Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[linux-block.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_mount.h"
3ab78df2 15#include "xfs_defer.h"
a4fbe6ab 16#include "xfs_inode.h"
c24b5dfa 17#include "xfs_dir2.h"
c24b5dfa 18#include "xfs_attr.h"
239880ef
DC
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
1da177e4 21#include "xfs_buf_item.h"
a844f451 22#include "xfs_inode_item.h"
784eb7d8 23#include "xfs_iunlink_item.h"
a844f451
NS
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
68988114 26#include "xfs_bmap_util.h"
e9e899a2 27#include "xfs_errortag.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_quota.h"
2a82b8be 30#include "xfs_filestream.h"
0b1b213f 31#include "xfs_trace.h"
33479e05 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_symlink.h"
239880ef
DC
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
a4fbe6ab 36#include "xfs_bmap_btree.h"
aa8968f2 37#include "xfs_reflink.h"
9bbafc71 38#include "xfs_ag.h"
01728b44 39#include "xfs_log_priv.h"
1da177e4 40
182696fb 41struct kmem_cache *xfs_inode_cache;
1da177e4
LT
42
43/*
8f04c47a 44 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
45 * freed from a file in a single transaction.
46 */
47#define XFS_ITRUNC_MAX_EXTENTS 2
48
54d7b5c1 49STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
f40aadb2
DC
50STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
51 struct xfs_inode *);
ab297431 52
2a0ec1d9
DC
53/*
54 * helper function to extract extent size hint from inode
55 */
56xfs_extlen_t
57xfs_get_extsz_hint(
58 struct xfs_inode *ip)
59{
bdb2ed2d
CH
60 /*
61 * No point in aligning allocations if we need to COW to actually
62 * write to them.
63 */
64 if (xfs_is_always_cow_inode(ip))
65 return 0;
db07349d 66 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
031474c2 67 return ip->i_extsize;
2a0ec1d9
DC
68 if (XFS_IS_REALTIME_INODE(ip))
69 return ip->i_mount->m_sb.sb_rextsize;
70 return 0;
71}
72
f7ca3522
DW
73/*
74 * Helper function to extract CoW extent size hint from inode.
75 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
76 * return the greater of the two. If the value is zero (automatic),
77 * use the default size.
f7ca3522
DW
78 */
79xfs_extlen_t
80xfs_get_cowextsz_hint(
81 struct xfs_inode *ip)
82{
83 xfs_extlen_t a, b;
84
85 a = 0;
3e09ab8f 86 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
b33ce57d 87 a = ip->i_cowextsize;
f7ca3522
DW
88 b = xfs_get_extsz_hint(ip);
89
e153aa79
DW
90 a = max(a, b);
91 if (a == 0)
92 return XFS_DEFAULT_COWEXTSZ_HINT;
93 return a;
f7ca3522
DW
94}
95
fa96acad 96/*
efa70be1
CH
97 * These two are wrapper routines around the xfs_ilock() routine used to
98 * centralize some grungy code. They are used in places that wish to lock the
99 * inode solely for reading the extents. The reason these places can't just
100 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
101 * bringing in of the extents from disk for a file in b-tree format. If the
102 * inode is in b-tree format, then we need to lock the inode exclusively until
103 * the extents are read in. Locking it exclusively all the time would limit
104 * our parallelism unnecessarily, though. What we do instead is check to see
105 * if the extents have been read in yet, and only lock the inode exclusively
106 * if they have not.
fa96acad 107 *
efa70be1 108 * The functions return a value which should be given to the corresponding
01f4f327 109 * xfs_iunlock() call.
fa96acad
DC
110 */
111uint
309ecac8
CH
112xfs_ilock_data_map_shared(
113 struct xfs_inode *ip)
fa96acad 114{
309ecac8 115 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 116
b2197a36 117 if (xfs_need_iread_extents(&ip->i_df))
fa96acad 118 lock_mode = XFS_ILOCK_EXCL;
fa96acad 119 xfs_ilock(ip, lock_mode);
fa96acad
DC
120 return lock_mode;
121}
122
efa70be1
CH
123uint
124xfs_ilock_attr_map_shared(
125 struct xfs_inode *ip)
fa96acad 126{
efa70be1
CH
127 uint lock_mode = XFS_ILOCK_SHARED;
128
932b42c6 129 if (xfs_inode_has_attr_fork(ip) && xfs_need_iread_extents(&ip->i_af))
efa70be1
CH
130 lock_mode = XFS_ILOCK_EXCL;
131 xfs_ilock(ip, lock_mode);
132 return lock_mode;
fa96acad
DC
133}
134
ca76a761
KX
135/*
136 * You can't set both SHARED and EXCL for the same lock,
137 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_MMAPLOCK_SHARED,
138 * XFS_MMAPLOCK_EXCL, XFS_ILOCK_SHARED, XFS_ILOCK_EXCL are valid values
139 * to set in lock_flags.
140 */
141static inline void
142xfs_lock_flags_assert(
143 uint lock_flags)
144{
145 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
146 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
147 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
148 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
149 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
150 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
151 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
152 ASSERT(lock_flags != 0);
153}
154
fa96acad 155/*
65523218 156 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
2433480a 157 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
65523218 158 * various combinations of the locks to be obtained.
fa96acad 159 *
653c60b6
DC
160 * The 3 locks should always be ordered so that the IO lock is obtained first,
161 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 162 *
653c60b6
DC
163 * Basic locking order:
164 *
2433480a 165 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
653c60b6 166 *
c1e8d7c6 167 * mmap_lock locking order:
653c60b6 168 *
c1e8d7c6 169 * i_rwsem -> page lock -> mmap_lock
2433480a 170 * mmap_lock -> invalidate_lock -> page_lock
653c60b6 171 *
c1e8d7c6 172 * The difference in mmap_lock locking order mean that we cannot hold the
2433480a
JK
173 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
174 * can fault in pages during copy in/out (for buffered IO) or require the
175 * mmap_lock in get_user_pages() to map the user pages into the kernel address
176 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
177 * fault because page faults already hold the mmap_lock.
653c60b6
DC
178 *
179 * Hence to serialise fully against both syscall and mmap based IO, we need to
2433480a
JK
180 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
181 * both taken in places where we need to invalidate the page cache in a race
653c60b6
DC
182 * free manner (e.g. truncate, hole punch and other extent manipulation
183 * functions).
fa96acad
DC
184 */
185void
186xfs_ilock(
187 xfs_inode_t *ip,
188 uint lock_flags)
189{
190 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
191
ca76a761 192 xfs_lock_flags_assert(lock_flags);
fa96acad 193
65523218
CH
194 if (lock_flags & XFS_IOLOCK_EXCL) {
195 down_write_nested(&VFS_I(ip)->i_rwsem,
196 XFS_IOLOCK_DEP(lock_flags));
197 } else if (lock_flags & XFS_IOLOCK_SHARED) {
198 down_read_nested(&VFS_I(ip)->i_rwsem,
199 XFS_IOLOCK_DEP(lock_flags));
200 }
fa96acad 201
2433480a
JK
202 if (lock_flags & XFS_MMAPLOCK_EXCL) {
203 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
204 XFS_MMAPLOCK_DEP(lock_flags));
205 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
206 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
207 XFS_MMAPLOCK_DEP(lock_flags));
208 }
653c60b6 209
fa96acad
DC
210 if (lock_flags & XFS_ILOCK_EXCL)
211 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
212 else if (lock_flags & XFS_ILOCK_SHARED)
213 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
214}
215
216/*
217 * This is just like xfs_ilock(), except that the caller
218 * is guaranteed not to sleep. It returns 1 if it gets
219 * the requested locks and 0 otherwise. If the IO lock is
220 * obtained but the inode lock cannot be, then the IO lock
221 * is dropped before returning.
222 *
223 * ip -- the inode being locked
224 * lock_flags -- this parameter indicates the inode's locks to be
225 * to be locked. See the comment for xfs_ilock() for a list
226 * of valid values.
227 */
228int
229xfs_ilock_nowait(
230 xfs_inode_t *ip,
231 uint lock_flags)
232{
233 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
234
ca76a761 235 xfs_lock_flags_assert(lock_flags);
fa96acad
DC
236
237 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 238 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
239 goto out;
240 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 241 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
242 goto out;
243 }
653c60b6
DC
244
245 if (lock_flags & XFS_MMAPLOCK_EXCL) {
2433480a 246 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
653c60b6
DC
247 goto out_undo_iolock;
248 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
2433480a 249 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
653c60b6
DC
250 goto out_undo_iolock;
251 }
252
fa96acad
DC
253 if (lock_flags & XFS_ILOCK_EXCL) {
254 if (!mrtryupdate(&ip->i_lock))
653c60b6 255 goto out_undo_mmaplock;
fa96acad
DC
256 } else if (lock_flags & XFS_ILOCK_SHARED) {
257 if (!mrtryaccess(&ip->i_lock))
653c60b6 258 goto out_undo_mmaplock;
fa96acad
DC
259 }
260 return 1;
261
653c60b6
DC
262out_undo_mmaplock:
263 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 264 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 265 else if (lock_flags & XFS_MMAPLOCK_SHARED)
2433480a 266 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 267out_undo_iolock:
fa96acad 268 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 269 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 270 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 271 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 272out:
fa96acad
DC
273 return 0;
274}
275
276/*
277 * xfs_iunlock() is used to drop the inode locks acquired with
278 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
279 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
280 * that we know which locks to drop.
281 *
282 * ip -- the inode being unlocked
283 * lock_flags -- this parameter indicates the inode's locks to be
284 * to be unlocked. See the comment for xfs_ilock() for a list
285 * of valid values for this parameter.
286 *
287 */
288void
289xfs_iunlock(
290 xfs_inode_t *ip,
291 uint lock_flags)
292{
ca76a761 293 xfs_lock_flags_assert(lock_flags);
fa96acad
DC
294
295 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 296 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 297 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 298 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 299
653c60b6 300 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 301 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 302 else if (lock_flags & XFS_MMAPLOCK_SHARED)
2433480a 303 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 304
fa96acad
DC
305 if (lock_flags & XFS_ILOCK_EXCL)
306 mrunlock_excl(&ip->i_lock);
307 else if (lock_flags & XFS_ILOCK_SHARED)
308 mrunlock_shared(&ip->i_lock);
309
310 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
311}
312
313/*
314 * give up write locks. the i/o lock cannot be held nested
315 * if it is being demoted.
316 */
317void
318xfs_ilock_demote(
319 xfs_inode_t *ip,
320 uint lock_flags)
321{
653c60b6
DC
322 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
323 ASSERT((lock_flags &
324 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
325
326 if (lock_flags & XFS_ILOCK_EXCL)
327 mrdemote(&ip->i_lock);
653c60b6 328 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 329 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
fa96acad 330 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 331 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
332
333 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
334}
335
742ae1e3 336#if defined(DEBUG) || defined(XFS_WARN)
e31cbde7
PR
337static inline bool
338__xfs_rwsem_islocked(
339 struct rw_semaphore *rwsem,
340 bool shared)
341{
342 if (!debug_locks)
343 return rwsem_is_locked(rwsem);
344
345 if (!shared)
346 return lockdep_is_held_type(rwsem, 0);
347
348 /*
349 * We are checking that the lock is held at least in shared
350 * mode but don't care that it might be held exclusively
351 * (i.e. shared | excl). Hence we check if the lock is held
352 * in any mode rather than an explicit shared mode.
353 */
354 return lockdep_is_held_type(rwsem, -1);
355}
356
357bool
fa96acad 358xfs_isilocked(
e31cbde7 359 struct xfs_inode *ip,
fa96acad
DC
360 uint lock_flags)
361{
362 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
363 if (!(lock_flags & XFS_ILOCK_SHARED))
364 return !!ip->i_lock.mr_writer;
365 return rwsem_is_locked(&ip->i_lock.mr_lock);
366 }
367
653c60b6 368 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
82af8806
KX
369 return __xfs_rwsem_islocked(&VFS_I(ip)->i_mapping->invalidate_lock,
370 (lock_flags & XFS_MMAPLOCK_SHARED));
653c60b6
DC
371 }
372
e31cbde7
PR
373 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
374 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
375 (lock_flags & XFS_IOLOCK_SHARED));
fa96acad
DC
376 }
377
378 ASSERT(0);
e31cbde7 379 return false;
fa96acad
DC
380}
381#endif
382
b6a9947e
DC
383/*
384 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
385 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
386 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
387 * errors and warnings.
388 */
389#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
390static bool
391xfs_lockdep_subclass_ok(
392 int subclass)
393{
394 return subclass < MAX_LOCKDEP_SUBCLASSES;
395}
396#else
397#define xfs_lockdep_subclass_ok(subclass) (true)
398#endif
399
c24b5dfa 400/*
653c60b6 401 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
402 * value. This can be called for any type of inode lock combination, including
403 * parent locking. Care must be taken to ensure we don't overrun the subclass
404 * storage fields in the class mask we build.
c24b5dfa 405 */
a1033753
DC
406static inline uint
407xfs_lock_inumorder(
408 uint lock_mode,
409 uint subclass)
c24b5dfa 410{
a1033753 411 uint class = 0;
0952c818
DC
412
413 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
414 XFS_ILOCK_RTSUM)));
3403ccc0 415 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 416
653c60b6 417 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 418 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 419 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
420 }
421
422 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
423 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
424 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
425 }
426
0952c818
DC
427 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
428 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
429 class += subclass << XFS_ILOCK_SHIFT;
430 }
c24b5dfa 431
0952c818 432 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
433}
434
435/*
95afcf5c
DC
436 * The following routine will lock n inodes in exclusive mode. We assume the
437 * caller calls us with the inodes in i_ino order.
c24b5dfa 438 *
95afcf5c
DC
439 * We need to detect deadlock where an inode that we lock is in the AIL and we
440 * start waiting for another inode that is locked by a thread in a long running
441 * transaction (such as truncate). This can result in deadlock since the long
442 * running trans might need to wait for the inode we just locked in order to
443 * push the tail and free space in the log.
0952c818
DC
444 *
445 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
446 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
447 * lock more than one at a time, lockdep will report false positives saying we
448 * have violated locking orders.
c24b5dfa 449 */
0d5a75e9 450static void
c24b5dfa 451xfs_lock_inodes(
efe2330f
CH
452 struct xfs_inode **ips,
453 int inodes,
454 uint lock_mode)
c24b5dfa 455{
a1033753
DC
456 int attempts = 0;
457 uint i;
458 int j;
459 bool try_lock;
efe2330f 460 struct xfs_log_item *lp;
c24b5dfa 461
0952c818
DC
462 /*
463 * Currently supports between 2 and 5 inodes with exclusive locking. We
464 * support an arbitrary depth of locking here, but absolute limits on
b63da6c8 465 * inodes depend on the type of locking and the limits placed by
0952c818
DC
466 * lockdep annotations in xfs_lock_inumorder. These are all checked by
467 * the asserts.
468 */
95afcf5c 469 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
470 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
471 XFS_ILOCK_EXCL));
472 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
473 XFS_ILOCK_SHARED)));
0952c818
DC
474 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
475 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
476 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
477 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
478
479 if (lock_mode & XFS_IOLOCK_EXCL) {
480 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
481 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
482 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa 483
c24b5dfa 484again:
a1033753
DC
485 try_lock = false;
486 i = 0;
c24b5dfa
DC
487 for (; i < inodes; i++) {
488 ASSERT(ips[i]);
489
95afcf5c 490 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
491 continue;
492
493 /*
95afcf5c
DC
494 * If try_lock is not set yet, make sure all locked inodes are
495 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 496 */
c24b5dfa
DC
497 if (!try_lock) {
498 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 499 lp = &ips[j]->i_itemp->ili_item;
22525c17 500 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
a1033753 501 try_lock = true;
c24b5dfa
DC
502 }
503 }
504
505 /*
506 * If any of the previous locks we have locked is in the AIL,
507 * we must TRY to get the second and subsequent locks. If
508 * we can't get any, we must release all we have
509 * and try again.
