[XFS] Clean up use of VFS attr flags
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
1da177e4 18#include "xfs.h"
a844f451 19#include "xfs_fs.h"
1da177e4 20#include "xfs_types.h"
a844f451 21#include "xfs_bit.h"
1da177e4 22#include "xfs_log.h"
a844f451
NS
23#include "xfs_inum.h"
24#include "xfs_imap.h"
1da177e4
LT
25#include "xfs_trans.h"
26#include "xfs_trans_priv.h"
27#include "xfs_sb.h"
28#include "xfs_ag.h"
1da177e4
LT
29#include "xfs_dir2.h"
30#include "xfs_dmapi.h"
31#include "xfs_mount.h"
1da177e4 32#include "xfs_bmap_btree.h"
a844f451 33#include "xfs_alloc_btree.h"
1da177e4 34#include "xfs_ialloc_btree.h"
1da177e4 35#include "xfs_dir2_sf.h"
a844f451 36#include "xfs_attr_sf.h"
1da177e4 37#include "xfs_dinode.h"
1da177e4 38#include "xfs_inode.h"
1da177e4 39#include "xfs_buf_item.h"
a844f451
NS
40#include "xfs_inode_item.h"
41#include "xfs_btree.h"
42#include "xfs_alloc.h"
43#include "xfs_ialloc.h"
44#include "xfs_bmap.h"
1da177e4
LT
45#include "xfs_rw.h"
46#include "xfs_error.h"
1da177e4
LT
47#include "xfs_utils.h"
48#include "xfs_dir2_trace.h"
49#include "xfs_quota.h"
50#include "xfs_mac.h"
51#include "xfs_acl.h"
52
53
54kmem_zone_t *xfs_ifork_zone;
55kmem_zone_t *xfs_inode_zone;
56kmem_zone_t *xfs_chashlist_zone;
57
58/*
59 * Used in xfs_itruncate(). This is the maximum number of extents
60 * freed from a file in a single transaction.
61 */
62#define XFS_ITRUNC_MAX_EXTENTS 2
63
64STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
65STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
66STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
67STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
68
69
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
4eea22f0 77 xfs_ifork_t *ifp,
1da177e4
LT
78 int nrecs,
79 int disk,
80 xfs_exntfmt_t fmt)
81{
4eea22f0 82 xfs_bmbt_rec_t *ep;
1da177e4
LT
83 xfs_bmbt_irec_t irec;
84 xfs_bmbt_rec_t rec;
85 int i;
86
87 for (i = 0; i < nrecs; i++) {
4eea22f0 88 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
89 rec.l0 = get_unaligned((__uint64_t*)&ep->l0);
90 rec.l1 = get_unaligned((__uint64_t*)&ep->l1);
91 if (disk)
92 xfs_bmbt_disk_get_all(&rec, &irec);
93 else
94 xfs_bmbt_get_all(&rec, &irec);
95 if (fmt == XFS_EXTFMT_NOSTATE)
96 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
97 }
98}
99#else /* DEBUG */
4eea22f0 100#define xfs_validate_extents(ifp, nrecs, disk, fmt)
1da177e4
LT
101#endif /* DEBUG */
102
103/*
104 * Check that none of the inode's in the buffer have a next
105 * unlinked field of 0.
106 */
107#if defined(DEBUG)
108void
109xfs_inobp_check(
110 xfs_mount_t *mp,
111 xfs_buf_t *bp)
112{
113 int i;
114 int j;
115 xfs_dinode_t *dip;
116
117 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
118
119 for (i = 0; i < j; i++) {
120 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
121 i * mp->m_sb.sb_inodesize);
122 if (!dip->di_next_unlinked) {
123 xfs_fs_cmn_err(CE_ALERT, mp,
124 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
125 bp);
126 ASSERT(dip->di_next_unlinked);
127 }
128 }
129}
130#endif
131
1da177e4
LT
132/*
133 * This routine is called to map an inode number within a file
134 * system to the buffer containing the on-disk version of the
135 * inode. It returns a pointer to the buffer containing the
136 * on-disk inode in the bpp parameter, and in the dip parameter
137 * it returns a pointer to the on-disk inode within that buffer.
138 *
139 * If a non-zero error is returned, then the contents of bpp and
140 * dipp are undefined.
141 *
142 * Use xfs_imap() to determine the size and location of the
143 * buffer to read from disk.
144 */
ba0f32d4 145STATIC int
1da177e4
LT
146xfs_inotobp(
147 xfs_mount_t *mp,
148 xfs_trans_t *tp,
149 xfs_ino_t ino,
150 xfs_dinode_t **dipp,
151 xfs_buf_t **bpp,
152 int *offset)
153{
154 int di_ok;
155 xfs_imap_t imap;
156 xfs_buf_t *bp;
157 int error;
158 xfs_dinode_t *dip;
159
160 /*
c41564b5 161 * Call the space management code to find the location of the
1da177e4
LT
162 * inode on disk.
163 */
164 imap.im_blkno = 0;
165 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
166 if (error != 0) {
167 cmn_err(CE_WARN,
168 "xfs_inotobp: xfs_imap() returned an "
169 "error %d on %s. Returning error.", error, mp->m_fsname);
170 return error;
171 }
172
173 /*
174 * If the inode number maps to a block outside the bounds of the
175 * file system then return NULL rather than calling read_buf
176 * and panicing when we get an error from the driver.
177 */
178 if ((imap.im_blkno + imap.im_len) >
179 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
180 cmn_err(CE_WARN,
da1650a5 181 "xfs_inotobp: inode number (%llu + %d) maps to a block outside the bounds "
1da177e4 182 "of the file system %s. Returning EINVAL.",
da1650a5
CH
183 (unsigned long long)imap.im_blkno,
184 imap.im_len, mp->m_fsname);
1da177e4
LT
185 return XFS_ERROR(EINVAL);
186 }
187
188 /*
189 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
190 * default to just a read_buf() call.
191 */
192 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
193 (int)imap.im_len, XFS_BUF_LOCK, &bp);
194
195 if (error) {
196 cmn_err(CE_WARN,
197 "xfs_inotobp: xfs_trans_read_buf() returned an "
198 "error %d on %s. Returning error.", error, mp->m_fsname);
199 return error;
200 }
201 dip = (xfs_dinode_t *)xfs_buf_offset(bp, 0);
202 di_ok =
203 INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
204 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
205 if (unlikely(XFS_TEST_ERROR(!di_ok, mp, XFS_ERRTAG_ITOBP_INOTOBP,
206 XFS_RANDOM_ITOBP_INOTOBP))) {
207 XFS_CORRUPTION_ERROR("xfs_inotobp", XFS_ERRLEVEL_LOW, mp, dip);
208 xfs_trans_brelse(tp, bp);
209 cmn_err(CE_WARN,
210 "xfs_inotobp: XFS_TEST_ERROR() returned an "
211 "error on %s. Returning EFSCORRUPTED.", mp->m_fsname);
212 return XFS_ERROR(EFSCORRUPTED);
213 }
214
215 xfs_inobp_check(mp, bp);
216
217 /*
218 * Set *dipp to point to the on-disk inode in the buffer.
219 */
220 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
221 *bpp = bp;
222 *offset = imap.im_boffset;
223 return 0;
224}
225
226
227/*
228 * This routine is called to map an inode to the buffer containing
229 * the on-disk version of the inode. It returns a pointer to the
230 * buffer containing the on-disk inode in the bpp parameter, and in
231 * the dip parameter it returns a pointer to the on-disk inode within
232 * that buffer.
233 *
234 * If a non-zero error is returned, then the contents of bpp and
235 * dipp are undefined.
236 *
237 * If the inode is new and has not yet been initialized, use xfs_imap()
238 * to determine the size and location of the buffer to read from disk.
239 * If the inode has already been mapped to its buffer and read in once,
240 * then use the mapping information stored in the inode rather than
241 * calling xfs_imap(). This allows us to avoid the overhead of looking
242 * at the inode btree for small block file systems (see xfs_dilocate()).
243 * We can tell whether the inode has been mapped in before by comparing
244 * its disk block address to 0. Only uninitialized inodes will have
245 * 0 for the disk block address.
246 */
247int
248xfs_itobp(
249 xfs_mount_t *mp,
250 xfs_trans_t *tp,
251 xfs_inode_t *ip,
252 xfs_dinode_t **dipp,
253 xfs_buf_t **bpp,
b12dd342
NS
254 xfs_daddr_t bno,
255 uint imap_flags)
1da177e4 256{
4d1a2ed3 257 xfs_imap_t imap;
1da177e4
LT
258 xfs_buf_t *bp;
259 int error;
1da177e4
LT
260 int i;
261 int ni;
1da177e4
LT
262
263 if (ip->i_blkno == (xfs_daddr_t)0) {
264 /*
265 * Call the space management code to find the location of the
266 * inode on disk.
267 */
268 imap.im_blkno = bno;
b12dd342
NS
269 if ((error = xfs_imap(mp, tp, ip->i_ino, &imap,
270 XFS_IMAP_LOOKUP | imap_flags)))
1da177e4 271 return error;
1da177e4
LT
272
273 /*
274 * If the inode number maps to a block outside the bounds
275 * of the file system then return NULL rather than calling
276 * read_buf and panicing when we get an error from the
277 * driver.
278 */
279 if ((imap.im_blkno + imap.im_len) >
280 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
281#ifdef DEBUG
282 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
283 "(imap.im_blkno (0x%llx) "
284 "+ imap.im_len (0x%llx)) > "
285 " XFS_FSB_TO_BB(mp, "
286 "mp->m_sb.sb_dblocks) (0x%llx)",
287 (unsigned long long) imap.im_blkno,
288 (unsigned long long) imap.im_len,
289 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
290#endif /* DEBUG */
291 return XFS_ERROR(EINVAL);
292 }
293
294 /*
295 * Fill in the fields in the inode that will be used to
296 * map the inode to its buffer from now on.
297 */
298 ip->i_blkno = imap.im_blkno;
299 ip->i_len = imap.im_len;
300 ip->i_boffset = imap.im_boffset;
301 } else {
302 /*
303 * We've already mapped the inode once, so just use the
304 * mapping that we saved the first time.
305 */
306 imap.im_blkno = ip->i_blkno;
307 imap.im_len = ip->i_len;
308 imap.im_boffset = ip->i_boffset;
309 }
310 ASSERT(bno == 0 || bno == imap.im_blkno);
311
312 /*
313 * Read in the buffer. If tp is NULL, xfs_trans_read_buf() will
314 * default to just a read_buf() call.
315 */
316 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap.im_blkno,
317 (int)imap.im_len, XFS_BUF_LOCK, &bp);
1da177e4
LT
318 if (error) {
319#ifdef DEBUG
320 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_itobp: "
321 "xfs_trans_read_buf() returned error %d, "
322 "imap.im_blkno 0x%llx, imap.im_len 0x%llx",
323 error, (unsigned long long) imap.im_blkno,
324 (unsigned long long) imap.im_len);
325#endif /* DEBUG */
326 return error;
327 }
4d1a2ed3 328
1da177e4
LT
329 /*
330 * Validate the magic number and version of every inode in the buffer
331 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
4d1a2ed3 332 * No validation is done here in userspace (xfs_repair).
1da177e4 333 */
4d1a2ed3
NS
334#if !defined(__KERNEL__)
335 ni = 0;
336#elif defined(DEBUG)
41ff715a 337 ni = BBTOB(imap.im_len) >> mp->m_sb.sb_inodelog;
4d1a2ed3 338#else /* usual case */
41ff715a 339 ni = 1;
1da177e4 340#endif
4d1a2ed3 341
1da177e4
LT
342 for (i = 0; i < ni; i++) {
343 int di_ok;
344 xfs_dinode_t *dip;
345
346 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
347 (i << mp->m_sb.sb_inodelog));
348 di_ok = INT_GET(dip->di_core.di_magic, ARCH_CONVERT) == XFS_DINODE_MAGIC &&
349 XFS_DINODE_GOOD_VERSION(INT_GET(dip->di_core.di_version, ARCH_CONVERT));
41ff715a
NS
350 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
351 XFS_ERRTAG_ITOBP_INOTOBP,
352 XFS_RANDOM_ITOBP_INOTOBP))) {
353 if (imap_flags & XFS_IMAP_BULKSTAT) {
354 xfs_trans_brelse(tp, bp);
355 return XFS_ERROR(EINVAL);
356 }
1da177e4 357#ifdef DEBUG
41ff715a 358 cmn_err(CE_ALERT,
4d1a2ed3
NS
359 "Device %s - bad inode magic/vsn "
360 "daddr %lld #%d (magic=%x)",
b6574520 361 XFS_BUFTARG_NAME(mp->m_ddev_targp),
1da177e4
LT
362 (unsigned long long)imap.im_blkno, i,
363 INT_GET(dip->di_core.di_magic, ARCH_CONVERT));
364#endif
365 XFS_CORRUPTION_ERROR("xfs_itobp", XFS_ERRLEVEL_HIGH,
366 mp, dip);
367 xfs_trans_brelse(tp, bp);
368 return XFS_ERROR(EFSCORRUPTED);
369 }
370 }
1da177e4
LT
371
372 xfs_inobp_check(mp, bp);
373
374 /*
375 * Mark the buffer as an inode buffer now that it looks good
376 */
377 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
378
379 /*
380 * Set *dipp to point to the on-disk inode in the buffer.
381 */
382 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
383 *bpp = bp;
384 return 0;
385}
386
387/*
388 * Move inode type and inode format specific information from the
389 * on-disk inode to the in-core inode. For fifos, devs, and sockets
390 * this means set if_rdev to the proper value. For files, directories,
391 * and symlinks this means to bring in the in-line data or extent
392 * pointers. For a file in B-tree format, only the root is immediately
393 * brought in-core. The rest will be in-lined in if_extents when it
394 * is first referenced (see xfs_iread_extents()).
395 */
396STATIC int
397xfs_iformat(
398 xfs_inode_t *ip,
399 xfs_dinode_t *dip)
400{
401 xfs_attr_shortform_t *atp;
402 int size;
403 int error;
404 xfs_fsize_t di_size;
405 ip->i_df.if_ext_max =
406 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
407 error = 0;
408
409 if (unlikely(
410 INT_GET(dip->di_core.di_nextents, ARCH_CONVERT) +
411 INT_GET(dip->di_core.di_anextents, ARCH_CONVERT) >
412 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT))) {
3762ec6b
NS
413 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
414 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4
LT
415 (unsigned long long)ip->i_ino,
416 (int)(INT_GET(dip->di_core.di_nextents, ARCH_CONVERT)
417 + INT_GET(dip->di_core.di_anextents, ARCH_CONVERT)),
418 (unsigned long long)
419 INT_GET(dip->di_core.di_nblocks, ARCH_CONVERT));
420 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
421 ip->i_mount, dip);
422 return XFS_ERROR(EFSCORRUPTED);
423 }
424
425 if (unlikely(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT) > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
426 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
427 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4
LT
428 (unsigned long long)ip->i_ino,
429 (int)(INT_GET(dip->di_core.di_forkoff, ARCH_CONVERT)));
430 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
431 ip->i_mount, dip);
432 return XFS_ERROR(EFSCORRUPTED);
433 }
434
435 switch (ip->i_d.di_mode & S_IFMT) {
436 case S_IFIFO:
437 case S_IFCHR:
438 case S_IFBLK:
439 case S_IFSOCK:
440 if (unlikely(INT_GET(dip->di_core.di_format, ARCH_CONVERT) != XFS_DINODE_FMT_DEV)) {
441 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
442 ip->i_mount, dip);
443 return XFS_ERROR(EFSCORRUPTED);
444 }
445 ip->i_d.di_size = 0;
446 ip->i_df.if_u2.if_rdev = INT_GET(dip->di_u.di_dev, ARCH_CONVERT);
447 break;
448
449 case S_IFREG:
450 case S_IFLNK:
451 case S_IFDIR:
452 switch (INT_GET(dip->di_core.di_format, ARCH_CONVERT)) {
453 case XFS_DINODE_FMT_LOCAL:
454 /*
455 * no local regular files yet
456 */
457 if (unlikely((INT_GET(dip->di_core.di_mode, ARCH_CONVERT) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
458 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
459 "corrupt inode %Lu "
460 "(local format for regular file).",
1da177e4
LT
461 (unsigned long long) ip->i_ino);
462 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
463 XFS_ERRLEVEL_LOW,
464 ip->i_mount, dip);
465 return XFS_ERROR(EFSCORRUPTED);
466 }
467
468 di_size = INT_GET(dip->di_core.di_size, ARCH_CONVERT);
469 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
470 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
471 "corrupt inode %Lu "
472 "(bad size %Ld for local inode).",
1da177e4
LT
473 (unsigned long long) ip->i_ino,
474 (long long) di_size);
475 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
476 XFS_ERRLEVEL_LOW,
477 ip->i_mount, dip);
478 return XFS_ERROR(EFSCORRUPTED);
479 }
480
481 size = (int)di_size;
482 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
483 break;
484 case XFS_DINODE_FMT_EXTENTS:
485 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
486 break;
487 case XFS_DINODE_FMT_BTREE:
488 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
489 break;
490 default:
491 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
492 ip->i_mount);
493 return XFS_ERROR(EFSCORRUPTED);
494 }
495 break;
496
497 default:
498 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
499 return XFS_ERROR(EFSCORRUPTED);
500 }
501 if (error) {
502 return error;
503 }
504 if (!XFS_DFORK_Q(dip))
505 return 0;
506 ASSERT(ip->i_afp == NULL);
507 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
508 ip->i_afp->if_ext_max =
509 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
510 switch (INT_GET(dip->di_core.di_aformat, ARCH_CONVERT)) {
511 case XFS_DINODE_FMT_LOCAL:
512 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 513 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
514 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
515 break;
516 case XFS_DINODE_FMT_EXTENTS:
517 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
518 break;
519 case XFS_DINODE_FMT_BTREE:
520 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
521 break;
522 default:
523 error = XFS_ERROR(EFSCORRUPTED);
524 break;
525 }
526 if (error) {
527 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
528 ip->i_afp = NULL;
529 xfs_idestroy_fork(ip, XFS_DATA_FORK);
530 }
531 return error;
532}
533
534/*
535 * The file is in-lined in the on-disk inode.
536 * If it fits into if_inline_data, then copy
537 * it there, otherwise allocate a buffer for it
538 * and copy the data there. Either way, set
539 * if_data to point at the data.
540 * If we allocate a buffer for the data, make
541 * sure that its size is a multiple of 4 and
542 * record the real size in i_real_bytes.
543 */
544STATIC int
545xfs_iformat_local(
546 xfs_inode_t *ip,
547 xfs_dinode_t *dip,
548 int whichfork,
549 int size)
550{
551 xfs_ifork_t *ifp;
552 int real_size;
553
554 /*
555 * If the size is unreasonable, then something
556 * is wrong and we just bail out rather than crash in
557 * kmem_alloc() or memcpy() below.
558 */
559 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
560 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
561 "corrupt inode %Lu "
562 "(bad size %d for local fork, size = %d).",
1da177e4
LT
563 (unsigned long long) ip->i_ino, size,
564 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
565 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
566 ip->i_mount, dip);
567 return XFS_ERROR(EFSCORRUPTED);
568 }
569 ifp = XFS_IFORK_PTR(ip, whichfork);
570 real_size = 0;
571 if (size == 0)
572 ifp->if_u1.if_data = NULL;
573 else if (size <= sizeof(ifp->if_u2.if_inline_data))
574 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
575 else {
576 real_size = roundup(size, 4);
577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
578 }
579 ifp->if_bytes = size;
580 ifp->if_real_bytes = real_size;
581 if (size)
582 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
583 ifp->if_flags &= ~XFS_IFEXTENTS;
584 ifp->if_flags |= XFS_IFINLINE;
585 return 0;
586}
587
588/*
589 * The file consists of a set of extents all
590 * of which fit into the on-disk inode.
591 * If there are few enough extents to fit into
592 * the if_inline_ext, then copy them there.
593 * Otherwise allocate a buffer for them and copy
594 * them into it. Either way, set if_extents
595 * to point at the extents.
