Merge branch 'akpm' (patches from Andrew)
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
1da177e4 1/*
3e57ecf6 2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 3 * All Rights Reserved.
1da177e4 4 *
7b718769
NS
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
1da177e4
LT
7 * published by the Free Software Foundation.
8 *
7b718769
NS
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
1da177e4 13 *
7b718769
NS
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
1da177e4 17 */
40ebd81d
RD
18#include <linux/log2.h>
19
1da177e4 20#include "xfs.h"
a844f451 21#include "xfs_fs.h"
70a9883c 22#include "xfs_shared.h"
239880ef
DC
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
1da177e4 26#include "xfs_sb.h"
1da177e4 27#include "xfs_mount.h"
a4fbe6ab 28#include "xfs_inode.h"
57062787 29#include "xfs_da_format.h"
c24b5dfa 30#include "xfs_da_btree.h"
c24b5dfa 31#include "xfs_dir2.h"
a844f451 32#include "xfs_attr_sf.h"
c24b5dfa 33#include "xfs_attr.h"
239880ef
DC
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
1da177e4 36#include "xfs_buf_item.h"
a844f451 37#include "xfs_inode_item.h"
a844f451
NS
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
68988114 40#include "xfs_bmap_util.h"
1da177e4 41#include "xfs_error.h"
1da177e4 42#include "xfs_quota.h"
2a82b8be 43#include "xfs_filestream.h"
93848a99 44#include "xfs_cksum.h"
0b1b213f 45#include "xfs_trace.h"
33479e05 46#include "xfs_icache.h"
c24b5dfa 47#include "xfs_symlink.h"
239880ef
DC
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
a4fbe6ab 50#include "xfs_bmap_btree.h"
1da177e4 51
1da177e4 52kmem_zone_t *xfs_inode_zone;
1da177e4
LT
53
54/*
8f04c47a 55 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
56 * freed from a file in a single transaction.
57 */
58#define XFS_ITRUNC_MAX_EXTENTS 2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
1da177e4 61
ab297431
ZYW
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
2a0ec1d9
DC
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69 struct xfs_inode *ip)
70{
71 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72 return ip->i_d.di_extsize;
73 if (XFS_IS_REALTIME_INODE(ip))
74 return ip->i_mount->m_sb.sb_rextsize;
75 return 0;
76}
77
fa96acad 78/*
efa70be1
CH
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code. They are used in places that wish to lock the
81 * inode solely for reading the extents. The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format. If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in. Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though. What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
fa96acad 89 *
efa70be1 90 * The functions return a value which should be given to the corresponding
01f4f327 91 * xfs_iunlock() call.
fa96acad
DC
92 */
93uint
309ecac8
CH
94xfs_ilock_data_map_shared(
95 struct xfs_inode *ip)
fa96acad 96{
309ecac8 97 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 98
309ecac8
CH
99 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 101 lock_mode = XFS_ILOCK_EXCL;
fa96acad 102 xfs_ilock(ip, lock_mode);
fa96acad
DC
103 return lock_mode;
104}
105
efa70be1
CH
106uint
107xfs_ilock_attr_map_shared(
108 struct xfs_inode *ip)
fa96acad 109{
efa70be1
CH
110 uint lock_mode = XFS_ILOCK_SHARED;
111
112 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114 lock_mode = XFS_ILOCK_EXCL;
115 xfs_ilock(ip, lock_mode);
116 return lock_mode;
fa96acad
DC
117}
118
119/*
653c60b6
DC
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock. This routine allows various combinations of the locks to be
122 * obtained.
fa96acad 123 *
653c60b6
DC
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 126 *
653c60b6
DC
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
fa96acad
DC
148 */
149void
150xfs_ilock(
151 xfs_inode_t *ip,
152 uint lock_flags)
153{
154 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156 /*
157 * You can't set both SHARED and EXCL for the same lock,
158 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160 */
161 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
163 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
165 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 167 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
168
169 if (lock_flags & XFS_IOLOCK_EXCL)
170 mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171 else if (lock_flags & XFS_IOLOCK_SHARED)
172 mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
653c60b6
DC
174 if (lock_flags & XFS_MMAPLOCK_EXCL)
175 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176 else if (lock_flags & XFS_MMAPLOCK_SHARED)
177 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
fa96acad
DC
179 if (lock_flags & XFS_ILOCK_EXCL)
180 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181 else if (lock_flags & XFS_ILOCK_SHARED)
182 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep. It returns 1 if it gets
188 * the requested locks and 0 otherwise. If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 * to be locked. See the comment for xfs_ilock() for a list
195 * of valid values.
196 */
197int
198xfs_ilock_nowait(
199 xfs_inode_t *ip,
200 uint lock_flags)
201{
202 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204 /*
205 * You can't set both SHARED and EXCL for the same lock,
206 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208 */
209 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
211 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
213 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 215 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
216
217 if (lock_flags & XFS_IOLOCK_EXCL) {
218 if (!mrtryupdate(&ip->i_iolock))
219 goto out;
220 } else if (lock_flags & XFS_IOLOCK_SHARED) {
221 if (!mrtryaccess(&ip->i_iolock))
222 goto out;
223 }
653c60b6
DC
224
225 if (lock_flags & XFS_MMAPLOCK_EXCL) {
226 if (!mrtryupdate(&ip->i_mmaplock))
227 goto out_undo_iolock;
228 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229 if (!mrtryaccess(&ip->i_mmaplock))
230 goto out_undo_iolock;
231 }
232
fa96acad
DC
233 if (lock_flags & XFS_ILOCK_EXCL) {
234 if (!mrtryupdate(&ip->i_lock))
653c60b6 235 goto out_undo_mmaplock;
fa96acad
DC
236 } else if (lock_flags & XFS_ILOCK_SHARED) {
237 if (!mrtryaccess(&ip->i_lock))
653c60b6 238 goto out_undo_mmaplock;
fa96acad
DC
239 }
240 return 1;
241
653c60b6
DC
242out_undo_mmaplock:
243 if (lock_flags & XFS_MMAPLOCK_EXCL)
244 mrunlock_excl(&ip->i_mmaplock);
245 else if (lock_flags & XFS_MMAPLOCK_SHARED)
246 mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
fa96acad
DC
248 if (lock_flags & XFS_IOLOCK_EXCL)
249 mrunlock_excl(&ip->i_iolock);
250 else if (lock_flags & XFS_IOLOCK_SHARED)
251 mrunlock_shared(&ip->i_iolock);
653c60b6 252out:
fa96acad
DC
253 return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 * to be unlocked. See the comment for xfs_ilock() for a list
265 * of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270 xfs_inode_t *ip,
271 uint lock_flags)
272{
273 /*
274 * You can't set both SHARED and EXCL for the same lock,
275 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277 */
278 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
280 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
282 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 284 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
285 ASSERT(lock_flags != 0);
286
287 if (lock_flags & XFS_IOLOCK_EXCL)
288 mrunlock_excl(&ip->i_iolock);
289 else if (lock_flags & XFS_IOLOCK_SHARED)
290 mrunlock_shared(&ip->i_iolock);
291
653c60b6
DC
292 if (lock_flags & XFS_MMAPLOCK_EXCL)
293 mrunlock_excl(&ip->i_mmaplock);
294 else if (lock_flags & XFS_MMAPLOCK_SHARED)
295 mrunlock_shared(&ip->i_mmaplock);
296
fa96acad
DC
297 if (lock_flags & XFS_ILOCK_EXCL)
298 mrunlock_excl(&ip->i_lock);
299 else if (lock_flags & XFS_ILOCK_SHARED)
300 mrunlock_shared(&ip->i_lock);
301
302 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks. the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311 xfs_inode_t *ip,
312 uint lock_flags)
313{
653c60b6
DC
314 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315 ASSERT((lock_flags &
316 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
317
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrdemote(&ip->i_lock);
653c60b6
DC
320 if (lock_flags & XFS_MMAPLOCK_EXCL)
321 mrdemote(&ip->i_mmaplock);
fa96acad
DC
322 if (lock_flags & XFS_IOLOCK_EXCL)
323 mrdemote(&ip->i_iolock);
324
325 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
742ae1e3 328#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
329int
330xfs_isilocked(
331 xfs_inode_t *ip,
332 uint lock_flags)
333{
334 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335 if (!(lock_flags & XFS_ILOCK_SHARED))
336 return !!ip->i_lock.mr_writer;
337 return rwsem_is_locked(&ip->i_lock.mr_lock);
338 }
339
653c60b6
DC
340 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342 return !!ip->i_mmaplock.mr_writer;
343 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344 }
345
fa96acad
DC
346 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347 if (!(lock_flags & XFS_IOLOCK_SHARED))
348 return !!ip->i_iolock.mr_writer;
349 return rwsem_is_locked(&ip->i_iolock.mr_lock);
350 }
351
352 ASSERT(0);
353 return 0;
354}
355#endif
356
c24b5dfa
DC
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
b6a9947e
DC
365/*
366 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
367 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
368 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
369 * errors and warnings.
370 */
371#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
372static bool
373xfs_lockdep_subclass_ok(
374 int subclass)
375{
376 return subclass < MAX_LOCKDEP_SUBCLASSES;
377}
378#else
379#define xfs_lockdep_subclass_ok(subclass) (true)
380#endif
381
c24b5dfa 382/*
653c60b6 383 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
384 * value. This can be called for any type of inode lock combination, including
385 * parent locking. Care must be taken to ensure we don't overrun the subclass
386 * storage fields in the class mask we build.
c24b5dfa
DC
387 */
388static inline int
389xfs_lock_inumorder(int lock_mode, int subclass)
390{
0952c818
DC
391 int class = 0;
392
393 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
394 XFS_ILOCK_RTSUM)));
3403ccc0 395 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 396
653c60b6 397 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 398 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
3403ccc0
DC
399 ASSERT(xfs_lockdep_subclass_ok(subclass +
400 XFS_IOLOCK_PARENT_VAL));
0952c818
DC
401 class += subclass << XFS_IOLOCK_SHIFT;
402 if (lock_mode & XFS_IOLOCK_PARENT)
403 class += XFS_IOLOCK_PARENT_VAL << XFS_IOLOCK_SHIFT;
653c60b6
DC
404 }
405
406 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
407 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
408 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
409 }
410
0952c818
DC
411 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
412 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
413 class += subclass << XFS_ILOCK_SHIFT;
414 }
c24b5dfa 415
0952c818 416 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
417}
418
419/*
95afcf5c
DC
420 * The following routine will lock n inodes in exclusive mode. We assume the
421 * caller calls us with the inodes in i_ino order.
c24b5dfa 422 *
95afcf5c
DC
423 * We need to detect deadlock where an inode that we lock is in the AIL and we
424 * start waiting for another inode that is locked by a thread in a long running
425 * transaction (such as truncate). This can result in deadlock since the long
426 * running trans might need to wait for the inode we just locked in order to
427 * push the tail and free space in the log.
0952c818
DC
428 *
429 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
430 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
431 * lock more than one at a time, lockdep will report false positives saying we
432 * have violated locking orders.
c24b5dfa
DC
433 */
434void
435xfs_lock_inodes(
436 xfs_inode_t **ips,
437 int inodes,
438 uint lock_mode)
439{
440 int attempts = 0, i, j, try_lock;
441 xfs_log_item_t *lp;
442
0952c818
DC
443 /*
444 * Currently supports between 2 and 5 inodes with exclusive locking. We
445 * support an arbitrary depth of locking here, but absolute limits on
446 * inodes depend on the the type of locking and the limits placed by
447 * lockdep annotations in xfs_lock_inumorder. These are all checked by
448 * the asserts.
449 */
95afcf5c 450 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
451 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
452 XFS_ILOCK_EXCL));
453 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
454 XFS_ILOCK_SHARED)));
455 ASSERT(!(lock_mode & XFS_IOLOCK_EXCL) ||
456 inodes <= XFS_IOLOCK_MAX_SUBCLASS + 1);
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
466
467 try_lock = 0;
468 i = 0;
c24b5dfa
DC
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
95afcf5c 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
474 continue;
475
476 /*
95afcf5c
DC
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 479 */
c24b5dfa
DC
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
482 lp = (xfs_log_item_t *)ips[j]->i_itemp;
95afcf5c 483 if (lp && (lp->li_flags & XFS_LI_IN_AIL))
c24b5dfa 484 try_lock++;
c24b5dfa
DC
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
95afcf5c
DC
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
c24b5dfa 503
95afcf5c
DC
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
c24b5dfa 510 /*
95afcf5c
DC
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
c24b5dfa 514 */
95afcf5c
DC
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
c24b5dfa 517
95afcf5c
DC
518 xfs_iunlock(ips[j], lock_mode);
519 }
c24b5dfa 520
95afcf5c
DC
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
c24b5dfa 523#ifdef DEBUG
95afcf5c 524 xfs_lock_delays++;
c24b5dfa 525#endif
c24b5dfa 526 }
95afcf5c
DC
527 i = 0;
528 try_lock = 0;
529 goto again;
c24b5dfa
DC
530 }
531
532#ifdef DEBUG
533 if (attempts) {
534 if (attempts < 5) xfs_small_retries++;
535 else if (attempts < 100) xfs_middle_retries++;
536 else xfs_lots_retries++;
537 } else {
538 xfs_locked_n++;
539 }
540#endif
541}
542
543/*
653c60b6
DC
544 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
545 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
546 * lock more than one at a time, lockdep will report false positives saying we
547 * have violated locking orders.
c24b5dfa
DC
548 */
549void
550xfs_lock_two_inodes(
551 xfs_inode_t *ip0,
552 xfs_inode_t *ip1,
553 uint lock_mode)
554{
555 xfs_inode_t *temp;
556 int attempts = 0;
557 xfs_log_item_t *lp;
558
653c60b6
DC
559 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
560 ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
561 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
562 } else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
563 ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
564
c24b5dfa
DC
565 ASSERT(ip0->i_ino != ip1->i_ino);
566
567 if (ip0->i_ino > ip1->i_ino) {
568 temp = ip0;
569 ip0 = ip1;
570 ip1 = temp;
571 }
572
573 again:
574 xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
575
576 /*
577 * If the first lock we have locked is in the AIL, we must TRY to get
578 * the second lock. If we can't get it, we must release the first one
579 * and try again.
