Merge tag 'microblaze-v5.18' of git://git.monstr.eu/linux-2.6-microblaze
[linux-block.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_mount.h"
3ab78df2 15#include "xfs_defer.h"
a4fbe6ab 16#include "xfs_inode.h"
c24b5dfa 17#include "xfs_dir2.h"
c24b5dfa 18#include "xfs_attr.h"
239880ef
DC
19#include "xfs_trans_space.h"
20#include "xfs_trans.h"
1da177e4 21#include "xfs_buf_item.h"
a844f451 22#include "xfs_inode_item.h"
a844f451
NS
23#include "xfs_ialloc.h"
24#include "xfs_bmap.h"
68988114 25#include "xfs_bmap_util.h"
e9e899a2 26#include "xfs_errortag.h"
1da177e4 27#include "xfs_error.h"
1da177e4 28#include "xfs_quota.h"
2a82b8be 29#include "xfs_filestream.h"
0b1b213f 30#include "xfs_trace.h"
33479e05 31#include "xfs_icache.h"
c24b5dfa 32#include "xfs_symlink.h"
239880ef
DC
33#include "xfs_trans_priv.h"
34#include "xfs_log.h"
a4fbe6ab 35#include "xfs_bmap_btree.h"
aa8968f2 36#include "xfs_reflink.h"
9bbafc71 37#include "xfs_ag.h"
01728b44 38#include "xfs_log_priv.h"
1da177e4 39
182696fb 40struct kmem_cache *xfs_inode_cache;
1da177e4
LT
41
42/*
8f04c47a 43 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
44 * freed from a file in a single transaction.
45 */
46#define XFS_ITRUNC_MAX_EXTENTS 2
47
54d7b5c1 48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
f40aadb2
DC
49STATIC int xfs_iunlink_remove(struct xfs_trans *tp, struct xfs_perag *pag,
50 struct xfs_inode *);
ab297431 51
2a0ec1d9
DC
52/*
53 * helper function to extract extent size hint from inode
54 */
55xfs_extlen_t
56xfs_get_extsz_hint(
57 struct xfs_inode *ip)
58{
bdb2ed2d
CH
59 /*
60 * No point in aligning allocations if we need to COW to actually
61 * write to them.
62 */
63 if (xfs_is_always_cow_inode(ip))
64 return 0;
db07349d 65 if ((ip->i_diflags & XFS_DIFLAG_EXTSIZE) && ip->i_extsize)
031474c2 66 return ip->i_extsize;
2a0ec1d9
DC
67 if (XFS_IS_REALTIME_INODE(ip))
68 return ip->i_mount->m_sb.sb_rextsize;
69 return 0;
70}
71
f7ca3522
DW
72/*
73 * Helper function to extract CoW extent size hint from inode.
74 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
75 * return the greater of the two. If the value is zero (automatic),
76 * use the default size.
f7ca3522
DW
77 */
78xfs_extlen_t
79xfs_get_cowextsz_hint(
80 struct xfs_inode *ip)
81{
82 xfs_extlen_t a, b;
83
84 a = 0;
3e09ab8f 85 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
b33ce57d 86 a = ip->i_cowextsize;
f7ca3522
DW
87 b = xfs_get_extsz_hint(ip);
88
e153aa79
DW
89 a = max(a, b);
90 if (a == 0)
91 return XFS_DEFAULT_COWEXTSZ_HINT;
92 return a;
f7ca3522
DW
93}
94
fa96acad 95/*
efa70be1
CH
96 * These two are wrapper routines around the xfs_ilock() routine used to
97 * centralize some grungy code. They are used in places that wish to lock the
98 * inode solely for reading the extents. The reason these places can't just
99 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
100 * bringing in of the extents from disk for a file in b-tree format. If the
101 * inode is in b-tree format, then we need to lock the inode exclusively until
102 * the extents are read in. Locking it exclusively all the time would limit
103 * our parallelism unnecessarily, though. What we do instead is check to see
104 * if the extents have been read in yet, and only lock the inode exclusively
105 * if they have not.
fa96acad 106 *
efa70be1 107 * The functions return a value which should be given to the corresponding
01f4f327 108 * xfs_iunlock() call.
fa96acad
DC
109 */
110uint
309ecac8
CH
111xfs_ilock_data_map_shared(
112 struct xfs_inode *ip)
fa96acad 113{
309ecac8 114 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 115
b2197a36 116 if (xfs_need_iread_extents(&ip->i_df))
fa96acad 117 lock_mode = XFS_ILOCK_EXCL;
fa96acad 118 xfs_ilock(ip, lock_mode);
fa96acad
DC
119 return lock_mode;
120}
121
efa70be1
CH
122uint
123xfs_ilock_attr_map_shared(
124 struct xfs_inode *ip)
fa96acad 125{
efa70be1
CH
126 uint lock_mode = XFS_ILOCK_SHARED;
127
b2197a36 128 if (ip->i_afp && xfs_need_iread_extents(ip->i_afp))
efa70be1
CH
129 lock_mode = XFS_ILOCK_EXCL;
130 xfs_ilock(ip, lock_mode);
131 return lock_mode;
fa96acad
DC
132}
133
134/*
65523218 135 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
2433480a 136 * multi-reader locks: invalidate_lock and the i_lock. This routine allows
65523218 137 * various combinations of the locks to be obtained.
fa96acad 138 *
653c60b6
DC
139 * The 3 locks should always be ordered so that the IO lock is obtained first,
140 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 141 *
653c60b6
DC
142 * Basic locking order:
143 *
2433480a 144 * i_rwsem -> invalidate_lock -> page_lock -> i_ilock
653c60b6 145 *
c1e8d7c6 146 * mmap_lock locking order:
653c60b6 147 *
c1e8d7c6 148 * i_rwsem -> page lock -> mmap_lock
2433480a 149 * mmap_lock -> invalidate_lock -> page_lock
653c60b6 150 *
c1e8d7c6 151 * The difference in mmap_lock locking order mean that we cannot hold the
2433480a
JK
152 * invalidate_lock over syscall based read(2)/write(2) based IO. These IO paths
153 * can fault in pages during copy in/out (for buffered IO) or require the
154 * mmap_lock in get_user_pages() to map the user pages into the kernel address
155 * space for direct IO. Similarly the i_rwsem cannot be taken inside a page
156 * fault because page faults already hold the mmap_lock.
653c60b6
DC
157 *
158 * Hence to serialise fully against both syscall and mmap based IO, we need to
2433480a
JK
159 * take both the i_rwsem and the invalidate_lock. These locks should *only* be
160 * both taken in places where we need to invalidate the page cache in a race
653c60b6
DC
161 * free manner (e.g. truncate, hole punch and other extent manipulation
162 * functions).
fa96acad
DC
163 */
164void
165xfs_ilock(
166 xfs_inode_t *ip,
167 uint lock_flags)
168{
169 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
170
171 /*
172 * You can't set both SHARED and EXCL for the same lock,
173 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
174 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
175 */
176 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
177 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
178 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
179 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
180 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
181 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 182 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 183
65523218
CH
184 if (lock_flags & XFS_IOLOCK_EXCL) {
185 down_write_nested(&VFS_I(ip)->i_rwsem,
186 XFS_IOLOCK_DEP(lock_flags));
187 } else if (lock_flags & XFS_IOLOCK_SHARED) {
188 down_read_nested(&VFS_I(ip)->i_rwsem,
189 XFS_IOLOCK_DEP(lock_flags));
190 }
fa96acad 191
2433480a
JK
192 if (lock_flags & XFS_MMAPLOCK_EXCL) {
193 down_write_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
194 XFS_MMAPLOCK_DEP(lock_flags));
195 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
196 down_read_nested(&VFS_I(ip)->i_mapping->invalidate_lock,
197 XFS_MMAPLOCK_DEP(lock_flags));
198 }
653c60b6 199
fa96acad
DC
200 if (lock_flags & XFS_ILOCK_EXCL)
201 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
202 else if (lock_flags & XFS_ILOCK_SHARED)
203 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
204}
205
206/*
207 * This is just like xfs_ilock(), except that the caller
208 * is guaranteed not to sleep. It returns 1 if it gets
209 * the requested locks and 0 otherwise. If the IO lock is
210 * obtained but the inode lock cannot be, then the IO lock
211 * is dropped before returning.
212 *
213 * ip -- the inode being locked
214 * lock_flags -- this parameter indicates the inode's locks to be
215 * to be locked. See the comment for xfs_ilock() for a list
216 * of valid values.
217 */
218int
219xfs_ilock_nowait(
220 xfs_inode_t *ip,
221 uint lock_flags)
222{
223 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
224
225 /*
226 * You can't set both SHARED and EXCL for the same lock,
227 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
228 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
229 */
230 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
231 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
232 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
233 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
234 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
235 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 236 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
237
238 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 239 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
240 goto out;
241 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 242 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
243 goto out;
244 }
653c60b6
DC
245
246 if (lock_flags & XFS_MMAPLOCK_EXCL) {
2433480a 247 if (!down_write_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
653c60b6
DC
248 goto out_undo_iolock;
249 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
2433480a 250 if (!down_read_trylock(&VFS_I(ip)->i_mapping->invalidate_lock))
653c60b6
DC
251 goto out_undo_iolock;
252 }
253
fa96acad
DC
254 if (lock_flags & XFS_ILOCK_EXCL) {
255 if (!mrtryupdate(&ip->i_lock))
653c60b6 256 goto out_undo_mmaplock;
fa96acad
DC
257 } else if (lock_flags & XFS_ILOCK_SHARED) {
258 if (!mrtryaccess(&ip->i_lock))
653c60b6 259 goto out_undo_mmaplock;
fa96acad
DC
260 }
261 return 1;
262
653c60b6
DC
263out_undo_mmaplock:
264 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 265 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 266 else if (lock_flags & XFS_MMAPLOCK_SHARED)
2433480a 267 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 268out_undo_iolock:
fa96acad 269 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 270 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 271 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 272 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 273out:
fa96acad
DC
274 return 0;
275}
276
277/*
278 * xfs_iunlock() is used to drop the inode locks acquired with
279 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
280 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
281 * that we know which locks to drop.
282 *
283 * ip -- the inode being unlocked
284 * lock_flags -- this parameter indicates the inode's locks to be
285 * to be unlocked. See the comment for xfs_ilock() for a list
286 * of valid values for this parameter.
287 *
288 */
289void
290xfs_iunlock(
291 xfs_inode_t *ip,
292 uint lock_flags)
293{
294 /*
295 * You can't set both SHARED and EXCL for the same lock,
296 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
297 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
298 */
299 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
300 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
301 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
302 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
303 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
304 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 305 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
306 ASSERT(lock_flags != 0);
307
308 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 309 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 310 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 311 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 312
653c60b6 313 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 314 up_write(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 315 else if (lock_flags & XFS_MMAPLOCK_SHARED)
2433480a 316 up_read(&VFS_I(ip)->i_mapping->invalidate_lock);
653c60b6 317
fa96acad
DC
318 if (lock_flags & XFS_ILOCK_EXCL)
319 mrunlock_excl(&ip->i_lock);
320 else if (lock_flags & XFS_ILOCK_SHARED)
321 mrunlock_shared(&ip->i_lock);
322
323 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
324}
325
326/*
327 * give up write locks. the i/o lock cannot be held nested
328 * if it is being demoted.
329 */
330void
331xfs_ilock_demote(
332 xfs_inode_t *ip,
333 uint lock_flags)
334{
653c60b6
DC
335 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
336 ASSERT((lock_flags &
337 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
338
339 if (lock_flags & XFS_ILOCK_EXCL)
340 mrdemote(&ip->i_lock);
653c60b6 341 if (lock_flags & XFS_MMAPLOCK_EXCL)
2433480a 342 downgrade_write(&VFS_I(ip)->i_mapping->invalidate_lock);
fa96acad 343 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 344 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
345
346 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
347}
348
742ae1e3 349#if defined(DEBUG) || defined(XFS_WARN)
e31cbde7
PR
350static inline bool
351__xfs_rwsem_islocked(
352 struct rw_semaphore *rwsem,
353 bool shared)
354{
355 if (!debug_locks)
356 return rwsem_is_locked(rwsem);
357
358 if (!shared)
359 return lockdep_is_held_type(rwsem, 0);
360
361 /*
362 * We are checking that the lock is held at least in shared
363 * mode but don't care that it might be held exclusively
364 * (i.e. shared | excl). Hence we check if the lock is held
365 * in any mode rather than an explicit shared mode.
366 */
367 return lockdep_is_held_type(rwsem, -1);
368}
369
370bool
fa96acad 371xfs_isilocked(
e31cbde7 372 struct xfs_inode *ip,
fa96acad
DC
373 uint lock_flags)
374{
375 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
376 if (!(lock_flags & XFS_ILOCK_SHARED))
377 return !!ip->i_lock.mr_writer;
378 return rwsem_is_locked(&ip->i_lock.mr_lock);
379 }
380
653c60b6 381 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
2433480a
JK
382 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
383 (lock_flags & XFS_IOLOCK_SHARED));
653c60b6
DC
384 }
385
e31cbde7
PR
386 if (lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) {
387 return __xfs_rwsem_islocked(&VFS_I(ip)->i_rwsem,
388 (lock_flags & XFS_IOLOCK_SHARED));
fa96acad
DC
389 }
390
391 ASSERT(0);
e31cbde7 392 return false;
fa96acad
DC
393}
394#endif
395
b6a9947e
DC
396/*
397 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
398 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
399 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
400 * errors and warnings.
401 */
402#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
403static bool
404xfs_lockdep_subclass_ok(
405 int subclass)
406{
407 return subclass < MAX_LOCKDEP_SUBCLASSES;
408}
409#else
410#define xfs_lockdep_subclass_ok(subclass) (true)
411#endif
412
c24b5dfa 413/*
653c60b6 414 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
415 * value. This can be called for any type of inode lock combination, including
416 * parent locking. Care must be taken to ensure we don't overrun the subclass
417 * storage fields in the class mask we build.
c24b5dfa
DC
418 */
419static inline int
420xfs_lock_inumorder(int lock_mode, int subclass)
421{
0952c818
DC
422 int class = 0;
423
424 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
425 XFS_ILOCK_RTSUM)));
3403ccc0 426 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 427
653c60b6 428 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 429 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 430 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
431 }
432
433 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
434 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
435 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
436 }
437
0952c818
DC
438 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
439 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
440 class += subclass << XFS_ILOCK_SHIFT;
441 }
c24b5dfa 442
0952c818 443 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
444}
445
446/*
95afcf5c
DC
447 * The following routine will lock n inodes in exclusive mode. We assume the
448 * caller calls us with the inodes in i_ino order.
c24b5dfa 449 *
95afcf5c
DC
450 * We need to detect deadlock where an inode that we lock is in the AIL and we
451 * start waiting for another inode that is locked by a thread in a long running
452 * transaction (such as truncate). This can result in deadlock since the long
453 * running trans might need to wait for the inode we just locked in order to
454 * push the tail and free space in the log.
0952c818
DC
455 *
456 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
457 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
458 * lock more than one at a time, lockdep will report false positives saying we
459 * have violated locking orders.
c24b5dfa 460 */
0d5a75e9 461static void
c24b5dfa 462xfs_lock_inodes(
efe2330f
CH
463 struct xfs_inode **ips,
464 int inodes,
465 uint lock_mode)
c24b5dfa 466{
efe2330f
CH
467 int attempts = 0, i, j, try_lock;
468 struct xfs_log_item *lp;
c24b5dfa 469
0952c818
DC
470 /*
471 * Currently supports between 2 and 5 inodes with exclusive locking. We
472 * support an arbitrary depth of locking here, but absolute limits on
b63da6c8 473 * inodes depend on the type of locking and the limits placed by
0952c818
DC
474 * lockdep annotations in xfs_lock_inumorder. These are all checked by
475 * the asserts.
476 */
95afcf5c 477 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
478 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
479 XFS_ILOCK_EXCL));
480 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
481 XFS_ILOCK_SHARED)));
0952c818
DC
482 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
483 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
484 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
485 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
486
487 if (lock_mode & XFS_IOLOCK_EXCL) {
488 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
489 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
490 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
491
492 try_lock = 0;
493 i = 0;
c24b5dfa
DC
494again:
495 for (; i < inodes; i++) {
496 ASSERT(ips[i]);
497
95afcf5c 498 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
499 continue;
500
501 /*
95afcf5c
DC
502 * If try_lock is not set yet, make sure all locked inodes are
503 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 504 */
c24b5dfa
DC
505 if (!try_lock) {
506 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 507 lp = &ips[j]->i_itemp->ili_item;
22525c17 508 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 509 try_lock++;
c24b5dfa
DC
510 }
511 }
512
513 /*
514 * If any of the previous locks we have locked is in the AIL,
515 * we must TRY to get the second and subsequent locks. If
516 * we can't get any, we must release all we have
517 * and try again.
518 */
95afcf5c
DC
519 if (!try_lock) {
520 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
521 continue;
522 }
523
524 /* try_lock means we have an inode locked that is in the AIL. */
525 ASSERT(i != 0);
526 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
527 continue;
c24b5dfa 528
95afcf5c
DC
529 /*
530 * Unlock all previous guys and try again. xfs_iunlock will try
531 * to push the tail if the inode is in the AIL.