596 */
597STATIC int
598xfs_iformat_extents(
599 xfs_inode_t *ip,
600 xfs_dinode_t *dip,
601 int whichfork)
602{
603 xfs_bmbt_rec_t *ep, *dp;
604 xfs_ifork_t *ifp;
605 int nex;
1da177e4
LT
606 int size;
607 int i;
608
609 ifp = XFS_IFORK_PTR(ip, whichfork);
610 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
611 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
612
613 /*
614 * If the number of extents is unreasonable, then something
615 * is wrong and we just bail out rather than crash in
616 * kmem_alloc() or memcpy() below.
617 */
618 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
619 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
620 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
621 (unsigned long long) ip->i_ino, nex);
622 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
623 ip->i_mount, dip);
624 return XFS_ERROR(EFSCORRUPTED);
625 }
626
4eea22f0 627 ifp->if_real_bytes = 0;
1da177e4
LT
628 if (nex == 0)
629 ifp->if_u1.if_extents = NULL;
630 else if (nex <= XFS_INLINE_EXTS)
631 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
632 else
633 xfs_iext_add(ifp, 0, nex);
634
1da177e4 635 ifp->if_bytes = size;
1da177e4
LT
636 if (size) {
637 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
4eea22f0
MK
638 xfs_validate_extents(ifp, nex, 1, XFS_EXTFMT_INODE(ip));
639 for (i = 0; i < nex; i++, dp++) {
640 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
641 ep->l0 = INT_GET(get_unaligned((__uint64_t*)&dp->l0),
642 ARCH_CONVERT);
643 ep->l1 = INT_GET(get_unaligned((__uint64_t*)&dp->l1),
644 ARCH_CONVERT);
645 }
646 xfs_bmap_trace_exlist("xfs_iformat_extents", ip, nex,
647 whichfork);
648 if (whichfork != XFS_DATA_FORK ||
649 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
650 if (unlikely(xfs_check_nostate_extents(
4eea22f0 651 ifp, 0, nex))) {
1da177e4
LT
652 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
653 XFS_ERRLEVEL_LOW,
654 ip->i_mount);
655 return XFS_ERROR(EFSCORRUPTED);
656 }
657 }
658 ifp->if_flags |= XFS_IFEXTENTS;
659 return 0;
660}
661
662/*
663 * The file has too many extents to fit into
664 * the inode, so they are in B-tree format.
665 * Allocate a buffer for the root of the B-tree
666 * and copy the root into it. The i_extents
667 * field will remain NULL until all of the
668 * extents are read in (when they are needed).
669 */
670STATIC int
671xfs_iformat_btree(
672 xfs_inode_t *ip,
673 xfs_dinode_t *dip,
674 int whichfork)
675{
676 xfs_bmdr_block_t *dfp;
677 xfs_ifork_t *ifp;
678 /* REFERENCED */
679 int nrecs;
680 int size;
681
682 ifp = XFS_IFORK_PTR(ip, whichfork);
683 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
684 size = XFS_BMAP_BROOT_SPACE(dfp);
685 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
686
687 /*
688 * blow out if -- fork has less extents than can fit in
689 * fork (fork shouldn't be a btree format), root btree
690 * block has more records than can fit into the fork,
691 * or the number of extents is greater than the number of
692 * blocks.
693 */
694 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
695 || XFS_BMDR_SPACE_CALC(nrecs) >
696 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
697 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
698 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
699 "corrupt inode %Lu (btree).",
1da177e4
LT
700 (unsigned long long) ip->i_ino);
701 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
702 ip->i_mount);
703 return XFS_ERROR(EFSCORRUPTED);
704 }
705
706 ifp->if_broot_bytes = size;
707 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
708 ASSERT(ifp->if_broot != NULL);
709 /*
710 * Copy and convert from the on-disk structure
711 * to the in-memory structure.
712 */
713 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
714 ifp->if_broot, size);
715 ifp->if_flags &= ~XFS_IFEXTENTS;
716 ifp->if_flags |= XFS_IFBROOT;
717
718 return 0;
719}
720
721/*
722 * xfs_xlate_dinode_core - translate an xfs_inode_core_t between ondisk
723 * and native format
724 *
725 * buf = on-disk representation
726 * dip = native representation
727 * dir = direction - +ve -> disk to native
728 * -ve -> native to disk
729 */
730void
731xfs_xlate_dinode_core(
732 xfs_caddr_t buf,
733 xfs_dinode_core_t *dip,
734 int dir)
735{
736 xfs_dinode_core_t *buf_core = (xfs_dinode_core_t *)buf;
737 xfs_dinode_core_t *mem_core = (xfs_dinode_core_t *)dip;
738 xfs_arch_t arch = ARCH_CONVERT;
739
740 ASSERT(dir);
741
742 INT_XLATE(buf_core->di_magic, mem_core->di_magic, dir, arch);
743 INT_XLATE(buf_core->di_mode, mem_core->di_mode, dir, arch);
744 INT_XLATE(buf_core->di_version, mem_core->di_version, dir, arch);
745 INT_XLATE(buf_core->di_format, mem_core->di_format, dir, arch);
746 INT_XLATE(buf_core->di_onlink, mem_core->di_onlink, dir, arch);
747 INT_XLATE(buf_core->di_uid, mem_core->di_uid, dir, arch);
748 INT_XLATE(buf_core->di_gid, mem_core->di_gid, dir, arch);
749 INT_XLATE(buf_core->di_nlink, mem_core->di_nlink, dir, arch);
750 INT_XLATE(buf_core->di_projid, mem_core->di_projid, dir, arch);
751
752 if (dir > 0) {
753 memcpy(mem_core->di_pad, buf_core->di_pad,
754 sizeof(buf_core->di_pad));
755 } else {
756 memcpy(buf_core->di_pad, mem_core->di_pad,
757 sizeof(buf_core->di_pad));
758 }
759
760 INT_XLATE(buf_core->di_flushiter, mem_core->di_flushiter, dir, arch);
761
762 INT_XLATE(buf_core->di_atime.t_sec, mem_core->di_atime.t_sec,
763 dir, arch);
764 INT_XLATE(buf_core->di_atime.t_nsec, mem_core->di_atime.t_nsec,
765 dir, arch);
766 INT_XLATE(buf_core->di_mtime.t_sec, mem_core->di_mtime.t_sec,
767 dir, arch);
768 INT_XLATE(buf_core->di_mtime.t_nsec, mem_core->di_mtime.t_nsec,
769 dir, arch);
770 INT_XLATE(buf_core->di_ctime.t_sec, mem_core->di_ctime.t_sec,
771 dir, arch);
772 INT_XLATE(buf_core->di_ctime.t_nsec, mem_core->di_ctime.t_nsec,
773 dir, arch);
774 INT_XLATE(buf_core->di_size, mem_core->di_size, dir, arch);
775 INT_XLATE(buf_core->di_nblocks, mem_core->di_nblocks, dir, arch);
776 INT_XLATE(buf_core->di_extsize, mem_core->di_extsize, dir, arch);
777 INT_XLATE(buf_core->di_nextents, mem_core->di_nextents, dir, arch);
778 INT_XLATE(buf_core->di_anextents, mem_core->di_anextents, dir, arch);
779 INT_XLATE(buf_core->di_forkoff, mem_core->di_forkoff, dir, arch);
780 INT_XLATE(buf_core->di_aformat, mem_core->di_aformat, dir, arch);
781 INT_XLATE(buf_core->di_dmevmask, mem_core->di_dmevmask, dir, arch);
782 INT_XLATE(buf_core->di_dmstate, mem_core->di_dmstate, dir, arch);
783 INT_XLATE(buf_core->di_flags, mem_core->di_flags, dir, arch);
784 INT_XLATE(buf_core->di_gen, mem_core->di_gen, dir, arch);
785}
786
787STATIC uint
788_xfs_dic2xflags(
1da177e4
LT
789 __uint16_t di_flags)
790{
791 uint flags = 0;
792
793 if (di_flags & XFS_DIFLAG_ANY) {
794 if (di_flags & XFS_DIFLAG_REALTIME)
795 flags |= XFS_XFLAG_REALTIME;
796 if (di_flags & XFS_DIFLAG_PREALLOC)
797 flags |= XFS_XFLAG_PREALLOC;
798 if (di_flags & XFS_DIFLAG_IMMUTABLE)
799 flags |= XFS_XFLAG_IMMUTABLE;
800 if (di_flags & XFS_DIFLAG_APPEND)
801 flags |= XFS_XFLAG_APPEND;
802 if (di_flags & XFS_DIFLAG_SYNC)
803 flags |= XFS_XFLAG_SYNC;
804 if (di_flags & XFS_DIFLAG_NOATIME)
805 flags |= XFS_XFLAG_NOATIME;
806 if (di_flags & XFS_DIFLAG_NODUMP)
807 flags |= XFS_XFLAG_NODUMP;
808 if (di_flags & XFS_DIFLAG_RTINHERIT)
809 flags |= XFS_XFLAG_RTINHERIT;
810 if (di_flags & XFS_DIFLAG_PROJINHERIT)
811 flags |= XFS_XFLAG_PROJINHERIT;
812 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
813 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
814 if (di_flags & XFS_DIFLAG_EXTSIZE)
815 flags |= XFS_XFLAG_EXTSIZE;
816 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
817 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
818 if (di_flags & XFS_DIFLAG_NODEFRAG)
819 flags |= XFS_XFLAG_NODEFRAG;
1da177e4
LT
820 }
821
822 return flags;
823}
824
825uint
826xfs_ip2xflags(
827 xfs_inode_t *ip)
828{
829 xfs_dinode_core_t *dic = &ip->i_d;
830
a916e2bd
NS
831 return _xfs_dic2xflags(dic->di_flags) |
832 (XFS_CFORK_Q(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
833}
834
835uint
836xfs_dic2xflags(
837 xfs_dinode_core_t *dic)
838{
a916e2bd
NS
839 return _xfs_dic2xflags(INT_GET(dic->di_flags, ARCH_CONVERT)) |
840 (XFS_CFORK_Q_DISK(dic) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
841}
842
843/*
844 * Given a mount structure and an inode number, return a pointer
c41564b5 845 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
846 * inode number.
847 *
848 * Initialize the inode's attributes and extent pointers if it
849 * already has them (it will not if the inode has no links).
850 */
851int
852xfs_iread(
853 xfs_mount_t *mp,
854 xfs_trans_t *tp,
855 xfs_ino_t ino,
856 xfs_inode_t **ipp,
745b1f47
NS
857 xfs_daddr_t bno,
858 uint imap_flags)
1da177e4
LT
859{
860 xfs_buf_t *bp;
861 xfs_dinode_t *dip;
862 xfs_inode_t *ip;
863 int error;
864
865 ASSERT(xfs_inode_zone != NULL);
866
867 ip = kmem_zone_zalloc(xfs_inode_zone, KM_SLEEP);
868 ip->i_ino = ino;
869 ip->i_mount = mp;
f273ab84 870 spin_lock_init(&ip->i_flags_lock);
1da177e4
LT
871
872 /*
873 * Get pointer's to the on-disk inode and the buffer containing it.
874 * If the inode number refers to a block outside the file system
875 * then xfs_itobp() will return NULL. In this case we should
876 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
877 * know that this is a new incore inode.
878 */
745b1f47 879 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags);
b12dd342 880 if (error) {
1da177e4
LT
881 kmem_zone_free(xfs_inode_zone, ip);
882 return error;
883 }
884
885 /*
886 * Initialize inode's trace buffers.
887 * Do this before xfs_iformat in case it adds entries.
888 */
889#ifdef XFS_BMAP_TRACE
890 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_SLEEP);
891#endif
892#ifdef XFS_BMBT_TRACE
893 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_SLEEP);
894#endif
895#ifdef XFS_RW_TRACE
896 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_SLEEP);
897#endif
898#ifdef XFS_ILOCK_TRACE
899 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_SLEEP);
900#endif
901#ifdef XFS_DIR2_TRACE
902 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_SLEEP);
903#endif
904
905 /*
906 * If we got something that isn't an inode it means someone
907 * (nfs or dmi) has a stale handle.
908 */
909 if (INT_GET(dip->di_core.di_magic, ARCH_CONVERT) != XFS_DINODE_MAGIC) {
910 kmem_zone_free(xfs_inode_zone, ip);
911 xfs_trans_brelse(tp, bp);
912#ifdef DEBUG
913 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
914 "dip->di_core.di_magic (0x%x) != "
915 "XFS_DINODE_MAGIC (0x%x)",
916 INT_GET(dip->di_core.di_magic, ARCH_CONVERT),
917 XFS_DINODE_MAGIC);
918#endif /* DEBUG */
919 return XFS_ERROR(EINVAL);
920 }
921
922 /*
923 * If the on-disk inode is already linked to a directory
924 * entry, copy all of the inode into the in-core inode.
925 * xfs_iformat() handles copying in the inode format
926 * specific information.
927 * Otherwise, just get the truly permanent information.
928 */
929 if (dip->di_core.di_mode) {
930 xfs_xlate_dinode_core((xfs_caddr_t)&dip->di_core,
931 &(ip->i_d), 1);
932 error = xfs_iformat(ip, dip);
933 if (error) {
934 kmem_zone_free(xfs_inode_zone, ip);
935 xfs_trans_brelse(tp, bp);
936#ifdef DEBUG
937 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
938 "xfs_iformat() returned error %d",
939 error);
940#endif /* DEBUG */
941 return error;
942 }
943 } else {
944 ip->i_d.di_magic = INT_GET(dip->di_core.di_magic, ARCH_CONVERT);
945 ip->i_d.di_version = INT_GET(dip->di_core.di_version, ARCH_CONVERT);
946 ip->i_d.di_gen = INT_GET(dip->di_core.di_gen, ARCH_CONVERT);
947 ip->i_d.di_flushiter = INT_GET(dip->di_core.di_flushiter, ARCH_CONVERT);
948 /*
949 * Make sure to pull in the mode here as well in
950 * case the inode is released without being used.
951 * This ensures that xfs_inactive() will see that
952 * the inode is already free and not try to mess
953 * with the uninitialized part of it.
954 */
955 ip->i_d.di_mode = 0;
956 /*
957 * Initialize the per-fork minima and maxima for a new
958 * inode here. xfs_iformat will do it for old inodes.
959 */
960 ip->i_df.if_ext_max =
961 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
962 }
963
964 INIT_LIST_HEAD(&ip->i_reclaim);
965
966 /*
967 * The inode format changed when we moved the link count and
968 * made it 32 bits long. If this is an old format inode,
969 * convert it in memory to look like a new one. If it gets
970 * flushed to disk we will convert back before flushing or
971 * logging it. We zero out the new projid field and the old link
972 * count field. We'll handle clearing the pad field (the remains
973 * of the old uuid field) when we actually convert the inode to
974 * the new format. We don't change the version number so that we
975 * can distinguish this from a real new format inode.
976 */
977 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
978 ip->i_d.di_nlink = ip->i_d.di_onlink;
979 ip->i_d.di_onlink = 0;
980 ip->i_d.di_projid = 0;
981 }
982
983 ip->i_delayed_blks = 0;
984
985 /*
986 * Mark the buffer containing the inode as something to keep
987 * around for a while. This helps to keep recently accessed
988 * meta-data in-core longer.
989 */
990 XFS_BUF_SET_REF(bp, XFS_INO_REF);
991
992 /*
993 * Use xfs_trans_brelse() to release the buffer containing the
994 * on-disk inode, because it was acquired with xfs_trans_read_buf()
995 * in xfs_itobp() above. If tp is NULL, this is just a normal
996 * brelse(). If we're within a transaction, then xfs_trans_brelse()
997 * will only release the buffer if it is not dirty within the
998 * transaction. It will be OK to release the buffer in this case,
999 * because inodes on disk are never destroyed and we will be
1000 * locking the new in-core inode before putting it in the hash
1001 * table where other processes can find it. Thus we don't have
1002 * to worry about the inode being changed just because we released
1003 * the buffer.
1004 */
1005 xfs_trans_brelse(tp, bp);
1006 *ipp = ip;
1007 return 0;
1008}
1009
1010/*
1011 * Read in extents from a btree-format inode.
1012 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
1013 */
1014int
1015xfs_iread_extents(
1016 xfs_trans_t *tp,
1017 xfs_inode_t *ip,
1018 int whichfork)
1019{
1020 int error;
1021 xfs_ifork_t *ifp;
4eea22f0 1022 xfs_extnum_t nextents;
1da177e4
LT
1023 size_t size;
1024
1025 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1026 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1027 ip->i_mount);
1028 return XFS_ERROR(EFSCORRUPTED);
1029 }
4eea22f0
MK
1030 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1031 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1032 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1033
1da177e4
LT
1034 /*
1035 * We know that the size is valid (it's checked in iformat_btree)
1036 */
1da177e4 1037 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1038 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1039 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1040 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1041 error = xfs_bmap_read_extents(tp, ip, whichfork);
1042 if (error) {
4eea22f0 1043 xfs_iext_destroy(ifp);
1da177e4
LT
1044 ifp->if_flags &= ~XFS_IFEXTENTS;
1045 return error;
1046 }
4eea22f0 1047 xfs_validate_extents(ifp, nextents, 0, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1048 return 0;
1049}
1050
1051/*
1052 * Allocate an inode on disk and return a copy of its in-core version.
1053 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1054 * appropriately within the inode. The uid and gid for the inode are
1055 * set according to the contents of the given cred structure.
1056 *
1057 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1058 * has a free inode available, call xfs_iget()
1059 * to obtain the in-core version of the allocated inode. Finally,
1060 * fill in the inode and log its initial contents. In this case,
1061 * ialloc_context would be set to NULL and call_again set to false.
1062 *
1063 * If xfs_dialloc() does not have an available inode,
1064 * it will replenish its supply by doing an allocation. Since we can
1065 * only do one allocation within a transaction without deadlocks, we
1066 * must commit the current transaction before returning the inode itself.
1067 * In this case, therefore, we will set call_again to true and return.
1068 * The caller should then commit the current transaction, start a new
1069 * transaction, and call xfs_ialloc() again to actually get the inode.
1070 *
1071 * To ensure that some other process does not grab the inode that
1072 * was allocated during the first call to xfs_ialloc(), this routine
1073 * also returns the [locked] bp pointing to the head of the freelist
1074 * as ialloc_context. The caller should hold this buffer across
1075 * the commit and pass it back into this routine on the second call.
1076 */
1077int
1078xfs_ialloc(
1079 xfs_trans_t *tp,
1080 xfs_inode_t *pip,
1081 mode_t mode,
31b084ae 1082 xfs_nlink_t nlink,
1da177e4
LT
1083 xfs_dev_t rdev,
1084 cred_t *cr,
1085 xfs_prid_t prid,
1086 int okalloc,
1087 xfs_buf_t **ialloc_context,
1088 boolean_t *call_again,
1089 xfs_inode_t **ipp)
1090{
1091 xfs_ino_t ino;
1092 xfs_inode_t *ip;
67fcaa73 1093 bhv_vnode_t *vp;
1da177e4
LT
1094 uint flags;
1095 int error;
1096
1097 /*
1098 * Call the space management code to pick
1099 * the on-disk inode to be allocated.
1100 */
1101 error = xfs_dialloc(tp, pip->i_ino, mode, okalloc,
1102 ialloc_context, call_again, &ino);
1103 if (error != 0) {
1104 return error;
1105 }
1106 if (*call_again || ino == NULLFSINO) {
1107 *ipp = NULL;
1108 return 0;
1109 }
1110 ASSERT(*ialloc_context == NULL);
1111
1112 /*
1113 * Get the in-core inode with the lock held exclusively.
1114 * This is because we're setting fields here we need
1115 * to prevent others from looking at until we're done.
1116 */
1117 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1118 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1119 if (error != 0) {
1120 return error;
1121 }
1122 ASSERT(ip != NULL);
1123
1124 vp = XFS_ITOV(ip);
1da177e4
LT
1125 ip->i_d.di_mode = (__uint16_t)mode;
1126 ip->i_d.di_onlink = 0;
1127 ip->i_d.di_nlink = nlink;
1128 ASSERT(ip->i_d.di_nlink == nlink);
1129 ip->i_d.di_uid = current_fsuid(cr);
1130 ip->i_d.di_gid = current_fsgid(cr);
1131 ip->i_d.di_projid = prid;
1132 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1133
1134 /*
1135 * If the superblock version is up to where we support new format
1136 * inodes and this is currently an old format inode, then change
1137 * the inode version number now. This way we only do the conversion
1138 * here rather than here and in the flush/logging code.