510 */
95afcf5c
DC
511 if (!try_lock) {
512 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
513 continue;
514 }
515
516 /* try_lock means we have an inode locked that is in the AIL. */
517 ASSERT(i != 0);
518 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
519 continue;
c24b5dfa 520
95afcf5c
DC
521 /*
522 * Unlock all previous guys and try again. xfs_iunlock will try
523 * to push the tail if the inode is in the AIL.
524 */
525 attempts++;
526 for (j = i - 1; j >= 0; j--) {
c24b5dfa 527 /*
95afcf5c
DC
528 * Check to see if we've already unlocked this one. Not
529 * the first one going back, and the inode ptr is the
530 * same.
c24b5dfa 531 */
95afcf5c
DC
532 if (j != (i - 1) && ips[j] == ips[j + 1])
533 continue;
c24b5dfa 534
95afcf5c
DC
535 xfs_iunlock(ips[j], lock_mode);
536 }
c24b5dfa 537
95afcf5c
DC
538 if ((attempts % 5) == 0) {
539 delay(1); /* Don't just spin the CPU */
c24b5dfa 540 }
95afcf5c 541 goto again;
c24b5dfa 542 }
c24b5dfa
DC
543}
544
545/*
d2c292d8
JK
546 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
547 * mmaplock must be double-locked separately since we use i_rwsem and
548 * invalidate_lock for that. We now support taking one lock EXCL and the
549 * other SHARED.
c24b5dfa
DC
550 */
551void
552xfs_lock_two_inodes(
7c2d238a
DW
553 struct xfs_inode *ip0,
554 uint ip0_mode,
555 struct xfs_inode *ip1,
556 uint ip1_mode)
c24b5dfa 557{
c24b5dfa 558 int attempts = 0;
efe2330f 559 struct xfs_log_item *lp;
c24b5dfa 560
7c2d238a
DW
561 ASSERT(hweight32(ip0_mode) == 1);
562 ASSERT(hweight32(ip1_mode) == 1);
563 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
564 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
d2c292d8
JK
565 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
566 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
c24b5dfa
DC
567 ASSERT(ip0->i_ino != ip1->i_ino);
568
569 if (ip0->i_ino > ip1->i_ino) {
2a09b575
CD
570 swap(ip0, ip1);
571 swap(ip0_mode, ip1_mode);
c24b5dfa
DC
572 }
573
574 again:
7c2d238a 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
b3b14aac 582 lp = &ip0->i_itemp->ili_item;
22525c17 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
7c2d238a 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
592 }
593}
594
4422501d
CH
595uint
596xfs_ip2xflags(
597 struct xfs_inode *ip)
1da177e4
LT
598{
599 uint flags = 0;
600
4422501d
CH
601 if (ip->i_diflags & XFS_DIFLAG_ANY) {
602 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
e7b89481 603 flags |= FS_XFLAG_REALTIME;
4422501d 604 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
e7b89481 605 flags |= FS_XFLAG_PREALLOC;
4422501d 606 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
e7b89481 607 flags |= FS_XFLAG_IMMUTABLE;
4422501d 608 if (ip->i_diflags & XFS_DIFLAG_APPEND)
e7b89481 609 flags |= FS_XFLAG_APPEND;
4422501d 610 if (ip->i_diflags & XFS_DIFLAG_SYNC)
e7b89481 611 flags |= FS_XFLAG_SYNC;
4422501d 612 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
e7b89481 613 flags |= FS_XFLAG_NOATIME;
4422501d 614 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
e7b89481 615 flags |= FS_XFLAG_NODUMP;
4422501d 616 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
e7b89481 617 flags |= FS_XFLAG_RTINHERIT;
4422501d 618 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
e7b89481 619 flags |= FS_XFLAG_PROJINHERIT;
4422501d 620 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 621 flags |= FS_XFLAG_NOSYMLINKS;
4422501d 622 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
e7b89481 623 flags |= FS_XFLAG_EXTSIZE;
4422501d 624 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 625 flags |= FS_XFLAG_EXTSZINHERIT;
4422501d 626 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
e7b89481 627 flags |= FS_XFLAG_NODEFRAG;
4422501d 628 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
e7b89481 629 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
630 }
631
4422501d
CH
632 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
633 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
58f88ca2 634 flags |= FS_XFLAG_DAX;
4422501d 635 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
f7ca3522 636 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
637 }
638
932b42c6 639 if (xfs_inode_has_attr_fork(ip))
58f88ca2 640 flags |= FS_XFLAG_HASATTR;
1da177e4
LT
641 return flags;
642}
643
c24b5dfa
DC
644/*
645 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
646 * is allowed, otherwise it has to be an exact match. If a CI match is found,
647 * ci_name->name will point to a the actual name (caller must free) or
648 * will be set to NULL if an exact match is found.
649 */
650int
651xfs_lookup(
996b2329
DW
652 struct xfs_inode *dp,
653 const struct xfs_name *name,
654 struct xfs_inode **ipp,
c24b5dfa
DC
655 struct xfs_name *ci_name)
656{
657 xfs_ino_t inum;
658 int error;
c24b5dfa
DC
659
660 trace_xfs_lookup(dp, name);
661
75c8c50f 662 if (xfs_is_shutdown(dp->i_mount))
2451337d 663 return -EIO;
c24b5dfa 664
c24b5dfa 665 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 666 if (error)
dbad7c99 667 goto out_unlock;
c24b5dfa
DC
668
669 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
670 if (error)
671 goto out_free_name;
672
673 return 0;
674
675out_free_name:
676 if (ci_name)
677 kmem_free(ci_name->name);
dbad7c99 678out_unlock:
c24b5dfa
DC
679 *ipp = NULL;
680 return error;
681}
682
8a569d71
DW
683/* Propagate di_flags from a parent inode to a child inode. */
684static void
685xfs_inode_inherit_flags(
686 struct xfs_inode *ip,
687 const struct xfs_inode *pip)
688{
689 unsigned int di_flags = 0;
603f000b 690 xfs_failaddr_t failaddr;
8a569d71
DW
691 umode_t mode = VFS_I(ip)->i_mode;
692
693 if (S_ISDIR(mode)) {
db07349d 694 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
8a569d71 695 di_flags |= XFS_DIFLAG_RTINHERIT;
db07349d 696 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
8a569d71 697 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
031474c2 698 ip->i_extsize = pip->i_extsize;
8a569d71 699 }
db07349d 700 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
8a569d71
DW
701 di_flags |= XFS_DIFLAG_PROJINHERIT;
702 } else if (S_ISREG(mode)) {
db07349d 703 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
38c26bfd 704 xfs_has_realtime(ip->i_mount))
8a569d71 705 di_flags |= XFS_DIFLAG_REALTIME;
db07349d 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
8a569d71 707 di_flags |= XFS_DIFLAG_EXTSIZE;
031474c2 708 ip->i_extsize = pip->i_extsize;
8a569d71
DW
709 }
710 }
db07349d 711 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
8a569d71
DW
712 xfs_inherit_noatime)
713 di_flags |= XFS_DIFLAG_NOATIME;
db07349d 714 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
8a569d71
DW
715 xfs_inherit_nodump)
716 di_flags |= XFS_DIFLAG_NODUMP;
db07349d 717 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
8a569d71
DW
718 xfs_inherit_sync)
719 di_flags |= XFS_DIFLAG_SYNC;
db07349d 720 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
8a569d71
DW
721 xfs_inherit_nosymlinks)
722 di_flags |= XFS_DIFLAG_NOSYMLINKS;
db07349d 723 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
8a569d71
DW
724 xfs_inherit_nodefrag)
725 di_flags |= XFS_DIFLAG_NODEFRAG;
db07349d 726 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
8a569d71
DW
727 di_flags |= XFS_DIFLAG_FILESTREAM;
728
db07349d 729 ip->i_diflags |= di_flags;
603f000b
DW
730
731 /*
732 * Inode verifiers on older kernels only check that the extent size
733 * hint is an integer multiple of the rt extent size on realtime files.
734 * They did not check the hint alignment on a directory with both
735 * rtinherit and extszinherit flags set. If the misaligned hint is
736 * propagated from a directory into a new realtime file, new file
737 * allocations will fail due to math errors in the rt allocator and/or
738 * trip the verifiers. Validate the hint settings in the new file so
739 * that we don't let broken hints propagate.
740 */
741 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
742 VFS_I(ip)->i_mode, ip->i_diflags);
743 if (failaddr) {
744 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
745 XFS_DIFLAG_EXTSZINHERIT);
746 ip->i_extsize = 0;
747 }
8a569d71
DW
748}
749
750/* Propagate di_flags2 from a parent inode to a child inode. */
751static void
752xfs_inode_inherit_flags2(
753 struct xfs_inode *ip,
754 const struct xfs_inode *pip)
755{
603f000b
DW
756 xfs_failaddr_t failaddr;
757
3e09ab8f
CH
758 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
759 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
b33ce57d 760 ip->i_cowextsize = pip->i_cowextsize;
8a569d71 761 }
3e09ab8f
CH
762 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
763 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
603f000b
DW
764
765 /* Don't let invalid cowextsize hints propagate. */
766 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
767 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
768 if (failaddr) {
769 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
770 ip->i_cowextsize = 0;
771 }
8a569d71
DW
772}
773
1da177e4 774/*
1abcf261
DC
775 * Initialise a newly allocated inode and return the in-core inode to the
776 * caller locked exclusively.
1da177e4 777 */
b652afd9 778int
1abcf261 779xfs_init_new_inode(
f2d40141 780 struct mnt_idmap *idmap,
1abcf261
DC
781 struct xfs_trans *tp,
782 struct xfs_inode *pip,
783 xfs_ino_t ino,
784 umode_t mode,
785 xfs_nlink_t nlink,
786 dev_t rdev,
787 prid_t prid,
e6a688c3 788 bool init_xattrs,
1abcf261 789 struct xfs_inode **ipp)
1da177e4 790{
01ea173e 791 struct inode *dir = pip ? VFS_I(pip) : NULL;
1abcf261
DC
792 struct xfs_mount *mp = tp->t_mountp;
793 struct xfs_inode *ip;
794 unsigned int flags;
795 int error;
796 struct timespec64 tv;
797 struct inode *inode;
1da177e4 798
8b26984d
DC
799 /*
800 * Protect against obviously corrupt allocation btree records. Later
801 * xfs_iget checks will catch re-allocation of other active in-memory
802 * and on-disk inodes. If we don't catch reallocating the parent inode
803 * here we will deadlock in xfs_iget() so we have to do these checks
804 * first.
805 */
806 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
807 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
808 return -EFSCORRUPTED;
809 }
810
1da177e4 811 /*
1abcf261
DC
812 * Get the in-core inode with the lock held exclusively to prevent
813 * others from looking at until we're done.
1da177e4 814 */
1abcf261 815 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 816 if (error)
1da177e4 817 return error;
1abcf261 818
1da177e4 819 ASSERT(ip != NULL);
3987848c 820 inode = VFS_I(ip);
54d7b5c1 821 set_nlink(inode, nlink);
66f36464 822 inode->i_rdev = rdev;
ceaf603c 823 ip->i_projid = prid;
1da177e4 824
0560f31a 825 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
c14329d3 826 inode_fsuid_set(inode, idmap);
01ea173e
CH
827 inode->i_gid = dir->i_gid;
828 inode->i_mode = mode;
3d8f2821 829 } else {
f2d40141 830 inode_init_owner(idmap, inode, dir, mode);
1da177e4
LT
831 }
832
833 /*
834 * If the group ID of the new file does not match the effective group
835 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
836 * (and only if the irix_sgid_inherit compatibility variable is set).
837 */
42b7cc11 838 if (irix_sgid_inherit && (inode->i_mode & S_ISGID) &&
e67fe633 839 !vfsgid_in_group_p(i_gid_into_vfsgid(idmap, inode)))
c19b3b05 840 inode->i_mode &= ~S_ISGID;
1da177e4 841
13d2c10b 842 ip->i_disk_size = 0;
daf83964 843 ip->i_df.if_nextents = 0;
6e73a545 844 ASSERT(ip->i_nblocks == 0);
dff35fd4 845
c2050a45 846 tv = current_time(inode);
3987848c
DC
847 inode->i_mtime = tv;
848 inode->i_atime = tv;
849 inode->i_ctime = tv;
dff35fd4 850
031474c2 851 ip->i_extsize = 0;
db07349d 852 ip->i_diflags = 0;
93848a99 853
38c26bfd 854 if (xfs_has_v3inodes(mp)) {
f0e28280 855 inode_set_iversion(inode, 1);
b33ce57d 856 ip->i_cowextsize = 0;
e98d5e88 857 ip->i_crtime = tv;
93848a99
CH
858 }
859
1da177e4
LT
860 flags = XFS_ILOG_CORE;
861 switch (mode & S_IFMT) {
862 case S_IFIFO:
863 case S_IFCHR:
864 case S_IFBLK:
865 case S_IFSOCK:
f7e67b20 866 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
867 flags |= XFS_ILOG_DEV;
868 break;
869 case S_IFREG:
870 case S_IFDIR:
db07349d 871 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
8a569d71 872 xfs_inode_inherit_flags(ip, pip);
3e09ab8f 873 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
8a569d71 874 xfs_inode_inherit_flags2(ip, pip);
53004ee7 875 fallthrough;
1da177e4 876 case S_IFLNK:
f7e67b20 877 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
fcacbc3f 878 ip->i_df.if_bytes = 0;
6bdcf26a 879 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
880 break;
881 default:
882 ASSERT(0);
883 }
1da177e4 884
e6a688c3
DC
885 /*
886 * If we need to create attributes immediately after allocating the
887 * inode, initialise an empty attribute fork right now. We use the
888 * default fork offset for attributes here as we don't know exactly what
889 * size or how many attributes we might be adding. We can do this
890 * safely here because we know the data fork is completely empty and
891 * this saves us from needing to run a separate transaction to set the
892 * fork offset in the immediate future.
893 */
38c26bfd 894 if (init_xattrs && xfs_has_attr(mp)) {
7821ea30 895 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
2ed5b09b 896 xfs_ifork_init_attr(ip, XFS_DINODE_FMT_EXTENTS, 0);
e6a688c3
DC
897 }
898
1da177e4
LT
899 /*
900 * Log the new values stuffed into the inode.
901 */
ddc3415a 902 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
903 xfs_trans_log_inode(tp, ip, flags);
904
58c90473 905 /* now that we have an i_mode we can setup the inode structure */
41be8bed 906 xfs_setup_inode(ip);
1da177e4
LT
907
908 *ipp = ip;
909 return 0;
910}
911
e546cb79 912/*
54d7b5c1
DC
913 * Decrement the link count on an inode & log the change. If this causes the
914 * link count to go to zero, move the inode to AGI unlinked list so that it can
915 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 916 */
0d5a75e9 917static int /* error */
e546cb79
DC
918xfs_droplink(
919 xfs_trans_t *tp,
920 xfs_inode_t *ip)
921{
e546cb79
DC
922 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
923
e546cb79
DC
924 drop_nlink(VFS_I(ip));
925 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
926
54d7b5c1
DC
927 if (VFS_I(ip)->i_nlink)
928 return 0;
929
930 return xfs_iunlink(tp, ip);
e546cb79
DC
931}
932
e546cb79
DC
933/*
934 * Increment the link count on an inode & log the change.