532 */
533 attempts++;
534 for (j = i - 1; j >= 0; j--) {
c24b5dfa 535 /*
95afcf5c
DC
536 * Check to see if we've already unlocked this one. Not
537 * the first one going back, and the inode ptr is the
538 * same.
c24b5dfa 539 */
95afcf5c
DC
540 if (j != (i - 1) && ips[j] == ips[j + 1])
541 continue;
c24b5dfa 542
95afcf5c
DC
543 xfs_iunlock(ips[j], lock_mode);
544 }
c24b5dfa 545
95afcf5c
DC
546 if ((attempts % 5) == 0) {
547 delay(1); /* Don't just spin the CPU */
c24b5dfa 548 }
95afcf5c
DC
549 i = 0;
550 try_lock = 0;
551 goto again;
c24b5dfa 552 }
c24b5dfa
DC
553}
554
555/*
d2c292d8
JK
556 * xfs_lock_two_inodes() can only be used to lock ilock. The iolock and
557 * mmaplock must be double-locked separately since we use i_rwsem and
558 * invalidate_lock for that. We now support taking one lock EXCL and the
559 * other SHARED.
c24b5dfa
DC
560 */
561void
562xfs_lock_two_inodes(
7c2d238a
DW
563 struct xfs_inode *ip0,
564 uint ip0_mode,
565 struct xfs_inode *ip1,
566 uint ip1_mode)
c24b5dfa 567{
c24b5dfa 568 int attempts = 0;
efe2330f 569 struct xfs_log_item *lp;
c24b5dfa 570
7c2d238a
DW
571 ASSERT(hweight32(ip0_mode) == 1);
572 ASSERT(hweight32(ip1_mode) == 1);
573 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
574 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
d2c292d8
JK
575 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
576 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
c24b5dfa
DC
577 ASSERT(ip0->i_ino != ip1->i_ino);
578
579 if (ip0->i_ino > ip1->i_ino) {
2a09b575
CD
580 swap(ip0, ip1);
581 swap(ip0_mode, ip1_mode);
c24b5dfa
DC
582 }
583
584 again:
7c2d238a 585 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
586
587 /*
588 * If the first lock we have locked is in the AIL, we must TRY to get
589 * the second lock. If we can't get it, we must release the first one
590 * and try again.
591 */
b3b14aac 592 lp = &ip0->i_itemp->ili_item;
22525c17 593 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
594 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
595 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
596 if ((++attempts % 5) == 0)
597 delay(1); /* Don't just spin the CPU */
598 goto again;
599 }
600 } else {
7c2d238a 601 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
602 }
603}
604
4422501d
CH
605uint
606xfs_ip2xflags(
607 struct xfs_inode *ip)
1da177e4
LT
608{
609 uint flags = 0;
610
4422501d
CH
611 if (ip->i_diflags & XFS_DIFLAG_ANY) {
612 if (ip->i_diflags & XFS_DIFLAG_REALTIME)
e7b89481 613 flags |= FS_XFLAG_REALTIME;
4422501d 614 if (ip->i_diflags & XFS_DIFLAG_PREALLOC)
e7b89481 615 flags |= FS_XFLAG_PREALLOC;
4422501d 616 if (ip->i_diflags & XFS_DIFLAG_IMMUTABLE)
e7b89481 617 flags |= FS_XFLAG_IMMUTABLE;
4422501d 618 if (ip->i_diflags & XFS_DIFLAG_APPEND)
e7b89481 619 flags |= FS_XFLAG_APPEND;
4422501d 620 if (ip->i_diflags & XFS_DIFLAG_SYNC)
e7b89481 621 flags |= FS_XFLAG_SYNC;
4422501d 622 if (ip->i_diflags & XFS_DIFLAG_NOATIME)
e7b89481 623 flags |= FS_XFLAG_NOATIME;
4422501d 624 if (ip->i_diflags & XFS_DIFLAG_NODUMP)
e7b89481 625 flags |= FS_XFLAG_NODUMP;
4422501d 626 if (ip->i_diflags & XFS_DIFLAG_RTINHERIT)
e7b89481 627 flags |= FS_XFLAG_RTINHERIT;
4422501d 628 if (ip->i_diflags & XFS_DIFLAG_PROJINHERIT)
e7b89481 629 flags |= FS_XFLAG_PROJINHERIT;
4422501d 630 if (ip->i_diflags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 631 flags |= FS_XFLAG_NOSYMLINKS;
4422501d 632 if (ip->i_diflags & XFS_DIFLAG_EXTSIZE)
e7b89481 633 flags |= FS_XFLAG_EXTSIZE;
4422501d 634 if (ip->i_diflags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 635 flags |= FS_XFLAG_EXTSZINHERIT;
4422501d 636 if (ip->i_diflags & XFS_DIFLAG_NODEFRAG)
e7b89481 637 flags |= FS_XFLAG_NODEFRAG;
4422501d 638 if (ip->i_diflags & XFS_DIFLAG_FILESTREAM)
e7b89481 639 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
640 }
641
4422501d
CH
642 if (ip->i_diflags2 & XFS_DIFLAG2_ANY) {
643 if (ip->i_diflags2 & XFS_DIFLAG2_DAX)
58f88ca2 644 flags |= FS_XFLAG_DAX;
4422501d 645 if (ip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE)
f7ca3522 646 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
647 }
648
4422501d 649 if (XFS_IFORK_Q(ip))
58f88ca2 650 flags |= FS_XFLAG_HASATTR;
1da177e4
LT
651 return flags;
652}
653
c24b5dfa
DC
654/*
655 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
656 * is allowed, otherwise it has to be an exact match. If a CI match is found,
657 * ci_name->name will point to a the actual name (caller must free) or
658 * will be set to NULL if an exact match is found.
659 */
660int
661xfs_lookup(
996b2329
DW
662 struct xfs_inode *dp,
663 const struct xfs_name *name,
664 struct xfs_inode **ipp,
c24b5dfa
DC
665 struct xfs_name *ci_name)
666{
667 xfs_ino_t inum;
668 int error;
c24b5dfa
DC
669
670 trace_xfs_lookup(dp, name);
671
75c8c50f 672 if (xfs_is_shutdown(dp->i_mount))
2451337d 673 return -EIO;
c24b5dfa 674
c24b5dfa 675 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 676 if (error)
dbad7c99 677 goto out_unlock;
c24b5dfa
DC
678
679 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
680 if (error)
681 goto out_free_name;
682
683 return 0;
684
685out_free_name:
686 if (ci_name)
687 kmem_free(ci_name->name);
dbad7c99 688out_unlock:
c24b5dfa
DC
689 *ipp = NULL;
690 return error;
691}
692
8a569d71
DW
693/* Propagate di_flags from a parent inode to a child inode. */
694static void
695xfs_inode_inherit_flags(
696 struct xfs_inode *ip,
697 const struct xfs_inode *pip)
698{
699 unsigned int di_flags = 0;
603f000b 700 xfs_failaddr_t failaddr;
8a569d71
DW
701 umode_t mode = VFS_I(ip)->i_mode;
702
703 if (S_ISDIR(mode)) {
db07349d 704 if (pip->i_diflags & XFS_DIFLAG_RTINHERIT)
8a569d71 705 di_flags |= XFS_DIFLAG_RTINHERIT;
db07349d 706 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
8a569d71 707 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
031474c2 708 ip->i_extsize = pip->i_extsize;
8a569d71 709 }
db07349d 710 if (pip->i_diflags & XFS_DIFLAG_PROJINHERIT)
8a569d71
DW
711 di_flags |= XFS_DIFLAG_PROJINHERIT;
712 } else if (S_ISREG(mode)) {
db07349d 713 if ((pip->i_diflags & XFS_DIFLAG_RTINHERIT) &&
38c26bfd 714 xfs_has_realtime(ip->i_mount))
8a569d71 715 di_flags |= XFS_DIFLAG_REALTIME;
db07349d 716 if (pip->i_diflags & XFS_DIFLAG_EXTSZINHERIT) {
8a569d71 717 di_flags |= XFS_DIFLAG_EXTSIZE;
031474c2 718 ip->i_extsize = pip->i_extsize;
8a569d71
DW
719 }
720 }
db07349d 721 if ((pip->i_diflags & XFS_DIFLAG_NOATIME) &&
8a569d71
DW
722 xfs_inherit_noatime)
723 di_flags |= XFS_DIFLAG_NOATIME;
db07349d 724 if ((pip->i_diflags & XFS_DIFLAG_NODUMP) &&
8a569d71
DW
725 xfs_inherit_nodump)
726 di_flags |= XFS_DIFLAG_NODUMP;
db07349d 727 if ((pip->i_diflags & XFS_DIFLAG_SYNC) &&
8a569d71
DW
728 xfs_inherit_sync)
729 di_flags |= XFS_DIFLAG_SYNC;
db07349d 730 if ((pip->i_diflags & XFS_DIFLAG_NOSYMLINKS) &&
8a569d71
DW
731 xfs_inherit_nosymlinks)
732 di_flags |= XFS_DIFLAG_NOSYMLINKS;
db07349d 733 if ((pip->i_diflags & XFS_DIFLAG_NODEFRAG) &&
8a569d71
DW
734 xfs_inherit_nodefrag)
735 di_flags |= XFS_DIFLAG_NODEFRAG;
db07349d 736 if (pip->i_diflags & XFS_DIFLAG_FILESTREAM)
8a569d71
DW
737 di_flags |= XFS_DIFLAG_FILESTREAM;
738
db07349d 739 ip->i_diflags |= di_flags;
603f000b
DW
740
741 /*
742 * Inode verifiers on older kernels only check that the extent size
743 * hint is an integer multiple of the rt extent size on realtime files.
744 * They did not check the hint alignment on a directory with both
745 * rtinherit and extszinherit flags set. If the misaligned hint is
746 * propagated from a directory into a new realtime file, new file
747 * allocations will fail due to math errors in the rt allocator and/or
748 * trip the verifiers. Validate the hint settings in the new file so
749 * that we don't let broken hints propagate.
750 */
751 failaddr = xfs_inode_validate_extsize(ip->i_mount, ip->i_extsize,
752 VFS_I(ip)->i_mode, ip->i_diflags);
753 if (failaddr) {
754 ip->i_diflags &= ~(XFS_DIFLAG_EXTSIZE |
755 XFS_DIFLAG_EXTSZINHERIT);
756 ip->i_extsize = 0;
757 }
8a569d71
DW
758}
759
760/* Propagate di_flags2 from a parent inode to a child inode. */
761static void
762xfs_inode_inherit_flags2(
763 struct xfs_inode *ip,
764 const struct xfs_inode *pip)
765{
603f000b
DW
766 xfs_failaddr_t failaddr;
767
3e09ab8f
CH
768 if (pip->i_diflags2 & XFS_DIFLAG2_COWEXTSIZE) {
769 ip->i_diflags2 |= XFS_DIFLAG2_COWEXTSIZE;
b33ce57d 770 ip->i_cowextsize = pip->i_cowextsize;
8a569d71 771 }
3e09ab8f
CH
772 if (pip->i_diflags2 & XFS_DIFLAG2_DAX)
773 ip->i_diflags2 |= XFS_DIFLAG2_DAX;
603f000b
DW
774
775 /* Don't let invalid cowextsize hints propagate. */
776 failaddr = xfs_inode_validate_cowextsize(ip->i_mount, ip->i_cowextsize,
777 VFS_I(ip)->i_mode, ip->i_diflags, ip->i_diflags2);
778 if (failaddr) {
779 ip->i_diflags2 &= ~XFS_DIFLAG2_COWEXTSIZE;
780 ip->i_cowextsize = 0;
781 }
8a569d71
DW
782}
783
1da177e4 784/*
1abcf261
DC
785 * Initialise a newly allocated inode and return the in-core inode to the
786 * caller locked exclusively.
1da177e4 787 */
b652afd9 788int
1abcf261 789xfs_init_new_inode(
f736d93d 790 struct user_namespace *mnt_userns,
1abcf261
DC
791 struct xfs_trans *tp,
792 struct xfs_inode *pip,
793 xfs_ino_t ino,
794 umode_t mode,
795 xfs_nlink_t nlink,
796 dev_t rdev,
797 prid_t prid,
e6a688c3 798 bool init_xattrs,
1abcf261 799 struct xfs_inode **ipp)
1da177e4 800{
01ea173e 801 struct inode *dir = pip ? VFS_I(pip) : NULL;
1abcf261
DC
802 struct xfs_mount *mp = tp->t_mountp;
803 struct xfs_inode *ip;
804 unsigned int flags;
805 int error;
806 struct timespec64 tv;
807 struct inode *inode;
1da177e4 808
8b26984d
DC
809 /*
810 * Protect against obviously corrupt allocation btree records. Later
811 * xfs_iget checks will catch re-allocation of other active in-memory
812 * and on-disk inodes. If we don't catch reallocating the parent inode
813 * here we will deadlock in xfs_iget() so we have to do these checks
814 * first.
815 */
816 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
817 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
818 return -EFSCORRUPTED;
819 }
820
1da177e4 821 /*
1abcf261
DC
822 * Get the in-core inode with the lock held exclusively to prevent
823 * others from looking at until we're done.
1da177e4 824 */
1abcf261 825 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
bf904248 826 if (error)
1da177e4 827 return error;
1abcf261 828
1da177e4 829 ASSERT(ip != NULL);
3987848c 830 inode = VFS_I(ip);
54d7b5c1 831 set_nlink(inode, nlink);
66f36464 832 inode->i_rdev = rdev;
ceaf603c 833 ip->i_projid = prid;
1da177e4 834
0560f31a 835 if (dir && !(dir->i_mode & S_ISGID) && xfs_has_grpid(mp)) {
db998553 836 inode_fsuid_set(inode, mnt_userns);
01ea173e
CH
837 inode->i_gid = dir->i_gid;
838 inode->i_mode = mode;
3d8f2821 839 } else {
7d6beb71 840 inode_init_owner(mnt_userns, inode, dir, mode);
1da177e4
LT
841 }
842
843 /*
844 * If the group ID of the new file does not match the effective group
845 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
846 * (and only if the irix_sgid_inherit compatibility variable is set).
847 */
54295159 848 if (irix_sgid_inherit &&
f736d93d
CH
849 (inode->i_mode & S_ISGID) &&
850 !in_group_p(i_gid_into_mnt(mnt_userns, inode)))
c19b3b05 851 inode->i_mode &= ~S_ISGID;
1da177e4 852
13d2c10b 853 ip->i_disk_size = 0;
daf83964 854 ip->i_df.if_nextents = 0;
6e73a545 855 ASSERT(ip->i_nblocks == 0);
dff35fd4 856
c2050a45 857 tv = current_time(inode);
3987848c
DC
858 inode->i_mtime = tv;
859 inode->i_atime = tv;
860 inode->i_ctime = tv;
dff35fd4 861
031474c2 862 ip->i_extsize = 0;
db07349d 863 ip->i_diflags = 0;
93848a99 864
38c26bfd 865 if (xfs_has_v3inodes(mp)) {
f0e28280 866 inode_set_iversion(inode, 1);
b33ce57d 867 ip->i_cowextsize = 0;
e98d5e88 868 ip->i_crtime = tv;
93848a99
CH
869 }
870
1da177e4
LT
871 flags = XFS_ILOG_CORE;
872 switch (mode & S_IFMT) {
873 case S_IFIFO:
874 case S_IFCHR:
875 case S_IFBLK:
876 case S_IFSOCK:
f7e67b20 877 ip->i_df.if_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
878 flags |= XFS_ILOG_DEV;
879 break;
880 case S_IFREG:
881 case S_IFDIR:
db07349d 882 if (pip && (pip->i_diflags & XFS_DIFLAG_ANY))
8a569d71 883 xfs_inode_inherit_flags(ip, pip);
3e09ab8f 884 if (pip && (pip->i_diflags2 & XFS_DIFLAG2_ANY))
8a569d71 885 xfs_inode_inherit_flags2(ip, pip);
53004ee7 886 fallthrough;
1da177e4 887 case S_IFLNK:
f7e67b20 888 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
fcacbc3f 889 ip->i_df.if_bytes = 0;
6bdcf26a 890 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
891 break;
892 default:
893 ASSERT(0);
894 }
1da177e4 895
e6a688c3
DC
896 /*
897 * If we need to create attributes immediately after allocating the
898 * inode, initialise an empty attribute fork right now. We use the
899 * default fork offset for attributes here as we don't know exactly what
900 * size or how many attributes we might be adding. We can do this
901 * safely here because we know the data fork is completely empty and
902 * this saves us from needing to run a separate transaction to set the
903 * fork offset in the immediate future.
904 */
38c26bfd 905 if (init_xattrs && xfs_has_attr(mp)) {
7821ea30 906 ip->i_forkoff = xfs_default_attroffset(ip) >> 3;
e6a688c3
DC
907 ip->i_afp = xfs_ifork_alloc(XFS_DINODE_FMT_EXTENTS, 0);
908 }
909
1da177e4
LT
910 /*
911 * Log the new values stuffed into the inode.
912 */
ddc3415a 913 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
914 xfs_trans_log_inode(tp, ip, flags);
915
58c90473 916 /* now that we have an i_mode we can setup the inode structure */
41be8bed 917 xfs_setup_inode(ip);
1da177e4
LT
918
919 *ipp = ip;
920 return 0;
921}
922
e546cb79 923/*
54d7b5c1
DC
924 * Decrement the link count on an inode & log the change. If this causes the
925 * link count to go to zero, move the inode to AGI unlinked list so that it can
926 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 927 */
0d5a75e9 928static int /* error */
e546cb79
DC
929xfs_droplink(
930 xfs_trans_t *tp,
931 xfs_inode_t *ip)
932{
e546cb79
DC
933 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
934
e546cb79
DC
935 drop_nlink(VFS_I(ip));
936 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
937
54d7b5c1
DC
938 if (VFS_I(ip)->i_nlink)
939 return 0;
940
941 return xfs_iunlink(tp, ip);
e546cb79
DC
942}
943
e546cb79
DC
944/*
945 * Increment the link count on an inode & log the change.
