[XFS] Make use of the init-once slab optimisation.
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
1da177e4 22#include "xfs_types.h"
a844f451 23#include "xfs_bit.h"
1da177e4 24#include "xfs_log.h"
a844f451
NS
25#include "xfs_inum.h"
26#include "xfs_imap.h"
1da177e4
LT
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
29#include "xfs_sb.h"
30#include "xfs_ag.h"
1da177e4
LT
31#include "xfs_dir2.h"
32#include "xfs_dmapi.h"
33#include "xfs_mount.h"
1da177e4 34#include "xfs_bmap_btree.h"
a844f451 35#include "xfs_alloc_btree.h"
1da177e4 36#include "xfs_ialloc_btree.h"
1da177e4 37#include "xfs_dir2_sf.h"
a844f451 38#include "xfs_attr_sf.h"
1da177e4 39#include "xfs_dinode.h"
1da177e4 40#include "xfs_inode.h"
1da177e4 41#include "xfs_buf_item.h"
a844f451
NS
42#include "xfs_inode_item.h"
43#include "xfs_btree.h"
44#include "xfs_alloc.h"
45#include "xfs_ialloc.h"
46#include "xfs_bmap.h"
1da177e4
LT
47#include "xfs_rw.h"
48#include "xfs_error.h"
1da177e4
LT
49#include "xfs_utils.h"
50#include "xfs_dir2_trace.h"
51#include "xfs_quota.h"
1da177e4 52#include "xfs_acl.h"
2a82b8be 53#include "xfs_filestream.h"
739bfb2a 54#include "xfs_vnodeops.h"
1da177e4 55
1da177e4
LT
56kmem_zone_t *xfs_ifork_zone;
57kmem_zone_t *xfs_inode_zone;
1da177e4
LT
58
59/*
60 * Used in xfs_itruncate(). This is the maximum number of extents
61 * freed from a file in a single transaction.
62 */
63#define XFS_ITRUNC_MAX_EXTENTS 2
64
65STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
66STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
67STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
68STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
69
1da177e4
LT
70#ifdef DEBUG
71/*
72 * Make sure that the extents in the given memory buffer
73 * are valid.
74 */
75STATIC void
76xfs_validate_extents(
4eea22f0 77 xfs_ifork_t *ifp,
1da177e4 78 int nrecs,
1da177e4
LT
79 xfs_exntfmt_t fmt)
80{
81 xfs_bmbt_irec_t irec;
a6f64d4a 82 xfs_bmbt_rec_host_t rec;
1da177e4
LT
83 int i;
84
85 for (i = 0; i < nrecs; i++) {
a6f64d4a
CH
86 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
87 rec.l0 = get_unaligned(&ep->l0);
88 rec.l1 = get_unaligned(&ep->l1);
89 xfs_bmbt_get_all(&rec, &irec);
1da177e4
LT
90 if (fmt == XFS_EXTFMT_NOSTATE)
91 ASSERT(irec.br_state == XFS_EXT_NORM);
1da177e4
LT
92 }
93}
94#else /* DEBUG */
a6f64d4a 95#define xfs_validate_extents(ifp, nrecs, fmt)
1da177e4
LT
96#endif /* DEBUG */
97
98/*
99 * Check that none of the inode's in the buffer have a next
100 * unlinked field of 0.
101 */
102#if defined(DEBUG)
103void
104xfs_inobp_check(
105 xfs_mount_t *mp,
106 xfs_buf_t *bp)
107{
108 int i;
109 int j;
110 xfs_dinode_t *dip;
111
112 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
113
114 for (i = 0; i < j; i++) {
115 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
116 i * mp->m_sb.sb_inodesize);
117 if (!dip->di_next_unlinked) {
118 xfs_fs_cmn_err(CE_ALERT, mp,
119 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
120 bp);
121 ASSERT(dip->di_next_unlinked);
122 }
123 }
124}
125#endif
126
4ae29b43
DC
127/*
128 * Find the buffer associated with the given inode map
129 * We do basic validation checks on the buffer once it has been
130 * retrieved from disk.
131 */
132STATIC int
133xfs_imap_to_bp(
134 xfs_mount_t *mp,
135 xfs_trans_t *tp,
136 xfs_imap_t *imap,
137 xfs_buf_t **bpp,
138 uint buf_flags,
139 uint imap_flags)
140{
141 int error;
142 int i;
143 int ni;
144 xfs_buf_t *bp;
145
146 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
a3f74ffb 147 (int)imap->im_len, buf_flags, &bp);
4ae29b43 148 if (error) {
a3f74ffb
DC
149 if (error != EAGAIN) {
150 cmn_err(CE_WARN,
151 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
4ae29b43
DC
152 "an error %d on %s. Returning error.",
153 error, mp->m_fsname);
a3f74ffb
DC
154 } else {
155 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
156 }
4ae29b43
DC
157 return error;
158 }
159
160 /*
161 * Validate the magic number and version of every inode in the buffer
162 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
163 */
164#ifdef DEBUG
165 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
166#else /* usual case */
167 ni = 1;
168#endif
169
170 for (i = 0; i < ni; i++) {
171 int di_ok;
172 xfs_dinode_t *dip;
173
174 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
175 (i << mp->m_sb.sb_inodelog));
176 di_ok = be16_to_cpu(dip->di_core.di_magic) == XFS_DINODE_MAGIC &&
177 XFS_DINODE_GOOD_VERSION(dip->di_core.di_version);
178 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
179 XFS_ERRTAG_ITOBP_INOTOBP,
180 XFS_RANDOM_ITOBP_INOTOBP))) {
181 if (imap_flags & XFS_IMAP_BULKSTAT) {
182 xfs_trans_brelse(tp, bp);
183 return XFS_ERROR(EINVAL);
184 }
185 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
186 XFS_ERRLEVEL_HIGH, mp, dip);
187#ifdef DEBUG
188 cmn_err(CE_PANIC,
189 "Device %s - bad inode magic/vsn "
190 "daddr %lld #%d (magic=%x)",
191 XFS_BUFTARG_NAME(mp->m_ddev_targp),
192 (unsigned long long)imap->im_blkno, i,
193 be16_to_cpu(dip->di_core.di_magic));
194#endif
195 xfs_trans_brelse(tp, bp);
196 return XFS_ERROR(EFSCORRUPTED);
197 }
198 }
199
200 xfs_inobp_check(mp, bp);
201
202 /*
203 * Mark the buffer as an inode buffer now that it looks good
204 */
205 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
206
207 *bpp = bp;
208 return 0;
209}
210
1da177e4
LT
211/*
212 * This routine is called to map an inode number within a file
213 * system to the buffer containing the on-disk version of the
214 * inode. It returns a pointer to the buffer containing the
215 * on-disk inode in the bpp parameter, and in the dip parameter
216 * it returns a pointer to the on-disk inode within that buffer.
217 *
218 * If a non-zero error is returned, then the contents of bpp and
219 * dipp are undefined.
220 *
221 * Use xfs_imap() to determine the size and location of the
222 * buffer to read from disk.
223 */
ba0f32d4 224STATIC int
1da177e4
LT
225xfs_inotobp(
226 xfs_mount_t *mp,
227 xfs_trans_t *tp,
228 xfs_ino_t ino,
229 xfs_dinode_t **dipp,
230 xfs_buf_t **bpp,
231 int *offset)
232{
1da177e4
LT
233 xfs_imap_t imap;
234 xfs_buf_t *bp;
235 int error;
1da177e4 236
1da177e4
LT
237 imap.im_blkno = 0;
238 error = xfs_imap(mp, tp, ino, &imap, XFS_IMAP_LOOKUP);
4ae29b43 239 if (error)
1da177e4 240 return error;
1da177e4 241
4ae29b43
DC
242 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XFS_BUF_LOCK, 0);
243 if (error)
1da177e4 244 return error;
1da177e4 245
1da177e4
LT
246 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
247 *bpp = bp;
248 *offset = imap.im_boffset;
249 return 0;
250}
251
252
253/*
254 * This routine is called to map an inode to the buffer containing
255 * the on-disk version of the inode. It returns a pointer to the
256 * buffer containing the on-disk inode in the bpp parameter, and in
257 * the dip parameter it returns a pointer to the on-disk inode within
258 * that buffer.
259 *
260 * If a non-zero error is returned, then the contents of bpp and
261 * dipp are undefined.
262 *
263 * If the inode is new and has not yet been initialized, use xfs_imap()
264 * to determine the size and location of the buffer to read from disk.
265 * If the inode has already been mapped to its buffer and read in once,
266 * then use the mapping information stored in the inode rather than
267 * calling xfs_imap(). This allows us to avoid the overhead of looking
268 * at the inode btree for small block file systems (see xfs_dilocate()).
269 * We can tell whether the inode has been mapped in before by comparing
270 * its disk block address to 0. Only uninitialized inodes will have
271 * 0 for the disk block address.
272 */
273int
274xfs_itobp(
275 xfs_mount_t *mp,
276 xfs_trans_t *tp,
277 xfs_inode_t *ip,
278 xfs_dinode_t **dipp,
279 xfs_buf_t **bpp,
b12dd342 280 xfs_daddr_t bno,
a3f74ffb
DC
281 uint imap_flags,
282 uint buf_flags)
1da177e4 283{
4d1a2ed3 284 xfs_imap_t imap;
1da177e4
LT
285 xfs_buf_t *bp;
286 int error;
1da177e4
LT
287
288 if (ip->i_blkno == (xfs_daddr_t)0) {
1da177e4 289 imap.im_blkno = bno;
4ae29b43
DC
290 error = xfs_imap(mp, tp, ip->i_ino, &imap,
291 XFS_IMAP_LOOKUP | imap_flags);
292 if (error)
1da177e4 293 return error;
1da177e4 294
1da177e4
LT
295 /*
296 * Fill in the fields in the inode that will be used to
297 * map the inode to its buffer from now on.
298 */
299 ip->i_blkno = imap.im_blkno;
300 ip->i_len = imap.im_len;
301 ip->i_boffset = imap.im_boffset;
302 } else {
303 /*
304 * We've already mapped the inode once, so just use the
305 * mapping that we saved the first time.
306 */
307 imap.im_blkno = ip->i_blkno;
308 imap.im_len = ip->i_len;
309 imap.im_boffset = ip->i_boffset;
310 }
311 ASSERT(bno == 0 || bno == imap.im_blkno);
312
a3f74ffb 313 error = xfs_imap_to_bp(mp, tp, &imap, &bp, buf_flags, imap_flags);
4ae29b43 314 if (error)
1da177e4 315 return error;
1da177e4 316
a3f74ffb
DC
317 if (!bp) {
318 ASSERT(buf_flags & XFS_BUF_TRYLOCK);
319 ASSERT(tp == NULL);
320 *bpp = NULL;
321 return EAGAIN;
322 }
323
1da177e4
LT
324 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
325 *bpp = bp;
326 return 0;
327}
328
329/*
330 * Move inode type and inode format specific information from the
331 * on-disk inode to the in-core inode. For fifos, devs, and sockets
332 * this means set if_rdev to the proper value. For files, directories,
333 * and symlinks this means to bring in the in-line data or extent
334 * pointers. For a file in B-tree format, only the root is immediately
335 * brought in-core. The rest will be in-lined in if_extents when it
336 * is first referenced (see xfs_iread_extents()).
337 */
338STATIC int
339xfs_iformat(
340 xfs_inode_t *ip,
341 xfs_dinode_t *dip)
342{
343 xfs_attr_shortform_t *atp;
344 int size;
345 int error;
346 xfs_fsize_t di_size;
347 ip->i_df.if_ext_max =
348 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
349 error = 0;
350
347d1c01
CH
351 if (unlikely(be32_to_cpu(dip->di_core.di_nextents) +
352 be16_to_cpu(dip->di_core.di_anextents) >
353 be64_to_cpu(dip->di_core.di_nblocks))) {
3762ec6b
NS
354 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
355 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
1da177e4 356 (unsigned long long)ip->i_ino,
347d1c01
CH
357 (int)(be32_to_cpu(dip->di_core.di_nextents) +
358 be16_to_cpu(dip->di_core.di_anextents)),
1da177e4 359 (unsigned long long)
347d1c01 360 be64_to_cpu(dip->di_core.di_nblocks));
1da177e4
LT
361 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
362 ip->i_mount, dip);
363 return XFS_ERROR(EFSCORRUPTED);
364 }
365
347d1c01 366 if (unlikely(dip->di_core.di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
3762ec6b
NS
367 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
368 "corrupt dinode %Lu, forkoff = 0x%x.",
1da177e4 369 (unsigned long long)ip->i_ino,
347d1c01 370 dip->di_core.di_forkoff);
1da177e4
LT
371 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
372 ip->i_mount, dip);
373 return XFS_ERROR(EFSCORRUPTED);
374 }
375
376 switch (ip->i_d.di_mode & S_IFMT) {
377 case S_IFIFO:
378 case S_IFCHR:
379 case S_IFBLK:
380 case S_IFSOCK:
347d1c01 381 if (unlikely(dip->di_core.di_format != XFS_DINODE_FMT_DEV)) {
1da177e4
LT
382 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
383 ip->i_mount, dip);
384 return XFS_ERROR(EFSCORRUPTED);
385 }
386 ip->i_d.di_size = 0;
ba87ea69 387 ip->i_size = 0;
347d1c01 388 ip->i_df.if_u2.if_rdev = be32_to_cpu(dip->di_u.di_dev);
1da177e4
LT
389 break;
390
391 case S_IFREG:
392 case S_IFLNK:
393 case S_IFDIR:
347d1c01 394 switch (dip->di_core.di_format) {
1da177e4
LT
395 case XFS_DINODE_FMT_LOCAL:
396 /*
397 * no local regular files yet
398 */
347d1c01 399 if (unlikely((be16_to_cpu(dip->di_core.di_mode) & S_IFMT) == S_IFREG)) {
3762ec6b
NS
400 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
401 "corrupt inode %Lu "
402 "(local format for regular file).",
1da177e4
LT
403 (unsigned long long) ip->i_ino);
404 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
405 XFS_ERRLEVEL_LOW,
406 ip->i_mount, dip);
407 return XFS_ERROR(EFSCORRUPTED);
408 }
409
347d1c01 410 di_size = be64_to_cpu(dip->di_core.di_size);
1da177e4 411 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
3762ec6b
NS
412 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
413 "corrupt inode %Lu "
414 "(bad size %Ld for local inode).",
1da177e4
LT
415 (unsigned long long) ip->i_ino,
416 (long long) di_size);
417 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
418 XFS_ERRLEVEL_LOW,
419 ip->i_mount, dip);
420 return XFS_ERROR(EFSCORRUPTED);
421 }
422
423 size = (int)di_size;
424 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
425 break;
426 case XFS_DINODE_FMT_EXTENTS:
427 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
428 break;
429 case XFS_DINODE_FMT_BTREE:
430 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
431 break;
432 default:
433 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
434 ip->i_mount);
435 return XFS_ERROR(EFSCORRUPTED);
436 }
437 break;
438
439 default:
440 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
441 return XFS_ERROR(EFSCORRUPTED);
442 }
443 if (error) {
444 return error;
445 }
446 if (!XFS_DFORK_Q(dip))
447 return 0;
448 ASSERT(ip->i_afp == NULL);
449 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP);
450 ip->i_afp->if_ext_max =
451 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
347d1c01 452 switch (dip->di_core.di_aformat) {
1da177e4
LT
453 case XFS_DINODE_FMT_LOCAL:
454 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
3b244aa8 455 size = be16_to_cpu(atp->hdr.totsize);
1da177e4
LT
456 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
457 break;
458 case XFS_DINODE_FMT_EXTENTS:
459 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
460 break;
461 case XFS_DINODE_FMT_BTREE:
462 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
463 break;
464 default:
465 error = XFS_ERROR(EFSCORRUPTED);
466 break;
467 }
468 if (error) {
469 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
470 ip->i_afp = NULL;
471 xfs_idestroy_fork(ip, XFS_DATA_FORK);
472 }
473 return error;
474}
475
476/*
477 * The file is in-lined in the on-disk inode.
478 * If it fits into if_inline_data, then copy
479 * it there, otherwise allocate a buffer for it
480 * and copy the data there. Either way, set
481 * if_data to point at the data.
482 * If we allocate a buffer for the data, make
483 * sure that its size is a multiple of 4 and
484 * record the real size in i_real_bytes.
485 */
486STATIC int
487xfs_iformat_local(
488 xfs_inode_t *ip,
489 xfs_dinode_t *dip,
490 int whichfork,
491 int size)
492{
493 xfs_ifork_t *ifp;
494 int real_size;
495
496 /*
497 * If the size is unreasonable, then something
498 * is wrong and we just bail out rather than crash in
499 * kmem_alloc() or memcpy() below.
500 */
501 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
502 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
503 "corrupt inode %Lu "
504 "(bad size %d for local fork, size = %d).",
1da177e4
LT
505 (unsigned long long) ip->i_ino, size,
506 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
507 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
508 ip->i_mount, dip);
509 return XFS_ERROR(EFSCORRUPTED);
510 }
511 ifp = XFS_IFORK_PTR(ip, whichfork);
512 real_size = 0;
513 if (size == 0)
514 ifp->if_u1.if_data = NULL;
515 else if (size <= sizeof(ifp->if_u2.if_inline_data))
516 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
517 else {
518 real_size = roundup(size, 4);
519 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
520 }
521 ifp->if_bytes = size;
522 ifp->if_real_bytes = real_size;
523 if (size)
524 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
525 ifp->if_flags &= ~XFS_IFEXTENTS;
526 ifp->if_flags |= XFS_IFINLINE;
527 return 0;
528}
529
530/*
531 * The file consists of a set of extents all
532 * of which fit into the on-disk inode.
533 * If there are few enough extents to fit into
534 * the if_inline_ext, then copy them there.
535 * Otherwise allocate a buffer for them and copy
536 * them into it. Either way, set if_extents
537 * to point at the extents.
538 */
539STATIC int
540xfs_iformat_extents(
541 xfs_inode_t *ip,
542 xfs_dinode_t *dip,
543 int whichfork)
544{
a6f64d4a 545 xfs_bmbt_rec_t *dp;
1da177e4
LT
546 xfs_ifork_t *ifp;
547 int nex;
1da177e4
LT
548 int size;
549 int i;
550
551 ifp = XFS_IFORK_PTR(ip, whichfork);
552 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
553 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
554
555 /*
556 * If the number of extents is unreasonable, then something
557 * is wrong and we just bail out rather than crash in
558 * kmem_alloc() or memcpy() below.
559 */
560 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
3762ec6b
NS
561 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
562 "corrupt inode %Lu ((a)extents = %d).",
1da177e4
LT
563 (unsigned long long) ip->i_ino, nex);
564 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
565 ip->i_mount, dip);
566 return XFS_ERROR(EFSCORRUPTED);
567 }
568
4eea22f0 569 ifp->if_real_bytes = 0;
1da177e4
LT
570 if (nex == 0)
571 ifp->if_u1.if_extents = NULL;
572 else if (nex <= XFS_INLINE_EXTS)
573 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4eea22f0
MK
574 else
575 xfs_iext_add(ifp, 0, nex);
576
1da177e4 577 ifp->if_bytes = size;
1da177e4
LT
578 if (size) {
579 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
a6f64d4a 580 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
4eea22f0 581 for (i = 0; i < nex; i++, dp++) {
a6f64d4a 582 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
597bca63
HH
583 ep->l0 = get_unaligned_be64(&dp->l0);
584 ep->l1 = get_unaligned_be64(&dp->l1);
1da177e4 585 }
3a59c94c 586 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
1da177e4
LT
587 if (whichfork != XFS_DATA_FORK ||
588 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
589 if (unlikely(xfs_check_nostate_extents(
4eea22f0 590 ifp, 0, nex))) {
1da177e4
LT
591 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
592 XFS_ERRLEVEL_LOW,
593 ip->i_mount);
594 return XFS_ERROR(EFSCORRUPTED);
595 }
596 }
597 ifp->if_flags |= XFS_IFEXTENTS;
598 return 0;
599}
600
601/*
602 * The file has too many extents to fit into
603 * the inode, so they are in B-tree format.
604 * Allocate a buffer for the root of the B-tree
605 * and copy the root into it. The i_extents
606 * field will remain NULL until all of the
607 * extents are read in (when they are needed).
