
BD
3330 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3331 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3332 }
3333
3334out_free:
1a3e8f3d 3335 rcu_read_unlock();
19429363 3336 kmem_free(cilist);
44b56e0a
DC
3337out_put:
3338 xfs_perag_put(pag);
bad55843
DC
3339 return 0;
3340
3341
3342cluster_corrupt_out:
3343 /*
3344 * Corruption detected in the clustering loop. Invalidate the
3345 * inode buffer and shut down the filesystem.
3346 */
1a3e8f3d 3347 rcu_read_unlock();
bad55843 3348 /*
43ff2122 3349 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3350 * brelse can handle it with no problems. If not, shut down the
3351 * filesystem before releasing the buffer.
3352 */
43ff2122 3353 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3354 if (bufwasdelwri)
3355 xfs_buf_relse(bp);
3356
3357 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3358
3359 if (!bufwasdelwri) {
3360 /*
3361 * Just like incore_relse: if we have b_iodone functions,
3362 * mark the buffer as an error and call them. Otherwise
3363 * mark it as stale and brelse.
3364 */
cb669ca5 3365 if (bp->b_iodone) {
b0388bf1 3366 bp->b_flags &= ~XBF_DONE;
c867cb61 3367 xfs_buf_stale(bp);
2451337d 3368 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3369 xfs_buf_ioend(bp);
bad55843 3370 } else {
c867cb61 3371 xfs_buf_stale(bp);
bad55843
DC
3372 xfs_buf_relse(bp);
3373 }
3374 }
3375
3376 /*
3377 * Unlocks the flush lock
3378 */
19429363
DC
3379 xfs_iflush_abort(cip, false);
3380 kmem_free(cilist);
44b56e0a 3381 xfs_perag_put(pag);
2451337d 3382 return -EFSCORRUPTED;
bad55843
DC
3383}
3384
1da177e4 3385/*
4c46819a
CH
3386 * Flush dirty inode metadata into the backing buffer.
3387 *
3388 * The caller must have the inode lock and the inode flush lock held. The
3389 * inode lock will still be held upon return to the caller, and the inode
3390 * flush lock will be released after the inode has reached the disk.
3391 *
3392 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3393 */
3394int
3395xfs_iflush(
4c46819a
CH
3396 struct xfs_inode *ip,
3397 struct xfs_buf **bpp)
1da177e4 3398{
4c46819a 3399 struct xfs_mount *mp = ip->i_mount;
b1438f47 3400 struct xfs_buf *bp = NULL;
4c46819a 3401 struct xfs_dinode *dip;
1da177e4 3402 int error;
1da177e4 3403
ff6d6af2 3404 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3405
579aa9ca 3406 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3407 ASSERT(xfs_isiflocked(ip));
1da177e4 3408 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3409 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3410
4c46819a 3411 *bpp = NULL;
1da177e4 3412
1da177e4
LT
3413 xfs_iunpin_wait(ip);
3414
4b6a4688
DC
3415 /*
3416 * For stale inodes we cannot rely on the backing buffer remaining
3417 * stale in cache for the remaining life of the stale inode and so
475ee413 3418 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3419 * inodes below. We have to check this after ensuring the inode is
3420 * unpinned so that it is safe to reclaim the stale inode after the
3421 * flush call.
3422 */
3423 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3424 xfs_ifunlock(ip);
3425 return 0;
3426 }
3427
1da177e4
LT
3428 /*
3429 * This may have been unpinned because the filesystem is shutting
3430 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3431 * to disk, because the log record didn't make it to disk.
3432 *
3433 * We also have to remove the log item from the AIL in this case,
3434 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3435 */
3436 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3437 error = -EIO;
32ce90a4 3438 goto abort_out;
1da177e4
LT
3439 }
3440
a3f74ffb 3441 /*
b1438f47
DC
3442 * Get the buffer containing the on-disk inode. We are doing a try-lock
3443 * operation here, so we may get an EAGAIN error. In that case, we
3444 * simply want to return with the inode still dirty.