946 */
91083269 947static void
e546cb79
DC
948xfs_bumplink(
949 xfs_trans_t *tp,
950 xfs_inode_t *ip)
951{
952 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
953
e546cb79 954 inc_nlink(VFS_I(ip));
e546cb79 955 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
956}
957
c24b5dfa
DC
958int
959xfs_create(
f736d93d 960 struct user_namespace *mnt_userns,
c24b5dfa
DC
961 xfs_inode_t *dp,
962 struct xfs_name *name,
963 umode_t mode,
66f36464 964 dev_t rdev,
e6a688c3 965 bool init_xattrs,
c24b5dfa
DC
966 xfs_inode_t **ipp)
967{
968 int is_dir = S_ISDIR(mode);
969 struct xfs_mount *mp = dp->i_mount;
970 struct xfs_inode *ip = NULL;
971 struct xfs_trans *tp = NULL;
972 int error;
c24b5dfa 973 bool unlock_dp_on_error = false;
c24b5dfa
DC
974 prid_t prid;
975 struct xfs_dquot *udqp = NULL;
976 struct xfs_dquot *gdqp = NULL;
977 struct xfs_dquot *pdqp = NULL;
062647a8 978 struct xfs_trans_res *tres;
c24b5dfa 979 uint resblks;
b652afd9 980 xfs_ino_t ino;
c24b5dfa
DC
981
982 trace_xfs_create(dp, name);
983
75c8c50f 984 if (xfs_is_shutdown(mp))
2451337d 985 return -EIO;
c24b5dfa 986
163467d3 987 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
988
989 /*
990 * Make sure that we have allocated dquot(s) on disk.
991 */
209188ce
CB
992 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
993 mapped_fsgid(mnt_userns, &init_user_ns), prid,
b5a08423
DW
994 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
995 &udqp, &gdqp, &pdqp);
c24b5dfa
DC
996 if (error)
997 return error;
998
999 if (is_dir) {
c24b5dfa 1000 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1001 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1002 } else {
1003 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1004 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1005 }
1006
c24b5dfa
DC
1007 /*
1008 * Initially assume that the file does not exist and
1009 * reserve the resources for that case. If that is not
1010 * the case we'll drop the one we have and get a more
1011 * appropriate transaction later.
1012 */
f2f7b9ff
DW
1013 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1014 &tp);
2451337d 1015 if (error == -ENOSPC) {
c24b5dfa
DC
1016 /* flush outstanding delalloc blocks and retry */
1017 xfs_flush_inodes(mp);
f2f7b9ff
DW
1018 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp,
1019 resblks, &tp);
c24b5dfa 1020 }
4906e215 1021 if (error)
f2f7b9ff 1022 goto out_release_dquots;
c24b5dfa 1023
65523218 1024 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1025 unlock_dp_on_error = true;
1026
f5d92749
CB
1027 error = xfs_iext_count_may_overflow(dp, XFS_DATA_FORK,
1028 XFS_IEXT_DIR_MANIP_CNT(mp));
1029 if (error)
1030 goto out_trans_cancel;
1031
c24b5dfa
DC
1032 /*
1033 * A newly created regular or special file just has one directory
1034 * entry pointing to them, but a directory also the "." entry
1035 * pointing to itself.
1036 */
b652afd9
DC
1037 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1038 if (!error)
1039 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1040 is_dir ? 2 : 1, rdev, prid, init_xattrs, &ip);
d6077aa3 1041 if (error)
4906e215 1042 goto out_trans_cancel;
c24b5dfa
DC
1043
1044 /*
1045 * Now we join the directory inode to the transaction. We do not do it
b652afd9 1046 * earlier because xfs_dialloc might commit the previous transaction
c24b5dfa
DC
1047 * (and release all the locks). An error from here on will result in
1048 * the transaction cancel unlocking dp so don't do it explicitly in the
1049 * error path.
1050 */
65523218 1051 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1052 unlock_dp_on_error = false;
1053
381eee69 1054 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
63337b63 1055 resblks - XFS_IALLOC_SPACE_RES(mp));
c24b5dfa 1056 if (error) {
2451337d 1057 ASSERT(error != -ENOSPC);
4906e215 1058 goto out_trans_cancel;
c24b5dfa
DC
1059 }
1060 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1061 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1062
1063 if (is_dir) {
1064 error = xfs_dir_init(tp, ip, dp);
1065 if (error)
c8eac49e 1066 goto out_trans_cancel;
c24b5dfa 1067
91083269 1068 xfs_bumplink(tp, dp);
c24b5dfa
DC
1069 }
1070
1071 /*
1072 * If this is a synchronous mount, make sure that the
1073 * create transaction goes to disk before returning to
1074 * the user.
1075 */
0560f31a 1076 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa
DC
1077 xfs_trans_set_sync(tp);
1078
1079 /*
1080 * Attach the dquot(s) to the inodes and modify them incore.
1081 * These ids of the inode couldn't have changed since the new
1082 * inode has been locked ever since it was created.
1083 */
1084 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1085
70393313 1086 error = xfs_trans_commit(tp);
c24b5dfa
DC
1087 if (error)
1088 goto out_release_inode;
1089
1090 xfs_qm_dqrele(udqp);
1091 xfs_qm_dqrele(gdqp);
1092 xfs_qm_dqrele(pdqp);
1093
1094 *ipp = ip;
1095 return 0;
1096
c24b5dfa 1097 out_trans_cancel:
4906e215 1098 xfs_trans_cancel(tp);
c24b5dfa
DC
1099 out_release_inode:
1100 /*
58c90473
DC
1101 * Wait until after the current transaction is aborted to finish the
1102 * setup of the inode and release the inode. This prevents recursive
1103 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1104 */
58c90473
DC
1105 if (ip) {
1106 xfs_finish_inode_setup(ip);
44a8736b 1107 xfs_irele(ip);
58c90473 1108 }
f2f7b9ff 1109 out_release_dquots:
c24b5dfa
DC
1110 xfs_qm_dqrele(udqp);
1111 xfs_qm_dqrele(gdqp);
1112 xfs_qm_dqrele(pdqp);
1113
1114 if (unlock_dp_on_error)
65523218 1115 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1116 return error;
1117}
1118
99b6436b
ZYW
1119int
1120xfs_create_tmpfile(
f736d93d 1121 struct user_namespace *mnt_userns,
99b6436b 1122 struct xfs_inode *dp,
330033d6
BF
1123 umode_t mode,
1124 struct xfs_inode **ipp)
99b6436b
ZYW
1125{
1126 struct xfs_mount *mp = dp->i_mount;
1127 struct xfs_inode *ip = NULL;
1128 struct xfs_trans *tp = NULL;
1129 int error;
99b6436b
ZYW
1130 prid_t prid;
1131 struct xfs_dquot *udqp = NULL;
1132 struct xfs_dquot *gdqp = NULL;
1133 struct xfs_dquot *pdqp = NULL;
1134 struct xfs_trans_res *tres;
1135 uint resblks;
b652afd9 1136 xfs_ino_t ino;
99b6436b 1137
75c8c50f 1138 if (xfs_is_shutdown(mp))
2451337d 1139 return -EIO;
99b6436b
ZYW
1140
1141 prid = xfs_get_initial_prid(dp);
1142
1143 /*
1144 * Make sure that we have allocated dquot(s) on disk.
1145 */
209188ce
CB
1146 error = xfs_qm_vop_dqalloc(dp, mapped_fsuid(mnt_userns, &init_user_ns),
1147 mapped_fsgid(mnt_userns, &init_user_ns), prid,
b5a08423
DW
1148 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1149 &udqp, &gdqp, &pdqp);
99b6436b
ZYW
1150 if (error)
1151 return error;
1152
1153 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1154 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911 1155
f2f7b9ff
DW
1156 error = xfs_trans_alloc_icreate(mp, tres, udqp, gdqp, pdqp, resblks,
1157 &tp);
99b6436b 1158 if (error)
f2f7b9ff 1159 goto out_release_dquots;
99b6436b 1160
b652afd9
DC
1161 error = xfs_dialloc(&tp, dp->i_ino, mode, &ino);
1162 if (!error)
1163 error = xfs_init_new_inode(mnt_userns, tp, dp, ino, mode,
1164 0, 0, prid, false, &ip);
d6077aa3 1165 if (error)
4906e215 1166 goto out_trans_cancel;
99b6436b 1167
0560f31a 1168 if (xfs_has_wsync(mp))
99b6436b
ZYW
1169 xfs_trans_set_sync(tp);
1170
1171 /*
1172 * Attach the dquot(s) to the inodes and modify them incore.
1173 * These ids of the inode couldn't have changed since the new
1174 * inode has been locked ever since it was created.
1175 */
1176 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1177
99b6436b
ZYW
1178 error = xfs_iunlink(tp, ip);
1179 if (error)
4906e215 1180 goto out_trans_cancel;
99b6436b 1181
70393313 1182 error = xfs_trans_commit(tp);
99b6436b
ZYW
1183 if (error)
1184 goto out_release_inode;
1185
1186 xfs_qm_dqrele(udqp);
1187 xfs_qm_dqrele(gdqp);
1188 xfs_qm_dqrele(pdqp);
1189
330033d6 1190 *ipp = ip;
99b6436b
ZYW
1191 return 0;
1192
99b6436b 1193 out_trans_cancel:
4906e215 1194 xfs_trans_cancel(tp);
99b6436b
ZYW
1195 out_release_inode:
1196 /*
58c90473
DC
1197 * Wait until after the current transaction is aborted to finish the
1198 * setup of the inode and release the inode. This prevents recursive
1199 * transactions and deadlocks from xfs_inactive.
99b6436b 1200 */
58c90473
DC
1201 if (ip) {
1202 xfs_finish_inode_setup(ip);
44a8736b 1203 xfs_irele(ip);
58c90473 1204 }
f2f7b9ff 1205 out_release_dquots:
99b6436b
ZYW
1206 xfs_qm_dqrele(udqp);
1207 xfs_qm_dqrele(gdqp);
1208 xfs_qm_dqrele(pdqp);
1209
1210 return error;
1211}
1212
c24b5dfa
DC
1213int
1214xfs_link(
1215 xfs_inode_t *tdp,
1216 xfs_inode_t *sip,
1217 struct xfs_name *target_name)
1218{
1219 xfs_mount_t *mp = tdp->i_mount;
1220 xfs_trans_t *tp;
871b9316 1221 int error, nospace_error = 0;
c24b5dfa
DC
1222 int resblks;
1223
1224 trace_xfs_link(tdp, target_name);
1225
c19b3b05 1226 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa 1227
75c8c50f 1228 if (xfs_is_shutdown(mp))
2451337d 1229 return -EIO;
c24b5dfa 1230
c14cfcca 1231 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1232 if (error)
1233 goto std_return;
1234
c14cfcca 1235 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1236 if (error)
1237 goto std_return;
1238
c24b5dfa 1239 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
871b9316
DW
1240 error = xfs_trans_alloc_dir(tdp, &M_RES(mp)->tr_link, sip, &resblks,
1241 &tp, &nospace_error);
4906e215 1242 if (error)
253f4911 1243 goto std_return;
c24b5dfa 1244
f5d92749
CB
1245 error = xfs_iext_count_may_overflow(tdp, XFS_DATA_FORK,
1246 XFS_IEXT_DIR_MANIP_CNT(mp));
1247 if (error)
1248 goto error_return;
1249
c24b5dfa
DC
1250 /*
1251 * If we are using project inheritance, we only allow hard link
1252 * creation in our tree when the project IDs are the same; else
1253 * the tree quota mechanism could be circumvented.
1254 */
db07349d 1255 if (unlikely((tdp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
ceaf603c 1256 tdp->i_projid != sip->i_projid)) {
2451337d 1257 error = -EXDEV;
c24b5dfa
DC
1258 goto error_return;
1259 }
1260
94f3cad5
ES
1261 if (!resblks) {
1262 error = xfs_dir_canenter(tp, tdp, target_name);
1263 if (error)
1264 goto error_return;
1265 }
c24b5dfa 1266
54d7b5c1
DC
1267 /*
1268 * Handle initial link state of O_TMPFILE inode
1269 */
1270 if (VFS_I(sip)->i_nlink == 0) {
f40aadb2
DC
1271 struct xfs_perag *pag;
1272
1273 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, sip->i_ino));
1274 error = xfs_iunlink_remove(tp, pag, sip);
1275 xfs_perag_put(pag);
ab297431 1276 if (error)
4906e215 1277 goto error_return;
ab297431
ZYW
1278 }
1279
c24b5dfa 1280 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1281 resblks);
c24b5dfa 1282 if (error)
4906e215 1283 goto error_return;
c24b5dfa
DC
1284 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1285 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1286
91083269 1287 xfs_bumplink(tp, sip);
c24b5dfa
DC
1288
1289 /*
1290 * If this is a synchronous mount, make sure that the
1291 * link transaction goes to disk before returning to
1292 * the user.
1293 */
0560f31a 1294 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa 1295 xfs_trans_set_sync(tp);
c24b5dfa 1296
70393313 1297 return xfs_trans_commit(tp);
c24b5dfa 1298
c24b5dfa 1299 error_return:
4906e215 1300 xfs_trans_cancel(tp);
c24b5dfa 1301 std_return:
871b9316
DW
1302 if (error == -ENOSPC && nospace_error)
1303 error = nospace_error;
c24b5dfa
DC
1304 return error;
1305}
1306
363e59ba
DW
1307/* Clear the reflink flag and the cowblocks tag if possible. */
1308static void
1309xfs_itruncate_clear_reflink_flags(
1310 struct xfs_inode *ip)
1311{
1312 struct xfs_ifork *dfork;
1313 struct xfs_ifork *cfork;
1314
1315 if (!xfs_is_reflink_inode(ip))
1316 return;
1317 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1318 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1319 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
3e09ab8f 1320 ip->i_diflags2 &= ~XFS_DIFLAG2_REFLINK;
363e59ba
DW
1321 if (cfork->if_bytes == 0)
1322 xfs_inode_clear_cowblocks_tag(ip);
1323}
1324
1da177e4 1325/*
8f04c47a
CH
1326 * Free up the underlying blocks past new_size. The new size must be smaller
1327 * than the current size. This routine can be used both for the attribute and
1328 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1329 *
f6485057
DC
1330 * The transaction passed to this routine must have made a permanent log
1331 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1332 * given transaction and start new ones, so make sure everything involved in
1333 * the transaction is tidy before calling here. Some transaction will be
1334 * returned to the caller to be committed. The incoming transaction must
1335 * already include the inode, and both inode locks must be held exclusively.
1336 * The inode must also be "held" within the transaction. On return the inode
1337 * will be "held" within the returned transaction. This routine does NOT
1338 * require any disk space to be reserved for it within the transaction.
1da177e4 1339 *
f6485057
DC
1340 * If we get an error, we must return with the inode locked and linked into the
1341 * current transaction. This keeps things simple for the higher level code,
1342 * because it always knows that the inode is locked and held in the transaction
1343 * that returns to it whether errors occur or not. We don't mark the inode
1344 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1345 */
1346int
4e529339 1347xfs_itruncate_extents_flags(
8f04c47a
CH
1348 struct xfs_trans **tpp,
1349 struct xfs_inode *ip,
1350 int whichfork,
13b86fc3 1351 xfs_fsize_t new_size,
4e529339 1352 int flags)
1da177e4 1353{
8f04c47a
CH
1354 struct xfs_mount *mp = ip->i_mount;
1355 struct xfs_trans *tp = *tpp;
8f04c47a 1356 xfs_fileoff_t first_unmap_block;
8f04c47a 1357 xfs_filblks_t unmap_len;
8f04c47a 1358 int error = 0;
1da177e4 1359
0b56185b
CH
1360 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1361 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1362 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1363 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1364 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1365 ASSERT(ip->i_itemp != NULL);
898621d5 1366 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1367 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1368
673e8e59
CH
1369 trace_xfs_itruncate_extents_start(ip, new_size);
1370
4e529339 1371 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1372
1da177e4
LT
1373 /*
1374 * Since it is possible for space to become allocated beyond
1375 * the end of the file (in a crash where the space is allocated
1376 * but the inode size is not yet updated), simply remove any
1377 * blocks which show up between the new EOF and the maximum
4bbb04ab
DW
1378 * possible file size.
1379 *
1380 * We have to free all the blocks to the bmbt maximum offset, even if
1381 * the page cache can't scale that far.
1da177e4 1382 */
8f04c47a 1383 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
33005fd0 1384 if (!xfs_verify_fileoff(mp, first_unmap_block)) {
4bbb04ab 1385 WARN_ON_ONCE(first_unmap_block > XFS_MAX_FILEOFF);
8f04c47a 1386 return 0;
4bbb04ab 1387 }
8f04c47a 1388
4bbb04ab
DW
1389 unmap_len = XFS_MAX_FILEOFF - first_unmap_block + 1;
1390 while (unmap_len > 0) {
02dff7bf 1391 ASSERT(tp->t_firstblock == NULLFSBLOCK);
4bbb04ab
DW
1392 error = __xfs_bunmapi(tp, ip, first_unmap_block, &unmap_len,
1393 flags, XFS_ITRUNC_MAX_EXTENTS);
8f04c47a 1394 if (error)
d5a2e289 1395 goto out;
1da177e4 1396
6dd379c7 1397 /* free the just unmapped extents */
9e28a242 1398 error = xfs_defer_finish(&tp);
8f04c47a 1399 if (error)
9b1f4e98 1400 goto out;
1da177e4 1401 }
8f04c47a 1402
4919d42a
DW
1403 if (whichfork == XFS_DATA_FORK) {
1404 /* Remove all pending CoW reservations. */
1405 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
4bbb04ab 1406 first_unmap_block, XFS_MAX_FILEOFF, true);
4919d42a
DW
1407 if (error)
1408 goto out;
aa8968f2 1409
4919d42a
DW
1410 xfs_itruncate_clear_reflink_flags(ip);
1411 }
aa8968f2 1412
673e8e59
CH
1413 /*
1414 * Always re-log the inode so that our permanent transaction can keep
1415 * on rolling it forward in the log.