608 */
609STATIC int
610xfs_iformat_btree(
611 xfs_inode_t *ip,
612 xfs_dinode_t *dip,
613 int whichfork)
614{
615 xfs_bmdr_block_t *dfp;
616 xfs_ifork_t *ifp;
617 /* REFERENCED */
618 int nrecs;
619 int size;
620
621 ifp = XFS_IFORK_PTR(ip, whichfork);
622 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
623 size = XFS_BMAP_BROOT_SPACE(dfp);
624 nrecs = XFS_BMAP_BROOT_NUMRECS(dfp);
625
626 /*
627 * blow out if -- fork has less extents than can fit in
628 * fork (fork shouldn't be a btree format), root btree
629 * block has more records than can fit into the fork,
630 * or the number of extents is greater than the number of
631 * blocks.
632 */
633 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
634 || XFS_BMDR_SPACE_CALC(nrecs) >
635 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
636 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
3762ec6b
NS
637 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
638 "corrupt inode %Lu (btree).",
1da177e4
LT
639 (unsigned long long) ip->i_ino);
640 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
641 ip->i_mount);
642 return XFS_ERROR(EFSCORRUPTED);
643 }
644
645 ifp->if_broot_bytes = size;
646 ifp->if_broot = kmem_alloc(size, KM_SLEEP);
647 ASSERT(ifp->if_broot != NULL);
648 /*
649 * Copy and convert from the on-disk structure
650 * to the in-memory structure.
651 */
652 xfs_bmdr_to_bmbt(dfp, XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
653 ifp->if_broot, size);
654 ifp->if_flags &= ~XFS_IFEXTENTS;
655 ifp->if_flags |= XFS_IFBROOT;
656
657 return 0;
658}
659
1da177e4 660void
347d1c01
CH
661xfs_dinode_from_disk(
662 xfs_icdinode_t *to,
663 xfs_dinode_core_t *from)
1da177e4 664{
347d1c01
CH
665 to->di_magic = be16_to_cpu(from->di_magic);
666 to->di_mode = be16_to_cpu(from->di_mode);
667 to->di_version = from ->di_version;
668 to->di_format = from->di_format;
669 to->di_onlink = be16_to_cpu(from->di_onlink);
670 to->di_uid = be32_to_cpu(from->di_uid);
671 to->di_gid = be32_to_cpu(from->di_gid);
672 to->di_nlink = be32_to_cpu(from->di_nlink);
673 to->di_projid = be16_to_cpu(from->di_projid);
674 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
675 to->di_flushiter = be16_to_cpu(from->di_flushiter);
676 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
677 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
678 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
679 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
680 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
681 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
682 to->di_size = be64_to_cpu(from->di_size);
683 to->di_nblocks = be64_to_cpu(from->di_nblocks);
684 to->di_extsize = be32_to_cpu(from->di_extsize);
685 to->di_nextents = be32_to_cpu(from->di_nextents);
686 to->di_anextents = be16_to_cpu(from->di_anextents);
687 to->di_forkoff = from->di_forkoff;
688 to->di_aformat = from->di_aformat;
689 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
690 to->di_dmstate = be16_to_cpu(from->di_dmstate);
691 to->di_flags = be16_to_cpu(from->di_flags);
692 to->di_gen = be32_to_cpu(from->di_gen);
693}
694
695void
696xfs_dinode_to_disk(
697 xfs_dinode_core_t *to,
698 xfs_icdinode_t *from)
699{
700 to->di_magic = cpu_to_be16(from->di_magic);
701 to->di_mode = cpu_to_be16(from->di_mode);
702 to->di_version = from ->di_version;
703 to->di_format = from->di_format;
704 to->di_onlink = cpu_to_be16(from->di_onlink);
705 to->di_uid = cpu_to_be32(from->di_uid);
706 to->di_gid = cpu_to_be32(from->di_gid);
707 to->di_nlink = cpu_to_be32(from->di_nlink);
708 to->di_projid = cpu_to_be16(from->di_projid);
709 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
710 to->di_flushiter = cpu_to_be16(from->di_flushiter);
711 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
712 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
713 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
714 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
715 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
716 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
717 to->di_size = cpu_to_be64(from->di_size);
718 to->di_nblocks = cpu_to_be64(from->di_nblocks);
719 to->di_extsize = cpu_to_be32(from->di_extsize);
720 to->di_nextents = cpu_to_be32(from->di_nextents);
721 to->di_anextents = cpu_to_be16(from->di_anextents);
722 to->di_forkoff = from->di_forkoff;
723 to->di_aformat = from->di_aformat;
724 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
725 to->di_dmstate = cpu_to_be16(from->di_dmstate);
726 to->di_flags = cpu_to_be16(from->di_flags);
727 to->di_gen = cpu_to_be32(from->di_gen);
1da177e4
LT
728}
729
730STATIC uint
731_xfs_dic2xflags(
1da177e4
LT
732 __uint16_t di_flags)
733{
734 uint flags = 0;
735
736 if (di_flags & XFS_DIFLAG_ANY) {
737 if (di_flags & XFS_DIFLAG_REALTIME)
738 flags |= XFS_XFLAG_REALTIME;
739 if (di_flags & XFS_DIFLAG_PREALLOC)
740 flags |= XFS_XFLAG_PREALLOC;
741 if (di_flags & XFS_DIFLAG_IMMUTABLE)
742 flags |= XFS_XFLAG_IMMUTABLE;
743 if (di_flags & XFS_DIFLAG_APPEND)
744 flags |= XFS_XFLAG_APPEND;
745 if (di_flags & XFS_DIFLAG_SYNC)
746 flags |= XFS_XFLAG_SYNC;
747 if (di_flags & XFS_DIFLAG_NOATIME)
748 flags |= XFS_XFLAG_NOATIME;
749 if (di_flags & XFS_DIFLAG_NODUMP)
750 flags |= XFS_XFLAG_NODUMP;
751 if (di_flags & XFS_DIFLAG_RTINHERIT)
752 flags |= XFS_XFLAG_RTINHERIT;
753 if (di_flags & XFS_DIFLAG_PROJINHERIT)
754 flags |= XFS_XFLAG_PROJINHERIT;
755 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
756 flags |= XFS_XFLAG_NOSYMLINKS;
dd9f438e
NS
757 if (di_flags & XFS_DIFLAG_EXTSIZE)
758 flags |= XFS_XFLAG_EXTSIZE;
759 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
760 flags |= XFS_XFLAG_EXTSZINHERIT;
d3446eac
BN
761 if (di_flags & XFS_DIFLAG_NODEFRAG)
762 flags |= XFS_XFLAG_NODEFRAG;
2a82b8be
DC
763 if (di_flags & XFS_DIFLAG_FILESTREAM)
764 flags |= XFS_XFLAG_FILESTREAM;
1da177e4
LT
765 }
766
767 return flags;
768}
769
770uint
771xfs_ip2xflags(
772 xfs_inode_t *ip)
773{
347d1c01 774 xfs_icdinode_t *dic = &ip->i_d;
1da177e4 775
a916e2bd 776 return _xfs_dic2xflags(dic->di_flags) |
45ba598e 777 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
778}
779
780uint
781xfs_dic2xflags(
45ba598e 782 xfs_dinode_t *dip)
1da177e4 783{
45ba598e
CH
784 xfs_dinode_core_t *dic = &dip->di_core;
785
347d1c01 786 return _xfs_dic2xflags(be16_to_cpu(dic->di_flags)) |
45ba598e 787 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
1da177e4
LT
788}
789
07c8f675
DC
790/*
791 * Allocate and initialise an xfs_inode.
792 */
793struct xfs_inode *
794xfs_inode_alloc(
795 struct xfs_mount *mp,
796 xfs_ino_t ino)
797{
798 struct xfs_inode *ip;
799
800 /*
801 * if this didn't occur in transactions, we could use
802 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
803 * code up to do this anyway.
804 */
805 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
806 if (!ip)
807 return NULL;
808
809 ASSERT(atomic_read(&ip->i_iocount) == 0);
810 ASSERT(atomic_read(&ip->i_pincount) == 0);
811 ASSERT(!spin_is_locked(&ip->i_flags_lock));
812 ASSERT(list_empty(&ip->i_reclaim));
813
814 ip->i_ino = ino;
815 ip->i_mount = mp;
816 ip->i_blkno = 0;
817 ip->i_len = 0;
818 ip->i_boffset =0;
819 ip->i_afp = NULL;
820 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
821 ip->i_flags = 0;
822 ip->i_update_core = 0;
823 ip->i_update_size = 0;
824 ip->i_delayed_blks = 0;
825 memset(&ip->i_d, 0, sizeof(xfs_icdinode_t));
826 ip->i_size = 0;
827 ip->i_new_size = 0;
828
829 /*
830 * Initialize inode's trace buffers.
831 */
832#ifdef XFS_INODE_TRACE
833 ip->i_trace = ktrace_alloc(INODE_TRACE_SIZE, KM_NOFS);
834#endif
835#ifdef XFS_BMAP_TRACE
836 ip->i_xtrace = ktrace_alloc(XFS_BMAP_KTRACE_SIZE, KM_NOFS);
837#endif
838#ifdef XFS_BMBT_TRACE
839 ip->i_btrace = ktrace_alloc(XFS_BMBT_KTRACE_SIZE, KM_NOFS);
840#endif
841#ifdef XFS_RW_TRACE
842 ip->i_rwtrace = ktrace_alloc(XFS_RW_KTRACE_SIZE, KM_NOFS);
843#endif
844#ifdef XFS_ILOCK_TRACE
845 ip->i_lock_trace = ktrace_alloc(XFS_ILOCK_KTRACE_SIZE, KM_NOFS);
846#endif
847#ifdef XFS_DIR2_TRACE
848 ip->i_dir_trace = ktrace_alloc(XFS_DIR2_KTRACE_SIZE, KM_NOFS);
849#endif
850
851 return ip;
852}
853
1da177e4
LT
854/*
855 * Given a mount structure and an inode number, return a pointer
c41564b5 856 * to a newly allocated in-core inode corresponding to the given
1da177e4
LT
857 * inode number.
858 *
859 * Initialize the inode's attributes and extent pointers if it
860 * already has them (it will not if the inode has no links).
861 */
862int
863xfs_iread(
864 xfs_mount_t *mp,
865 xfs_trans_t *tp,
866 xfs_ino_t ino,
867 xfs_inode_t **ipp,
745b1f47
NS
868 xfs_daddr_t bno,
869 uint imap_flags)
1da177e4
LT
870{
871 xfs_buf_t *bp;
872 xfs_dinode_t *dip;
873 xfs_inode_t *ip;
874 int error;
875
07c8f675
DC
876 ip = xfs_inode_alloc(mp, ino);
877 if (!ip)
878 return ENOMEM;
1da177e4
LT
879
880 /*
881 * Get pointer's to the on-disk inode and the buffer containing it.
882 * If the inode number refers to a block outside the file system
883 * then xfs_itobp() will return NULL. In this case we should
884 * return NULL as well. Set i_blkno to 0 so that xfs_itobp() will
885 * know that this is a new incore inode.
886 */
a3f74ffb 887 error = xfs_itobp(mp, tp, ip, &dip, &bp, bno, imap_flags, XFS_BUF_LOCK);
b12dd342 888 if (error) {
1da177e4
LT
889 kmem_zone_free(xfs_inode_zone, ip);
890 return error;
891 }
892
1da177e4
LT
893 /*
894 * If we got something that isn't an inode it means someone
895 * (nfs or dmi) has a stale handle.
896 */
347d1c01 897 if (be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC) {
07c8f675 898 xfs_idestroy(ip);
1da177e4
LT
899 xfs_trans_brelse(tp, bp);
900#ifdef DEBUG
901 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
902 "dip->di_core.di_magic (0x%x) != "
903 "XFS_DINODE_MAGIC (0x%x)",
347d1c01 904 be16_to_cpu(dip->di_core.di_magic),
1da177e4
LT
905 XFS_DINODE_MAGIC);
906#endif /* DEBUG */
907 return XFS_ERROR(EINVAL);
908 }
909
910 /*
911 * If the on-disk inode is already linked to a directory
912 * entry, copy all of the inode into the in-core inode.
913 * xfs_iformat() handles copying in the inode format
914 * specific information.
915 * Otherwise, just get the truly permanent information.
916 */
917 if (dip->di_core.di_mode) {
347d1c01 918 xfs_dinode_from_disk(&ip->i_d, &dip->di_core);
1da177e4
LT
919 error = xfs_iformat(ip, dip);
920 if (error) {
07c8f675 921 xfs_idestroy(ip);
1da177e4
LT
922 xfs_trans_brelse(tp, bp);
923#ifdef DEBUG
924 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
925 "xfs_iformat() returned error %d",
926 error);
927#endif /* DEBUG */
928 return error;
929 }
930 } else {
347d1c01
CH
931 ip->i_d.di_magic = be16_to_cpu(dip->di_core.di_magic);
932 ip->i_d.di_version = dip->di_core.di_version;
933 ip->i_d.di_gen = be32_to_cpu(dip->di_core.di_gen);
934 ip->i_d.di_flushiter = be16_to_cpu(dip->di_core.di_flushiter);
1da177e4
LT
935 /*
936 * Make sure to pull in the mode here as well in
937 * case the inode is released without being used.
938 * This ensures that xfs_inactive() will see that
939 * the inode is already free and not try to mess
940 * with the uninitialized part of it.
941 */
942 ip->i_d.di_mode = 0;
943 /*
944 * Initialize the per-fork minima and maxima for a new
945 * inode here. xfs_iformat will do it for old inodes.
946 */
947 ip->i_df.if_ext_max =
948 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
949 }
950
1da177e4
LT
951 /*
952 * The inode format changed when we moved the link count and
953 * made it 32 bits long. If this is an old format inode,
954 * convert it in memory to look like a new one. If it gets
955 * flushed to disk we will convert back before flushing or
956 * logging it. We zero out the new projid field and the old link
957 * count field. We'll handle clearing the pad field (the remains
958 * of the old uuid field) when we actually convert the inode to
959 * the new format. We don't change the version number so that we
960 * can distinguish this from a real new format inode.
961 */
962 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
963 ip->i_d.di_nlink = ip->i_d.di_onlink;
964 ip->i_d.di_onlink = 0;
965 ip->i_d.di_projid = 0;
966 }
967
968 ip->i_delayed_blks = 0;
ba87ea69 969 ip->i_size = ip->i_d.di_size;
1da177e4
LT
970
971 /*
972 * Mark the buffer containing the inode as something to keep
973 * around for a while. This helps to keep recently accessed
974 * meta-data in-core longer.
975 */
976 XFS_BUF_SET_REF(bp, XFS_INO_REF);
977
978 /*
979 * Use xfs_trans_brelse() to release the buffer containing the
980 * on-disk inode, because it was acquired with xfs_trans_read_buf()
981 * in xfs_itobp() above. If tp is NULL, this is just a normal
982 * brelse(). If we're within a transaction, then xfs_trans_brelse()
983 * will only release the buffer if it is not dirty within the
984 * transaction. It will be OK to release the buffer in this case,
985 * because inodes on disk are never destroyed and we will be
986 * locking the new in-core inode before putting it in the hash
987 * table where other processes can find it. Thus we don't have
988 * to worry about the inode being changed just because we released
989 * the buffer.
990 */
991 xfs_trans_brelse(tp, bp);
992 *ipp = ip;
993 return 0;
994}
995
996/*
997 * Read in extents from a btree-format inode.
998 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
999 */
1000int
1001xfs_iread_extents(
1002 xfs_trans_t *tp,
1003 xfs_inode_t *ip,
1004 int whichfork)
1005{
1006 int error;
1007 xfs_ifork_t *ifp;
4eea22f0 1008 xfs_extnum_t nextents;
1da177e4
LT
1009 size_t size;
1010
1011 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
1012 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
1013 ip->i_mount);
1014 return XFS_ERROR(EFSCORRUPTED);
1015 }
4eea22f0
MK
1016 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
1017 size = nextents * sizeof(xfs_bmbt_rec_t);
1da177e4 1018 ifp = XFS_IFORK_PTR(ip, whichfork);
4eea22f0 1019
1da177e4
LT
1020 /*
1021 * We know that the size is valid (it's checked in iformat_btree)
1022 */
1da177e4 1023 ifp->if_lastex = NULLEXTNUM;
4eea22f0 1024 ifp->if_bytes = ifp->if_real_bytes = 0;
1da177e4 1025 ifp->if_flags |= XFS_IFEXTENTS;
4eea22f0 1026 xfs_iext_add(ifp, 0, nextents);
1da177e4
LT
1027 error = xfs_bmap_read_extents(tp, ip, whichfork);
1028 if (error) {
4eea22f0 1029 xfs_iext_destroy(ifp);
1da177e4
LT
1030 ifp->if_flags &= ~XFS_IFEXTENTS;
1031 return error;
1032 }
a6f64d4a 1033 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
1da177e4
LT
1034 return 0;
1035}
1036
1037/*
1038 * Allocate an inode on disk and return a copy of its in-core version.
1039 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
1040 * appropriately within the inode. The uid and gid for the inode are
1041 * set according to the contents of the given cred structure.
1042 *
1043 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
1044 * has a free inode available, call xfs_iget()
1045 * to obtain the in-core version of the allocated inode. Finally,
1046 * fill in the inode and log its initial contents. In this case,
1047 * ialloc_context would be set to NULL and call_again set to false.
1048 *
1049 * If xfs_dialloc() does not have an available inode,
1050 * it will replenish its supply by doing an allocation. Since we can
1051 * only do one allocation within a transaction without deadlocks, we
1052 * must commit the current transaction before returning the inode itself.
1053 * In this case, therefore, we will set call_again to true and return.
1054 * The caller should then commit the current transaction, start a new
1055 * transaction, and call xfs_ialloc() again to actually get the inode.
1056 *
1057 * To ensure that some other process does not grab the inode that
1058 * was allocated during the first call to xfs_ialloc(), this routine
1059 * also returns the [locked] bp pointing to the head of the freelist
1060 * as ialloc_context. The caller should hold this buffer across
1061 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
1062 *
1063 * If we are allocating quota inodes, we do not have a parent inode
1064 * to attach to or associate with (i.e. pip == NULL) because they
1065 * are not linked into the directory structure - they are attached
1066 * directly to the superblock - and so have no parent.
1da177e4
LT
1067 */
1068int
1069xfs_ialloc(
1070 xfs_trans_t *tp,
1071 xfs_inode_t *pip,
1072 mode_t mode,
31b084ae 1073 xfs_nlink_t nlink,
1da177e4
LT
1074 xfs_dev_t rdev,
1075 cred_t *cr,
1076 xfs_prid_t prid,
1077 int okalloc,
1078 xfs_buf_t **ialloc_context,
1079 boolean_t *call_again,
1080 xfs_inode_t **ipp)
1081{
1082 xfs_ino_t ino;
1083 xfs_inode_t *ip;
1da177e4
LT
1084 uint flags;
1085 int error;
dff35fd4 1086 timespec_t tv;
1da177e4
LT
1087
1088 /*
1089 * Call the space management code to pick
1090 * the on-disk inode to be allocated.
1091 */
b11f94d5 1092 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1da177e4
LT
1093 ialloc_context, call_again, &ino);
1094 if (error != 0) {
1095 return error;
1096 }
1097 if (*call_again || ino == NULLFSINO) {
1098 *ipp = NULL;
1099 return 0;
1100 }
1101 ASSERT(*ialloc_context == NULL);
1102
1103 /*
1104 * Get the in-core inode with the lock held exclusively.
1105 * This is because we're setting fields here we need
1106 * to prevent others from looking at until we're done.
1107 */
1108 error = xfs_trans_iget(tp->t_mountp, tp, ino,
745b1f47 1109 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1da177e4
LT
1110 if (error != 0) {
1111 return error;
1112 }
1113 ASSERT(ip != NULL);
1114
1da177e4
LT
1115 ip->i_d.di_mode = (__uint16_t)mode;
1116 ip->i_d.di_onlink = 0;
1117 ip->i_d.di_nlink = nlink;
1118 ASSERT(ip->i_d.di_nlink == nlink);
9e2b2dc4
DH
1119 ip->i_d.di_uid = current_fsuid();
1120 ip->i_d.di_gid = current_fsgid();
1da177e4
LT
1121 ip->i_d.di_projid = prid;
1122 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1123
1124 /*
1125 * If the superblock version is up to where we support new format
1126 * inodes and this is currently an old format inode, then change
1127 * the inode version number now. This way we only do the conversion
1128 * here rather than here and in the flush/logging code.
1129 */
62118709 1130 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1da177e4
LT
1131 ip->i_d.di_version == XFS_DINODE_VERSION_1) {
1132 ip->i_d.di_version = XFS_DINODE_VERSION_2;
1133 /*
1134 * We've already zeroed the old link count, the projid field,
1135 * and the pad field.