580 */
581 lp = (xfs_log_item_t *)ip0->i_itemp;
582 if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
583 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
584 xfs_iunlock(ip0, lock_mode);
585 if ((++attempts % 5) == 0)
586 delay(1); /* Don't just spin the CPU */
587 goto again;
588 }
589 } else {
590 xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
591 }
592}
593
594
fa96acad
DC
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
603 prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
608 finish_wait(wq, &wait.wait);
609}
610
1da177e4
LT
611STATIC uint
612_xfs_dic2xflags(
58f88ca2
DC
613 __uint16_t di_flags,
614 uint64_t di_flags2,
615 bool has_attr)
1da177e4
LT
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 621 flags |= FS_XFLAG_REALTIME;
1da177e4 622 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 623 flags |= FS_XFLAG_PREALLOC;
1da177e4 624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 625 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 626 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 627 flags |= FS_XFLAG_APPEND;
1da177e4 628 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 629 flags |= FS_XFLAG_SYNC;
1da177e4 630 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 631 flags |= FS_XFLAG_NOATIME;
1da177e4 632 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 633 flags |= FS_XFLAG_NODUMP;
1da177e4 634 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 635 flags |= FS_XFLAG_RTINHERIT;
1da177e4 636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 637 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 639 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 640 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 641 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 643 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 644 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 645 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 646 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 647 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
648 }
649
58f88ca2
DC
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
653 }
654
655 if (has_attr)
656 flags |= FS_XFLAG_HASATTR;
657
1da177e4
LT
658 return flags;
659}
660
661uint
662xfs_ip2xflags(
58f88ca2 663 struct xfs_inode *ip)
1da177e4 664{
58f88ca2 665 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 666
58f88ca2 667 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
668}
669
670uint
671xfs_dic2xflags(
58f88ca2 672 struct xfs_dinode *dip)
1da177e4 673{
58f88ca2
DC
674 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags),
675 be64_to_cpu(dip->di_flags2), XFS_DFORK_Q(dip));
1da177e4
LT
676}
677
c24b5dfa
DC
678/*
679 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
680 * is allowed, otherwise it has to be an exact match. If a CI match is found,
681 * ci_name->name will point to a the actual name (caller must free) or
682 * will be set to NULL if an exact match is found.
683 */
684int
685xfs_lookup(
686 xfs_inode_t *dp,
687 struct xfs_name *name,
688 xfs_inode_t **ipp,
689 struct xfs_name *ci_name)
690{
691 xfs_ino_t inum;
692 int error;
c24b5dfa
DC
693
694 trace_xfs_lookup(dp, name);
695
696 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 697 return -EIO;
c24b5dfa 698
dbad7c99 699 xfs_ilock(dp, XFS_IOLOCK_SHARED);
c24b5dfa 700 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 701 if (error)
dbad7c99 702 goto out_unlock;
c24b5dfa
DC
703
704 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
705 if (error)
706 goto out_free_name;
707
dbad7c99 708 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
709 return 0;
710
711out_free_name:
712 if (ci_name)
713 kmem_free(ci_name->name);
dbad7c99
DC
714out_unlock:
715 xfs_iunlock(dp, XFS_IOLOCK_SHARED);
c24b5dfa
DC
716 *ipp = NULL;
717 return error;
718}
719
1da177e4
LT
720/*
721 * Allocate an inode on disk and return a copy of its in-core version.
722 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
723 * appropriately within the inode. The uid and gid for the inode are
724 * set according to the contents of the given cred structure.
725 *
726 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
727 * has a free inode available, call xfs_iget() to obtain the in-core
728 * version of the allocated inode. Finally, fill in the inode and
729 * log its initial contents. In this case, ialloc_context would be
730 * set to NULL.
1da177e4 731 *
cd856db6
CM
732 * If xfs_dialloc() does not have an available inode, it will replenish
733 * its supply by doing an allocation. Since we can only do one
734 * allocation within a transaction without deadlocks, we must commit
735 * the current transaction before returning the inode itself.
736 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
737 * The caller should then commit the current transaction, start a new
738 * transaction, and call xfs_ialloc() again to actually get the inode.
739 *
740 * To ensure that some other process does not grab the inode that
741 * was allocated during the first call to xfs_ialloc(), this routine
742 * also returns the [locked] bp pointing to the head of the freelist
743 * as ialloc_context. The caller should hold this buffer across
744 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
745 *
746 * If we are allocating quota inodes, we do not have a parent inode
747 * to attach to or associate with (i.e. pip == NULL) because they
748 * are not linked into the directory structure - they are attached
749 * directly to the superblock - and so have no parent.
1da177e4
LT
750 */
751int
752xfs_ialloc(
753 xfs_trans_t *tp,
754 xfs_inode_t *pip,
576b1d67 755 umode_t mode,
31b084ae 756 xfs_nlink_t nlink,
1da177e4 757 xfs_dev_t rdev,
6743099c 758 prid_t prid,
1da177e4
LT
759 int okalloc,
760 xfs_buf_t **ialloc_context,
1da177e4
LT
761 xfs_inode_t **ipp)
762{
93848a99 763 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
764 xfs_ino_t ino;
765 xfs_inode_t *ip;
1da177e4
LT
766 uint flags;
767 int error;
e076b0f3 768 struct timespec tv;
1da177e4
LT
769
770 /*
771 * Call the space management code to pick
772 * the on-disk inode to be allocated.
773 */
b11f94d5 774 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
08358906 775 ialloc_context, &ino);
bf904248 776 if (error)
1da177e4 777 return error;
08358906 778 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
779 *ipp = NULL;
780 return 0;
781 }
782 ASSERT(*ialloc_context == NULL);
783
784 /*
785 * Get the in-core inode with the lock held exclusively.
786 * This is because we're setting fields here we need
787 * to prevent others from looking at until we're done.
788 */
93848a99 789 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 790 XFS_ILOCK_EXCL, &ip);
bf904248 791 if (error)
1da177e4 792 return error;
1da177e4
LT
793 ASSERT(ip != NULL);
794
263997a6
DC
795 /*
796 * We always convert v1 inodes to v2 now - we only support filesystems
797 * with >= v2 inode capability, so there is no reason for ever leaving
798 * an inode in v1 format.
799 */
800 if (ip->i_d.di_version == 1)
801 ip->i_d.di_version = 2;
802
576b1d67 803 ip->i_d.di_mode = mode;
1da177e4
LT
804 ip->i_d.di_onlink = 0;
805 ip->i_d.di_nlink = nlink;
806 ASSERT(ip->i_d.di_nlink == nlink);
7aab1b28
DE
807 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
808 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
6743099c 809 xfs_set_projid(ip, prid);
1da177e4
LT
810 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
811
bd186aa9 812 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 813 ip->i_d.di_gid = pip->i_d.di_gid;
abbede1b 814 if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
1da177e4
LT
815 ip->i_d.di_mode |= S_ISGID;
816 }
817 }
818
819 /*
820 * If the group ID of the new file does not match the effective group
821 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
822 * (and only if the irix_sgid_inherit compatibility variable is set).
823 */
824 if ((irix_sgid_inherit) &&
825 (ip->i_d.di_mode & S_ISGID) &&
7aab1b28 826 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
1da177e4
LT
827 ip->i_d.di_mode &= ~S_ISGID;
828 }
829
830 ip->i_d.di_size = 0;
831 ip->i_d.di_nextents = 0;
832 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 833
e076b0f3 834 tv = current_fs_time(mp->m_super);
dff35fd4
CH
835 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
836 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
837 ip->i_d.di_atime = ip->i_d.di_mtime;
838 ip->i_d.di_ctime = ip->i_d.di_mtime;
839
1da177e4
LT
840 /*
841 * di_gen will have been taken care of in xfs_iread.
842 */
843 ip->i_d.di_extsize = 0;
844 ip->i_d.di_dmevmask = 0;
845 ip->i_d.di_dmstate = 0;
846 ip->i_d.di_flags = 0;
93848a99
CH
847
848 if (ip->i_d.di_version == 3) {
849 ASSERT(ip->i_d.di_ino == ino);
bbf155ad 850 ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
93848a99
CH
851 ip->i_d.di_crc = 0;
852 ip->i_d.di_changecount = 1;
853 ip->i_d.di_lsn = 0;
854 ip->i_d.di_flags2 = 0;
855 memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
856 ip->i_d.di_crtime = ip->i_d.di_mtime;
857 }
858
859
1da177e4
LT
860 flags = XFS_ILOG_CORE;
861 switch (mode & S_IFMT) {
862 case S_IFIFO:
863 case S_IFCHR:
864 case S_IFBLK:
865 case S_IFSOCK:
866 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
867 ip->i_df.if_u2.if_rdev = rdev;
868 ip->i_df.if_flags = 0;
869 flags |= XFS_ILOG_DEV;
870 break;
871 case S_IFREG:
872 case S_IFDIR:
b11f94d5 873 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2
DC
874 uint64_t di_flags2 = 0;
875 uint di_flags = 0;
365ca83d 876
abbede1b 877 if (S_ISDIR(mode)) {
365ca83d
NS
878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
879 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
882 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 }
9336e3a7
DC
884 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
885 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 886 } else if (S_ISREG(mode)) {
613d7043 887 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 888 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
889 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
890 di_flags |= XFS_DIFLAG_EXTSIZE;
891 ip->i_d.di_extsize = pip->i_d.di_extsize;
892 }
1da177e4
LT
893 }
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
895 xfs_inherit_noatime)
365ca83d 896 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
898 xfs_inherit_nodump)
365ca83d 899 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
900 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
901 xfs_inherit_sync)
365ca83d 902 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
903 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
904 xfs_inherit_nosymlinks)
365ca83d 905 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
906 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
907 xfs_inherit_nodefrag)
908 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
909 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
910 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2
DC
911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
912 di_flags2 |= XFS_DIFLAG2_DAX;
913
365ca83d 914 ip->i_d.di_flags |= di_flags;
58f88ca2 915 ip->i_d.di_flags2 |= di_flags2;
1da177e4
LT
916 }
917 /* FALLTHROUGH */
918 case S_IFLNK:
919 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
920 ip->i_df.if_flags = XFS_IFEXTENTS;
921 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
922 ip->i_df.if_u1.if_extents = NULL;
923 break;
924 default:
925 ASSERT(0);
926 }
927 /*
928 * Attribute fork settings for new inode.
929 */
930 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
931 ip->i_d.di_anextents = 0;
932
933 /*
934 * Log the new values stuffed into the inode.
935 */
ddc3415a 936 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
937 xfs_trans_log_inode(tp, ip, flags);
938
58c90473 939 /* now that we have an i_mode we can setup the inode structure */
41be8bed 940 xfs_setup_inode(ip);
1da177e4
LT
941
942 *ipp = ip;
943 return 0;
944}
945
e546cb79
DC
946/*
947 * Allocates a new inode from disk and return a pointer to the
948 * incore copy. This routine will internally commit the current
949 * transaction and allocate a new one if the Space Manager needed
950 * to do an allocation to replenish the inode free-list.
951 *
952 * This routine is designed to be called from xfs_create and
953 * xfs_create_dir.
954 *
955 */
956int
957xfs_dir_ialloc(
958 xfs_trans_t **tpp, /* input: current transaction;
959 output: may be a new transaction. */
960 xfs_inode_t *dp, /* directory within whose allocate
961 the inode. */
962 umode_t mode,
963 xfs_nlink_t nlink,
964 xfs_dev_t rdev,
965 prid_t prid, /* project id */
966 int okalloc, /* ok to allocate new space */
967 xfs_inode_t **ipp, /* pointer to inode; it will be
968 locked. */
969 int *committed)
970
971{
972 xfs_trans_t *tp;
e546cb79
DC
973 xfs_inode_t *ip;
974 xfs_buf_t *ialloc_context = NULL;
975 int code;
e546cb79
DC
976 void *dqinfo;
977 uint tflags;
978
979 tp = *tpp;
980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981
982 /*
983 * xfs_ialloc will return a pointer to an incore inode if
984 * the Space Manager has an available inode on the free
985 * list. Otherwise, it will do an allocation and replenish
986 * the freelist. Since we can only do one allocation per
987 * transaction without deadlocks, we will need to commit the
988 * current transaction and start a new one. We will then
989 * need to call xfs_ialloc again to get the inode.
990 *
991 * If xfs_ialloc did an allocation to replenish the freelist,
992 * it returns the bp containing the head of the freelist as
993 * ialloc_context. We will hold a lock on it across the
994 * transaction commit so that no other process can steal
995 * the inode(s) that we've just allocated.
996 */
997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
998 &ialloc_context, &ip);
999
1000 /*
1001 * Return an error if we were unable to allocate a new inode.
1002 * This should only happen if we run out of space on disk or
1003 * encounter a disk error.
1004 */
1005 if (code) {
1006 *ipp = NULL;
1007 return code;
1008 }
1009 if (!ialloc_context && !ip) {
1010 *ipp = NULL;
2451337d 1011 return -ENOSPC;
e546cb79
DC
1012 }
1013
1014 /*
1015 * If the AGI buffer is non-NULL, then we were unable to get an
1016 * inode in one operation. We need to commit the current
1017 * transaction and call xfs_ialloc() again. It is guaranteed
1018 * to succeed the second time.
1019 */
1020 if (ialloc_context) {
1021 /*
1022 * Normally, xfs_trans_commit releases all the locks.
1023 * We call bhold to hang on to the ialloc_context across
1024 * the commit. Holding this buffer prevents any other
1025 * processes from doing any allocations in this
1026 * allocation group.
1027 */
1028 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1029
1030 /*
1031 * We want the quota changes to be associated with the next
1032 * transaction, NOT this one. So, detach the dqinfo from this
1033 * and attach it to the next transaction.
1034 */
1035 dqinfo = NULL;
1036 tflags = 0;
1037 if (tp->t_dqinfo) {
1038 dqinfo = (void *)tp->t_dqinfo;
1039 tp->t_dqinfo = NULL;
1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 }
1043
2e6db6c4
CH
1044 code = xfs_trans_roll(&tp, 0);
1045 if (committed != NULL)
e546cb79 1046 *committed = 1;
3d3c8b52 1047
e546cb79
DC
1048 /*
1049 * Re-attach the quota info that we detached from prev trx.
1050 */
1051 if (dqinfo) {
1052 tp->t_dqinfo = dqinfo;
1053 tp->t_flags |= tflags;
1054 }
1055
1056 if (code) {
1057 xfs_buf_relse(ialloc_context);
2e6db6c4 1058 *tpp = tp;
e546cb79
DC
1059 *ipp = NULL;
1060 return code;
1061 }
1062 xfs_trans_bjoin(tp, ialloc_context);
1063
1064 /*
1065 * Call ialloc again. Since we've locked out all
1066 * other allocations in this allocation group,
1067 * this call should always succeed.
1068 */
1069 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1070 okalloc, &ialloc_context, &ip);
1071
1072 /*
1073 * If we get an error at this point, return to the caller
1074 * so that the current transaction can be aborted.
1075 */
1076 if (code) {
1077 *tpp = tp;
1078 *ipp = NULL;
1079 return code;
1080 }
1081 ASSERT(!ialloc_context && ip);
1082
1083 } else {
1084 if (committed != NULL)
1085 *committed = 0;
1086 }
1087
1088 *ipp = ip;
1089 *tpp = tp;
1090
1091 return 0;
1092}
1093
1094/*
1095 * Decrement the link count on an inode & log the change.