1416 */
1417 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1418
1419 trace_xfs_itruncate_extents_end(ip, new_size);
1420
8f04c47a
CH
1421out:
1422 *tpp = tp;
1423 return error;
8f04c47a
CH
1424}
1425
c24b5dfa
DC
1426int
1427xfs_release(
1428 xfs_inode_t *ip)
1429{
1430 xfs_mount_t *mp = ip->i_mount;
7d88329e 1431 int error = 0;
c24b5dfa 1432
c19b3b05 1433 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1434 return 0;
1435
1436 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1437 if (xfs_is_readonly(mp))
c24b5dfa
DC
1438 return 0;
1439
75c8c50f 1440 if (!xfs_is_shutdown(mp)) {
c24b5dfa
DC
1441 int truncated;
1442
c24b5dfa
DC
1443 /*
1444 * If we previously truncated this file and removed old data
1445 * in the process, we want to initiate "early" writeout on
1446 * the last close. This is an attempt to combat the notorious
1447 * NULL files problem which is particularly noticeable from a
1448 * truncate down, buffered (re-)write (delalloc), followed by
1449 * a crash. What we are effectively doing here is
1450 * significantly reducing the time window where we'd otherwise
1451 * be exposed to that problem.
1452 */
1453 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1454 if (truncated) {
1455 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1456 if (ip->i_delayed_blks > 0) {
2451337d 1457 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1458 if (error)
1459 return error;
1460 }
1461 }
1462 }
1463
54d7b5c1 1464 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1465 return 0;
1466
7d88329e
DW
1467 /*
1468 * If we can't get the iolock just skip truncating the blocks past EOF
1469 * because we could deadlock with the mmap_lock otherwise. We'll get
1470 * another chance to drop them once the last reference to the inode is
1471 * dropped, so we'll never leak blocks permanently.
1472 */
1473 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL))
1474 return 0;
c24b5dfa 1475
7d88329e 1476 if (xfs_can_free_eofblocks(ip, false)) {
a36b9261
BF
1477 /*
1478 * Check if the inode is being opened, written and closed
1479 * frequently and we have delayed allocation blocks outstanding
1480 * (e.g. streaming writes from the NFS server), truncating the
1481 * blocks past EOF will cause fragmentation to occur.
1482 *
1483 * In this case don't do the truncation, but we have to be
1484 * careful how we detect this case. Blocks beyond EOF show up as
1485 * i_delayed_blks even when the inode is clean, so we need to
1486 * truncate them away first before checking for a dirty release.
1487 * Hence on the first dirty close we will still remove the
1488 * speculative allocation, but after that we will leave it in
1489 * place.
1490 */
1491 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
7d88329e
DW
1492 goto out_unlock;
1493
1494 error = xfs_free_eofblocks(ip);
1495 if (error)
1496 goto out_unlock;
c24b5dfa
DC
1497
1498 /* delalloc blocks after truncation means it really is dirty */
1499 if (ip->i_delayed_blks)
1500 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1501 }
7d88329e
DW
1502
1503out_unlock:
1504 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1505 return error;
c24b5dfa
DC
1506}
1507
f7be2d7f
BF
1508/*
1509 * xfs_inactive_truncate
1510 *
1511 * Called to perform a truncate when an inode becomes unlinked.
1512 */
1513STATIC int
1514xfs_inactive_truncate(
1515 struct xfs_inode *ip)
1516{
1517 struct xfs_mount *mp = ip->i_mount;
1518 struct xfs_trans *tp;
1519 int error;
1520
253f4911 1521 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f 1522 if (error) {
75c8c50f 1523 ASSERT(xfs_is_shutdown(mp));
f7be2d7f
BF
1524 return error;
1525 }
f7be2d7f
BF
1526 xfs_ilock(ip, XFS_ILOCK_EXCL);
1527 xfs_trans_ijoin(tp, ip, 0);
1528
1529 /*
1530 * Log the inode size first to prevent stale data exposure in the event
1531 * of a system crash before the truncate completes. See the related
69bca807 1532 * comment in xfs_vn_setattr_size() for details.
f7be2d7f 1533 */
13d2c10b 1534 ip->i_disk_size = 0;
f7be2d7f
BF
1535 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1536
1537 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1538 if (error)
1539 goto error_trans_cancel;
1540
daf83964 1541 ASSERT(ip->i_df.if_nextents == 0);
f7be2d7f 1542
70393313 1543 error = xfs_trans_commit(tp);
f7be2d7f
BF
1544 if (error)
1545 goto error_unlock;
1546
1547 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1548 return 0;
1549
1550error_trans_cancel:
4906e215 1551 xfs_trans_cancel(tp);
f7be2d7f
BF
1552error_unlock:
1553 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1554 return error;
1555}
1556
88877d2b
BF
1557/*
1558 * xfs_inactive_ifree()
1559 *
1560 * Perform the inode free when an inode is unlinked.
1561 */
1562STATIC int
1563xfs_inactive_ifree(
1564 struct xfs_inode *ip)
1565{
88877d2b
BF
1566 struct xfs_mount *mp = ip->i_mount;
1567 struct xfs_trans *tp;
1568 int error;
1569
9d43b180 1570 /*
76d771b4
CH
1571 * We try to use a per-AG reservation for any block needed by the finobt
1572 * tree, but as the finobt feature predates the per-AG reservation
1573 * support a degraded file system might not have enough space for the
1574 * reservation at mount time. In that case try to dip into the reserved
1575 * pool and pray.
9d43b180
BF
1576 *
1577 * Send a warning if the reservation does happen to fail, as the inode
1578 * now remains allocated and sits on the unlinked list until the fs is
1579 * repaired.
1580 */
e1f6ca11 1581 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1582 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1583 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1584 &tp);
1585 } else {
1586 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1587 }
88877d2b 1588 if (error) {
2451337d 1589 if (error == -ENOSPC) {
9d43b180
BF
1590 xfs_warn_ratelimited(mp,
1591 "Failed to remove inode(s) from unlinked list. "
1592 "Please free space, unmount and run xfs_repair.");
1593 } else {
75c8c50f 1594 ASSERT(xfs_is_shutdown(mp));
9d43b180 1595 }
88877d2b
BF
1596 return error;
1597 }
1598
96355d5a
DC
1599 /*
1600 * We do not hold the inode locked across the entire rolling transaction
1601 * here. We only need to hold it for the first transaction that
1602 * xfs_ifree() builds, which may mark the inode XFS_ISTALE if the
1603 * underlying cluster buffer is freed. Relogging an XFS_ISTALE inode
1604 * here breaks the relationship between cluster buffer invalidation and
1605 * stale inode invalidation on cluster buffer item journal commit
1606 * completion, and can result in leaving dirty stale inodes hanging
1607 * around in memory.
1608 *
1609 * We have no need for serialising this inode operation against other
1610 * operations - we freed the inode and hence reallocation is required
1611 * and that will serialise on reallocating the space the deferops need
1612 * to free. Hence we can unlock the inode on the first commit of
1613 * the transaction rather than roll it right through the deferops. This
1614 * avoids relogging the XFS_ISTALE inode.
1615 *
1616 * We check that xfs_ifree() hasn't grown an internal transaction roll
1617 * by asserting that the inode is still locked when it returns.
1618 */
88877d2b 1619 xfs_ilock(ip, XFS_ILOCK_EXCL);
96355d5a 1620 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
88877d2b 1621
0e0417f3 1622 error = xfs_ifree(tp, ip);
96355d5a 1623 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
88877d2b
BF
1624 if (error) {
1625 /*
1626 * If we fail to free the inode, shut down. The cancel
1627 * might do that, we need to make sure. Otherwise the
1628 * inode might be lost for a long time or forever.
1629 */
75c8c50f 1630 if (!xfs_is_shutdown(mp)) {
88877d2b
BF
1631 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1632 __func__, error);
1633 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1634 }
4906e215 1635 xfs_trans_cancel(tp);
88877d2b
BF
1636 return error;
1637 }
1638
1639 /*
1640 * Credit the quota account(s). The inode is gone.
1641 */
1642 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1643
1644 /*
d4a97a04
BF
1645 * Just ignore errors at this point. There is nothing we can do except
1646 * to try to keep going. Make sure it's not a silent error.
88877d2b 1647 */
70393313 1648 error = xfs_trans_commit(tp);
88877d2b
BF
1649 if (error)
1650 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1651 __func__, error);
1652
88877d2b
BF
1653 return 0;
1654}
1655
62af7d54
DW
1656/*
1657 * Returns true if we need to update the on-disk metadata before we can free
1658 * the memory used by this inode. Updates include freeing post-eof
1659 * preallocations; freeing COW staging extents; and marking the inode free in
1660 * the inobt if it is on the unlinked list.
1661 */
1662bool
1663xfs_inode_needs_inactive(
1664 struct xfs_inode *ip)
1665{
1666 struct xfs_mount *mp = ip->i_mount;
1667 struct xfs_ifork *cow_ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1668
1669 /*
1670 * If the inode is already free, then there can be nothing
1671 * to clean up here.
1672 */
1673 if (VFS_I(ip)->i_mode == 0)
1674 return false;
1675
1676 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1677 if (xfs_is_readonly(mp))
62af7d54
DW
1678 return false;
1679
1680 /* If the log isn't running, push inodes straight to reclaim. */
75c8c50f 1681 if (xfs_is_shutdown(mp) || xfs_has_norecovery(mp))
62af7d54
DW
1682 return false;
1683
1684 /* Metadata inodes require explicit resource cleanup. */
1685 if (xfs_is_metadata_inode(ip))
1686 return false;
1687
1688 /* Want to clean out the cow blocks if there are any. */
1689 if (cow_ifp && cow_ifp->if_bytes > 0)
1690 return true;
1691
1692 /* Unlinked files must be freed. */
1693 if (VFS_I(ip)->i_nlink == 0)
1694 return true;
1695
1696 /*
1697 * This file isn't being freed, so check if there are post-eof blocks
1698 * to free. @force is true because we are evicting an inode from the
1699 * cache. Post-eof blocks must be freed, lest we end up with broken
1700 * free space accounting.
1701 *
1702 * Note: don't bother with iolock here since lockdep complains about
1703 * acquiring it in reclaim context. We have the only reference to the
1704 * inode at this point anyways.
1705 */
1706 return xfs_can_free_eofblocks(ip, true);
1707}
1708
c24b5dfa
DC
1709/*
1710 * xfs_inactive
1711 *
1712 * This is called when the vnode reference count for the vnode
1713 * goes to zero. If the file has been unlinked, then it must
1714 * now be truncated. Also, we clear all of the read-ahead state
1715 * kept for the inode here since the file is now closed.
1716 */
74564fb4 1717void
c24b5dfa
DC
1718xfs_inactive(
1719 xfs_inode_t *ip)
1720{
3d3c8b52 1721 struct xfs_mount *mp;
3d3c8b52
JL
1722 int error;
1723 int truncate = 0;
c24b5dfa
DC
1724
1725 /*
1726 * If the inode is already free, then there can be nothing
1727 * to clean up here.
1728 */
c19b3b05 1729 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1730 ASSERT(ip->i_df.if_broot_bytes == 0);
3ea06d73 1731 goto out;
c24b5dfa
DC
1732 }
1733
1734 mp = ip->i_mount;
17c12bcd 1735 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1736
c24b5dfa 1737 /* If this is a read-only mount, don't do this (would generate I/O) */
2e973b2c 1738 if (xfs_is_readonly(mp))
3ea06d73 1739 goto out;
c24b5dfa 1740
383e32b0
DW
1741 /* Metadata inodes require explicit resource cleanup. */
1742 if (xfs_is_metadata_inode(ip))
3ea06d73 1743 goto out;
383e32b0 1744
6231848c 1745 /* Try to clean out the cow blocks if there are any. */
51d62690 1746 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1747 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1748
54d7b5c1 1749 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1750 /*
1751 * force is true because we are evicting an inode from the
1752 * cache. Post-eof blocks must be freed, lest we end up with
1753 * broken free space accounting.
3b4683c2
BF
1754 *
1755 * Note: don't bother with iolock here since lockdep complains
1756 * about acquiring it in reclaim context. We have the only
1757 * reference to the inode at this point anyways.
c24b5dfa 1758 */
3b4683c2 1759 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1760 xfs_free_eofblocks(ip);
74564fb4 1761
3ea06d73 1762 goto out;
c24b5dfa
DC
1763 }
1764
c19b3b05 1765 if (S_ISREG(VFS_I(ip)->i_mode) &&
13d2c10b 1766 (ip->i_disk_size != 0 || XFS_ISIZE(ip) != 0 ||
daf83964 1767 ip->i_df.if_nextents > 0 || ip->i_delayed_blks > 0))
c24b5dfa
DC
1768 truncate = 1;
1769
c14cfcca 1770 error = xfs_qm_dqattach(ip);
c24b5dfa 1771 if (error)
3ea06d73 1772 goto out;
c24b5dfa 1773
c19b3b05 1774 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1775 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1776 else if (truncate)
1777 error = xfs_inactive_truncate(ip);
1778 if (error)
3ea06d73 1779 goto out;
c24b5dfa
DC
1780
1781 /*
1782 * If there are attributes associated with the file then blow them away
1783 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1784 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1785 */
6dfe5a04 1786 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1787 error = xfs_attr_inactive(ip);
1788 if (error)
3ea06d73 1789 goto out;
c24b5dfa
DC
1790 }
1791
6dfe5a04 1792 ASSERT(!ip->i_afp);
7821ea30 1793 ASSERT(ip->i_forkoff == 0);
c24b5dfa
DC
1794
1795 /*
1796 * Free the inode.
1797 */
3ea06d73 1798 xfs_inactive_ifree(ip);
c24b5dfa 1799
3ea06d73 1800out:
c24b5dfa 1801 /*
3ea06d73
DW
1802 * We're done making metadata updates for this inode, so we can release
1803 * the attached dquots.
c24b5dfa
DC
1804 */
1805 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1806}
1807
9b247179
DW
1808/*
1809 * In-Core Unlinked List Lookups
1810 * =============================
1811 *
1812 * Every inode is supposed to be reachable from some other piece of metadata
1813 * with the exception of the root directory. Inodes with a connection to a
1814 * file descriptor but not linked from anywhere in the on-disk directory tree
1815 * are collectively known as unlinked inodes, though the filesystem itself
1816 * maintains links to these inodes so that on-disk metadata are consistent.
1817 *
1818 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1819 * header contains a number of buckets that point to an inode, and each inode
1820 * record has a pointer to the next inode in the hash chain. This
1821 * singly-linked list causes scaling problems in the iunlink remove function
1822 * because we must walk that list to find the inode that points to the inode
1823 * being removed from the unlinked hash bucket list.
1824 *
1825 * What if we modelled the unlinked list as a collection of records capturing
1826 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1827 * have a fast way to look up unlinked list predecessors, which avoids the
1828 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1829 * rhashtable.
1830 *
1831 * Because this is a backref cache, we ignore operational failures since the
1832 * iunlink code can fall back to the slow bucket walk. The only errors that
1833 * should bubble out are for obviously incorrect situations.
1834 *
1835 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1836 * access or have otherwise provided for concurrency control.
1837 */
1838
1839/* Capture a "X.next_unlinked = Y" relationship. */
1840struct xfs_iunlink {
1841 struct rhash_head iu_rhash_head;
1842 xfs_agino_t iu_agino; /* X */
1843 xfs_agino_t iu_next_unlinked; /* Y */
1844};
1845
1846/* Unlinked list predecessor lookup hashtable construction */
1847static int
1848xfs_iunlink_obj_cmpfn(
1849 struct rhashtable_compare_arg *arg,
1850 const void *obj)
1851{
1852 const xfs_agino_t *key = arg->key;
1853 const struct xfs_iunlink *iu = obj;
1854
1855 if (iu->iu_next_unlinked != *key)
1856 return 1;
1857 return 0;
1858}
1859
1860static const struct rhashtable_params xfs_iunlink_hash_params = {
1861 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1862 .key_len = sizeof(xfs_agino_t),
1863 .key_offset = offsetof(struct xfs_iunlink,
1864 iu_next_unlinked),
1865 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1866 .automatic_shrinking = true,
1867 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1868};
1869
1870/*
1871 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1872 * relation is found.
1873 */
1874static xfs_agino_t
1875xfs_iunlink_lookup_backref(
1876 struct xfs_perag *pag,
1877 xfs_agino_t agino)
1878{
1879 struct xfs_iunlink *iu;
1880
1881 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1882 xfs_iunlink_hash_params);
1883 return iu ? iu->iu_agino : NULLAGINO;
1884}
1885
1886/*
1887 * Take ownership of an iunlink cache entry and insert it into the hash table.
1888 * If successful, the entry will be owned by the cache; if not, it is freed.
1889 * Either way, the caller does not own @iu after this call.
1890 */
1891static int
1892xfs_iunlink_insert_backref(
1893 struct xfs_perag *pag,
1894 struct xfs_iunlink *iu)
1895{
1896 int error;
1897
1898 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1899 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1900 /*
1901 * Fail loudly if there already was an entry because that's a sign of
1902 * corruption of in-memory data. Also fail loudly if we see an error
1903 * code we didn't anticipate from the rhashtable code. Currently we
1904 * only anticipate ENOMEM.
1905 */
1906 if (error) {
1907 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1908 kmem_free(iu);
1909 }
1910 /*
1911 * Absorb any runtime errors that aren't a result of corruption because
1912 * this is a cache and we can always fall back to bucket list scanning.
1913 */
1914 if (error != 0 && error != -EEXIST)
1915 error = 0;
1916 return error;
1917}
1918
1919/* Remember that @prev_agino.next_unlinked = @this_agino. */
1920static int
1921xfs_iunlink_add_backref(
1922 struct xfs_perag *pag,
1923 xfs_agino_t prev_agino,
1924 xfs_agino_t this_agino)
1925{
1926 struct xfs_iunlink *iu;
1927
1928 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
1929 return 0;
1930
707e0dda 1931 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
9b247179
DW
1932 iu->iu_agino = prev_agino;
1933 iu->iu_next_unlinked = this_agino;
1934
1935 return xfs_iunlink_insert_backref(pag, iu);
1936}
1937
1938/*
1939 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
1940 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
1941 * wasn't any such entry then we don't bother.