1136 */
1137 }
1138
1139 /*
1140 * Project ids won't be stored on disk if we are using a version 1 inode.
1141 */
2a82b8be 1142 if ((prid != 0) && (ip->i_d.di_version == XFS_DINODE_VERSION_1))
1da177e4
LT
1143 xfs_bump_ino_vers2(tp, ip);
1144
bd186aa9 1145 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4
LT
1146 ip->i_d.di_gid = pip->i_d.di_gid;
1147 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1148 ip->i_d.di_mode |= S_ISGID;
1149 }
1150 }
1151
1152 /*
1153 * If the group ID of the new file does not match the effective group
1154 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1155 * (and only if the irix_sgid_inherit compatibility variable is set).
1156 */
1157 if ((irix_sgid_inherit) &&
1158 (ip->i_d.di_mode & S_ISGID) &&
1159 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1160 ip->i_d.di_mode &= ~S_ISGID;
1161 }
1162
1163 ip->i_d.di_size = 0;
ba87ea69 1164 ip->i_size = 0;
1da177e4
LT
1165 ip->i_d.di_nextents = 0;
1166 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4
CH
1167
1168 nanotime(&tv);
1169 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1170 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1171 ip->i_d.di_atime = ip->i_d.di_mtime;
1172 ip->i_d.di_ctime = ip->i_d.di_mtime;
1173
1da177e4
LT
1174 /*
1175 * di_gen will have been taken care of in xfs_iread.
1176 */
1177 ip->i_d.di_extsize = 0;
1178 ip->i_d.di_dmevmask = 0;
1179 ip->i_d.di_dmstate = 0;
1180 ip->i_d.di_flags = 0;
1181 flags = XFS_ILOG_CORE;
1182 switch (mode & S_IFMT) {
1183 case S_IFIFO:
1184 case S_IFCHR:
1185 case S_IFBLK:
1186 case S_IFSOCK:
1187 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1188 ip->i_df.if_u2.if_rdev = rdev;
1189 ip->i_df.if_flags = 0;
1190 flags |= XFS_ILOG_DEV;
1191 break;
1192 case S_IFREG:
b11f94d5 1193 if (pip && xfs_inode_is_filestream(pip)) {
2a82b8be
DC
1194 error = xfs_filestream_associate(pip, ip);
1195 if (error < 0)
1196 return -error;
1197 if (!error)
1198 xfs_iflags_set(ip, XFS_IFILESTREAM);
1199 }
1200 /* fall through */
1da177e4 1201 case S_IFDIR:
b11f94d5 1202 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
365ca83d
NS
1203 uint di_flags = 0;
1204
1205 if ((mode & S_IFMT) == S_IFDIR) {
1206 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1207 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
1208 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1209 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1210 ip->i_d.di_extsize = pip->i_d.di_extsize;
1211 }
1212 } else if ((mode & S_IFMT) == S_IFREG) {
613d7043 1213 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 1214 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
1215 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1216 di_flags |= XFS_DIFLAG_EXTSIZE;
1217 ip->i_d.di_extsize = pip->i_d.di_extsize;
1218 }
1da177e4
LT
1219 }
1220 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1221 xfs_inherit_noatime)
365ca83d 1222 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
1223 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1224 xfs_inherit_nodump)
365ca83d 1225 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
1226 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1227 xfs_inherit_sync)
365ca83d 1228 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
1229 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1230 xfs_inherit_nosymlinks)
365ca83d
NS
1231 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1232 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1233 di_flags |= XFS_DIFLAG_PROJINHERIT;
d3446eac
BN
1234 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1235 xfs_inherit_nodefrag)
1236 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
1237 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1238 di_flags |= XFS_DIFLAG_FILESTREAM;
365ca83d 1239 ip->i_d.di_flags |= di_flags;
1da177e4
LT
1240 }
1241 /* FALLTHROUGH */
1242 case S_IFLNK:
1243 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1244 ip->i_df.if_flags = XFS_IFEXTENTS;
1245 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1246 ip->i_df.if_u1.if_extents = NULL;
1247 break;
1248 default:
1249 ASSERT(0);
1250 }
1251 /*
1252 * Attribute fork settings for new inode.
1253 */
1254 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1255 ip->i_d.di_anextents = 0;
1256
1257 /*
1258 * Log the new values stuffed into the inode.
1259 */
1260 xfs_trans_log_inode(tp, ip, flags);
1261
b83bd138 1262 /* now that we have an i_mode we can setup inode ops and unlock */
41be8bed 1263 xfs_setup_inode(ip);
1da177e4
LT
1264
1265 *ipp = ip;
1266 return 0;
1267}
1268
1269/*
1270 * Check to make sure that there are no blocks allocated to the
1271 * file beyond the size of the file. We don't check this for
1272 * files with fixed size extents or real time extents, but we
1273 * at least do it for regular files.
1274 */
1275#ifdef DEBUG
1276void
1277xfs_isize_check(
1278 xfs_mount_t *mp,
1279 xfs_inode_t *ip,
1280 xfs_fsize_t isize)
1281{
1282 xfs_fileoff_t map_first;
1283 int nimaps;
1284 xfs_bmbt_irec_t imaps[2];
1285
1286 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1287 return;
1288
71ddabb9
ES
1289 if (XFS_IS_REALTIME_INODE(ip))
1290 return;
1291
1292 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1da177e4
LT
1293 return;
1294
1295 nimaps = 2;
1296 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1297 /*
1298 * The filesystem could be shutting down, so bmapi may return
1299 * an error.
1300 */
1301 if (xfs_bmapi(NULL, ip, map_first,
1302 (XFS_B_TO_FSB(mp,
1303 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1304 map_first),
1305 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
3e57ecf6 1306 NULL, NULL))
1da177e4
LT
1307 return;
1308 ASSERT(nimaps == 1);
1309 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1310}
1311#endif /* DEBUG */
1312
1313/*
1314 * Calculate the last possible buffered byte in a file. This must
1315 * include data that was buffered beyond the EOF by the write code.
1316 * This also needs to deal with overflowing the xfs_fsize_t type
1317 * which can happen for sizes near the limit.
1318 *
1319 * We also need to take into account any blocks beyond the EOF. It
1320 * may be the case that they were buffered by a write which failed.
1321 * In that case the pages will still be in memory, but the inode size
1322 * will never have been updated.
1323 */
1324xfs_fsize_t
1325xfs_file_last_byte(
1326 xfs_inode_t *ip)
1327{
1328 xfs_mount_t *mp;
1329 xfs_fsize_t last_byte;
1330 xfs_fileoff_t last_block;
1331 xfs_fileoff_t size_last_block;
1332 int error;
1333
579aa9ca 1334 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1da177e4
LT
1335
1336 mp = ip->i_mount;
1337 /*
1338 * Only check for blocks beyond the EOF if the extents have
1339 * been read in. This eliminates the need for the inode lock,
1340 * and it also saves us from looking when it really isn't
1341 * necessary.
1342 */
1343 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1344 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1345 XFS_DATA_FORK);
1346 if (error) {
1347 last_block = 0;
1348 }
1349 } else {
1350 last_block = 0;
1351 }
ba87ea69 1352 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1da177e4
LT
1353 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1354
1355 last_byte = XFS_FSB_TO_B(mp, last_block);
1356 if (last_byte < 0) {
1357 return XFS_MAXIOFFSET(mp);
1358 }
1359 last_byte += (1 << mp->m_writeio_log);
1360 if (last_byte < 0) {
1361 return XFS_MAXIOFFSET(mp);
1362 }
1363 return last_byte;
1364}
1365
1366#if defined(XFS_RW_TRACE)
1367STATIC void
1368xfs_itrunc_trace(
1369 int tag,
1370 xfs_inode_t *ip,
1371 int flag,
1372 xfs_fsize_t new_size,
1373 xfs_off_t toss_start,
1374 xfs_off_t toss_finish)
1375{
1376 if (ip->i_rwtrace == NULL) {
1377 return;
1378 }
1379
1380 ktrace_enter(ip->i_rwtrace,
1381 (void*)((long)tag),
1382 (void*)ip,
1383 (void*)(unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff),
1384 (void*)(unsigned long)(ip->i_d.di_size & 0xffffffff),
1385 (void*)((long)flag),
1386 (void*)(unsigned long)((new_size >> 32) & 0xffffffff),
1387 (void*)(unsigned long)(new_size & 0xffffffff),
1388 (void*)(unsigned long)((toss_start >> 32) & 0xffffffff),
1389 (void*)(unsigned long)(toss_start & 0xffffffff),
1390 (void*)(unsigned long)((toss_finish >> 32) & 0xffffffff),
1391 (void*)(unsigned long)(toss_finish & 0xffffffff),
1392 (void*)(unsigned long)current_cpu(),
f1fdc848
YL
1393 (void*)(unsigned long)current_pid(),
1394 (void*)NULL,
1395 (void*)NULL,
1396 (void*)NULL);
1da177e4
LT
1397}
1398#else
1399#define xfs_itrunc_trace(tag, ip, flag, new_size, toss_start, toss_finish)
1400#endif
1401
1402/*
1403 * Start the truncation of the file to new_size. The new size
1404 * must be smaller than the current size. This routine will
1405 * clear the buffer and page caches of file data in the removed
1406 * range, and xfs_itruncate_finish() will remove the underlying
1407 * disk blocks.
1408 *
1409 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1410 * must NOT have the inode lock held at all. This is because we're
1411 * calling into the buffer/page cache code and we can't hold the
1412 * inode lock when we do so.
1413 *
38e2299a
DC
1414 * We need to wait for any direct I/Os in flight to complete before we
1415 * proceed with the truncate. This is needed to prevent the extents
1416 * being read or written by the direct I/Os from being removed while the
1417 * I/O is in flight as there is no other method of synchronising
1418 * direct I/O with the truncate operation. Also, because we hold
1419 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1420 * started until the truncate completes and drops the lock. Essentially,
1421 * the vn_iowait() call forms an I/O barrier that provides strict ordering
1422 * between direct I/Os and the truncate operation.
1423 *
1da177e4
LT
1424 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1425 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1426 * in the case that the caller is locking things out of order and
1427 * may not be able to call xfs_itruncate_finish() with the inode lock
1428 * held without dropping the I/O lock. If the caller must drop the
1429 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1430 * must be called again with all the same restrictions as the initial
1431 * call.
1432 */
d3cf2094 1433int
1da177e4
LT
1434xfs_itruncate_start(
1435 xfs_inode_t *ip,
1436 uint flags,
1437 xfs_fsize_t new_size)
1438{
1439 xfs_fsize_t last_byte;
1440 xfs_off_t toss_start;
1441 xfs_mount_t *mp;
d3cf2094 1442 int error = 0;
1da177e4 1443
579aa9ca 1444 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ba87ea69 1445 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1446 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1447 (flags == XFS_ITRUNC_MAYBE));
1448
1449 mp = ip->i_mount;
9fa8046f 1450
c734c79b
LM
1451 /* wait for the completion of any pending DIOs */
1452 if (new_size < ip->i_size)
1453 vn_iowait(ip);
1454
1da177e4 1455 /*
67fcaa73 1456 * Call toss_pages or flushinval_pages to get rid of pages
1da177e4 1457 * overlapping the region being removed. We have to use
67fcaa73 1458 * the less efficient flushinval_pages in the case that the
1da177e4
LT
1459 * caller may not be able to finish the truncate without
1460 * dropping the inode's I/O lock. Make sure
1461 * to catch any pages brought in by buffers overlapping
1462 * the EOF by searching out beyond the isize by our
1463 * block size. We round new_size up to a block boundary
1464 * so that we don't toss things on the same block as
1465 * new_size but before it.
1466 *
67fcaa73 1467 * Before calling toss_page or flushinval_pages, make sure to
1da177e4
LT
1468 * call remapf() over the same region if the file is mapped.
1469 * This frees up mapped file references to the pages in the
67fcaa73 1470 * given range and for the flushinval_pages case it ensures
1da177e4
LT
1471 * that we get the latest mapped changes flushed out.
1472 */
1473 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1474 toss_start = XFS_FSB_TO_B(mp, toss_start);
1475 if (toss_start < 0) {
1476 /*
1477 * The place to start tossing is beyond our maximum
1478 * file size, so there is no way that the data extended
1479 * out there.
1480 */
d3cf2094 1481 return 0;
1da177e4
LT
1482 }
1483 last_byte = xfs_file_last_byte(ip);
1484 xfs_itrunc_trace(XFS_ITRUNC_START, ip, flags, new_size, toss_start,
1485 last_byte);
1486 if (last_byte > toss_start) {
1487 if (flags & XFS_ITRUNC_DEFINITE) {
739bfb2a
CH
1488 xfs_tosspages(ip, toss_start,
1489 -1, FI_REMAPF_LOCKED);
1da177e4 1490 } else {
739bfb2a
CH
1491 error = xfs_flushinval_pages(ip, toss_start,
1492 -1, FI_REMAPF_LOCKED);
1da177e4
LT
1493 }
1494 }
1495
1496#ifdef DEBUG
1497 if (new_size == 0) {
df80c933 1498 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1da177e4
LT
1499 }
1500#endif
d3cf2094 1501 return error;
1da177e4
LT
1502}
1503
1504/*
f6485057
DC
1505 * Shrink the file to the given new_size. The new size must be smaller than
1506 * the current size. This will free up the underlying blocks in the removed
1507 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1da177e4 1508 *
f6485057
DC
1509 * The transaction passed to this routine must have made a permanent log
1510 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1511 * given transaction and start new ones, so make sure everything involved in
1512 * the transaction is tidy before calling here. Some transaction will be
1513 * returned to the caller to be committed. The incoming transaction must
1514 * already include the inode, and both inode locks must be held exclusively.
1515 * The inode must also be "held" within the transaction. On return the inode
1516 * will be "held" within the returned transaction. This routine does NOT
1517 * require any disk space to be reserved for it within the transaction.
1da177e4 1518 *
f6485057
DC
1519 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1520 * indicates the fork which is to be truncated. For the attribute fork we only
1521 * support truncation to size 0.
1da177e4 1522 *
f6485057
DC
1523 * We use the sync parameter to indicate whether or not the first transaction
1524 * we perform might have to be synchronous. For the attr fork, it needs to be
1525 * so if the unlink of the inode is not yet known to be permanent in the log.
1526 * This keeps us from freeing and reusing the blocks of the attribute fork
1527 * before the unlink of the inode becomes permanent.
1da177e4 1528 *
f6485057
DC
1529 * For the data fork, we normally have to run synchronously if we're being
1530 * called out of the inactive path or we're being called out of the create path
1531 * where we're truncating an existing file. Either way, the truncate needs to
1532 * be sync so blocks don't reappear in the file with altered data in case of a
1533 * crash. wsync filesystems can run the first case async because anything that
1534 * shrinks the inode has to run sync so by the time we're called here from
1535 * inactive, the inode size is permanently set to 0.
1da177e4 1536 *
f6485057
DC
1537 * Calls from the truncate path always need to be sync unless we're in a wsync
1538 * filesystem and the file has already been unlinked.
1da177e4 1539 *
f6485057
DC
1540 * The caller is responsible for correctly setting the sync parameter. It gets
1541 * too hard for us to guess here which path we're being called out of just
1542 * based on inode state.
1543 *
1544 * If we get an error, we must return with the inode locked and linked into the
1545 * current transaction. This keeps things simple for the higher level code,
1546 * because it always knows that the inode is locked and held in the transaction
1547 * that returns to it whether errors occur or not. We don't mark the inode
1548 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1549 */
1550int
1551xfs_itruncate_finish(
1552 xfs_trans_t **tp,
1553 xfs_inode_t *ip,
1554 xfs_fsize_t new_size,
1555 int fork,
1556 int sync)
1557{
1558 xfs_fsblock_t first_block;
1559 xfs_fileoff_t first_unmap_block;
1560 xfs_fileoff_t last_block;
1561 xfs_filblks_t unmap_len=0;
1562 xfs_mount_t *mp;
1563 xfs_trans_t *ntp;
1564 int done;
1565 int committed;
1566 xfs_bmap_free_t free_list;
1567 int error;
1568
579aa9ca 1569 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
ba87ea69 1570 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1da177e4
LT
1571 ASSERT(*tp != NULL);
1572 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1573 ASSERT(ip->i_transp == *tp);
1574 ASSERT(ip->i_itemp != NULL);
1575 ASSERT(ip->i_itemp->ili_flags & XFS_ILI_HOLD);
1576
1577
1578 ntp = *tp;
1579 mp = (ntp)->t_mountp;
1580 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1581
1582 /*
1583 * We only support truncating the entire attribute fork.
1584 */
1585 if (fork == XFS_ATTR_FORK) {
1586 new_size = 0LL;
1587 }
1588 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1589 xfs_itrunc_trace(XFS_ITRUNC_FINISH1, ip, 0, new_size, 0, 0);
1590 /*
1591 * The first thing we do is set the size to new_size permanently
1592 * on disk. This way we don't have to worry about anyone ever
1593 * being able to look at the data being freed even in the face
1594 * of a crash. What we're getting around here is the case where
1595 * we free a block, it is allocated to another file, it is written
1596 * to, and then we crash. If the new data gets written to the
1597 * file but the log buffers containing the free and reallocation
1598 * don't, then we'd end up with garbage in the blocks being freed.
1599 * As long as we make the new_size permanent before actually
1600 * freeing any blocks it doesn't matter if they get writtten to.
1601 *
1602 * The callers must signal into us whether or not the size
1603 * setting here must be synchronous. There are a few cases
1604 * where it doesn't have to be synchronous. Those cases
1605 * occur if the file is unlinked and we know the unlink is
1606 * permanent or if the blocks being truncated are guaranteed
1607 * to be beyond the inode eof (regardless of the link count)
1608 * and the eof value is permanent. Both of these cases occur
1609 * only on wsync-mounted filesystems. In those cases, we're
1610 * guaranteed that no user will ever see the data in the blocks
1611 * that are being truncated so the truncate can run async.
1612 * In the free beyond eof case, the file may wind up with
1613 * more blocks allocated to it than it needs if we crash
1614 * and that won't get fixed until the next time the file
1615 * is re-opened and closed but that's ok as that shouldn't
1616 * be too many blocks.
1617 *
1618 * However, we can't just make all wsync xactions run async
1619 * because there's one call out of the create path that needs
1620 * to run sync where it's truncating an existing file to size
1621 * 0 whose size is > 0.
1622 *
1623 * It's probably possible to come up with a test in this
1624 * routine that would correctly distinguish all the above
1625 * cases from the values of the function parameters and the
1626 * inode state but for sanity's sake, I've decided to let the
1627 * layers above just tell us. It's simpler to correctly figure
1628 * out in the layer above exactly under what conditions we
1629 * can run async and I think it's easier for others read and
1630 * follow the logic in case something has to be changed.
1631 * cscope is your friend -- rcc.
1632 *
1633 * The attribute fork is much simpler.
1634 *
1635 * For the attribute fork we allow the caller to tell us whether
1636 * the unlink of the inode that led to this call is yet permanent
1637 * in the on disk log. If it is not and we will be freeing extents
1638 * in this inode then we make the first transaction synchronous
1639 * to make sure that the unlink is permanent by the time we free
1640 * the blocks.
1641 */
1642 if (fork == XFS_DATA_FORK) {
1643 if (ip->i_d.di_nextents > 0) {
ba87ea69
LM
1644 /*
1645 * If we are not changing the file size then do
1646 * not update the on-disk file size - we may be
1647 * called from xfs_inactive_free_eofblocks(). If we
1648 * update the on-disk file size and then the system
1649 * crashes before the contents of the file are
1650 * flushed to disk then the files may be full of
1651 * holes (ie NULL files bug).
1652 */
1653 if (ip->i_size != new_size) {
1654 ip->i_d.di_size = new_size;
1655 ip->i_size = new_size;
1656 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1657 }
1da177e4
LT
1658 }
1659 } else if (sync) {
1660 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1661 if (ip->i_d.di_anextents > 0)
1662 xfs_trans_set_sync(ntp);
1663 }
1664 ASSERT(fork == XFS_DATA_FORK ||
1665 (fork == XFS_ATTR_FORK &&
1666 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1667 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1668
1669 /*
1670 * Since it is possible for space to become allocated beyond
1671 * the end of the file (in a crash where the space is allocated
1672 * but the inode size is not yet updated), simply remove any
1673 * blocks which show up between the new EOF and the maximum
1674 * possible file size. If the first block to be removed is
1675 * beyond the maximum file size (ie it is the same as last_block),
1676 * then there is nothing to do.