3445 *
3446 * If we get any other error, we effectively have a corruption situation
3447 * and we cannot flush the inode, so we treat it the same as failing
3448 * xfs_iflush_int().
a3f74ffb 3449 */
475ee413
CH
3450 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3451 0);
b1438f47 3452 if (error == -EAGAIN) {
a3f74ffb
DC
3453 xfs_ifunlock(ip);
3454 return error;
3455 }
b1438f47
DC
3456 if (error)
3457 goto corrupt_out;
a3f74ffb 3458
1da177e4
LT
3459 /*
3460 * First flush out the inode that xfs_iflush was called with.
3461 */
3462 error = xfs_iflush_int(ip, bp);
bad55843 3463 if (error)
1da177e4 3464 goto corrupt_out;
1da177e4 3465
a3f74ffb
DC
3466 /*
3467 * If the buffer is pinned then push on the log now so we won't
3468 * get stuck waiting in the write for too long.
3469 */
811e64c7 3470 if (xfs_buf_ispinned(bp))
a14a348b 3471 xfs_log_force(mp, 0);
a3f74ffb 3472
1da177e4
LT
3473 /*
3474 * inode clustering:
3475 * see if other inodes can be gathered into this write
3476 */
bad55843
DC
3477 error = xfs_iflush_cluster(ip, bp);
3478 if (error)
3479 goto cluster_corrupt_out;
1da177e4 3480
4c46819a
CH
3481 *bpp = bp;
3482 return 0;
1da177e4
LT
3483
3484corrupt_out:
b1438f47
DC
3485 if (bp)
3486 xfs_buf_relse(bp);
7d04a335 3487 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3488cluster_corrupt_out:
2451337d 3489 error = -EFSCORRUPTED;
32ce90a4 3490abort_out:
1da177e4
LT
3491 /*
3492 * Unlocks the flush lock
3493 */
04913fdd 3494 xfs_iflush_abort(ip, false);
32ce90a4 3495 return error;
1da177e4
LT
3496}
3497
9cfb9b47
DW
3498/*
3499 * If there are inline format data / attr forks attached to this inode,
3500 * make sure they're not corrupt.
3501 */
3502bool
3503xfs_inode_verify_forks(
3504 struct xfs_inode *ip)
3505{
22431bf3 3506 struct xfs_ifork *ifp;
9cfb9b47
DW
3507 xfs_failaddr_t fa;
3508
3509 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3510 if (fa) {
22431bf3
DW
3511 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3512 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3513 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3514 return false;
3515 }
3516
3517 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3518 if (fa) {
22431bf3
DW
3519 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3520 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3521 ifp ? ifp->if_u1.if_data : NULL,
3522 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3523 return false;
3524 }
3525 return true;
3526}
3527
1da177e4
LT
3528STATIC int
3529xfs_iflush_int(
93848a99
CH
3530 struct xfs_inode *ip,
3531 struct xfs_buf *bp)
1da177e4 3532{
93848a99
CH
3533 struct xfs_inode_log_item *iip = ip->i_itemp;
3534 struct xfs_dinode *dip;
3535 struct xfs_mount *mp = ip->i_mount;
1da177e4 3536
579aa9ca 3537 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3538 ASSERT(xfs_isiflocked(ip));
1da177e4 3539 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3540 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3541 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3542 ASSERT(ip->i_d.di_version > 1);
1da177e4 3543
1da177e4 3544 /* set *dip = inode's place in the buffer */
88ee2df7 3545 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3546
69ef921b 3547 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3548 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3549 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3550 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3551 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3552 goto corrupt_out;
3553 }
c19b3b05 3554 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3555 if (XFS_TEST_ERROR(
3556 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3557 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3558 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3559 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3560 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3561 __func__, ip->i_ino, ip);
1da177e4
LT
3562 goto corrupt_out;
3563 }
c19b3b05 3564 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3565 if (XFS_TEST_ERROR(
3566 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3567 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3568 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3569 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3570 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3571 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3572 __func__, ip->i_ino, ip);
1da177e4
LT
3573 goto corrupt_out;
3574 }
3575 }
3576 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3577 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3578 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3579 "%s: detected corrupt incore inode %Lu, "
c9690043 3580 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3581 __func__, ip->i_ino,
1da177e4 3582 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3583 ip->i_d.di_nblocks, ip);
1da177e4
LT
3584 goto corrupt_out;
3585 }
3586 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3587 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3588 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3589 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3590 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3591 goto corrupt_out;
3592 }
e60896d8 3593
1da177e4 3594 /*
263997a6 3595 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3596 * di_flushiter count for correct sequencing. We bump the flush
3597 * iteration count so we can detect flushes which postdate a log record
3598 * during recovery. This is redundant as we now log every change and
3599 * hence this can't happen but we need to still do it to ensure
3600 * backwards compatibility with old kernels that predate logging all
3601 * inode changes.