935 */
91083269 936static void
e546cb79
DC
937xfs_bumplink(
938 xfs_trans_t *tp,
939 xfs_inode_t *ip)
940{
941 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
942
e546cb79 943 inc_nlink(VFS_I(ip));
e546cb79 944 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
945}
946
c24b5dfa
DC
947int
948xfs_create(
f2d40141 949 struct mnt_idmap *idmap,
c24b5dfa
DC
950 xfs_inode_t *dp,
951 struct xfs_name *name,
952 umode_t mode,
66f36464 953 dev_t rdev,
e6a688c3 954 bool init_xattrs,
c24b5dfa
DC
955 xfs_inode_t **ipp)
956{
957 int is_dir = S_ISDIR(mode);
958 struct xfs_mount *mp = dp->i_mount;
959 struct xfs_inode *ip = NULL;
960 struct xfs_trans *tp = NULL;
961 int error;
c24b5dfa 962 bool unlock_dp_on_error = false;
c24b5dfa
DC
963 prid_t prid;
964 struct xfs_dquot *udqp = NULL;
965 struct xfs_dquot *gdqp = NULL;
966 struct xfs_dquot *pdqp = NULL;
062647a8 967 struct xfs_trans_res *tres;
c24b5dfa 968 uint resblks;
b652afd9 969 xfs_ino_t ino;
c24b5dfa
DC
970
971 trace_xfs_create(dp, name);
972
75c8c50f 973 if (xfs_is_shutdown(mp))
2451337d 974 return -EIO;
c24b5dfa 975
163467d3 976 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
977
978 /*
979 * Make sure that we have allocated dquot(s) on disk.
980 */
c14329d3
CB
981 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
982 mapped_fsgid(idmap, &init_user_ns), prid,
b5a08423
DW
983 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
984 &udqp, &gdqp, &pdqp);
c24b5dfa
DC
985 if (error)
986 return error;
987
988 if (is_dir) {
c24b5dfa 989 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 990 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
991 } else {
992 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 993 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
994 }
995
c24b5dfa
DC
996 /*
997 * Initially assume that the file does not exist and
998 * reserve the resources for that case. If that is not
999 * the case we'll drop the one we have and get a more
1000 * appropriate transaction later.
1001 */
f2f7b9ff
DW
1002 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1003 &tp);
2451337d 1004 if (error == -ENOSPC) {
c24b5dfa
DC
1005 /* flush outstanding delalloc blocks and retry */
1006 xfs_flush_inodes(mp);
f2f7b9ff
DW
1007 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1008 resblks, &tp);
c24b5dfa 1009 }
4906e215 1010 if (error)
f2f7b9ff 1011 goto out_release_dquots;
c24b5dfa 1012
65523218 1013 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1014 unlock_dp_on_error = true;
1015
c24b5dfa
DC
1016 /*
1017 * A newly created regular or special file just has one directory
1018 * entry pointing to them, but a directory also the "." entry
1019 * pointing to itself.
1020 */
b652afd9
DC
1021 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1022 if (!error)
f2d40141 1023 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
b652afd9 1024 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
d6077aa3 1025 if (error)
4906e215 1026 goto out_trans_cancel;
c24b5dfa
DC
1027
1028 /*
1029 * Now we join the directory inode to the transaction. We do not do it
b652afd9 1030 * earlier because xfs_dialloc might commit the previous transaction
c24b5dfa
DC
1031 * (and release all the locks). An error from here on will result in
1032 * the transaction cancel unlocking dp so don't do it explicitly in the
1033 * error path.
1034 */
65523218 1035 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1036 unlock_dp_on_error = false;
1037
381eee69 1038 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
63337b63 1039 resblks - XFS_IALLOC_SPACE_RES(mp));
c24b5dfa 1040 if (error) {
2451337d 1041 ASSERT(error != -ENOSPC);
4906e215 1042 goto out_trans_cancel;
c24b5dfa
DC
1043 }
1044 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1045 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1046
1047 if (is_dir) {
1048 error = xfs_dir_init(tp, ip, dp);
1049 if (error)
c8eac49e 1050 goto out_trans_cancel;
c24b5dfa 1051
91083269 1052 xfs_bumplink(tp, dp);
c24b5dfa
DC
1053 }
1054
1055 /*
1056 * If this is a synchronous mount, make sure that the
1057 * create transaction goes to disk before returning to
1058 * the user.
1059 */
0560f31a 1060 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa
DC
1061 xfs_trans_set_sync(tp);
1062
1063 /*
1064 * Attach the dquot(s) to the inodes and modify them incore.
1065 * These ids of the inode couldn't have changed since the new
1066 * inode has been locked ever since it was created.
1067 */
1068 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1069
70393313 1070 error = xfs_trans_commit(tp);
c24b5dfa
DC
1071 if (error)
1072 goto out_release_inode;
1073
1074 xfs_qm_dqrele(udqp);
1075 xfs_qm_dqrele(gdqp);
1076 xfs_qm_dqrele(pdqp);
1077
1078 *ipp = ip;
1079 return 0;
1080
c24b5dfa 1081 out_trans_cancel:
4906e215 1082 xfs_trans_cancel(tp);
c24b5dfa
DC
1083 out_release_inode:
1084 /*
58c90473
DC
1085 * Wait until after the current transaction is aborted to finish the
1086 * setup of the inode and release the inode. This prevents recursive
1087 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1088 */
58c90473
DC
1089 if (ip) {
1090 xfs_finish_inode_setup(ip);
44a8736b 1091 xfs_irele(ip);
58c90473 1092 }
f2f7b9ff 1093 out_release_dquots:
c24b5dfa
DC
1094 xfs_qm_dqrele(udqp);
1095 xfs_qm_dqrele(gdqp);
1096 xfs_qm_dqrele(pdqp);
1097
1098 if (unlock_dp_on_error)
65523218 1099 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1100 return error;
1101}
1102
99b6436b
ZYW
1103int
1104xfs_create_tmpfile(
f2d40141 1105 struct mnt_idmap *idmap,
99b6436b 1106 struct xfs_inode *dp,
330033d6
BF
1107 umode_t mode,
1108 struct xfs_inode **ipp)
99b6436b
ZYW
1109{
1110 struct xfs_mount *mp = dp->i_mount;
1111 struct xfs_inode *ip = NULL;
1112 struct xfs_trans *tp = NULL;
1113 int error;
99b6436b
ZYW
1114 prid_t prid;
1115 struct xfs_dquot *udqp = NULL;
1116 struct xfs_dquot *gdqp = NULL;
1117 struct xfs_dquot *pdqp = NULL;
1118 struct xfs_trans_res *tres;
1119 uint resblks;
b652afd9 1120 xfs_ino_t ino;
99b6436b 1121
75c8c50f 1122 if (xfs_is_shutdown(mp))
2451337d 1123 return -EIO;
99b6436b
ZYW
1124
1125 prid = xfs_get_initial_prid(dp);
1126
1127 /*
1128 * Make sure that we have allocated dquot(s) on disk.
1129 */
c14329d3
CB
1130 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(idmap, &init_user_ns),
1131 mapped_fsgid(idmap, &init_user_ns), prid,
b5a08423
DW
1132 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1133 &udqp, &gdqp, &pdqp);
99b6436b
ZYW
1134 if (error)
1135 return error;
1136
1137 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1138 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911 1139
f2f7b9ff
DW
1140 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1141 &tp);
99b6436b 1142 if (error)
f2f7b9ff 1143 goto out_release_dquots;
99b6436b 1144
b652afd9
DC
1145 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1146 if (!error)
f2d40141 1147 error = xfs_init_new_inode(idmap, tp, dp, ino, mode,
b652afd9 1148 0, 0, prid, false, &ip);
d6077aa3 1149 if (error)
4906e215 1150 goto out_trans_cancel;
99b6436b 1151
0560f31a 1152 if (xfs_has_wsync(mp))
99b6436b
ZYW
1153 xfs_trans_set_sync(tp);
1154
1155 /*
1156 * Attach the dquot(s) to the inodes and modify them incore.
1157 * These ids of the inode couldn't have changed since the new
1158 * inode has been locked ever since it was created.
1159 */
1160 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1161
99b6436b
ZYW
1162 error = xfs_iunlink(tp, ip);
1163 if (error)
4906e215 1164 goto out_trans_cancel;
99b6436b 1165
70393313 1166 error = xfs_trans_commit(tp);
99b6436b
ZYW
1167 if (error)
1168 goto out_release_inode;
1169
1170 xfs_qm_dqrele(udqp);
1171 xfs_qm_dqrele(gdqp);
1172 xfs_qm_dqrele(pdqp);
1173
330033d6 1174 *ipp = ip;
99b6436b
ZYW
1175 return 0;
1176
99b6436b 1177 out_trans_cancel:
4906e215 1178 xfs_trans_cancel(tp);
99b6436b
ZYW
1179 out_release_inode:
1180 /*
58c90473
DC
1181 * Wait until after the current transaction is aborted to finish the
1182 * setup of the inode and release the inode. This prevents recursive
1183 * transactions and deadlocks from xfs_inactive.
99b6436b 1184 */
58c90473
DC
1185 if (ip) {
1186 xfs_finish_inode_setup(ip);
44a8736b 1187 xfs_irele(ip);
58c90473 1188 }
f2f7b9ff 1189 out_release_dquots:
99b6436b
ZYW
1190 xfs_qm_dqrele(udqp);
1191 xfs_qm_dqrele(gdqp);
1192 xfs_qm_dqrele(pdqp);
1193
1194 return error;
1195}
1196
c24b5dfa
DC
1197int
1198xfs_link(
1199 xfs_inode_t *tdp,
1200 xfs_inode_t *sip,
1201 struct xfs_name *target_name)
1202{
1203 xfs_mount_t *mp = tdp->i_mount;
1204 xfs_trans_t *tp;
871b9316 1205 int error, nospace_error = 0;
c24b5dfa
DC
1206 int resblks;
1207
1208 trace_xfs_link(tdp, target_name);
1209
c19b3b05 1210 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa 1211
75c8c50f 1212 if (xfs_is_shutdown(mp))
2451337d 1213 return -EIO;
c24b5dfa 1214
c14cfcca 1215 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1216 if (error)
1217 goto std_return;
1218
c14cfcca 1219 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1220 if (error)
1221 goto std_return;
1222
c24b5dfa 1223 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
871b9316
DW
1224 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1225 &tp, &nospace_error);
4906e215 1226 if (error)
253f4911 1227 goto std_return;
c24b5dfa 1228
c24b5dfa
DC
1229 /*
1230 * If we are using project inheritance, we only allow hard link
1231 * creation in our tree when the project IDs are the same; else
1232 * the tree quota mechanism could be circumvented.
1233 */
db07349d 1234 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
ceaf603c 1235 tdp->i_projid != sip->i_projid)) {
2451337d 1236 error = -EXDEV;
c24b5dfa
DC
1237 goto error_return;
1238 }
1239
94f3cad5
ES
1240 if (!resblks) {
1241 error = xfs_dir_canenter(tp, tdp, target_name);
1242 if (error)
1243 goto error_return;
1244 }
c24b5dfa 1245
54d7b5c1
DC
1246 /*
1247 * Handle initial link state of O_TMPFILE inode
1248 */
1249 if (VFS_I(sip)->i_nlink == 0) {
f40aadb2
DC
1250 struct xfs_perag *pag;
1251
1252 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1253 error = xfs_iunlink_remove(tp, pag, sip);
1254 xfs_perag_put(pag);
ab297431 1255 if (error)
4906e215 1256 goto error_return;
ab297431
ZYW
1257 }
1258
c24b5dfa 1259 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1260 resblks);
c24b5dfa 1261 if (error)
4906e215 1262 goto error_return;
c24b5dfa
DC
1263 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1264 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1265
91083269 1266 xfs_bumplink(tp, sip);
c24b5dfa
DC
1267
1268 /*
1269 * If this is a synchronous mount, make sure that the
1270 * link transaction goes to disk before returning to
1271 * the user.
1272 */
0560f31a 1273 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa 1274 xfs_trans_set_sync(tp);
c24b5dfa 1275
70393313 1276 return xfs_trans_commit(tp);
c24b5dfa 1277
c24b5dfa 1278 error_return:
4906e215 1279 xfs_trans_cancel(tp);
c24b5dfa 1280 std_return:
871b9316
DW
1281 if (error == -ENOSPC && nospace_error)
1282 error = nospace_error;
c24b5dfa
DC
1283 return error;
1284}
1285
363e59ba
DW
1286/* Clear the reflink flag and the cowblocks tag if possible. */
1287static void
1288xfs_itruncate_clear_reflink_flags(
1289 struct xfs_inode *ip)
1290{
1291 struct xfs_ifork *dfork;
1292 struct xfs_ifork *cfork;
1293
1294 if (!xfs_is_reflink_inode(ip))
1295 return;
732436ef
DW
1296 dfork = xfs_ifork_ptr(ip, XFS_DATA_FORK);
1297 cfork = xfs_ifork_ptr(ip, XFS_COW_FORK);
363e59ba 1298 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
3e09ab8f 1299 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
363e59ba
DW
1300 if (cfork->if_bytes == 0)
1301 xfs_inode_clear_cowblocks_tag(ip);
1302}
1303
1da177e4 1304/*
8f04c47a
CH
1305 * Free up the underlying blocks past new_size. The new size must be smaller
1306 * than the current size. This routine can be used both for the attribute and
1307 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1308 *
f6485057
DC
1309 * The transaction passed to this routine must have made a permanent log
1310 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1311 * given transaction and start new ones, so make sure everything involved in
1312 * the transaction is tidy before calling here. Some transaction will be
1313 * returned to the caller to be committed. The incoming transaction must
1314 * already include the inode, and both inode locks must be held exclusively.
1315 * The inode must also be "held" within the transaction. On return the inode
1316 * will be "held" within the returned transaction. This routine does NOT
1317 * require any disk space to be reserved for it within the transaction.
1da177e4 1318 *
f6485057
DC
1319 * If we get an error, we must return with the inode locked and linked into the
1320 * current transaction. This keeps things simple for the higher level code,
1321 * because it always knows that the inode is locked and held in the transaction
1322 * that returns to it whether errors occur or not. We don't mark the inode
1323 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1324 */
1325int
4e529339 1326xfs_itruncate_extents_flags(
8f04c47a
CH
1327 struct xfs_trans **tpp,
1328 struct xfs_inode *ip,
1329 int whichfork,
13b86fc3 1330 xfs_fsize_t new_size,
4e529339 1331 int flags)
1da177e4 1332{
8f04c47a
CH
1333 struct xfs_mount *mp = ip->i_mount;
1334 struct xfs_trans *tp = *tpp;
8f04c47a 1335 xfs_fileoff_t first_unmap_block;
8f04c47a 1336 xfs_filblks_t unmap_len;
8f04c47a 1337 int error = 0;
1da177e4 1338
0b56185b
CH
1339 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1340 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1341 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1342 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1343 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1344 ASSERT(ip->i_itemp != NULL);
898621d5 1345 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1346 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1347
673e8e59
CH
1348 trace_xfs_itruncate_extents_start(ip, new_size);
1349
4e529339 1350 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1351
1da177e4
LT
1352 /*
1353 * Since it is possible for space to become allocated beyond
1354 * the end of the file (in a crash where the space is allocated
1355 * but the inode size is not yet updated), simply remove any
1356 * blocks which show up between the new EOF and the maximum
4bbb04ab
DW
1357 * possible file size.
1358 *
1359 * We have to free all the blocks to the bmbt maximum offset, even if
1360 * the page cache can't scale that far.
1da177e4 1361 */
8f04c47a 1362 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
33005fd0 1363 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
4bbb04ab 1364 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
8f04c47a 1365 return 0;
4bbb04ab 1366 }
8f04c47a 1367
4bbb04ab
DW
1368 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1369 while (unmap_len > 0) {
692b6cdd 1370 ASSERT(tp->t_highest_agno == NULLAGNUMBER);
4bbb04ab
DW
1371 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1372 flags, XFS_ITRUNC_MAX_EXTENTS);
8f04c47a 1373 if (error)
d5a2e289 1374 goto out;
1da177e4 1375
6dd379c7 1376 /* free the just unmapped extents */
9e28a242 1377 error = xfs_defer_finish(&tp);
8f04c47a 1378 if (error)
9b1f4e98 1379 goto out;
1da177e4 1380 }
8f04c47a 1381
4919d42a
DW
1382 if (whichfork == XFS_DATA_FORK) {
1383 /* Remove all pending CoW reservations. */
1384 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
4bbb04ab 1385 first_unmap_block, XFS_MAX_FILEOFF, true);
4919d42a
DW
1386 if (error)
1387 goto out;
aa8968f2 1388
4919d42a
DW
1389 xfs_itruncate_clear_reflink_flags(ip);
1390 }
aa8968f2 1391
673e8e59
CH
1392 /*
1393 * Always re-log the inode so that our permanent transaction can keep
1394 * on rolling it forward in the log.