1677 */
1678 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1679 ASSERT(first_unmap_block <= last_block);
1680 done = 0;
1681 if (last_block == first_unmap_block) {
1682 done = 1;
1683 } else {
1684 unmap_len = last_block - first_unmap_block + 1;
1685 }
1686 while (!done) {
1687 /*
1688 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1689 * will tell us whether it freed the entire range or
1690 * not. If this is a synchronous mount (wsync),
1691 * then we can tell bunmapi to keep all the
1692 * transactions asynchronous since the unlink
1693 * transaction that made this inode inactive has
1694 * already hit the disk. There's no danger of
1695 * the freed blocks being reused, there being a
1696 * crash, and the reused blocks suddenly reappearing
1697 * in this file with garbage in them once recovery
1698 * runs.
1699 */
1700 XFS_BMAP_INIT(&free_list, &first_block);
541d7d3c 1701 error = xfs_bunmapi(ntp, ip,
3e57ecf6 1702 first_unmap_block, unmap_len,
1da177e4
LT
1703 XFS_BMAPI_AFLAG(fork) |
1704 (sync ? 0 : XFS_BMAPI_ASYNC),
1705 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6
OW
1706 &first_block, &free_list,
1707 NULL, &done);
1da177e4
LT
1708 if (error) {
1709 /*
1710 * If the bunmapi call encounters an error,
1711 * return to the caller where the transaction
1712 * can be properly aborted. We just need to
1713 * make sure we're not holding any resources
1714 * that we were not when we came in.
1715 */
1716 xfs_bmap_cancel(&free_list);
1717 return error;
1718 }
1719
1720 /*
1721 * Duplicate the transaction that has the permanent
1722 * reservation and commit the old transaction.
1723 */
f7c99b6f 1724 error = xfs_bmap_finish(tp, &free_list, &committed);
1da177e4 1725 ntp = *tp;
f6485057
DC
1726 if (committed) {
1727 /* link the inode into the next xact in the chain */
1728 xfs_trans_ijoin(ntp, ip,
1729 XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1730 xfs_trans_ihold(ntp, ip);
1731 }
1732
1da177e4
LT
1733 if (error) {
1734 /*
f6485057
DC
1735 * If the bmap finish call encounters an error, return
1736 * to the caller where the transaction can be properly
1737 * aborted. We just need to make sure we're not
1738 * holding any resources that we were not when we came
1739 * in.
1da177e4 1740 *
f6485057
DC
1741 * Aborting from this point might lose some blocks in
1742 * the file system, but oh well.
1da177e4
LT
1743 */
1744 xfs_bmap_cancel(&free_list);
1da177e4
LT
1745 return error;
1746 }
1747
1748 if (committed) {
1749 /*
f6485057 1750 * Mark the inode dirty so it will be logged and
e5720eec 1751 * moved forward in the log as part of every commit.
1da177e4 1752 */
1da177e4
LT
1753 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1754 }
f6485057 1755
1da177e4 1756 ntp = xfs_trans_dup(ntp);
e5720eec 1757 error = xfs_trans_commit(*tp, 0);
1da177e4 1758 *tp = ntp;
e5720eec 1759
f6485057
DC
1760 /* link the inode into the next transaction in the chain */
1761 xfs_trans_ijoin(ntp, ip, XFS_ILOCK_EXCL | XFS_IOLOCK_EXCL);
1762 xfs_trans_ihold(ntp, ip);
1763
1764 if (!error)
1765 error = xfs_trans_reserve(ntp, 0,
1766 XFS_ITRUNCATE_LOG_RES(mp), 0,
1767 XFS_TRANS_PERM_LOG_RES,
1768 XFS_ITRUNCATE_LOG_COUNT);
1769 if (error)
1770 return error;
1da177e4
LT
1771 }
1772 /*
1773 * Only update the size in the case of the data fork, but
1774 * always re-log the inode so that our permanent transaction
1775 * can keep on rolling it forward in the log.
1776 */
1777 if (fork == XFS_DATA_FORK) {
1778 xfs_isize_check(mp, ip, new_size);
ba87ea69
LM
1779 /*
1780 * If we are not changing the file size then do
1781 * not update the on-disk file size - we may be
1782 * called from xfs_inactive_free_eofblocks(). If we
1783 * update the on-disk file size and then the system
1784 * crashes before the contents of the file are
1785 * flushed to disk then the files may be full of
1786 * holes (ie NULL files bug).
1787 */
1788 if (ip->i_size != new_size) {
1789 ip->i_d.di_size = new_size;
1790 ip->i_size = new_size;
1791 }
1da177e4
LT
1792 }
1793 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1794 ASSERT((new_size != 0) ||
1795 (fork == XFS_ATTR_FORK) ||
1796 (ip->i_delayed_blks == 0));
1797 ASSERT((new_size != 0) ||
1798 (fork == XFS_ATTR_FORK) ||
1799 (ip->i_d.di_nextents == 0));
1800 xfs_itrunc_trace(XFS_ITRUNC_FINISH2, ip, 0, new_size, 0, 0);
1801 return 0;
1802}
1803
1da177e4
LT
1804/*
1805 * This is called when the inode's link count goes to 0.
1806 * We place the on-disk inode on a list in the AGI. It
1807 * will be pulled from this list when the inode is freed.
1808 */
1809int
1810xfs_iunlink(
1811 xfs_trans_t *tp,
1812 xfs_inode_t *ip)
1813{
1814 xfs_mount_t *mp;
1815 xfs_agi_t *agi;
1816 xfs_dinode_t *dip;
1817 xfs_buf_t *agibp;
1818 xfs_buf_t *ibp;
1819 xfs_agnumber_t agno;
1820 xfs_daddr_t agdaddr;
1821 xfs_agino_t agino;
1822 short bucket_index;
1823 int offset;
1824 int error;
1825 int agi_ok;
1826
1827 ASSERT(ip->i_d.di_nlink == 0);
1828 ASSERT(ip->i_d.di_mode != 0);
1829 ASSERT(ip->i_transp == tp);
1830
1831 mp = tp->t_mountp;
1832
1833 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1834 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1835
1836 /*
1837 * Get the agi buffer first. It ensures lock ordering
1838 * on the list.
1839 */
1840 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1841 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
859d7182 1842 if (error)
1da177e4 1843 return error;
859d7182 1844
1da177e4
LT
1845 /*
1846 * Validate the magic number of the agi block.
1847 */
1848 agi = XFS_BUF_TO_AGI(agibp);
1849 agi_ok =
16259e7d
CH
1850 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1851 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1852 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK,
1853 XFS_RANDOM_IUNLINK))) {
1854 XFS_CORRUPTION_ERROR("xfs_iunlink", XFS_ERRLEVEL_LOW, mp, agi);
1855 xfs_trans_brelse(tp, agibp);
1856 return XFS_ERROR(EFSCORRUPTED);
1857 }
1858 /*
1859 * Get the index into the agi hash table for the
1860 * list this inode will go on.
1861 */
1862 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1863 ASSERT(agino != 0);
1864 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1865 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1866 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1867
16259e7d 1868 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1da177e4
LT
1869 /*
1870 * There is already another inode in the bucket we need
1871 * to add ourselves to. Add us at the front of the list.
1872 * Here we put the head pointer into our next pointer,
1873 * and then we fall through to point the head at us.
1874 */
a3f74ffb 1875 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
1876 if (error)
1877 return error;
1878
347d1c01 1879 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1da177e4
LT
1880 /* both on-disk, don't endian flip twice */
1881 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1882 offset = ip->i_boffset +
1883 offsetof(xfs_dinode_t, di_next_unlinked);
1884 xfs_trans_inode_buf(tp, ibp);
1885 xfs_trans_log_buf(tp, ibp, offset,
1886 (offset + sizeof(xfs_agino_t) - 1));
1887 xfs_inobp_check(mp, ibp);
1888 }
1889
1890 /*
1891 * Point the bucket head pointer at the inode being inserted.
1892 */
1893 ASSERT(agino != 0);
16259e7d 1894 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
1895 offset = offsetof(xfs_agi_t, agi_unlinked) +
1896 (sizeof(xfs_agino_t) * bucket_index);
1897 xfs_trans_log_buf(tp, agibp, offset,
1898 (offset + sizeof(xfs_agino_t) - 1));
1899 return 0;
1900}
1901
1902/*
1903 * Pull the on-disk inode from the AGI unlinked list.
1904 */
1905STATIC int
1906xfs_iunlink_remove(
1907 xfs_trans_t *tp,
1908 xfs_inode_t *ip)
1909{
1910 xfs_ino_t next_ino;
1911 xfs_mount_t *mp;
1912 xfs_agi_t *agi;
1913 xfs_dinode_t *dip;
1914 xfs_buf_t *agibp;
1915 xfs_buf_t *ibp;
1916 xfs_agnumber_t agno;
1917 xfs_daddr_t agdaddr;
1918 xfs_agino_t agino;
1919 xfs_agino_t next_agino;
1920 xfs_buf_t *last_ibp;
6fdf8ccc 1921 xfs_dinode_t *last_dip = NULL;
1da177e4 1922 short bucket_index;
6fdf8ccc 1923 int offset, last_offset = 0;
1da177e4
LT
1924 int error;
1925 int agi_ok;
1926
1927 /*
1928 * First pull the on-disk inode from the AGI unlinked list.
1929 */
1930 mp = tp->t_mountp;
1931
1932 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1933 agdaddr = XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp));
1934
1935 /*
1936 * Get the agi buffer first. It ensures lock ordering
1937 * on the list.
1938 */
1939 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, agdaddr,
1940 XFS_FSS_TO_BB(mp, 1), 0, &agibp);
1941 if (error) {
1942 cmn_err(CE_WARN,
1943 "xfs_iunlink_remove: xfs_trans_read_buf() returned an error %d on %s. Returning error.",
1944 error, mp->m_fsname);
1945 return error;
1946 }
1947 /*
1948 * Validate the magic number of the agi block.
1949 */
1950 agi = XFS_BUF_TO_AGI(agibp);
1951 agi_ok =
16259e7d
CH
1952 be32_to_cpu(agi->agi_magicnum) == XFS_AGI_MAGIC &&
1953 XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum));
1da177e4
LT
1954 if (unlikely(XFS_TEST_ERROR(!agi_ok, mp, XFS_ERRTAG_IUNLINK_REMOVE,
1955 XFS_RANDOM_IUNLINK_REMOVE))) {
1956 XFS_CORRUPTION_ERROR("xfs_iunlink_remove", XFS_ERRLEVEL_LOW,
1957 mp, agi);
1958 xfs_trans_brelse(tp, agibp);
1959 cmn_err(CE_WARN,
1960 "xfs_iunlink_remove: XFS_TEST_ERROR() returned an error on %s. Returning EFSCORRUPTED.",
1961 mp->m_fsname);
1962 return XFS_ERROR(EFSCORRUPTED);
1963 }
1964 /*
1965 * Get the index into the agi hash table for the
1966 * list this inode will go on.
1967 */
1968 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1969 ASSERT(agino != 0);
1970 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
16259e7d 1971 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1da177e4
LT
1972 ASSERT(agi->agi_unlinked[bucket_index]);
1973
16259e7d 1974 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4
LT
1975 /*
1976 * We're at the head of the list. Get the inode's
1977 * on-disk buffer to see if there is anyone after us
1978 * on the list. Only modify our next pointer if it
1979 * is not already NULLAGINO. This saves us the overhead
1980 * of dealing with the buffer when there is no need to
1981 * change it.
1982 */
a3f74ffb 1983 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
1984 if (error) {
1985 cmn_err(CE_WARN,
1986 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1987 error, mp->m_fsname);
1988 return error;
1989 }
347d1c01 1990 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
1991 ASSERT(next_agino != 0);
1992 if (next_agino != NULLAGINO) {
347d1c01 1993 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
1994 offset = ip->i_boffset +
1995 offsetof(xfs_dinode_t, di_next_unlinked);
1996 xfs_trans_inode_buf(tp, ibp);
1997 xfs_trans_log_buf(tp, ibp, offset,
1998 (offset + sizeof(xfs_agino_t) - 1));
1999 xfs_inobp_check(mp, ibp);
2000 } else {
2001 xfs_trans_brelse(tp, ibp);
2002 }
2003 /*
2004 * Point the bucket head pointer at the next inode.
2005 */
2006 ASSERT(next_agino != 0);
2007 ASSERT(next_agino != agino);
16259e7d 2008 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2009 offset = offsetof(xfs_agi_t, agi_unlinked) +
2010 (sizeof(xfs_agino_t) * bucket_index);
2011 xfs_trans_log_buf(tp, agibp, offset,
2012 (offset + sizeof(xfs_agino_t) - 1));
2013 } else {
2014 /*
2015 * We need to search the list for the inode being freed.
2016 */
16259e7d 2017 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2018 last_ibp = NULL;
2019 while (next_agino != agino) {
2020 /*
2021 * If the last inode wasn't the one pointing to
2022 * us, then release its buffer since we're not
2023 * going to do anything with it.
2024 */
2025 if (last_ibp != NULL) {
2026 xfs_trans_brelse(tp, last_ibp);
2027 }
2028 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2029 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
2030 &last_ibp, &last_offset);
2031 if (error) {
2032 cmn_err(CE_WARN,
2033 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
2034 error, mp->m_fsname);
2035 return error;
2036 }
347d1c01 2037 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2038 ASSERT(next_agino != NULLAGINO);
2039 ASSERT(next_agino != 0);
2040 }
2041 /*
2042 * Now last_ibp points to the buffer previous to us on
2043 * the unlinked list. Pull us from the list.
2044 */
a3f74ffb 2045 error = xfs_itobp(mp, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
1da177e4
LT
2046 if (error) {
2047 cmn_err(CE_WARN,
2048 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
2049 error, mp->m_fsname);
2050 return error;
2051 }
347d1c01 2052 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2053 ASSERT(next_agino != 0);
2054 ASSERT(next_agino != agino);
2055 if (next_agino != NULLAGINO) {
347d1c01 2056 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1da177e4
LT
2057 offset = ip->i_boffset +
2058 offsetof(xfs_dinode_t, di_next_unlinked);
2059 xfs_trans_inode_buf(tp, ibp);
2060 xfs_trans_log_buf(tp, ibp, offset,
2061 (offset + sizeof(xfs_agino_t) - 1));
2062 xfs_inobp_check(mp, ibp);
2063 } else {
2064 xfs_trans_brelse(tp, ibp);
2065 }
2066 /*
2067 * Point the previous inode on the list to the next inode.
2068 */
347d1c01 2069 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2070 ASSERT(next_agino != 0);
2071 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2072 xfs_trans_inode_buf(tp, last_ibp);
2073 xfs_trans_log_buf(tp, last_ibp, offset,
2074 (offset + sizeof(xfs_agino_t) - 1));
2075 xfs_inobp_check(mp, last_ibp);
2076 }
2077 return 0;
2078}
2079
ba0f32d4 2080STATIC void
1da177e4
LT
2081xfs_ifree_cluster(
2082 xfs_inode_t *free_ip,
2083 xfs_trans_t *tp,
2084 xfs_ino_t inum)
2085{
2086 xfs_mount_t *mp = free_ip->i_mount;
2087 int blks_per_cluster;
2088 int nbufs;
2089 int ninodes;
2090 int i, j, found, pre_flushed;
2091 xfs_daddr_t blkno;
2092 xfs_buf_t *bp;
1da177e4
LT
2093 xfs_inode_t *ip, **ip_found;
2094 xfs_inode_log_item_t *iip;
2095 xfs_log_item_t *lip;
da353b0d 2096 xfs_perag_t *pag = xfs_get_perag(mp, inum);
1da177e4
LT
2097
2098 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
2099 blks_per_cluster = 1;
2100 ninodes = mp->m_sb.sb_inopblock;
2101 nbufs = XFS_IALLOC_BLOCKS(mp);
2102 } else {
2103 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
2104 mp->m_sb.sb_blocksize;
2105 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
2106 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
2107 }
2108
2109 ip_found = kmem_alloc(ninodes * sizeof(xfs_inode_t *), KM_NOFS);
2110
2111 for (j = 0; j < nbufs; j++, inum += ninodes) {
2112 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2113 XFS_INO_TO_AGBNO(mp, inum));
2114
2115
2116 /*
2117 * Look for each inode in memory and attempt to lock it,
2118 * we can be racing with flush and tail pushing here.
2119 * any inode we get the locks on, add to an array of
2120 * inode items to process later.
2121 *
2122 * The get the buffer lock, we could beat a flush
2123 * or tail pushing thread to the lock here, in which
2124 * case they will go looking for the inode buffer
2125 * and fail, we need some other form of interlock
2126 * here.
2127 */
2128 found = 0;
2129 for (i = 0; i < ninodes; i++) {
da353b0d
DC
2130 read_lock(&pag->pag_ici_lock);
2131 ip = radix_tree_lookup(&pag->pag_ici_root,
2132 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4
LT
2133
2134 /* Inode not in memory or we found it already,
2135 * nothing to do
2136 */
7a18c386 2137 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
da353b0d 2138 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2139 continue;
2140 }
2141
2142 if (xfs_inode_clean(ip)) {
da353b0d 2143 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2144 continue;
2145 }
2146
2147 /* If we can get the locks then add it to the
2148 * list, otherwise by the time we get the bp lock
2149 * below it will already be attached to the
2150 * inode buffer.
2151 */
2152
2153 /* This inode will already be locked - by us, lets
2154 * keep it that way.
2155 */
2156
2157 if (ip == free_ip) {
2158 if (xfs_iflock_nowait(ip)) {
7a18c386 2159 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2160 if (xfs_inode_clean(ip)) {
2161 xfs_ifunlock(ip);
2162 } else {
2163 ip_found[found++] = ip;
2164 }
2165 }
da353b0d 2166 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2167 continue;
2168 }
2169
2170 if (xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2171 if (xfs_iflock_nowait(ip)) {
7a18c386 2172 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4
LT
2173
2174 if (xfs_inode_clean(ip)) {
2175 xfs_ifunlock(ip);
2176 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2177 } else {
2178 ip_found[found++] = ip;
2179 }
2180 } else {
2181 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2182 }
2183 }
da353b0d 2184 read_unlock(&pag->pag_ici_lock);
1da177e4
LT
2185 }
2186
2187 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2188 mp->m_bsize * blks_per_cluster,
2189 XFS_BUF_LOCK);
2190
2191 pre_flushed = 0;
2192 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
2193 while (lip) {
2194 if (lip->li_type == XFS_LI_INODE) {
2195 iip = (xfs_inode_log_item_t *)lip;
2196 ASSERT(iip->ili_logged == 1);
2197 lip->li_cb = (void(*)(xfs_buf_t*,xfs_log_item_t*)) xfs_istale_done;
287f3dad 2198 spin_lock(&mp->m_ail_lock);
1da177e4 2199 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2200 spin_unlock(&mp->m_ail_lock);
e5ffd2bb 2201 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1da177e4
LT
2202 pre_flushed++;
2203 }
2204 lip = lip->li_bio_list;
2205 }
2206
2207 for (i = 0; i < found; i++) {
2208 ip = ip_found[i];
2209 iip = ip->i_itemp;
2210
2211 if (!iip) {
2212 ip->i_update_core = 0;
2213 xfs_ifunlock(ip);
2214 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2215 continue;
2216 }
2217
2218 iip->ili_last_fields = iip->ili_format.ilf_fields;
2219 iip->ili_format.ilf_fields = 0;
2220 iip->ili_logged = 1;
287f3dad 2221 spin_lock(&mp->m_ail_lock);
1da177e4 2222 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 2223 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
2224
2225 xfs_buf_attach_iodone(bp,
2226 (void(*)(xfs_buf_t*,xfs_log_item_t*))
2227 xfs_istale_done, (xfs_log_item_t *)iip);
2228 if (ip != free_ip) {
2229 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2230 }
2231 }
2232
2233 if (found || pre_flushed)
2234 xfs_trans_stale_inode_buf(tp, bp);
2235 xfs_trans_binval(tp, bp);
2236 }
2237
f0e2d93c 2238 kmem_free(ip_found);
da353b0d 2239 xfs_put_perag(mp, pag);
1da177e4
LT
2240}
2241
2242/*
2243 * This is called to return an inode to the inode free list.
2244 * The inode should already be truncated to 0 length and have
2245 * no pages associated with it. This routine also assumes that
2246 * the inode is already a part of the transaction.