1096 * If this causes the link count to go to zero, initiate the
1097 * logging activity required to truncate a file.
1098 */
1099int /* error */
1100xfs_droplink(
1101 xfs_trans_t *tp,
1102 xfs_inode_t *ip)
1103{
1104 int error;
1105
1106 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1107
1108 ASSERT (ip->i_d.di_nlink > 0);
1109 ip->i_d.di_nlink--;
1110 drop_nlink(VFS_I(ip));
1111 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1112
1113 error = 0;
1114 if (ip->i_d.di_nlink == 0) {
1115 /*
1116 * We're dropping the last link to this file.
1117 * Move the on-disk inode to the AGI unlinked list.
1118 * From xfs_inactive() we will pull the inode from
1119 * the list and free it.
1120 */
1121 error = xfs_iunlink(tp, ip);
1122 }
1123 return error;
1124}
1125
e546cb79
DC
1126/*
1127 * Increment the link count on an inode & log the change.
1128 */
1129int
1130xfs_bumplink(
1131 xfs_trans_t *tp,
1132 xfs_inode_t *ip)
1133{
1134 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1135
263997a6 1136 ASSERT(ip->i_d.di_version > 1);
ab297431 1137 ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
e546cb79
DC
1138 ip->i_d.di_nlink++;
1139 inc_nlink(VFS_I(ip));
e546cb79
DC
1140 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1141 return 0;
1142}
1143
c24b5dfa
DC
1144int
1145xfs_create(
1146 xfs_inode_t *dp,
1147 struct xfs_name *name,
1148 umode_t mode,
1149 xfs_dev_t rdev,
1150 xfs_inode_t **ipp)
1151{
1152 int is_dir = S_ISDIR(mode);
1153 struct xfs_mount *mp = dp->i_mount;
1154 struct xfs_inode *ip = NULL;
1155 struct xfs_trans *tp = NULL;
1156 int error;
1157 xfs_bmap_free_t free_list;
1158 xfs_fsblock_t first_block;
1159 bool unlock_dp_on_error = false;
c24b5dfa
DC
1160 prid_t prid;
1161 struct xfs_dquot *udqp = NULL;
1162 struct xfs_dquot *gdqp = NULL;
1163 struct xfs_dquot *pdqp = NULL;
062647a8 1164 struct xfs_trans_res *tres;
c24b5dfa 1165 uint resblks;
c24b5dfa
DC
1166
1167 trace_xfs_create(dp, name);
1168
1169 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1170 return -EIO;
c24b5dfa 1171
163467d3 1172 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1173
1174 /*
1175 * Make sure that we have allocated dquot(s) on disk.
1176 */
7aab1b28
DE
1177 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1178 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1179 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1180 &udqp, &gdqp, &pdqp);
1181 if (error)
1182 return error;
1183
1184 if (is_dir) {
1185 rdev = 0;
1186 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1187 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1188 tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1189 } else {
1190 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1191 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1192 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1193 }
1194
c24b5dfa
DC
1195 /*
1196 * Initially assume that the file does not exist and
1197 * reserve the resources for that case. If that is not
1198 * the case we'll drop the one we have and get a more
1199 * appropriate transaction later.
1200 */
062647a8 1201 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1202 if (error == -ENOSPC) {
c24b5dfa
DC
1203 /* flush outstanding delalloc blocks and retry */
1204 xfs_flush_inodes(mp);
062647a8 1205 error = xfs_trans_reserve(tp, tres, resblks, 0);
c24b5dfa 1206 }
2451337d 1207 if (error == -ENOSPC) {
c24b5dfa
DC
1208 /* No space at all so try a "no-allocation" reservation */
1209 resblks = 0;
062647a8 1210 error = xfs_trans_reserve(tp, tres, 0, 0);
c24b5dfa 1211 }
4906e215 1212 if (error)
c24b5dfa 1213 goto out_trans_cancel;
4906e215 1214
c24b5dfa 1215
dbad7c99
DC
1216 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL |
1217 XFS_IOLOCK_PARENT | XFS_ILOCK_PARENT);
c24b5dfa
DC
1218 unlock_dp_on_error = true;
1219
1220 xfs_bmap_init(&free_list, &first_block);
1221
1222 /*
1223 * Reserve disk quota and the inode.
1224 */
1225 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1226 pdqp, resblks, 1, 0);
1227 if (error)
1228 goto out_trans_cancel;
1229
94f3cad5
ES
1230 if (!resblks) {
1231 error = xfs_dir_canenter(tp, dp, name);
1232 if (error)
1233 goto out_trans_cancel;
1234 }
c24b5dfa
DC
1235
1236 /*
1237 * A newly created regular or special file just has one directory
1238 * entry pointing to them, but a directory also the "." entry
1239 * pointing to itself.
1240 */
1241 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
f6106efa 1242 prid, resblks > 0, &ip, NULL);
d6077aa3 1243 if (error)
4906e215 1244 goto out_trans_cancel;
c24b5dfa
DC
1245
1246 /*
1247 * Now we join the directory inode to the transaction. We do not do it
1248 * earlier because xfs_dir_ialloc might commit the previous transaction
1249 * (and release all the locks). An error from here on will result in
1250 * the transaction cancel unlocking dp so don't do it explicitly in the
1251 * error path.
1252 */
dbad7c99 1253 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1254 unlock_dp_on_error = false;
1255
1256 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1257 &first_block, &free_list, resblks ?
1258 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1259 if (error) {
2451337d 1260 ASSERT(error != -ENOSPC);
4906e215 1261 goto out_trans_cancel;
c24b5dfa
DC
1262 }
1263 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1265
1266 if (is_dir) {
1267 error = xfs_dir_init(tp, ip, dp);
1268 if (error)
1269 goto out_bmap_cancel;
1270
1271 error = xfs_bumplink(tp, dp);
1272 if (error)
1273 goto out_bmap_cancel;
1274 }
1275
1276 /*
1277 * If this is a synchronous mount, make sure that the
1278 * create transaction goes to disk before returning to
1279 * the user.
1280 */
1281 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1282 xfs_trans_set_sync(tp);
1283
1284 /*
1285 * Attach the dquot(s) to the inodes and modify them incore.
1286 * These ids of the inode couldn't have changed since the new
1287 * inode has been locked ever since it was created.
1288 */
1289 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1290
f6106efa 1291 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1292 if (error)
1293 goto out_bmap_cancel;
1294
70393313 1295 error = xfs_trans_commit(tp);
c24b5dfa
DC
1296 if (error)
1297 goto out_release_inode;
1298
1299 xfs_qm_dqrele(udqp);
1300 xfs_qm_dqrele(gdqp);
1301 xfs_qm_dqrele(pdqp);
1302
1303 *ipp = ip;
1304 return 0;
1305
1306 out_bmap_cancel:
1307 xfs_bmap_cancel(&free_list);
c24b5dfa 1308 out_trans_cancel:
4906e215 1309 xfs_trans_cancel(tp);
c24b5dfa
DC
1310 out_release_inode:
1311 /*
58c90473
DC
1312 * Wait until after the current transaction is aborted to finish the
1313 * setup of the inode and release the inode. This prevents recursive
1314 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1315 */
58c90473
DC
1316 if (ip) {
1317 xfs_finish_inode_setup(ip);
c24b5dfa 1318 IRELE(ip);
58c90473 1319 }
c24b5dfa
DC
1320
1321 xfs_qm_dqrele(udqp);
1322 xfs_qm_dqrele(gdqp);
1323 xfs_qm_dqrele(pdqp);
1324
1325 if (unlock_dp_on_error)
dbad7c99 1326 xfs_iunlock(dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1327 return error;
1328}
1329
99b6436b
ZYW
1330int
1331xfs_create_tmpfile(
1332 struct xfs_inode *dp,
1333 struct dentry *dentry,
330033d6
BF
1334 umode_t mode,
1335 struct xfs_inode **ipp)
99b6436b
ZYW
1336{
1337 struct xfs_mount *mp = dp->i_mount;
1338 struct xfs_inode *ip = NULL;
1339 struct xfs_trans *tp = NULL;
1340 int error;
99b6436b
ZYW
1341 prid_t prid;
1342 struct xfs_dquot *udqp = NULL;
1343 struct xfs_dquot *gdqp = NULL;
1344 struct xfs_dquot *pdqp = NULL;
1345 struct xfs_trans_res *tres;
1346 uint resblks;
1347
1348 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1349 return -EIO;
99b6436b
ZYW
1350
1351 prid = xfs_get_initial_prid(dp);
1352
1353 /*
1354 * Make sure that we have allocated dquot(s) on disk.
1355 */
1356 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1357 xfs_kgid_to_gid(current_fsgid()), prid,
1358 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1359 &udqp, &gdqp, &pdqp);
1360 if (error)
1361 return error;
1362
1363 resblks = XFS_IALLOC_SPACE_RES(mp);
1364 tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1365
1366 tres = &M_RES(mp)->tr_create_tmpfile;
1367 error = xfs_trans_reserve(tp, tres, resblks, 0);
2451337d 1368 if (error == -ENOSPC) {
99b6436b
ZYW
1369 /* No space at all so try a "no-allocation" reservation */
1370 resblks = 0;
1371 error = xfs_trans_reserve(tp, tres, 0, 0);
1372 }
4906e215 1373 if (error)
99b6436b 1374 goto out_trans_cancel;
99b6436b
ZYW
1375
1376 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1377 pdqp, resblks, 1, 0);
1378 if (error)
1379 goto out_trans_cancel;
1380
1381 error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1382 prid, resblks > 0, &ip, NULL);
d6077aa3 1383 if (error)
4906e215 1384 goto out_trans_cancel;
99b6436b
ZYW
1385
1386 if (mp->m_flags & XFS_MOUNT_WSYNC)
1387 xfs_trans_set_sync(tp);
1388
1389 /*
1390 * Attach the dquot(s) to the inodes and modify them incore.
1391 * These ids of the inode couldn't have changed since the new
1392 * inode has been locked ever since it was created.
1393 */
1394 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1395
1396 ip->i_d.di_nlink--;
99b6436b
ZYW
1397 error = xfs_iunlink(tp, ip);
1398 if (error)
4906e215 1399 goto out_trans_cancel;
99b6436b 1400
70393313 1401 error = xfs_trans_commit(tp);
99b6436b
ZYW
1402 if (error)
1403 goto out_release_inode;
1404
1405 xfs_qm_dqrele(udqp);
1406 xfs_qm_dqrele(gdqp);
1407 xfs_qm_dqrele(pdqp);
1408
330033d6 1409 *ipp = ip;
99b6436b
ZYW
1410 return 0;
1411
99b6436b 1412 out_trans_cancel:
4906e215 1413 xfs_trans_cancel(tp);
99b6436b
ZYW
1414 out_release_inode:
1415 /*
58c90473
DC
1416 * Wait until after the current transaction is aborted to finish the
1417 * setup of the inode and release the inode. This prevents recursive
1418 * transactions and deadlocks from xfs_inactive.
99b6436b 1419 */
58c90473
DC
1420 if (ip) {
1421 xfs_finish_inode_setup(ip);
99b6436b 1422 IRELE(ip);
58c90473 1423 }
99b6436b
ZYW
1424
1425 xfs_qm_dqrele(udqp);
1426 xfs_qm_dqrele(gdqp);
1427 xfs_qm_dqrele(pdqp);
1428
1429 return error;
1430}
1431
c24b5dfa
DC
1432int
1433xfs_link(
1434 xfs_inode_t *tdp,
1435 xfs_inode_t *sip,
1436 struct xfs_name *target_name)
1437{
1438 xfs_mount_t *mp = tdp->i_mount;
1439 xfs_trans_t *tp;
1440 int error;
1441 xfs_bmap_free_t free_list;
1442 xfs_fsblock_t first_block;
c24b5dfa
DC
1443 int resblks;
1444
1445 trace_xfs_link(tdp, target_name);
1446
1447 ASSERT(!S_ISDIR(sip->i_d.di_mode));
1448
1449 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1450 return -EIO;
c24b5dfa
DC
1451
1452 error = xfs_qm_dqattach(sip, 0);
1453 if (error)
1454 goto std_return;
1455
1456 error = xfs_qm_dqattach(tdp, 0);
1457 if (error)
1458 goto std_return;
1459
1460 tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
c24b5dfa 1461 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
3d3c8b52 1462 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
2451337d 1463 if (error == -ENOSPC) {
c24b5dfa 1464 resblks = 0;
3d3c8b52 1465 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
c24b5dfa 1466 }
4906e215 1467 if (error)
c24b5dfa 1468 goto error_return;
c24b5dfa 1469
dbad7c99 1470 xfs_ilock(tdp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
1471 xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1472
1473 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
dbad7c99 1474 xfs_trans_ijoin(tp, tdp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
1475
1476 /*
1477 * If we are using project inheritance, we only allow hard link
1478 * creation in our tree when the project IDs are the same; else
1479 * the tree quota mechanism could be circumvented.
1480 */
1481 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1482 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1483 error = -EXDEV;
c24b5dfa
DC
1484 goto error_return;
1485 }
1486
94f3cad5
ES
1487 if (!resblks) {
1488 error = xfs_dir_canenter(tp, tdp, target_name);
1489 if (error)
1490 goto error_return;
1491 }
c24b5dfa
DC
1492
1493 xfs_bmap_init(&free_list, &first_block);
1494
ab297431
ZYW
1495 if (sip->i_d.di_nlink == 0) {
1496 error = xfs_iunlink_remove(tp, sip);
1497 if (error)
4906e215 1498 goto error_return;
ab297431
ZYW
1499 }
1500
c24b5dfa
DC
1501 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1502 &first_block, &free_list, resblks);
1503 if (error)
4906e215 1504 goto error_return;
c24b5dfa
DC
1505 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1506 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1507
1508 error = xfs_bumplink(tp, sip);
1509 if (error)
4906e215 1510 goto error_return;
c24b5dfa
DC
1511
1512 /*
1513 * If this is a synchronous mount, make sure that the
1514 * link transaction goes to disk before returning to
1515 * the user.