1139 */
1140 if (XFS_SB_VERSION_HASNLINK(&tp->t_mountp->m_sb) &&
1141 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1142 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1143 /*
1144 * We've already zeroed the old link count, the projid field,
1145 * and the pad field.
1146 */
1147 }
1148
1149 /*
1150 * Project ids won't be stored on disk if we are using a version 1 inode.
1151 */
1152 if ( (prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1153 xfs_bump_ino_vers2(tp, ip);
1154
1155 if (XFS_INHERIT_GID(pip, vp->v_vfsp)) {
1156 ip->i_d.di_gid = pip->i_d.di_gid;
1157 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1158 ip->i_d.di_mode |= S_ISGID;
1159 }
1160 }
1161
1162 /*
1163 * If the group ID of the new file does not match the effective group
1164 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1165 * (and only if the irix_sgid_inherit compatibility variable is set).
1166 */
1167 if ((irix_sgid_inherit) &&
1168 (ip->i_d.di_mode & S_ISGID) &&
1169 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1170 ip->i_d.di_mode &= ~S_ISGID;
1171 }
1172
1173 ip->i_d.di_size = 0;
1174 ip->i_d.di_nextents = 0;
1175 ASSERT(ip->i_d.di_nblocks == 0);
1176 xfs_ichgtime(ip, XFS_ICHGTIME_CHG|XFS_ICHGTIME_ACC|XFS_ICHGTIME_MOD);
1177 /*
1178 * di_gen will have been taken care of in xfs_iread.
1179 */
1180 ip->i_d.di_extsize = 0;
1181 ip->i_d.di_dmevmask = 0;
1182 ip->i_d.di_dmstate = 0;
1183 ip->i_d.di_flags = 0;
1184 flags = XFS_ILOG_CORE;
1185 switch (mode & S_IFMT) {
1186 case S_IFIFO:
1187 case S_IFCHR:
1188 case S_IFBLK:
1189 case S_IFSOCK:
1190 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1191 ip->i_df.if_u2.if_rdev = rdev;
1192 ip->i_df.if_flags = 0;
1193 flags |= XFS_ILOG_DEV;
1194 break;
1195 case S_IFREG:
1196 case S_IFDIR:
1197 if (unlikely(pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1198 uint di_flags = 0;
1199
1200 if ((mode & S_IFMT) == S_IFDIR) {
1201 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1202 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1203 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1204 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1205 ip->i_d.di_extsize = pip->i_d.di_extsize;
1206 }
1207 } else if ((mode & S_IFMT) == S_IFREG) {
365ca83d
NS
1208 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT) {
1209 di_flags |= XFS_DIFLAG_REALTIME;
1da177e4
LT
1210 ip->i_iocore.io_flags |= XFS_IOCORE_RT;
1211 }
dd9f438e
NS
1212 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1213 di_flags |= XFS_DIFLAG_EXTSIZE;
1214 ip->i_d.di_extsize = pip->i_d.di_extsize;
1215 }
1da177e4
LT
1216 }
1217 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1218 xfs_inherit_noatime)
365ca83d 1219 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1220 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1221 xfs_inherit_nodump)
365ca83d 1222 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1223 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1224 xfs_inherit_sync)
365ca83d 1225 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1226 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1227 xfs_inherit_nosymlinks)
365ca83d
NS
1228 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1229 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1230 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1231 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1232 xfs_inherit_nodefrag)
1233 di_flags |= XFS_DIFLAG_NODEFRAG;
365ca83d 1234 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1235 }
1236 /* FALLTHROUGH */
1237 case S_IFLNK:
1238 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1239 ip->i_df.if_flags = XFS_IFEXTENTS;
1240 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1241 ip->i_df.if_u1.if_extents = NULL;
1242 break;
1243 default:
1244 ASSERT(0);
1245 }
1246 /*
1247 * Attribute fork settings for new inode.
1248 */
1249 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1250 ip->i_d.di_anextents = 0;
1251
1252 /*
1253 * Log the new values stuffed into the inode.
1254 */
1255 xfs_trans_log_inode(tp, ip, flags);
1256
b83bd138
NS
1257 /* now that we have an i_mode we can setup inode ops and unlock */
1258 bhv_vfs_init_vnode(XFS_MTOVFS(tp->t_mountp), vp, XFS_ITOBHV(ip), 1);
1da177e4
LT
1259
1260 *ipp = ip;
1261 return 0;
1262}
1263
1264/*
1265 * Check to make sure that there are no blocks allocated to the
1266 * file beyond the size of the file. We don't check this for
1267 * files with fixed size extents or real time extents, but we
1268 * at least do it for regular files.
1269 */
1270#ifdef DEBUG
1271void
1272xfs_isize_check(
1273 xfs_mount_t *mp,
1274 xfs_inode_t *ip,
1275 xfs_fsize_t isize)
1276{
1277 xfs_fileoff_t map_first;
1278 int nimaps;
1279 xfs_bmbt_irec_t imaps[2];
1280
1281 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1282 return;
1283
dd9f438e 1284 if (ip->i_d.di_flags & (XFS_DIFLAG_REALTIME | XFS_DIFLAG_EXTSIZE))
1da177e4
LT
1285 return;
1286
1287 nimaps = 2;
1288 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1289 /*
1290 * The filesystem could be shutting down, so bmapi may return
1291 * an error.
1292 */
1293 if (xfs_bmapi(NULL, ip, map_first,
1294 (XFS_B_TO_FSB(mp,
1295 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1296 map_first),
1297 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1298 NULL, NULL))
1da177e4
LT
1299 return;
1300 ASSERT(nimaps == 1);
1301 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1302}
1303#endif /* DEBUG */
1304
1305/*
1306 * Calculate the last possible buffered byte in a file. This must
1307 * include data that was buffered beyond the EOF by the write code.
1308 * This also needs to deal with overflowing the xfs_fsize_t type
1309 * which can happen for sizes near the limit.
1310 *
1311 * We also need to take into account any blocks beyond the EOF. It
1312 * may be the case that they were buffered by a write which failed.
1313 * In that case the pages will still be in memory, but the inode size
1314 * will never have been updated.
1315 */
1316xfs_fsize_t
1317xfs_file_last_byte(
1318 xfs_inode_t *ip)
1319{
1320 xfs_mount_t *mp;
1321 xfs_fsize_t last_byte;
1322 xfs_fileoff_t last_block;
1323 xfs_fileoff_t size_last_block;
1324 int error;
1325
1326 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE | MR_ACCESS));
1327
1328 mp = ip->i_mount;
1329 /*
1330 * Only check for blocks beyond the EOF if the extents have
1331 * been read in. This eliminates the need for the inode lock,
1332 * and it also saves us from looking when it really isn't
1333 * necessary.
1334 */
1335 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1336 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1337 XFS_DATA_FORK);
1338 if (error) {
1339 last_block = 0;
1340 }
1341 } else {
1342 last_block = 0;
1343 }
1344 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_d.di_size);
1345 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1346
1347 last_byte = XFS_FSB_TO_B(mp, last_block);
1348 if (last_byte < 0) {
1349 return XFS_MAXIOFFSET(mp);
1350 }
1351 last_byte += (1 << mp->m_writeio_log);
1352 if (last_byte < 0) {
1353 return XFS_MAXIOFFSET(mp);
1354 }
1355 return last_byte;
1356}
1357
1358#if defined(XFS_RW_TRACE)
1359STATIC void
1360xfs_itrunc_trace(
1361 int tag,
1362 xfs_inode_t *ip,
1363 int flag,
1364 xfs_fsize_t new_size,
1365 xfs_off_t toss_start,
1366 xfs_off_t toss_finish)
1367{
1368 if (ip->i_rwtrace == NULL) {
1369 return;
1370 }
1371
1372 ktrace_enter(ip->i_rwtrace,
1373 (void*)((long)tag),
1374 (void*)ip,
1375 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1376 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1377 (void*)((long)flag),
1378 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1379 (void*)(unsigned long)(new_size & 0xffffffff),
1380 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1381 (void*)(unsigned long)(toss_start & 0xffffffff),
1382 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1383 (void*)(unsigned long)(toss_finish & 0xffffffff),
1384 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1385 (void*)(unsigned long)current_pid(),
1386 (void*)NULL,
1387 (void*)NULL,
1388 (void*)NULL);
1da177e4
LT
1389}
1390#else
1391#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1392#endif
1393
1394/*
1395 * Start the truncation of the file to new_size. The new size
1396 * must be smaller than the current size. This routine will
1397 * clear the buffer and page caches of file data in the removed
1398 * range, and xfs_itruncate_finish() will remove the underlying
1399 * disk blocks.
1400 *
1401 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1402 * must NOT have the inode lock held at all. This is because we're
1403 * calling into the buffer/page cache code and we can't hold the
1404 * inode lock when we do so.
1405 *
38e2299a
DC
1406 * We need to wait for any direct I/Os in flight to complete before we
1407 * proceed with the truncate. This is needed to prevent the extents
1408 * being read or written by the direct I/Os from being removed while the
1409 * I/O is in flight as there is no other method of synchronising
1410 * direct I/O with the truncate operation. Also, because we hold
1411 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1412 * started until the truncate completes and drops the lock. Essentially,
1413 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1414 * between direct I/Os and the truncate operation.
1415 *
1da177e4
LT
1416 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1417 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1418 * in the case that the caller is locking things out of order and
1419 * may not be able to call xfs_itruncate_finish() with the inode lock
1420 * held without dropping the I/O lock. If the caller must drop the
1421 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1422 * must be called again with all the same restrictions as the initial
1423 * call.
1424 */
1425void
1426xfs_itruncate_start(
1427 xfs_inode_t *ip,
1428 uint flags,
1429 xfs_fsize_t new_size)
1430{
1431 xfs_fsize_t last_byte;
1432 xfs_off_t toss_start;
1433 xfs_mount_t *mp;
67fcaa73 1434 bhv_vnode_t *vp;
1da177e4
LT
1435
1436 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1437 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1438 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1439 (flags == XFS_ITRUNC_MAYBE));
1440
1441 mp = ip->i_mount;
1442 vp = XFS_ITOV(ip);
9fa8046f
YL
1443
1444 vn_iowait(vp); /* wait for the completion of any pending DIOs */
1445
1da177e4 1446 /*
67fcaa73 1447 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1448 * overlapping the region being removed. We have to use
67fcaa73 1449 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1450 * caller may not be able to finish the truncate without
1451 * dropping the inode's I/O lock. Make sure
1452 * to catch any pages brought in by buffers overlapping
1453 * the EOF by searching out beyond the isize by our
1454 * block size. We round new_size up to a block boundary
1455 * so that we don't toss things on the same block as
1456 * new_size but before it.
1457 *
67fcaa73 1458 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1459 * call remapf() over the same region if the file is mapped.
1460 * This frees up mapped file references to the pages in the
67fcaa73 1461 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1462 * that we get the latest mapped changes flushed out.
1463 */
1464 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1465 toss_start = XFS_FSB_TO_B(mp, toss_start);
1466 if (toss_start < 0) {
1467 /*
1468 * The place to start tossing is beyond our maximum
1469 * file size, so there is no way that the data extended
1470 * out there.
1471 */
1472 return;
1473 }
1474 last_byte = xfs_file_last_byte(ip);
1475 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1476 last_byte);
1477 if (last_byte > toss_start) {
1478 if (flags & XFS_ITRUNC_DEFINITE) {
67fcaa73 1479 bhv_vop_toss_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1da177e4 1480 } else {
67fcaa73 1481 bhv_vop_flushinval_pages(vp, toss_start, -1, FI_REMAPF_LOCKED);
1da177e4
LT
1482 }
1483 }
1484
1485#ifdef DEBUG
1486 if (new_size == 0) {
1487 ASSERT(VN_CACHED(vp) == 0);
1488 }
1489#endif
1490}
1491
1492/*
1493 * Shrink the file to the given new_size. The new
1494 * size must be smaller than the current size.
1495 * This will free up the underlying blocks
1496 * in the removed range after a call to xfs_itruncate_start()
1497 * or xfs_atruncate_start().
1498 *
1499 * The transaction passed to this routine must have made
1500 * a permanent log reservation of at least XFS_ITRUNCATE_LOG_RES.
1501 * This routine may commit the given transaction and
1502 * start new ones, so make sure everything involved in
1503 * the transaction is tidy before calling here.
1504 * Some transaction will be returned to the caller to be
1505 * committed. The incoming transaction must already include
1506 * the inode, and both inode locks must be held exclusively.
1507 * The inode must also be "held" within the transaction. On
1508 * return the inode will be "held" within the returned transaction.
1509 * This routine does NOT require any disk space to be reserved
1510 * for it within the transaction.
1511 *
1512 * The fork parameter must be either xfs_attr_fork or xfs_data_fork,
1513 * and it indicates the fork which is to be truncated. For the
1514 * attribute fork we only support truncation to size 0.
1515 *
1516 * We use the sync parameter to indicate whether or not the first
1517 * transaction we perform might have to be synchronous. For the attr fork,
1518 * it needs to be so if the unlink of the inode is not yet known to be
1519 * permanent in the log. This keeps us from freeing and reusing the
1520 * blocks of the attribute fork before the unlink of the inode becomes
1521 * permanent.
1522 *
1523 * For the data fork, we normally have to run synchronously if we're
1524 * being called out of the inactive path or we're being called
1525 * out of the create path where we're truncating an existing file.
1526 * Either way, the truncate needs to be sync so blocks don't reappear
1527 * in the file with altered data in case of a crash. wsync filesystems
1528 * can run the first case async because anything that shrinks the inode
1529 * has to run sync so by the time we're called here from inactive, the
1530 * inode size is permanently set to 0.
1531 *
1532 * Calls from the truncate path always need to be sync unless we're
1533 * in a wsync filesystem and the file has already been unlinked.
1534 *
1535 * The caller is responsible for correctly setting the sync parameter.
1536 * It gets too hard for us to guess here which path we're being called
1537 * out of just based on inode state.
1538 */
1539int
1540xfs_itruncate_finish(
1541 xfs_trans_t **tp,
1542 xfs_inode_t *ip,
1543 xfs_fsize_t new_size,
1544 int fork,
1545 int sync)
1546{
1547 xfs_fsblock_t first_block;
1548 xfs_fileoff_t first_unmap_block;
1549 xfs_fileoff_t last_block;
1550 xfs_filblks_t unmap_len=0;
1551 xfs_mount_t *mp;
1552 xfs_trans_t *ntp;
1553 int done;
1554 int committed;
1555 xfs_bmap_free_t free_list;
1556 int error;
1557
1558 ASSERT(ismrlocked(&ip->i_iolock, MR_UPDATE) != 0);
1559 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE) != 0);
1560 ASSERT((new_size == 0) || (new_size <= ip->i_d.di_size));
1561 ASSERT(*tp != NULL);
1562 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1563 ASSERT(ip->i_transp == *tp);
1564 ASSERT(ip->i_itemp != NULL);
1565 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1566
1567
1568 ntp = *tp;
1569 mp = (ntp)->t_mountp;
1570 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1571
1572 /*
1573 * We only support truncating the entire attribute fork.
1574 */
1575 if (fork == XFS_ATTR_FORK) {
1576 new_size = 0LL;
1577 }
1578 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1579 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1580 /*
1581 * The first thing we do is set the size to new_size permanently
1582 * on disk. This way we don't have to worry about anyone ever
1583 * being able to look at the data being freed even in the face
1584 * of a crash. What we're getting around here is the case where
1585 * we free a block, it is allocated to another file, it is written
1586 * to, and then we crash. If the new data gets written to the
1587 * file but the log buffers containing the free and reallocation
1588 * don't, then we'd end up with garbage in the blocks being freed.
1589 * As long as we make the new_size permanent before actually
1590 * freeing any blocks it doesn't matter if they get writtten to.
1591 *
1592 * The callers must signal into us whether or not the size
1593 * setting here must be synchronous. There are a few cases
1594 * where it doesn't have to be synchronous. Those cases
1595 * occur if the file is unlinked and we know the unlink is
1596 * permanent or if the blocks being truncated are guaranteed
1597 * to be beyond the inode eof (regardless of the link count)
1598 * and the eof value is permanent. Both of these cases occur
1599 * only on wsync-mounted filesystems. In those cases, we're
1600 * guaranteed that no user will ever see the data in the blocks
1601 * that are being truncated so the truncate can run async.
1602 * In the free beyond eof case, the file may wind up with
1603 * more blocks allocated to it than it needs if we crash
1604 * and that won't get fixed until the next time the file
1605 * is re-opened and closed but that's ok as that shouldn't
1606 * be too many blocks.
1607 *
1608 * However, we can't just make all wsync xactions run async
1609 * because there's one call out of the create path that needs
1610 * to run sync where it's truncating an existing file to size
1611 * 0 whose size is > 0.
1612 *
1613 * It's probably possible to come up with a test in this
1614 * routine that would correctly distinguish all the above
1615 * cases from the values of the function parameters and the
1616 * inode state but for sanity's sake, I've decided to let the
1617 * layers above just tell us. It's simpler to correctly figure
1618 * out in the layer above exactly under what conditions we
1619 * can run async and I think it's easier for others read and
1620 * follow the logic in case something has to be changed.
1621 * cscope is your friend -- rcc.
1622 *
1623 * The attribute fork is much simpler.
1624 *
1625 * For the attribute fork we allow the caller to tell us whether
1626 * the unlink of the inode that led to this call is yet permanent
1627 * in the on disk log. If it is not and we will be freeing extents
1628 * in this inode then we make the first transaction synchronous
1629 * to make sure that the unlink is permanent by the time we free
1630 * the blocks.
1631 */
1632 if (fork == XFS_DATA_FORK) {
1633 if (ip->i_d.di_nextents > 0) {
1634 ip->i_d.di_size = new_size;
1635 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1636 }
1637 } else if (sync) {
1638 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1639 if (ip->i_d.di_anextents > 0)
1640 xfs_trans_set_sync(ntp);
1641 }
1642 ASSERT(fork == XFS_DATA_FORK ||
1643 (fork == XFS_ATTR_FORK &&
1644 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1645 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1646
1647 /*
1648 * Since it is possible for space to become allocated beyond
1649 * the end of the file (in a crash where the space is allocated
1650 * but the inode size is not yet updated), simply remove any
1651 * blocks which show up between the new EOF and the maximum
1652 * possible file size. If the first block to be removed is
1653 * beyond the maximum file size (ie it is the same as last_block),
1654 * then there is nothing to do.
1655 */
1656 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1657 ASSERT(first_unmap_block <= last_block);
1658 done = 0;
1659 if (last_block == first_unmap_block) {
1660 done = 1;
1661 } else {
1662 unmap_len = last_block - first_unmap_block + 1;
1663 }
1664 while (!done) {
1665 /*
1666 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1667 * will tell us whether it freed the entire range or
1668 * not. If this is a synchronous mount (wsync),
1669 * then we can tell bunmapi to keep all the
1670 * transactions asynchronous since the unlink
1671 * transaction that made this inode inactive has
1672 * already hit the disk. There's no danger of
1673 * the freed blocks being reused, there being a
1674 * crash, and the reused blocks suddenly reappearing
1675 * in this file with garbage in them once recovery
1676 * runs.
1677 */
1678 XFS_BMAP_INIT(&free_list, &first_block);
3e57ecf6
OW
1679 error = XFS_BUNMAPI(mp, ntp, &ip->i_iocore,
1680 first_unmap_block, unmap_len,
1da177e4
LT
1681 XFS_BMAPI_AFLAG(fork) |
1682 (sync ? 0 : XFS_BMAPI_ASYNC),
1683 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1684 &first_block, &free_list,
1685 NULL, &done);
1da177e4
LT
1686 if (error) {
1687 /*
1688 * If the bunmapi call encounters an error,
1689 * return to the caller where the transaction
1690 * can be properly aborted. We just need to
1691 * make sure we're not holding any resources
1692 * that we were not when we came in.
1693 */
1694 xfs_bmap_cancel(&free_list);
1695 return error;
1696 }
1697
1698 /*
1699 * Duplicate the transaction that has the permanent
1700 * reservation and commit the old transaction.