1da177e4 3602 */
e60896d8
DC
3603 if (ip->i_d.di_version < 3)
3604 ip->i_d.di_flushiter++;
1da177e4 3605
9cfb9b47
DW
3606 /* Check the inline fork data before we write out. */
3607 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3608 goto corrupt_out;
3609
1da177e4 3610 /*
3987848c
DC
3611 * Copy the dirty parts of the inode into the on-disk inode. We always
3612 * copy out the core of the inode, because if the inode is dirty at all
3613 * the core must be.
1da177e4 3614 */
93f958f9 3615 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3616
3617 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3618 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3619 ip->i_d.di_flushiter = 0;
3620
005c5db8
DW
3621 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3622 if (XFS_IFORK_Q(ip))
3623 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3624 xfs_inobp_check(mp, bp);
3625
3626 /*
f5d8d5c4
CH
3627 * We've recorded everything logged in the inode, so we'd like to clear
3628 * the ili_fields bits so we don't log and flush things unnecessarily.
3629 * However, we can't stop logging all this information until the data
3630 * we've copied into the disk buffer is written to disk. If we did we
3631 * might overwrite the copy of the inode in the log with all the data
3632 * after re-logging only part of it, and in the face of a crash we
3633 * wouldn't have all the data we need to recover.
1da177e4 3634 *
f5d8d5c4
CH
3635 * What we do is move the bits to the ili_last_fields field. When
3636 * logging the inode, these bits are moved back to the ili_fields field.
3637 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3638 * know that the information those bits represent is permanently on
3639 * disk. As long as the flush completes before the inode is logged
3640 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3641 *
f5d8d5c4
CH
3642 * We can play with the ili_fields bits here, because the inode lock
3643 * must be held exclusively in order to set bits there and the flush
3644 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3645 * done routine can tell whether or not to look in the AIL. Also, store
3646 * the current LSN of the inode so that we can tell whether the item has
3647 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3648 * need the AIL lock, because it is a 64 bit value that cannot be read
3649 * atomically.
1da177e4 3650 */
93848a99
CH
3651 iip->ili_last_fields = iip->ili_fields;
3652 iip->ili_fields = 0;
fc0561ce 3653 iip->ili_fsync_fields = 0;
93848a99 3654 iip->ili_logged = 1;
1da177e4 3655
93848a99
CH
3656 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3657 &iip->ili_item.li_lsn);
1da177e4 3658
93848a99
CH
3659 /*
3660 * Attach the function xfs_iflush_done to the inode's
3661 * buffer. This will remove the inode from the AIL
3662 * and unlock the inode's flush lock when the inode is
3663 * completely written to disk.
3664 */
3665 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3666
93848a99
CH
3667 /* generate the checksum. */
3668 xfs_dinode_calc_crc(mp, dip);
1da177e4 3669
643c8c05 3670 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3671 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3672 return 0;
3673
3674corrupt_out:
2451337d 3675 return -EFSCORRUPTED;
1da177e4 3676}