1516 */
f6106efa 1517 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1518 xfs_trans_set_sync(tp);
c24b5dfa 1519
f6106efa 1520 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
1521 if (error) {
1522 xfs_bmap_cancel(&free_list);
4906e215 1523 goto error_return;
c24b5dfa
DC
1524 }
1525
70393313 1526 return xfs_trans_commit(tp);
c24b5dfa 1527
c24b5dfa 1528 error_return:
4906e215 1529 xfs_trans_cancel(tp);
c24b5dfa
DC
1530 std_return:
1531 return error;
1532}
1533
1da177e4 1534/*
8f04c47a
CH
1535 * Free up the underlying blocks past new_size. The new size must be smaller
1536 * than the current size. This routine can be used both for the attribute and
1537 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1538 *
f6485057
DC
1539 * The transaction passed to this routine must have made a permanent log
1540 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1541 * given transaction and start new ones, so make sure everything involved in
1542 * the transaction is tidy before calling here. Some transaction will be
1543 * returned to the caller to be committed. The incoming transaction must
1544 * already include the inode, and both inode locks must be held exclusively.
1545 * The inode must also be "held" within the transaction. On return the inode
1546 * will be "held" within the returned transaction. This routine does NOT
1547 * require any disk space to be reserved for it within the transaction.
1da177e4 1548 *
f6485057
DC
1549 * If we get an error, we must return with the inode locked and linked into the
1550 * current transaction. This keeps things simple for the higher level code,
1551 * because it always knows that the inode is locked and held in the transaction
1552 * that returns to it whether errors occur or not. We don't mark the inode
1553 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1554 */
1555int
8f04c47a
CH
1556xfs_itruncate_extents(
1557 struct xfs_trans **tpp,
1558 struct xfs_inode *ip,
1559 int whichfork,
1560 xfs_fsize_t new_size)
1da177e4 1561{
8f04c47a
CH
1562 struct xfs_mount *mp = ip->i_mount;
1563 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1564 xfs_bmap_free_t free_list;
1565 xfs_fsblock_t first_block;
1566 xfs_fileoff_t first_unmap_block;
1567 xfs_fileoff_t last_block;
1568 xfs_filblks_t unmap_len;
8f04c47a
CH
1569 int error = 0;
1570 int done = 0;
1da177e4 1571
0b56185b
CH
1572 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1573 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1574 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1575 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1576 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1577 ASSERT(ip->i_itemp != NULL);
898621d5 1578 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1579 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1580
673e8e59
CH
1581 trace_xfs_itruncate_extents_start(ip, new_size);
1582
1da177e4
LT
1583 /*
1584 * Since it is possible for space to become allocated beyond
1585 * the end of the file (in a crash where the space is allocated
1586 * but the inode size is not yet updated), simply remove any
1587 * blocks which show up between the new EOF and the maximum
1588 * possible file size. If the first block to be removed is
1589 * beyond the maximum file size (ie it is the same as last_block),
1590 * then there is nothing to do.
1591 */
8f04c47a 1592 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1593 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1594 if (first_unmap_block == last_block)
1595 return 0;
1596
1597 ASSERT(first_unmap_block < last_block);
1598 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1599 while (!done) {
9d87c319 1600 xfs_bmap_init(&free_list, &first_block);
8f04c47a 1601 error = xfs_bunmapi(tp, ip,
3e57ecf6 1602 first_unmap_block, unmap_len,
8f04c47a 1603 xfs_bmapi_aflag(whichfork),
1da177e4 1604 XFS_ITRUNC_MAX_EXTENTS,
3e57ecf6 1605 &first_block, &free_list,
b4e9181e 1606 &done);
8f04c47a
CH
1607 if (error)
1608 goto out_bmap_cancel;
1da177e4
LT
1609
1610 /*
1611 * Duplicate the transaction that has the permanent
1612 * reservation and commit the old transaction.
1613 */
f6106efa 1614 error = xfs_bmap_finish(&tp, &free_list, ip);
8f04c47a
CH
1615 if (error)
1616 goto out_bmap_cancel;
1da177e4 1617
2e6db6c4 1618 error = xfs_trans_roll(&tp, ip);
f6485057 1619 if (error)
8f04c47a 1620 goto out;
1da177e4 1621 }
8f04c47a 1622
673e8e59
CH
1623 /*
1624 * Always re-log the inode so that our permanent transaction can keep
1625 * on rolling it forward in the log.
1626 */
1627 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1628
1629 trace_xfs_itruncate_extents_end(ip, new_size);
1630
8f04c47a
CH
1631out:
1632 *tpp = tp;
1633 return error;
1634out_bmap_cancel:
1da177e4 1635 /*
8f04c47a
CH
1636 * If the bunmapi call encounters an error, return to the caller where
1637 * the transaction can be properly aborted. We just need to make sure
1638 * we're not holding any resources that we were not when we came in.
1da177e4 1639 */
8f04c47a
CH
1640 xfs_bmap_cancel(&free_list);
1641 goto out;
1642}
1643
c24b5dfa
DC
1644int
1645xfs_release(
1646 xfs_inode_t *ip)
1647{
1648 xfs_mount_t *mp = ip->i_mount;
1649 int error;
1650
1651 if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1652 return 0;
1653
1654 /* If this is a read-only mount, don't do this (would generate I/O) */
1655 if (mp->m_flags & XFS_MOUNT_RDONLY)
1656 return 0;
1657
1658 if (!XFS_FORCED_SHUTDOWN(mp)) {
1659 int truncated;
1660
c24b5dfa
DC
1661 /*
1662 * If we previously truncated this file and removed old data
1663 * in the process, we want to initiate "early" writeout on
1664 * the last close. This is an attempt to combat the notorious
1665 * NULL files problem which is particularly noticeable from a
1666 * truncate down, buffered (re-)write (delalloc), followed by
1667 * a crash. What we are effectively doing here is
1668 * significantly reducing the time window where we'd otherwise
1669 * be exposed to that problem.
1670 */
1671 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1672 if (truncated) {
1673 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1674 if (ip->i_delayed_blks > 0) {
2451337d 1675 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1676 if (error)
1677 return error;
1678 }
1679 }
1680 }
1681
1682 if (ip->i_d.di_nlink == 0)
1683 return 0;
1684
1685 if (xfs_can_free_eofblocks(ip, false)) {
1686
1687 /*
1688 * If we can't get the iolock just skip truncating the blocks
1689 * past EOF because we could deadlock with the mmap_sem
1690 * otherwise. We'll get another chance to drop them once the
1691 * last reference to the inode is dropped, so we'll never leak
1692 * blocks permanently.
1693 *
1694 * Further, check if the inode is being opened, written and
1695 * closed frequently and we have delayed allocation blocks
1696 * outstanding (e.g. streaming writes from the NFS server),
1697 * truncating the blocks past EOF will cause fragmentation to
1698 * occur.
1699 *
1700 * In this case don't do the truncation, either, but we have to
1701 * be careful how we detect this case. Blocks beyond EOF show
1702 * up as i_delayed_blks even when the inode is clean, so we
1703 * need to truncate them away first before checking for a dirty
1704 * release. Hence on the first dirty close we will still remove
1705 * the speculative allocation, but after that we will leave it
1706 * in place.
1707 */
1708 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1709 return 0;
1710
1711 error = xfs_free_eofblocks(mp, ip, true);
2451337d 1712 if (error && error != -EAGAIN)
c24b5dfa
DC
1713 return error;
1714
1715 /* delalloc blocks after truncation means it really is dirty */
1716 if (ip->i_delayed_blks)
1717 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1718 }
1719 return 0;
1720}
1721
f7be2d7f
BF
1722/*
1723 * xfs_inactive_truncate
1724 *
1725 * Called to perform a truncate when an inode becomes unlinked.
1726 */
1727STATIC int
1728xfs_inactive_truncate(
1729 struct xfs_inode *ip)
1730{
1731 struct xfs_mount *mp = ip->i_mount;
1732 struct xfs_trans *tp;
1733 int error;
1734
1735 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1736 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1737 if (error) {
1738 ASSERT(XFS_FORCED_SHUTDOWN(mp));
4906e215 1739 xfs_trans_cancel(tp);
f7be2d7f
BF
1740 return error;
1741 }
1742
1743 xfs_ilock(ip, XFS_ILOCK_EXCL);
1744 xfs_trans_ijoin(tp, ip, 0);
1745
1746 /*
1747 * Log the inode size first to prevent stale data exposure in the event
1748 * of a system crash before the truncate completes. See the related
1749 * comment in xfs_setattr_size() for details.
1750 */
1751 ip->i_d.di_size = 0;
1752 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1753
1754 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1755 if (error)
1756 goto error_trans_cancel;
1757
1758 ASSERT(ip->i_d.di_nextents == 0);
1759
70393313 1760 error = xfs_trans_commit(tp);
f7be2d7f
BF
1761 if (error)
1762 goto error_unlock;
1763
1764 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1765 return 0;
1766
1767error_trans_cancel:
4906e215 1768 xfs_trans_cancel(tp);
f7be2d7f
BF
1769error_unlock:
1770 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1771 return error;
1772}
1773
88877d2b
BF
1774/*
1775 * xfs_inactive_ifree()
1776 *
1777 * Perform the inode free when an inode is unlinked.
1778 */
1779STATIC int
1780xfs_inactive_ifree(
1781 struct xfs_inode *ip)
1782{
1783 xfs_bmap_free_t free_list;
1784 xfs_fsblock_t first_block;
88877d2b
BF
1785 struct xfs_mount *mp = ip->i_mount;
1786 struct xfs_trans *tp;
1787 int error;
1788
1789 tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
9d43b180
BF
1790
1791 /*
1792 * The ifree transaction might need to allocate blocks for record
1793 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1794 * allow ifree to dip into the reserved block pool if necessary.
1795 *
1796 * Freeing large sets of inodes generally means freeing inode chunks,
1797 * directory and file data blocks, so this should be relatively safe.
1798 * Only under severe circumstances should it be possible to free enough
1799 * inodes to exhaust the reserve block pool via finobt expansion while
1800 * at the same time not creating free space in the filesystem.
1801 *
1802 * Send a warning if the reservation does happen to fail, as the inode
1803 * now remains allocated and sits on the unlinked list until the fs is
1804 * repaired.
1805 */
1806 tp->t_flags |= XFS_TRANS_RESERVE;
1807 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1808 XFS_IFREE_SPACE_RES(mp), 0);
88877d2b 1809 if (error) {
2451337d 1810 if (error == -ENOSPC) {
9d43b180
BF
1811 xfs_warn_ratelimited(mp,
1812 "Failed to remove inode(s) from unlinked list. "
1813 "Please free space, unmount and run xfs_repair.");
1814 } else {
1815 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1816 }
4906e215 1817 xfs_trans_cancel(tp);
88877d2b
BF
1818 return error;
1819 }
1820
1821 xfs_ilock(ip, XFS_ILOCK_EXCL);
1822 xfs_trans_ijoin(tp, ip, 0);
1823
1824 xfs_bmap_init(&free_list, &first_block);
1825 error = xfs_ifree(tp, ip, &free_list);
1826 if (error) {
1827 /*
1828 * If we fail to free the inode, shut down. The cancel
1829 * might do that, we need to make sure. Otherwise the
1830 * inode might be lost for a long time or forever.
1831 */
1832 if (!XFS_FORCED_SHUTDOWN(mp)) {
1833 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1834 __func__, error);
1835 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1836 }
4906e215 1837 xfs_trans_cancel(tp);
88877d2b
BF
1838 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1839 return error;
1840 }
1841
1842 /*
1843 * Credit the quota account(s). The inode is gone.
1844 */
1845 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1846
1847 /*
d4a97a04
BF
1848 * Just ignore errors at this point. There is nothing we can do except
1849 * to try to keep going. Make sure it's not a silent error.
88877d2b 1850 */
f6106efa 1851 error = xfs_bmap_finish(&tp, &free_list, NULL);
d4a97a04 1852 if (error) {
88877d2b
BF
1853 xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1854 __func__, error);
d4a97a04
BF
1855 xfs_bmap_cancel(&free_list);
1856 }
70393313 1857 error = xfs_trans_commit(tp);
88877d2b
BF
1858 if (error)
1859 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1860 __func__, error);
1861
1862 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1863 return 0;
1864}
1865
c24b5dfa
DC
1866/*
1867 * xfs_inactive
1868 *
1869 * This is called when the vnode reference count for the vnode
1870 * goes to zero. If the file has been unlinked, then it must
1871 * now be truncated. Also, we clear all of the read-ahead state
1872 * kept for the inode here since the file is now closed.
1873 */
74564fb4 1874void
c24b5dfa
DC
1875xfs_inactive(
1876 xfs_inode_t *ip)
1877{
3d3c8b52 1878 struct xfs_mount *mp;
3d3c8b52
JL
1879 int error;
1880 int truncate = 0;
c24b5dfa
DC
1881
1882 /*
1883 * If the inode is already free, then there can be nothing
1884 * to clean up here.
1885 */
d948709b 1886 if (ip->i_d.di_mode == 0) {
c24b5dfa
DC
1887 ASSERT(ip->i_df.if_real_bytes == 0);
1888 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1889 return;
c24b5dfa
DC
1890 }
1891
1892 mp = ip->i_mount;
1893
c24b5dfa
DC
1894 /* If this is a read-only mount, don't do this (would generate I/O) */
1895 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1896 return;
c24b5dfa
DC
1897
1898 if (ip->i_d.di_nlink != 0) {
1899 /*
1900 * force is true because we are evicting an inode from the
1901 * cache. Post-eof blocks must be freed, lest we end up with
1902 * broken free space accounting.
1903 */
74564fb4
BF
1904 if (xfs_can_free_eofblocks(ip, true))
1905 xfs_free_eofblocks(mp, ip, false);
1906
1907 return;
c24b5dfa
DC
1908 }
1909
1910 if (S_ISREG(ip->i_d.di_mode) &&
1911 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1912 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1913 truncate = 1;
1914
1915 error = xfs_qm_dqattach(ip, 0);
1916 if (error)
74564fb4 1917 return;
c24b5dfa 1918
f7be2d7f 1919 if (S_ISLNK(ip->i_d.di_mode))
36b21dde 1920 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1921 else if (truncate)
1922 error = xfs_inactive_truncate(ip);
1923 if (error)
74564fb4 1924 return;
c24b5dfa
DC
1925
1926 /*
1927 * If there are attributes associated with the file then blow them away
1928 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1929 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1930 */
6dfe5a04 1931 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1932 error = xfs_attr_inactive(ip);
1933 if (error)
74564fb4 1934 return;
c24b5dfa
DC
1935 }
1936
6dfe5a04 1937 ASSERT(!ip->i_afp);
c24b5dfa 1938 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1939 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1940
1941 /*
1942 * Free the inode.
1943 */
88877d2b
BF
1944 error = xfs_inactive_ifree(ip);
1945 if (error)
74564fb4 1946 return;
c24b5dfa
DC
1947
1948 /*
1949 * Release the dquots held by inode, if any.
1950 */
1951 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1952}
1953
1da177e4
LT
1954/*
1955 * This is called when the inode's link count goes to 0.
1956 * We place the on-disk inode on a list in the AGI. It
1957 * will be pulled from this list when the inode is freed.