1701 */
1702 error = xfs_bmap_finish(tp, &free_list, first_block,
1703 &committed);
1704 ntp = *tp;
1705 if (error) {
1706 /*
1707 * If the bmap finish call encounters an error,
1708 * return to the caller where the transaction
1709 * can be properly aborted. We just need to
1710 * make sure we're not holding any resources
1711 * that we were not when we came in.
1712 *
1713 * Aborting from this point might lose some
1714 * blocks in the file system, but oh well.
1715 */
1716 xfs_bmap_cancel(&free_list);
1717 if (committed) {
1718 /*
1719 * If the passed in transaction committed
1720 * in xfs_bmap_finish(), then we want to
1721 * add the inode to this one before returning.
1722 * This keeps things simple for the higher
1723 * level code, because it always knows that
1724 * the inode is locked and held in the
1725 * transaction that returns to it whether
1726 * errors occur or not. We don't mark the
1727 * inode dirty so that this transaction can
1728 * be easily aborted if possible.
1729 */
1730 xfs_trans_ijoin(ntp, ip,
1731 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1732 xfs_trans_ihold(ntp, ip);
1733 }
1734 return error;
1735 }
1736
1737 if (committed) {
1738 /*
1739 * The first xact was committed,
1740 * so add the inode to the new one.
1741 * Mark it dirty so it will be logged
1742 * and moved forward in the log as
1743 * part of every commit.
1744 */
1745 xfs_trans_ijoin(ntp, ip,
1746 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1747 xfs_trans_ihold(ntp, ip);
1748 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1749 }
1750 ntp = xfs_trans_dup(ntp);
1751 (void) xfs_trans_commit(*tp, 0, NULL);
1752 *tp = ntp;
1753 error = xfs_trans_reserve(ntp, 0, XFS_ITRUNCATE_LOG_RES(mp), 0,
1754 XFS_TRANS_PERM_LOG_RES,
1755 XFS_ITRUNCATE_LOG_COUNT);
1756 /*
1757 * Add the inode being truncated to the next chained
1758 * transaction.
1759 */
1760 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1761 xfs_trans_ihold(ntp, ip);
1762 if (error)
1763 return (error);
1764 }
1765 /*
1766 * Only update the size in the case of the data fork, but
1767 * always re-log the inode so that our permanent transaction
1768 * can keep on rolling it forward in the log.
1769 */
1770 if (fork == XFS_DATA_FORK) {
1771 xfs_isize_check(mp, ip, new_size);
1772 ip->i_d.di_size = new_size;
1773 }
1774 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1775 ASSERT((new_size != 0) ||
1776 (fork == XFS_ATTR_FORK) ||
1777 (ip->i_delayed_blks == 0));
1778 ASSERT((new_size != 0) ||
1779 (fork == XFS_ATTR_FORK) ||
1780 (ip->i_d.di_nextents == 0));
1781 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1782 return 0;
1783}
1784
1785
1786/*
1787 * xfs_igrow_start
1788 *
1789 * Do the first part of growing a file: zero any data in the last
1790 * block that is beyond the old EOF. We need to do this before
1791 * the inode is joined to the transaction to modify the i_size.
1792 * That way we can drop the inode lock and call into the buffer
1793 * cache to get the buffer mapping the EOF.
1794 */
1795int
1796xfs_igrow_start(
1797 xfs_inode_t *ip,
1798 xfs_fsize_t new_size,
1799 cred_t *credp)
1800{
1da177e4
LT
1801 int error;
1802
1803 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1804 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1805 ASSERT(new_size > ip->i_d.di_size);
1806
1da177e4
LT
1807 /*
1808 * Zero any pages that may have been created by
1809 * xfs_write_file() beyond the end of the file
1810 * and any blocks between the old and new file sizes.
1811 */
24ee8088 1812 error = xfs_zero_eof(XFS_ITOV(ip), &ip->i_iocore, new_size,
68160161 1813 ip->i_d.di_size);
1da177e4
LT
1814 return error;
1815}
1816
1817/*
1818 * xfs_igrow_finish
1819 *
1820 * This routine is called to extend the size of a file.
1821 * The inode must have both the iolock and the ilock locked
1822 * for update and it must be a part of the current transaction.
1823 * The xfs_igrow_start() function must have been called previously.
1824 * If the change_flag is not zero, the inode change timestamp will
1825 * be updated.
1826 */
1827void
1828xfs_igrow_finish(
1829 xfs_trans_t *tp,
1830 xfs_inode_t *ip,
1831 xfs_fsize_t new_size,
1832 int change_flag)
1833{
1834 ASSERT(ismrlocked(&(ip->i_lock), MR_UPDATE) != 0);
1835 ASSERT(ismrlocked(&(ip->i_iolock), MR_UPDATE) != 0);
1836 ASSERT(ip->i_transp == tp);
1837 ASSERT(new_size > ip->i_d.di_size);
1838
1839 /*
1840 * Update the file size. Update the inode change timestamp
1841 * if change_flag set.
1842 */
1843 ip->i_d.di_size = new_size;
1844 if (change_flag)
1845 xfs_ichgtime(ip, XFS_ICHGTIME_CHG);
1846 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1847
1848}
1849
1850
1851/*
1852 * This is called when the inode's link count goes to 0.
1853 * We place the on-disk inode on a list in the AGI. It
1854 * will be pulled from this list when the inode is freed.
1855 */
1856int
1857xfs_iunlink(
1858 xfs_trans_t *tp,
1859 xfs_inode_t *ip)
1860{
1861 xfs_mount_t *mp;
1862 xfs_agi_t *agi;
1863 xfs_dinode_t *dip;
1864 xfs_buf_t *agibp;
1865 xfs_buf_t *ibp;
1866 xfs_agnumber_t agno;
1867 xfs_daddr_t agdaddr;
1868 xfs_agino_t agino;
1869 short bucket_index;
1870 int offset;
1871 int error;
1872 int agi_ok;
1873
1874 ASSERT(ip->i_d.di_nlink == 0);
1875 ASSERT(ip->i_d.di_mode != 0);
1876 ASSERT(ip->i_transp == tp);
1877
1878 mp = tp->t_mountp;
1879
1880 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1881 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1882
1883 /*
1884 * Get the agi buffer first. It ensures lock ordering
1885 * on the list.
1886 */
1887 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1888 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1889 if (error) {
1890 return error;
1891 }
1892 /*
1893 * Validate the magic number of the agi block.
1894 */
1895 agi = XFS_BUF_TO_AGI(agibp);
1896 agi_ok =
16259e7d
CH
1897 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1898 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1899 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1900 XFS_RANDOM_IUNLINK))) {
1901 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1902 xfs_trans_brelse(tp, agibp);
1903 return XFS_ERROR(EFSCORRUPTED);
1904 }
1905 /*
1906 * Get the index into the agi hash table for the
1907 * list this inode will go on.
1908 */
1909 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1910 ASSERT(agino != 0);
1911 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1912 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1913 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1914
16259e7d 1915 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1916 /*
1917 * There is already another inode in the bucket we need
1918 * to add ourselves to. Add us at the front of the list.
1919 * Here we put the head pointer into our next pointer,
1920 * and then we fall through to point the head at us.
1921 */
b12dd342 1922 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
1923 if (error) {
1924 return error;
1925 }
1926 ASSERT(INT_GET(dip->di_next_unlinked, ARCH_CONVERT) == NULLAGINO);
1927 ASSERT(dip->di_next_unlinked);
1928 /* both on-disk, don't endian flip twice */
1929 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1930 offset = ip->i_boffset +
1931 offsetof(xfs_dinode_t, di_next_unlinked);
1932 xfs_trans_inode_buf(tp, ibp);
1933 xfs_trans_log_buf(tp, ibp, offset,
1934 (offset + sizeof(xfs_agino_t) - 1));
1935 xfs_inobp_check(mp, ibp);
1936 }
1937
1938 /*
1939 * Point the bucket head pointer at the inode being inserted.
1940 */
1941 ASSERT(agino != 0);
16259e7d 1942 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1943 offset = offsetof(xfs_agi_t, agi_unlinked) +
1944 (sizeof(xfs_agino_t) * bucket_index);
1945 xfs_trans_log_buf(tp, agibp, offset,
1946 (offset + sizeof(xfs_agino_t) - 1));
1947 return 0;
1948}
1949
1950/*
1951 * Pull the on-disk inode from the AGI unlinked list.
1952 */
1953STATIC int
1954xfs_iunlink_remove(
1955 xfs_trans_t *tp,
1956 xfs_inode_t *ip)
1957{
1958 xfs_ino_t next_ino;
1959 xfs_mount_t *mp;
1960 xfs_agi_t *agi;
1961 xfs_dinode_t *dip;
1962 xfs_buf_t *agibp;
1963 xfs_buf_t *ibp;
1964 xfs_agnumber_t agno;
1965 xfs_daddr_t agdaddr;
1966 xfs_agino_t agino;
1967 xfs_agino_t next_agino;
1968 xfs_buf_t *last_ibp;
6fdf8ccc 1969 xfs_dinode_t *last_dip = NULL;
1da177e4 1970 short bucket_index;
6fdf8ccc 1971 int offset, last_offset = 0;
1da177e4
LT
1972 int error;
1973 int agi_ok;
1974
1975 /*
1976 * First pull the on-disk inode from the AGI unlinked list.
1977 */
1978 mp = tp->t_mountp;
1979
1980 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1981 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1982
1983 /*
1984 * Get the agi buffer first. It ensures lock ordering
1985 * on the list.
1986 */
1987 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1988 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1989 if (error) {
1990 cmn_err(CE_WARN,
1991 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1992 error, mp->m_fsname);
1993 return error;
1994 }
1995 /*
1996 * Validate the magic number of the agi block.
1997 */
1998 agi = XFS_BUF_TO_AGI(agibp);
1999 agi_ok =
16259e7d
CH
2000 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
2001 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
2002 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
2003 XFS_RANDOM_IUNLINK_REMOVE))) {
2004 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
2005 mp, agi);
2006 xfs_trans_brelse(tp, agibp);
2007 cmn_err(CE_WARN,
2008 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
2009 mp->m_fsname);
2010 return XFS_ERROR(EFSCORRUPTED);
2011 }
2012 /*
2013 * Get the index into the agi hash table for the
2014 * list this inode will go on.
2015 */
2016 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2017 ASSERT(agino != 0);
2018 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 2019 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
2020 ASSERT(agi->agi_unlinked[bucket_index]);
2021
16259e7d 2022 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
2023 /*
2024 * We're at the head of the list. Get the inode's
2025 * on-disk buffer to see if there is anyone after us
2026 * on the list. Only modify our next pointer if it
2027 * is not already NULLAGINO. This saves us the overhead
2028 * of dealing with the buffer when there is no need to
2029 * change it.
2030 */
b12dd342 2031 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2032 if (error) {
2033 cmn_err(CE_WARN,
2034 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2035 error, mp->m_fsname);
2036 return error;
2037 }
2038 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2039 ASSERT(next_agino != 0);
2040 if (next_agino != NULLAGINO) {
2041 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2042 offset = ip->i_boffset +
2043 offsetof(xfs_dinode_t, di_next_unlinked);
2044 xfs_trans_inode_buf(tp, ibp);
2045 xfs_trans_log_buf(tp, ibp, offset,
2046 (offset + sizeof(xfs_agino_t) - 1));
2047 xfs_inobp_check(mp, ibp);
2048 } else {
2049 xfs_trans_brelse(tp, ibp);
2050 }
2051 /*
2052 * Point the bucket head pointer at the next inode.
2053 */
2054 ASSERT(next_agino != 0);
2055 ASSERT(next_agino != agino);
16259e7d 2056 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2057 offset = offsetof(xfs_agi_t, agi_unlinked) +
2058 (sizeof(xfs_agino_t) * bucket_index);
2059 xfs_trans_log_buf(tp, agibp, offset,
2060 (offset + sizeof(xfs_agino_t) - 1));
2061 } else {
2062 /*
2063 * We need to search the list for the inode being freed.
2064 */
16259e7d 2065 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2066 last_ibp = NULL;
2067 while (next_agino != agino) {
2068 /*
2069 * If the last inode wasn't the one pointing to
2070 * us, then release its buffer since we're not
2071 * going to do anything with it.
2072 */
2073 if (last_ibp != NULL) {
2074 xfs_trans_brelse(tp, last_ibp);
2075 }
2076 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2077 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2078 &last_ibp, &last_offset);
2079 if (error) {
2080 cmn_err(CE_WARN,
2081 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2082 error, mp->m_fsname);
2083 return error;
2084 }
2085 next_agino = INT_GET(last_dip->di_next_unlinked, ARCH_CONVERT);
2086 ASSERT(next_agino != NULLAGINO);
2087 ASSERT(next_agino != 0);
2088 }
2089 /*
2090 * Now last_ibp points to the buffer previous to us on
2091 * the unlinked list. Pull us from the list.
2092 */
b12dd342 2093 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0);
1da177e4
LT
2094 if (error) {
2095 cmn_err(CE_WARN,
2096 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2097 error, mp->m_fsname);
2098 return error;
2099 }
2100 next_agino = INT_GET(dip->di_next_unlinked, ARCH_CONVERT);
2101 ASSERT(next_agino != 0);
2102 ASSERT(next_agino != agino);
2103 if (next_agino != NULLAGINO) {
2104 INT_SET(dip->di_next_unlinked, ARCH_CONVERT, NULLAGINO);
2105 offset = ip->i_boffset +
2106 offsetof(xfs_dinode_t, di_next_unlinked);
2107 xfs_trans_inode_buf(tp, ibp);
2108 xfs_trans_log_buf(tp, ibp, offset,
2109 (offset + sizeof(xfs_agino_t) - 1));
2110 xfs_inobp_check(mp, ibp);
2111 } else {
2112 xfs_trans_brelse(tp, ibp);
2113 }
2114 /*
2115 * Point the previous inode on the list to the next inode.
2116 */
2117 INT_SET(last_dip->di_next_unlinked, ARCH_CONVERT, next_agino);
2118 ASSERT(next_agino != 0);
2119 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2120 xfs_trans_inode_buf(tp, last_ibp);
2121 xfs_trans_log_buf(tp, last_ibp, offset,
2122 (offset + sizeof(xfs_agino_t) - 1));
2123 xfs_inobp_check(mp, last_ibp);
2124 }
2125 return 0;
2126}
2127
7989cb8e 2128STATIC_INLINE int xfs_inode_clean(xfs_inode_t *ip)
1da177e4
LT
2129{
2130 return (((ip->i_itemp == NULL) ||
2131 !(ip->i_itemp->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
2132 (ip->i_update_core == 0));
2133}
2134
ba0f32d4 2135STATIC void
1da177e4
LT
2136xfs_ifree_cluster(
2137 xfs_inode_t *free_ip,
2138 xfs_trans_t *tp,
2139 xfs_ino_t inum)
2140{
2141 xfs_mount_t *mp = free_ip->i_mount;
2142 int blks_per_cluster;
2143 int nbufs;
2144 int ninodes;
2145 int i, j, found, pre_flushed;
2146 xfs_daddr_t blkno;
2147 xfs_buf_t *bp;
2148 xfs_ihash_t *ih;
2149 xfs_inode_t *ip, **ip_found;
2150 xfs_inode_log_item_t *iip;
2151 xfs_log_item_t *lip;
2152 SPLDECL(s);
2153
2154 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2155 blks_per_cluster = 1;
2156 ninodes = mp->m_sb.sb_inopblock;
2157 nbufs = XFS_IALLOC_BLOCKS(mp);
2158 } else {
2159 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2160 mp->m_sb.sb_blocksize;
2161 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2162 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2163 }
2164
2165 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2166
2167 for (j = 0; j < nbufs; j++, inum += ninodes) {
2168 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2169 XFS_INO_TO_AGBNO(mp, inum));
2170
2171
2172 /*
2173 * Look for each inode in memory and attempt to lock it,
2174 * we can be racing with flush and tail pushing here.
2175 * any inode we get the locks on, add to an array of
2176 * inode items to process later.
2177 *
2178 * The get the buffer lock, we could beat a flush
2179 * or tail pushing thread to the lock here, in which
2180 * case they will go looking for the inode buffer
2181 * and fail, we need some other form of interlock
2182 * here.
2183 */
2184 found = 0;
2185 for (i = 0; i < ninodes; i++) {
2186 ih = XFS_IHASH(mp, inum + i);
2187 read_lock(&ih->ih_lock);
2188 for (ip = ih->ih_next; ip != NULL; ip = ip->i_next) {
2189 if (ip->i_ino == inum + i)
2190 break;
2191 }
2192
2193 /* Inode not in memory or we found it already,
2194 * nothing to do
2195 */
7a18c386 2196 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
1da177e4
LT
2197 read_unlock(&ih->ih_lock);
2198 continue;
2199 }
2200
2201 if (xfs_inode_clean(ip)) {
2202 read_unlock(&ih->ih_lock);
2203 continue;
2204 }
2205
2206 /* If we can get the locks then add it to the
2207 * list, otherwise by the time we get the bp lock
2208 * below it will already be attached to the
2209 * inode buffer.
2210 */
2211
2212 /* This inode will already be locked - by us, lets
2213 * keep it that way.
2214 */
2215
2216 if (ip == free_ip) {
2217 if (xfs_iflock_nowait(ip)) {
7a18c386 2218 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2219 if (xfs_inode_clean(ip)) {
2220 xfs_ifunlock(ip);
2221 } else {
2222 ip_found[found++] = ip;
2223 }
2224 }
2225 read_unlock(&ih->ih_lock);
2226 continue;
2227 }
2228
2229 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2230 if (xfs_iflock_nowait(ip)) {
7a18c386 2231 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2232
2233 if (xfs_inode_clean(ip)) {
2234 xfs_ifunlock(ip);
2235 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2236 } else {
2237 ip_found[found++] = ip;
2238 }
2239 } else {
2240 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2241 }
2242 }
2243
2244 read_unlock(&ih->ih_lock);
2245 }
2246
2247 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2248 mp->m_bsize * blks_per_cluster,
2249 XFS_BUF_LOCK);
2250
2251 pre_flushed = 0;
2252 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2253 while (lip) {
2254 if (lip->li_type == XFS_LI_INODE) {
2255 iip = (xfs_inode_log_item_t *)lip;
2256 ASSERT(iip->ili_logged == 1);
2257 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
2258 AIL_LOCK(mp,s);
2259 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2260 AIL_UNLOCK(mp, s);
e5ffd2bb 2261 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2262 pre_flushed++;
2263 }
2264 lip = lip->li_bio_list;
2265 }
2266
2267 for (i = 0; i < found; i++) {
2268 ip = ip_found[i];
2269 iip = ip->i_itemp;
2270
2271 if (!iip) {
2272 ip->i_update_core = 0;
2273 xfs_ifunlock(ip);
2274 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2275 continue;
2276 }
2277
2278 iip->ili_last_fields = iip->ili_format.ilf_fields;
2279 iip->ili_format.ilf_fields = 0;
2280 iip->ili_logged = 1;
2281 AIL_LOCK(mp,s);
2282 iip->ili_flush_lsn = iip->ili_item.li_lsn;
2283 AIL_UNLOCK(mp, s);
2284
2285 xfs_buf_attach_iodone(bp,
2286 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2287 xfs_istale_done, (xfs_log_item_t *)iip);
2288 if (ip != free_ip) {
2289 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2290 }
2291 }
2292
2293 if (found || pre_flushed)
2294 xfs_trans_stale_inode_buf(tp, bp);
2295 xfs_trans_binval(tp, bp);
2296 }
2297
2298 kmem_free(ip_found, ninodes * sizeof(xfs_inode_t *));
2299}
2300
2301/*
2302 * This is called to return an inode to the inode free list.
2303 * The inode should already be truncated to 0 length and have
2304 * no pages associated with it. This routine also assumes that
2305 * the inode is already a part of the transaction.
2306 *
2307 * The on-disk copy of the inode will have been added to the list
2308 * of unlinked inodes in the AGI. We need to remove the inode from
2309 * that list atomically with respect to freeing it here.
2310 */
2311int
2312xfs_ifree(
2313 xfs_trans_t *tp,
2314 xfs_inode_t *ip,
2315 xfs_bmap_free_t *flist)
2316{
2317 int error;
2318 int delete;
2319 xfs_ino_t first_ino;
2320
2321 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2322 ASSERT(ip->i_transp == tp);
2323 ASSERT(ip->i_d.di_nlink == 0);
2324 ASSERT(ip->i_d.di_nextents == 0);
2325 ASSERT(ip->i_d.di_anextents == 0);
2326 ASSERT((ip->i_d.di_size == 0) ||
2327 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2328 ASSERT(ip->i_d.di_nblocks == 0);
2329
2330 /*
2331 * Pull the on-disk inode from the AGI unlinked list.