2247 *
2248 * The on-disk copy of the inode will have been added to the list
2249 * of unlinked inodes in the AGI. We need to remove the inode from
2250 * that list atomically with respect to freeing it here.
2251 */
2252int
2253xfs_ifree(
2254 xfs_trans_t *tp,
2255 xfs_inode_t *ip,
2256 xfs_bmap_free_t *flist)
2257{
2258 int error;
2259 int delete;
2260 xfs_ino_t first_ino;
c319b58b
VA
2261 xfs_dinode_t *dip;
2262 xfs_buf_t *ibp;
1da177e4 2263
579aa9ca 2264 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2265 ASSERT(ip->i_transp == tp);
2266 ASSERT(ip->i_d.di_nlink == 0);
2267 ASSERT(ip->i_d.di_nextents == 0);
2268 ASSERT(ip->i_d.di_anextents == 0);
ba87ea69 2269 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
1da177e4
LT
2270 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2271 ASSERT(ip->i_d.di_nblocks == 0);
2272
2273 /*
2274 * Pull the on-disk inode from the AGI unlinked list.
2275 */
2276 error = xfs_iunlink_remove(tp, ip);
2277 if (error != 0) {
2278 return error;
2279 }
2280
2281 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2282 if (error != 0) {
2283 return error;
2284 }
2285 ip->i_d.di_mode = 0; /* mark incore inode as free */
2286 ip->i_d.di_flags = 0;
2287 ip->i_d.di_dmevmask = 0;
2288 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2289 ip->i_df.if_ext_max =
2290 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2291 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2292 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2293 /*
2294 * Bump the generation count so no one will be confused
2295 * by reincarnations of this inode.
2296 */
2297 ip->i_d.di_gen++;
c319b58b 2298
1da177e4
LT
2299 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2300
a3f74ffb 2301 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, 0, 0, XFS_BUF_LOCK);
c319b58b
VA
2302 if (error)
2303 return error;
2304
2305 /*
2306 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2307 * from picking up this inode when it is reclaimed (its incore state
2308 * initialzed but not flushed to disk yet). The in-core di_mode is
2309 * already cleared and a corresponding transaction logged.
2310 * The hack here just synchronizes the in-core to on-disk
2311 * di_mode value in advance before the actual inode sync to disk.
2312 * This is OK because the inode is already unlinked and would never
2313 * change its di_mode again for this inode generation.
2314 * This is a temporary hack that would require a proper fix
2315 * in the future.
2316 */
2317 dip->di_core.di_mode = 0;
2318
1da177e4
LT
2319 if (delete) {
2320 xfs_ifree_cluster(ip, tp, first_ino);
2321 }
2322
2323 return 0;
2324}
2325
2326/*
2327 * Reallocate the space for if_broot based on the number of records
2328 * being added or deleted as indicated in rec_diff. Move the records
2329 * and pointers in if_broot to fit the new size. When shrinking this
2330 * will eliminate holes between the records and pointers created by
2331 * the caller. When growing this will create holes to be filled in
2332 * by the caller.
2333 *
2334 * The caller must not request to add more records than would fit in
2335 * the on-disk inode root. If the if_broot is currently NULL, then
2336 * if we adding records one will be allocated. The caller must also
2337 * not request that the number of records go below zero, although
2338 * it can go to zero.
2339 *
2340 * ip -- the inode whose if_broot area is changing
2341 * ext_diff -- the change in the number of records, positive or negative,
2342 * requested for the if_broot array.
2343 */
2344void
2345xfs_iroot_realloc(
2346 xfs_inode_t *ip,
2347 int rec_diff,
2348 int whichfork)
2349{
2350 int cur_max;
2351 xfs_ifork_t *ifp;
2352 xfs_bmbt_block_t *new_broot;
2353 int new_max;
2354 size_t new_size;
2355 char *np;
2356 char *op;
2357
2358 /*
2359 * Handle the degenerate case quietly.
2360 */
2361 if (rec_diff == 0) {
2362 return;
2363 }
2364
2365 ifp = XFS_IFORK_PTR(ip, whichfork);
2366 if (rec_diff > 0) {
2367 /*
2368 * If there wasn't any memory allocated before, just
2369 * allocate it now and get out.
2370 */
2371 if (ifp->if_broot_bytes == 0) {
2372 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2373 ifp->if_broot = (xfs_bmbt_block_t*)kmem_alloc(new_size,
2374 KM_SLEEP);
2375 ifp->if_broot_bytes = (int)new_size;
2376 return;
2377 }
2378
2379 /*
2380 * If there is already an existing if_broot, then we need
2381 * to realloc() it and shift the pointers to their new
2382 * location. The records don't change location because
2383 * they are kept butted up against the btree block header.
2384 */
2385 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2386 new_max = cur_max + rec_diff;
2387 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2388 ifp->if_broot = (xfs_bmbt_block_t *)
2389 kmem_realloc(ifp->if_broot,
2390 new_size,
2391 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2392 KM_SLEEP);
2393 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2394 ifp->if_broot_bytes);
2395 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2396 (int)new_size);
2397 ifp->if_broot_bytes = (int)new_size;
2398 ASSERT(ifp->if_broot_bytes <=
2399 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2400 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2401 return;
2402 }
2403
2404 /*
2405 * rec_diff is less than 0. In this case, we are shrinking the
2406 * if_broot buffer. It must already exist. If we go to zero
2407 * records, just get rid of the root and clear the status bit.
2408 */
2409 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2410 cur_max = XFS_BMAP_BROOT_MAXRECS(ifp->if_broot_bytes);
2411 new_max = cur_max + rec_diff;
2412 ASSERT(new_max >= 0);
2413 if (new_max > 0)
2414 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2415 else
2416 new_size = 0;
2417 if (new_size > 0) {
2418 new_broot = (xfs_bmbt_block_t *)kmem_alloc(new_size, KM_SLEEP);
2419 /*
2420 * First copy over the btree block header.
2421 */
2422 memcpy(new_broot, ifp->if_broot, sizeof(xfs_bmbt_block_t));
2423 } else {
2424 new_broot = NULL;
2425 ifp->if_flags &= ~XFS_IFBROOT;
2426 }
2427
2428 /*
2429 * Only copy the records and pointers if there are any.
2430 */
2431 if (new_max > 0) {
2432 /*
2433 * First copy the records.
2434 */
2435 op = (char *)XFS_BMAP_BROOT_REC_ADDR(ifp->if_broot, 1,
2436 ifp->if_broot_bytes);
2437 np = (char *)XFS_BMAP_BROOT_REC_ADDR(new_broot, 1,
2438 (int)new_size);
2439 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2440
2441 /*
2442 * Then copy the pointers.
2443 */
2444 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(ifp->if_broot, 1,
2445 ifp->if_broot_bytes);
2446 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(new_broot, 1,
2447 (int)new_size);
2448 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2449 }
f0e2d93c 2450 kmem_free(ifp->if_broot);
1da177e4
LT
2451 ifp->if_broot = new_broot;
2452 ifp->if_broot_bytes = (int)new_size;
2453 ASSERT(ifp->if_broot_bytes <=
2454 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2455 return;
2456}
2457
2458
1da177e4
LT
2459/*
2460 * This is called when the amount of space needed for if_data
2461 * is increased or decreased. The change in size is indicated by
2462 * the number of bytes that need to be added or deleted in the
2463 * byte_diff parameter.
2464 *
2465 * If the amount of space needed has decreased below the size of the
2466 * inline buffer, then switch to using the inline buffer. Otherwise,
2467 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2468 * to what is needed.
2469 *
2470 * ip -- the inode whose if_data area is changing
2471 * byte_diff -- the change in the number of bytes, positive or negative,
2472 * requested for the if_data array.
2473 */
2474void
2475xfs_idata_realloc(
2476 xfs_inode_t *ip,
2477 int byte_diff,
2478 int whichfork)
2479{
2480 xfs_ifork_t *ifp;
2481 int new_size;
2482 int real_size;
2483
2484 if (byte_diff == 0) {
2485 return;
2486 }
2487
2488 ifp = XFS_IFORK_PTR(ip, whichfork);
2489 new_size = (int)ifp->if_bytes + byte_diff;
2490 ASSERT(new_size >= 0);
2491
2492 if (new_size == 0) {
2493 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
f0e2d93c 2494 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2495 }
2496 ifp->if_u1.if_data = NULL;
2497 real_size = 0;
2498 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2499 /*
2500 * If the valid extents/data can fit in if_inline_ext/data,
2501 * copy them from the malloc'd vector and free it.
2502 */
2503 if (ifp->if_u1.if_data == NULL) {
2504 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2505 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2506 ASSERT(ifp->if_real_bytes != 0);
2507 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2508 new_size);
f0e2d93c 2509 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2510 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2511 }
2512 real_size = 0;
2513 } else {
2514 /*
2515 * Stuck with malloc/realloc.
2516 * For inline data, the underlying buffer must be
2517 * a multiple of 4 bytes in size so that it can be
2518 * logged and stay on word boundaries. We enforce
2519 * that here.
2520 */
2521 real_size = roundup(new_size, 4);
2522 if (ifp->if_u1.if_data == NULL) {
2523 ASSERT(ifp->if_real_bytes == 0);
2524 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2525 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2526 /*
2527 * Only do the realloc if the underlying size
2528 * is really changing.
2529 */
2530 if (ifp->if_real_bytes != real_size) {
2531 ifp->if_u1.if_data =
2532 kmem_realloc(ifp->if_u1.if_data,
2533 real_size,
2534 ifp->if_real_bytes,
2535 KM_SLEEP);
2536 }
2537 } else {
2538 ASSERT(ifp->if_real_bytes == 0);
2539 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP);
2540 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2541 ifp->if_bytes);
2542 }
2543 }
2544 ifp->if_real_bytes = real_size;
2545 ifp->if_bytes = new_size;
2546 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2547}
2548
2549
2550
2551
2552/*
2553 * Map inode to disk block and offset.
2554 *
2555 * mp -- the mount point structure for the current file system
2556 * tp -- the current transaction
2557 * ino -- the inode number of the inode to be located
2558 * imap -- this structure is filled in with the information necessary
2559 * to retrieve the given inode from disk
2560 * flags -- flags to pass to xfs_dilocate indicating whether or not
2561 * lookups in the inode btree were OK or not
2562 */
2563int
2564xfs_imap(
2565 xfs_mount_t *mp,
2566 xfs_trans_t *tp,
2567 xfs_ino_t ino,
2568 xfs_imap_t *imap,
2569 uint flags)
2570{
2571 xfs_fsblock_t fsbno;
2572 int len;
2573 int off;
2574 int error;
2575
2576 fsbno = imap->im_blkno ?
2577 XFS_DADDR_TO_FSB(mp, imap->im_blkno) : NULLFSBLOCK;
2578 error = xfs_dilocate(mp, tp, ino, &fsbno, &len, &off, flags);
4ae29b43 2579 if (error)
1da177e4 2580 return error;
4ae29b43 2581
1da177e4
LT
2582 imap->im_blkno = XFS_FSB_TO_DADDR(mp, fsbno);
2583 imap->im_len = XFS_FSB_TO_BB(mp, len);
2584 imap->im_agblkno = XFS_FSB_TO_AGBNO(mp, fsbno);
2585 imap->im_ioffset = (ushort)off;
2586 imap->im_boffset = (ushort)(off << mp->m_sb.sb_inodelog);
4ae29b43
DC
2587
2588 /*
2589 * If the inode number maps to a block outside the bounds
2590 * of the file system then return NULL rather than calling
2591 * read_buf and panicing when we get an error from the
2592 * driver.
2593 */
2594 if ((imap->im_blkno + imap->im_len) >
2595 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
2596 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_imap: "
2597 "(imap->im_blkno (0x%llx) + imap->im_len (0x%llx)) > "
2598 " XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks) (0x%llx)",
2599 (unsigned long long) imap->im_blkno,
2600 (unsigned long long) imap->im_len,
2601 XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
2602 return EINVAL;
2603 }
1da177e4
LT
2604 return 0;
2605}
2606
2607void
2608xfs_idestroy_fork(
2609 xfs_inode_t *ip,
2610 int whichfork)
2611{
2612 xfs_ifork_t *ifp;
2613
2614 ifp = XFS_IFORK_PTR(ip, whichfork);
2615 if (ifp->if_broot != NULL) {
f0e2d93c 2616 kmem_free(ifp->if_broot);
1da177e4
LT
2617 ifp->if_broot = NULL;
2618 }
2619
2620 /*
2621 * If the format is local, then we can't have an extents
2622 * array so just look for an inline data array. If we're
2623 * not local then we may or may not have an extents list,
2624 * so check and free it up if we do.
2625 */
2626 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2627 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2628 (ifp->if_u1.if_data != NULL)) {
2629 ASSERT(ifp->if_real_bytes != 0);
f0e2d93c 2630 kmem_free(ifp->if_u1.if_data);
1da177e4
LT
2631 ifp->if_u1.if_data = NULL;
2632 ifp->if_real_bytes = 0;
2633 }
2634 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
0293ce3a
MK
2635 ((ifp->if_flags & XFS_IFEXTIREC) ||
2636 ((ifp->if_u1.if_extents != NULL) &&
2637 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
1da177e4 2638 ASSERT(ifp->if_real_bytes != 0);
4eea22f0 2639 xfs_iext_destroy(ifp);
1da177e4
LT
2640 }
2641 ASSERT(ifp->if_u1.if_extents == NULL ||
2642 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2643 ASSERT(ifp->if_real_bytes == 0);
2644 if (whichfork == XFS_ATTR_FORK) {
2645 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2646 ip->i_afp = NULL;
2647 }
2648}
2649
2650/*
2651 * This is called free all the memory associated with an inode.
2652 * It must free the inode itself and any buffers allocated for
2653 * if_extents/if_data and if_broot. It must also free the lock
2654 * associated with the inode.
2655 */
2656void
2657xfs_idestroy(
2658 xfs_inode_t *ip)
2659{
1da177e4
LT
2660 switch (ip->i_d.di_mode & S_IFMT) {
2661 case S_IFREG:
2662 case S_IFDIR:
2663 case S_IFLNK:
2664 xfs_idestroy_fork(ip, XFS_DATA_FORK);
2665 break;
2666 }
2667 if (ip->i_afp)
2668 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
1543d79c 2669
cf441eeb 2670#ifdef XFS_INODE_TRACE
1543d79c
CH
2671 ktrace_free(ip->i_trace);
2672#endif
1da177e4
LT
2673#ifdef XFS_BMAP_TRACE
2674 ktrace_free(ip->i_xtrace);
2675#endif
2676#ifdef XFS_BMBT_TRACE
2677 ktrace_free(ip->i_btrace);
2678#endif
2679#ifdef XFS_RW_TRACE
2680 ktrace_free(ip->i_rwtrace);
2681#endif
2682#ifdef XFS_ILOCK_TRACE
2683 ktrace_free(ip->i_lock_trace);
2684#endif
2685#ifdef XFS_DIR2_TRACE
2686 ktrace_free(ip->i_dir_trace);
2687#endif
2688 if (ip->i_itemp) {
f74eaf59
DC
2689 /*
2690 * Only if we are shutting down the fs will we see an
2691 * inode still in the AIL. If it is there, we should remove
2692 * it to prevent a use-after-free from occurring.
2693 */
2694 xfs_mount_t *mp = ip->i_mount;
2695 xfs_log_item_t *lip = &ip->i_itemp->ili_item;
f74eaf59
DC
2696
2697 ASSERT(((lip->li_flags & XFS_LI_IN_AIL) == 0) ||
2698 XFS_FORCED_SHUTDOWN(ip->i_mount));
2699 if (lip->li_flags & XFS_LI_IN_AIL) {
287f3dad 2700 spin_lock(&mp->m_ail_lock);
f74eaf59 2701 if (lip->li_flags & XFS_LI_IN_AIL)
287f3dad 2702 xfs_trans_delete_ail(mp, lip);
f74eaf59 2703 else
287f3dad 2704 spin_unlock(&mp->m_ail_lock);
f74eaf59 2705 }
1da177e4 2706 xfs_inode_item_destroy(ip);
07c8f675 2707 ip->i_itemp = NULL;
1da177e4 2708 }
07c8f675
DC
2709 /* asserts to verify all state is correct here */
2710 ASSERT(atomic_read(&ip->i_iocount) == 0);
2711 ASSERT(atomic_read(&ip->i_pincount) == 0);
2712 ASSERT(!spin_is_locked(&ip->i_flags_lock));
2713 ASSERT(list_empty(&ip->i_reclaim));
1da177e4
LT
2714 kmem_zone_free(xfs_inode_zone, ip);
2715}
2716
2717
2718/*
2719 * Increment the pin count of the given buffer.
2720 * This value is protected by ipinlock spinlock in the mount structure.
2721 */
2722void
2723xfs_ipin(
2724 xfs_inode_t *ip)
2725{
579aa9ca 2726 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2727
2728 atomic_inc(&ip->i_pincount);
2729}
2730
2731/*
2732 * Decrement the pin count of the given inode, and wake up
2733 * anyone in xfs_iwait_unpin() if the count goes to 0. The
c41564b5 2734 * inode must have been previously pinned with a call to xfs_ipin().
1da177e4
LT
2735 */
2736void
2737xfs_iunpin(
2738 xfs_inode_t *ip)
2739{
2740 ASSERT(atomic_read(&ip->i_pincount) > 0);
2741
5d51eff4 2742 if (atomic_dec_and_test(&ip->i_pincount))
1da177e4 2743 wake_up(&ip->i_ipin_wait);
1da177e4
LT
2744}
2745
2746/*
a3f74ffb
DC
2747 * This is called to unpin an inode. It can be directed to wait or to return
2748 * immediately without waiting for the inode to be unpinned. The caller must
2749 * have the inode locked in at least shared mode so that the buffer cannot be
2750 * subsequently pinned once someone is waiting for it to be unpinned.
1da177e4 2751 */
ba0f32d4 2752STATIC void
a3f74ffb
DC
2753__xfs_iunpin_wait(
2754 xfs_inode_t *ip,
2755 int wait)
1da177e4 2756{
a3f74ffb 2757 xfs_inode_log_item_t *iip = ip->i_itemp;
1da177e4 2758
579aa9ca 2759 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
a3f74ffb 2760 if (atomic_read(&ip->i_pincount) == 0)
1da177e4 2761 return;
1da177e4 2762
a3f74ffb
DC
2763 /* Give the log a push to start the unpinning I/O */
2764 xfs_log_force(ip->i_mount, (iip && iip->ili_last_lsn) ?
2765 iip->ili_last_lsn : 0, XFS_LOG_FORCE);
2766 if (wait)
2767 wait_event(ip->i_ipin_wait, (atomic_read(&ip->i_pincount) == 0));
2768}
1da177e4 2769
a3f74ffb
DC
2770static inline void
2771xfs_iunpin_wait(
2772 xfs_inode_t *ip)
2773{
2774 __xfs_iunpin_wait(ip, 1);
2775}
1da177e4 2776
a3f74ffb
DC
2777static inline void
2778xfs_iunpin_nowait(
2779 xfs_inode_t *ip)
2780{
2781 __xfs_iunpin_wait(ip, 0);
1da177e4
LT
2782}
2783
2784
2785/*
2786 * xfs_iextents_copy()
2787 *
2788 * This is called to copy the REAL extents (as opposed to the delayed
2789 * allocation extents) from the inode into the given buffer. It
2790 * returns the number of bytes copied into the buffer.
2791 *
2792 * If there are no delayed allocation extents, then we can just
2793 * memcpy() the extents into the buffer. Otherwise, we need to
2794 * examine each extent in turn and skip those which are delayed.
2795 */
2796int
2797xfs_iextents_copy(
2798 xfs_inode_t *ip,
a6f64d4a 2799 xfs_bmbt_rec_t *dp,
1da177e4
LT
2800 int whichfork)
2801{
2802 int copied;
1da177e4
LT
2803 int i;
2804 xfs_ifork_t *ifp;
2805 int nrecs;
2806 xfs_fsblock_t start_block;
2807
2808 ifp = XFS_IFORK_PTR(ip, whichfork);
579aa9ca 2809 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4
LT
2810 ASSERT(ifp->if_bytes > 0);
2811
2812 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3a59c94c 2813 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
1da177e4
LT
2814 ASSERT(nrecs > 0);
2815
2816 /*
2817 * There are some delayed allocation extents in the
2818 * inode, so copy the extents one at a time and skip
2819 * the delayed ones. There must be at least one
2820 * non-delayed extent.