1958 */
1959int
1960xfs_iunlink(
1961 xfs_trans_t *tp,
1962 xfs_inode_t *ip)
1963{
1964 xfs_mount_t *mp;
1965 xfs_agi_t *agi;
1966 xfs_dinode_t *dip;
1967 xfs_buf_t *agibp;
1968 xfs_buf_t *ibp;
1da177e4
LT
1969 xfs_agino_t agino;
1970 short bucket_index;
1971 int offset;
1972 int error;
1da177e4
LT
1973
1974 ASSERT(ip->i_d.di_nlink == 0);
1975 ASSERT(ip->i_d.di_mode != 0);
1da177e4
LT
1976
1977 mp = tp->t_mountp;
1978
1da177e4
LT
1979 /*
1980 * Get the agi buffer first. It ensures lock ordering
1981 * on the list.
1982 */
5e1be0fb 1983 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
859d7182 1984 if (error)
1da177e4 1985 return error;
1da177e4 1986 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 1987
1da177e4
LT
1988 /*
1989 * Get the index into the agi hash table for the
1990 * list this inode will go on.
1991 */
1992 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1993 ASSERT(agino != 0);
1994 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1995 ASSERT(agi->agi_unlinked[bucket_index]);
16259e7d 1996 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1da177e4 1997
69ef921b 1998 if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
1da177e4
LT
1999 /*
2000 * There is already another inode in the bucket we need
2001 * to add ourselves to. Add us at the front of the list.
2002 * Here we put the head pointer into our next pointer,
2003 * and then we fall through to point the head at us.
2004 */
475ee413
CH
2005 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2006 0, 0);
c319b58b
VA
2007 if (error)
2008 return error;
2009
69ef921b 2010 ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
1da177e4 2011 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
92bfc6e7 2012 offset = ip->i_imap.im_boffset +
1da177e4 2013 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2014
2015 /* need to recalc the inode CRC if appropriate */
2016 xfs_dinode_calc_crc(mp, dip);
2017
1da177e4
LT
2018 xfs_trans_inode_buf(tp, ibp);
2019 xfs_trans_log_buf(tp, ibp, offset,
2020 (offset + sizeof(xfs_agino_t) - 1));
2021 xfs_inobp_check(mp, ibp);
2022 }
2023
2024 /*
2025 * Point the bucket head pointer at the inode being inserted.
2026 */
2027 ASSERT(agino != 0);
16259e7d 2028 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1da177e4
LT
2029 offset = offsetof(xfs_agi_t, agi_unlinked) +
2030 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2031 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2032 xfs_trans_log_buf(tp, agibp, offset,
2033 (offset + sizeof(xfs_agino_t) - 1));
2034 return 0;
2035}
2036
2037/*
2038 * Pull the on-disk inode from the AGI unlinked list.
2039 */
2040STATIC int
2041xfs_iunlink_remove(
2042 xfs_trans_t *tp,
2043 xfs_inode_t *ip)
2044{
2045 xfs_ino_t next_ino;
2046 xfs_mount_t *mp;
2047 xfs_agi_t *agi;
2048 xfs_dinode_t *dip;
2049 xfs_buf_t *agibp;
2050 xfs_buf_t *ibp;
2051 xfs_agnumber_t agno;
1da177e4
LT
2052 xfs_agino_t agino;
2053 xfs_agino_t next_agino;
2054 xfs_buf_t *last_ibp;
6fdf8ccc 2055 xfs_dinode_t *last_dip = NULL;
1da177e4 2056 short bucket_index;
6fdf8ccc 2057 int offset, last_offset = 0;
1da177e4 2058 int error;
1da177e4 2059
1da177e4 2060 mp = tp->t_mountp;
1da177e4 2061 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1da177e4
LT
2062
2063 /*
2064 * Get the agi buffer first. It ensures lock ordering
2065 * on the list.
2066 */
5e1be0fb
CH
2067 error = xfs_read_agi(mp, tp, agno, &agibp);
2068 if (error)
1da177e4 2069 return error;
5e1be0fb 2070
1da177e4 2071 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2072
1da177e4
LT
2073 /*
2074 * Get the index into the agi hash table for the
2075 * list this inode will go on.
2076 */
2077 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2078 ASSERT(agino != 0);
2079 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
69ef921b 2080 ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
1da177e4
LT
2081 ASSERT(agi->agi_unlinked[bucket_index]);
2082
16259e7d 2083 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1da177e4 2084 /*
475ee413
CH
2085 * We're at the head of the list. Get the inode's on-disk
2086 * buffer to see if there is anyone after us on the list.
2087 * Only modify our next pointer if it is not already NULLAGINO.
2088 * This saves us the overhead of dealing with the buffer when
2089 * there is no need to change it.
1da177e4 2090 */
475ee413
CH
2091 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2092 0, 0);
1da177e4 2093 if (error) {
475ee413 2094 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2095 __func__, error);
1da177e4
LT
2096 return error;
2097 }
347d1c01 2098 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2099 ASSERT(next_agino != 0);
2100 if (next_agino != NULLAGINO) {
347d1c01 2101 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2102 offset = ip->i_imap.im_boffset +
1da177e4 2103 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2104
2105 /* need to recalc the inode CRC if appropriate */
2106 xfs_dinode_calc_crc(mp, dip);
2107
1da177e4
LT
2108 xfs_trans_inode_buf(tp, ibp);
2109 xfs_trans_log_buf(tp, ibp, offset,
2110 (offset + sizeof(xfs_agino_t) - 1));
2111 xfs_inobp_check(mp, ibp);
2112 } else {
2113 xfs_trans_brelse(tp, ibp);
2114 }
2115 /*
2116 * Point the bucket head pointer at the next inode.
2117 */
2118 ASSERT(next_agino != 0);
2119 ASSERT(next_agino != agino);
16259e7d 2120 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1da177e4
LT
2121 offset = offsetof(xfs_agi_t, agi_unlinked) +
2122 (sizeof(xfs_agino_t) * bucket_index);
f19b872b 2123 xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
1da177e4
LT
2124 xfs_trans_log_buf(tp, agibp, offset,
2125 (offset + sizeof(xfs_agino_t) - 1));
2126 } else {
2127 /*
2128 * We need to search the list for the inode being freed.
2129 */
16259e7d 2130 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1da177e4
LT
2131 last_ibp = NULL;
2132 while (next_agino != agino) {
129dbc9a
CH
2133 struct xfs_imap imap;
2134
2135 if (last_ibp)
1da177e4 2136 xfs_trans_brelse(tp, last_ibp);
129dbc9a
CH
2137
2138 imap.im_blkno = 0;
1da177e4 2139 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
129dbc9a
CH
2140
2141 error = xfs_imap(mp, tp, next_ino, &imap, 0);
2142 if (error) {
2143 xfs_warn(mp,
2144 "%s: xfs_imap returned error %d.",
2145 __func__, error);
2146 return error;
2147 }
2148
2149 error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2150 &last_ibp, 0, 0);
1da177e4 2151 if (error) {
0b932ccc 2152 xfs_warn(mp,
129dbc9a 2153 "%s: xfs_imap_to_bp returned error %d.",
0b932ccc 2154 __func__, error);
1da177e4
LT
2155 return error;
2156 }
129dbc9a
CH
2157
2158 last_offset = imap.im_boffset;
347d1c01 2159 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1da177e4
LT
2160 ASSERT(next_agino != NULLAGINO);
2161 ASSERT(next_agino != 0);
2162 }
475ee413 2163
1da177e4 2164 /*
475ee413
CH
2165 * Now last_ibp points to the buffer previous to us on the
2166 * unlinked list. Pull us from the list.
1da177e4 2167 */
475ee413
CH
2168 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2169 0, 0);
1da177e4 2170 if (error) {
475ee413 2171 xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
0b932ccc 2172 __func__, error);
1da177e4
LT
2173 return error;
2174 }
347d1c01 2175 next_agino = be32_to_cpu(dip->di_next_unlinked);
1da177e4
LT
2176 ASSERT(next_agino != 0);
2177 ASSERT(next_agino != agino);
2178 if (next_agino != NULLAGINO) {
347d1c01 2179 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
92bfc6e7 2180 offset = ip->i_imap.im_boffset +
1da177e4 2181 offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2182
2183 /* need to recalc the inode CRC if appropriate */
2184 xfs_dinode_calc_crc(mp, dip);
2185
1da177e4
LT
2186 xfs_trans_inode_buf(tp, ibp);
2187 xfs_trans_log_buf(tp, ibp, offset,
2188 (offset + sizeof(xfs_agino_t) - 1));
2189 xfs_inobp_check(mp, ibp);
2190 } else {
2191 xfs_trans_brelse(tp, ibp);
2192 }
2193 /*
2194 * Point the previous inode on the list to the next inode.
2195 */
347d1c01 2196 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1da177e4
LT
2197 ASSERT(next_agino != 0);
2198 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
0a32c26e
DC
2199
2200 /* need to recalc the inode CRC if appropriate */
2201 xfs_dinode_calc_crc(mp, last_dip);
2202
1da177e4
LT
2203 xfs_trans_inode_buf(tp, last_ibp);
2204 xfs_trans_log_buf(tp, last_ibp, offset,
2205 (offset + sizeof(xfs_agino_t) - 1));
2206 xfs_inobp_check(mp, last_ibp);
2207 }
2208 return 0;
2209}
2210
5b3eed75 2211/*
0b8182db 2212 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2213 * inodes that are in memory - they all must be marked stale and attached to
2214 * the cluster buffer.
2215 */
2a30f36d 2216STATIC int
1da177e4 2217xfs_ifree_cluster(
09b56604
BF
2218 xfs_inode_t *free_ip,
2219 xfs_trans_t *tp,
2220 struct xfs_icluster *xic)
1da177e4
LT
2221{
2222 xfs_mount_t *mp = free_ip->i_mount;
2223 int blks_per_cluster;
982e939e 2224 int inodes_per_cluster;
1da177e4 2225 int nbufs;
5b257b4a 2226 int i, j;
3cdaa189 2227 int ioffset;
1da177e4
LT
2228 xfs_daddr_t blkno;
2229 xfs_buf_t *bp;
5b257b4a 2230 xfs_inode_t *ip;
1da177e4
LT
2231 xfs_inode_log_item_t *iip;
2232 xfs_log_item_t *lip;
5017e97d 2233 struct xfs_perag *pag;
09b56604 2234 xfs_ino_t inum;
1da177e4 2235
09b56604 2236 inum = xic->first_ino;
5017e97d 2237 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
982e939e
JL
2238 blks_per_cluster = xfs_icluster_size_fsb(mp);
2239 inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2240 nbufs = mp->m_ialloc_blks / blks_per_cluster;
1da177e4 2241
982e939e 2242 for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
09b56604
BF
2243 /*
2244 * The allocation bitmap tells us which inodes of the chunk were
2245 * physically allocated. Skip the cluster if an inode falls into
2246 * a sparse region.
2247 */
3cdaa189
BF
2248 ioffset = inum - xic->first_ino;
2249 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
2250 ASSERT(do_mod(ioffset, inodes_per_cluster) == 0);
09b56604
BF
2251 continue;
2252 }
2253
1da177e4
LT
2254 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2255 XFS_INO_TO_AGBNO(mp, inum));
2256
5b257b4a
DC
2257 /*
2258 * We obtain and lock the backing buffer first in the process
2259 * here, as we have to ensure that any dirty inode that we
2260 * can't get the flush lock on is attached to the buffer.
2261 * If we scan the in-memory inodes first, then buffer IO can
2262 * complete before we get a lock on it, and hence we may fail
2263 * to mark all the active inodes on the buffer stale.
2264 */
2265 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
b6aff29f
DC
2266 mp->m_bsize * blks_per_cluster,
2267 XBF_UNMAPPED);
5b257b4a 2268
2a30f36d 2269 if (!bp)
2451337d 2270 return -ENOMEM;
b0f539de
DC
2271
2272 /*
2273 * This buffer may not have been correctly initialised as we
2274 * didn't read it from disk. That's not important because we are
2275 * only using to mark the buffer as stale in the log, and to
2276 * attach stale cached inodes on it. That means it will never be
2277 * dispatched for IO. If it is, we want to know about it, and we
2278 * want it to fail. We can acheive this by adding a write
2279 * verifier to the buffer.
2280 */
1813dd64 2281 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2282
5b257b4a
DC
2283 /*
2284 * Walk the inodes already attached to the buffer and mark them
2285 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2286 * in-memory inode walk can't lock them. By marking them all
2287 * stale first, we will not attempt to lock them in the loop
2288 * below as the XFS_ISTALE flag will be set.
5b257b4a 2289 */
adadbeef 2290 lip = bp->b_fspriv;
5b257b4a
DC
2291 while (lip) {
2292 if (lip->li_type == XFS_LI_INODE) {
2293 iip = (xfs_inode_log_item_t *)lip;
2294 ASSERT(iip->ili_logged == 1);
ca30b2a7 2295 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2296 xfs_trans_ail_copy_lsn(mp->m_ail,
2297 &iip->ili_flush_lsn,
2298 &iip->ili_item.li_lsn);
2299 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a
DC
2300 }
2301 lip = lip->li_bio_list;
2302 }
1da177e4 2303
5b3eed75 2304
1da177e4 2305 /*
5b257b4a
DC
2306 * For each inode in memory attempt to add it to the inode
2307 * buffer and set it up for being staled on buffer IO
2308 * completion. This is safe as we've locked out tail pushing
2309 * and flushing by locking the buffer.
1da177e4 2310 *
5b257b4a
DC
2311 * We have already marked every inode that was part of a
2312 * transaction stale above, which means there is no point in
2313 * even trying to lock them.
1da177e4 2314 */
982e939e 2315 for (i = 0; i < inodes_per_cluster; i++) {
5b3eed75 2316retry:
1a3e8f3d 2317 rcu_read_lock();
da353b0d
DC
2318 ip = radix_tree_lookup(&pag->pag_ici_root,
2319 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2320
1a3e8f3d
DC
2321 /* Inode not in memory, nothing to do */
2322 if (!ip) {
2323 rcu_read_unlock();
1da177e4
LT
2324 continue;
2325 }
2326
1a3e8f3d
DC
2327 /*
2328 * because this is an RCU protected lookup, we could
2329 * find a recently freed or even reallocated inode
2330 * during the lookup. We need to check under the
2331 * i_flags_lock for a valid inode here. Skip it if it
2332 * is not valid, the wrong inode or stale.