1395 */
1396 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1397
1398 trace_xfs_itruncate_extents_end(ip, new_size);
1399
8f04c47a
CH
1400out:
1401 *tpp = tp;
1402 return error;
8f04c47a
CH
1403}
1404
c24b5dfa
DC
1405int
1406xfs_release(
1407 xfs_inode_t *ip)
1408{
1409 xfs_mount_t *mp = ip->i_mount;
7d88329e 1410 int error = 0;
c24b5dfa 1411
c19b3b05 1412 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1413 return 0;
1414
1415 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1416 if (xfs_is_readonly(mp))
c24b5dfa
DC
1417 return 0;
1418
75c8c50f 1419 if (!xfs_is_shutdown(mp)) {
c24b5dfa
DC
1420 int truncated;
1421
c24b5dfa
DC
1422 /*
1423 * If we previously truncated this file and removed old data
1424 * in the process, we want to initiate "early" writeout on
1425 * the last close. This is an attempt to combat the notorious
1426 * NULL files problem which is particularly noticeable from a
1427 * truncate down, buffered (re-)write (delalloc), followed by
1428 * a crash. What we are effectively doing here is
1429 * significantly reducing the time window where we'd otherwise
1430 * be exposed to that problem.
1431 */
1432 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1433 if (truncated) {
1434 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1435 if (ip->i_delayed_blks > 0) {
2451337d 1436 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1437 if (error)
1438 return error;
1439 }
1440 }
1441 }
1442
54d7b5c1 1443 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1444 return 0;
1445
7d88329e
DW
1446 /*
1447 * If we can't get the iolock just skip truncating the blocks past EOF
1448 * because we could deadlock with the mmap_lock otherwise. We'll get
1449 * another chance to drop them once the last reference to the inode is
1450 * dropped, so we'll never leak blocks permanently.
1451 */
1452 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1453 return 0;
c24b5dfa 1454
7d88329e 1455 if (xfs_can_free_eofblocks(ip, false)) {
a36b9261
BF
1456 /*
1457 * Check if the inode is being opened, written and closed
1458 * frequently and we have delayed allocation blocks outstanding
1459 * (e.g. streaming writes from the NFS server), truncating the
1460 * blocks past EOF will cause fragmentation to occur.
1461 *
1462 * In this case don't do the truncation, but we have to be
1463 * careful how we detect this case. Blocks beyond EOF show up as
1464 * i_delayed_blks even when the inode is clean, so we need to
1465 * truncate them away first before checking for a dirty release.
1466 * Hence on the first dirty close we will still remove the
1467 * speculative allocation, but after that we will leave it in
1468 * place.
1469 */
1470 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
7d88329e
DW
1471 goto out_unlock;
1472
1473 error = xfs_free_eofblocks(ip);
1474 if (error)
1475 goto out_unlock;
c24b5dfa
DC
1476
1477 /* delalloc blocks after truncation means it really is dirty */
1478 if (ip->i_delayed_blks)
1479 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1480 }
7d88329e
DW
1481
1482out_unlock:
1483 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1484 return error;
c24b5dfa
DC
1485}
1486
f7be2d7f
BF
1487/*
1488 * xfs_inactive_truncate
1489 *
1490 * Called to perform a truncate when an inode becomes unlinked.
1491 */
1492STATIC int
1493xfs_inactive_truncate(
1494 struct xfs_inode *ip)
1495{
1496 struct xfs_mount *mp = ip->i_mount;
1497 struct xfs_trans *tp;
1498 int error;
1499
253f4911 1500 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f 1501 if (error) {
75c8c50f 1502 ASSERT(xfs_is_shutdown(mp));
f7be2d7f
BF
1503 return error;
1504 }
f7be2d7f
BF
1505 xfs_ilock(ip, XFS_ILOCK_EXCL);
1506 xfs_trans_ijoin(tp, ip, 0);
1507
1508 /*
1509 * Log the inode size first to prevent stale data exposure in the event
1510 * of a system crash before the truncate completes. See the related
69bca807 1511 * comment in xfs_vn_setattr_size() for details.
f7be2d7f 1512 */
13d2c10b 1513 ip->i_disk_size = 0;
f7be2d7f
BF
1514 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1515
1516 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1517 if (error)
1518 goto error_trans_cancel;
1519
daf83964 1520 ASSERT(ip->i_df.if_nextents == 0);
f7be2d7f 1521
70393313 1522 error = xfs_trans_commit(tp);
f7be2d7f
BF
1523 if (error)
1524 goto error_unlock;
1525
1526 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1527 return 0;
1528
1529error_trans_cancel:
4906e215 1530 xfs_trans_cancel(tp);
f7be2d7f
BF
1531error_unlock:
1532 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1533 return error;
1534}
1535
88877d2b
BF
1536/*
1537 * xfs_inactive_ifree()
1538 *
1539 * Perform the inode free when an inode is unlinked.
1540 */
1541STATIC int
1542xfs_inactive_ifree(
1543 struct xfs_inode *ip)
1544{
88877d2b
BF
1545 struct xfs_mount *mp = ip->i_mount;
1546 struct xfs_trans *tp;
1547 int error;
1548
9d43b180 1549 /*
76d771b4
CH
1550 * We try to use a per-AG reservation for any block needed by the finobt
1551 * tree, but as the finobt feature predates the per-AG reservation
1552 * support a degraded file system might not have enough space for the
1553 * reservation at mount time. In that case try to dip into the reserved
1554 * pool and pray.
9d43b180
BF
1555 *
1556 * Send a warning if the reservation does happen to fail, as the inode
1557 * now remains allocated and sits on the unlinked list until the fs is
1558 * repaired.
1559 */
e1f6ca11 1560 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1561 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1562 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1563 &tp);
1564 } else {
1565 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1566 }
88877d2b 1567 if (error) {
2451337d 1568 if (error == -ENOSPC) {
9d43b180
BF
1569 xfs_warn_ratelimited(mp,
1570 "Failed to remove inode(s) from unlinked list. "
1571 "Please free space, unmount and run xfs_repair.");
1572 } else {
75c8c50f 1573 ASSERT(xfs_is_shutdown(mp));
9d43b180 1574 }
88877d2b
BF
1575 return error;
1576 }
1577
96355d5a
DC
1578 /*
1579 * We do not hold the inode locked across the entire rolling transaction
1580 * here. We only need to hold it for the first transaction that
1581 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1582 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1583 * here breaks the relationship between cluster buffer invalidation and
1584 * stale inode invalidation on cluster buffer item journal commit
1585 * completion, and can result in leaving dirty stale inodes hanging
1586 * around in memory.
1587 *
1588 * We have no need for serialising this inode operation against other
1589 * operations - we freed the inode and hence reallocation is required
1590 * and that will serialise on reallocating the space the deferops need
1591 * to free. Hence we can unlock the inode on the first commit of
1592 * the transaction rather than roll it right through the deferops. This
1593 * avoids relogging the XFS_ISTALE inode.
1594 *
1595 * We check that xfs_ifree() hasn't grown an internal transaction roll
1596 * by asserting that the inode is still locked when it returns.
1597 */
88877d2b 1598 xfs_ilock(ip, XFS_ILOCK_EXCL);
96355d5a 1599 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
88877d2b 1600
0e0417f3 1601 error = xfs_ifree(tp, ip);
96355d5a 1602 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
88877d2b
BF
1603 if (error) {
1604 /*
1605 * If we fail to free the inode, shut down. The cancel
1606 * might do that, we need to make sure. Otherwise the
1607 * inode might be lost for a long time or forever.
1608 */
75c8c50f 1609 if (!xfs_is_shutdown(mp)) {
88877d2b
BF
1610 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1611 __func__, error);
1612 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1613 }
4906e215 1614 xfs_trans_cancel(tp);
88877d2b
BF
1615 return error;
1616 }
1617
1618 /*
1619 * Credit the quota account(s). The inode is gone.
1620 */
1621 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1622
1623 /*
d4a97a04
BF
1624 * Just ignore errors at this point. There is nothing we can do except
1625 * to try to keep going. Make sure it's not a silent error.
88877d2b 1626 */
70393313 1627 error = xfs_trans_commit(tp);
88877d2b
BF
1628 if (error)
1629 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1630 __func__, error);
1631
88877d2b
BF
1632 return 0;
1633}
1634
62af7d54
DW
1635/*
1636 * Returns true if we need to update the on-disk metadata before we can free
1637 * the memory used by this inode. Updates include freeing post-eof
1638 * preallocations; freeing COW staging extents; and marking the inode free in
1639 * the inobt if it is on the unlinked list.
1640 */
1641bool
1642xfs_inode_needs_inactive(
1643 struct xfs_inode *ip)
1644{
1645 struct xfs_mount *mp = ip->i_mount;
732436ef 1646 struct xfs_ifork *cow_ifp = xfs_ifork_ptr(ip, XFS_COW_FORK);
62af7d54
DW
1647
1648 /*
1649 * If the inode is already free, then there can be nothing
1650 * to clean up here.
1651 */
1652 if (VFS_I(ip)->i_mode == 0)
1653 return false;
1654
1655 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1656 if (xfs_is_readonly(mp))
62af7d54
DW
1657 return false;
1658
1659 /* If the log isn't running, push inodes straight to reclaim. */
75c8c50f 1660 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
62af7d54
DW
1661 return false;
1662
1663 /* Metadata inodes require explicit resource cleanup. */
1664 if (xfs_is_metadata_inode(ip))
1665 return false;
1666
1667 /* Want to clean out the cow blocks if there are any. */
1668 if (cow_ifp && cow_ifp->if_bytes > 0)
1669 return true;
1670
1671 /* Unlinked files must be freed. */
1672 if (VFS_I(ip)->i_nlink == 0)
1673 return true;
1674
1675 /*
1676 * This file isn't being freed, so check if there are post-eof blocks
1677 * to free. @force is true because we are evicting an inode from the
1678 * cache. Post-eof blocks must be freed, lest we end up with broken
1679 * free space accounting.
1680 *
1681 * Note: don't bother with iolock here since lockdep complains about
1682 * acquiring it in reclaim context. We have the only reference to the
1683 * inode at this point anyways.
1684 */
1685 return xfs_can_free_eofblocks(ip, true);
1686}
1687
c24b5dfa
DC
1688/*
1689 * xfs_inactive
1690 *
1691 * This is called when the vnode reference count for the vnode
1692 * goes to zero. If the file has been unlinked, then it must
1693 * now be truncated. Also, we clear all of the read-ahead state
1694 * kept for the inode here since the file is now closed.
1695 */
74564fb4 1696void
c24b5dfa
DC
1697xfs_inactive(
1698 xfs_inode_t *ip)
1699{
3d3c8b52 1700 struct xfs_mount *mp;
3d3c8b52
JL
1701 int error;
1702 int truncate = 0;
c24b5dfa
DC
1703
1704 /*
1705 * If the inode is already free, then there can be nothing
1706 * to clean up here.
1707 */
c19b3b05 1708 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1709 ASSERT(ip->i_df.if_broot_bytes == 0);
3ea06d73 1710 goto out;
c24b5dfa
DC
1711 }
1712
1713 mp = ip->i_mount;
17c12bcd 1714 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1715
c24b5dfa 1716 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1717 if (xfs_is_readonly(mp))
3ea06d73 1718 goto out;
c24b5dfa 1719
383e32b0
DW
1720 /* Metadata inodes require explicit resource cleanup. */
1721 if (xfs_is_metadata_inode(ip))
3ea06d73 1722 goto out;
383e32b0 1723
6231848c 1724 /* Try to clean out the cow blocks if there are any. */
51d62690 1725 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1726 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1727
54d7b5c1 1728 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1729 /*
1730 * force is true because we are evicting an inode from the
1731 * cache. Post-eof blocks must be freed, lest we end up with
1732 * broken free space accounting.
3b4683c2
BF
1733 *
1734 * Note: don't bother with iolock here since lockdep complains
1735 * about acquiring it in reclaim context. We have the only
1736 * reference to the inode at this point anyways.
c24b5dfa 1737 */
3b4683c2 1738 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1739 xfs_free_eofblocks(ip);
74564fb4 1740
3ea06d73 1741 goto out;
c24b5dfa
DC
1742 }
1743
c19b3b05 1744 if (S_ISREG(VFS_I(ip)->i_mode) &&
13d2c10b 1745 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
daf83964 1746 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
c24b5dfa
DC
1747 truncate = 1;
1748
c14cfcca 1749 error = xfs_qm_dqattach(ip);
c24b5dfa 1750 if (error)
3ea06d73 1751 goto out;
c24b5dfa 1752
c19b3b05 1753 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1754 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1755 else if (truncate)
1756 error = xfs_inactive_truncate(ip);
1757 if (error)
3ea06d73 1758 goto out;
c24b5dfa
DC
1759
1760 /*
1761 * If there are attributes associated with the file then blow them away
1762 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1763 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1764 */
932b42c6 1765 if (xfs_inode_has_attr_fork(ip)) {
c24b5dfa
DC
1766 error = xfs_attr_inactive(ip);
1767 if (error)
3ea06d73 1768 goto out;
c24b5dfa
DC
1769 }
1770
7821ea30 1771 ASSERT(ip->i_forkoff == 0);
c24b5dfa
DC
1772
1773 /*
1774 * Free the inode.
1775 */
3ea06d73 1776 xfs_inactive_ifree(ip);
c24b5dfa 1777
3ea06d73 1778out:
c24b5dfa 1779 /*
3ea06d73
DW
1780 * We're done making metadata updates for this inode, so we can release
1781 * the attached dquots.
c24b5dfa
DC
1782 */
1783 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1784}
1785
9b247179
DW
1786/*
1787 * In-Core Unlinked List Lookups
1788 * =============================
1789 *
1790 * Every inode is supposed to be reachable from some other piece of metadata
1791 * with the exception of the root directory. Inodes with a connection to a
1792 * file descriptor but not linked from anywhere in the on-disk directory tree
1793 * are collectively known as unlinked inodes, though the filesystem itself
1794 * maintains links to these inodes so that on-disk metadata are consistent.
1795 *
1796 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1797 * header contains a number of buckets that point to an inode, and each inode
1798 * record has a pointer to the next inode in the hash chain. This
1799 * singly-linked list causes scaling problems in the iunlink remove function
1800 * because we must walk that list to find the inode that points to the inode
1801 * being removed from the unlinked hash bucket list.
1802 *
2fd26cc0
DC
1803 * Hence we keep an in-memory double linked list to link each inode on an
1804 * unlinked list. Because there are 64 unlinked lists per AGI, keeping pointer
1805 * based lists would require having 64 list heads in the perag, one for each
1806 * list. This is expensive in terms of memory (think millions of AGs) and cache
1807 * misses on lookups. Instead, use the fact that inodes on the unlinked list
1808 * must be referenced at the VFS level to keep them on the list and hence we
1809 * have an existence guarantee for inodes on the unlinked list.
9b247179 1810 *
2fd26cc0
DC
1811 * Given we have an existence guarantee, we can use lockless inode cache lookups
1812 * to resolve aginos to xfs inodes. This means we only need 8 bytes per inode
1813 * for the double linked unlinked list, and we don't need any extra locking to
1814 * keep the list safe as all manipulations are done under the AGI buffer lock.
1815 * Keeping the list up to date does not require memory allocation, just finding
1816 * the XFS inode and updating the next/prev unlinked list aginos.
9b247179
DW
1817 */
1818
9b247179 1819/*
a83d5a8b
DC
1820 * Find an inode on the unlinked list. This does not take references to the
1821 * inode as we have existence guarantees by holding the AGI buffer lock and that
1822 * only unlinked, referenced inodes can be on the unlinked inode list. If we
1823 * don't find the inode in cache, then let the caller handle the situation.