2821 */
1da177e4
LT
2822 copied = 0;
2823 for (i = 0; i < nrecs; i++) {
a6f64d4a 2824 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
1da177e4
LT
2825 start_block = xfs_bmbt_get_startblock(ep);
2826 if (ISNULLSTARTBLOCK(start_block)) {
2827 /*
2828 * It's a delayed allocation extent, so skip it.
2829 */
1da177e4
LT
2830 continue;
2831 }
2832
2833 /* Translate to on disk format */
cd8b0a97
CH
2834 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2835 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
a6f64d4a 2836 dp++;
1da177e4
LT
2837 copied++;
2838 }
2839 ASSERT(copied != 0);
a6f64d4a 2840 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
1da177e4
LT
2841
2842 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2843}
2844
2845/*
2846 * Each of the following cases stores data into the same region
2847 * of the on-disk inode, so only one of them can be valid at
2848 * any given time. While it is possible to have conflicting formats
2849 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2850 * in EXTENTS format, this can only happen when the fork has
2851 * changed formats after being modified but before being flushed.
2852 * In these cases, the format always takes precedence, because the
2853 * format indicates the current state of the fork.
2854 */
2855/*ARGSUSED*/
e4ac967b 2856STATIC void
1da177e4
LT
2857xfs_iflush_fork(
2858 xfs_inode_t *ip,
2859 xfs_dinode_t *dip,
2860 xfs_inode_log_item_t *iip,
2861 int whichfork,
2862 xfs_buf_t *bp)
2863{
2864 char *cp;
2865 xfs_ifork_t *ifp;
2866 xfs_mount_t *mp;
2867#ifdef XFS_TRANS_DEBUG
2868 int first;
2869#endif
2870 static const short brootflag[2] =
2871 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2872 static const short dataflag[2] =
2873 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2874 static const short extflag[2] =
2875 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2876
e4ac967b
DC
2877 if (!iip)
2878 return;
1da177e4
LT
2879 ifp = XFS_IFORK_PTR(ip, whichfork);
2880 /*
2881 * This can happen if we gave up in iformat in an error path,
2882 * for the attribute fork.
2883 */
e4ac967b 2884 if (!ifp) {
1da177e4 2885 ASSERT(whichfork == XFS_ATTR_FORK);
e4ac967b 2886 return;
1da177e4
LT
2887 }
2888 cp = XFS_DFORK_PTR(dip, whichfork);
2889 mp = ip->i_mount;
2890 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2891 case XFS_DINODE_FMT_LOCAL:
2892 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2893 (ifp->if_bytes > 0)) {
2894 ASSERT(ifp->if_u1.if_data != NULL);
2895 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2896 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2897 }
1da177e4
LT
2898 break;
2899
2900 case XFS_DINODE_FMT_EXTENTS:
2901 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2902 !(iip->ili_format.ilf_fields & extflag[whichfork]));
4eea22f0
MK
2903 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2904 (ifp->if_bytes == 0));
2905 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2906 (ifp->if_bytes > 0));
1da177e4
LT
2907 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2908 (ifp->if_bytes > 0)) {
2909 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2910 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2911 whichfork);
2912 }
2913 break;
2914
2915 case XFS_DINODE_FMT_BTREE:
2916 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2917 (ifp->if_broot_bytes > 0)) {
2918 ASSERT(ifp->if_broot != NULL);
2919 ASSERT(ifp->if_broot_bytes <=
2920 (XFS_IFORK_SIZE(ip, whichfork) +
2921 XFS_BROOT_SIZE_ADJ));
2922 xfs_bmbt_to_bmdr(ifp->if_broot, ifp->if_broot_bytes,
2923 (xfs_bmdr_block_t *)cp,
2924 XFS_DFORK_SIZE(dip, mp, whichfork));
2925 }
2926 break;
2927
2928 case XFS_DINODE_FMT_DEV:
2929 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2930 ASSERT(whichfork == XFS_DATA_FORK);
347d1c01 2931 dip->di_u.di_dev = cpu_to_be32(ip->i_df.if_u2.if_rdev);
1da177e4
LT
2932 }
2933 break;
2934
2935 case XFS_DINODE_FMT_UUID:
2936 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2937 ASSERT(whichfork == XFS_DATA_FORK);
2938 memcpy(&dip->di_u.di_muuid, &ip->i_df.if_u2.if_uuid,
2939 sizeof(uuid_t));
2940 }
2941 break;
2942
2943 default:
2944 ASSERT(0);
2945 break;
2946 }
1da177e4
LT
2947}
2948
bad55843
DC
2949STATIC int
2950xfs_iflush_cluster(
2951 xfs_inode_t *ip,
2952 xfs_buf_t *bp)
2953{
2954 xfs_mount_t *mp = ip->i_mount;
2955 xfs_perag_t *pag = xfs_get_perag(mp, ip->i_ino);
2956 unsigned long first_index, mask;
c8f5f12e 2957 unsigned long inodes_per_cluster;
bad55843
DC
2958 int ilist_size;
2959 xfs_inode_t **ilist;
2960 xfs_inode_t *iq;
bad55843
DC
2961 int nr_found;
2962 int clcount = 0;
2963 int bufwasdelwri;
2964 int i;
2965
2966 ASSERT(pag->pagi_inodeok);
2967 ASSERT(pag->pag_ici_init);
2968
c8f5f12e
DC
2969 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2970 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
49383b0e 2971 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
bad55843
DC
2972 if (!ilist)
2973 return 0;
2974
2975 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2976 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2977 read_lock(&pag->pag_ici_lock);
2978 /* really need a gang lookup range call here */
2979 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
c8f5f12e 2980 first_index, inodes_per_cluster);
bad55843
DC
2981 if (nr_found == 0)
2982 goto out_free;
2983
2984 for (i = 0; i < nr_found; i++) {
2985 iq = ilist[i];
2986 if (iq == ip)
2987 continue;
2988 /* if the inode lies outside this cluster, we're done. */
2989 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2990 break;
2991 /*
2992 * Do an un-protected check to see if the inode is dirty and
2993 * is a candidate for flushing. These checks will be repeated
2994 * later after the appropriate locks are acquired.
2995 */
33540408 2996 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 2997 continue;
bad55843
DC
2998
2999 /*
3000 * Try to get locks. If any are unavailable or it is pinned,
3001 * then this inode cannot be flushed and is skipped.
3002 */
3003
3004 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3005 continue;
3006 if (!xfs_iflock_nowait(iq)) {
3007 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3008 continue;
3009 }
3010 if (xfs_ipincount(iq)) {
3011 xfs_ifunlock(iq);
3012 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3013 continue;
3014 }
3015
3016 /*
3017 * arriving here means that this inode can be flushed. First
3018 * re-check that it's dirty before flushing.
3019 */
33540408
DC
3020 if (!xfs_inode_clean(iq)) {
3021 int error;
bad55843
DC
3022 error = xfs_iflush_int(iq, bp);
3023 if (error) {
3024 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3025 goto cluster_corrupt_out;
3026 }
3027 clcount++;
3028 } else {
3029 xfs_ifunlock(iq);
3030 }
3031 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3032 }
3033
3034 if (clcount) {
3035 XFS_STATS_INC(xs_icluster_flushcnt);
3036 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3037 }
3038
3039out_free:
3040 read_unlock(&pag->pag_ici_lock);
f0e2d93c 3041 kmem_free(ilist);
bad55843
DC
3042 return 0;
3043
3044
3045cluster_corrupt_out:
3046 /*
3047 * Corruption detected in the clustering loop. Invalidate the
3048 * inode buffer and shut down the filesystem.
3049 */
3050 read_unlock(&pag->pag_ici_lock);
3051 /*
3052 * Clean up the buffer. If it was B_DELWRI, just release it --
3053 * brelse can handle it with no problems. If not, shut down the
3054 * filesystem before releasing the buffer.
3055 */
3056 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
3057 if (bufwasdelwri)
3058 xfs_buf_relse(bp);
3059
3060 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3061
3062 if (!bufwasdelwri) {
3063 /*
3064 * Just like incore_relse: if we have b_iodone functions,
3065 * mark the buffer as an error and call them. Otherwise
3066 * mark it as stale and brelse.
3067 */
3068 if (XFS_BUF_IODONE_FUNC(bp)) {
3069 XFS_BUF_CLR_BDSTRAT_FUNC(bp);
3070 XFS_BUF_UNDONE(bp);
3071 XFS_BUF_STALE(bp);
3072 XFS_BUF_SHUT(bp);
3073 XFS_BUF_ERROR(bp,EIO);
3074 xfs_biodone(bp);
3075 } else {
3076 XFS_BUF_STALE(bp);
3077 xfs_buf_relse(bp);
3078 }
3079 }
3080
3081 /*
3082 * Unlocks the flush lock
3083 */
3084 xfs_iflush_abort(iq);
f0e2d93c 3085 kmem_free(ilist);
bad55843
DC
3086 return XFS_ERROR(EFSCORRUPTED);
3087}
3088
1da177e4
LT
3089/*
3090 * xfs_iflush() will write a modified inode's changes out to the
3091 * inode's on disk home. The caller must have the inode lock held
c63942d3
DC
3092 * in at least shared mode and the inode flush completion must be
3093 * active as well. The inode lock will still be held upon return from
1da177e4 3094 * the call and the caller is free to unlock it.
c63942d3 3095 * The inode flush will be completed when the inode reaches the disk.
1da177e4
LT
3096 * The flags indicate how the inode's buffer should be written out.
3097 */
3098int
3099xfs_iflush(
3100 xfs_inode_t *ip,
3101 uint flags)
3102{
3103 xfs_inode_log_item_t *iip;
3104 xfs_buf_t *bp;
3105 xfs_dinode_t *dip;
3106 xfs_mount_t *mp;
3107 int error;
a3f74ffb 3108 int noblock = (flags == XFS_IFLUSH_ASYNC_NOBLOCK);
bad55843 3109 enum { INT_DELWRI = (1 << 0), INT_ASYNC = (1 << 1) };
1da177e4
LT
3110
3111 XFS_STATS_INC(xs_iflush_count);
3112
579aa9ca 3113 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3114 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3115 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3116 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3117
3118 iip = ip->i_itemp;
3119 mp = ip->i_mount;
3120
3121 /*
3122 * If the inode isn't dirty, then just release the inode
3123 * flush lock and do nothing.
3124 */
33540408 3125 if (xfs_inode_clean(ip)) {
1da177e4
LT
3126 xfs_ifunlock(ip);
3127 return 0;
3128 }
3129
3130 /*
a3f74ffb
DC
3131 * We can't flush the inode until it is unpinned, so wait for it if we
3132 * are allowed to block. We know noone new can pin it, because we are
3133 * holding the inode lock shared and you need to hold it exclusively to
3134 * pin the inode.
3135 *
3136 * If we are not allowed to block, force the log out asynchronously so
3137 * that when we come back the inode will be unpinned. If other inodes
3138 * in the same cluster are dirty, they will probably write the inode
3139 * out for us if they occur after the log force completes.
1da177e4 3140 */
a3f74ffb
DC
3141 if (noblock && xfs_ipincount(ip)) {
3142 xfs_iunpin_nowait(ip);
3143 xfs_ifunlock(ip);
3144 return EAGAIN;
3145 }
1da177e4
LT
3146 xfs_iunpin_wait(ip);
3147
3148 /*
3149 * This may have been unpinned because the filesystem is shutting
3150 * down forcibly. If that's the case we must not write this inode
3151 * to disk, because the log record didn't make it to disk!
3152 */
3153 if (XFS_FORCED_SHUTDOWN(mp)) {
3154 ip->i_update_core = 0;
3155 if (iip)
3156 iip->ili_format.ilf_fields = 0;
3157 xfs_ifunlock(ip);
3158 return XFS_ERROR(EIO);
3159 }
3160
1da177e4
LT
3161 /*
3162 * Decide how buffer will be flushed out. This is done before
3163 * the call to xfs_iflush_int because this field is zeroed by it.
3164 */
3165 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3166 /*
3167 * Flush out the inode buffer according to the directions
3168 * of the caller. In the cases where the caller has given
3169 * us a choice choose the non-delwri case. This is because
3170 * the inode is in the AIL and we need to get it out soon.
3171 */
3172 switch (flags) {
3173 case XFS_IFLUSH_SYNC:
3174 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3175 flags = 0;
3176 break;
a3f74ffb 3177 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3178 case XFS_IFLUSH_ASYNC:
3179 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3180 flags = INT_ASYNC;
3181 break;
3182 case XFS_IFLUSH_DELWRI:
3183 flags = INT_DELWRI;
3184 break;
3185 default:
3186 ASSERT(0);
3187 flags = 0;
3188 break;
3189 }
3190 } else {
3191 switch (flags) {
3192 case XFS_IFLUSH_DELWRI_ELSE_SYNC:
3193 case XFS_IFLUSH_DELWRI_ELSE_ASYNC:
3194 case XFS_IFLUSH_DELWRI:
3195 flags = INT_DELWRI;
3196 break;
a3f74ffb 3197 case XFS_IFLUSH_ASYNC_NOBLOCK:
1da177e4
LT
3198 case XFS_IFLUSH_ASYNC:
3199 flags = INT_ASYNC;
3200 break;
3201 case XFS_IFLUSH_SYNC:
3202 flags = 0;
3203 break;
3204 default:
3205 ASSERT(0);
3206 flags = 0;
3207 break;
3208 }
3209 }
3210
a3f74ffb
DC
3211 /*
3212 * Get the buffer containing the on-disk inode.
3213 */
3214 error = xfs_itobp(mp, NULL, ip, &dip, &bp, 0, 0,
3215 noblock ? XFS_BUF_TRYLOCK : XFS_BUF_LOCK);
3216 if (error || !bp) {
3217 xfs_ifunlock(ip);
3218 return error;
3219 }
3220
1da177e4
LT
3221 /*
3222 * First flush out the inode that xfs_iflush was called with.
3223 */
3224 error = xfs_iflush_int(ip, bp);
bad55843 3225 if (error)
1da177e4 3226 goto corrupt_out;
1da177e4 3227
a3f74ffb
DC
3228 /*
3229 * If the buffer is pinned then push on the log now so we won't
3230 * get stuck waiting in the write for too long.
3231 */
3232 if (XFS_BUF_ISPINNED(bp))
3233 xfs_log_force(mp, (xfs_lsn_t)0, XFS_LOG_FORCE);
3234
1da177e4
LT
3235 /*
3236 * inode clustering:
3237 * see if other inodes can be gathered into this write
3238 */
bad55843
DC
3239 error = xfs_iflush_cluster(ip, bp);
3240 if (error)
3241 goto cluster_corrupt_out;
1da177e4 3242
1da177e4
LT
3243 if (flags & INT_DELWRI) {
3244 xfs_bdwrite(mp, bp);
3245 } else if (flags & INT_ASYNC) {
db7a19f2 3246 error = xfs_bawrite(mp, bp);
1da177e4
LT
3247 } else {
3248 error = xfs_bwrite(mp, bp);
3249 }
3250 return error;
3251
3252corrupt_out:
3253 xfs_buf_relse(bp);
7d04a335 3254 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3255cluster_corrupt_out:
1da177e4
LT
3256 /*
3257 * Unlocks the flush lock
3258 */
bad55843 3259 xfs_iflush_abort(ip);
1da177e4
LT
3260 return XFS_ERROR(EFSCORRUPTED);
3261}
3262
3263
3264STATIC int
3265xfs_iflush_int(
3266 xfs_inode_t *ip,
3267 xfs_buf_t *bp)
3268{
3269 xfs_inode_log_item_t *iip;
3270 xfs_dinode_t *dip;
3271 xfs_mount_t *mp;
3272#ifdef XFS_TRANS_DEBUG
3273 int first;
3274#endif
1da177e4 3275
579aa9ca 3276 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
c63942d3 3277 ASSERT(!completion_done(&ip->i_flush));
1da177e4
LT
3278 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3279 ip->i_d.di_nextents > ip->i_df.if_ext_max);
3280
3281 iip = ip->i_itemp;
3282 mp = ip->i_mount;
3283
3284
3285 /*
3286 * If the inode isn't dirty, then just release the inode
3287 * flush lock and do nothing.
3288 */
33540408 3289 if (xfs_inode_clean(ip)) {
1da177e4
LT
3290 xfs_ifunlock(ip);
3291 return 0;
3292 }
3293
3294 /* set *dip = inode's place in the buffer */
3295 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_boffset);
3296
3297 /*
3298 * Clear i_update_core before copying out the data.
3299 * This is for coordination with our timestamp updates
3300 * that don't hold the inode lock. They will always
3301 * update the timestamps BEFORE setting i_update_core,
3302 * so if we clear i_update_core after they set it we
3303 * are guaranteed to see their updates to the timestamps.
3304 * I believe that this depends on strongly ordered memory
3305 * semantics, but we have that. We use the SYNCHRONIZE
3306 * macro to make sure that the compiler does not reorder
3307 * the i_update_core access below the data copy below.
3308 */
3309 ip->i_update_core = 0;
3310 SYNCHRONIZE();
3311
42fe2b1f
CH
3312 /*
3313 * Make sure to get the latest atime from the Linux inode.
3314 */
3315 xfs_synchronize_atime(ip);
3316
347d1c01 3317 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_core.di_magic) != XFS_DINODE_MAGIC,
1da177e4
LT
3318 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3319 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3320 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
347d1c01 3321 ip->i_ino, be16_to_cpu(dip->di_core.di_magic), dip);
1da177e4
LT
3322 goto corrupt_out;
3323 }
3324 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3325 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3326 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3327 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3328 ip->i_ino, ip, ip->i_d.di_magic);
3329 goto corrupt_out;
3330 }
3331 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
3332 if (XFS_TEST_ERROR(
3333 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3334 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3335 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3336 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3337 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
3338 ip->i_ino, ip);
3339 goto corrupt_out;
3340 }
3341 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
3342 if (XFS_TEST_ERROR(
3343 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3344 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3345 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3346 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3347 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3348 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
3349 ip->i_ino, ip);
3350 goto corrupt_out;
3351 }
3352 }
3353 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3354 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3355 XFS_RANDOM_IFLUSH_5)) {
3356 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3357 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
3358 ip->i_ino,
3359 ip->i_d.di_nextents + ip->i_d.di_anextents,
3360 ip->i_d.di_nblocks,
3361 ip);
3362 goto corrupt_out;
3363 }
3364 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3365 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3366 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
3367 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3368 ip->i_ino, ip->i_d.di_forkoff, ip);
3369 goto corrupt_out;
3370 }
3371 /*
3372 * bump the flush iteration count, used to detect flushes which
3373 * postdate a log record during recovery.
3374 */
3375
3376 ip->i_d.di_flushiter++;
3377
3378 /*
3379 * Copy the dirty parts of the inode into the on-disk
3380 * inode. We always copy out the core of the inode,
3381 * because if the inode is dirty at all the core must
3382 * be.
3383 */
347d1c01 3384 xfs_dinode_to_disk(&dip->di_core, &ip->i_d);
1da177e4
LT
3385
3386 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3387 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3388 ip->i_d.di_flushiter = 0;
3389
3390 /*
3391 * If this is really an old format inode and the superblock version
3392 * has not been updated to support only new format inodes, then
3393 * convert back to the old inode format. If the superblock version
3394 * has been updated, then make the conversion permanent.
3395 */
3396 ASSERT(ip->i_d.di_version == XFS_DINODE_VERSION_1 ||
62118709 3397 xfs_sb_version_hasnlink(&mp->m_sb));
1da177e4 3398 if (ip->i_d.di_version == XFS_DINODE_VERSION_1) {
62118709 3399 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
1da177e4
LT
3400 /*
3401 * Convert it back.
3402 */
3403 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
347d1c01 3404 dip->di_core.di_onlink = cpu_to_be16(ip->i_d.di_nlink);
1da177e4
LT
3405 } else {
3406 /*
3407 * The superblock version has already been bumped,
3408 * so just make the conversion to the new inode
3409 * format permanent.
3410 */
3411 ip->i_d.di_version = XFS_DINODE_VERSION_2;
347d1c01 3412 dip->di_core.di_version = XFS_DINODE_VERSION_2;
1da177e4
LT
3413 ip->i_d.di_onlink = 0;
3414 dip->di_core.di_onlink = 0;
3415 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3416 memset(&(dip->di_core.di_pad[0]), 0,
3417 sizeof(dip->di_core.di_pad));
3418 ASSERT(ip->i_d.di_projid == 0);
3419 }
3420 }
3421
e4ac967b
DC
3422 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3423 if (XFS_IFORK_Q(ip))
3424 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
1da177e4
LT
3425 xfs_inobp_check(mp, bp);
3426
3427 /*
3428 * We've recorded everything logged in the inode, so we'd
3429 * like to clear the ilf_fields bits so we don't log and
3430 * flush things unnecessarily. However, we can't stop
3431 * logging all this information until the data we've copied
3432 * into the disk buffer is written to disk. If we did we might
3433 * overwrite the copy of the inode in the log with all the
3434 * data after re-logging only part of it, and in the face of
3435 * a crash we wouldn't have all the data we need to recover.