2332 */
2333 error = xfs_iunlink_remove(tp, ip);
2334 if (error != 0) {
2335 return error;
2336 }
2337
2338 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2339 if (error != 0) {
2340 return error;
2341 }
2342 ip->i_d.di_mode = 0; /* mark incore inode as free */
2343 ip->i_d.di_flags = 0;
2344 ip->i_d.di_dmevmask = 0;
2345 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2346 ip->i_df.if_ext_max =
2347 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2348 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2349 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2350 /*
2351 * Bump the generation count so no one will be confused
2352 * by reincarnations of this inode.
2353 */
2354 ip->i_d.di_gen++;
2355 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2356
2357 if (delete) {
2358 xfs_ifree_cluster(ip, tp, first_ino);
2359 }
2360
2361 return 0;
2362}
2363
2364/*
2365 * Reallocate the space for if_broot based on the number of records
2366 * being added or deleted as indicated in rec_diff. Move the records
2367 * and pointers in if_broot to fit the new size. When shrinking this
2368 * will eliminate holes between the records and pointers created by
2369 * the caller. When growing this will create holes to be filled in
2370 * by the caller.
2371 *
2372 * The caller must not request to add more records than would fit in
2373 * the on-disk inode root. If the if_broot is currently NULL, then
2374 * if we adding records one will be allocated. The caller must also
2375 * not request that the number of records go below zero, although
2376 * it can go to zero.
2377 *
2378 * ip -- the inode whose if_broot area is changing
2379 * ext_diff -- the change in the number of records, positive or negative,
2380 * requested for the if_broot array.
2381 */
2382void
2383xfs_iroot_realloc(
2384 xfs_inode_t *ip,
2385 int rec_diff,
2386 int whichfork)
2387{
2388 int cur_max;
2389 xfs_ifork_t *ifp;
2390 xfs_bmbt_block_t *new_broot;
2391 int new_max;
2392 size_t new_size;
2393 char *np;
2394 char *op;
2395
2396 /*
2397 * Handle the degenerate case quietly.
2398 */
2399 if (rec_diff == 0) {
2400 return;
2401 }
2402
2403 ifp = XFS_IFORK_PTR(ip, whichfork);
2404 if (rec_diff > 0) {
2405 /*
2406 * If there wasn't any memory allocated before, just
2407 * allocate it now and get out.
2408 */
2409 if (ifp->if_broot_bytes == 0) {
2410 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2411 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2412 KM_SLEEP);
2413 ifp->if_broot_bytes = (int)new_size;
2414 return;
2415 }
2416
2417 /*
2418 * If there is already an existing if_broot, then we need
2419 * to realloc() it and shift the pointers to their new
2420 * location. The records don't change location because
2421 * they are kept butted up against the btree block header.
2422 */
2423 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2424 new_max = cur_max + rec_diff;
2425 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2426 ifp->if_broot = (xfs_bmbt_block_t *)
2427 kmem_realloc(ifp->if_broot,
2428 new_size,
2429 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2430 KM_SLEEP);
2431 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2432 ifp->if_broot_bytes);
2433 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2434 (int)new_size);
2435 ifp->if_broot_bytes = (int)new_size;
2436 ASSERT(ifp->if_broot_bytes <=
2437 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2438 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2439 return;
2440 }
2441
2442 /*
2443 * rec_diff is less than 0. In this case, we are shrinking the
2444 * if_broot buffer. It must already exist. If we go to zero
2445 * records, just get rid of the root and clear the status bit.
2446 */
2447 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2448 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2449 new_max = cur_max + rec_diff;
2450 ASSERT(new_max >= 0);
2451 if (new_max > 0)
2452 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2453 else
2454 new_size = 0;
2455 if (new_size > 0) {
2456 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2457 /*
2458 * First copy over the btree block header.
2459 */
2460 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2461 } else {
2462 new_broot = NULL;
2463 ifp->if_flags &= ~XFS_IFBROOT;
2464 }
2465
2466 /*
2467 * Only copy the records and pointers if there are any.
2468 */
2469 if (new_max > 0) {
2470 /*
2471 * First copy the records.
2472 */
2473 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2474 ifp->if_broot_bytes);
2475 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2476 (int)new_size);
2477 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2478
2479 /*
2480 * Then copy the pointers.
2481 */
2482 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2483 ifp->if_broot_bytes);
2484 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2485 (int)new_size);
2486 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2487 }
2488 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2489 ifp->if_broot = new_broot;
2490 ifp->if_broot_bytes = (int)new_size;
2491 ASSERT(ifp->if_broot_bytes <=
2492 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2493 return;
2494}
2495
2496
1da177e4
LT
2497/*
2498 * This is called when the amount of space needed for if_data
2499 * is increased or decreased. The change in size is indicated by
2500 * the number of bytes that need to be added or deleted in the
2501 * byte_diff parameter.
2502 *
2503 * If the amount of space needed has decreased below the size of the
2504 * inline buffer, then switch to using the inline buffer. Otherwise,
2505 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2506 * to what is needed.
2507 *
2508 * ip -- the inode whose if_data area is changing
2509 * byte_diff -- the change in the number of bytes, positive or negative,
2510 * requested for the if_data array.
2511 */
2512void
2513xfs_idata_realloc(
2514 xfs_inode_t *ip,
2515 int byte_diff,
2516 int whichfork)
2517{
2518 xfs_ifork_t *ifp;
2519 int new_size;
2520 int real_size;
2521
2522 if (byte_diff == 0) {
2523 return;
2524 }
2525
2526 ifp = XFS_IFORK_PTR(ip, whichfork);
2527 new_size = (int)ifp->if_bytes + byte_diff;
2528 ASSERT(new_size >= 0);
2529
2530 if (new_size == 0) {
2531 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2532 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2533 }
2534 ifp->if_u1.if_data = NULL;
2535 real_size = 0;
2536 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2537 /*
2538 * If the valid extents/data can fit in if_inline_ext/data,
2539 * copy them from the malloc'd vector and free it.
2540 */
2541 if (ifp->if_u1.if_data == NULL) {
2542 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2543 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2544 ASSERT(ifp->if_real_bytes != 0);
2545 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2546 new_size);
2547 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2548 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2549 }
2550 real_size = 0;
2551 } else {
2552 /*
2553 * Stuck with malloc/realloc.
2554 * For inline data, the underlying buffer must be
2555 * a multiple of 4 bytes in size so that it can be
2556 * logged and stay on word boundaries. We enforce
2557 * that here.
2558 */
2559 real_size = roundup(new_size, 4);
2560 if (ifp->if_u1.if_data == NULL) {
2561 ASSERT(ifp->if_real_bytes == 0);
2562 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2563 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2564 /*
2565 * Only do the realloc if the underlying size
2566 * is really changing.
2567 */
2568 if (ifp->if_real_bytes != real_size) {
2569 ifp->if_u1.if_data =
2570 kmem_realloc(ifp->if_u1.if_data,
2571 real_size,
2572 ifp->if_real_bytes,
2573 KM_SLEEP);
2574 }
2575 } else {
2576 ASSERT(ifp->if_real_bytes == 0);
2577 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2578 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2579 ifp->if_bytes);
2580 }
2581 }
2582 ifp->if_real_bytes = real_size;
2583 ifp->if_bytes = new_size;
2584 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2585}
2586
2587
2588
2589
2590/*
2591 * Map inode to disk block and offset.
2592 *
2593 * mp -- the mount point structure for the current file system
2594 * tp -- the current transaction
2595 * ino -- the inode number of the inode to be located
2596 * imap -- this structure is filled in with the information necessary
2597 * to retrieve the given inode from disk
2598 * flags -- flags to pass to xfs_dilocate indicating whether or not
2599 * lookups in the inode btree were OK or not
2600 */
2601int
2602xfs_imap(
2603 xfs_mount_t *mp,
2604 xfs_trans_t *tp,
2605 xfs_ino_t ino,
2606 xfs_imap_t *imap,
2607 uint flags)
2608{
2609 xfs_fsblock_t fsbno;
2610 int len;
2611 int off;
2612 int error;
2613
2614 fsbno = imap->im_blkno ?
2615 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2616 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
2617 if (error != 0) {
2618 return error;
2619 }
2620 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2621 imap->im_len = XFS_FSB_TO_BB(mp, len);
2622 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2623 imap->im_ioffset = (ushort)off;
2624 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
2625 return 0;
2626}
2627
2628void
2629xfs_idestroy_fork(
2630 xfs_inode_t *ip,
2631 int whichfork)
2632{
2633 xfs_ifork_t *ifp;
2634
2635 ifp = XFS_IFORK_PTR(ip, whichfork);
2636 if (ifp->if_broot != NULL) {
2637 kmem_free(ifp->if_broot, ifp->if_broot_bytes);
2638 ifp->if_broot = NULL;
2639 }
2640
2641 /*
2642 * If the format is local, then we can't have an extents
2643 * array so just look for an inline data array. If we're
2644 * not local then we may or may not have an extents list,
2645 * so check and free it up if we do.
2646 */
2647 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2648 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2649 (ifp->if_u1.if_data != NULL)) {
2650 ASSERT(ifp->if_real_bytes != 0);
2651 kmem_free(ifp->if_u1.if_data, ifp->if_real_bytes);
2652 ifp->if_u1.if_data = NULL;
2653 ifp->if_real_bytes = 0;
2654 }
2655 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2656 ((ifp->if_flags & XFS_IFEXTIREC) ||
2657 ((ifp->if_u1.if_extents != NULL) &&
2658 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2659 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2660 xfs_iext_destroy(ifp);
1da177e4
LT
2661 }
2662 ASSERT(ifp->if_u1.if_extents == NULL ||
2663 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2664 ASSERT(ifp->if_real_bytes == 0);
2665 if (whichfork == XFS_ATTR_FORK) {
2666 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2667 ip->i_afp = NULL;
2668 }
2669}
2670
2671/*
2672 * This is called free all the memory associated with an inode.
2673 * It must free the inode itself and any buffers allocated for
2674 * if_extents/if_data and if_broot. It must also free the lock
2675 * associated with the inode.
2676 */
2677void
2678xfs_idestroy(
2679 xfs_inode_t *ip)
2680{
2681
2682 switch (ip->i_d.di_mode & S_IFMT) {
2683 case S_IFREG:
2684 case S_IFDIR:
2685 case S_IFLNK:
2686 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2687 break;
2688 }
2689 if (ip->i_afp)
2690 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
2691 mrfree(&ip->i_lock);
2692 mrfree(&ip->i_iolock);
2693 freesema(&ip->i_flock);
2694#ifdef XFS_BMAP_TRACE
2695 ktrace_free(ip->i_xtrace);
2696#endif
2697#ifdef XFS_BMBT_TRACE
2698 ktrace_free(ip->i_btrace);
2699#endif
2700#ifdef XFS_RW_TRACE
2701 ktrace_free(ip->i_rwtrace);
2702#endif
2703#ifdef XFS_ILOCK_TRACE
2704 ktrace_free(ip->i_lock_trace);
2705#endif
2706#ifdef XFS_DIR2_TRACE
2707 ktrace_free(ip->i_dir_trace);
2708#endif
2709 if (ip->i_itemp) {
f74eaf59
DC
2710 /*
2711 * Only if we are shutting down the fs will we see an
2712 * inode still in the AIL. If it is there, we should remove
2713 * it to prevent a use-after-free from occurring.
2714 */
2715 xfs_mount_t *mp = ip->i_mount;
2716 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
2717 int s;
2718
2719 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2720 XFS_FORCED_SHUTDOWN(ip->i_mount));
2721 if (lip->li_flags & XFS_LI_IN_AIL) {
2722 AIL_LOCK(mp, s);
2723 if (lip->li_flags & XFS_LI_IN_AIL)
2724 xfs_trans_delete_ail(mp, lip, s);
2725 else
2726 AIL_UNLOCK(mp, s);
2727 }
1da177e4
LT
2728 xfs_inode_item_destroy(ip);
2729 }
2730 kmem_zone_free(xfs_inode_zone, ip);
2731}
2732
2733
2734/*
2735 * Increment the pin count of the given buffer.
2736 * This value is protected by ipinlock spinlock in the mount structure.
2737 */
2738void
2739xfs_ipin(
2740 xfs_inode_t *ip)
2741{
2742 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE));
2743
2744 atomic_inc(&ip->i_pincount);
2745}
2746
2747/*
2748 * Decrement the pin count of the given inode, and wake up
2749 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2750 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2751 */
2752void
2753xfs_iunpin(
2754 xfs_inode_t *ip)
2755{
2756 ASSERT(atomic_read(&ip->i_pincount) > 0);
2757
4c60658e
DC
2758 if (atomic_dec_and_lock(&ip->i_pincount, &ip->i_flags_lock)) {
2759
58829e49 2760 /*
4c60658e
DC
2761 * If the inode is currently being reclaimed, the link between
2762 * the bhv_vnode and the xfs_inode will be broken after the
2763 * XFS_IRECLAIM* flag is set. Hence, if these flags are not
2764 * set, then we can move forward and mark the linux inode dirty
2765 * knowing that it is still valid as it won't freed until after
2766 * the bhv_vnode<->xfs_inode link is broken in xfs_reclaim. The
2767 * i_flags_lock is used to synchronise the setting of the
2768 * XFS_IRECLAIM* flags and the breaking of the link, and so we
2769 * can execute atomically w.r.t to reclaim by holding this lock
2770 * here.
58829e49 2771 *
4c60658e
DC
2772 * However, we still need to issue the unpin wakeup call as the
2773 * inode reclaim may be blocked waiting for the inode to become
2774 * unpinned.
58829e49 2775 */
f273ab84 2776
7a18c386 2777 if (!__xfs_iflags_test(ip, XFS_IRECLAIM|XFS_IRECLAIMABLE)) {
67fcaa73 2778 bhv_vnode_t *vp = XFS_ITOV_NULL(ip);
4c60658e
DC
2779 struct inode *inode = NULL;
2780
2781 BUG_ON(vp == NULL);
2782 inode = vn_to_inode(vp);
2783 BUG_ON(inode->i_state & I_CLEAR);
1da177e4 2784
58829e49 2785 /* make sync come back and flush this inode */
4c60658e
DC
2786 if (!(inode->i_state & (I_NEW|I_FREEING)))
2787 mark_inode_dirty_sync(inode);
1da177e4 2788 }
f273ab84 2789 spin_unlock(&ip->i_flags_lock);
1da177e4
LT
2790 wake_up(&ip->i_ipin_wait);
2791 }
2792}
2793
2794/*
2795 * This is called to wait for the given inode to be unpinned.
2796 * It will sleep until this happens. The caller must have the
2797 * inode locked in at least shared mode so that the buffer cannot
2798 * be subsequently pinned once someone is waiting for it to be
2799 * unpinned.
2800 */
ba0f32d4 2801STATIC void
1da177e4
LT
2802xfs_iunpin_wait(
2803 xfs_inode_t *ip)
2804{
2805 xfs_inode_log_item_t *iip;
2806 xfs_lsn_t lsn;
2807
2808 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE | MR_ACCESS));
2809
2810 if (atomic_read(&ip->i_pincount) == 0) {
2811 return;
2812 }
2813
2814 iip = ip->i_itemp;
2815 if (iip && iip->ili_last_lsn) {
2816 lsn = iip->ili_last_lsn;
2817 } else {
2818 lsn = (xfs_lsn_t)0;
2819 }
2820
2821 /*
2822 * Give the log a push so we don't wait here too long.
2823 */
2824 xfs_log_force(ip->i_mount, lsn, XFS_LOG_FORCE);
2825
2826 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2827}
2828
2829
2830/*
2831 * xfs_iextents_copy()
2832 *
2833 * This is called to copy the REAL extents (as opposed to the delayed
2834 * allocation extents) from the inode into the given buffer. It
2835 * returns the number of bytes copied into the buffer.
2836 *
2837 * If there are no delayed allocation extents, then we can just
2838 * memcpy() the extents into the buffer. Otherwise, we need to
2839 * examine each extent in turn and skip those which are delayed.
2840 */
2841int
2842xfs_iextents_copy(
2843 xfs_inode_t *ip,
2844 xfs_bmbt_rec_t *buffer,
2845 int whichfork)
2846{
2847 int copied;
2848 xfs_bmbt_rec_t *dest_ep;
2849 xfs_bmbt_rec_t *ep;
2850#ifdef XFS_BMAP_TRACE
2851 static char fname[] = "xfs_iextents_copy";
2852#endif
2853 int i;
2854 xfs_ifork_t *ifp;
2855 int nrecs;
2856 xfs_fsblock_t start_block;
2857
2858 ifp = XFS_IFORK_PTR(ip, whichfork);
2859 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
2860 ASSERT(ifp->if_bytes > 0);
2861
2862 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2863 xfs_bmap_trace_exlist(fname, ip, nrecs, whichfork);
2864 ASSERT(nrecs > 0);
2865
2866 /*
2867 * There are some delayed allocation extents in the
2868 * inode, so copy the extents one at a time and skip
2869 * the delayed ones. There must be at least one
2870 * non-delayed extent.
2871 */
1da177e4
LT
2872 dest_ep = buffer;
2873 copied = 0;
2874 for (i = 0; i < nrecs; i++) {
4eea22f0 2875 ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2876 start_block = xfs_bmbt_get_startblock(ep);
2877 if (ISNULLSTARTBLOCK(start_block)) {
2878 /*
2879 * It's a delayed allocation extent, so skip it.
2880 */
1da177e4
LT
2881 continue;
2882 }
2883
2884 /* Translate to on disk format */
2885 put_unaligned(INT_GET(ep->l0, ARCH_CONVERT),
2886 (__uint64_t*)&dest_ep->l0);
2887 put_unaligned(INT_GET(ep->l1, ARCH_CONVERT),
2888 (__uint64_t*)&dest_ep->l1);
2889 dest_ep++;
1da177e4
LT
2890 copied++;
2891 }
2892 ASSERT(copied != 0);
4eea22f0 2893 xfs_validate_extents(ifp, copied, 1, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2894
2895 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2896}
2897
2898/*
2899 * Each of the following cases stores data into the same region
2900 * of the on-disk inode, so only one of them can be valid at
2901 * any given time. While it is possible to have conflicting formats
2902 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2903 * in EXTENTS format, this can only happen when the fork has
2904 * changed formats after being modified but before being flushed.
2905 * In these cases, the format always takes precedence, because the
2906 * format indicates the current state of the fork.
2907 */
2908/*ARGSUSED*/
2909STATIC int
2910xfs_iflush_fork(
2911 xfs_inode_t *ip,
2912 xfs_dinode_t *dip,
2913 xfs_inode_log_item_t *iip,
2914 int whichfork,
2915 xfs_buf_t *bp)
2916{
2917 char *cp;
2918 xfs_ifork_t *ifp;
2919 xfs_mount_t *mp;
2920#ifdef XFS_TRANS_DEBUG
2921 int first;
2922#endif
2923 static const short brootflag[2] =
2924 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2925 static const short dataflag[2] =
2926 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2927 static const short extflag[2] =
2928 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2929
2930 if (iip == NULL)
2931 return 0;
2932 ifp = XFS_IFORK_PTR(ip, whichfork);
2933 /*
2934 * This can happen if we gave up in iformat in an error path,
2935 * for the attribute fork.