9b247179 1824 */
a83d5a8b
DC
1825static struct xfs_inode *
1826xfs_iunlink_lookup(
9b247179
DW
1827 struct xfs_perag *pag,
1828 xfs_agino_t agino)
1829{
a83d5a8b 1830 struct xfs_inode *ip;
9b247179 1831
a83d5a8b
DC
1832 rcu_read_lock();
1833 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
9b247179 1834
9b247179 1835 /*
a83d5a8b
DC
1836 * Inode not in memory or in RCU freeing limbo should not happen.
1837 * Warn about this and let the caller handle the failure.
9b247179 1838 */
a83d5a8b
DC
1839 if (WARN_ON_ONCE(!ip || !ip->i_ino)) {
1840 rcu_read_unlock();
1841 return NULL;
9b247179 1842 }
a83d5a8b
DC
1843 ASSERT(!xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM));
1844 rcu_read_unlock();
1845 return ip;
9b247179
DW
1846}
1847
2fd26cc0 1848/* Update the prev pointer of the next agino. */
9b247179 1849static int
2fd26cc0 1850xfs_iunlink_update_backref(
9b247179
DW
1851 struct xfs_perag *pag,
1852 xfs_agino_t prev_agino,
2fd26cc0 1853 xfs_agino_t next_agino)
9b247179 1854{
2fd26cc0 1855 struct xfs_inode *ip;
9b247179 1856
2fd26cc0
DC
1857 /* No update necessary if we are at the end of the list. */
1858 if (next_agino == NULLAGINO)
9b247179 1859 return 0;
9b247179 1860
2fd26cc0
DC
1861 ip = xfs_iunlink_lookup(pag, next_agino);
1862 if (!ip)
1863 return -EFSCORRUPTED;
1864 ip->i_prev_unlinked = prev_agino;
1865 return 0;
9b247179
DW
1866}
1867
9a4a5118
DW
1868/*
1869 * Point the AGI unlinked bucket at an inode and log the results. The caller
1870 * is responsible for validating the old value.
1871 */
1872STATIC int
1873xfs_iunlink_update_bucket(
1874 struct xfs_trans *tp,
f40aadb2 1875 struct xfs_perag *pag,
9a4a5118
DW
1876 struct xfs_buf *agibp,
1877 unsigned int bucket_index,
1878 xfs_agino_t new_agino)
1879{
370c782b 1880 struct xfs_agi *agi = agibp->b_addr;
9a4a5118
DW
1881 xfs_agino_t old_value;
1882 int offset;
1883
2d6ca832 1884 ASSERT(xfs_verify_agino_or_null(pag, new_agino));
9a4a5118
DW
1885
1886 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
f40aadb2 1887 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
9a4a5118
DW
1888 old_value, new_agino);
1889
1890 /*
1891 * We should never find the head of the list already set to the value
1892 * passed in because either we're adding or removing ourselves from the
1893 * head of the list.
1894 */
a5155b87 1895 if (old_value == new_agino) {
8d57c216 1896 xfs_buf_mark_corrupt(agibp);
9a4a5118 1897 return -EFSCORRUPTED;
a5155b87 1898 }
9a4a5118
DW
1899
1900 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
1901 offset = offsetof(struct xfs_agi, agi_unlinked) +
1902 (sizeof(xfs_agino_t) * bucket_index);
1903 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
1904 return 0;
1905}
1906
a4454cd6
DC
1907static int
1908xfs_iunlink_insert_inode(
f2fc16a3 1909 struct xfs_trans *tp,
f40aadb2 1910 struct xfs_perag *pag,
a4454cd6 1911 struct xfs_buf *agibp,
5837f625 1912 struct xfs_inode *ip)
f2fc16a3
DW
1913{
1914 struct xfs_mount *mp = tp->t_mountp;
a4454cd6 1915 struct xfs_agi *agi = agibp->b_addr;
86bfd375 1916 xfs_agino_t next_agino;
5837f625
DW
1917 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1918 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
f2fc16a3
DW
1919 int error;
1920
1da177e4 1921 /*
86bfd375
DW
1922 * Get the index into the agi hash table for the list this inode will
1923 * go on. Make sure the pointer isn't garbage and that this inode
1924 * isn't already on the list.
1da177e4 1925 */
86bfd375
DW
1926 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1927 if (next_agino == agino ||
2d6ca832 1928 !xfs_verify_agino_or_null(pag, next_agino)) {
8d57c216 1929 xfs_buf_mark_corrupt(agibp);
a4454cd6 1930 return -EFSCORRUPTED;
f2fc16a3
DW
1931 }
1932
1933 /*
2fd26cc0
DC
1934 * Update the prev pointer in the next inode to point back to this
1935 * inode.
f2fc16a3 1936 */
2fd26cc0
DC
1937 error = xfs_iunlink_update_backref(pag, agino, next_agino);
1938 if (error)
1939 return error;
1940
86bfd375 1941 if (next_agino != NULLAGINO) {
1da177e4 1942 /*
f2fc16a3
DW
1943 * There is already another inode in the bucket, so point this
1944 * inode to the current head of the list.
1da177e4 1945 */
062efdb0 1946 error = xfs_iunlink_log_inode(tp, ip, pag, next_agino);
c319b58b 1947 if (error)
a4454cd6 1948 return error;
4fcc94d6 1949 ip->i_next_unlinked = next_agino;
f2fc16a3
DW
1950 }
1951
9a4a5118 1952 /* Point the head of the list to point to this inode. */
a4454cd6 1953 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
f2fc16a3
DW
1954}
1955
1da177e4 1956/*
c4a6bf7f
DW
1957 * This is called when the inode's link count has gone to 0 or we are creating
1958 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
1959 *
1960 * We place the on-disk inode on a list in the AGI. It will be pulled from this
1961 * list when the inode is freed.
1da177e4 1962 */
54d7b5c1 1963STATIC int
1da177e4 1964xfs_iunlink(
5837f625
DW
1965 struct xfs_trans *tp,
1966 struct xfs_inode *ip)
1da177e4 1967{
5837f625 1968 struct xfs_mount *mp = tp->t_mountp;
f40aadb2 1969 struct xfs_perag *pag;
5837f625 1970 struct xfs_buf *agibp;
5837f625 1971 int error;
1da177e4 1972
c4a6bf7f 1973 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 1974 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 1975 trace_xfs_iunlink(ip);
1da177e4 1976
f40aadb2
DC
1977 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1978
5837f625 1979 /* Get the agi buffer first. It ensures lock ordering on the list. */
61021deb 1980 error = xfs_read_agi(pag, tp, &agibp);
859d7182 1981 if (error)
f40aadb2 1982 goto out;
5e1be0fb 1983
a4454cd6 1984 error = xfs_iunlink_insert_inode(tp, pag, agibp, ip);
f40aadb2
DC
1985out:
1986 xfs_perag_put(pag);
1987 return error;
1da177e4
LT
1988}
1989
a4454cd6
DC
1990static int
1991xfs_iunlink_remove_inode(
5837f625 1992 struct xfs_trans *tp,
f40aadb2 1993 struct xfs_perag *pag,
a4454cd6 1994 struct xfs_buf *agibp,
5837f625 1995 struct xfs_inode *ip)
1da177e4 1996{
5837f625 1997 struct xfs_mount *mp = tp->t_mountp;
a4454cd6 1998 struct xfs_agi *agi = agibp->b_addr;
5837f625 1999 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
b1d2a068 2000 xfs_agino_t head_agino;
5837f625 2001 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2002 int error;
1da177e4 2003
4664c66c
DW
2004 trace_xfs_iunlink_remove(ip);
2005
1da177e4 2006 /*
86bfd375
DW
2007 * Get the index into the agi hash table for the list this inode will
2008 * go on. Make sure the head pointer isn't garbage.
1da177e4 2009 */
b1d2a068 2010 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2d6ca832 2011 if (!xfs_verify_agino(pag, head_agino)) {
d2e73665
DW
2012 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2013 agi, sizeof(*agi));
2014 return -EFSCORRUPTED;
2015 }
1da177e4 2016
b1d2a068
DW
2017 /*
2018 * Set our inode's next_unlinked pointer to NULL and then return
2019 * the old pointer value so that we can update whatever was previous
2020 * to us in the list to point to whatever was next in the list.
2021 */
062efdb0 2022 error = xfs_iunlink_log_inode(tp, ip, pag, NULLAGINO);
b1d2a068
DW
2023 if (error)
2024 return error;
9a4a5118 2025
9b247179 2026 /*
2fd26cc0
DC
2027 * Update the prev pointer in the next inode to point back to previous
2028 * inode in the chain.
9b247179 2029 */
2fd26cc0
DC
2030 error = xfs_iunlink_update_backref(pag, ip->i_prev_unlinked,
2031 ip->i_next_unlinked);
2032 if (error)
2033 return error;
9b247179 2034
92a00544 2035 if (head_agino != agino) {
a83d5a8b 2036 struct xfs_inode *prev_ip;
475ee413 2037
2fd26cc0
DC
2038 prev_ip = xfs_iunlink_lookup(pag, ip->i_prev_unlinked);
2039 if (!prev_ip)
2040 return -EFSCORRUPTED;
9b247179 2041
062efdb0 2042 error = xfs_iunlink_log_inode(tp, prev_ip, pag,
5301f870 2043 ip->i_next_unlinked);
a83d5a8b 2044 prev_ip->i_next_unlinked = ip->i_next_unlinked;
2fd26cc0
DC
2045 } else {
2046 /* Point the head of the list to the next unlinked inode. */
2047 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
2048 ip->i_next_unlinked);
1da177e4 2049 }
9b247179 2050
a83d5a8b 2051 ip->i_next_unlinked = NULLAGINO;
2fd26cc0
DC
2052 ip->i_prev_unlinked = NULLAGINO;
2053 return error;
1da177e4
LT
2054}
2055
a4454cd6
DC
2056/*
2057 * Pull the on-disk inode from the AGI unlinked list.
2058 */
2059STATIC int
2060xfs_iunlink_remove(
2061 struct xfs_trans *tp,
2062 struct xfs_perag *pag,
2063 struct xfs_inode *ip)
2064{
2065 struct xfs_buf *agibp;
2066 int error;
2067
2068 trace_xfs_iunlink_remove(ip);
2069
2070 /* Get the agi buffer first. It ensures lock ordering on the list. */
2071 error = xfs_read_agi(pag, tp, &agibp);
2072 if (error)
2073 return error;
2074
2075 return xfs_iunlink_remove_inode(tp, pag, agibp, ip);
1da177e4
LT
2076}
2077
5806165a 2078/*
71e3e356
DC
2079 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2080 * mark it stale. We should only find clean inodes in this lookup that aren't
2081 * already stale.
5806165a 2082 */
71e3e356
DC
2083static void
2084xfs_ifree_mark_inode_stale(
f40aadb2 2085 struct xfs_perag *pag,
5806165a 2086 struct xfs_inode *free_ip,
d9fdd0ad 2087 xfs_ino_t inum)
5806165a 2088{
f40aadb2 2089 struct xfs_mount *mp = pag->pag_mount;
71e3e356 2090 struct xfs_inode_log_item *iip;
5806165a
DC
2091 struct xfs_inode *ip;
2092
2093retry:
2094 rcu_read_lock();
2095 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2096
2097 /* Inode not in memory, nothing to do */
71e3e356
DC
2098 if (!ip) {
2099 rcu_read_unlock();
2100 return;
2101 }
5806165a
DC
2102
2103 /*
2104 * because this is an RCU protected lookup, we could find a recently
2105 * freed or even reallocated inode during the lookup. We need to check
2106 * under the i_flags_lock for a valid inode here. Skip it if it is not
2107 * valid, the wrong inode or stale.
2108 */
2109 spin_lock(&ip->i_flags_lock);
718ecc50
DC
2110 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2111 goto out_iflags_unlock;
5806165a
DC
2112
2113 /*
2114 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2115 * other inodes that we did not find in the list attached to the buffer
2116 * and are not already marked stale. If we can't lock it, back off and
2117 * retry.
2118 */
2119 if (ip != free_ip) {
2120 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
71e3e356 2121 spin_unlock(&ip->i_flags_lock);
5806165a
DC
2122 rcu_read_unlock();
2123 delay(1);
2124 goto retry;
2125 }
5806165a 2126 }
71e3e356 2127 ip->i_flags |= XFS_ISTALE;
5806165a 2128
71e3e356 2129 /*
718ecc50 2130 * If the inode is flushing, it is already attached to the buffer. All
71e3e356
DC
2131 * we needed to do here is mark the inode stale so buffer IO completion
2132 * will remove it from the AIL.
2133 */
2134 iip = ip->i_itemp;
718ecc50 2135 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
71e3e356
DC
2136 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2137 ASSERT(iip->ili_last_fields);
2138 goto out_iunlock;
2139 }
5806165a
DC
2140
2141 /*
48d55e2a
DC
2142 * Inodes not attached to the buffer can be released immediately.
2143 * Everything else has to go through xfs_iflush_abort() on journal
2144 * commit as the flock synchronises removal of the inode from the
2145 * cluster buffer against inode reclaim.
5806165a 2146 */
718ecc50 2147 if (!iip || list_empty(&iip->ili_item.li_bio_list))
71e3e356 2148 goto out_iunlock;
718ecc50
DC
2149
2150 __xfs_iflags_set(ip, XFS_IFLUSHING);
2151 spin_unlock(&ip->i_flags_lock);
2152 rcu_read_unlock();
5806165a 2153
71e3e356 2154 /* we have a dirty inode in memory that has not yet been flushed. */
71e3e356
DC
2155 spin_lock(&iip->ili_lock);
2156 iip->ili_last_fields = iip->ili_fields;
2157 iip->ili_fields = 0;
2158 iip->ili_fsync_fields = 0;
2159 spin_unlock(&iip->ili_lock);
71e3e356
DC
2160 ASSERT(iip->ili_last_fields);
2161
718ecc50
DC
2162 if (ip != free_ip)
2163 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2164 return;
2165
71e3e356
DC
2166out_iunlock:
2167 if (ip != free_ip)
2168 xfs_iunlock(ip, XFS_ILOCK_EXCL);
718ecc50
DC
2169out_iflags_unlock:
2170 spin_unlock(&ip->i_flags_lock);
2171 rcu_read_unlock();
5806165a
DC
2172}
2173
5b3eed75 2174/*
0b8182db 2175 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2176 * inodes that are in memory - they all must be marked stale and attached to
2177 * the cluster buffer.
2178 */
f40aadb2 2179static int
1da177e4 2180xfs_ifree_cluster(
71e3e356 2181 struct xfs_trans *tp,
f40aadb2
DC
2182 struct xfs_perag *pag,
2183 struct xfs_inode *free_ip,
09b56604 2184 struct xfs_icluster *xic)
1da177e4 2185{
71e3e356
DC
2186 struct xfs_mount *mp = free_ip->i_mount;
2187 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2188 struct xfs_buf *bp;
2189 xfs_daddr_t blkno;
2190 xfs_ino_t inum = xic->first_ino;
1da177e4 2191 int nbufs;
5b257b4a 2192 int i, j;
3cdaa189 2193 int ioffset;
ce92464c 2194 int error;
1da177e4 2195
ef325959 2196 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2197
ef325959 2198 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2199 /*
2200 * The allocation bitmap tells us which inodes of the chunk were
2201 * physically allocated. Skip the cluster if an inode falls into
2202 * a sparse region.
2203 */
3cdaa189
BF
2204 ioffset = inum - xic->first_ino;
2205 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2206 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2207 continue;
2208 }
2209
1da177e4
LT
2210 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2211 XFS_INO_TO_AGBNO(mp, inum));
2212
5b257b4a
DC
2213 /*
2214 * We obtain and lock the backing buffer first in the process
718ecc50
DC
2215 * here to ensure dirty inodes attached to the buffer remain in
2216 * the flushing state while we mark them stale.
2217 *
5b257b4a
DC
2218 * If we scan the in-memory inodes first, then buffer IO can
2219 * complete before we get a lock on it, and hence we may fail
2220 * to mark all the active inodes on the buffer stale.