3436 *
3437 * What we do is move the bits to the ili_last_fields field.
3438 * When logging the inode, these bits are moved back to the
3439 * ilf_fields field. In the xfs_iflush_done() routine we
3440 * clear ili_last_fields, since we know that the information
3441 * those bits represent is permanently on disk. As long as
3442 * the flush completes before the inode is logged again, then
3443 * both ilf_fields and ili_last_fields will be cleared.
3444 *
3445 * We can play with the ilf_fields bits here, because the inode
3446 * lock must be held exclusively in order to set bits there
3447 * and the flush lock protects the ili_last_fields bits.
3448 * Set ili_logged so the flush done
3449 * routine can tell whether or not to look in the AIL.
3450 * Also, store the current LSN of the inode so that we can tell
3451 * whether the item has moved in the AIL from xfs_iflush_done().
3452 * In order to read the lsn we need the AIL lock, because
3453 * it is a 64 bit value that cannot be read atomically.
3454 */
3455 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3456 iip->ili_last_fields = iip->ili_format.ilf_fields;
3457 iip->ili_format.ilf_fields = 0;
3458 iip->ili_logged = 1;
3459
3460 ASSERT(sizeof(xfs_lsn_t) == 8); /* don't lock if it shrinks */
287f3dad 3461 spin_lock(&mp->m_ail_lock);
1da177e4 3462 iip->ili_flush_lsn = iip->ili_item.li_lsn;
287f3dad 3463 spin_unlock(&mp->m_ail_lock);
1da177e4
LT
3464
3465 /*
3466 * Attach the function xfs_iflush_done to the inode's
3467 * buffer. This will remove the inode from the AIL
3468 * and unlock the inode's flush lock when the inode is
3469 * completely written to disk.
3470 */
3471 xfs_buf_attach_iodone(bp, (void(*)(xfs_buf_t*,xfs_log_item_t*))
3472 xfs_iflush_done, (xfs_log_item_t *)iip);
3473
3474 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3475 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3476 } else {
3477 /*
3478 * We're flushing an inode which is not in the AIL and has
3479 * not been logged but has i_update_core set. For this
3480 * case we can use a B_DELWRI flush and immediately drop
3481 * the inode flush lock because we can avoid the whole
3482 * AIL state thing. It's OK to drop the flush lock now,
3483 * because we've already locked the buffer and to do anything
3484 * you really need both.
3485 */
3486 if (iip != NULL) {
3487 ASSERT(iip->ili_logged == 0);
3488 ASSERT(iip->ili_last_fields == 0);
3489 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3490 }
3491 xfs_ifunlock(ip);
3492 }
3493
3494 return 0;
3495
3496corrupt_out:
3497 return XFS_ERROR(EFSCORRUPTED);
3498}
3499
3500
3501/*
efa80278 3502 * Flush all inactive inodes in mp.
1da177e4 3503 */
efa80278 3504void
1da177e4 3505xfs_iflush_all(
efa80278 3506 xfs_mount_t *mp)
1da177e4 3507{
1da177e4 3508 xfs_inode_t *ip;
1da177e4 3509
efa80278
CH
3510 again:
3511 XFS_MOUNT_ILOCK(mp);
3512 ip = mp->m_inodes;
3513 if (ip == NULL)
3514 goto out;
1da177e4 3515
efa80278
CH
3516 do {
3517 /* Make sure we skip markers inserted by sync */
3518 if (ip->i_mount == NULL) {
3519 ip = ip->i_mnext;
3520 continue;
3521 }
1da177e4 3522
df80c933 3523 if (!VFS_I(ip)) {
1da177e4 3524 XFS_MOUNT_IUNLOCK(mp);
efa80278
CH
3525 xfs_finish_reclaim(ip, 0, XFS_IFLUSH_ASYNC);
3526 goto again;
3527 }
1da177e4 3528
df80c933 3529 ASSERT(vn_count(VFS_I(ip)) == 0);
1da177e4 3530
efa80278
CH
3531 ip = ip->i_mnext;
3532 } while (ip != mp->m_inodes);
3533 out:
1da177e4 3534 XFS_MOUNT_IUNLOCK(mp);
1da177e4
LT
3535}
3536
1da177e4
LT
3537#ifdef XFS_ILOCK_TRACE
3538ktrace_t *xfs_ilock_trace_buf;
3539
3540void
3541xfs_ilock_trace(xfs_inode_t *ip, int lock, unsigned int lockflags, inst_t *ra)
3542{
3543 ktrace_enter(ip->i_lock_trace,
3544 (void *)ip,
3545 (void *)(unsigned long)lock, /* 1 = LOCK, 3=UNLOCK, etc */
3546 (void *)(unsigned long)lockflags, /* XFS_ILOCK_EXCL etc */
3547 (void *)ra, /* caller of ilock */
3548 (void *)(unsigned long)current_cpu(),
3549 (void *)(unsigned long)current_pid(),
3550 NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL);
3551}
3552#endif
4eea22f0
MK
3553
3554/*
3555 * Return a pointer to the extent record at file index idx.
3556 */
a6f64d4a 3557xfs_bmbt_rec_host_t *
4eea22f0
MK
3558xfs_iext_get_ext(
3559 xfs_ifork_t *ifp, /* inode fork pointer */
3560 xfs_extnum_t idx) /* index of target extent */
3561{
3562 ASSERT(idx >= 0);
0293ce3a
MK
3563 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3564 return ifp->if_u1.if_ext_irec->er_extbuf;
3565 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3566 xfs_ext_irec_t *erp; /* irec pointer */
3567 int erp_idx = 0; /* irec index */
3568 xfs_extnum_t page_idx = idx; /* ext index in target list */
3569
3570 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3571 return &erp->er_extbuf[page_idx];
3572 } else if (ifp->if_bytes) {
4eea22f0
MK
3573 return &ifp->if_u1.if_extents[idx];
3574 } else {
3575 return NULL;
3576 }
3577}
3578
3579/*
3580 * Insert new item(s) into the extent records for incore inode
3581 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3582 */
3583void
3584xfs_iext_insert(
3585 xfs_ifork_t *ifp, /* inode fork pointer */
3586 xfs_extnum_t idx, /* starting index of new items */
3587 xfs_extnum_t count, /* number of inserted items */
3588 xfs_bmbt_irec_t *new) /* items to insert */
3589{
4eea22f0
MK
3590 xfs_extnum_t i; /* extent record index */
3591
3592 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3593 xfs_iext_add(ifp, idx, count);
a6f64d4a
CH
3594 for (i = idx; i < idx + count; i++, new++)
3595 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
4eea22f0
MK
3596}
3597
3598/*
3599 * This is called when the amount of space required for incore file
3600 * extents needs to be increased. The ext_diff parameter stores the
3601 * number of new extents being added and the idx parameter contains
3602 * the extent index where the new extents will be added. If the new
3603 * extents are being appended, then we just need to (re)allocate and
3604 * initialize the space. Otherwise, if the new extents are being
3605 * inserted into the middle of the existing entries, a bit more work
3606 * is required to make room for the new extents to be inserted. The
3607 * caller is responsible for filling in the new extent entries upon
3608 * return.
3609 */
3610void
3611xfs_iext_add(
3612 xfs_ifork_t *ifp, /* inode fork pointer */
3613 xfs_extnum_t idx, /* index to begin adding exts */
c41564b5 3614 int ext_diff) /* number of extents to add */
4eea22f0
MK
3615{
3616 int byte_diff; /* new bytes being added */
3617 int new_size; /* size of extents after adding */
3618 xfs_extnum_t nextents; /* number of extents in file */
3619
3620 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3621 ASSERT((idx >= 0) && (idx <= nextents));
3622 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3623 new_size = ifp->if_bytes + byte_diff;
3624 /*
3625 * If the new number of extents (nextents + ext_diff)
3626 * fits inside the inode, then continue to use the inline
3627 * extent buffer.
3628 */
3629 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3630 if (idx < nextents) {
3631 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3632 &ifp->if_u2.if_inline_ext[idx],
3633 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3634 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3635 }
3636 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3637 ifp->if_real_bytes = 0;
0293ce3a 3638 ifp->if_lastex = nextents + ext_diff;
4eea22f0
MK
3639 }
3640 /*
3641 * Otherwise use a linear (direct) extent list.
3642 * If the extents are currently inside the inode,
3643 * xfs_iext_realloc_direct will switch us from
3644 * inline to direct extent allocation mode.
3645 */
0293ce3a 3646 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
4eea22f0
MK
3647 xfs_iext_realloc_direct(ifp, new_size);
3648 if (idx < nextents) {
3649 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3650 &ifp->if_u1.if_extents[idx],
3651 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3652 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3653 }
3654 }
0293ce3a
MK
3655 /* Indirection array */
3656 else {
3657 xfs_ext_irec_t *erp;
3658 int erp_idx = 0;
3659 int page_idx = idx;
3660
3661 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3662 if (ifp->if_flags & XFS_IFEXTIREC) {
3663 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3664 } else {
3665 xfs_iext_irec_init(ifp);
3666 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3667 erp = ifp->if_u1.if_ext_irec;
3668 }
3669 /* Extents fit in target extent page */
3670 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3671 if (page_idx < erp->er_extcount) {
3672 memmove(&erp->er_extbuf[page_idx + ext_diff],
3673 &erp->er_extbuf[page_idx],
3674 (erp->er_extcount - page_idx) *
3675 sizeof(xfs_bmbt_rec_t));
3676 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3677 }
3678 erp->er_extcount += ext_diff;
3679 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3680 }
3681 /* Insert a new extent page */
3682 else if (erp) {
3683 xfs_iext_add_indirect_multi(ifp,
3684 erp_idx, page_idx, ext_diff);
3685 }
3686 /*
3687 * If extent(s) are being appended to the last page in
3688 * the indirection array and the new extent(s) don't fit
3689 * in the page, then erp is NULL and erp_idx is set to
3690 * the next index needed in the indirection array.
3691 */
3692 else {
3693 int count = ext_diff;
3694
3695 while (count) {
3696 erp = xfs_iext_irec_new(ifp, erp_idx);
3697 erp->er_extcount = count;
3698 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3699 if (count) {
3700 erp_idx++;
3701 }
3702 }
3703 }
3704 }
4eea22f0
MK
3705 ifp->if_bytes = new_size;
3706}
3707
0293ce3a
MK
3708/*
3709 * This is called when incore extents are being added to the indirection
3710 * array and the new extents do not fit in the target extent list. The
3711 * erp_idx parameter contains the irec index for the target extent list
3712 * in the indirection array, and the idx parameter contains the extent
3713 * index within the list. The number of extents being added is stored
3714 * in the count parameter.
3715 *
3716 * |-------| |-------|
3717 * | | | | idx - number of extents before idx
3718 * | idx | | count |
3719 * | | | | count - number of extents being inserted at idx
3720 * |-------| |-------|
3721 * | count | | nex2 | nex2 - number of extents after idx + count
3722 * |-------| |-------|
3723 */
3724void
3725xfs_iext_add_indirect_multi(
3726 xfs_ifork_t *ifp, /* inode fork pointer */
3727 int erp_idx, /* target extent irec index */
3728 xfs_extnum_t idx, /* index within target list */
3729 int count) /* new extents being added */
3730{
3731 int byte_diff; /* new bytes being added */
3732 xfs_ext_irec_t *erp; /* pointer to irec entry */
3733 xfs_extnum_t ext_diff; /* number of extents to add */
3734 xfs_extnum_t ext_cnt; /* new extents still needed */
3735 xfs_extnum_t nex2; /* extents after idx + count */
3736 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3737 int nlists; /* number of irec's (lists) */
3738
3739 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3740 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3741 nex2 = erp->er_extcount - idx;
3742 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3743
3744 /*
3745 * Save second part of target extent list
3746 * (all extents past */
3747 if (nex2) {
3748 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
6785073b 3749 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
0293ce3a
MK
3750 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3751 erp->er_extcount -= nex2;
3752 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3753 memset(&erp->er_extbuf[idx], 0, byte_diff);
3754 }
3755
3756 /*
3757 * Add the new extents to the end of the target
3758 * list, then allocate new irec record(s) and
3759 * extent buffer(s) as needed to store the rest
3760 * of the new extents.
3761 */
3762 ext_cnt = count;
3763 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3764 if (ext_diff) {
3765 erp->er_extcount += ext_diff;
3766 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3767 ext_cnt -= ext_diff;
3768 }
3769 while (ext_cnt) {
3770 erp_idx++;
3771 erp = xfs_iext_irec_new(ifp, erp_idx);
3772 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3773 erp->er_extcount = ext_diff;
3774 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3775 ext_cnt -= ext_diff;
3776 }
3777
3778 /* Add nex2 extents back to indirection array */
3779 if (nex2) {
3780 xfs_extnum_t ext_avail;
3781 int i;
3782
3783 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3784 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3785 i = 0;
3786 /*
3787 * If nex2 extents fit in the current page, append
3788 * nex2_ep after the new extents.
3789 */
3790 if (nex2 <= ext_avail) {
3791 i = erp->er_extcount;
3792 }
3793 /*
3794 * Otherwise, check if space is available in the
3795 * next page.
3796 */
3797 else if ((erp_idx < nlists - 1) &&
3798 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3799 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3800 erp_idx++;
3801 erp++;
3802 /* Create a hole for nex2 extents */
3803 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3804 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3805 }
3806 /*
3807 * Final choice, create a new extent page for
3808 * nex2 extents.
3809 */
3810 else {
3811 erp_idx++;
3812 erp = xfs_iext_irec_new(ifp, erp_idx);
3813 }
3814 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
f0e2d93c 3815 kmem_free(nex2_ep);
0293ce3a
MK
3816 erp->er_extcount += nex2;
3817 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3818 }
3819}
3820
4eea22f0
MK
3821/*
3822 * This is called when the amount of space required for incore file
3823 * extents needs to be decreased. The ext_diff parameter stores the
3824 * number of extents to be removed and the idx parameter contains
3825 * the extent index where the extents will be removed from.
0293ce3a
MK
3826 *
3827 * If the amount of space needed has decreased below the linear
3828 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3829 * extent array. Otherwise, use kmem_realloc() to adjust the
3830 * size to what is needed.
4eea22f0
MK
3831 */
3832void
3833xfs_iext_remove(
3834 xfs_ifork_t *ifp, /* inode fork pointer */
3835 xfs_extnum_t idx, /* index to begin removing exts */
3836 int ext_diff) /* number of extents to remove */
3837{
3838 xfs_extnum_t nextents; /* number of extents in file */
3839 int new_size; /* size of extents after removal */
3840
3841 ASSERT(ext_diff > 0);
3842 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3843 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3844
3845 if (new_size == 0) {
3846 xfs_iext_destroy(ifp);
0293ce3a
MK
3847 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3848 xfs_iext_remove_indirect(ifp, idx, ext_diff);
4eea22f0
MK
3849 } else if (ifp->if_real_bytes) {
3850 xfs_iext_remove_direct(ifp, idx, ext_diff);
3851 } else {
3852 xfs_iext_remove_inline(ifp, idx, ext_diff);
3853 }
3854 ifp->if_bytes = new_size;
3855}
3856
3857/*
3858 * This removes ext_diff extents from the inline buffer, beginning
3859 * at extent index idx.
3860 */
3861void
3862xfs_iext_remove_inline(
3863 xfs_ifork_t *ifp, /* inode fork pointer */
3864 xfs_extnum_t idx, /* index to begin removing exts */
3865 int ext_diff) /* number of extents to remove */
3866{
3867 int nextents; /* number of extents in file */
3868
0293ce3a 3869 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3870 ASSERT(idx < XFS_INLINE_EXTS);
3871 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3872 ASSERT(((nextents - ext_diff) > 0) &&
3873 (nextents - ext_diff) < XFS_INLINE_EXTS);
3874
3875 if (idx + ext_diff < nextents) {
3876 memmove(&ifp->if_u2.if_inline_ext[idx],
3877 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3878 (nextents - (idx + ext_diff)) *
3879 sizeof(xfs_bmbt_rec_t));
3880 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3881 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3882 } else {
3883 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3884 ext_diff * sizeof(xfs_bmbt_rec_t));
3885 }
3886}
3887
3888/*
3889 * This removes ext_diff extents from a linear (direct) extent list,
3890 * beginning at extent index idx. If the extents are being removed
3891 * from the end of the list (ie. truncate) then we just need to re-
3892 * allocate the list to remove the extra space. Otherwise, if the
3893 * extents are being removed from the middle of the existing extent
3894 * entries, then we first need to move the extent records beginning
3895 * at idx + ext_diff up in the list to overwrite the records being
3896 * removed, then remove the extra space via kmem_realloc.
3897 */
3898void
3899xfs_iext_remove_direct(
3900 xfs_ifork_t *ifp, /* inode fork pointer */
3901 xfs_extnum_t idx, /* index to begin removing exts */
3902 int ext_diff) /* number of extents to remove */
3903{
3904 xfs_extnum_t nextents; /* number of extents in file */
3905 int new_size; /* size of extents after removal */
3906
0293ce3a 3907 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4eea22f0
MK
3908 new_size = ifp->if_bytes -
3909 (ext_diff * sizeof(xfs_bmbt_rec_t));
3910 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3911
3912 if (new_size == 0) {
3913 xfs_iext_destroy(ifp);
3914 return;
3915 }
3916 /* Move extents up in the list (if needed) */
3917 if (idx + ext_diff < nextents) {
3918 memmove(&ifp->if_u1.if_extents[idx],
3919 &ifp->if_u1.if_extents[idx + ext_diff],
3920 (nextents - (idx + ext_diff)) *
3921 sizeof(xfs_bmbt_rec_t));
3922 }
3923 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3924 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3925 /*
3926 * Reallocate the direct extent list. If the extents
3927 * will fit inside the inode then xfs_iext_realloc_direct
3928 * will switch from direct to inline extent allocation
3929 * mode for us.
3930 */
3931 xfs_iext_realloc_direct(ifp, new_size);
3932 ifp->if_bytes = new_size;
3933}
3934
0293ce3a
MK
3935/*
3936 * This is called when incore extents are being removed from the
3937 * indirection array and the extents being removed span multiple extent
3938 * buffers. The idx parameter contains the file extent index where we
3939 * want to begin removing extents, and the count parameter contains
3940 * how many extents need to be removed.
3941 *
3942 * |-------| |-------|
3943 * | nex1 | | | nex1 - number of extents before idx
3944 * |-------| | count |
3945 * | | | | count - number of extents being removed at idx
3946 * | count | |-------|
3947 * | | | nex2 | nex2 - number of extents after idx + count
3948 * |-------| |-------|
3949 */
3950void
3951xfs_iext_remove_indirect(
3952 xfs_ifork_t *ifp, /* inode fork pointer */
3953 xfs_extnum_t idx, /* index to begin removing extents */
3954 int count) /* number of extents to remove */
3955{
3956 xfs_ext_irec_t *erp; /* indirection array pointer */
3957 int erp_idx = 0; /* indirection array index */
3958 xfs_extnum_t ext_cnt; /* extents left to remove */
3959 xfs_extnum_t ext_diff; /* extents to remove in current list */
3960 xfs_extnum_t nex1; /* number of extents before idx */
3961 xfs_extnum_t nex2; /* extents after idx + count */
c41564b5 3962 int nlists; /* entries in indirection array */
0293ce3a
MK
3963 int page_idx = idx; /* index in target extent list */
3964
3965 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3966 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3967 ASSERT(erp != NULL);
3968 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3969 nex1 = page_idx;
3970 ext_cnt = count;
3971 while (ext_cnt) {
3972 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3973 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3974 /*
3975 * Check for deletion of entire list;
3976 * xfs_iext_irec_remove() updates extent offsets.