1942 */
1943static int
1944xfs_iunlink_change_backref(
1945 struct xfs_perag *pag,
1946 xfs_agino_t agino,
1947 xfs_agino_t next_unlinked)
1948{
1949 struct xfs_iunlink *iu;
1950 int error;
1951
1952 /* Look up the old entry; if there wasn't one then exit. */
1953 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1954 xfs_iunlink_hash_params);
1955 if (!iu)
1956 return 0;
1957
1958 /*
1959 * Remove the entry. This shouldn't ever return an error, but if we
1960 * couldn't remove the old entry we don't want to add it again to the
1961 * hash table, and if the entry disappeared on us then someone's
1962 * violated the locking rules and we need to fail loudly. Either way
1963 * we cannot remove the inode because internal state is or would have
1964 * been corrupt.
1965 */
1966 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
1967 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1968 if (error)
1969 return error;
1970
1971 /* If there is no new next entry just free our item and return. */
1972 if (next_unlinked == NULLAGINO) {
1973 kmem_free(iu);
1974 return 0;
1975 }
1976
1977 /* Update the entry and re-add it to the hash table. */
1978 iu->iu_next_unlinked = next_unlinked;
1979 return xfs_iunlink_insert_backref(pag, iu);
1980}
1981
1982/* Set up the in-core predecessor structures. */
1983int
1984xfs_iunlink_init(
1985 struct xfs_perag *pag)
1986{
1987 return rhashtable_init(&pag->pagi_unlinked_hash,
1988 &xfs_iunlink_hash_params);
1989}
1990
1991/* Free the in-core predecessor structures. */
1992static void
1993xfs_iunlink_free_item(
1994 void *ptr,
1995 void *arg)
1996{
1997 struct xfs_iunlink *iu = ptr;
1998 bool *freed_anything = arg;
1999
2000 *freed_anything = true;
2001 kmem_free(iu);
2002}
2003
2004void
2005xfs_iunlink_destroy(
2006 struct xfs_perag *pag)
2007{
2008 bool freed_anything = false;
2009
2010 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2011 xfs_iunlink_free_item, &freed_anything);
2012
75c8c50f 2013 ASSERT(freed_anything == false || xfs_is_shutdown(pag->pag_mount));
9b247179
DW
2014}
2015
9a4a5118
DW
2016/*
2017 * Point the AGI unlinked bucket at an inode and log the results. The caller
2018 * is responsible for validating the old value.
2019 */
2020STATIC int
2021xfs_iunlink_update_bucket(
2022 struct xfs_trans *tp,
f40aadb2 2023 struct xfs_perag *pag,
9a4a5118
DW
2024 struct xfs_buf *agibp,
2025 unsigned int bucket_index,
2026 xfs_agino_t new_agino)
2027{
370c782b 2028 struct xfs_agi *agi = agibp->b_addr;
9a4a5118
DW
2029 xfs_agino_t old_value;
2030 int offset;
2031
f40aadb2 2032 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, pag->pag_agno, new_agino));
9a4a5118
DW
2033
2034 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
f40aadb2 2035 trace_xfs_iunlink_update_bucket(tp->t_mountp, pag->pag_agno, bucket_index,
9a4a5118
DW
2036 old_value, new_agino);
2037
2038 /*
2039 * We should never find the head of the list already set to the value
2040 * passed in because either we're adding or removing ourselves from the
2041 * head of the list.
2042 */
a5155b87 2043 if (old_value == new_agino) {
8d57c216 2044 xfs_buf_mark_corrupt(agibp);
9a4a5118 2045 return -EFSCORRUPTED;
a5155b87 2046 }
9a4a5118
DW
2047
2048 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2049 offset = offsetof(struct xfs_agi, agi_unlinked) +
2050 (sizeof(xfs_agino_t) * bucket_index);
2051 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2052 return 0;
2053}
2054
f2fc16a3
DW
2055/* Set an on-disk inode's next_unlinked pointer. */
2056STATIC void
2057xfs_iunlink_update_dinode(
2058 struct xfs_trans *tp,
f40aadb2 2059 struct xfs_perag *pag,
f2fc16a3
DW
2060 xfs_agino_t agino,
2061 struct xfs_buf *ibp,
2062 struct xfs_dinode *dip,
2063 struct xfs_imap *imap,
2064 xfs_agino_t next_agino)
2065{
2066 struct xfs_mount *mp = tp->t_mountp;
2067 int offset;
2068
f40aadb2 2069 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
f2fc16a3 2070
f40aadb2 2071 trace_xfs_iunlink_update_dinode(mp, pag->pag_agno, agino,
f2fc16a3
DW
2072 be32_to_cpu(dip->di_next_unlinked), next_agino);
2073
2074 dip->di_next_unlinked = cpu_to_be32(next_agino);
2075 offset = imap->im_boffset +
2076 offsetof(struct xfs_dinode, di_next_unlinked);
2077
2078 /* need to recalc the inode CRC if appropriate */
2079 xfs_dinode_calc_crc(mp, dip);
2080 xfs_trans_inode_buf(tp, ibp);
2081 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
f2fc16a3
DW
2082}
2083
2084/* Set an in-core inode's unlinked pointer and return the old value. */
2085STATIC int
2086xfs_iunlink_update_inode(
2087 struct xfs_trans *tp,
2088 struct xfs_inode *ip,
f40aadb2 2089 struct xfs_perag *pag,
f2fc16a3
DW
2090 xfs_agino_t next_agino,
2091 xfs_agino_t *old_next_agino)
2092{
2093 struct xfs_mount *mp = tp->t_mountp;
2094 struct xfs_dinode *dip;
2095 struct xfs_buf *ibp;
2096 xfs_agino_t old_value;
2097 int error;
2098
f40aadb2 2099 ASSERT(xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino));
f2fc16a3 2100
af9dcdde 2101 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &ibp);
f2fc16a3
DW
2102 if (error)
2103 return error;
af9dcdde 2104 dip = xfs_buf_offset(ibp, ip->i_imap.im_boffset);
f2fc16a3
DW
2105
2106 /* Make sure the old pointer isn't garbage. */
2107 old_value = be32_to_cpu(dip->di_next_unlinked);
f40aadb2 2108 if (!xfs_verify_agino_or_null(mp, pag->pag_agno, old_value)) {
a5155b87
DW
2109 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__, dip,
2110 sizeof(*dip), __this_address);
f2fc16a3
DW
2111 error = -EFSCORRUPTED;
2112 goto out;
2113 }
2114
2115 /*
2116 * Since we're updating a linked list, we should never find that the
2117 * current pointer is the same as the new value, unless we're
2118 * terminating the list.
2119 */
2120 *old_next_agino = old_value;
2121 if (old_value == next_agino) {
a5155b87
DW
2122 if (next_agino != NULLAGINO) {
2123 xfs_inode_verifier_error(ip, -EFSCORRUPTED, __func__,
2124 dip, sizeof(*dip), __this_address);
f2fc16a3 2125 error = -EFSCORRUPTED;
a5155b87 2126 }
f2fc16a3
DW
2127 goto out;
2128 }
2129
2130 /* Ok, update the new pointer. */
f40aadb2 2131 xfs_iunlink_update_dinode(tp, pag, XFS_INO_TO_AGINO(mp, ip->i_ino),
f2fc16a3
DW
2132 ibp, dip, &ip->i_imap, next_agino);
2133 return 0;
2134out:
2135 xfs_trans_brelse(tp, ibp);
2136 return error;
2137}
2138
1da177e4 2139/*
c4a6bf7f
DW
2140 * This is called when the inode's link count has gone to 0 or we are creating
2141 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
2142 *
2143 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2144 * list when the inode is freed.
1da177e4 2145 */
54d7b5c1 2146STATIC int
1da177e4 2147xfs_iunlink(
5837f625
DW
2148 struct xfs_trans *tp,
2149 struct xfs_inode *ip)
1da177e4 2150{
5837f625 2151 struct xfs_mount *mp = tp->t_mountp;
f40aadb2 2152 struct xfs_perag *pag;
5837f625 2153 struct xfs_agi *agi;
5837f625 2154 struct xfs_buf *agibp;
86bfd375 2155 xfs_agino_t next_agino;
5837f625
DW
2156 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2157 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2158 int error;
1da177e4 2159
c4a6bf7f 2160 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 2161 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 2162 trace_xfs_iunlink(ip);
1da177e4 2163
f40aadb2
DC
2164 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2165
5837f625 2166 /* Get the agi buffer first. It ensures lock ordering on the list. */
f40aadb2 2167 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
859d7182 2168 if (error)
f40aadb2 2169 goto out;
370c782b 2170 agi = agibp->b_addr;
5e1be0fb 2171
1da177e4 2172 /*
86bfd375
DW
2173 * Get the index into the agi hash table for the list this inode will
2174 * go on. Make sure the pointer isn't garbage and that this inode
2175 * isn't already on the list.
1da177e4 2176 */
86bfd375
DW
2177 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2178 if (next_agino == agino ||
f40aadb2 2179 !xfs_verify_agino_or_null(mp, pag->pag_agno, next_agino)) {
8d57c216 2180 xfs_buf_mark_corrupt(agibp);
f40aadb2
DC
2181 error = -EFSCORRUPTED;
2182 goto out;
a5155b87 2183 }
1da177e4 2184
86bfd375 2185 if (next_agino != NULLAGINO) {
9b247179 2186 xfs_agino_t old_agino;
f2fc16a3 2187
1da177e4 2188 /*
f2fc16a3
DW
2189 * There is already another inode in the bucket, so point this
2190 * inode to the current head of the list.
1da177e4 2191 */
f40aadb2 2192 error = xfs_iunlink_update_inode(tp, ip, pag, next_agino,
f2fc16a3 2193 &old_agino);
c319b58b 2194 if (error)
f40aadb2 2195 goto out;
f2fc16a3 2196 ASSERT(old_agino == NULLAGINO);
9b247179
DW
2197
2198 /*
2199 * agino has been unlinked, add a backref from the next inode
2200 * back to agino.
2201 */
f40aadb2 2202 error = xfs_iunlink_add_backref(pag, agino, next_agino);
9b247179 2203 if (error)
f40aadb2 2204 goto out;
1da177e4
LT
2205 }
2206
9a4a5118 2207 /* Point the head of the list to point to this inode. */
f40aadb2
DC
2208 error = xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index, agino);
2209out:
2210 xfs_perag_put(pag);
2211 return error;
1da177e4
LT
2212}
2213
23ffa52c
DW
2214/* Return the imap, dinode pointer, and buffer for an inode. */
2215STATIC int
2216xfs_iunlink_map_ino(
2217 struct xfs_trans *tp,
2218 xfs_agnumber_t agno,
2219 xfs_agino_t agino,
2220 struct xfs_imap *imap,
2221 struct xfs_dinode **dipp,
2222 struct xfs_buf **bpp)
2223{
2224 struct xfs_mount *mp = tp->t_mountp;
2225 int error;
2226
2227 imap->im_blkno = 0;
2228 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2229 if (error) {
2230 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2231 __func__, error);
2232 return error;
2233 }
2234
af9dcdde 2235 error = xfs_imap_to_bp(mp, tp, imap, bpp);
23ffa52c
DW
2236 if (error) {
2237 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2238 __func__, error);
2239 return error;
2240 }
2241
af9dcdde 2242 *dipp = xfs_buf_offset(*bpp, imap->im_boffset);
23ffa52c
DW
2243 return 0;
2244}
2245
2246/*
2247 * Walk the unlinked chain from @head_agino until we find the inode that
2248 * points to @target_agino. Return the inode number, map, dinode pointer,
2249 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2250 *
2251 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2252 * @agino, @imap, @dipp, and @bpp are all output parameters.
2253 *
2254 * Do not call this function if @target_agino is the head of the list.
2255 */
2256STATIC int
2257xfs_iunlink_map_prev(
2258 struct xfs_trans *tp,
f40aadb2 2259 struct xfs_perag *pag,
23ffa52c
DW
2260 xfs_agino_t head_agino,
2261 xfs_agino_t target_agino,
2262 xfs_agino_t *agino,
2263 struct xfs_imap *imap,
2264 struct xfs_dinode **dipp,
f40aadb2 2265 struct xfs_buf **bpp)
23ffa52c
DW
2266{
2267 struct xfs_mount *mp = tp->t_mountp;
2268 xfs_agino_t next_agino;
2269 int error;
2270
2271 ASSERT(head_agino != target_agino);
2272 *bpp = NULL;
2273
9b247179
DW
2274 /* See if our backref cache can find it faster. */
2275 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2276 if (*agino != NULLAGINO) {
f40aadb2
DC
2277 error = xfs_iunlink_map_ino(tp, pag->pag_agno, *agino, imap,
2278 dipp, bpp);
9b247179
DW
2279 if (error)
2280 return error;
2281
2282 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2283 return 0;
2284
2285 /*
2286 * If we get here the cache contents were corrupt, so drop the
2287 * buffer and fall back to walking the bucket list.
2288 */
2289 xfs_trans_brelse(tp, *bpp);
2290 *bpp = NULL;
2291 WARN_ON_ONCE(1);
2292 }
2293
f40aadb2 2294 trace_xfs_iunlink_map_prev_fallback(mp, pag->pag_agno);
9b247179
DW
2295
2296 /* Otherwise, walk the entire bucket until we find it. */
23ffa52c
DW
2297 next_agino = head_agino;
2298 while (next_agino != target_agino) {
2299 xfs_agino_t unlinked_agino;
2300
2301 if (*bpp)
2302 xfs_trans_brelse(tp, *bpp);
2303
2304 *agino = next_agino;
f40aadb2
DC
2305 error = xfs_iunlink_map_ino(tp, pag->pag_agno, next_agino, imap,
2306 dipp, bpp);
23ffa52c
DW
2307 if (error)
2308 return error;
2309
2310 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2311 /*
2312 * Make sure this pointer is valid and isn't an obvious
2313 * infinite loop.
2314 */
f40aadb2 2315 if (!xfs_verify_agino(mp, pag->pag_agno, unlinked_agino) ||
23ffa52c
DW
2316 next_agino == unlinked_agino) {
2317 XFS_CORRUPTION_ERROR(__func__,
2318 XFS_ERRLEVEL_LOW, mp,
2319 *dipp, sizeof(**dipp));
2320 error = -EFSCORRUPTED;
2321 return error;
2322 }
2323 next_agino = unlinked_agino;
2324 }
2325
2326 return 0;
2327}
2328
1da177e4
LT
2329/*
2330 * Pull the on-disk inode from the AGI unlinked list.
2331 */
2332STATIC int
2333xfs_iunlink_remove(
5837f625 2334 struct xfs_trans *tp,
f40aadb2 2335 struct xfs_perag *pag,
5837f625 2336 struct xfs_inode *ip)
1da177e4 2337{
5837f625
DW
2338 struct xfs_mount *mp = tp->t_mountp;
2339 struct xfs_agi *agi;
5837f625 2340 struct xfs_buf *agibp;
5837f625
DW
2341 struct xfs_buf *last_ibp;
2342 struct xfs_dinode *last_dip = NULL;
5837f625
DW
2343 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2344 xfs_agino_t next_agino;
b1d2a068 2345 xfs_agino_t head_agino;
5837f625 2346 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2347 int error;
1da177e4 2348
4664c66c
DW
2349 trace_xfs_iunlink_remove(ip);
2350
5837f625 2351 /* Get the agi buffer first. It ensures lock ordering on the list. */
f40aadb2 2352 error = xfs_read_agi(mp, tp, pag->pag_agno, &agibp);
5e1be0fb 2353 if (error)
1da177e4 2354 return error;
370c782b 2355 agi = agibp->b_addr;
5e1be0fb 2356
1da177e4 2357 /*
86bfd375
DW
2358 * Get the index into the agi hash table for the list this inode will
2359 * go on. Make sure the head pointer isn't garbage.
1da177e4 2360 */
b1d2a068 2361 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
f40aadb2 2362 if (!xfs_verify_agino(mp, pag->pag_agno, head_agino)) {
d2e73665
DW
2363 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2364 agi, sizeof(*agi));
2365 return -EFSCORRUPTED;
2366 }
1da177e4 2367
b1d2a068
DW
2368 /*
2369 * Set our inode's next_unlinked pointer to NULL and then return
2370 * the old pointer value so that we can update whatever was previous
2371 * to us in the list to point to whatever was next in the list.
2372 */
f40aadb2 2373 error = xfs_iunlink_update_inode(tp, ip, pag, NULLAGINO, &next_agino);
b1d2a068
DW
2374 if (error)
2375 return error;
9a4a5118 2376
9b247179
DW
2377 /*
2378 * If there was a backref pointing from the next inode back to this
2379 * one, remove it because we've removed this inode from the list.
2380 *
2381 * Later, if this inode was in the middle of the list we'll update
2382 * this inode's backref to point from the next inode.
2383 */
2384 if (next_agino != NULLAGINO) {
f40aadb2 2385 error = xfs_iunlink_change_backref(pag, next_agino, NULLAGINO);
9b247179 2386 if (error)
92a00544 2387 return error;
9b247179
DW
2388 }
2389
92a00544 2390 if (head_agino != agino) {
f2fc16a3
DW
2391 struct xfs_imap imap;
2392 xfs_agino_t prev_agino;
2393
23ffa52c 2394 /* We need to search the list for the inode being freed. */
f40aadb2
DC
2395 error = xfs_iunlink_map_prev(tp, pag, head_agino, agino,
2396 &prev_agino, &imap, &last_dip, &last_ibp);
23ffa52c 2397 if (error)
92a00544 2398 return error;
475ee413 2399
f2fc16a3 2400 /* Point the previous inode on the list to the next inode. */
f40aadb2 2401 xfs_iunlink_update_dinode(tp, pag, prev_agino, last_ibp,
f2fc16a3 2402 last_dip, &imap, next_agino);
9b247179
DW
2403
2404 /*
2405 * Now we deal with the backref for this inode. If this inode
2406 * pointed at a real inode, change the backref that pointed to
2407 * us to point to our old next. If this inode was the end of
2408 * the list, delete the backref that pointed to us. Note that
2409 * change_backref takes care of deleting the backref if
2410 * next_agino is NULLAGINO.