2936 */
2937 if (ifp == NULL) {
2938 ASSERT(whichfork == XFS_ATTR_FORK);
2939 return 0;
2940 }
2941 cp = XFS_DFORK_PTR(dip, whichfork);
2942 mp = ip->i_mount;
2943 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2944 case XFS_DINODE_FMT_LOCAL:
2945 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2946 (ifp->if_bytes > 0)) {
2947 ASSERT(ifp->if_u1.if_data != NULL);
2948 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2949 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2950 }
1da177e4
LT
2951 break;
2952
2953 case XFS_DINODE_FMT_EXTENTS:
2954 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2955 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2956 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2957 (ifp->if_bytes == 0));
2958 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2959 (ifp->if_bytes > 0));
1da177e4
LT
2960 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2961 (ifp->if_bytes > 0)) {
2962 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2963 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2964 whichfork);
2965 }
2966 break;
2967
2968 case XFS_DINODE_FMT_BTREE:
2969 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2970 (ifp->if_broot_bytes > 0)) {
2971 ASSERT(ifp->if_broot != NULL);
2972 ASSERT(ifp->if_broot_bytes <=
2973 (XFS_IFORK_SIZE(ip, whichfork) +
2974 XFS_BROOT_SIZE_ADJ));
2975 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2976 (xfs_bmdr_block_t *)cp,
2977 XFS_DFORK_SIZE(dip, mp, whichfork));
2978 }
2979 break;
2980
2981 case XFS_DINODE_FMT_DEV:
2982 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2983 ASSERT(whichfork == XFS_DATA_FORK);
2984 INT_SET(dip->di_u.di_dev, ARCH_CONVERT, ip->i_df.if_u2.if_rdev);
2985 }
2986 break;
2987
2988 case XFS_DINODE_FMT_UUID:
2989 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2990 ASSERT(whichfork == XFS_DATA_FORK);
2991 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2992 sizeof(uuid_t));
2993 }
2994 break;
2995
2996 default:
2997 ASSERT(0);
2998 break;
2999 }
3000
3001 return 0;
3002}
3003
3004/*
3005 * xfs_iflush() will write a modified inode's changes out to the
3006 * inode's on disk home. The caller must have the inode lock held
3007 * in at least shared mode and the inode flush semaphore must be
3008 * held as well. The inode lock will still be held upon return from
3009 * the call and the caller is free to unlock it.
3010 * The inode flush lock will be unlocked when the inode reaches the disk.
3011 * The flags indicate how the inode's buffer should be written out.
3012 */
3013int
3014xfs_iflush(
3015 xfs_inode_t *ip,
3016 uint flags)
3017{
3018 xfs_inode_log_item_t *iip;
3019 xfs_buf_t *bp;
3020 xfs_dinode_t *dip;
3021 xfs_mount_t *mp;
3022 int error;
3023 /* REFERENCED */
3024 xfs_chash_t *ch;
3025 xfs_inode_t *iq;
3026 int clcount; /* count of inodes clustered */
3027 int bufwasdelwri;
3028 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
3029 SPLDECL(s);
3030
3031 XFS_STATS_INC(xs_iflush_count);
3032
3033 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3034 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3035 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3036 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3037
3038 iip = ip->i_itemp;
3039 mp = ip->i_mount;
3040
3041 /*
3042 * If the inode isn't dirty, then just release the inode
3043 * flush lock and do nothing.
3044 */
3045 if ((ip->i_update_core == 0) &&
3046 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3047 ASSERT((iip != NULL) ?
3048 !(iip->ili_item.li_flags & XFS_LI_IN_AIL) : 1);
3049 xfs_ifunlock(ip);
3050 return 0;
3051 }
3052
3053 /*
3054 * We can't flush the inode until it is unpinned, so
3055 * wait for it. We know noone new can pin it, because
3056 * we are holding the inode lock shared and you need
3057 * to hold it exclusively to pin the inode.
3058 */
3059 xfs_iunpin_wait(ip);
3060
3061 /*
3062 * This may have been unpinned because the filesystem is shutting
3063 * down forcibly. If that's the case we must not write this inode
3064 * to disk, because the log record didn't make it to disk!
3065 */
3066 if (XFS_FORCED_SHUTDOWN(mp)) {
3067 ip->i_update_core = 0;
3068 if (iip)
3069 iip->ili_format.ilf_fields = 0;
3070 xfs_ifunlock(ip);
3071 return XFS_ERROR(EIO);
3072 }
3073
3074 /*
3075 * Get the buffer containing the on-disk inode.
3076 */
b12dd342
NS
3077 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0);
3078 if (error) {
1da177e4
LT
3079 xfs_ifunlock(ip);
3080 return error;
3081 }
3082
3083 /*
3084 * Decide how buffer will be flushed out. This is done before
3085 * the call to xfs_iflush_int because this field is zeroed by it.
3086 */
3087 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3088 /*
3089 * Flush out the inode buffer according to the directions
3090 * of the caller. In the cases where the caller has given
3091 * us a choice choose the non-delwri case. This is because
3092 * the inode is in the AIL and we need to get it out soon.
3093 */
3094 switch (flags) {
3095 case XFS_IFLUSH_SYNC:
3096 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3097 flags = 0;
3098 break;
3099 case XFS_IFLUSH_ASYNC:
3100 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3101 flags = INT_ASYNC;
3102 break;
3103 case XFS_IFLUSH_DELWRI:
3104 flags = INT_DELWRI;
3105 break;
3106 default:
3107 ASSERT(0);
3108 flags = 0;
3109 break;
3110 }
3111 } else {
3112 switch (flags) {
3113 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3114 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3115 case XFS_IFLUSH_DELWRI:
3116 flags = INT_DELWRI;
3117 break;
3118 case XFS_IFLUSH_ASYNC:
3119 flags = INT_ASYNC;
3120 break;
3121 case XFS_IFLUSH_SYNC:
3122 flags = 0;
3123 break;
3124 default:
3125 ASSERT(0);
3126 flags = 0;
3127 break;
3128 }
3129 }
3130
3131 /*
3132 * First flush out the inode that xfs_iflush was called with.
3133 */
3134 error = xfs_iflush_int(ip, bp);
3135 if (error) {
3136 goto corrupt_out;
3137 }
3138
3139 /*
3140 * inode clustering:
3141 * see if other inodes can be gathered into this write
3142 */
3143
3144 ip->i_chash->chl_buf = bp;
3145
3146 ch = XFS_CHASH(mp, ip->i_blkno);
3147 s = mutex_spinlock(&ch->ch_lock);
3148
3149 clcount = 0;
3150 for (iq = ip->i_cnext; iq != ip; iq = iq->i_cnext) {
3151 /*
3152 * Do an un-protected check to see if the inode is dirty and
3153 * is a candidate for flushing. These checks will be repeated
3154 * later after the appropriate locks are acquired.
3155 */
3156 iip = iq->i_itemp;
3157 if ((iq->i_update_core == 0) &&
3158 ((iip == NULL) ||
3159 !(iip->ili_format.ilf_fields & XFS_ILOG_ALL)) &&
3160 xfs_ipincount(iq) == 0) {
3161 continue;
3162 }
3163
3164 /*
3165 * Try to get locks. If any are unavailable,
3166 * then this inode cannot be flushed and is skipped.
3167 */
3168
3169 /* get inode locks (just i_lock) */
3170 if (xfs_ilock_nowait(iq, XFS_ILOCK_SHARED)) {
3171 /* get inode flush lock */
3172 if (xfs_iflock_nowait(iq)) {
3173 /* check if pinned */
3174 if (xfs_ipincount(iq) == 0) {
3175 /* arriving here means that
3176 * this inode can be flushed.
3177 * first re-check that it's
3178 * dirty
3179 */
3180 iip = iq->i_itemp;
3181 if ((iq->i_update_core != 0)||
3182 ((iip != NULL) &&
3183 (iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3184 clcount++;
3185 error = xfs_iflush_int(iq, bp);
3186 if (error) {
3187 xfs_iunlock(iq,
3188 XFS_ILOCK_SHARED);
3189 goto cluster_corrupt_out;
3190 }
3191 } else {
3192 xfs_ifunlock(iq);
3193 }
3194 } else {
3195 xfs_ifunlock(iq);
3196 }
3197 }
3198 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3199 }
3200 }
3201 mutex_spinunlock(&ch->ch_lock, s);
3202
3203 if (clcount) {
3204 XFS_STATS_INC(xs_icluster_flushcnt);
3205 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3206 }
3207
3208 /*
3209 * If the buffer is pinned then push on the log so we won't
3210 * get stuck waiting in the write for too long.
3211 */
3212 if (XFS_BUF_ISPINNED(bp)){
3213 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3214 }
3215
3216 if (flags & INT_DELWRI) {
3217 xfs_bdwrite(mp, bp);
3218 } else if (flags & INT_ASYNC) {
3219 xfs_bawrite(mp, bp);
3220 } else {
3221 error = xfs_bwrite(mp, bp);
3222 }
3223 return error;
3224
3225corrupt_out:
3226 xfs_buf_relse(bp);
7d04a335 3227 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3228 xfs_iflush_abort(ip);
3229 /*
3230 * Unlocks the flush lock
3231 */
3232 return XFS_ERROR(EFSCORRUPTED);
3233
3234cluster_corrupt_out:
3235 /* Corruption detected in the clustering loop. Invalidate the
3236 * inode buffer and shut down the filesystem.
3237 */
3238 mutex_spinunlock(&ch->ch_lock, s);
3239
3240 /*
3241 * Clean up the buffer. If it was B_DELWRI, just release it --
3242 * brelse can handle it with no problems. If not, shut down the
3243 * filesystem before releasing the buffer.
3244 */
3245 if ((bufwasdelwri= XFS_BUF_ISDELAYWRITE(bp))) {
3246 xfs_buf_relse(bp);
3247 }
3248
7d04a335 3249 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4
LT
3250
3251 if(!bufwasdelwri) {
3252 /*
3253 * Just like incore_relse: if we have b_iodone functions,
3254 * mark the buffer as an error and call them. Otherwise
3255 * mark it as stale and brelse.
3256 */
3257 if (XFS_BUF_IODONE_FUNC(bp)) {
3258 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3259 XFS_BUF_UNDONE(bp);
3260 XFS_BUF_STALE(bp);
3261 XFS_BUF_SHUT(bp);
3262 XFS_BUF_ERROR(bp,EIO);
3263 xfs_biodone(bp);
3264 } else {
3265 XFS_BUF_STALE(bp);
3266 xfs_buf_relse(bp);
3267 }
3268 }
3269
3270 xfs_iflush_abort(iq);
3271 /*
3272 * Unlocks the flush lock
3273 */
3274 return XFS_ERROR(EFSCORRUPTED);
3275}
3276
3277
3278STATIC int
3279xfs_iflush_int(
3280 xfs_inode_t *ip,
3281 xfs_buf_t *bp)
3282{
3283 xfs_inode_log_item_t *iip;
3284 xfs_dinode_t *dip;
3285 xfs_mount_t *mp;
3286#ifdef XFS_TRANS_DEBUG
3287 int first;
3288#endif
3289 SPLDECL(s);
3290
3291 ASSERT(ismrlocked(&ip->i_lock, MR_UPDATE|MR_ACCESS));
0d8fee32 3292 ASSERT(issemalocked(&(ip->i_flock)));
1da177e4
LT
3293 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3294 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3295
3296 iip = ip->i_itemp;
3297 mp = ip->i_mount;
3298
3299
3300 /*
3301 * If the inode isn't dirty, then just release the inode
3302 * flush lock and do nothing.
3303 */
3304 if ((ip->i_update_core == 0) &&
3305 ((iip == NULL) || !(iip->ili_format.ilf_fields & XFS_ILOG_ALL))) {
3306 xfs_ifunlock(ip);
3307 return 0;
3308 }
3309
3310 /* set *dip = inode's place in the buffer */
3311 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3312
3313 /*
3314 * Clear i_update_core before copying out the data.
3315 * This is for coordination with our timestamp updates
3316 * that don't hold the inode lock. They will always
3317 * update the timestamps BEFORE setting i_update_core,
3318 * so if we clear i_update_core after they set it we
3319 * are guaranteed to see their updates to the timestamps.
3320 * I believe that this depends on strongly ordered memory
3321 * semantics, but we have that. We use the SYNCHRONIZE
3322 * macro to make sure that the compiler does not reorder
3323 * the i_update_core access below the data copy below.
3324 */
3325 ip->i_update_core = 0;
3326 SYNCHRONIZE();
3327
42fe2b1f
CH
3328 /*
3329 * Make sure to get the latest atime from the Linux inode.
3330 */
3331 xfs_synchronize_atime(ip);
3332
1da177e4
LT
3333 if (XFS_TEST_ERROR(INT_GET(dip->di_core.di_magic,ARCH_CONVERT) != XFS_DINODE_MAGIC,
3334 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3335 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3336 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3337 ip->i_ino, (int) INT_GET(dip->di_core.di_magic, ARCH_CONVERT), dip);
3338 goto corrupt_out;
3339 }
3340 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3341 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3342 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3343 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3344 ip->i_ino, ip, ip->i_d.di_magic);
3345 goto corrupt_out;
3346 }
3347 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3348 if (XFS_TEST_ERROR(
3349 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3350 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3351 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3352 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3353 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3354 ip->i_ino, ip);
3355 goto corrupt_out;
3356 }
3357 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3358 if (XFS_TEST_ERROR(
3359 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3360 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3361 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3362 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3363 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3364 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3365 ip->i_ino, ip);
3366 goto corrupt_out;
3367 }
3368 }
3369 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3370 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3371 XFS_RANDOM_IFLUSH_5)) {
3372 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3373 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3374 ip->i_ino,
3375 ip->i_d.di_nextents + ip->i_d.di_anextents,
3376 ip->i_d.di_nblocks,
3377 ip);
3378 goto corrupt_out;
3379 }
3380 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3381 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3382 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3383 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3384 ip->i_ino, ip->i_d.di_forkoff, ip);
3385 goto corrupt_out;
3386 }
3387 /*
3388 * bump the flush iteration count, used to detect flushes which
3389 * postdate a log record during recovery.
3390 */
3391
3392 ip->i_d.di_flushiter++;
3393
3394 /*
3395 * Copy the dirty parts of the inode into the on-disk
3396 * inode. We always copy out the core of the inode,
3397 * because if the inode is dirty at all the core must
3398 * be.
3399 */
3400 xfs_xlate_dinode_core((xfs_caddr_t)&(dip->di_core), &(ip->i_d), -1);
3401
3402 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3403 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3404 ip->i_d.di_flushiter = 0;
3405
3406 /*
3407 * If this is really an old format inode and the superblock version
3408 * has not been updated to support only new format inodes, then
3409 * convert back to the old inode format. If the superblock version
3410 * has been updated, then make the conversion permanent.
3411 */
3412 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
3413 XFS_SB_VERSION_HASNLINK(&mp->m_sb));
3414 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
3415 if (!XFS_SB_VERSION_HASNLINK(&mp->m_sb)) {
3416 /*
3417 * Convert it back.
3418 */
3419 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
3420 INT_SET(dip->di_core.di_onlink, ARCH_CONVERT, ip->i_d.di_nlink);
3421 } else {
3422 /*
3423 * The superblock version has already been bumped,
3424 * so just make the conversion to the new inode
3425 * format permanent.
3426 */
3427 ip->i_d.di_version = XFS_DINODE_VERSION_2;
3428 INT_SET(dip->di_core.di_version, ARCH_CONVERT, XFS_DINODE_VERSION_2);
3429 ip->i_d.di_onlink = 0;
3430 dip->di_core.di_onlink = 0;
3431 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3432 memset(&(dip->di_core.di_pad[0]), 0,
3433 sizeof(dip->di_core.di_pad));
3434 ASSERT(ip->i_d.di_projid == 0);
3435 }
3436 }
3437
3438 if (xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp) == EFSCORRUPTED) {
3439 goto corrupt_out;
3440 }
3441
3442 if (XFS_IFORK_Q(ip)) {
3443 /*
3444 * The only error from xfs_iflush_fork is on the data fork.
3445 */
3446 (void) xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3447 }
3448 xfs_inobp_check(mp, bp);
3449
3450 /*
3451 * We've recorded everything logged in the inode, so we'd
3452 * like to clear the ilf_fields bits so we don't log and
3453 * flush things unnecessarily. However, we can't stop
3454 * logging all this information until the data we've copied
3455 * into the disk buffer is written to disk. If we did we might
3456 * overwrite the copy of the inode in the log with all the
3457 * data after re-logging only part of it, and in the face of
3458 * a crash we wouldn't have all the data we need to recover.
3459 *
3460 * What we do is move the bits to the ili_last_fields field.
3461 * When logging the inode, these bits are moved back to the
3462 * ilf_fields field. In the xfs_iflush_done() routine we
3463 * clear ili_last_fields, since we know that the information
3464 * those bits represent is permanently on disk. As long as
3465 * the flush completes before the inode is logged again, then
3466 * both ilf_fields and ili_last_fields will be cleared.
3467 *
3468 * We can play with the ilf_fields bits here, because the inode
3469 * lock must be held exclusively in order to set bits there
3470 * and the flush lock protects the ili_last_fields bits.
3471 * Set ili_logged so the flush done
3472 * routine can tell whether or not to look in the AIL.
3473 * Also, store the current LSN of the inode so that we can tell
3474 * whether the item has moved in the AIL from xfs_iflush_done().
3475 * In order to read the lsn we need the AIL lock, because
3476 * it is a 64 bit value that cannot be read atomically.
3477 */
3478 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3479 iip->ili_last_fields = iip->ili_format.ilf_fields;
3480 iip->ili_format.ilf_fields = 0;
3481 iip->ili_logged = 1;
3482
3483 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
3484 AIL_LOCK(mp,s);
3485 iip->ili_flush_lsn = iip->ili_item.li_lsn;
3486 AIL_UNLOCK(mp, s);
3487
3488 /*
3489 * Attach the function xfs_iflush_done to the inode's
3490 * buffer. This will remove the inode from the AIL
3491 * and unlock the inode's flush lock when the inode is
3492 * completely written to disk.
3493 */
3494 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3495 xfs_iflush_done, (xfs_log_item_t *)iip);
3496
3497 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3498 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3499 } else {
3500 /*
3501 * We're flushing an inode which is not in the AIL and has
3502 * not been logged but has i_update_core set. For this
3503 * case we can use a B_DELWRI flush and immediately drop
3504 * the inode flush lock because we can avoid the whole
3505 * AIL state thing. It's OK to drop the flush lock now,
3506 * because we've already locked the buffer and to do anything
3507 * you really need both.
3508 */
3509 if (iip != NULL) {
3510 ASSERT(iip->ili_logged == 0);
3511 ASSERT(iip->ili_last_fields == 0);
3512 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3513 }
3514 xfs_ifunlock(ip);
3515 }
3516
3517 return 0;
3518
3519corrupt_out:
3520 return XFS_ERROR(EFSCORRUPTED);
3521}
3522
3523
3524/*
efa80278 3525 * Flush all inactive inodes in mp.
1da177e4 3526 */
efa80278 3527void
1da177e4 3528xfs_iflush_all(
efa80278 3529 xfs_mount_t *mp)
1da177e4 3530{
1da177e4 3531 xfs_inode_t *ip;
67fcaa73 3532 bhv_vnode_t *vp;
1da177e4 3533
efa80278
CH
3534 again:
3535 XFS_MOUNT_ILOCK(mp);
3536 ip = mp->m_inodes;
3537 if (ip == NULL)
3538 goto out;
1da177e4 3539
efa80278
CH
3540 do {
3541 /* Make sure we skip markers inserted by sync */
3542 if (ip->i_mount == NULL) {
3543 ip = ip->i_mnext;
3544 continue;
3545 }
1da177e4 3546
efa80278
CH
3547 vp = XFS_ITOV_NULL(ip);
3548 if (!vp) {
1da177e4 3549 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3550 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3551 goto again;
3552 }
1da177e4 3553
efa80278 3554 ASSERT(vn_count(vp) == 0);
1da177e4 3555
efa80278
CH
3556 ip = ip->i_mnext;
3557 } while (ip != mp->m_inodes);
3558 out:
1da177e4 3559 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3560}
3561
1da177e4
LT
3562/*
3563 * xfs_iaccess: check accessibility of inode for mode.
3564 */
3565int
3566xfs_iaccess(
3567 xfs_inode_t *ip,
3568 mode_t mode,
3569 cred_t *cr)
3570{
3571 int error;
3572 mode_t orgmode = mode;
ec86dc02 3573 struct inode *inode = vn_to_inode(XFS_ITOV(ip));
1da177e4
LT
3574
3575 if (mode & S_IWUSR) {
3576 umode_t imode = inode->i_mode;
3577
3578 if (IS_RDONLY(inode) &&
3579 (S_ISREG(imode) || S_ISDIR(imode) || S_ISLNK(imode)))
3580 return XFS_ERROR(EROFS);
3581
3582 if (IS_IMMUTABLE(inode))
3583 return XFS_ERROR(EACCES);
3584 }
3585
3586 /*
3587 * If there's an Access Control List it's used instead of
3588 * the mode bits.