2221 */
ce92464c
DW
2222 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2223 mp->m_bsize * igeo->blocks_per_cluster,
2224 XBF_UNMAPPED, &bp);
71e3e356 2225 if (error)
ce92464c 2226 return error;
b0f539de
DC
2227
2228 /*
2229 * This buffer may not have been correctly initialised as we
2230 * didn't read it from disk. That's not important because we are
2231 * only using to mark the buffer as stale in the log, and to
2232 * attach stale cached inodes on it. That means it will never be
2233 * dispatched for IO. If it is, we want to know about it, and we
2234 * want it to fail. We can acheive this by adding a write
2235 * verifier to the buffer.
2236 */
8c4ce794 2237 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2238
5b257b4a 2239 /*
71e3e356
DC
2240 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2241 * too. This requires lookups, and will skip inodes that we've
2242 * already marked XFS_ISTALE.
1da177e4 2243 */
71e3e356 2244 for (i = 0; i < igeo->inodes_per_cluster; i++)
f40aadb2 2245 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1da177e4 2246
5b3eed75 2247 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2248 xfs_trans_binval(tp, bp);
2249 }
2a30f36d 2250 return 0;
1da177e4
LT
2251}
2252
2253/*
9a5280b3
DC
2254 * This is called to return an inode to the inode free list. The inode should
2255 * already be truncated to 0 length and have no pages associated with it. This
2256 * routine also assumes that the inode is already a part of the transaction.
1da177e4 2257 *
9a5280b3
DC
2258 * The on-disk copy of the inode will have been added to the list of unlinked
2259 * inodes in the AGI. We need to remove the inode from that list atomically with
2260 * respect to freeing it here.
1da177e4
LT
2261 */
2262int
2263xfs_ifree(
0e0417f3
BF
2264 struct xfs_trans *tp,
2265 struct xfs_inode *ip)
1da177e4 2266{
f40aadb2
DC
2267 struct xfs_mount *mp = ip->i_mount;
2268 struct xfs_perag *pag;
09b56604 2269 struct xfs_icluster xic = { 0 };
1319ebef 2270 struct xfs_inode_log_item *iip = ip->i_itemp;
f40aadb2 2271 int error;
1da177e4 2272
579aa9ca 2273 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2274 ASSERT(VFS_I(ip)->i_nlink == 0);
daf83964 2275 ASSERT(ip->i_df.if_nextents == 0);
13d2c10b 2276 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
6e73a545 2277 ASSERT(ip->i_nblocks == 0);
1da177e4 2278
f40aadb2
DC
2279 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2280
1da177e4 2281 /*
9a5280b3
DC
2282 * Free the inode first so that we guarantee that the AGI lock is going
2283 * to be taken before we remove the inode from the unlinked list. This
2284 * makes the AGI lock -> unlinked list modification order the same as
2285 * used in O_TMPFILE creation.
1da177e4 2286 */
9a5280b3 2287 error = xfs_difree(tp, pag, ip->i_ino, &xic);
1baaed8f 2288 if (error)
6f5097e3 2289 goto out;
1da177e4 2290
9a5280b3 2291 error = xfs_iunlink_remove(tp, pag, ip);
1baaed8f 2292 if (error)
f40aadb2 2293 goto out;
1baaed8f 2294
b2c20045
CH
2295 /*
2296 * Free any local-format data sitting around before we reset the
2297 * data fork to extents format. Note that the attr fork data has
2298 * already been freed by xfs_attr_inactive.
2299 */
f7e67b20 2300 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
b2c20045
CH
2301 kmem_free(ip->i_df.if_u1.if_data);
2302 ip->i_df.if_u1.if_data = NULL;
2303 ip->i_df.if_bytes = 0;
2304 }
98c4f78d 2305
c19b3b05 2306 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
db07349d 2307 ip->i_diflags = 0;
f40aadb2 2308 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
7821ea30 2309 ip->i_forkoff = 0; /* mark the attr fork not in use */
f7e67b20 2310 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
9b3beb02
CH
2311 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2312 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
dc1baa71
ES
2313
2314 /* Don't attempt to replay owner changes for a deleted inode */
1319ebef
DC
2315 spin_lock(&iip->ili_lock);
2316 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2317 spin_unlock(&iip->ili_lock);
dc1baa71 2318
1da177e4
LT
2319 /*
2320 * Bump the generation count so no one will be confused
2321 * by reincarnations of this inode.
2322 */
9e9a2674 2323 VFS_I(ip)->i_generation++;
1da177e4
LT
2324 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2325
09b56604 2326 if (xic.deleted)
f40aadb2
DC
2327 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2328out:
2329 xfs_perag_put(pag);
2a30f36d 2330 return error;
1da177e4
LT
2331}
2332
1da177e4 2333/*
60ec6783
CH
2334 * This is called to unpin an inode. The caller must have the inode locked
2335 * in at least shared mode so that the buffer cannot be subsequently pinned
2336 * once someone is waiting for it to be unpinned.
1da177e4 2337 */
60ec6783 2338static void
f392e631 2339xfs_iunpin(
60ec6783 2340 struct xfs_inode *ip)
1da177e4 2341{
579aa9ca 2342 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2343
4aaf15d1
DC
2344 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2345
a3f74ffb 2346 /* Give the log a push to start the unpinning I/O */
5f9b4b0d 2347 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
a14a348b 2348
a3f74ffb 2349}
1da177e4 2350
f392e631
CH
2351static void
2352__xfs_iunpin_wait(
2353 struct xfs_inode *ip)
2354{
2355 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2356 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2357
2358 xfs_iunpin(ip);
2359
2360 do {
21417136 2361 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2362 if (xfs_ipincount(ip))
2363 io_schedule();
2364 } while (xfs_ipincount(ip));
21417136 2365 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2366}
2367
777df5af 2368void
a3f74ffb 2369xfs_iunpin_wait(
60ec6783 2370 struct xfs_inode *ip)
a3f74ffb 2371{
f392e631
CH
2372 if (xfs_ipincount(ip))
2373 __xfs_iunpin_wait(ip);
1da177e4
LT
2374}
2375
27320369
DC
2376/*
2377 * Removing an inode from the namespace involves removing the directory entry
2378 * and dropping the link count on the inode. Removing the directory entry can
2379 * result in locking an AGF (directory blocks were freed) and removing a link
2380 * count can result in placing the inode on an unlinked list which results in
2381 * locking an AGI.
2382 *
2383 * The big problem here is that we have an ordering constraint on AGF and AGI
2384 * locking - inode allocation locks the AGI, then can allocate a new extent for
2385 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2386 * removes the inode from the unlinked list, requiring that we lock the AGI
2387 * first, and then freeing the inode can result in an inode chunk being freed
2388 * and hence freeing disk space requiring that we lock an AGF.
2389 *
2390 * Hence the ordering that is imposed by other parts of the code is AGI before
2391 * AGF. This means we cannot remove the directory entry before we drop the inode
2392 * reference count and put it on the unlinked list as this results in a lock
2393 * order of AGF then AGI, and this can deadlock against inode allocation and
2394 * freeing. Therefore we must drop the link counts before we remove the
2395 * directory entry.
2396 *
2397 * This is still safe from a transactional point of view - it is not until we
310a75a3 2398 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2399 * transactions in this operation. Hence as long as we remove the directory
2400 * entry and drop the link count in the first transaction of the remove
2401 * operation, there are no transactional constraints on the ordering here.
2402 */
c24b5dfa
DC
2403int
2404xfs_remove(
2405 xfs_inode_t *dp,
2406 struct xfs_name *name,
2407 xfs_inode_t *ip)
2408{
2409 xfs_mount_t *mp = dp->i_mount;
2410 xfs_trans_t *tp = NULL;
c19b3b05 2411 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
871b9316 2412 int dontcare;
c24b5dfa 2413 int error = 0;
c24b5dfa 2414 uint resblks;
c24b5dfa
DC
2415
2416 trace_xfs_remove(dp, name);
2417
75c8c50f 2418 if (xfs_is_shutdown(mp))
2451337d 2419 return -EIO;
c24b5dfa 2420
c14cfcca 2421 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2422 if (error)
2423 goto std_return;
2424
c14cfcca 2425 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2426 if (error)
2427 goto std_return;
2428
c24b5dfa 2429 /*
871b9316
DW
2430 * We try to get the real space reservation first, allowing for
2431 * directory btree deletion(s) implying possible bmap insert(s). If we
2432 * can't get the space reservation then we use 0 instead, and avoid the
2433 * bmap btree insert(s) in the directory code by, if the bmap insert
2434 * tries to happen, instead trimming the LAST block from the directory.
2435 *
2436 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2437 * the directory code can handle a reservationless update and we don't
2438 * want to prevent a user from trying to free space by deleting things.
c24b5dfa
DC
2439 */
2440 resblks = XFS_REMOVE_SPACE_RES(mp);
871b9316
DW
2441 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2442 &tp, &dontcare);
c24b5dfa 2443 if (error) {
2451337d 2444 ASSERT(error != -ENOSPC);
253f4911 2445 goto std_return;
c24b5dfa
DC
2446 }
2447
c24b5dfa
DC
2448 /*
2449 * If we're removing a directory perform some additional validation.
2450 */
2451 if (is_dir) {
54d7b5c1
DC
2452 ASSERT(VFS_I(ip)->i_nlink >= 2);
2453 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2454 error = -ENOTEMPTY;
c24b5dfa
DC
2455 goto out_trans_cancel;
2456 }
2457 if (!xfs_dir_isempty(ip)) {
2451337d 2458 error = -ENOTEMPTY;
c24b5dfa
DC
2459 goto out_trans_cancel;
2460 }
c24b5dfa 2461
27320369 2462 /* Drop the link from ip's "..". */
c24b5dfa
DC
2463 error = xfs_droplink(tp, dp);
2464 if (error)
27320369 2465 goto out_trans_cancel;
c24b5dfa 2466
27320369 2467 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2468 error = xfs_droplink(tp, ip);
2469 if (error)
27320369 2470 goto out_trans_cancel;
5838d035
DW
2471
2472 /*
2473 * Point the unlinked child directory's ".." entry to the root
2474 * directory to eliminate back-references to inodes that may
2475 * get freed before the child directory is closed. If the fs
2476 * gets shrunk, this can lead to dirent inode validation errors.
2477 */
2478 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2479 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2480 tp->t_mountp->m_sb.sb_rootino, 0);
2481 if (error)
2653d533 2482 goto out_trans_cancel;
5838d035 2483 }
c24b5dfa
DC
2484 } else {
2485 /*
2486 * When removing a non-directory we need to log the parent
2487 * inode here. For a directory this is done implicitly
2488 * by the xfs_droplink call for the ".." entry.
2489 */
2490 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2491 }
27320369 2492 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2493
27320369 2494 /* Drop the link from dp to ip. */
c24b5dfa
DC
2495 error = xfs_droplink(tp, ip);
2496 if (error)
27320369 2497 goto out_trans_cancel;
c24b5dfa 2498
381eee69 2499 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2500 if (error) {
2451337d 2501 ASSERT(error != -ENOENT);
c8eac49e 2502 goto out_trans_cancel;
27320369
DC
2503 }
2504
c24b5dfa
DC
2505 /*
2506 * If this is a synchronous mount, make sure that the
2507 * remove transaction goes to disk before returning to
2508 * the user.
2509 */
0560f31a 2510 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa
DC
2511 xfs_trans_set_sync(tp);
2512
70393313 2513 error = xfs_trans_commit(tp);
c24b5dfa
DC
2514 if (error)
2515 goto std_return;
2516
2cd2ef6a 2517 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2518 xfs_filestream_deassociate(ip);
2519
2520 return 0;
2521
c24b5dfa 2522 out_trans_cancel:
4906e215 2523 xfs_trans_cancel(tp);
c24b5dfa
DC
2524 std_return:
2525 return error;
2526}
2527
f6bba201
DC
2528/*
2529 * Enter all inodes for a rename transaction into a sorted array.
2530 */
95afcf5c 2531#define __XFS_SORT_INODES 5
f6bba201
DC
2532STATIC void
2533xfs_sort_for_rename(
95afcf5c
DC
2534 struct xfs_inode *dp1, /* in: old (source) directory inode */
2535 struct xfs_inode *dp2, /* in: new (target) directory inode */
2536 struct xfs_inode *ip1, /* in: inode of old entry */
2537 struct xfs_inode *ip2, /* in: inode of new entry */
2538 struct xfs_inode *wip, /* in: whiteout inode */
2539 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2540 int *num_inodes) /* in/out: inodes in array */
f6bba201 2541{
f6bba201
DC
2542 int i, j;
2543
95afcf5c
DC
2544 ASSERT(*num_inodes == __XFS_SORT_INODES);
2545 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2546
f6bba201
DC
2547 /*
2548 * i_tab contains a list of pointers to inodes. We initialize
2549 * the table here & we'll sort it. We will then use it to
2550 * order the acquisition of the inode locks.
2551 *
2552 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2553 */
95afcf5c
DC
2554 i = 0;
2555 i_tab[i++] = dp1;
2556 i_tab[i++] = dp2;
2557 i_tab[i++] = ip1;
2558 if (ip2)
2559 i_tab[i++] = ip2;
2560 if (wip)
2561 i_tab[i++] = wip;
2562 *num_inodes = i;
f6bba201
DC
2563
2564 /*
2565 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2566 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2567 */
2568 for (i = 0; i < *num_inodes; i++) {
2569 for (j = 1; j < *num_inodes; j++) {
2570 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2571 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2572 i_tab[j] = i_tab[j-1];
2573 i_tab[j-1] = temp;
2574 }
2575 }
2576 }
2577}
2578
310606b0
DC
2579static int
2580xfs_finish_rename(
c9cfdb38 2581 struct xfs_trans *tp)
310606b0 2582{
310606b0
DC
2583 /*
2584 * If this is a synchronous mount, make sure that the rename transaction
2585 * goes to disk before returning to the user.
2586 */
0560f31a 2587 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
310606b0
DC
2588 xfs_trans_set_sync(tp);
2589
70393313 2590 return xfs_trans_commit(tp);
310606b0
DC
2591}
2592
d31a1825
CM
2593/*
2594 * xfs_cross_rename()
2595 *
0145225e 2596 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
d31a1825
CM
2597 */
2598STATIC int
2599xfs_cross_rename(
2600 struct xfs_trans *tp,
2601 struct xfs_inode *dp1,
2602 struct xfs_name *name1,
2603 struct xfs_inode *ip1,
2604 struct xfs_inode *dp2,
2605 struct xfs_name *name2,
2606 struct xfs_inode *ip2,
d31a1825
CM
2607 int spaceres)
2608{
2609 int error = 0;
2610 int ip1_flags = 0;
2611 int ip2_flags = 0;
2612 int dp2_flags = 0;
2613
2614 /* Swap inode number for dirent in first parent */
381eee69 2615 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 2616 if (error)
eeacd321 2617 goto out_trans_abort;
d31a1825
CM
2618
2619 /* Swap inode number for dirent in second parent */
381eee69 2620 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 2621 if (error)
eeacd321 2622 goto out_trans_abort;
d31a1825
CM
2623
2624 /*
2625 * If we're renaming one or more directories across different parents,
2626 * update the respective ".." entries (and link counts) to match the new
2627 * parents.