2411 */
92a00544
GX
2412 return xfs_iunlink_change_backref(agibp->b_pag, agino,
2413 next_agino);
1da177e4 2414 }
9b247179 2415
92a00544 2416 /* Point the head of the list to the next unlinked inode. */
f40aadb2 2417 return xfs_iunlink_update_bucket(tp, pag, agibp, bucket_index,
92a00544 2418 next_agino);
1da177e4
LT
2419}
2420
5806165a 2421/*
71e3e356
DC
2422 * Look up the inode number specified and if it is not already marked XFS_ISTALE
2423 * mark it stale. We should only find clean inodes in this lookup that aren't
2424 * already stale.
5806165a 2425 */
71e3e356
DC
2426static void
2427xfs_ifree_mark_inode_stale(
f40aadb2 2428 struct xfs_perag *pag,
5806165a 2429 struct xfs_inode *free_ip,
d9fdd0ad 2430 xfs_ino_t inum)
5806165a 2431{
f40aadb2 2432 struct xfs_mount *mp = pag->pag_mount;
71e3e356 2433 struct xfs_inode_log_item *iip;
5806165a
DC
2434 struct xfs_inode *ip;
2435
2436retry:
2437 rcu_read_lock();
2438 ip = radix_tree_lookup(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, inum));
2439
2440 /* Inode not in memory, nothing to do */
71e3e356
DC
2441 if (!ip) {
2442 rcu_read_unlock();
2443 return;
2444 }
5806165a
DC
2445
2446 /*
2447 * because this is an RCU protected lookup, we could find a recently
2448 * freed or even reallocated inode during the lookup. We need to check
2449 * under the i_flags_lock for a valid inode here. Skip it if it is not
2450 * valid, the wrong inode or stale.
2451 */
2452 spin_lock(&ip->i_flags_lock);
718ecc50
DC
2453 if (ip->i_ino != inum || __xfs_iflags_test(ip, XFS_ISTALE))
2454 goto out_iflags_unlock;
5806165a
DC
2455
2456 /*
2457 * Don't try to lock/unlock the current inode, but we _cannot_ skip the
2458 * other inodes that we did not find in the list attached to the buffer
2459 * and are not already marked stale. If we can't lock it, back off and
2460 * retry.
2461 */
2462 if (ip != free_ip) {
2463 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
71e3e356 2464 spin_unlock(&ip->i_flags_lock);
5806165a
DC
2465 rcu_read_unlock();
2466 delay(1);
2467 goto retry;
2468 }
5806165a 2469 }
71e3e356 2470 ip->i_flags |= XFS_ISTALE;
5806165a 2471
71e3e356 2472 /*
718ecc50 2473 * If the inode is flushing, it is already attached to the buffer. All
71e3e356
DC
2474 * we needed to do here is mark the inode stale so buffer IO completion
2475 * will remove it from the AIL.
2476 */
2477 iip = ip->i_itemp;
718ecc50 2478 if (__xfs_iflags_test(ip, XFS_IFLUSHING)) {
71e3e356
DC
2479 ASSERT(!list_empty(&iip->ili_item.li_bio_list));
2480 ASSERT(iip->ili_last_fields);
2481 goto out_iunlock;
2482 }
5806165a
DC
2483
2484 /*
48d55e2a
DC
2485 * Inodes not attached to the buffer can be released immediately.
2486 * Everything else has to go through xfs_iflush_abort() on journal
2487 * commit as the flock synchronises removal of the inode from the
2488 * cluster buffer against inode reclaim.
5806165a 2489 */
718ecc50 2490 if (!iip || list_empty(&iip->ili_item.li_bio_list))
71e3e356 2491 goto out_iunlock;
718ecc50
DC
2492
2493 __xfs_iflags_set(ip, XFS_IFLUSHING);
2494 spin_unlock(&ip->i_flags_lock);
2495 rcu_read_unlock();
5806165a 2496
71e3e356 2497 /* we have a dirty inode in memory that has not yet been flushed. */
71e3e356
DC
2498 spin_lock(&iip->ili_lock);
2499 iip->ili_last_fields = iip->ili_fields;
2500 iip->ili_fields = 0;
2501 iip->ili_fsync_fields = 0;
2502 spin_unlock(&iip->ili_lock);
71e3e356
DC
2503 ASSERT(iip->ili_last_fields);
2504
718ecc50
DC
2505 if (ip != free_ip)
2506 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2507 return;
2508
71e3e356
DC
2509out_iunlock:
2510 if (ip != free_ip)
2511 xfs_iunlock(ip, XFS_ILOCK_EXCL);
718ecc50
DC
2512out_iflags_unlock:
2513 spin_unlock(&ip->i_flags_lock);
2514 rcu_read_unlock();
5806165a
DC
2515}
2516
5b3eed75 2517/*
0b8182db 2518 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2519 * inodes that are in memory - they all must be marked stale and attached to
2520 * the cluster buffer.
2521 */
f40aadb2 2522static int
1da177e4 2523xfs_ifree_cluster(
71e3e356 2524 struct xfs_trans *tp,
f40aadb2
DC
2525 struct xfs_perag *pag,
2526 struct xfs_inode *free_ip,
09b56604 2527 struct xfs_icluster *xic)
1da177e4 2528{
71e3e356
DC
2529 struct xfs_mount *mp = free_ip->i_mount;
2530 struct xfs_ino_geometry *igeo = M_IGEO(mp);
2531 struct xfs_buf *bp;
2532 xfs_daddr_t blkno;
2533 xfs_ino_t inum = xic->first_ino;
1da177e4 2534 int nbufs;
5b257b4a 2535 int i, j;
3cdaa189 2536 int ioffset;
ce92464c 2537 int error;
1da177e4 2538
ef325959 2539 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2540
ef325959 2541 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2542 /*
2543 * The allocation bitmap tells us which inodes of the chunk were
2544 * physically allocated. Skip the cluster if an inode falls into
2545 * a sparse region.
2546 */
3cdaa189
BF
2547 ioffset = inum - xic->first_ino;
2548 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2549 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2550 continue;
2551 }
2552
1da177e4
LT
2553 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554 XFS_INO_TO_AGBNO(mp, inum));
2555
5b257b4a
DC
2556 /*
2557 * We obtain and lock the backing buffer first in the process
718ecc50
DC
2558 * here to ensure dirty inodes attached to the buffer remain in
2559 * the flushing state while we mark them stale.
2560 *
5b257b4a
DC
2561 * If we scan the in-memory inodes first, then buffer IO can
2562 * complete before we get a lock on it, and hence we may fail
2563 * to mark all the active inodes on the buffer stale.
2564 */
ce92464c
DW
2565 error = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2566 mp->m_bsize * igeo->blocks_per_cluster,
2567 XBF_UNMAPPED, &bp);
71e3e356 2568 if (error)
ce92464c 2569 return error;
b0f539de
DC
2570
2571 /*
2572 * This buffer may not have been correctly initialised as we
2573 * didn't read it from disk. That's not important because we are
2574 * only using to mark the buffer as stale in the log, and to
2575 * attach stale cached inodes on it. That means it will never be
2576 * dispatched for IO. If it is, we want to know about it, and we
2577 * want it to fail. We can acheive this by adding a write
2578 * verifier to the buffer.
2579 */
8c4ce794 2580 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2581
5b257b4a 2582 /*
71e3e356
DC
2583 * Now we need to set all the cached clean inodes as XFS_ISTALE,
2584 * too. This requires lookups, and will skip inodes that we've
2585 * already marked XFS_ISTALE.
1da177e4 2586 */
71e3e356 2587 for (i = 0; i < igeo->inodes_per_cluster; i++)
f40aadb2 2588 xfs_ifree_mark_inode_stale(pag, free_ip, inum + i);
1da177e4 2589
5b3eed75 2590 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2591 xfs_trans_binval(tp, bp);
2592 }
2a30f36d 2593 return 0;
1da177e4
LT
2594}
2595
2596/*
2597 * This is called to return an inode to the inode free list.
2598 * The inode should already be truncated to 0 length and have
2599 * no pages associated with it. This routine also assumes that
2600 * the inode is already a part of the transaction.
2601 *
2602 * The on-disk copy of the inode will have been added to the list
2603 * of unlinked inodes in the AGI. We need to remove the inode from
2604 * that list atomically with respect to freeing it here.
2605 */
2606int
2607xfs_ifree(
0e0417f3
BF
2608 struct xfs_trans *tp,
2609 struct xfs_inode *ip)
1da177e4 2610{
f40aadb2
DC
2611 struct xfs_mount *mp = ip->i_mount;
2612 struct xfs_perag *pag;
09b56604 2613 struct xfs_icluster xic = { 0 };
1319ebef 2614 struct xfs_inode_log_item *iip = ip->i_itemp;
f40aadb2 2615 int error;
1da177e4 2616
579aa9ca 2617 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2618 ASSERT(VFS_I(ip)->i_nlink == 0);
daf83964 2619 ASSERT(ip->i_df.if_nextents == 0);
13d2c10b 2620 ASSERT(ip->i_disk_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
6e73a545 2621 ASSERT(ip->i_nblocks == 0);
1da177e4 2622
f40aadb2
DC
2623 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2624
1da177e4
LT
2625 /*
2626 * Pull the on-disk inode from the AGI unlinked list.
2627 */
f40aadb2 2628 error = xfs_iunlink_remove(tp, pag, ip);
1baaed8f 2629 if (error)
f40aadb2 2630 goto out;
1da177e4 2631
f40aadb2 2632 error = xfs_difree(tp, pag, ip->i_ino, &xic);
1baaed8f 2633 if (error)
f40aadb2 2634 goto out;
1baaed8f 2635
b2c20045
CH
2636 /*
2637 * Free any local-format data sitting around before we reset the
2638 * data fork to extents format. Note that the attr fork data has
2639 * already been freed by xfs_attr_inactive.
2640 */
f7e67b20 2641 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL) {
b2c20045
CH
2642 kmem_free(ip->i_df.if_u1.if_data);
2643 ip->i_df.if_u1.if_data = NULL;
2644 ip->i_df.if_bytes = 0;
2645 }
98c4f78d 2646
c19b3b05 2647 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
db07349d 2648 ip->i_diflags = 0;
f40aadb2 2649 ip->i_diflags2 = mp->m_ino_geo.new_diflags2;
7821ea30 2650 ip->i_forkoff = 0; /* mark the attr fork not in use */
f7e67b20 2651 ip->i_df.if_format = XFS_DINODE_FMT_EXTENTS;
9b3beb02
CH
2652 if (xfs_iflags_test(ip, XFS_IPRESERVE_DM_FIELDS))
2653 xfs_iflags_clear(ip, XFS_IPRESERVE_DM_FIELDS);
dc1baa71
ES
2654
2655 /* Don't attempt to replay owner changes for a deleted inode */
1319ebef
DC
2656 spin_lock(&iip->ili_lock);
2657 iip->ili_fields &= ~(XFS_ILOG_AOWNER | XFS_ILOG_DOWNER);
2658 spin_unlock(&iip->ili_lock);
dc1baa71 2659
1da177e4
LT
2660 /*
2661 * Bump the generation count so no one will be confused
2662 * by reincarnations of this inode.
2663 */
9e9a2674 2664 VFS_I(ip)->i_generation++;
1da177e4
LT
2665 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2666
09b56604 2667 if (xic.deleted)
f40aadb2
DC
2668 error = xfs_ifree_cluster(tp, pag, ip, &xic);
2669out:
2670 xfs_perag_put(pag);
2a30f36d 2671 return error;
1da177e4
LT
2672}
2673
1da177e4 2674/*
60ec6783
CH
2675 * This is called to unpin an inode. The caller must have the inode locked
2676 * in at least shared mode so that the buffer cannot be subsequently pinned
2677 * once someone is waiting for it to be unpinned.
1da177e4 2678 */
60ec6783 2679static void
f392e631 2680xfs_iunpin(
60ec6783 2681 struct xfs_inode *ip)
1da177e4 2682{
579aa9ca 2683 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2684
4aaf15d1
DC
2685 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2686
a3f74ffb 2687 /* Give the log a push to start the unpinning I/O */
5f9b4b0d 2688 xfs_log_force_seq(ip->i_mount, ip->i_itemp->ili_commit_seq, 0, NULL);
a14a348b 2689
a3f74ffb 2690}
1da177e4 2691
f392e631
CH
2692static void
2693__xfs_iunpin_wait(
2694 struct xfs_inode *ip)
2695{
2696 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2697 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2698
2699 xfs_iunpin(ip);
2700
2701 do {
21417136 2702 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2703 if (xfs_ipincount(ip))
2704 io_schedule();
2705 } while (xfs_ipincount(ip));
21417136 2706 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2707}
2708
777df5af 2709void
a3f74ffb 2710xfs_iunpin_wait(
60ec6783 2711 struct xfs_inode *ip)
a3f74ffb 2712{
f392e631
CH
2713 if (xfs_ipincount(ip))
2714 __xfs_iunpin_wait(ip);
1da177e4
LT
2715}
2716
27320369
DC
2717/*
2718 * Removing an inode from the namespace involves removing the directory entry
2719 * and dropping the link count on the inode. Removing the directory entry can
2720 * result in locking an AGF (directory blocks were freed) and removing a link
2721 * count can result in placing the inode on an unlinked list which results in
2722 * locking an AGI.
2723 *
2724 * The big problem here is that we have an ordering constraint on AGF and AGI
2725 * locking - inode allocation locks the AGI, then can allocate a new extent for
2726 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2727 * removes the inode from the unlinked list, requiring that we lock the AGI
2728 * first, and then freeing the inode can result in an inode chunk being freed
2729 * and hence freeing disk space requiring that we lock an AGF.
2730 *
2731 * Hence the ordering that is imposed by other parts of the code is AGI before
2732 * AGF. This means we cannot remove the directory entry before we drop the inode
2733 * reference count and put it on the unlinked list as this results in a lock
2734 * order of AGF then AGI, and this can deadlock against inode allocation and
2735 * freeing. Therefore we must drop the link counts before we remove the
2736 * directory entry.
2737 *
2738 * This is still safe from a transactional point of view - it is not until we
310a75a3 2739 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2740 * transactions in this operation. Hence as long as we remove the directory
2741 * entry and drop the link count in the first transaction of the remove
2742 * operation, there are no transactional constraints on the ordering here.
2743 */
c24b5dfa
DC
2744int
2745xfs_remove(
2746 xfs_inode_t *dp,
2747 struct xfs_name *name,
2748 xfs_inode_t *ip)
2749{
2750 xfs_mount_t *mp = dp->i_mount;
2751 xfs_trans_t *tp = NULL;
c19b3b05 2752 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
871b9316 2753 int dontcare;
c24b5dfa 2754 int error = 0;
c24b5dfa 2755 uint resblks;
c24b5dfa
DC
2756
2757 trace_xfs_remove(dp, name);
2758
75c8c50f 2759 if (xfs_is_shutdown(mp))
2451337d 2760 return -EIO;
c24b5dfa 2761
c14cfcca 2762 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2763 if (error)
2764 goto std_return;
2765
c14cfcca 2766 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2767 if (error)
2768 goto std_return;
2769
c24b5dfa 2770 /*
871b9316
DW
2771 * We try to get the real space reservation first, allowing for
2772 * directory btree deletion(s) implying possible bmap insert(s). If we
2773 * can't get the space reservation then we use 0 instead, and avoid the
2774 * bmap btree insert(s) in the directory code by, if the bmap insert
2775 * tries to happen, instead trimming the LAST block from the directory.
2776 *
2777 * Ignore EDQUOT and ENOSPC being returned via nospace_error because
2778 * the directory code can handle a reservationless update and we don't
2779 * want to prevent a user from trying to free space by deleting things.
c24b5dfa
DC
2780 */
2781 resblks = XFS_REMOVE_SPACE_RES(mp);
871b9316
DW
2782 error = xfs_trans_alloc_dir(dp, &M_RES(mp)->tr_remove, ip, &resblks,
2783 &tp, &dontcare);
c24b5dfa 2784 if (error) {
2451337d 2785 ASSERT(error != -ENOSPC);
253f4911 2786 goto std_return;
c24b5dfa
DC
2787 }
2788
c24b5dfa
DC
2789 /*
2790 * If we're removing a directory perform some additional validation.
2791 */
2792 if (is_dir) {
54d7b5c1
DC
2793 ASSERT(VFS_I(ip)->i_nlink >= 2);
2794 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2795 error = -ENOTEMPTY;
c24b5dfa
DC
2796 goto out_trans_cancel;
2797 }
2798 if (!xfs_dir_isempty(ip)) {
2451337d 2799 error = -ENOTEMPTY;
c24b5dfa
DC
2800 goto out_trans_cancel;
2801 }
c24b5dfa 2802
27320369 2803 /* Drop the link from ip's "..". */
c24b5dfa
DC
2804 error = xfs_droplink(tp, dp);
2805 if (error)
27320369 2806 goto out_trans_cancel;
c24b5dfa 2807
27320369 2808 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2809 error = xfs_droplink(tp, ip);
2810 if (error)
27320369 2811 goto out_trans_cancel;
5838d035
DW
2812
2813 /*
2814 * Point the unlinked child directory's ".." entry to the root
2815 * directory to eliminate back-references to inodes that may
2816 * get freed before the child directory is closed. If the fs
2817 * gets shrunk, this can lead to dirent inode validation errors.