2333 */
2334 spin_lock(&ip->i_flags_lock);
2335 if (ip->i_ino != inum + i ||
2336 __xfs_iflags_test(ip, XFS_ISTALE)) {
2337 spin_unlock(&ip->i_flags_lock);
2338 rcu_read_unlock();
2339 continue;
2340 }
2341 spin_unlock(&ip->i_flags_lock);
2342
5b3eed75
DC
2343 /*
2344 * Don't try to lock/unlock the current inode, but we
2345 * _cannot_ skip the other inodes that we did not find
2346 * in the list attached to the buffer and are not
2347 * already marked stale. If we can't lock it, back off
2348 * and retry.
2349 */
5b257b4a
DC
2350 if (ip != free_ip &&
2351 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
1a3e8f3d 2352 rcu_read_unlock();
5b3eed75
DC
2353 delay(1);
2354 goto retry;
1da177e4 2355 }
1a3e8f3d 2356 rcu_read_unlock();
1da177e4 2357
5b3eed75 2358 xfs_iflock(ip);
5b257b4a 2359 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2360
5b3eed75
DC
2361 /*
2362 * we don't need to attach clean inodes or those only
2363 * with unlogged changes (which we throw away, anyway).
2364 */
1da177e4 2365 iip = ip->i_itemp;
5b3eed75 2366 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2367 ASSERT(ip != free_ip);
1da177e4
LT
2368 xfs_ifunlock(ip);
2369 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2370 continue;
2371 }
2372
f5d8d5c4
CH
2373 iip->ili_last_fields = iip->ili_fields;
2374 iip->ili_fields = 0;
fc0561ce 2375 iip->ili_fsync_fields = 0;
1da177e4 2376 iip->ili_logged = 1;
7b2e2a31
DC
2377 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2378 &iip->ili_item.li_lsn);
1da177e4 2379
ca30b2a7
CH
2380 xfs_buf_attach_iodone(bp, xfs_istale_done,
2381 &iip->ili_item);
5b257b4a
DC
2382
2383 if (ip != free_ip)
1da177e4 2384 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2385 }
2386
5b3eed75 2387 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2388 xfs_trans_binval(tp, bp);
2389 }
2390
5017e97d 2391 xfs_perag_put(pag);
2a30f36d 2392 return 0;
1da177e4
LT
2393}
2394
2395/*
2396 * This is called to return an inode to the inode free list.
2397 * The inode should already be truncated to 0 length and have
2398 * no pages associated with it. This routine also assumes that
2399 * the inode is already a part of the transaction.
2400 *
2401 * The on-disk copy of the inode will have been added to the list
2402 * of unlinked inodes in the AGI. We need to remove the inode from
2403 * that list atomically with respect to freeing it here.
2404 */
2405int
2406xfs_ifree(
2407 xfs_trans_t *tp,
2408 xfs_inode_t *ip,
2409 xfs_bmap_free_t *flist)
2410{
2411 int error;
09b56604 2412 struct xfs_icluster xic = { 0 };
1da177e4 2413
579aa9ca 2414 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1da177e4
LT
2415 ASSERT(ip->i_d.di_nlink == 0);
2416 ASSERT(ip->i_d.di_nextents == 0);
2417 ASSERT(ip->i_d.di_anextents == 0);
ce7ae151 2418 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
1da177e4
LT
2419 ASSERT(ip->i_d.di_nblocks == 0);
2420
2421 /*
2422 * Pull the on-disk inode from the AGI unlinked list.
2423 */
2424 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2425 if (error)
1da177e4 2426 return error;
1da177e4 2427
09b56604 2428 error = xfs_difree(tp, ip->i_ino, flist, &xic);
1baaed8f 2429 if (error)
1da177e4 2430 return error;
1baaed8f 2431
1da177e4
LT
2432 ip->i_d.di_mode = 0; /* mark incore inode as free */
2433 ip->i_d.di_flags = 0;
2434 ip->i_d.di_dmevmask = 0;
2435 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2436 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2437 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2438 /*
2439 * Bump the generation count so no one will be confused
2440 * by reincarnations of this inode.
2441 */
2442 ip->i_d.di_gen++;
2443 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2444
09b56604
BF
2445 if (xic.deleted)
2446 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2447
2a30f36d 2448 return error;
1da177e4
LT
2449}
2450
1da177e4 2451/*
60ec6783
CH
2452 * This is called to unpin an inode. The caller must have the inode locked
2453 * in at least shared mode so that the buffer cannot be subsequently pinned
2454 * once someone is waiting for it to be unpinned.
1da177e4 2455 */
60ec6783 2456static void
f392e631 2457xfs_iunpin(
60ec6783 2458 struct xfs_inode *ip)
1da177e4 2459{
579aa9ca 2460 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2461
4aaf15d1
DC
2462 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2463
a3f74ffb 2464 /* Give the log a push to start the unpinning I/O */
60ec6783 2465 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
a14a348b 2466
a3f74ffb 2467}
1da177e4 2468
f392e631
CH
2469static void
2470__xfs_iunpin_wait(
2471 struct xfs_inode *ip)
2472{
2473 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2474 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2475
2476 xfs_iunpin(ip);
2477
2478 do {
2479 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2480 if (xfs_ipincount(ip))
2481 io_schedule();
2482 } while (xfs_ipincount(ip));
2483 finish_wait(wq, &wait.wait);
2484}
2485
777df5af 2486void
a3f74ffb 2487xfs_iunpin_wait(
60ec6783 2488 struct xfs_inode *ip)
a3f74ffb 2489{
f392e631
CH
2490 if (xfs_ipincount(ip))
2491 __xfs_iunpin_wait(ip);
1da177e4
LT
2492}
2493
27320369
DC
2494/*
2495 * Removing an inode from the namespace involves removing the directory entry
2496 * and dropping the link count on the inode. Removing the directory entry can
2497 * result in locking an AGF (directory blocks were freed) and removing a link
2498 * count can result in placing the inode on an unlinked list which results in
2499 * locking an AGI.
2500 *
2501 * The big problem here is that we have an ordering constraint on AGF and AGI
2502 * locking - inode allocation locks the AGI, then can allocate a new extent for
2503 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2504 * removes the inode from the unlinked list, requiring that we lock the AGI
2505 * first, and then freeing the inode can result in an inode chunk being freed
2506 * and hence freeing disk space requiring that we lock an AGF.
2507 *
2508 * Hence the ordering that is imposed by other parts of the code is AGI before
2509 * AGF. This means we cannot remove the directory entry before we drop the inode
2510 * reference count and put it on the unlinked list as this results in a lock
2511 * order of AGF then AGI, and this can deadlock against inode allocation and
2512 * freeing. Therefore we must drop the link counts before we remove the
2513 * directory entry.
2514 *
2515 * This is still safe from a transactional point of view - it is not until we
2516 * get to xfs_bmap_finish() that we have the possibility of multiple
2517 * transactions in this operation. Hence as long as we remove the directory
2518 * entry and drop the link count in the first transaction of the remove
2519 * operation, there are no transactional constraints on the ordering here.
2520 */
c24b5dfa
DC
2521int
2522xfs_remove(
2523 xfs_inode_t *dp,
2524 struct xfs_name *name,
2525 xfs_inode_t *ip)
2526{
2527 xfs_mount_t *mp = dp->i_mount;
2528 xfs_trans_t *tp = NULL;
2529 int is_dir = S_ISDIR(ip->i_d.di_mode);
2530 int error = 0;
2531 xfs_bmap_free_t free_list;
2532 xfs_fsblock_t first_block;
c24b5dfa 2533 uint resblks;
c24b5dfa
DC
2534
2535 trace_xfs_remove(dp, name);
2536
2537 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2538 return -EIO;
c24b5dfa
DC
2539
2540 error = xfs_qm_dqattach(dp, 0);
2541 if (error)
2542 goto std_return;
2543
2544 error = xfs_qm_dqattach(ip, 0);
2545 if (error)
2546 goto std_return;
2547
32296f86 2548 if (is_dir)
c24b5dfa 2549 tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
32296f86 2550 else
c24b5dfa 2551 tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
c24b5dfa
DC
2552
2553 /*
2554 * We try to get the real space reservation first,
2555 * allowing for directory btree deletion(s) implying
2556 * possible bmap insert(s). If we can't get the space
2557 * reservation then we use 0 instead, and avoid the bmap
2558 * btree insert(s) in the directory code by, if the bmap
2559 * insert tries to happen, instead trimming the LAST
2560 * block from the directory.
2561 */
2562 resblks = XFS_REMOVE_SPACE_RES(mp);
3d3c8b52 2563 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2451337d 2564 if (error == -ENOSPC) {
c24b5dfa 2565 resblks = 0;
3d3c8b52 2566 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
c24b5dfa
DC
2567 }
2568 if (error) {
2451337d 2569 ASSERT(error != -ENOSPC);
c24b5dfa
DC
2570 goto out_trans_cancel;
2571 }
2572
dbad7c99 2573 xfs_ilock(dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
c24b5dfa
DC
2574 xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2575
dbad7c99 2576 xfs_trans_ijoin(tp, dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
c24b5dfa
DC
2577 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2578
2579 /*
2580 * If we're removing a directory perform some additional validation.
2581 */
2582 if (is_dir) {
2583 ASSERT(ip->i_d.di_nlink >= 2);
2584 if (ip->i_d.di_nlink != 2) {
2451337d 2585 error = -ENOTEMPTY;
c24b5dfa
DC
2586 goto out_trans_cancel;
2587 }
2588 if (!xfs_dir_isempty(ip)) {
2451337d 2589 error = -ENOTEMPTY;
c24b5dfa
DC
2590 goto out_trans_cancel;
2591 }
c24b5dfa 2592
27320369 2593 /* Drop the link from ip's "..". */
c24b5dfa
DC
2594 error = xfs_droplink(tp, dp);
2595 if (error)
27320369 2596 goto out_trans_cancel;
c24b5dfa 2597
27320369 2598 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2599 error = xfs_droplink(tp, ip);
2600 if (error)
27320369 2601 goto out_trans_cancel;
c24b5dfa
DC
2602 } else {
2603 /*
2604 * When removing a non-directory we need to log the parent
2605 * inode here. For a directory this is done implicitly
2606 * by the xfs_droplink call for the ".." entry.
2607 */
2608 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2609 }
27320369 2610 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2611
27320369 2612 /* Drop the link from dp to ip. */
c24b5dfa
DC
2613 error = xfs_droplink(tp, ip);
2614 if (error)
27320369 2615 goto out_trans_cancel;
c24b5dfa 2616
27320369
DC
2617 xfs_bmap_init(&free_list, &first_block);
2618 error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2619 &first_block, &free_list, resblks);
2620 if (error) {
2451337d 2621 ASSERT(error != -ENOENT);
27320369
DC
2622 goto out_bmap_cancel;
2623 }
2624
c24b5dfa
DC
2625 /*
2626 * If this is a synchronous mount, make sure that the
2627 * remove transaction goes to disk before returning to
2628 * the user.
2629 */
2630 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2631 xfs_trans_set_sync(tp);
2632
f6106efa 2633 error = xfs_bmap_finish(&tp, &free_list, NULL);
c24b5dfa
DC
2634 if (error)
2635 goto out_bmap_cancel;
2636
70393313 2637 error = xfs_trans_commit(tp);
c24b5dfa
DC
2638 if (error)
2639 goto std_return;
2640
2cd2ef6a 2641 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2642 xfs_filestream_deassociate(ip);
2643
2644 return 0;
2645
2646 out_bmap_cancel:
2647 xfs_bmap_cancel(&free_list);
c24b5dfa 2648 out_trans_cancel:
4906e215 2649 xfs_trans_cancel(tp);
c24b5dfa
DC
2650 std_return:
2651 return error;
2652}
2653
f6bba201
DC
2654/*
2655 * Enter all inodes for a rename transaction into a sorted array.
2656 */
95afcf5c 2657#define __XFS_SORT_INODES 5
f6bba201
DC
2658STATIC void
2659xfs_sort_for_rename(
95afcf5c
DC
2660 struct xfs_inode *dp1, /* in: old (source) directory inode */
2661 struct xfs_inode *dp2, /* in: new (target) directory inode */
2662 struct xfs_inode *ip1, /* in: inode of old entry */
2663 struct xfs_inode *ip2, /* in: inode of new entry */
2664 struct xfs_inode *wip, /* in: whiteout inode */
2665 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2666 int *num_inodes) /* in/out: inodes in array */
f6bba201 2667{
f6bba201
DC
2668 int i, j;
2669
95afcf5c
DC
2670 ASSERT(*num_inodes == __XFS_SORT_INODES);
2671 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2672
f6bba201
DC
2673 /*
2674 * i_tab contains a list of pointers to inodes. We initialize
2675 * the table here & we'll sort it. We will then use it to
2676 * order the acquisition of the inode locks.
2677 *
2678 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2679 */
95afcf5c
DC
2680 i = 0;
2681 i_tab[i++] = dp1;
2682 i_tab[i++] = dp2;
2683 i_tab[i++] = ip1;
2684 if (ip2)
2685 i_tab[i++] = ip2;
2686 if (wip)
2687 i_tab[i++] = wip;
2688 *num_inodes = i;
f6bba201
DC
2689
2690 /*
2691 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2692 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2693 */
2694 for (i = 0; i < *num_inodes; i++) {
2695 for (j = 1; j < *num_inodes; j++) {
2696 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2697 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2698 i_tab[j] = i_tab[j-1];
2699 i_tab[j-1] = temp;
2700 }
2701 }
2702 }
2703}
2704
310606b0
DC
2705static int
2706xfs_finish_rename(
2707 struct xfs_trans *tp,
2708 struct xfs_bmap_free *free_list)
2709{
310606b0
DC
2710 int error;
2711
2712 /*
2713 * If this is a synchronous mount, make sure that the rename transaction
2714 * goes to disk before returning to the user.
2715 */
2716 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2717 xfs_trans_set_sync(tp);
2718
f6106efa 2719 error = xfs_bmap_finish(&tp, free_list, NULL);
310606b0
DC
2720 if (error) {
2721 xfs_bmap_cancel(free_list);
4906e215 2722 xfs_trans_cancel(tp);
310606b0
DC
2723 return error;
2724 }
2725
70393313 2726 return xfs_trans_commit(tp);
310606b0
DC
2727}
2728
d31a1825
CM
2729/*
2730 * xfs_cross_rename()
2731 *
2732 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2733 */
2734STATIC int
2735xfs_cross_rename(
2736 struct xfs_trans *tp,
2737 struct xfs_inode *dp1,
2738 struct xfs_name *name1,
2739 struct xfs_inode *ip1,
2740 struct xfs_inode *dp2,
2741 struct xfs_name *name2,
2742 struct xfs_inode *ip2,
2743 struct xfs_bmap_free *free_list,
2744 xfs_fsblock_t *first_block,
2745 int spaceres)
2746{
2747 int error = 0;
2748 int ip1_flags = 0;
2749 int ip2_flags = 0;
2750 int dp2_flags = 0;
2751
2752 /* Swap inode number for dirent in first parent */
2753 error = xfs_dir_replace(tp, dp1, name1,
2754 ip2->i_ino,
2755 first_block, free_list, spaceres);
2756 if (error)
eeacd321 2757 goto out_trans_abort;
d31a1825
CM
2758
2759 /* Swap inode number for dirent in second parent */
2760 error = xfs_dir_replace(tp, dp2, name2,
2761 ip1->i_ino,
2762 first_block, free_list, spaceres);
2763 if (error)
eeacd321 2764 goto out_trans_abort;
d31a1825
CM
2765
2766 /*
2767 * If we're renaming one or more directories across different parents,
2768 * update the respective ".." entries (and link counts) to match the new
2769 * parents.