2628 */
2629 if (dp1 != dp2) {
2630 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2631
c19b3b05 2632 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 2633 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 2634 dp1->i_ino, spaceres);
d31a1825 2635 if (error)
eeacd321 2636 goto out_trans_abort;
d31a1825
CM
2637
2638 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2639 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2640 error = xfs_droplink(tp, dp2);
2641 if (error)
eeacd321 2642 goto out_trans_abort;
91083269 2643 xfs_bumplink(tp, dp1);
d31a1825
CM
2644 }
2645
2646 /*
2647 * Although ip1 isn't changed here, userspace needs
2648 * to be warned about the change, so that applications
2649 * relying on it (like backup ones), will properly
2650 * notify the change
2651 */
2652 ip1_flags |= XFS_ICHGTIME_CHG;
2653 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2654 }
2655
c19b3b05 2656 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 2657 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 2658 dp2->i_ino, spaceres);
d31a1825 2659 if (error)
eeacd321 2660 goto out_trans_abort;
d31a1825
CM
2661
2662 /* transfer ip1 ".." reference to dp2 */
c19b3b05 2663 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
2664 error = xfs_droplink(tp, dp1);
2665 if (error)
eeacd321 2666 goto out_trans_abort;
91083269 2667 xfs_bumplink(tp, dp2);
d31a1825
CM
2668 }
2669
2670 /*
2671 * Although ip2 isn't changed here, userspace needs
2672 * to be warned about the change, so that applications
2673 * relying on it (like backup ones), will properly
2674 * notify the change
2675 */
2676 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2677 ip2_flags |= XFS_ICHGTIME_CHG;
2678 }
2679 }
2680
2681 if (ip1_flags) {
2682 xfs_trans_ichgtime(tp, ip1, ip1_flags);
2683 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2684 }
2685 if (ip2_flags) {
2686 xfs_trans_ichgtime(tp, ip2, ip2_flags);
2687 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2688 }
2689 if (dp2_flags) {
2690 xfs_trans_ichgtime(tp, dp2, dp2_flags);
2691 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2692 }
2693 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2694 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 2695 return xfs_finish_rename(tp);
eeacd321
DC
2696
2697out_trans_abort:
4906e215 2698 xfs_trans_cancel(tp);
d31a1825
CM
2699 return error;
2700}
2701
7dcf5c3e
DC
2702/*
2703 * xfs_rename_alloc_whiteout()
2704 *
b63da6c8 2705 * Return a referenced, unlinked, unlocked inode that can be used as a
7dcf5c3e
DC
2706 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2707 * crash between allocating the inode and linking it into the rename transaction
2708 * recovery will free the inode and we won't leak it.
2709 */
2710static int
2711xfs_rename_alloc_whiteout(
f2d40141 2712 struct mnt_idmap *idmap,
70b589a3 2713 struct xfs_name *src_name,
7dcf5c3e
DC
2714 struct xfs_inode *dp,
2715 struct xfs_inode **wip)
2716{
2717 struct xfs_inode *tmpfile;
70b589a3 2718 struct qstr name;
7dcf5c3e
DC
2719 int error;
2720
f2d40141 2721 error = xfs_create_tmpfile(idmap, dp, S_IFCHR | WHITEOUT_MODE,
f736d93d 2722 &tmpfile);
7dcf5c3e
DC
2723 if (error)
2724 return error;
2725
70b589a3
ES
2726 name.name = src_name->name;
2727 name.len = src_name->len;
2728 error = xfs_inode_init_security(VFS_I(tmpfile), VFS_I(dp), &name);
2729 if (error) {
2730 xfs_finish_inode_setup(tmpfile);
2731 xfs_irele(tmpfile);
2732 return error;
2733 }
2734
22419ac9
BF
2735 /*
2736 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
2737 * Complete the inode setup and flag it as linkable. nlink is already
2738 * zero, so we can skip the drop_nlink.
22419ac9 2739 */
2b3d1d41 2740 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
2741 xfs_finish_inode_setup(tmpfile);
2742 VFS_I(tmpfile)->i_state |= I_LINKABLE;
2743
2744 *wip = tmpfile;
2745 return 0;
2746}
2747
f6bba201
DC
2748/*
2749 * xfs_rename
2750 */
2751int
2752xfs_rename(
f2d40141 2753 struct mnt_idmap *idmap,
7dcf5c3e
DC
2754 struct xfs_inode *src_dp,
2755 struct xfs_name *src_name,
2756 struct xfs_inode *src_ip,
2757 struct xfs_inode *target_dp,
2758 struct xfs_name *target_name,
2759 struct xfs_inode *target_ip,
2760 unsigned int flags)
f6bba201 2761{
7dcf5c3e
DC
2762 struct xfs_mount *mp = src_dp->i_mount;
2763 struct xfs_trans *tp;
7dcf5c3e
DC
2764 struct xfs_inode *wip = NULL; /* whiteout inode */
2765 struct xfs_inode *inodes[__XFS_SORT_INODES];
6da1b4b1 2766 int i;
7dcf5c3e 2767 int num_inodes = __XFS_SORT_INODES;
2b93681f 2768 bool new_parent = (src_dp != target_dp);
c19b3b05 2769 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e 2770 int spaceres;
41667260
DW
2771 bool retried = false;
2772 int error, nospace_error = 0;
f6bba201
DC
2773
2774 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2775
eeacd321
DC
2776 if ((flags & RENAME_EXCHANGE) && !target_ip)
2777 return -EINVAL;
2778
7dcf5c3e
DC
2779 /*
2780 * If we are doing a whiteout operation, allocate the whiteout inode
2781 * we will be placing at the target and ensure the type is set
2782 * appropriately.
2783 */
2784 if (flags & RENAME_WHITEOUT) {
f2d40141 2785 error = xfs_rename_alloc_whiteout(idmap, src_name,
70b589a3 2786 target_dp, &wip);
7dcf5c3e
DC
2787 if (error)
2788 return error;
2789
2790 /* setup target dirent info as whiteout */
2791 src_name->type = XFS_DIR3_FT_CHRDEV;
2792 }
f6bba201 2793
7dcf5c3e 2794 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
2795 inodes, &num_inodes);
2796
41667260
DW
2797retry:
2798 nospace_error = 0;
f6bba201 2799 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 2800 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 2801 if (error == -ENOSPC) {
41667260 2802 nospace_error = error;
f6bba201 2803 spaceres = 0;
253f4911
CH
2804 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
2805 &tp);
f6bba201 2806 }
445883e8 2807 if (error)
253f4911 2808 goto out_release_wip;
f6bba201
DC
2809
2810 /*
2811 * Attach the dquots to the inodes
2812 */
2813 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
2814 if (error)
2815 goto out_trans_cancel;
f6bba201
DC
2816
2817 /*
2818 * Lock all the participating inodes. Depending upon whether
2819 * the target_name exists in the target directory, and
2820 * whether the target directory is the same as the source
e07ee6fe 2821 * directory, we can lock from 2 to 5 inodes.
f6bba201
DC
2822 */
2823 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2824
2825 /*
2826 * Join all the inodes to the transaction. From this point on,
2827 * we can rely on either trans_commit or trans_cancel to unlock
2828 * them.
2829 */
65523218 2830 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 2831 if (new_parent)
65523218 2832 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
2833 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2834 if (target_ip)
2835 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
2836 if (wip)
2837 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
2838
2839 /*
2840 * If we are using project inheritance, we only allow renames
2841 * into our tree when the project IDs are the same; else the
2842 * tree quota mechanism would be circumvented.
2843 */
db07349d 2844 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
ceaf603c 2845 target_dp->i_projid != src_ip->i_projid)) {
2451337d 2846 error = -EXDEV;
445883e8 2847 goto out_trans_cancel;
f6bba201
DC
2848 }
2849
eeacd321
DC
2850 /* RENAME_EXCHANGE is unique from here on. */
2851 if (flags & RENAME_EXCHANGE)
2852 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
2853 target_dp, target_name, target_ip,
f16dea54 2854 spaceres);
d31a1825 2855
41667260
DW
2856 /*
2857 * Try to reserve quota to handle an expansion of the target directory.
2858 * We'll allow the rename to continue in reservationless mode if we hit
2859 * a space usage constraint. If we trigger reservationless mode, save
2860 * the errno if there isn't any free space in the target directory.
2861 */
2862 if (spaceres != 0) {
2863 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
2864 0, false);
2865 if (error == -EDQUOT || error == -ENOSPC) {
2866 if (!retried) {
2867 xfs_trans_cancel(tp);
2868 xfs_blockgc_free_quota(target_dp, 0);
2869 retried = true;
2870 goto retry;
2871 }
2872
2873 nospace_error = error;
2874 spaceres = 0;
2875 error = 0;
2876 }
2877 if (error)
2878 goto out_trans_cancel;
2879 }
2880
f6bba201 2881 /*
bc56ad8c 2882 * Check for expected errors before we dirty the transaction
2883 * so we can return an error without a transaction abort.
f6bba201
DC
2884 */
2885 if (target_ip == NULL) {
2886 /*
2887 * If there's no space reservation, check the entry will
2888 * fit before actually inserting it.
2889 */
94f3cad5
ES
2890 if (!spaceres) {
2891 error = xfs_dir_canenter(tp, target_dp, target_name);
2892 if (error)
445883e8 2893 goto out_trans_cancel;
94f3cad5 2894 }
bc56ad8c 2895 } else {
2896 /*
2897 * If target exists and it's a directory, check that whether
2898 * it can be destroyed.
2899 */
2900 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
2901 (!xfs_dir_isempty(target_ip) ||
2902 (VFS_I(target_ip)->i_nlink > 2))) {
2903 error = -EEXIST;
2904 goto out_trans_cancel;
2905 }
2906 }
2907
6da1b4b1
DW
2908 /*
2909 * Lock the AGI buffers we need to handle bumping the nlink of the
2910 * whiteout inode off the unlinked list and to handle dropping the
2911 * nlink of the target inode. Per locking order rules, do this in
2912 * increasing AG order and before directory block allocation tries to
2913 * grab AGFs because we grab AGIs before AGFs.
2914 *
2915 * The (vfs) caller must ensure that if src is a directory then
2916 * target_ip is either null or an empty directory.
2917 */
2918 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
2919 if (inodes[i] == wip ||
2920 (inodes[i] == target_ip &&
2921 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
61021deb
DC
2922 struct xfs_perag *pag;
2923 struct xfs_buf *bp;
6da1b4b1 2924
61021deb
DC
2925 pag = xfs_perag_get(mp,
2926 XFS_INO_TO_AGNO(mp, inodes[i]->i_ino));
2927 error = xfs_read_agi(pag, tp, &bp);
2928 xfs_perag_put(pag);
6da1b4b1
DW
2929 if (error)
2930 goto out_trans_cancel;
2931 }
2932 }
2933
bc56ad8c 2934 /*
2935 * Directory entry creation below may acquire the AGF. Remove
2936 * the whiteout from the unlinked list first to preserve correct
2937 * AGI/AGF locking order. This dirties the transaction so failures
2938 * after this point will abort and log recovery will clean up the
2939 * mess.
2940 *
2941 * For whiteouts, we need to bump the link count on the whiteout
2942 * inode. After this point, we have a real link, clear the tmpfile
2943 * state flag from the inode so it doesn't accidentally get misused
2944 * in future.
2945 */
2946 if (wip) {
f40aadb2
DC
2947 struct xfs_perag *pag;
2948
bc56ad8c 2949 ASSERT(VFS_I(wip)->i_nlink == 0);
f40aadb2
DC
2950
2951 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
2952 error = xfs_iunlink_remove(tp, pag, wip);
2953 xfs_perag_put(pag);
bc56ad8c 2954 if (error)
2955 goto out_trans_cancel;
2956
2957 xfs_bumplink(tp, wip);
bc56ad8c 2958 VFS_I(wip)->i_state &= ~I_LINKABLE;
2959 }
2960
2961 /*
2962 * Set up the target.
2963 */
2964 if (target_ip == NULL) {
f6bba201
DC
2965 /*
2966 * If target does not exist and the rename crosses
2967 * directories, adjust the target directory link count
2968 * to account for the ".." reference from the new entry.
2969 */
2970 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 2971 src_ip->i_ino, spaceres);
f6bba201 2972 if (error)
c8eac49e 2973 goto out_trans_cancel;
f6bba201
DC
2974
2975 xfs_trans_ichgtime(tp, target_dp,
2976 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2977
2978 if (new_parent && src_is_directory) {
91083269 2979 xfs_bumplink(tp, target_dp);
f6bba201
DC
2980 }
2981 } else { /* target_ip != NULL */
f6bba201
DC
2982 /*
2983 * Link the source inode under the target name.
2984 * If the source inode is a directory and we are moving
2985 * it across directories, its ".." entry will be
2986 * inconsistent until we replace that down below.
2987 *
2988 * In case there is already an entry with the same
2989 * name at the destination directory, remove it first.
2990 */
2991 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 2992 src_ip->i_ino, spaceres);
f6bba201 2993 if (error)
c8eac49e 2994 goto out_trans_cancel;
f6bba201
DC
2995
2996 xfs_trans_ichgtime(tp, target_dp,
2997 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2998
2999 /*
3000 * Decrement the link count on the target since the target
3001 * dir no longer points to it.
3002 */
3003 error = xfs_droplink(tp, target_ip);
3004 if (error)
c8eac49e 3005 goto out_trans_cancel;
f6bba201
DC
3006
3007 if (src_is_directory) {
3008 /*
3009 * Drop the link from the old "." entry.
3010 */
3011 error = xfs_droplink(tp, target_ip);
3012 if (error)
c8eac49e 3013 goto out_trans_cancel;
f6bba201
DC
3014 }
3015 } /* target_ip != NULL */
3016
3017 /*
3018 * Remove the source.
3019 */
3020 if (new_parent && src_is_directory) {
3021 /*
3022 * Rewrite the ".." entry to point to the new
3023 * directory.
3024 */
3025 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3026 target_dp->i_ino, spaceres);
2451337d 3027 ASSERT(error != -EEXIST);
f6bba201 3028 if (error)
c8eac49e 3029 goto out_trans_cancel;
f6bba201
DC
3030 }
3031
3032 /*
3033 * We always want to hit the ctime on the source inode.
3034 *
3035 * This isn't strictly required by the standards since the source
3036 * inode isn't really being changed, but old unix file systems did
3037 * it and some incremental backup programs won't work without it.
3038 */
3039 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3040 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3041
3042 /*
3043 * Adjust the link count on src_dp. This is necessary when
3044 * renaming a directory, either within one parent when
3045 * the target existed, or across two parent directories.
3046 */
3047 if (src_is_directory && (new_parent || target_ip != NULL)) {
3048
3049 /*
3050 * Decrement link count on src_directory since the
3051 * entry that's moved no longer points to it.
3052 */
3053 error = xfs_droplink(tp, src_dp);
3054 if (error)
c8eac49e 3055 goto out_trans_cancel;
f6bba201
DC
3056 }
3057
7dcf5c3e
DC
3058 /*
3059 * For whiteouts, we only need to update the source dirent with the
3060 * inode number of the whiteout inode rather than removing it
3061 * altogether.
3062 */
83a21c18 3063 if (wip)
7dcf5c3e 3064 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3065 spaceres);
83a21c18 3066 else
7dcf5c3e 3067 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3068 spaceres);
02092a2f 3069
f6bba201 3070 if (error)
c8eac49e 3071 goto out_trans_cancel;
f6bba201 3072
f6bba201
DC
3073 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3074 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3075 if (new_parent)
3076 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3077
c9cfdb38 3078 error = xfs_finish_rename(tp);
7dcf5c3e 3079 if (wip)
44a8736b 3080 xfs_irele(wip);
7dcf5c3e 3081 return error;
f6bba201 3082
445883e8 3083out_trans_cancel:
4906e215 3084 xfs_trans_cancel(tp);
253f4911 3085out_release_wip:
7dcf5c3e 3086 if (wip)
44a8736b 3087 xfs_irele(wip);
41667260
DW
3088 if (error == -ENOSPC && nospace_error)
3089 error = nospace_error;
f6bba201
DC
3090 return error;
3091}
3092
e6187b34
DC
3093static int
3094xfs_iflush(
93848a99
CH
3095 struct xfs_inode *ip,
3096 struct xfs_buf *bp)
1da177e4 3097{
93848a99
CH
3098 struct xfs_inode_log_item *iip = ip->i_itemp;
3099 struct xfs_dinode *dip;
3100 struct xfs_mount *mp = ip->i_mount;
f2019299 3101 int error;
1da177e4 3102
579aa9ca 3103 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
718ecc50 3104 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
f7e67b20 3105 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
daf83964 3106 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
90c60e16 3107 ASSERT(iip->ili_item.li_buf == bp);
1da177e4 3108
88ee2df7 3109 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3110
f2019299
BF
3111 /*
3112 * We don't flush the inode if any of the following checks fail, but we
3113 * do still update the log item and attach to the backing buffer as if
3114 * the flush happened. This is a formality to facilitate predictable
3115 * error handling as the caller will shutdown and fail the buffer.