2818 */
2819 if (dp->i_ino != tp->t_mountp->m_sb.sb_rootino) {
2820 error = xfs_dir_replace(tp, ip, &xfs_name_dotdot,
2821 tp->t_mountp->m_sb.sb_rootino, 0);
2822 if (error)
2823 return error;
2824 }
c24b5dfa
DC
2825 } else {
2826 /*
2827 * When removing a non-directory we need to log the parent
2828 * inode here. For a directory this is done implicitly
2829 * by the xfs_droplink call for the ".." entry.
2830 */
2831 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2832 }
27320369 2833 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2834
27320369 2835 /* Drop the link from dp to ip. */
c24b5dfa
DC
2836 error = xfs_droplink(tp, ip);
2837 if (error)
27320369 2838 goto out_trans_cancel;
c24b5dfa 2839
381eee69 2840 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2841 if (error) {
2451337d 2842 ASSERT(error != -ENOENT);
c8eac49e 2843 goto out_trans_cancel;
27320369
DC
2844 }
2845
c24b5dfa
DC
2846 /*
2847 * If this is a synchronous mount, make sure that the
2848 * remove transaction goes to disk before returning to
2849 * the user.
2850 */
0560f31a 2851 if (xfs_has_wsync(mp) || xfs_has_dirsync(mp))
c24b5dfa
DC
2852 xfs_trans_set_sync(tp);
2853
70393313 2854 error = xfs_trans_commit(tp);
c24b5dfa
DC
2855 if (error)
2856 goto std_return;
2857
2cd2ef6a 2858 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2859 xfs_filestream_deassociate(ip);
2860
2861 return 0;
2862
c24b5dfa 2863 out_trans_cancel:
4906e215 2864 xfs_trans_cancel(tp);
c24b5dfa
DC
2865 std_return:
2866 return error;
2867}
2868
f6bba201
DC
2869/*
2870 * Enter all inodes for a rename transaction into a sorted array.
2871 */
95afcf5c 2872#define __XFS_SORT_INODES 5
f6bba201
DC
2873STATIC void
2874xfs_sort_for_rename(
95afcf5c
DC
2875 struct xfs_inode *dp1, /* in: old (source) directory inode */
2876 struct xfs_inode *dp2, /* in: new (target) directory inode */
2877 struct xfs_inode *ip1, /* in: inode of old entry */
2878 struct xfs_inode *ip2, /* in: inode of new entry */
2879 struct xfs_inode *wip, /* in: whiteout inode */
2880 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2881 int *num_inodes) /* in/out: inodes in array */
f6bba201 2882{
f6bba201
DC
2883 int i, j;
2884
95afcf5c
DC
2885 ASSERT(*num_inodes == __XFS_SORT_INODES);
2886 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2887
f6bba201
DC
2888 /*
2889 * i_tab contains a list of pointers to inodes. We initialize
2890 * the table here & we'll sort it. We will then use it to
2891 * order the acquisition of the inode locks.
2892 *
2893 * Note that the table may contain duplicates. e.g., dp1 == dp2.
2894 */
95afcf5c
DC
2895 i = 0;
2896 i_tab[i++] = dp1;
2897 i_tab[i++] = dp2;
2898 i_tab[i++] = ip1;
2899 if (ip2)
2900 i_tab[i++] = ip2;
2901 if (wip)
2902 i_tab[i++] = wip;
2903 *num_inodes = i;
f6bba201
DC
2904
2905 /*
2906 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 2907 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
2908 */
2909 for (i = 0; i < *num_inodes; i++) {
2910 for (j = 1; j < *num_inodes; j++) {
2911 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 2912 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
2913 i_tab[j] = i_tab[j-1];
2914 i_tab[j-1] = temp;
2915 }
2916 }
2917 }
2918}
2919
310606b0
DC
2920static int
2921xfs_finish_rename(
c9cfdb38 2922 struct xfs_trans *tp)
310606b0 2923{
310606b0
DC
2924 /*
2925 * If this is a synchronous mount, make sure that the rename transaction
2926 * goes to disk before returning to the user.
2927 */
0560f31a 2928 if (xfs_has_wsync(tp->t_mountp) || xfs_has_dirsync(tp->t_mountp))
310606b0
DC
2929 xfs_trans_set_sync(tp);
2930
70393313 2931 return xfs_trans_commit(tp);
310606b0
DC
2932}
2933
d31a1825
CM
2934/*
2935 * xfs_cross_rename()
2936 *
0145225e 2937 * responsible for handling RENAME_EXCHANGE flag in renameat2() syscall
d31a1825
CM
2938 */
2939STATIC int
2940xfs_cross_rename(
2941 struct xfs_trans *tp,
2942 struct xfs_inode *dp1,
2943 struct xfs_name *name1,
2944 struct xfs_inode *ip1,
2945 struct xfs_inode *dp2,
2946 struct xfs_name *name2,
2947 struct xfs_inode *ip2,
d31a1825
CM
2948 int spaceres)
2949{
2950 int error = 0;
2951 int ip1_flags = 0;
2952 int ip2_flags = 0;
2953 int dp2_flags = 0;
2954
2955 /* Swap inode number for dirent in first parent */
381eee69 2956 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 2957 if (error)
eeacd321 2958 goto out_trans_abort;
d31a1825
CM
2959
2960 /* Swap inode number for dirent in second parent */
381eee69 2961 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 2962 if (error)
eeacd321 2963 goto out_trans_abort;
d31a1825
CM
2964
2965 /*
2966 * If we're renaming one or more directories across different parents,
2967 * update the respective ".." entries (and link counts) to match the new
2968 * parents.
2969 */
2970 if (dp1 != dp2) {
2971 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2972
c19b3b05 2973 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 2974 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 2975 dp1->i_ino, spaceres);
d31a1825 2976 if (error)
eeacd321 2977 goto out_trans_abort;
d31a1825
CM
2978
2979 /* transfer ip2 ".." reference to dp1 */
c19b3b05 2980 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
2981 error = xfs_droplink(tp, dp2);
2982 if (error)
eeacd321 2983 goto out_trans_abort;
91083269 2984 xfs_bumplink(tp, dp1);
d31a1825
CM
2985 }
2986
2987 /*
2988 * Although ip1 isn't changed here, userspace needs
2989 * to be warned about the change, so that applications
2990 * relying on it (like backup ones), will properly
2991 * notify the change
2992 */
2993 ip1_flags |= XFS_ICHGTIME_CHG;
2994 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2995 }
2996
c19b3b05 2997 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 2998 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 2999 dp2->i_ino, spaceres);
d31a1825 3000 if (error)
eeacd321 3001 goto out_trans_abort;
d31a1825
CM
3002
3003 /* transfer ip1 ".." reference to dp2 */
c19b3b05 3004 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
3005 error = xfs_droplink(tp, dp1);
3006 if (error)
eeacd321 3007 goto out_trans_abort;
91083269 3008 xfs_bumplink(tp, dp2);
d31a1825
CM
3009 }
3010
3011 /*
3012 * Although ip2 isn't changed here, userspace needs
3013 * to be warned about the change, so that applications
3014 * relying on it (like backup ones), will properly
3015 * notify the change
3016 */
3017 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3018 ip2_flags |= XFS_ICHGTIME_CHG;
3019 }
3020 }
3021
3022 if (ip1_flags) {
3023 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3024 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3025 }
3026 if (ip2_flags) {
3027 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3028 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3029 }
3030 if (dp2_flags) {
3031 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3032 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3033 }
3034 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3035 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 3036 return xfs_finish_rename(tp);
eeacd321
DC
3037
3038out_trans_abort:
4906e215 3039 xfs_trans_cancel(tp);
d31a1825
CM
3040 return error;
3041}
3042
7dcf5c3e
DC
3043/*
3044 * xfs_rename_alloc_whiteout()
3045 *
b63da6c8 3046 * Return a referenced, unlinked, unlocked inode that can be used as a
7dcf5c3e
DC
3047 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3048 * crash between allocating the inode and linking it into the rename transaction
3049 * recovery will free the inode and we won't leak it.
3050 */
3051static int
3052xfs_rename_alloc_whiteout(
f736d93d 3053 struct user_namespace *mnt_userns,
7dcf5c3e
DC
3054 struct xfs_inode *dp,
3055 struct xfs_inode **wip)
3056{
3057 struct xfs_inode *tmpfile;
3058 int error;
3059
f736d93d
CH
3060 error = xfs_create_tmpfile(mnt_userns, dp, S_IFCHR | WHITEOUT_MODE,
3061 &tmpfile);
7dcf5c3e
DC
3062 if (error)
3063 return error;
3064
22419ac9
BF
3065 /*
3066 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
3067 * Complete the inode setup and flag it as linkable. nlink is already
3068 * zero, so we can skip the drop_nlink.
22419ac9 3069 */
2b3d1d41 3070 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
3071 xfs_finish_inode_setup(tmpfile);
3072 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3073
3074 *wip = tmpfile;
3075 return 0;
3076}
3077
f6bba201
DC
3078/*
3079 * xfs_rename
3080 */
3081int
3082xfs_rename(
f736d93d 3083 struct user_namespace *mnt_userns,
7dcf5c3e
DC
3084 struct xfs_inode *src_dp,
3085 struct xfs_name *src_name,
3086 struct xfs_inode *src_ip,
3087 struct xfs_inode *target_dp,
3088 struct xfs_name *target_name,
3089 struct xfs_inode *target_ip,
3090 unsigned int flags)
f6bba201 3091{
7dcf5c3e
DC
3092 struct xfs_mount *mp = src_dp->i_mount;
3093 struct xfs_trans *tp;
7dcf5c3e
DC
3094 struct xfs_inode *wip = NULL; /* whiteout inode */
3095 struct xfs_inode *inodes[__XFS_SORT_INODES];
6da1b4b1 3096 int i;
7dcf5c3e 3097 int num_inodes = __XFS_SORT_INODES;
2b93681f 3098 bool new_parent = (src_dp != target_dp);
c19b3b05 3099 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e 3100 int spaceres;
41667260
DW
3101 bool retried = false;
3102 int error, nospace_error = 0;
f6bba201
DC
3103
3104 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3105
eeacd321
DC
3106 if ((flags & RENAME_EXCHANGE) && !target_ip)
3107 return -EINVAL;
3108
7dcf5c3e
DC
3109 /*
3110 * If we are doing a whiteout operation, allocate the whiteout inode
3111 * we will be placing at the target and ensure the type is set
3112 * appropriately.
3113 */
3114 if (flags & RENAME_WHITEOUT) {
f736d93d 3115 error = xfs_rename_alloc_whiteout(mnt_userns, target_dp, &wip);
7dcf5c3e
DC
3116 if (error)
3117 return error;
3118
3119 /* setup target dirent info as whiteout */
3120 src_name->type = XFS_DIR3_FT_CHRDEV;
3121 }
f6bba201 3122
7dcf5c3e 3123 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
3124 inodes, &num_inodes);
3125
41667260
DW
3126retry:
3127 nospace_error = 0;
f6bba201 3128 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 3129 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 3130 if (error == -ENOSPC) {
41667260 3131 nospace_error = error;
f6bba201 3132 spaceres = 0;
253f4911
CH
3133 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3134 &tp);
f6bba201 3135 }
445883e8 3136 if (error)
253f4911 3137 goto out_release_wip;
f6bba201
DC
3138
3139 /*
3140 * Attach the dquots to the inodes
3141 */
3142 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
3143 if (error)
3144 goto out_trans_cancel;
f6bba201
DC
3145
3146 /*
3147 * Lock all the participating inodes. Depending upon whether
3148 * the target_name exists in the target directory, and
3149 * whether the target directory is the same as the source
3150 * directory, we can lock from 2 to 4 inodes.
3151 */
3152 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3153
3154 /*
3155 * Join all the inodes to the transaction. From this point on,
3156 * we can rely on either trans_commit or trans_cancel to unlock
3157 * them.
3158 */
65523218 3159 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3160 if (new_parent)
65523218 3161 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3162 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3163 if (target_ip)
3164 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3165 if (wip)
3166 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3167
3168 /*
3169 * If we are using project inheritance, we only allow renames
3170 * into our tree when the project IDs are the same; else the
3171 * tree quota mechanism would be circumvented.
3172 */
db07349d 3173 if (unlikely((target_dp->i_diflags & XFS_DIFLAG_PROJINHERIT) &&
ceaf603c 3174 target_dp->i_projid != src_ip->i_projid)) {
2451337d 3175 error = -EXDEV;
445883e8 3176 goto out_trans_cancel;
f6bba201
DC
3177 }
3178
eeacd321
DC
3179 /* RENAME_EXCHANGE is unique from here on. */
3180 if (flags & RENAME_EXCHANGE)
3181 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3182 target_dp, target_name, target_ip,
f16dea54 3183 spaceres);
d31a1825 3184
41667260
DW
3185 /*
3186 * Try to reserve quota to handle an expansion of the target directory.
3187 * We'll allow the rename to continue in reservationless mode if we hit
3188 * a space usage constraint. If we trigger reservationless mode, save
3189 * the errno if there isn't any free space in the target directory.
3190 */
3191 if (spaceres != 0) {
3192 error = xfs_trans_reserve_quota_nblks(tp, target_dp, spaceres,
3193 0, false);
3194 if (error == -EDQUOT || error == -ENOSPC) {
3195 if (!retried) {
3196 xfs_trans_cancel(tp);
3197 xfs_blockgc_free_quota(target_dp, 0);
3198 retried = true;
3199 goto retry;
3200 }
3201
3202 nospace_error = error;
3203 spaceres = 0;
3204 error = 0;
3205 }
3206 if (error)
3207 goto out_trans_cancel;
3208 }
3209
f6bba201 3210 /*
bc56ad8c 3211 * Check for expected errors before we dirty the transaction
3212 * so we can return an error without a transaction abort.
02092a2f
CB
3213 *
3214 * Extent count overflow check:
3215 *
3216 * From the perspective of src_dp, a rename operation is essentially a
3217 * directory entry remove operation. Hence the only place where we check
3218 * for extent count overflow for src_dp is in
3219 * xfs_bmap_del_extent_real(). xfs_bmap_del_extent_real() returns
3220 * -ENOSPC when it detects a possible extent count overflow and in
3221 * response, the higher layers of directory handling code do the
3222 * following:
3223 * 1. Data/Free blocks: XFS lets these blocks linger until a
3224 * future remove operation removes them.
3225 * 2. Dabtree blocks: XFS swaps the blocks with the last block in the
3226 * Leaf space and unmaps the last block.
3227 *
3228 * For target_dp, there are two cases depending on whether the
3229 * destination directory entry exists or not.
3230 *
3231 * When destination directory entry does not exist (i.e. target_ip ==
3232 * NULL), extent count overflow check is performed only when transaction
3233 * has a non-zero sized space reservation associated with it. With a
3234 * zero-sized space reservation, XFS allows a rename operation to
3235 * continue only when the directory has sufficient free space in its
3236 * data/leaf/free space blocks to hold the new entry.
3237 *
3238 * When destination directory entry exists (i.e. target_ip != NULL), all
3239 * we need to do is change the inode number associated with the already
3240 * existing entry. Hence there is no need to perform an extent count
3241 * overflow check.
f6bba201
DC
3242 */
3243 if (target_ip == NULL) {
3244 /*
3245 * If there's no space reservation, check the entry will
3246 * fit before actually inserting it.
3247 */
94f3cad5
ES
3248 if (!spaceres) {
3249 error = xfs_dir_canenter(tp, target_dp, target_name);
3250 if (error)
445883e8 3251 goto out_trans_cancel;
02092a2f
CB
3252 } else {
3253 error = xfs_iext_count_may_overflow(target_dp,
3254 XFS_DATA_FORK,
3255 XFS_IEXT_DIR_MANIP_CNT(mp));
3256 if (error)
3257 goto out_trans_cancel;
94f3cad5 3258 }
bc56ad8c 3259 } else {
3260 /*
3261 * If target exists and it's a directory, check that whether
3262 * it can be destroyed.
3263 */
3264 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3265 (!xfs_dir_isempty(target_ip) ||
3266 (VFS_I(target_ip)->i_nlink > 2))) {
3267 error = -EEXIST;
3268 goto out_trans_cancel;
3269 }
3270 }
3271
6da1b4b1
DW
3272 /*
3273 * Lock the AGI buffers we need to handle bumping the nlink of the
3274 * whiteout inode off the unlinked list and to handle dropping the
3275 * nlink of the target inode. Per locking order rules, do this in
3276 * increasing AG order and before directory block allocation tries to
3277 * grab AGFs because we grab AGIs before AGFs.
3278 *
3279 * The (vfs) caller must ensure that if src is a directory then
3280 * target_ip is either null or an empty directory.
3281 */
3282 for (i = 0; i < num_inodes && inodes[i] != NULL; i++) {
3283 if (inodes[i] == wip ||
3284 (inodes[i] == target_ip &&
3285 (VFS_I(target_ip)->i_nlink == 1 || src_is_directory))) {
3286 struct xfs_buf *bp;
3287 xfs_agnumber_t agno;
3288
3289 agno = XFS_INO_TO_AGNO(mp, inodes[i]->i_ino);
3290 error = xfs_read_agi(mp, tp, agno, &bp);
3291 if (error)
3292 goto out_trans_cancel;
3293 }
3294 }
3295
bc56ad8c 3296 /*
3297 * Directory entry creation below may acquire the AGF. Remove
3298 * the whiteout from the unlinked list first to preserve correct
3299 * AGI/AGF locking order. This dirties the transaction so failures
3300 * after this point will abort and log recovery will clean up the
3301 * mess.
3302 *
3303 * For whiteouts, we need to bump the link count on the whiteout
3304 * inode. After this point, we have a real link, clear the tmpfile
3305 * state flag from the inode so it doesn't accidentally get misused
3306 * in future.