3589 */
3590 if ((error = _ACL_XFS_IACCESS(ip, mode, cr)) != -1)
3591 return error ? XFS_ERROR(error) : 0;
3592
3593 if (current_fsuid(cr) != ip->i_d.di_uid) {
3594 mode >>= 3;
3595 if (!in_group_p((gid_t)ip->i_d.di_gid))
3596 mode >>= 3;
3597 }
3598
3599 /*
3600 * If the DACs are ok we don't need any capability check.
3601 */
3602 if ((ip->i_d.di_mode & mode) == mode)
3603 return 0;
3604 /*
3605 * Read/write DACs are always overridable.
3606 * Executable DACs are overridable if at least one exec bit is set.
3607 */
3608 if (!(orgmode & S_IXUSR) ||
3609 (inode->i_mode & S_IXUGO) || S_ISDIR(inode->i_mode))
3610 if (capable_cred(cr, CAP_DAC_OVERRIDE))
3611 return 0;
3612
3613 if ((orgmode == S_IRUSR) ||
3614 (S_ISDIR(inode->i_mode) && (!(orgmode & S_IWUSR)))) {
3615 if (capable_cred(cr, CAP_DAC_READ_SEARCH))
3616 return 0;
3617#ifdef NOISE
3618 cmn_err(CE_NOTE, "Ick: mode=%o, orgmode=%o", mode, orgmode);
3619#endif /* NOISE */
3620 return XFS_ERROR(EACCES);
3621 }
3622 return XFS_ERROR(EACCES);
3623}
3624
3625/*
3626 * xfs_iroundup: round up argument to next power of two
3627 */
3628uint
3629xfs_iroundup(
3630 uint v)
3631{
3632 int i;
3633 uint m;
3634
3635 if ((v & (v - 1)) == 0)
3636 return v;
3637 ASSERT((v & 0x80000000) == 0);
3638 if ((v & (v + 1)) == 0)
3639 return v + 1;
3640 for (i = 0, m = 1; i < 31; i++, m <<= 1) {
3641 if (v & m)
3642 continue;
3643 v |= m;
3644 if ((v & (v + 1)) == 0)
3645 return v + 1;
3646 }
3647 ASSERT(0);
3648 return( 0 );
3649}
3650
1da177e4
LT
3651#ifdef XFS_ILOCK_TRACE
3652ktrace_t *xfs_ilock_trace_buf;
3653
3654void
3655xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3656{
3657 ktrace_enter(ip->i_lock_trace,
3658 (void *)ip,
3659 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3660 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3661 (void *)ra, /* caller of ilock */
3662 (void *)(unsigned long)current_cpu(),
3663 (void *)(unsigned long)current_pid(),
3664 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3665}
3666#endif
4eea22f0
MK
3667
3668/*
3669 * Return a pointer to the extent record at file index idx.
3670 */
3671xfs_bmbt_rec_t *
3672xfs_iext_get_ext(
3673 xfs_ifork_t *ifp, /* inode fork pointer */
3674 xfs_extnum_t idx) /* index of target extent */
3675{
3676 ASSERT(idx >= 0);
0293ce3a
MK
3677 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3678 return ifp->if_u1.if_ext_irec->er_extbuf;
3679 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3680 xfs_ext_irec_t *erp; /* irec pointer */
3681 int erp_idx = 0; /* irec index */
3682 xfs_extnum_t page_idx = idx; /* ext index in target list */
3683
3684 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3685 return &erp->er_extbuf[page_idx];
3686 } else if (ifp->if_bytes) {
4eea22f0
MK
3687 return &ifp->if_u1.if_extents[idx];
3688 } else {
3689 return NULL;
3690 }
3691}
3692
3693/*
3694 * Insert new item(s) into the extent records for incore inode
3695 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3696 */
3697void
3698xfs_iext_insert(
3699 xfs_ifork_t *ifp, /* inode fork pointer */
3700 xfs_extnum_t idx, /* starting index of new items */
3701 xfs_extnum_t count, /* number of inserted items */
3702 xfs_bmbt_irec_t *new) /* items to insert */
3703{
3704 xfs_bmbt_rec_t *ep; /* extent record pointer */
3705 xfs_extnum_t i; /* extent record index */
3706
3707 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3708 xfs_iext_add(ifp, idx, count);
3709 for (i = idx; i < idx + count; i++, new++) {
3710 ep = xfs_iext_get_ext(ifp, i);
3711 xfs_bmbt_set_all(ep, new);
3712 }
3713}
3714
3715/*
3716 * This is called when the amount of space required for incore file
3717 * extents needs to be increased. The ext_diff parameter stores the
3718 * number of new extents being added and the idx parameter contains
3719 * the extent index where the new extents will be added. If the new
3720 * extents are being appended, then we just need to (re)allocate and
3721 * initialize the space. Otherwise, if the new extents are being
3722 * inserted into the middle of the existing entries, a bit more work
3723 * is required to make room for the new extents to be inserted. The
3724 * caller is responsible for filling in the new extent entries upon
3725 * return.
3726 */
3727void
3728xfs_iext_add(
3729 xfs_ifork_t *ifp, /* inode fork pointer */
3730 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3731 int ext_diff) /* number of extents to add */
4eea22f0
MK
3732{
3733 int byte_diff; /* new bytes being added */
3734 int new_size; /* size of extents after adding */
3735 xfs_extnum_t nextents; /* number of extents in file */
3736
3737 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3738 ASSERT((idx >= 0) && (idx <= nextents));
3739 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3740 new_size = ifp->if_bytes + byte_diff;
3741 /*
3742 * If the new number of extents (nextents + ext_diff)
3743 * fits inside the inode, then continue to use the inline
3744 * extent buffer.
3745 */
3746 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3747 if (idx < nextents) {
3748 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3749 &ifp->if_u2.if_inline_ext[idx],
3750 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3751 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3752 }
3753 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3754 ifp->if_real_bytes = 0;
0293ce3a 3755 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3756 }
3757 /*
3758 * Otherwise use a linear (direct) extent list.
3759 * If the extents are currently inside the inode,
3760 * xfs_iext_realloc_direct will switch us from
3761 * inline to direct extent allocation mode.
3762 */
0293ce3a 3763 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3764 xfs_iext_realloc_direct(ifp, new_size);
3765 if (idx < nextents) {
3766 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3767 &ifp->if_u1.if_extents[idx],
3768 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3769 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3770 }
3771 }
0293ce3a
MK
3772 /* Indirection array */
3773 else {
3774 xfs_ext_irec_t *erp;
3775 int erp_idx = 0;
3776 int page_idx = idx;
3777
3778 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3779 if (ifp->if_flags & XFS_IFEXTIREC) {
3780 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3781 } else {
3782 xfs_iext_irec_init(ifp);
3783 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3784 erp = ifp->if_u1.if_ext_irec;
3785 }
3786 /* Extents fit in target extent page */
3787 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3788 if (page_idx < erp->er_extcount) {
3789 memmove(&erp->er_extbuf[page_idx + ext_diff],
3790 &erp->er_extbuf[page_idx],
3791 (erp->er_extcount - page_idx) *
3792 sizeof(xfs_bmbt_rec_t));
3793 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3794 }
3795 erp->er_extcount += ext_diff;
3796 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3797 }
3798 /* Insert a new extent page */
3799 else if (erp) {
3800 xfs_iext_add_indirect_multi(ifp,
3801 erp_idx, page_idx, ext_diff);
3802 }
3803 /*
3804 * If extent(s) are being appended to the last page in
3805 * the indirection array and the new extent(s) don't fit
3806 * in the page, then erp is NULL and erp_idx is set to
3807 * the next index needed in the indirection array.
3808 */
3809 else {
3810 int count = ext_diff;
3811
3812 while (count) {
3813 erp = xfs_iext_irec_new(ifp, erp_idx);
3814 erp->er_extcount = count;
3815 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3816 if (count) {
3817 erp_idx++;
3818 }
3819 }
3820 }
3821 }
4eea22f0
MK
3822 ifp->if_bytes = new_size;
3823}
3824
0293ce3a
MK
3825/*
3826 * This is called when incore extents are being added to the indirection
3827 * array and the new extents do not fit in the target extent list. The
3828 * erp_idx parameter contains the irec index for the target extent list
3829 * in the indirection array, and the idx parameter contains the extent
3830 * index within the list. The number of extents being added is stored
3831 * in the count parameter.
3832 *
3833 * |-------| |-------|
3834 * | | | | idx - number of extents before idx
3835 * | idx | | count |
3836 * | | | | count - number of extents being inserted at idx
3837 * |-------| |-------|
3838 * | count | | nex2 | nex2 - number of extents after idx + count
3839 * |-------| |-------|
3840 */
3841void
3842xfs_iext_add_indirect_multi(
3843 xfs_ifork_t *ifp, /* inode fork pointer */
3844 int erp_idx, /* target extent irec index */
3845 xfs_extnum_t idx, /* index within target list */
3846 int count) /* new extents being added */
3847{
3848 int byte_diff; /* new bytes being added */
3849 xfs_ext_irec_t *erp; /* pointer to irec entry */
3850 xfs_extnum_t ext_diff; /* number of extents to add */
3851 xfs_extnum_t ext_cnt; /* new extents still needed */
3852 xfs_extnum_t nex2; /* extents after idx + count */
3853 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3854 int nlists; /* number of irec's (lists) */
3855
3856 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3857 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3858 nex2 = erp->er_extcount - idx;
3859 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3860
3861 /*
3862 * Save second part of target extent list
3863 * (all extents past */
3864 if (nex2) {
3865 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3866 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_SLEEP);
3867 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3868 erp->er_extcount -= nex2;
3869 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3870 memset(&erp->er_extbuf[idx], 0, byte_diff);
3871 }
3872
3873 /*
3874 * Add the new extents to the end of the target
3875 * list, then allocate new irec record(s) and
3876 * extent buffer(s) as needed to store the rest
3877 * of the new extents.
3878 */
3879 ext_cnt = count;
3880 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3881 if (ext_diff) {
3882 erp->er_extcount += ext_diff;
3883 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3884 ext_cnt -= ext_diff;
3885 }
3886 while (ext_cnt) {
3887 erp_idx++;
3888 erp = xfs_iext_irec_new(ifp, erp_idx);
3889 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3890 erp->er_extcount = ext_diff;
3891 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3892 ext_cnt -= ext_diff;
3893 }
3894
3895 /* Add nex2 extents back to indirection array */
3896 if (nex2) {
3897 xfs_extnum_t ext_avail;
3898 int i;
3899
3900 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3901 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3902 i = 0;
3903 /*
3904 * If nex2 extents fit in the current page, append
3905 * nex2_ep after the new extents.
3906 */
3907 if (nex2 <= ext_avail) {
3908 i = erp->er_extcount;
3909 }
3910 /*
3911 * Otherwise, check if space is available in the
3912 * next page.
3913 */
3914 else if ((erp_idx < nlists - 1) &&
3915 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3916 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3917 erp_idx++;
3918 erp++;
3919 /* Create a hole for nex2 extents */
3920 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3921 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3922 }
3923 /*
3924 * Final choice, create a new extent page for
3925 * nex2 extents.
3926 */
3927 else {
3928 erp_idx++;
3929 erp = xfs_iext_irec_new(ifp, erp_idx);
3930 }
3931 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3932 kmem_free(nex2_ep, byte_diff);
3933 erp->er_extcount += nex2;
3934 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3935 }
3936}
3937
4eea22f0
MK
3938/*
3939 * This is called when the amount of space required for incore file
3940 * extents needs to be decreased. The ext_diff parameter stores the
3941 * number of extents to be removed and the idx parameter contains
3942 * the extent index where the extents will be removed from.
0293ce3a
MK
3943 *
3944 * If the amount of space needed has decreased below the linear
3945 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3946 * extent array. Otherwise, use kmem_realloc() to adjust the
3947 * size to what is needed.
4eea22f0
MK
3948 */
3949void
3950xfs_iext_remove(
3951 xfs_ifork_t *ifp, /* inode fork pointer */
3952 xfs_extnum_t idx, /* index to begin removing exts */
3953 int ext_diff) /* number of extents to remove */
3954{
3955 xfs_extnum_t nextents; /* number of extents in file */
3956 int new_size; /* size of extents after removal */
3957
3958 ASSERT(ext_diff > 0);
3959 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3960 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3961
3962 if (new_size == 0) {
3963 xfs_iext_destroy(ifp);
0293ce3a
MK
3964 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3965 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3966 } else if (ifp->if_real_bytes) {
3967 xfs_iext_remove_direct(ifp, idx, ext_diff);
3968 } else {
3969 xfs_iext_remove_inline(ifp, idx, ext_diff);
3970 }
3971 ifp->if_bytes = new_size;
3972}
3973
3974/*
3975 * This removes ext_diff extents from the inline buffer, beginning
3976 * at extent index idx.
3977 */
3978void
3979xfs_iext_remove_inline(
3980 xfs_ifork_t *ifp, /* inode fork pointer */
3981 xfs_extnum_t idx, /* index to begin removing exts */
3982 int ext_diff) /* number of extents to remove */
3983{
3984 int nextents; /* number of extents in file */
3985
0293ce3a 3986 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3987 ASSERT(idx < XFS_INLINE_EXTS);
3988 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3989 ASSERT(((nextents - ext_diff) > 0) &&
3990 (nextents - ext_diff) < XFS_INLINE_EXTS);
3991
3992 if (idx + ext_diff < nextents) {
3993 memmove(&ifp->if_u2.if_inline_ext[idx],
3994 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3995 (nextents - (idx + ext_diff)) *
3996 sizeof(xfs_bmbt_rec_t));
3997 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3998 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3999 } else {
4000 memset(&ifp->if_u2.if_inline_ext[idx], 0,
4001 ext_diff * sizeof(xfs_bmbt_rec_t));
4002 }
4003}
4004
4005/*
4006 * This removes ext_diff extents from a linear (direct) extent list,
4007 * beginning at extent index idx. If the extents are being removed
4008 * from the end of the list (ie. truncate) then we just need to re-
4009 * allocate the list to remove the extra space. Otherwise, if the
4010 * extents are being removed from the middle of the existing extent
4011 * entries, then we first need to move the extent records beginning
4012 * at idx + ext_diff up in the list to overwrite the records being
4013 * removed, then remove the extra space via kmem_realloc.
4014 */
4015void
4016xfs_iext_remove_direct(
4017 xfs_ifork_t *ifp, /* inode fork pointer */
4018 xfs_extnum_t idx, /* index to begin removing exts */
4019 int ext_diff) /* number of extents to remove */
4020{
4021 xfs_extnum_t nextents; /* number of extents in file */
4022 int new_size; /* size of extents after removal */
4023
0293ce3a 4024 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
4025 new_size = ifp->if_bytes -
4026 (ext_diff * sizeof(xfs_bmbt_rec_t));
4027 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4028
4029 if (new_size == 0) {
4030 xfs_iext_destroy(ifp);
4031 return;
4032 }
4033 /* Move extents up in the list (if needed) */
4034 if (idx + ext_diff < nextents) {
4035 memmove(&ifp->if_u1.if_extents[idx],
4036 &ifp->if_u1.if_extents[idx + ext_diff],
4037 (nextents - (idx + ext_diff)) *
4038 sizeof(xfs_bmbt_rec_t));
4039 }
4040 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
4041 0, ext_diff * sizeof(xfs_bmbt_rec_t));
4042 /*
4043 * Reallocate the direct extent list. If the extents
4044 * will fit inside the inode then xfs_iext_realloc_direct
4045 * will switch from direct to inline extent allocation
4046 * mode for us.
4047 */
4048 xfs_iext_realloc_direct(ifp, new_size);
4049 ifp->if_bytes = new_size;
4050}
4051
0293ce3a
MK
4052/*
4053 * This is called when incore extents are being removed from the
4054 * indirection array and the extents being removed span multiple extent
4055 * buffers. The idx parameter contains the file extent index where we
4056 * want to begin removing extents, and the count parameter contains
4057 * how many extents need to be removed.
4058 *
4059 * |-------| |-------|
4060 * | nex1 | | | nex1 - number of extents before idx
4061 * |-------| | count |
4062 * | | | | count - number of extents being removed at idx
4063 * | count | |-------|
4064 * | | | nex2 | nex2 - number of extents after idx + count
4065 * |-------| |-------|
4066 */
4067void
4068xfs_iext_remove_indirect(
4069 xfs_ifork_t *ifp, /* inode fork pointer */
4070 xfs_extnum_t idx, /* index to begin removing extents */
4071 int count) /* number of extents to remove */
4072{
4073 xfs_ext_irec_t *erp; /* indirection array pointer */
4074 int erp_idx = 0; /* indirection array index */
4075 xfs_extnum_t ext_cnt; /* extents left to remove */
4076 xfs_extnum_t ext_diff; /* extents to remove in current list */
4077 xfs_extnum_t nex1; /* number of extents before idx */
4078 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 4079 int nlists; /* entries in indirection array */
0293ce3a
MK
4080 int page_idx = idx; /* index in target extent list */
4081
4082 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4083 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
4084 ASSERT(erp != NULL);
4085 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4086 nex1 = page_idx;
4087 ext_cnt = count;
4088 while (ext_cnt) {
4089 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
4090 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
4091 /*
4092 * Check for deletion of entire list;
4093 * xfs_iext_irec_remove() updates extent offsets.
4094 */
4095 if (ext_diff == erp->er_extcount) {
4096 xfs_iext_irec_remove(ifp, erp_idx);
4097 ext_cnt -= ext_diff;
4098 nex1 = 0;
4099 if (ext_cnt) {
4100 ASSERT(erp_idx < ifp->if_real_bytes /
4101 XFS_IEXT_BUFSZ);
4102 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4103 nex1 = 0;
4104 continue;
4105 } else {
4106 break;
4107 }
4108 }
4109 /* Move extents up (if needed) */
4110 if (nex2) {
4111 memmove(&erp->er_extbuf[nex1],
4112 &erp->er_extbuf[nex1 + ext_diff],
4113 nex2 * sizeof(xfs_bmbt_rec_t));
4114 }
4115 /* Zero out rest of page */
4116 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4117 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4118 /* Update remaining counters */
4119 erp->er_extcount -= ext_diff;
4120 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4121 ext_cnt -= ext_diff;
4122 nex1 = 0;
4123 erp_idx++;
4124 erp++;
4125 }
4126 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4127 xfs_iext_irec_compact(ifp);
4128}
4129
4eea22f0
MK
4130/*
4131 * Create, destroy, or resize a linear (direct) block of extents.
4132 */
4133void
4134xfs_iext_realloc_direct(
4135 xfs_ifork_t *ifp, /* inode fork pointer */
4136 int new_size) /* new size of extents */
4137{
4138 int rnew_size; /* real new size of extents */
4139
4140 rnew_size = new_size;
4141
0293ce3a
MK
4142 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4143 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4144 (new_size != ifp->if_real_bytes)));
4145
4eea22f0
MK
4146 /* Free extent records */
4147 if (new_size == 0) {
4148 xfs_iext_destroy(ifp);
4149 }
4150 /* Resize direct extent list and zero any new bytes */
4151 else if (ifp->if_real_bytes) {
4152 /* Check if extents will fit inside the inode */
4153 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4154 xfs_iext_direct_to_inline(ifp, new_size /
4155 (uint)sizeof(xfs_bmbt_rec_t));
4156 ifp->if_bytes = new_size;
4157 return;
4158 }
4159 if ((new_size & (new_size - 1)) != 0) {
4160 rnew_size = xfs_iroundup(new_size);
4161 }
4162 if (rnew_size != ifp->if_real_bytes) {
4163 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4164 kmem_realloc(ifp->if_u1.if_extents,
4165 rnew_size,
4166 ifp->if_real_bytes,
4167 KM_SLEEP);
4168 }
4169 if (rnew_size > ifp->if_real_bytes) {
4170 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4171 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4172 rnew_size - ifp->if_real_bytes);
4173 }
4174 }
4175 /*
4176 * Switch from the inline extent buffer to a direct
4177 * extent list. Be sure to include the inline extent
4178 * bytes in new_size.