3116 */
3117 error = -EFSCORRUPTED;
69ef921b 3118 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3119 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3120 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
78b0f58b 3121 "%s: Bad inode %llu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3122 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
f2019299 3123 goto flush_out;
1da177e4 3124 }
c19b3b05 3125 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4 3126 if (XFS_TEST_ERROR(
f7e67b20
CH
3127 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3128 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
9e24cfd0 3129 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3130 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
78b0f58b 3131 "%s: Bad regular inode %llu, ptr "PTR_FMT,
6a19d939 3132 __func__, ip->i_ino, ip);
f2019299 3133 goto flush_out;
1da177e4 3134 }
c19b3b05 3135 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4 3136 if (XFS_TEST_ERROR(
f7e67b20
CH
3137 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3138 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3139 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
9e24cfd0 3140 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3141 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
78b0f58b 3142 "%s: Bad directory inode %llu, ptr "PTR_FMT,
6a19d939 3143 __func__, ip->i_ino, ip);
f2019299 3144 goto flush_out;
1da177e4
LT
3145 }
3146 }
2ed5b09b 3147 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af) >
6e73a545 3148 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939 3149 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
755c38ff
CB
3150 "%s: detected corrupt incore inode %llu, "
3151 "total extents = %llu nblocks = %lld, ptr "PTR_FMT,
6a19d939 3152 __func__, ip->i_ino,
2ed5b09b 3153 ip->i_df.if_nextents + xfs_ifork_nextents(&ip->i_af),
6e73a545 3154 ip->i_nblocks, ip);
f2019299 3155 goto flush_out;
1da177e4 3156 }
7821ea30 3157 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3158 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3159 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
78b0f58b 3160 "%s: bad inode %llu, forkoff 0x%x, ptr "PTR_FMT,
7821ea30 3161 __func__, ip->i_ino, ip->i_forkoff, ip);
f2019299 3162 goto flush_out;
1da177e4 3163 }
e60896d8 3164
1da177e4 3165 /*
965e0a1a
CH
3166 * Inode item log recovery for v2 inodes are dependent on the flushiter
3167 * count for correct sequencing. We bump the flush iteration count so
3168 * we can detect flushes which postdate a log record during recovery.
3169 * This is redundant as we now log every change and hence this can't
3170 * happen but we need to still do it to ensure backwards compatibility
3171 * with old kernels that predate logging all inode changes.
1da177e4 3172 */
38c26bfd 3173 if (!xfs_has_v3inodes(mp))
965e0a1a 3174 ip->i_flushiter++;
1da177e4 3175
0f45a1b2
CH
3176 /*
3177 * If there are inline format data / attr forks attached to this inode,
3178 * make sure they are not corrupt.
3179 */
f7e67b20 3180 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2
CH
3181 xfs_ifork_verify_local_data(ip))
3182 goto flush_out;
932b42c6 3183 if (xfs_inode_has_attr_fork(ip) &&
2ed5b09b 3184 ip->i_af.if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2 3185 xfs_ifork_verify_local_attr(ip))
f2019299 3186 goto flush_out;
005c5db8 3187
1da177e4 3188 /*
3987848c
DC
3189 * Copy the dirty parts of the inode into the on-disk inode. We always
3190 * copy out the core of the inode, because if the inode is dirty at all
3191 * the core must be.
1da177e4 3192 */
93f958f9 3193 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3194
3195 /* Wrap, we never let the log put out DI_MAX_FLUSH */
38c26bfd 3196 if (!xfs_has_v3inodes(mp)) {
ee7b83fd
CH
3197 if (ip->i_flushiter == DI_MAX_FLUSH)
3198 ip->i_flushiter = 0;
3199 }
1da177e4 3200
005c5db8 3201 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
932b42c6 3202 if (xfs_inode_has_attr_fork(ip))
005c5db8 3203 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3204
3205 /*
f5d8d5c4
CH
3206 * We've recorded everything logged in the inode, so we'd like to clear
3207 * the ili_fields bits so we don't log and flush things unnecessarily.
3208 * However, we can't stop logging all this information until the data
3209 * we've copied into the disk buffer is written to disk. If we did we
3210 * might overwrite the copy of the inode in the log with all the data
3211 * after re-logging only part of it, and in the face of a crash we
3212 * wouldn't have all the data we need to recover.
1da177e4 3213 *
f5d8d5c4
CH
3214 * What we do is move the bits to the ili_last_fields field. When
3215 * logging the inode, these bits are moved back to the ili_fields field.
664ffb8a
CH
3216 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3217 * we know that the information those bits represent is permanently on
f5d8d5c4
CH
3218 * disk. As long as the flush completes before the inode is logged
3219 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3220 */
f2019299
BF
3221 error = 0;
3222flush_out:
1319ebef 3223 spin_lock(&iip->ili_lock);
93848a99
CH
3224 iip->ili_last_fields = iip->ili_fields;
3225 iip->ili_fields = 0;
fc0561ce 3226 iip->ili_fsync_fields = 0;
1319ebef 3227 spin_unlock(&iip->ili_lock);
1da177e4 3228
1319ebef
DC
3229 /*
3230 * Store the current LSN of the inode so that we can tell whether the
664ffb8a 3231 * item has moved in the AIL from xfs_buf_inode_iodone().
1319ebef 3232 */
93848a99
CH
3233 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3234 &iip->ili_item.li_lsn);
1da177e4 3235
93848a99
CH
3236 /* generate the checksum. */
3237 xfs_dinode_calc_crc(mp, dip);
f2019299 3238 return error;
1da177e4 3239}
44a8736b 3240
e6187b34
DC
3241/*
3242 * Non-blocking flush of dirty inode metadata into the backing buffer.
3243 *
3244 * The caller must have a reference to the inode and hold the cluster buffer
3245 * locked. The function will walk across all the inodes on the cluster buffer it
3246 * can find and lock without blocking, and flush them to the cluster buffer.
3247 *
5717ea4d
DC
3248 * On successful flushing of at least one inode, the caller must write out the
3249 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3250 * the caller needs to release the buffer. On failure, the filesystem will be
3251 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3252 * will be returned.
e6187b34
DC
3253 */
3254int
3255xfs_iflush_cluster(
e6187b34
DC
3256 struct xfs_buf *bp)
3257{
5717ea4d
DC
3258 struct xfs_mount *mp = bp->b_mount;
3259 struct xfs_log_item *lip, *n;
3260 struct xfs_inode *ip;
3261 struct xfs_inode_log_item *iip;
e6187b34 3262 int clcount = 0;
5717ea4d 3263 int error = 0;
e6187b34 3264
5717ea4d
DC
3265 /*
3266 * We must use the safe variant here as on shutdown xfs_iflush_abort()
d2d7c047 3267 * will remove itself from the list.
5717ea4d
DC
3268 */
3269 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3270 iip = (struct xfs_inode_log_item *)lip;
3271 ip = iip->ili_inode;
e6187b34
DC
3272
3273 /*
5717ea4d 3274 * Quick and dirty check to avoid locks if possible.
e6187b34 3275 */
718ecc50 3276 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
5717ea4d
DC
3277 continue;
3278 if (xfs_ipincount(ip))
e6187b34 3279 continue;
e6187b34
DC
3280
3281 /*
5717ea4d
DC
3282 * The inode is still attached to the buffer, which means it is
3283 * dirty but reclaim might try to grab it. Check carefully for
3284 * that, and grab the ilock while still holding the i_flags_lock
3285 * to guarantee reclaim will not be able to reclaim this inode
3286 * once we drop the i_flags_lock.
e6187b34 3287 */
5717ea4d
DC
3288 spin_lock(&ip->i_flags_lock);
3289 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
718ecc50 3290 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
5717ea4d
DC
3291 spin_unlock(&ip->i_flags_lock);
3292 continue;
e6187b34 3293 }
e6187b34
DC
3294
3295 /*
5717ea4d
DC
3296 * ILOCK will pin the inode against reclaim and prevent
3297 * concurrent transactions modifying the inode while we are
718ecc50
DC
3298 * flushing the inode. If we get the lock, set the flushing
3299 * state before we drop the i_flags_lock.
e6187b34 3300 */
5717ea4d
DC
3301 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3302 spin_unlock(&ip->i_flags_lock);
e6187b34 3303 continue;
5717ea4d 3304 }
718ecc50 3305 __xfs_iflags_set(ip, XFS_IFLUSHING);
5717ea4d 3306 spin_unlock(&ip->i_flags_lock);
e6187b34 3307
e6187b34 3308 /*
5717ea4d
DC
3309 * Abort flushing this inode if we are shut down because the
3310 * inode may not currently be in the AIL. This can occur when
3311 * log I/O failure unpins the inode without inserting into the
3312 * AIL, leaving a dirty/unpinned inode attached to the buffer
3313 * that otherwise looks like it should be flushed.
e6187b34 3314 */
01728b44 3315 if (xlog_is_shutdown(mp->m_log)) {
5717ea4d 3316 xfs_iunpin_wait(ip);
5717ea4d
DC
3317 xfs_iflush_abort(ip);
3318 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3319 error = -EIO;
e6187b34
DC
3320 continue;
3321 }
3322
5717ea4d
DC
3323 /* don't block waiting on a log force to unpin dirty inodes */
3324 if (xfs_ipincount(ip)) {
718ecc50 3325 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3326 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3327 continue;
e6187b34 3328 }
e6187b34 3329
5717ea4d
DC
3330 if (!xfs_inode_clean(ip))
3331 error = xfs_iflush(ip, bp);
3332 else
718ecc50 3333 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3334 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3335 if (error)
3336 break;
3337 clcount++;
e6187b34
DC
3338 }
3339
e6187b34 3340 if (error) {
01728b44
DC
3341 /*
3342 * Shutdown first so we kill the log before we release this
3343 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3344 * of the log, failing it before the _log_ is shut down can
3345 * result in the log tail being moved forward in the journal
3346 * on disk because log writes can still be taking place. Hence
3347 * unpinning the tail will allow the ICREATE intent to be
3348 * removed from the log an recovery will fail with uninitialised
3349 * inode cluster buffers.
3350 */
3351 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
e6187b34
DC
3352 bp->b_flags |= XBF_ASYNC;
3353 xfs_buf_ioend_fail(bp);
5717ea4d 3354 return error;
e6187b34 3355 }
5717ea4d
DC
3356
3357 if (!clcount)
3358 return -EAGAIN;
3359
3360 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3361 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3362 return 0;
3363
e6187b34
DC
3364}
3365
44a8736b
DW
3366/* Release an inode. */
3367void
3368xfs_irele(
3369 struct xfs_inode *ip)
3370{
3371 trace_xfs_irele(ip, _RET_IP_);
3372 iput(VFS_I(ip));
3373}
54fbdd10
CH
3374
3375/*
3376 * Ensure all commited transactions touching the inode are written to the log.
3377 */
3378int
3379xfs_log_force_inode(
3380 struct xfs_inode *ip)
3381{
5f9b4b0d 3382 xfs_csn_t seq = 0;
54fbdd10
CH
3383
3384 xfs_ilock(ip, XFS_ILOCK_SHARED);
3385 if (xfs_ipincount(ip))
5f9b4b0d 3386 seq = ip->i_itemp->ili_commit_seq;
54fbdd10
CH
3387 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3388
5f9b4b0d 3389 if (!seq)
54fbdd10 3390 return 0;
5f9b4b0d 3391 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
54fbdd10 3392}
e2aaee9c
DW
3393
3394/*
3395 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3396 * abide vfs locking order (lowest pointer value goes first) and breaking the
3397 * layout leases before proceeding. The loop is needed because we cannot call
3398 * the blocking break_layout() with the iolocks held, and therefore have to
3399 * back out both locks.
3400 */
3401static int
3402xfs_iolock_two_inodes_and_break_layout(
3403 struct inode *src,
3404 struct inode *dest)
3405{
3406 int error;
3407
3408 if (src > dest)
3409 swap(src, dest);
3410
3411retry:
3412 /* Wait to break both inodes' layouts before we start locking. */
3413 error = break_layout(src, true);
3414 if (error)
3415 return error;
3416 if (src != dest) {
3417 error = break_layout(dest, true);
3418 if (error)
3419 return error;
3420 }
3421
3422 /* Lock one inode and make sure nobody got in and leased it. */
3423 inode_lock(src);
3424 error = break_layout(src, false);
3425 if (error) {
3426 inode_unlock(src);
3427 if (error == -EWOULDBLOCK)
3428 goto retry;
3429 return error;
3430 }
3431
3432 if (src == dest)
3433 return 0;
3434
3435 /* Lock the other inode and make sure nobody got in and leased it. */
3436 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3437 error = break_layout(dest, false);
3438 if (error) {
3439 inode_unlock(src);
3440 inode_unlock(dest);
3441 if (error == -EWOULDBLOCK)
3442 goto retry;
3443 return error;
3444 }
3445
3446 return 0;
3447}
3448
13f9e267
SR
3449static int
3450xfs_mmaplock_two_inodes_and_break_dax_layout(
3451 struct xfs_inode *ip1,
3452 struct xfs_inode *ip2)
3453{
3454 int error;
3455 bool retry;
3456 struct page *page;
3457
3458 if (ip1->i_ino > ip2->i_ino)
3459 swap(ip1, ip2);
3460
3461again:
3462 retry = false;
3463 /* Lock the first inode */
3464 xfs_ilock(ip1, XFS_MMAPLOCK_EXCL);
3465 error = xfs_break_dax_layouts(VFS_I(ip1), &retry);
3466 if (error || retry) {
3467 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3468 if (error == 0 && retry)
3469 goto again;
3470 return error;
3471 }
3472
3473 if (ip1 == ip2)
3474 return 0;
3475
3476 /* Nested lock the second inode */
3477 xfs_ilock(ip2, xfs_lock_inumorder(XFS_MMAPLOCK_EXCL, 1));
3478 /*
3479 * We cannot use xfs_break_dax_layouts() directly here because it may
3480 * need to unlock & lock the XFS_MMAPLOCK_EXCL which is not suitable
3481 * for this nested lock case.
3482 */
3483 page = dax_layout_busy_page(VFS_I(ip2)->i_mapping);
3484 if (page && page_ref_count(page) != 1) {
3485 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3486 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3487 goto again;
3488 }
3489
3490 return 0;
3491}
3492
e2aaee9c
DW
3493/*
3494 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3495 * mmap activity.
3496 */
3497int
3498xfs_ilock2_io_mmap(
3499 struct xfs_inode *ip1,
3500 struct xfs_inode *ip2)
3501{
3502 int ret;
3503
3504 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3505 if (ret)
3506 return ret;
13f9e267
SR
3507
3508 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3509 ret = xfs_mmaplock_two_inodes_and_break_dax_layout(ip1, ip2);
3510 if (ret) {
3511 inode_unlock(VFS_I(ip2));
3512 if (ip1 != ip2)
3513 inode_unlock(VFS_I(ip1));
3514 return ret;
3515 }
3516 } else
3517 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3518 VFS_I(ip2)->i_mapping);
3519
e2aaee9c
DW
3520 return 0;
3521}
3522
3523/* Unlock both inodes to allow IO and mmap activity. */
3524void
3525xfs_iunlock2_io_mmap(
3526 struct xfs_inode *ip1,
3527 struct xfs_inode *ip2)
3528{
13f9e267
SR
3529 if (IS_DAX(VFS_I(ip1)) && IS_DAX(VFS_I(ip2))) {
3530 xfs_iunlock(ip2, XFS_MMAPLOCK_EXCL);
3531 if (ip1 != ip2)
3532 xfs_iunlock(ip1, XFS_MMAPLOCK_EXCL);
3533 } else
3534 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3535 VFS_I(ip2)->i_mapping);
3536
e2aaee9c 3537 inode_unlock(VFS_I(ip2));
d2c292d8 3538 if (ip1 != ip2)
e2aaee9c
DW
3539 inode_unlock(VFS_I(ip1));
3540}