3977 */
3978 if (ext_diff == erp->er_extcount) {
3979 xfs_iext_irec_remove(ifp, erp_idx);
3980 ext_cnt -= ext_diff;
3981 nex1 = 0;
3982 if (ext_cnt) {
3983 ASSERT(erp_idx < ifp->if_real_bytes /
3984 XFS_IEXT_BUFSZ);
3985 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3986 nex1 = 0;
3987 continue;
3988 } else {
3989 break;
3990 }
3991 }
3992 /* Move extents up (if needed) */
3993 if (nex2) {
3994 memmove(&erp->er_extbuf[nex1],
3995 &erp->er_extbuf[nex1 + ext_diff],
3996 nex2 * sizeof(xfs_bmbt_rec_t));
3997 }
3998 /* Zero out rest of page */
3999 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
4000 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
4001 /* Update remaining counters */
4002 erp->er_extcount -= ext_diff;
4003 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
4004 ext_cnt -= ext_diff;
4005 nex1 = 0;
4006 erp_idx++;
4007 erp++;
4008 }
4009 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
4010 xfs_iext_irec_compact(ifp);
4011}
4012
4eea22f0
MK
4013/*
4014 * Create, destroy, or resize a linear (direct) block of extents.
4015 */
4016void
4017xfs_iext_realloc_direct(
4018 xfs_ifork_t *ifp, /* inode fork pointer */
4019 int new_size) /* new size of extents */
4020{
4021 int rnew_size; /* real new size of extents */
4022
4023 rnew_size = new_size;
4024
0293ce3a
MK
4025 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
4026 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
4027 (new_size != ifp->if_real_bytes)));
4028
4eea22f0
MK
4029 /* Free extent records */
4030 if (new_size == 0) {
4031 xfs_iext_destroy(ifp);
4032 }
4033 /* Resize direct extent list and zero any new bytes */
4034 else if (ifp->if_real_bytes) {
4035 /* Check if extents will fit inside the inode */
4036 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
4037 xfs_iext_direct_to_inline(ifp, new_size /
4038 (uint)sizeof(xfs_bmbt_rec_t));
4039 ifp->if_bytes = new_size;
4040 return;
4041 }
16a087d8 4042 if (!is_power_of_2(new_size)){
40ebd81d 4043 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4044 }
4045 if (rnew_size != ifp->if_real_bytes) {
a6f64d4a 4046 ifp->if_u1.if_extents =
4eea22f0
MK
4047 kmem_realloc(ifp->if_u1.if_extents,
4048 rnew_size,
6785073b 4049 ifp->if_real_bytes, KM_NOFS);
4eea22f0
MK
4050 }
4051 if (rnew_size > ifp->if_real_bytes) {
4052 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
4053 (uint)sizeof(xfs_bmbt_rec_t)], 0,
4054 rnew_size - ifp->if_real_bytes);
4055 }
4056 }
4057 /*
4058 * Switch from the inline extent buffer to a direct
4059 * extent list. Be sure to include the inline extent
4060 * bytes in new_size.
4061 */
4062 else {
4063 new_size += ifp->if_bytes;
16a087d8 4064 if (!is_power_of_2(new_size)) {
40ebd81d 4065 rnew_size = roundup_pow_of_two(new_size);
4eea22f0
MK
4066 }
4067 xfs_iext_inline_to_direct(ifp, rnew_size);
4068 }
4069 ifp->if_real_bytes = rnew_size;
4070 ifp->if_bytes = new_size;
4071}
4072
4073/*
4074 * Switch from linear (direct) extent records to inline buffer.
4075 */
4076void
4077xfs_iext_direct_to_inline(
4078 xfs_ifork_t *ifp, /* inode fork pointer */
4079 xfs_extnum_t nextents) /* number of extents in file */
4080{
4081 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
4082 ASSERT(nextents <= XFS_INLINE_EXTS);
4083 /*
4084 * The inline buffer was zeroed when we switched
4085 * from inline to direct extent allocation mode,
4086 * so we don't need to clear it here.
4087 */
4088 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
4089 nextents * sizeof(xfs_bmbt_rec_t));
f0e2d93c 4090 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4091 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
4092 ifp->if_real_bytes = 0;
4093}
4094
4095/*
4096 * Switch from inline buffer to linear (direct) extent records.
4097 * new_size should already be rounded up to the next power of 2
4098 * by the caller (when appropriate), so use new_size as it is.
4099 * However, since new_size may be rounded up, we can't update
4100 * if_bytes here. It is the caller's responsibility to update
4101 * if_bytes upon return.
4102 */
4103void
4104xfs_iext_inline_to_direct(
4105 xfs_ifork_t *ifp, /* inode fork pointer */
4106 int new_size) /* number of extents in file */
4107{
6785073b 4108 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
4eea22f0
MK
4109 memset(ifp->if_u1.if_extents, 0, new_size);
4110 if (ifp->if_bytes) {
4111 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
4112 ifp->if_bytes);
4113 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4114 sizeof(xfs_bmbt_rec_t));
4115 }
4116 ifp->if_real_bytes = new_size;
4117}
4118
0293ce3a
MK
4119/*
4120 * Resize an extent indirection array to new_size bytes.
4121 */
4122void
4123xfs_iext_realloc_indirect(
4124 xfs_ifork_t *ifp, /* inode fork pointer */
4125 int new_size) /* new indirection array size */
4126{
4127 int nlists; /* number of irec's (ex lists) */
4128 int size; /* current indirection array size */
4129
4130 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4131 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4132 size = nlists * sizeof(xfs_ext_irec_t);
4133 ASSERT(ifp->if_real_bytes);
4134 ASSERT((new_size >= 0) && (new_size != size));
4135 if (new_size == 0) {
4136 xfs_iext_destroy(ifp);
4137 } else {
4138 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
4139 kmem_realloc(ifp->if_u1.if_ext_irec,
6785073b 4140 new_size, size, KM_NOFS);
0293ce3a
MK
4141 }
4142}
4143
4144/*
4145 * Switch from indirection array to linear (direct) extent allocations.
4146 */
4147void
4148xfs_iext_indirect_to_direct(
4149 xfs_ifork_t *ifp) /* inode fork pointer */
4150{
a6f64d4a 4151 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
0293ce3a
MK
4152 xfs_extnum_t nextents; /* number of extents in file */
4153 int size; /* size of file extents */
4154
4155 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4156 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4157 ASSERT(nextents <= XFS_LINEAR_EXTS);
4158 size = nextents * sizeof(xfs_bmbt_rec_t);
4159
71a8c87f 4160 xfs_iext_irec_compact_pages(ifp);
0293ce3a
MK
4161 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
4162
4163 ep = ifp->if_u1.if_ext_irec->er_extbuf;
f0e2d93c 4164 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4165 ifp->if_flags &= ~XFS_IFEXTIREC;
4166 ifp->if_u1.if_extents = ep;
4167 ifp->if_bytes = size;
4168 if (nextents < XFS_LINEAR_EXTS) {
4169 xfs_iext_realloc_direct(ifp, size);
4170 }
4171}
4172
4eea22f0
MK
4173/*
4174 * Free incore file extents.
4175 */
4176void
4177xfs_iext_destroy(
4178 xfs_ifork_t *ifp) /* inode fork pointer */
4179{
0293ce3a
MK
4180 if (ifp->if_flags & XFS_IFEXTIREC) {
4181 int erp_idx;
4182 int nlists;
4183
4184 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4185 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
4186 xfs_iext_irec_remove(ifp, erp_idx);
4187 }
4188 ifp->if_flags &= ~XFS_IFEXTIREC;
4189 } else if (ifp->if_real_bytes) {
f0e2d93c 4190 kmem_free(ifp->if_u1.if_extents);
4eea22f0
MK
4191 } else if (ifp->if_bytes) {
4192 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
4193 sizeof(xfs_bmbt_rec_t));
4194 }
4195 ifp->if_u1.if_extents = NULL;
4196 ifp->if_real_bytes = 0;
4197 ifp->if_bytes = 0;
4198}
0293ce3a 4199
8867bc9b
MK
4200/*
4201 * Return a pointer to the extent record for file system block bno.
4202 */
a6f64d4a 4203xfs_bmbt_rec_host_t * /* pointer to found extent record */
8867bc9b
MK
4204xfs_iext_bno_to_ext(
4205 xfs_ifork_t *ifp, /* inode fork pointer */
4206 xfs_fileoff_t bno, /* block number to search for */
4207 xfs_extnum_t *idxp) /* index of target extent */
4208{
a6f64d4a 4209 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
8867bc9b 4210 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
a6f64d4a 4211 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
8867bc9b 4212 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
c41564b5 4213 int high; /* upper boundary in search */
8867bc9b 4214 xfs_extnum_t idx = 0; /* index of target extent */
c41564b5 4215 int low; /* lower boundary in search */
8867bc9b
MK
4216 xfs_extnum_t nextents; /* number of file extents */
4217 xfs_fileoff_t startoff = 0; /* start offset of extent */
4218
4219 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4220 if (nextents == 0) {
4221 *idxp = 0;
4222 return NULL;
4223 }
4224 low = 0;
4225 if (ifp->if_flags & XFS_IFEXTIREC) {
4226 /* Find target extent list */
4227 int erp_idx = 0;
4228 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
4229 base = erp->er_extbuf;
4230 high = erp->er_extcount - 1;
4231 } else {
4232 base = ifp->if_u1.if_extents;
4233 high = nextents - 1;
4234 }
4235 /* Binary search extent records */
4236 while (low <= high) {
4237 idx = (low + high) >> 1;
4238 ep = base + idx;
4239 startoff = xfs_bmbt_get_startoff(ep);
4240 blockcount = xfs_bmbt_get_blockcount(ep);
4241 if (bno < startoff) {
4242 high = idx - 1;
4243 } else if (bno >= startoff + blockcount) {
4244 low = idx + 1;
4245 } else {
4246 /* Convert back to file-based extent index */
4247 if (ifp->if_flags & XFS_IFEXTIREC) {
4248 idx += erp->er_extoff;
4249 }
4250 *idxp = idx;
4251 return ep;
4252 }
4253 }
4254 /* Convert back to file-based extent index */
4255 if (ifp->if_flags & XFS_IFEXTIREC) {
4256 idx += erp->er_extoff;
4257 }
4258 if (bno >= startoff + blockcount) {
4259 if (++idx == nextents) {
4260 ep = NULL;
4261 } else {
4262 ep = xfs_iext_get_ext(ifp, idx);
4263 }
4264 }
4265 *idxp = idx;
4266 return ep;
4267}
4268
0293ce3a
MK
4269/*
4270 * Return a pointer to the indirection array entry containing the
4271 * extent record for filesystem block bno. Store the index of the
4272 * target irec in *erp_idxp.
4273 */
8867bc9b 4274xfs_ext_irec_t * /* pointer to found extent record */
0293ce3a
MK
4275xfs_iext_bno_to_irec(
4276 xfs_ifork_t *ifp, /* inode fork pointer */
4277 xfs_fileoff_t bno, /* block number to search for */
4278 int *erp_idxp) /* irec index of target ext list */
4279{
4280 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
4281 xfs_ext_irec_t *erp_next; /* next indirection array entry */
8867bc9b 4282 int erp_idx; /* indirection array index */
0293ce3a
MK
4283 int nlists; /* number of extent irec's (lists) */
4284 int high; /* binary search upper limit */
4285 int low; /* binary search lower limit */
4286
4287 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4288 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4289 erp_idx = 0;
4290 low = 0;
4291 high = nlists - 1;
4292 while (low <= high) {
4293 erp_idx = (low + high) >> 1;
4294 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4295 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
4296 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
4297 high = erp_idx - 1;
4298 } else if (erp_next && bno >=
4299 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
4300 low = erp_idx + 1;
4301 } else {
4302 break;
4303 }
4304 }
4305 *erp_idxp = erp_idx;
4306 return erp;
4307}
4308
4309/*
4310 * Return a pointer to the indirection array entry containing the
4311 * extent record at file extent index *idxp. Store the index of the
4312 * target irec in *erp_idxp and store the page index of the target
4313 * extent record in *idxp.
4314 */
4315xfs_ext_irec_t *
4316xfs_iext_idx_to_irec(
4317 xfs_ifork_t *ifp, /* inode fork pointer */
4318 xfs_extnum_t *idxp, /* extent index (file -> page) */
4319 int *erp_idxp, /* pointer to target irec */
4320 int realloc) /* new bytes were just added */
4321{
4322 xfs_ext_irec_t *prev; /* pointer to previous irec */
4323 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
4324 int erp_idx; /* indirection array index */
4325 int nlists; /* number of irec's (ex lists) */
4326 int high; /* binary search upper limit */
4327 int low; /* binary search lower limit */
4328 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
4329
4330 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4331 ASSERT(page_idx >= 0 && page_idx <=
4332 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
4333 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4334 erp_idx = 0;
4335 low = 0;
4336 high = nlists - 1;
4337
4338 /* Binary search extent irec's */
4339 while (low <= high) {
4340 erp_idx = (low + high) >> 1;
4341 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4342 prev = erp_idx > 0 ? erp - 1 : NULL;
4343 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
4344 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
4345 high = erp_idx - 1;
4346 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
4347 (page_idx == erp->er_extoff + erp->er_extcount &&
4348 !realloc)) {
4349 low = erp_idx + 1;
4350 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
4351 erp->er_extcount == XFS_LINEAR_EXTS) {
4352 ASSERT(realloc);
4353 page_idx = 0;
4354 erp_idx++;
4355 erp = erp_idx < nlists ? erp + 1 : NULL;
4356 break;
4357 } else {
4358 page_idx -= erp->er_extoff;
4359 break;
4360 }
4361 }
4362 *idxp = page_idx;
4363 *erp_idxp = erp_idx;
4364 return(erp);
4365}
4366
4367/*
4368 * Allocate and initialize an indirection array once the space needed
4369 * for incore extents increases above XFS_IEXT_BUFSZ.
4370 */
4371void
4372xfs_iext_irec_init(
4373 xfs_ifork_t *ifp) /* inode fork pointer */
4374{
4375 xfs_ext_irec_t *erp; /* indirection array pointer */
4376 xfs_extnum_t nextents; /* number of extents in file */
4377
4378 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
4379 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4380 ASSERT(nextents <= XFS_LINEAR_EXTS);
4381
6785073b 4382 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
0293ce3a
MK
4383
4384 if (nextents == 0) {
6785073b 4385 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4386 } else if (!ifp->if_real_bytes) {
4387 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
4388 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
4389 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
4390 }
4391 erp->er_extbuf = ifp->if_u1.if_extents;
4392 erp->er_extcount = nextents;
4393 erp->er_extoff = 0;
4394
4395 ifp->if_flags |= XFS_IFEXTIREC;
4396 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
4397 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
4398 ifp->if_u1.if_ext_irec = erp;
4399
4400 return;
4401}
4402
4403/*
4404 * Allocate and initialize a new entry in the indirection array.
4405 */
4406xfs_ext_irec_t *
4407xfs_iext_irec_new(
4408 xfs_ifork_t *ifp, /* inode fork pointer */
4409 int erp_idx) /* index for new irec */
4410{
4411 xfs_ext_irec_t *erp; /* indirection array pointer */
4412 int i; /* loop counter */
4413 int nlists; /* number of irec's (ex lists) */
4414
4415 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4416 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4417
4418 /* Resize indirection array */
4419 xfs_iext_realloc_indirect(ifp, ++nlists *
4420 sizeof(xfs_ext_irec_t));
4421 /*
4422 * Move records down in the array so the
4423 * new page can use erp_idx.
4424 */
4425 erp = ifp->if_u1.if_ext_irec;
4426 for (i = nlists - 1; i > erp_idx; i--) {
4427 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
4428 }
4429 ASSERT(i == erp_idx);
4430
4431 /* Initialize new extent record */
4432 erp = ifp->if_u1.if_ext_irec;
6785073b 4433 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
0293ce3a
MK
4434 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4435 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
4436 erp[erp_idx].er_extcount = 0;
4437 erp[erp_idx].er_extoff = erp_idx > 0 ?
4438 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
4439 return (&erp[erp_idx]);
4440}
4441
4442/*
4443 * Remove a record from the indirection array.
4444 */
4445void
4446xfs_iext_irec_remove(
4447 xfs_ifork_t *ifp, /* inode fork pointer */
4448 int erp_idx) /* irec index to remove */
4449{
4450 xfs_ext_irec_t *erp; /* indirection array pointer */
4451 int i; /* loop counter */
4452 int nlists; /* number of irec's (ex lists) */
4453
4454 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4455 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4456 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4457 if (erp->er_extbuf) {
4458 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
4459 -erp->er_extcount);
f0e2d93c 4460 kmem_free(erp->er_extbuf);
0293ce3a
MK
4461 }
4462 /* Compact extent records */
4463 erp = ifp->if_u1.if_ext_irec;
4464 for (i = erp_idx; i < nlists - 1; i++) {
4465 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4466 }
4467 /*
4468 * Manually free the last extent record from the indirection
4469 * array. A call to xfs_iext_realloc_indirect() with a size
4470 * of zero would result in a call to xfs_iext_destroy() which
4471 * would in turn call this function again, creating a nasty
4472 * infinite loop.
4473 */
4474 if (--nlists) {
4475 xfs_iext_realloc_indirect(ifp,
4476 nlists * sizeof(xfs_ext_irec_t));
4477 } else {
f0e2d93c 4478 kmem_free(ifp->if_u1.if_ext_irec);
0293ce3a
MK
4479 }
4480 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4481}
4482
4483/*
4484 * This is called to clean up large amounts of unused memory allocated
4485 * by the indirection array. Before compacting anything though, verify
4486 * that the indirection array is still needed and switch back to the
4487 * linear extent list (or even the inline buffer) if possible. The
4488 * compaction policy is as follows:
4489 *
4490 * Full Compaction: Extents fit into a single page (or inline buffer)
71a8c87f 4491 * Partial Compaction: Extents occupy less than 50% of allocated space
0293ce3a
MK
4492 * No Compaction: Extents occupy at least 50% of allocated space
4493 */
4494void
4495xfs_iext_irec_compact(
4496 xfs_ifork_t *ifp) /* inode fork pointer */
4497{
4498 xfs_extnum_t nextents; /* number of extents in file */
4499 int nlists; /* number of irec's (ex lists) */
4500
4501 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4502 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4503 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4504
4505 if (nextents == 0) {
4506 xfs_iext_destroy(ifp);
4507 } else if (nextents <= XFS_INLINE_EXTS) {
4508 xfs_iext_indirect_to_direct(ifp);
4509 xfs_iext_direct_to_inline(ifp, nextents);
4510 } else if (nextents <= XFS_LINEAR_EXTS) {
4511 xfs_iext_indirect_to_direct(ifp);
0293ce3a
MK
4512 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4513 xfs_iext_irec_compact_pages(ifp);
4514 }
4515}
4516
4517/*
4518 * Combine extents from neighboring extent pages.
4519 */
4520void
4521xfs_iext_irec_compact_pages(
4522 xfs_ifork_t *ifp) /* inode fork pointer */
4523{
4524 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4525 int erp_idx = 0; /* indirection array index */
4526 int nlists; /* number of irec's (ex lists) */
4527
4528 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4529 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4530 while (erp_idx < nlists - 1) {
4531 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4532 erp_next = erp + 1;
4533 if (erp_next->er_extcount <=
4534 (XFS_LINEAR_EXTS - erp->er_extcount)) {
71a8c87f 4535 memcpy(&erp->er_extbuf[erp->er_extcount],
0293ce3a
MK
4536 erp_next->er_extbuf, erp_next->er_extcount *
4537 sizeof(xfs_bmbt_rec_t));
4538 erp->er_extcount += erp_next->er_extcount;
4539 /*
4540 * Free page before removing extent record
4541 * so er_extoffs don't get modified in
4542 * xfs_iext_irec_remove.
4543 */
f0e2d93c 4544 kmem_free(erp_next->er_extbuf);
0293ce3a
MK
4545 erp_next->er_extbuf = NULL;
4546 xfs_iext_irec_remove(ifp, erp_idx + 1);
4547 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4548 } else {
4549 erp_idx++;
4550 }
4551 }
4552}
4553
0293ce3a
MK
4554/*
4555 * This is called to update the er_extoff field in the indirection
4556 * array when extents have been added or removed from one of the
4557 * extent lists. erp_idx contains the irec index to begin updating
4558 * at and ext_diff contains the number of extents that were added
4559 * or removed.
4560 */
4561void
4562xfs_iext_irec_update_extoffs(
4563 xfs_ifork_t *ifp, /* inode fork pointer */
4564 int erp_idx, /* irec index to update */
4565 int ext_diff) /* number of new extents */
4566{
4567 int i; /* loop counter */
4568 int nlists; /* number of irec's (ex lists */
4569
4570 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4571 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4572 for (i = erp_idx; i < nlists; i++) {
4573 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;
4574 }
4575}