2770 */
2771 if (dp1 != dp2) {
2772 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2773
2774 if (S_ISDIR(ip2->i_d.di_mode)) {
2775 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2776 dp1->i_ino, first_block,
2777 free_list, spaceres);
2778 if (error)
eeacd321 2779 goto out_trans_abort;
d31a1825
CM
2780
2781 /* transfer ip2 ".." reference to dp1 */
2782 if (!S_ISDIR(ip1->i_d.di_mode)) {
2783 error = xfs_droplink(tp, dp2);
2784 if (error)
eeacd321 2785 goto out_trans_abort;
d31a1825
CM
2786 error = xfs_bumplink(tp, dp1);
2787 if (error)
eeacd321 2788 goto out_trans_abort;
d31a1825
CM
2789 }
2790
2791 /*
2792 * Although ip1 isn't changed here, userspace needs
2793 * to be warned about the change, so that applications
2794 * relying on it (like backup ones), will properly
2795 * notify the change
2796 */
2797 ip1_flags |= XFS_ICHGTIME_CHG;
2798 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2799 }
2800
2801 if (S_ISDIR(ip1->i_d.di_mode)) {
2802 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2803 dp2->i_ino, first_block,
2804 free_list, spaceres);
2805 if (error)
eeacd321 2806 goto out_trans_abort;
d31a1825
CM
2807
2808 /* transfer ip1 ".." reference to dp2 */
2809 if (!S_ISDIR(ip2->i_d.di_mode)) {
2810 error = xfs_droplink(tp, dp1);
2811 if (error)
eeacd321 2812 goto out_trans_abort;
d31a1825
CM
2813 error = xfs_bumplink(tp, dp2);
2814 if (error)
eeacd321 2815 goto out_trans_abort;
d31a1825
CM
2816 }
2817
2818 /*
2819 * Although ip2 isn't changed here, userspace needs
2820 * to be warned about the change, so that applications
2821 * relying on it (like backup ones), will properly
2822 * notify the change
2823 */
2824 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2825 ip2_flags |= XFS_ICHGTIME_CHG;
2826 }
2827 }
2828
2829 if (ip1_flags) {
2830 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2831 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2832 }
2833 if (ip2_flags) {
2834 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2835 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2836 }
2837 if (dp2_flags) {
2838 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2839 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2840 }
2841 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2842 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
eeacd321
DC
2843 return xfs_finish_rename(tp, free_list);
2844
2845out_trans_abort:
2846 xfs_bmap_cancel(free_list);
4906e215 2847 xfs_trans_cancel(tp);
d31a1825
CM
2848 return error;
2849}
2850
7dcf5c3e
DC
2851/*
2852 * xfs_rename_alloc_whiteout()
2853 *
2854 * Return a referenced, unlinked, unlocked inode that that can be used as a
2855 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2856 * crash between allocating the inode and linking it into the rename transaction
2857 * recovery will free the inode and we won't leak it.
2858 */
2859static int
2860xfs_rename_alloc_whiteout(
2861 struct xfs_inode *dp,
2862 struct xfs_inode **wip)
2863{
2864 struct xfs_inode *tmpfile;
2865 int error;
2866
2867 error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2868 if (error)
2869 return error;
2870
22419ac9
BF
2871 /*
2872 * Prepare the tmpfile inode as if it were created through the VFS.
2873 * Otherwise, the link increment paths will complain about nlink 0->1.
2874 * Drop the link count as done by d_tmpfile(), complete the inode setup
2875 * and flag it as linkable.
2876 */
2877 drop_nlink(VFS_I(tmpfile));
7dcf5c3e
DC
2878 xfs_finish_inode_setup(tmpfile);
2879 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2880
2881 *wip = tmpfile;
2882 return 0;
2883}
2884
f6bba201
DC
2885/*
2886 * xfs_rename
2887 */
2888int
2889xfs_rename(
7dcf5c3e
DC
2890 struct xfs_inode *src_dp,
2891 struct xfs_name *src_name,
2892 struct xfs_inode *src_ip,
2893 struct xfs_inode *target_dp,
2894 struct xfs_name *target_name,
2895 struct xfs_inode *target_ip,
2896 unsigned int flags)
f6bba201 2897{
7dcf5c3e
DC
2898 struct xfs_mount *mp = src_dp->i_mount;
2899 struct xfs_trans *tp;
2900 struct xfs_bmap_free free_list;
2901 xfs_fsblock_t first_block;
2902 struct xfs_inode *wip = NULL; /* whiteout inode */
2903 struct xfs_inode *inodes[__XFS_SORT_INODES];
2904 int num_inodes = __XFS_SORT_INODES;
2b93681f
DC
2905 bool new_parent = (src_dp != target_dp);
2906 bool src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
7dcf5c3e
DC
2907 int spaceres;
2908 int error;
f6bba201
DC
2909
2910 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2911
eeacd321
DC
2912 if ((flags & RENAME_EXCHANGE) && !target_ip)
2913 return -EINVAL;
2914
7dcf5c3e
DC
2915 /*
2916 * If we are doing a whiteout operation, allocate the whiteout inode
2917 * we will be placing at the target and ensure the type is set
2918 * appropriately.
2919 */
2920 if (flags & RENAME_WHITEOUT) {
2921 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2922 error = xfs_rename_alloc_whiteout(target_dp, &wip);
2923 if (error)
2924 return error;
2925
2926 /* setup target dirent info as whiteout */
2927 src_name->type = XFS_DIR3_FT_CHRDEV;
2928 }
f6bba201 2929
7dcf5c3e 2930 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2931 inodes, &num_inodes);
2932
f6bba201 2933 tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
f6bba201 2934 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
3d3c8b52 2935 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2451337d 2936 if (error == -ENOSPC) {
f6bba201 2937 spaceres = 0;
3d3c8b52 2938 error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
f6bba201 2939 }
445883e8
DC
2940 if (error)
2941 goto out_trans_cancel;
f6bba201
DC
2942
2943 /*
2944 * Attach the dquots to the inodes
2945 */
2946 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2947 if (error)
2948 goto out_trans_cancel;
f6bba201
DC
2949
2950 /*
2951 * Lock all the participating inodes. Depending upon whether
2952 * the target_name exists in the target directory, and
2953 * whether the target directory is the same as the source
2954 * directory, we can lock from 2 to 4 inodes.
2955 */
dbad7c99
DC
2956 if (!new_parent)
2957 xfs_ilock(src_dp, XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2958 else
2959 xfs_lock_two_inodes(src_dp, target_dp,
2960 XFS_IOLOCK_EXCL | XFS_IOLOCK_PARENT);
2961
f6bba201
DC
2962 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2963
2964 /*
2965 * Join all the inodes to the transaction. From this point on,
2966 * we can rely on either trans_commit or trans_cancel to unlock
2967 * them.
2968 */
dbad7c99 2969 xfs_trans_ijoin(tp, src_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201 2970 if (new_parent)
dbad7c99 2971 xfs_trans_ijoin(tp, target_dp, XFS_IOLOCK_EXCL | XFS_ILOCK_EXCL);
f6bba201
DC
2972 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2973 if (target_ip)
2974 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2975 if (wip)
2976 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2977
2978 /*
2979 * If we are using project inheritance, we only allow renames
2980 * into our tree when the project IDs are the same; else the
2981 * tree quota mechanism would be circumvented.
2982 */
2983 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2984 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 2985 error = -EXDEV;
445883e8 2986 goto out_trans_cancel;
f6bba201
DC
2987 }
2988
445883e8
DC
2989 xfs_bmap_init(&free_list, &first_block);
2990
eeacd321
DC
2991 /* RENAME_EXCHANGE is unique from here on. */
2992 if (flags & RENAME_EXCHANGE)
2993 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2994 target_dp, target_name, target_ip,
2995 &free_list, &first_block, spaceres);
d31a1825 2996
f6bba201
DC
2997 /*
2998 * Set up the target.
2999 */
3000 if (target_ip == NULL) {
3001 /*
3002 * If there's no space reservation, check the entry will
3003 * fit before actually inserting it.
3004 */
94f3cad5
ES
3005 if (!spaceres) {
3006 error = xfs_dir_canenter(tp, target_dp, target_name);
3007 if (error)
445883e8 3008 goto out_trans_cancel;
94f3cad5 3009 }
f6bba201
DC
3010 /*
3011 * If target does not exist and the rename crosses
3012 * directories, adjust the target directory link count
3013 * to account for the ".." reference from the new entry.
3014 */
3015 error = xfs_dir_createname(tp, target_dp, target_name,
3016 src_ip->i_ino, &first_block,
3017 &free_list, spaceres);
f6bba201 3018 if (error)
4906e215 3019 goto out_bmap_cancel;
f6bba201
DC
3020
3021 xfs_trans_ichgtime(tp, target_dp,
3022 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3023
3024 if (new_parent && src_is_directory) {
3025 error = xfs_bumplink(tp, target_dp);
3026 if (error)
4906e215 3027 goto out_bmap_cancel;
f6bba201
DC
3028 }
3029 } else { /* target_ip != NULL */
3030 /*
3031 * If target exists and it's a directory, check that both
3032 * target and source are directories and that target can be
3033 * destroyed, or that neither is a directory.
3034 */
3035 if (S_ISDIR(target_ip->i_d.di_mode)) {
3036 /*
3037 * Make sure target dir is empty.
3038 */
3039 if (!(xfs_dir_isempty(target_ip)) ||
3040 (target_ip->i_d.di_nlink > 2)) {
2451337d 3041 error = -EEXIST;
445883e8 3042 goto out_trans_cancel;
f6bba201
DC
3043 }
3044 }
3045
3046 /*
3047 * Link the source inode under the target name.
3048 * If the source inode is a directory and we are moving
3049 * it across directories, its ".." entry will be
3050 * inconsistent until we replace that down below.
3051 *
3052 * In case there is already an entry with the same
3053 * name at the destination directory, remove it first.
3054 */
3055 error = xfs_dir_replace(tp, target_dp, target_name,
3056 src_ip->i_ino,
3057 &first_block, &free_list, spaceres);
3058 if (error)
4906e215 3059 goto out_bmap_cancel;
f6bba201
DC
3060
3061 xfs_trans_ichgtime(tp, target_dp,
3062 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3063
3064 /*
3065 * Decrement the link count on the target since the target
3066 * dir no longer points to it.
3067 */
3068 error = xfs_droplink(tp, target_ip);
3069 if (error)
4906e215 3070 goto out_bmap_cancel;
f6bba201
DC
3071
3072 if (src_is_directory) {
3073 /*
3074 * Drop the link from the old "." entry.
3075 */
3076 error = xfs_droplink(tp, target_ip);
3077 if (error)
4906e215 3078 goto out_bmap_cancel;
f6bba201
DC
3079 }
3080 } /* target_ip != NULL */
3081
3082 /*
3083 * Remove the source.
3084 */
3085 if (new_parent && src_is_directory) {
3086 /*
3087 * Rewrite the ".." entry to point to the new
3088 * directory.
3089 */
3090 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3091 target_dp->i_ino,
3092 &first_block, &free_list, spaceres);
2451337d 3093 ASSERT(error != -EEXIST);
f6bba201 3094 if (error)
4906e215 3095 goto out_bmap_cancel;
f6bba201
DC
3096 }
3097
3098 /*
3099 * We always want to hit the ctime on the source inode.
3100 *
3101 * This isn't strictly required by the standards since the source
3102 * inode isn't really being changed, but old unix file systems did
3103 * it and some incremental backup programs won't work without it.
3104 */
3105 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3106 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3107
3108 /*
3109 * Adjust the link count on src_dp. This is necessary when
3110 * renaming a directory, either within one parent when
3111 * the target existed, or across two parent directories.
3112 */
3113 if (src_is_directory && (new_parent || target_ip != NULL)) {
3114
3115 /*
3116 * Decrement link count on src_directory since the
3117 * entry that's moved no longer points to it.
3118 */
3119 error = xfs_droplink(tp, src_dp);
3120 if (error)
4906e215 3121 goto out_bmap_cancel;
f6bba201
DC
3122 }
3123
7dcf5c3e
DC
3124 /*
3125 * For whiteouts, we only need to update the source dirent with the
3126 * inode number of the whiteout inode rather than removing it
3127 * altogether.
3128 */
3129 if (wip) {
3130 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
f6bba201 3131 &first_block, &free_list, spaceres);
7dcf5c3e
DC
3132 } else
3133 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3134 &first_block, &free_list, spaceres);
f6bba201 3135 if (error)
4906e215 3136 goto out_bmap_cancel;
f6bba201
DC
3137
3138 /*
7dcf5c3e
DC
3139 * For whiteouts, we need to bump the link count on the whiteout inode.
3140 * This means that failures all the way up to this point leave the inode
3141 * on the unlinked list and so cleanup is a simple matter of dropping
3142 * the remaining reference to it. If we fail here after bumping the link
3143 * count, we're shutting down the filesystem so we'll never see the
3144 * intermediate state on disk.
f6bba201 3145 */
7dcf5c3e 3146 if (wip) {
22419ac9 3147 ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
7dcf5c3e
DC
3148 error = xfs_bumplink(tp, wip);
3149 if (error)
4906e215 3150 goto out_bmap_cancel;
7dcf5c3e
DC
3151 error = xfs_iunlink_remove(tp, wip);
3152 if (error)
4906e215 3153 goto out_bmap_cancel;
7dcf5c3e 3154 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
f6bba201 3155
7dcf5c3e
DC
3156 /*
3157 * Now we have a real link, clear the "I'm a tmpfile" state
3158 * flag from the inode so it doesn't accidentally get misused in
3159 * future.