4179 */
4180 else {
4181 new_size += ifp->if_bytes;
4182 if ((new_size & (new_size - 1)) != 0) {
4183 rnew_size = xfs_iroundup(new_size);
4184 }
4185 xfs_iext_inline_to_direct(ifp, rnew_size);
4186 }
4187 ifp->if_real_bytes = rnew_size;
4188 ifp->if_bytes = new_size;
4189}
4190
4191/*
4192 * Switch from linear (direct) extent records to inline buffer.
4193 */
4194void
4195xfs_iext_direct_to_inline(
4196 xfs_ifork_t *ifp, /* inode fork pointer */
4197 xfs_extnum_t nextents) /* number of extents in file */
4198{
4199 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4200 ASSERT(nextents <= XFS_INLINE_EXTS);
4201 /*
4202 * The inline buffer was zeroed when we switched
4203 * from inline to direct extent allocation mode,
4204 * so we don't need to clear it here.
4205 */
4206 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4207 nextents * sizeof(xfs_bmbt_rec_t));
fe6c1e72 4208 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4eea22f0
MK
4209 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4210 ifp->if_real_bytes = 0;
4211}
4212
4213/*
4214 * Switch from inline buffer to linear (direct) extent records.
4215 * new_size should already be rounded up to the next power of 2
4216 * by the caller (when appropriate), so use new_size as it is.
4217 * However, since new_size may be rounded up, we can't update
4218 * if_bytes here. It is the caller's responsibility to update
4219 * if_bytes upon return.
4220 */
4221void
4222xfs_iext_inline_to_direct(
4223 xfs_ifork_t *ifp, /* inode fork pointer */
4224 int new_size) /* number of extents in file */
4225{
4226 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4227 kmem_alloc(new_size, KM_SLEEP);
4228 memset(ifp->if_u1.if_extents, 0, new_size);
4229 if (ifp->if_bytes) {
4230 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4231 ifp->if_bytes);
4232 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4233 sizeof(xfs_bmbt_rec_t));
4234 }
4235 ifp->if_real_bytes = new_size;
4236}
4237
0293ce3a
MK
4238/*
4239 * Resize an extent indirection array to new_size bytes.
4240 */
4241void
4242xfs_iext_realloc_indirect(
4243 xfs_ifork_t *ifp, /* inode fork pointer */
4244 int new_size) /* new indirection array size */
4245{
4246 int nlists; /* number of irec's (ex lists) */
4247 int size; /* current indirection array size */
4248
4249 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4250 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4251 size = nlists * sizeof(xfs_ext_irec_t);
4252 ASSERT(ifp->if_real_bytes);
4253 ASSERT((new_size >= 0) && (new_size != size));
4254 if (new_size == 0) {
4255 xfs_iext_destroy(ifp);
4256 } else {
4257 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4258 kmem_realloc(ifp->if_u1.if_ext_irec,
4259 new_size, size, KM_SLEEP);
4260 }
4261}
4262
4263/*
4264 * Switch from indirection array to linear (direct) extent allocations.
4265 */
4266void
4267xfs_iext_indirect_to_direct(
4268 xfs_ifork_t *ifp) /* inode fork pointer */
4269{
4270 xfs_bmbt_rec_t *ep; /* extent record pointer */
4271 xfs_extnum_t nextents; /* number of extents in file */
4272 int size; /* size of file extents */
4273
4274 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4275 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4276 ASSERT(nextents <= XFS_LINEAR_EXTS);
4277 size = nextents * sizeof(xfs_bmbt_rec_t);
4278
4279 xfs_iext_irec_compact_full(ifp);
4280 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4281
4282 ep = ifp->if_u1.if_ext_irec->er_extbuf;
4283 kmem_free(ifp->if_u1.if_ext_irec, sizeof(xfs_ext_irec_t));
4284 ifp->if_flags &= ~XFS_IFEXTIREC;
4285 ifp->if_u1.if_extents = ep;
4286 ifp->if_bytes = size;
4287 if (nextents < XFS_LINEAR_EXTS) {
4288 xfs_iext_realloc_direct(ifp, size);
4289 }
4290}
4291
4eea22f0
MK
4292/*
4293 * Free incore file extents.
4294 */
4295void
4296xfs_iext_destroy(
4297 xfs_ifork_t *ifp) /* inode fork pointer */
4298{
0293ce3a
MK
4299 if (ifp->if_flags & XFS_IFEXTIREC) {
4300 int erp_idx;
4301 int nlists;
4302
4303 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4304 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4305 xfs_iext_irec_remove(ifp, erp_idx);
4306 }
4307 ifp->if_flags &= ~XFS_IFEXTIREC;
4308 } else if (ifp->if_real_bytes) {
4eea22f0
MK
4309 kmem_free(ifp->if_u1.if_extents, ifp->if_real_bytes);
4310 } else if (ifp->if_bytes) {
4311 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4312 sizeof(xfs_bmbt_rec_t));
4313 }
4314 ifp->if_u1.if_extents = NULL;
4315 ifp->if_real_bytes = 0;
4316 ifp->if_bytes = 0;
4317}
0293ce3a 4318
8867bc9b
MK
4319/*
4320 * Return a pointer to the extent record for file system block bno.
4321 */
4322xfs_bmbt_rec_t * /* pointer to found extent record */
4323xfs_iext_bno_to_ext(
4324 xfs_ifork_t *ifp, /* inode fork pointer */
4325 xfs_fileoff_t bno, /* block number to search for */
4326 xfs_extnum_t *idxp) /* index of target extent */
4327{
4328 xfs_bmbt_rec_t *base; /* pointer to first extent */
4329 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
4330 xfs_bmbt_rec_t *ep = NULL; /* pointer to target extent */
4331 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4332 int high; /* upper boundary in search */
8867bc9b 4333 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4334 int low; /* lower boundary in search */
8867bc9b
MK
4335 xfs_extnum_t nextents; /* number of file extents */
4336 xfs_fileoff_t startoff = 0; /* start offset of extent */
4337
4338 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4339 if (nextents == 0) {
4340 *idxp = 0;
4341 return NULL;
4342 }
4343 low = 0;
4344 if (ifp->if_flags & XFS_IFEXTIREC) {
4345 /* Find target extent list */
4346 int erp_idx = 0;
4347 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4348 base = erp->er_extbuf;
4349 high = erp->er_extcount - 1;
4350 } else {
4351 base = ifp->if_u1.if_extents;
4352 high = nextents - 1;
4353 }
4354 /* Binary search extent records */
4355 while (low <= high) {
4356 idx = (low + high) >> 1;
4357 ep = base + idx;
4358 startoff = xfs_bmbt_get_startoff(ep);
4359 blockcount = xfs_bmbt_get_blockcount(ep);
4360 if (bno < startoff) {
4361 high = idx - 1;
4362 } else if (bno >= startoff + blockcount) {
4363 low = idx + 1;
4364 } else {
4365 /* Convert back to file-based extent index */
4366 if (ifp->if_flags & XFS_IFEXTIREC) {
4367 idx += erp->er_extoff;
4368 }
4369 *idxp = idx;
4370 return ep;
4371 }
4372 }
4373 /* Convert back to file-based extent index */
4374 if (ifp->if_flags & XFS_IFEXTIREC) {
4375 idx += erp->er_extoff;
4376 }
4377 if (bno >= startoff + blockcount) {
4378 if (++idx == nextents) {
4379 ep = NULL;
4380 } else {
4381 ep = xfs_iext_get_ext(ifp, idx);
4382 }
4383 }
4384 *idxp = idx;
4385 return ep;
4386}
4387
0293ce3a
MK
4388/*
4389 * Return a pointer to the indirection array entry containing the
4390 * extent record for filesystem block bno. Store the index of the
4391 * target irec in *erp_idxp.
4392 */
8867bc9b 4393xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4394xfs_iext_bno_to_irec(
4395 xfs_ifork_t *ifp, /* inode fork pointer */
4396 xfs_fileoff_t bno, /* block number to search for */
4397 int *erp_idxp) /* irec index of target ext list */
4398{
4399 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4400 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4401 int erp_idx; /* indirection array index */
0293ce3a
MK
4402 int nlists; /* number of extent irec's (lists) */
4403 int high; /* binary search upper limit */
4404 int low; /* binary search lower limit */
4405
4406 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4407 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4408 erp_idx = 0;
4409 low = 0;
4410 high = nlists - 1;
4411 while (low <= high) {
4412 erp_idx = (low + high) >> 1;
4413 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4414 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4415 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4416 high = erp_idx - 1;
4417 } else if (erp_next && bno >=
4418 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4419 low = erp_idx + 1;
4420 } else {
4421 break;
4422 }
4423 }
4424 *erp_idxp = erp_idx;
4425 return erp;
4426}
4427
4428/*
4429 * Return a pointer to the indirection array entry containing the
4430 * extent record at file extent index *idxp. Store the index of the
4431 * target irec in *erp_idxp and store the page index of the target
4432 * extent record in *idxp.
4433 */
4434xfs_ext_irec_t *
4435xfs_iext_idx_to_irec(
4436 xfs_ifork_t *ifp, /* inode fork pointer */
4437 xfs_extnum_t *idxp, /* extent index (file -> page) */
4438 int *erp_idxp, /* pointer to target irec */
4439 int realloc) /* new bytes were just added */
4440{
4441 xfs_ext_irec_t *prev; /* pointer to previous irec */
4442 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4443 int erp_idx; /* indirection array index */
4444 int nlists; /* number of irec's (ex lists) */
4445 int high; /* binary search upper limit */
4446 int low; /* binary search lower limit */
4447 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4448
4449 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4450 ASSERT(page_idx >= 0 && page_idx <=
4451 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4452 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4453 erp_idx = 0;
4454 low = 0;
4455 high = nlists - 1;
4456
4457 /* Binary search extent irec's */
4458 while (low <= high) {
4459 erp_idx = (low + high) >> 1;
4460 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4461 prev = erp_idx > 0 ? erp - 1 : NULL;
4462 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4463 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4464 high = erp_idx - 1;
4465 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4466 (page_idx == erp->er_extoff + erp->er_extcount &&
4467 !realloc)) {
4468 low = erp_idx + 1;
4469 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4470 erp->er_extcount == XFS_LINEAR_EXTS) {
4471 ASSERT(realloc);
4472 page_idx = 0;
4473 erp_idx++;
4474 erp = erp_idx < nlists ? erp + 1 : NULL;
4475 break;
4476 } else {
4477 page_idx -= erp->er_extoff;
4478 break;
4479 }
4480 }
4481 *idxp = page_idx;
4482 *erp_idxp = erp_idx;
4483 return(erp);
4484}
4485
4486/*
4487 * Allocate and initialize an indirection array once the space needed
4488 * for incore extents increases above XFS_IEXT_BUFSZ.
4489 */
4490void
4491xfs_iext_irec_init(
4492 xfs_ifork_t *ifp) /* inode fork pointer */
4493{
4494 xfs_ext_irec_t *erp; /* indirection array pointer */
4495 xfs_extnum_t nextents; /* number of extents in file */
4496
4497 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4498 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4499 ASSERT(nextents <= XFS_LINEAR_EXTS);
4500
4501 erp = (xfs_ext_irec_t *)
4502 kmem_alloc(sizeof(xfs_ext_irec_t), KM_SLEEP);
4503
4504 if (nextents == 0) {
4505 ifp->if_u1.if_extents = (xfs_bmbt_rec_t *)
4506 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4507 } else if (!ifp->if_real_bytes) {
4508 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4509 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4510 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4511 }
4512 erp->er_extbuf = ifp->if_u1.if_extents;
4513 erp->er_extcount = nextents;
4514 erp->er_extoff = 0;
4515
4516 ifp->if_flags |= XFS_IFEXTIREC;
4517 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4518 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4519 ifp->if_u1.if_ext_irec = erp;
4520
4521 return;
4522}
4523
4524/*
4525 * Allocate and initialize a new entry in the indirection array.
4526 */
4527xfs_ext_irec_t *
4528xfs_iext_irec_new(
4529 xfs_ifork_t *ifp, /* inode fork pointer */
4530 int erp_idx) /* index for new irec */
4531{
4532 xfs_ext_irec_t *erp; /* indirection array pointer */
4533 int i; /* loop counter */
4534 int nlists; /* number of irec's (ex lists) */
4535
4536 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4537 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4538
4539 /* Resize indirection array */
4540 xfs_iext_realloc_indirect(ifp, ++nlists *
4541 sizeof(xfs_ext_irec_t));
4542 /*
4543 * Move records down in the array so the
4544 * new page can use erp_idx.
4545 */
4546 erp = ifp->if_u1.if_ext_irec;
4547 for (i = nlists - 1; i > erp_idx; i--) {
4548 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4549 }
4550 ASSERT(i == erp_idx);
4551
4552 /* Initialize new extent record */
4553 erp = ifp->if_u1.if_ext_irec;
4554 erp[erp_idx].er_extbuf = (xfs_bmbt_rec_t *)
4555 kmem_alloc(XFS_IEXT_BUFSZ, KM_SLEEP);
4556 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4557 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4558 erp[erp_idx].er_extcount = 0;
4559 erp[erp_idx].er_extoff = erp_idx > 0 ?
4560 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4561 return (&erp[erp_idx]);
4562}
4563
4564/*
4565 * Remove a record from the indirection array.
4566 */
4567void
4568xfs_iext_irec_remove(
4569 xfs_ifork_t *ifp, /* inode fork pointer */
4570 int erp_idx) /* irec index to remove */
4571{
4572 xfs_ext_irec_t *erp; /* indirection array pointer */
4573 int i; /* loop counter */
4574 int nlists; /* number of irec's (ex lists) */
4575
4576 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4577 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4578 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4579 if (erp->er_extbuf) {
4580 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4581 -erp->er_extcount);
4582 kmem_free(erp->er_extbuf, XFS_IEXT_BUFSZ);
4583 }
4584 /* Compact extent records */
4585 erp = ifp->if_u1.if_ext_irec;
4586 for (i = erp_idx; i < nlists - 1; i++) {
4587 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4588 }
4589 /*
4590 * Manually free the last extent record from the indirection
4591 * array. A call to xfs_iext_realloc_indirect() with a size
4592 * of zero would result in a call to xfs_iext_destroy() which
4593 * would in turn call this function again, creating a nasty
4594 * infinite loop.
4595 */
4596 if (--nlists) {
4597 xfs_iext_realloc_indirect(ifp,
4598 nlists * sizeof(xfs_ext_irec_t));
4599 } else {
4600 kmem_free(ifp->if_u1.if_ext_irec,
4601 sizeof(xfs_ext_irec_t));
4602 }
4603 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4604}
4605
4606/*
4607 * This is called to clean up large amounts of unused memory allocated
4608 * by the indirection array. Before compacting anything though, verify
4609 * that the indirection array is still needed and switch back to the
4610 * linear extent list (or even the inline buffer) if possible. The
4611 * compaction policy is as follows:
4612 *
4613 * Full Compaction: Extents fit into a single page (or inline buffer)
4614 * Full Compaction: Extents occupy less than 10% of allocated space
4615 * Partial Compaction: Extents occupy > 10% and < 50% of allocated space
4616 * No Compaction: Extents occupy at least 50% of allocated space
4617 */
4618void
4619xfs_iext_irec_compact(
4620 xfs_ifork_t *ifp) /* inode fork pointer */
4621{
4622 xfs_extnum_t nextents; /* number of extents in file */
4623 int nlists; /* number of irec's (ex lists) */
4624
4625 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4626 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4627 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4628
4629 if (nextents == 0) {
4630 xfs_iext_destroy(ifp);
4631 } else if (nextents <= XFS_INLINE_EXTS) {
4632 xfs_iext_indirect_to_direct(ifp);
4633 xfs_iext_direct_to_inline(ifp, nextents);
4634 } else if (nextents <= XFS_LINEAR_EXTS) {
4635 xfs_iext_indirect_to_direct(ifp);
4636 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 3) {
4637 xfs_iext_irec_compact_full(ifp);
4638 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4639 xfs_iext_irec_compact_pages(ifp);
4640 }
4641}
4642
4643/*
4644 * Combine extents from neighboring extent pages.
4645 */
4646void
4647xfs_iext_irec_compact_pages(
4648 xfs_ifork_t *ifp) /* inode fork pointer */
4649{
4650 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4651 int erp_idx = 0; /* indirection array index */
4652 int nlists; /* number of irec's (ex lists) */
4653
4654 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4655 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4656 while (erp_idx < nlists - 1) {
4657 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4658 erp_next = erp + 1;
4659 if (erp_next->er_extcount <=
4660 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4661 memmove(&erp->er_extbuf[erp->er_extcount],
4662 erp_next->er_extbuf, erp_next->er_extcount *
4663 sizeof(xfs_bmbt_rec_t));
4664 erp->er_extcount += erp_next->er_extcount;
4665 /*
4666 * Free page before removing extent record
4667 * so er_extoffs don't get modified in
4668 * xfs_iext_irec_remove.
4669 */
4670 kmem_free(erp_next->er_extbuf, XFS_IEXT_BUFSZ);
4671 erp_next->er_extbuf = NULL;
4672 xfs_iext_irec_remove(ifp, erp_idx + 1);
4673 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4674 } else {
4675 erp_idx++;
4676 }
4677 }
4678}
4679
4680/*
4681 * Fully compact the extent records managed by the indirection array.
4682 */
4683void
4684xfs_iext_irec_compact_full(
4685 xfs_ifork_t *ifp) /* inode fork pointer */
4686{
4687 xfs_bmbt_rec_t *ep, *ep_next; /* extent record pointers */
4688 xfs_ext_irec_t *erp, *erp_next; /* extent irec pointers */
4689 int erp_idx = 0; /* extent irec index */
4690 int ext_avail; /* empty entries in ex list */
4691 int ext_diff; /* number of exts to add */
4692 int nlists; /* number of irec's (ex lists) */
4693
4694 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4695 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4696 erp = ifp->if_u1.if_ext_irec;
4697 ep = &erp->er_extbuf[erp->er_extcount];
4698 erp_next = erp + 1;
4699 ep_next = erp_next->er_extbuf;
4700 while (erp_idx < nlists - 1) {
4701 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
4702 ext_diff = MIN(ext_avail, erp_next->er_extcount);
4703 memcpy(ep, ep_next, ext_diff * sizeof(xfs_bmbt_rec_t));
4704 erp->er_extcount += ext_diff;
4705 erp_next->er_extcount -= ext_diff;
4706 /* Remove next page */
4707 if (erp_next->er_extcount == 0) {
4708 /*
4709 * Free page before removing extent record
4710 * so er_extoffs don't get modified in
4711 * xfs_iext_irec_remove.
4712 */
4713 kmem_free(erp_next->er_extbuf,
4714 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4715 erp_next->er_extbuf = NULL;
4716 xfs_iext_irec_remove(ifp, erp_idx + 1);
4717 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4718 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4719 /* Update next page */
4720 } else {
4721 /* Move rest of page up to become next new page */
4722 memmove(erp_next->er_extbuf, ep_next,
4723 erp_next->er_extcount * sizeof(xfs_bmbt_rec_t));
4724 ep_next = erp_next->er_extbuf;
4725 memset(&ep_next[erp_next->er_extcount], 0,
4726 (XFS_LINEAR_EXTS - erp_next->er_extcount) *
4727 sizeof(xfs_bmbt_rec_t));
4728 }
4729 if (erp->er_extcount == XFS_LINEAR_EXTS) {
4730 erp_idx++;
4731 if (erp_idx < nlists)
4732 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4733 else
4734 break;
4735 }
4736 ep = &erp->er_extbuf[erp->er_extcount];
4737 erp_next = erp + 1;
4738 ep_next = erp_next->er_extbuf;
4739 }
4740}
4741
4742/*
4743 * This is called to update the er_extoff field in the indirection
4744 * array when extents have been added or removed from one of the
4745 * extent lists. erp_idx contains the irec index to begin updating
4746 * at and ext_diff contains the number of extents that were added
4747 * or removed.
4748 */
4749void
4750xfs_iext_irec_update_extoffs(
4751 xfs_ifork_t *ifp, /* inode fork pointer */
4752 int erp_idx, /* irec index to update */
4753 int ext_diff) /* number of new extents */
4754{
4755 int i; /* loop counter */
4756 int nlists; /* number of irec's (ex lists */
4757
4758 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4759 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4760 for (i = erp_idx; i < nlists; i++) {
4761 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4762 }
4763}