3160 */
3161 VFS_I(wip)->i_state &= ~I_LINKABLE;
f6bba201
DC
3162 }
3163
f6bba201
DC
3164 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3165 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3166 if (new_parent)
3167 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3168
7dcf5c3e
DC
3169 error = xfs_finish_rename(tp, &free_list);
3170 if (wip)
3171 IRELE(wip);
3172 return error;
f6bba201 3173
445883e8 3174out_bmap_cancel:
f6bba201 3175 xfs_bmap_cancel(&free_list);
445883e8 3176out_trans_cancel:
4906e215 3177 xfs_trans_cancel(tp);
7dcf5c3e
DC
3178 if (wip)
3179 IRELE(wip);
f6bba201
DC
3180 return error;
3181}
3182
5c4d97d0
DC
3183STATIC int
3184xfs_iflush_cluster(
3185 xfs_inode_t *ip,
3186 xfs_buf_t *bp)
1da177e4 3187{
5c4d97d0
DC
3188 xfs_mount_t *mp = ip->i_mount;
3189 struct xfs_perag *pag;
3190 unsigned long first_index, mask;
3191 unsigned long inodes_per_cluster;
3192 int ilist_size;
3193 xfs_inode_t **ilist;
3194 xfs_inode_t *iq;
3195 int nr_found;
3196 int clcount = 0;
3197 int bufwasdelwri;
1da177e4 3198 int i;
1da177e4 3199
5c4d97d0 3200 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3201
0f49efd8 3202 inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
5c4d97d0
DC
3203 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3204 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3205 if (!ilist)
3206 goto out_put;
1da177e4 3207
0f49efd8 3208 mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
5c4d97d0
DC
3209 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3210 rcu_read_lock();
3211 /* really need a gang lookup range call here */
3212 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3213 first_index, inodes_per_cluster);
3214 if (nr_found == 0)
3215 goto out_free;
3216
3217 for (i = 0; i < nr_found; i++) {
3218 iq = ilist[i];
3219 if (iq == ip)
bad55843 3220 continue;
1a3e8f3d
DC
3221
3222 /*
3223 * because this is an RCU protected lookup, we could find a
3224 * recently freed or even reallocated inode during the lookup.
3225 * We need to check under the i_flags_lock for a valid inode
3226 * here. Skip it if it is not valid or the wrong inode.
3227 */
3228 spin_lock(&ip->i_flags_lock);
3229 if (!ip->i_ino ||
3230 (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3231 spin_unlock(&ip->i_flags_lock);
3232 continue;
3233 }
3234 spin_unlock(&ip->i_flags_lock);
3235
bad55843
DC
3236 /*
3237 * Do an un-protected check to see if the inode is dirty and
3238 * is a candidate for flushing. These checks will be repeated
3239 * later after the appropriate locks are acquired.
3240 */
33540408 3241 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
bad55843 3242 continue;
bad55843
DC
3243
3244 /*
3245 * Try to get locks. If any are unavailable or it is pinned,
3246 * then this inode cannot be flushed and is skipped.
3247 */
3248
3249 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3250 continue;
3251 if (!xfs_iflock_nowait(iq)) {
3252 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3253 continue;
3254 }
3255 if (xfs_ipincount(iq)) {
3256 xfs_ifunlock(iq);
3257 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3258 continue;
3259 }
3260
3261 /*
3262 * arriving here means that this inode can be flushed. First
3263 * re-check that it's dirty before flushing.
3264 */
33540408
DC
3265 if (!xfs_inode_clean(iq)) {
3266 int error;
bad55843
DC
3267 error = xfs_iflush_int(iq, bp);
3268 if (error) {
3269 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3270 goto cluster_corrupt_out;
3271 }
3272 clcount++;
3273 } else {
3274 xfs_ifunlock(iq);
3275 }
3276 xfs_iunlock(iq, XFS_ILOCK_SHARED);
3277 }
3278
3279 if (clcount) {
ff6d6af2
BD
3280 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3281 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3282 }
3283
3284out_free:
1a3e8f3d 3285 rcu_read_unlock();
f0e2d93c 3286 kmem_free(ilist);
44b56e0a
DC
3287out_put:
3288 xfs_perag_put(pag);
bad55843
DC
3289 return 0;
3290
3291
3292cluster_corrupt_out:
3293 /*
3294 * Corruption detected in the clustering loop. Invalidate the
3295 * inode buffer and shut down the filesystem.
3296 */
1a3e8f3d 3297 rcu_read_unlock();
bad55843 3298 /*
43ff2122 3299 * Clean up the buffer. If it was delwri, just release it --
bad55843
DC
3300 * brelse can handle it with no problems. If not, shut down the
3301 * filesystem before releasing the buffer.
3302 */
43ff2122 3303 bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
bad55843
DC
3304 if (bufwasdelwri)
3305 xfs_buf_relse(bp);
3306
3307 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3308
3309 if (!bufwasdelwri) {
3310 /*
3311 * Just like incore_relse: if we have b_iodone functions,
3312 * mark the buffer as an error and call them. Otherwise
3313 * mark it as stale and brelse.
3314 */
cb669ca5 3315 if (bp->b_iodone) {
bad55843 3316 XFS_BUF_UNDONE(bp);
c867cb61 3317 xfs_buf_stale(bp);
2451337d 3318 xfs_buf_ioerror(bp, -EIO);
e8aaba9a 3319 xfs_buf_ioend(bp);
bad55843 3320 } else {
c867cb61 3321 xfs_buf_stale(bp);
bad55843
DC
3322 xfs_buf_relse(bp);
3323 }
3324 }
3325
3326 /*
3327 * Unlocks the flush lock
3328 */
04913fdd 3329 xfs_iflush_abort(iq, false);
f0e2d93c 3330 kmem_free(ilist);
44b56e0a 3331 xfs_perag_put(pag);
2451337d 3332 return -EFSCORRUPTED;
bad55843
DC
3333}
3334
1da177e4 3335/*
4c46819a
CH
3336 * Flush dirty inode metadata into the backing buffer.
3337 *
3338 * The caller must have the inode lock and the inode flush lock held. The
3339 * inode lock will still be held upon return to the caller, and the inode
3340 * flush lock will be released after the inode has reached the disk.
3341 *
3342 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3343 */
3344int
3345xfs_iflush(
4c46819a
CH
3346 struct xfs_inode *ip,
3347 struct xfs_buf **bpp)
1da177e4 3348{
4c46819a
CH
3349 struct xfs_mount *mp = ip->i_mount;
3350 struct xfs_buf *bp;
3351 struct xfs_dinode *dip;
1da177e4 3352 int error;
1da177e4 3353
ff6d6af2 3354 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3355
579aa9ca 3356 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3357 ASSERT(xfs_isiflocked(ip));
1da177e4 3358 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3359 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3360
4c46819a 3361 *bpp = NULL;
1da177e4 3362
1da177e4
LT
3363 xfs_iunpin_wait(ip);
3364
4b6a4688
DC
3365 /*
3366 * For stale inodes we cannot rely on the backing buffer remaining
3367 * stale in cache for the remaining life of the stale inode and so
475ee413 3368 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3369 * inodes below. We have to check this after ensuring the inode is
3370 * unpinned so that it is safe to reclaim the stale inode after the
3371 * flush call.
3372 */
3373 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3374 xfs_ifunlock(ip);
3375 return 0;
3376 }
3377
1da177e4
LT
3378 /*
3379 * This may have been unpinned because the filesystem is shutting
3380 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3381 * to disk, because the log record didn't make it to disk.
3382 *
3383 * We also have to remove the log item from the AIL in this case,
3384 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3385 */
3386 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3387 error = -EIO;
32ce90a4 3388 goto abort_out;
1da177e4
LT
3389 }
3390
a3f74ffb
DC
3391 /*
3392 * Get the buffer containing the on-disk inode.
3393 */
475ee413
CH
3394 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3395 0);
a3f74ffb
DC
3396 if (error || !bp) {
3397 xfs_ifunlock(ip);
3398 return error;
3399 }
3400
1da177e4
LT
3401 /*
3402 * First flush out the inode that xfs_iflush was called with.
3403 */
3404 error = xfs_iflush_int(ip, bp);
bad55843 3405 if (error)
1da177e4 3406 goto corrupt_out;
1da177e4 3407
a3f74ffb
DC
3408 /*
3409 * If the buffer is pinned then push on the log now so we won't
3410 * get stuck waiting in the write for too long.
3411 */
811e64c7 3412 if (xfs_buf_ispinned(bp))
a14a348b 3413 xfs_log_force(mp, 0);
a3f74ffb 3414
1da177e4
LT
3415 /*
3416 * inode clustering:
3417 * see if other inodes can be gathered into this write
3418 */
bad55843
DC
3419 error = xfs_iflush_cluster(ip, bp);
3420 if (error)
3421 goto cluster_corrupt_out;
1da177e4 3422
4c46819a
CH
3423 *bpp = bp;
3424 return 0;
1da177e4
LT
3425
3426corrupt_out:
3427 xfs_buf_relse(bp);
7d04a335 3428 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1da177e4 3429cluster_corrupt_out:
2451337d 3430 error = -EFSCORRUPTED;
32ce90a4 3431abort_out:
1da177e4
LT
3432 /*
3433 * Unlocks the flush lock
3434 */
04913fdd 3435 xfs_iflush_abort(ip, false);
32ce90a4 3436 return error;
1da177e4
LT
3437}
3438
1da177e4
LT
3439STATIC int
3440xfs_iflush_int(
93848a99
CH
3441 struct xfs_inode *ip,
3442 struct xfs_buf *bp)
1da177e4 3443{
93848a99
CH
3444 struct xfs_inode_log_item *iip = ip->i_itemp;
3445 struct xfs_dinode *dip;
3446 struct xfs_mount *mp = ip->i_mount;
1da177e4 3447
579aa9ca 3448 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3449 ASSERT(xfs_isiflocked(ip));
1da177e4 3450 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3451 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3452 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3453 ASSERT(ip->i_d.di_version > 1);
1da177e4 3454
1da177e4 3455 /* set *dip = inode's place in the buffer */
88ee2df7 3456 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3457
69ef921b 3458 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
1da177e4 3459 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
6a19d939
DC
3460 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3461 "%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3462 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3463 goto corrupt_out;
3464 }
3465 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3466 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
6a19d939
DC
3467 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3468 "%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3469 __func__, ip->i_ino, ip, ip->i_d.di_magic);
1da177e4
LT
3470 goto corrupt_out;
3471 }
abbede1b 3472 if (S_ISREG(ip->i_d.di_mode)) {
1da177e4
LT
3473 if (XFS_TEST_ERROR(
3474 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3475 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3476 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
6a19d939
DC
3477 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3478 "%s: Bad regular inode %Lu, ptr 0x%p",
3479 __func__, ip->i_ino, ip);
1da177e4
LT
3480 goto corrupt_out;
3481 }
abbede1b 3482 } else if (S_ISDIR(ip->i_d.di_mode)) {
1da177e4
LT
3483 if (XFS_TEST_ERROR(
3484 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3485 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3486 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3487 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
6a19d939
DC
3488 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3489 "%s: Bad directory inode %Lu, ptr 0x%p",
3490 __func__, ip->i_ino, ip);
1da177e4
LT
3491 goto corrupt_out;
3492 }
3493 }
3494 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3495 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3496 XFS_RANDOM_IFLUSH_5)) {
6a19d939
DC
3497 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3498 "%s: detected corrupt incore inode %Lu, "
3499 "total extents = %d, nblocks = %Ld, ptr 0x%p",
3500 __func__, ip->i_ino,
1da177e4 3501 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3502 ip->i_d.di_nblocks, ip);
1da177e4
LT
3503 goto corrupt_out;
3504 }
3505 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3506 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
6a19d939
DC
3507 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3508 "%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3509 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3510 goto corrupt_out;
3511 }
e60896d8 3512
1da177e4 3513 /*
263997a6 3514 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3515 * di_flushiter count for correct sequencing. We bump the flush
3516 * iteration count so we can detect flushes which postdate a log record
3517 * during recovery. This is redundant as we now log every change and
3518 * hence this can't happen but we need to still do it to ensure
3519 * backwards compatibility with old kernels that predate logging all
3520 * inode changes.
1da177e4 3521 */
e60896d8
DC
3522 if (ip->i_d.di_version < 3)
3523 ip->i_d.di_flushiter++;
1da177e4
LT
3524
3525 /*
3526 * Copy the dirty parts of the inode into the on-disk
3527 * inode. We always copy out the core of the inode,
3528 * because if the inode is dirty at all the core must
3529 * be.
3530 */
81591fe2 3531 xfs_dinode_to_disk(dip, &ip->i_d);
1da177e4
LT
3532
3533 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3534 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3535 ip->i_d.di_flushiter = 0;
3536
fd9fdba6 3537 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
e4ac967b 3538 if (XFS_IFORK_Q(ip))
fd9fdba6 3539 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3540 xfs_inobp_check(mp, bp);
3541
3542 /*
f5d8d5c4
CH
3543 * We've recorded everything logged in the inode, so we'd like to clear
3544 * the ili_fields bits so we don't log and flush things unnecessarily.
3545 * However, we can't stop logging all this information until the data
3546 * we've copied into the disk buffer is written to disk. If we did we
3547 * might overwrite the copy of the inode in the log with all the data
3548 * after re-logging only part of it, and in the face of a crash we
3549 * wouldn't have all the data we need to recover.
1da177e4 3550 *
f5d8d5c4
CH
3551 * What we do is move the bits to the ili_last_fields field. When
3552 * logging the inode, these bits are moved back to the ili_fields field.
3553 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3554 * know that the information those bits represent is permanently on
3555 * disk. As long as the flush completes before the inode is logged
3556 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3557 *
f5d8d5c4
CH
3558 * We can play with the ili_fields bits here, because the inode lock
3559 * must be held exclusively in order to set bits there and the flush
3560 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3561 * done routine can tell whether or not to look in the AIL. Also, store
3562 * the current LSN of the inode so that we can tell whether the item has
3563 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3564 * need the AIL lock, because it is a 64 bit value that cannot be read
3565 * atomically.
1da177e4 3566 */
93848a99
CH
3567 iip->ili_last_fields = iip->ili_fields;
3568 iip->ili_fields = 0;
fc0561ce 3569 iip->ili_fsync_fields = 0;
93848a99 3570 iip->ili_logged = 1;
1da177e4 3571
93848a99
CH
3572 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3573 &iip->ili_item.li_lsn);
1da177e4 3574
93848a99
CH
3575 /*
3576 * Attach the function xfs_iflush_done to the inode's
3577 * buffer. This will remove the inode from the AIL
3578 * and unlock the inode's flush lock when the inode is
3579 * completely written to disk.
3580 */
3581 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3582
93848a99
CH
3583 /* update the lsn in the on disk inode if required */
3584 if (ip->i_d.di_version == 3)
3585 dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3586
3587 /* generate the checksum. */
3588 xfs_dinode_calc_crc(mp, dip);
1da177e4 3589
93848a99
CH
3590 ASSERT(bp->b_fspriv != NULL);
3591 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3592 return 0;
3593
3594corrupt_out:
2451337d 3595 return -EFSCORRUPTED;
1da177e4 3596}