3307 */
3308 if (wip) {
f40aadb2
DC
3309 struct xfs_perag *pag;
3310
bc56ad8c 3311 ASSERT(VFS_I(wip)->i_nlink == 0);
f40aadb2
DC
3312
3313 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, wip->i_ino));
3314 error = xfs_iunlink_remove(tp, pag, wip);
3315 xfs_perag_put(pag);
bc56ad8c 3316 if (error)
3317 goto out_trans_cancel;
3318
3319 xfs_bumplink(tp, wip);
bc56ad8c 3320 VFS_I(wip)->i_state &= ~I_LINKABLE;
3321 }
3322
3323 /*
3324 * Set up the target.
3325 */
3326 if (target_ip == NULL) {
f6bba201
DC
3327 /*
3328 * If target does not exist and the rename crosses
3329 * directories, adjust the target directory link count
3330 * to account for the ".." reference from the new entry.
3331 */
3332 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3333 src_ip->i_ino, spaceres);
f6bba201 3334 if (error)
c8eac49e 3335 goto out_trans_cancel;
f6bba201
DC
3336
3337 xfs_trans_ichgtime(tp, target_dp,
3338 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3339
3340 if (new_parent && src_is_directory) {
91083269 3341 xfs_bumplink(tp, target_dp);
f6bba201
DC
3342 }
3343 } else { /* target_ip != NULL */
f6bba201
DC
3344 /*
3345 * Link the source inode under the target name.
3346 * If the source inode is a directory and we are moving
3347 * it across directories, its ".." entry will be
3348 * inconsistent until we replace that down below.
3349 *
3350 * In case there is already an entry with the same
3351 * name at the destination directory, remove it first.
3352 */
3353 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3354 src_ip->i_ino, spaceres);
f6bba201 3355 if (error)
c8eac49e 3356 goto out_trans_cancel;
f6bba201
DC
3357
3358 xfs_trans_ichgtime(tp, target_dp,
3359 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3360
3361 /*
3362 * Decrement the link count on the target since the target
3363 * dir no longer points to it.
3364 */
3365 error = xfs_droplink(tp, target_ip);
3366 if (error)
c8eac49e 3367 goto out_trans_cancel;
f6bba201
DC
3368
3369 if (src_is_directory) {
3370 /*
3371 * Drop the link from the old "." entry.
3372 */
3373 error = xfs_droplink(tp, target_ip);
3374 if (error)
c8eac49e 3375 goto out_trans_cancel;
f6bba201
DC
3376 }
3377 } /* target_ip != NULL */
3378
3379 /*
3380 * Remove the source.
3381 */
3382 if (new_parent && src_is_directory) {
3383 /*
3384 * Rewrite the ".." entry to point to the new
3385 * directory.
3386 */
3387 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3388 target_dp->i_ino, spaceres);
2451337d 3389 ASSERT(error != -EEXIST);
f6bba201 3390 if (error)
c8eac49e 3391 goto out_trans_cancel;
f6bba201
DC
3392 }
3393
3394 /*
3395 * We always want to hit the ctime on the source inode.
3396 *
3397 * This isn't strictly required by the standards since the source
3398 * inode isn't really being changed, but old unix file systems did
3399 * it and some incremental backup programs won't work without it.
3400 */
3401 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3402 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3403
3404 /*
3405 * Adjust the link count on src_dp. This is necessary when
3406 * renaming a directory, either within one parent when
3407 * the target existed, or across two parent directories.
3408 */
3409 if (src_is_directory && (new_parent || target_ip != NULL)) {
3410
3411 /*
3412 * Decrement link count on src_directory since the
3413 * entry that's moved no longer points to it.
3414 */
3415 error = xfs_droplink(tp, src_dp);
3416 if (error)
c8eac49e 3417 goto out_trans_cancel;
f6bba201
DC
3418 }
3419
7dcf5c3e
DC
3420 /*
3421 * For whiteouts, we only need to update the source dirent with the
3422 * inode number of the whiteout inode rather than removing it
3423 * altogether.
3424 */
3425 if (wip) {
3426 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3427 spaceres);
02092a2f
CB
3428 } else {
3429 /*
3430 * NOTE: We don't need to check for extent count overflow here
3431 * because the dir remove name code will leave the dir block in
3432 * place if the extent count would overflow.
3433 */
7dcf5c3e 3434 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3435 spaceres);
02092a2f
CB
3436 }
3437
f6bba201 3438 if (error)
c8eac49e 3439 goto out_trans_cancel;
f6bba201 3440
f6bba201
DC
3441 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3442 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3443 if (new_parent)
3444 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3445
c9cfdb38 3446 error = xfs_finish_rename(tp);
7dcf5c3e 3447 if (wip)
44a8736b 3448 xfs_irele(wip);
7dcf5c3e 3449 return error;
f6bba201 3450
445883e8 3451out_trans_cancel:
4906e215 3452 xfs_trans_cancel(tp);
253f4911 3453out_release_wip:
7dcf5c3e 3454 if (wip)
44a8736b 3455 xfs_irele(wip);
41667260
DW
3456 if (error == -ENOSPC && nospace_error)
3457 error = nospace_error;
f6bba201
DC
3458 return error;
3459}
3460
e6187b34
DC
3461static int
3462xfs_iflush(
93848a99
CH
3463 struct xfs_inode *ip,
3464 struct xfs_buf *bp)
1da177e4 3465{
93848a99
CH
3466 struct xfs_inode_log_item *iip = ip->i_itemp;
3467 struct xfs_dinode *dip;
3468 struct xfs_mount *mp = ip->i_mount;
f2019299 3469 int error;
1da177e4 3470
579aa9ca 3471 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
718ecc50 3472 ASSERT(xfs_iflags_test(ip, XFS_IFLUSHING));
f7e67b20 3473 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE ||
daf83964 3474 ip->i_df.if_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
90c60e16 3475 ASSERT(iip->ili_item.li_buf == bp);
1da177e4 3476
88ee2df7 3477 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3478
f2019299
BF
3479 /*
3480 * We don't flush the inode if any of the following checks fail, but we
3481 * do still update the log item and attach to the backing buffer as if
3482 * the flush happened. This is a formality to facilitate predictable
3483 * error handling as the caller will shutdown and fail the buffer.
3484 */
3485 error = -EFSCORRUPTED;
69ef921b 3486 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3487 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3488 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3489 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3490 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
f2019299 3491 goto flush_out;
1da177e4 3492 }
c19b3b05 3493 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4 3494 if (XFS_TEST_ERROR(
f7e67b20
CH
3495 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3496 ip->i_df.if_format != XFS_DINODE_FMT_BTREE,
9e24cfd0 3497 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3498 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3499 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3500 __func__, ip->i_ino, ip);
f2019299 3501 goto flush_out;
1da177e4 3502 }
c19b3b05 3503 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4 3504 if (XFS_TEST_ERROR(
f7e67b20
CH
3505 ip->i_df.if_format != XFS_DINODE_FMT_EXTENTS &&
3506 ip->i_df.if_format != XFS_DINODE_FMT_BTREE &&
3507 ip->i_df.if_format != XFS_DINODE_FMT_LOCAL,
9e24cfd0 3508 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3509 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3510 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3511 __func__, ip->i_ino, ip);
f2019299 3512 goto flush_out;
1da177e4
LT
3513 }
3514 }
daf83964 3515 if (XFS_TEST_ERROR(ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp) >
6e73a545 3516 ip->i_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3517 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3518 "%s: detected corrupt incore inode %Lu, "
c9690043 3519 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3520 __func__, ip->i_ino,
daf83964 3521 ip->i_df.if_nextents + xfs_ifork_nextents(ip->i_afp),
6e73a545 3522 ip->i_nblocks, ip);
f2019299 3523 goto flush_out;
1da177e4 3524 }
7821ea30 3525 if (XFS_TEST_ERROR(ip->i_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3526 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3527 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3528 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
7821ea30 3529 __func__, ip->i_ino, ip->i_forkoff, ip);
f2019299 3530 goto flush_out;
1da177e4 3531 }
e60896d8 3532
1da177e4 3533 /*
965e0a1a
CH
3534 * Inode item log recovery for v2 inodes are dependent on the flushiter
3535 * count for correct sequencing. We bump the flush iteration count so
3536 * we can detect flushes which postdate a log record during recovery.
3537 * This is redundant as we now log every change and hence this can't
3538 * happen but we need to still do it to ensure backwards compatibility
3539 * with old kernels that predate logging all inode changes.
1da177e4 3540 */
38c26bfd 3541 if (!xfs_has_v3inodes(mp))
965e0a1a 3542 ip->i_flushiter++;
1da177e4 3543
0f45a1b2
CH
3544 /*
3545 * If there are inline format data / attr forks attached to this inode,
3546 * make sure they are not corrupt.
3547 */
f7e67b20 3548 if (ip->i_df.if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2
CH
3549 xfs_ifork_verify_local_data(ip))
3550 goto flush_out;
f7e67b20 3551 if (ip->i_afp && ip->i_afp->if_format == XFS_DINODE_FMT_LOCAL &&
0f45a1b2 3552 xfs_ifork_verify_local_attr(ip))
f2019299 3553 goto flush_out;
005c5db8 3554
1da177e4 3555 /*
3987848c
DC
3556 * Copy the dirty parts of the inode into the on-disk inode. We always
3557 * copy out the core of the inode, because if the inode is dirty at all
3558 * the core must be.
1da177e4 3559 */
93f958f9 3560 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3561
3562 /* Wrap, we never let the log put out DI_MAX_FLUSH */
38c26bfd 3563 if (!xfs_has_v3inodes(mp)) {
ee7b83fd
CH
3564 if (ip->i_flushiter == DI_MAX_FLUSH)
3565 ip->i_flushiter = 0;
3566 }
1da177e4 3567
005c5db8
DW
3568 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3569 if (XFS_IFORK_Q(ip))
3570 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3571
3572 /*
f5d8d5c4
CH
3573 * We've recorded everything logged in the inode, so we'd like to clear
3574 * the ili_fields bits so we don't log and flush things unnecessarily.
3575 * However, we can't stop logging all this information until the data
3576 * we've copied into the disk buffer is written to disk. If we did we
3577 * might overwrite the copy of the inode in the log with all the data
3578 * after re-logging only part of it, and in the face of a crash we
3579 * wouldn't have all the data we need to recover.
1da177e4 3580 *
f5d8d5c4
CH
3581 * What we do is move the bits to the ili_last_fields field. When
3582 * logging the inode, these bits are moved back to the ili_fields field.
664ffb8a
CH
3583 * In the xfs_buf_inode_iodone() routine we clear ili_last_fields, since
3584 * we know that the information those bits represent is permanently on
f5d8d5c4
CH
3585 * disk. As long as the flush completes before the inode is logged
3586 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3587 */
f2019299
BF
3588 error = 0;
3589flush_out:
1319ebef 3590 spin_lock(&iip->ili_lock);
93848a99
CH
3591 iip->ili_last_fields = iip->ili_fields;
3592 iip->ili_fields = 0;
fc0561ce 3593 iip->ili_fsync_fields = 0;
1319ebef 3594 spin_unlock(&iip->ili_lock);
1da177e4 3595
1319ebef
DC
3596 /*
3597 * Store the current LSN of the inode so that we can tell whether the
664ffb8a 3598 * item has moved in the AIL from xfs_buf_inode_iodone().
1319ebef 3599 */
93848a99
CH
3600 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3601 &iip->ili_item.li_lsn);
1da177e4 3602
93848a99
CH
3603 /* generate the checksum. */
3604 xfs_dinode_calc_crc(mp, dip);
f2019299 3605 return error;
1da177e4 3606}
44a8736b 3607
e6187b34
DC
3608/*
3609 * Non-blocking flush of dirty inode metadata into the backing buffer.
3610 *
3611 * The caller must have a reference to the inode and hold the cluster buffer
3612 * locked. The function will walk across all the inodes on the cluster buffer it
3613 * can find and lock without blocking, and flush them to the cluster buffer.
3614 *
5717ea4d
DC
3615 * On successful flushing of at least one inode, the caller must write out the
3616 * buffer and release it. If no inodes are flushed, -EAGAIN will be returned and
3617 * the caller needs to release the buffer. On failure, the filesystem will be
3618 * shut down, the buffer will have been unlocked and released, and EFSCORRUPTED
3619 * will be returned.
e6187b34
DC
3620 */
3621int
3622xfs_iflush_cluster(
e6187b34
DC
3623 struct xfs_buf *bp)
3624{
5717ea4d
DC
3625 struct xfs_mount *mp = bp->b_mount;
3626 struct xfs_log_item *lip, *n;
3627 struct xfs_inode *ip;
3628 struct xfs_inode_log_item *iip;
e6187b34 3629 int clcount = 0;
5717ea4d 3630 int error = 0;
e6187b34 3631
5717ea4d
DC
3632 /*
3633 * We must use the safe variant here as on shutdown xfs_iflush_abort()
3634 * can remove itself from the list.
3635 */
3636 list_for_each_entry_safe(lip, n, &bp->b_li_list, li_bio_list) {
3637 iip = (struct xfs_inode_log_item *)lip;
3638 ip = iip->ili_inode;
e6187b34
DC
3639
3640 /*
5717ea4d 3641 * Quick and dirty check to avoid locks if possible.
e6187b34 3642 */
718ecc50 3643 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING))
5717ea4d
DC
3644 continue;
3645 if (xfs_ipincount(ip))
e6187b34 3646 continue;
e6187b34
DC
3647
3648 /*
5717ea4d
DC
3649 * The inode is still attached to the buffer, which means it is
3650 * dirty but reclaim might try to grab it. Check carefully for
3651 * that, and grab the ilock while still holding the i_flags_lock
3652 * to guarantee reclaim will not be able to reclaim this inode
3653 * once we drop the i_flags_lock.
e6187b34 3654 */
5717ea4d
DC
3655 spin_lock(&ip->i_flags_lock);
3656 ASSERT(!__xfs_iflags_test(ip, XFS_ISTALE));
718ecc50 3657 if (__xfs_iflags_test(ip, XFS_IRECLAIM | XFS_IFLUSHING)) {
5717ea4d
DC
3658 spin_unlock(&ip->i_flags_lock);
3659 continue;
e6187b34 3660 }
e6187b34
DC
3661
3662 /*
5717ea4d
DC
3663 * ILOCK will pin the inode against reclaim and prevent
3664 * concurrent transactions modifying the inode while we are
718ecc50
DC
3665 * flushing the inode. If we get the lock, set the flushing
3666 * state before we drop the i_flags_lock.
e6187b34 3667 */
5717ea4d
DC
3668 if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
3669 spin_unlock(&ip->i_flags_lock);
e6187b34 3670 continue;
5717ea4d 3671 }
718ecc50 3672 __xfs_iflags_set(ip, XFS_IFLUSHING);
5717ea4d 3673 spin_unlock(&ip->i_flags_lock);
e6187b34 3674
e6187b34 3675 /*
5717ea4d
DC
3676 * Abort flushing this inode if we are shut down because the
3677 * inode may not currently be in the AIL. This can occur when
3678 * log I/O failure unpins the inode without inserting into the
3679 * AIL, leaving a dirty/unpinned inode attached to the buffer
3680 * that otherwise looks like it should be flushed.
e6187b34 3681 */
01728b44 3682 if (xlog_is_shutdown(mp->m_log)) {
5717ea4d 3683 xfs_iunpin_wait(ip);
5717ea4d
DC
3684 xfs_iflush_abort(ip);
3685 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3686 error = -EIO;
e6187b34
DC
3687 continue;
3688 }
3689
5717ea4d
DC
3690 /* don't block waiting on a log force to unpin dirty inodes */
3691 if (xfs_ipincount(ip)) {
718ecc50 3692 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3693 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3694 continue;
e6187b34 3695 }
e6187b34 3696
5717ea4d
DC
3697 if (!xfs_inode_clean(ip))
3698 error = xfs_iflush(ip, bp);
3699 else
718ecc50 3700 xfs_iflags_clear(ip, XFS_IFLUSHING);
5717ea4d
DC
3701 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3702 if (error)
3703 break;
3704 clcount++;
e6187b34
DC
3705 }
3706
e6187b34 3707 if (error) {
01728b44
DC
3708 /*
3709 * Shutdown first so we kill the log before we release this
3710 * buffer. If it is an INODE_ALLOC buffer and pins the tail
3711 * of the log, failing it before the _log_ is shut down can
3712 * result in the log tail being moved forward in the journal
3713 * on disk because log writes can still be taking place. Hence
3714 * unpinning the tail will allow the ICREATE intent to be
3715 * removed from the log an recovery will fail with uninitialised
3716 * inode cluster buffers.
3717 */
3718 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
e6187b34
DC
3719 bp->b_flags |= XBF_ASYNC;
3720 xfs_buf_ioend_fail(bp);
5717ea4d 3721 return error;
e6187b34 3722 }
5717ea4d
DC
3723
3724 if (!clcount)
3725 return -EAGAIN;
3726
3727 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3728 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
3729 return 0;
3730
e6187b34
DC
3731}
3732
44a8736b
DW
3733/* Release an inode. */
3734void
3735xfs_irele(
3736 struct xfs_inode *ip)
3737{
3738 trace_xfs_irele(ip, _RET_IP_);
3739 iput(VFS_I(ip));
3740}
54fbdd10
CH
3741
3742/*
3743 * Ensure all commited transactions touching the inode are written to the log.
3744 */
3745int
3746xfs_log_force_inode(
3747 struct xfs_inode *ip)
3748{
5f9b4b0d 3749 xfs_csn_t seq = 0;
54fbdd10
CH
3750
3751 xfs_ilock(ip, XFS_ILOCK_SHARED);
3752 if (xfs_ipincount(ip))
5f9b4b0d 3753 seq = ip->i_itemp->ili_commit_seq;
54fbdd10
CH
3754 xfs_iunlock(ip, XFS_ILOCK_SHARED);
3755
5f9b4b0d 3756 if (!seq)
54fbdd10 3757 return 0;
5f9b4b0d 3758 return xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC, NULL);
54fbdd10 3759}
e2aaee9c
DW
3760
3761/*
3762 * Grab the exclusive iolock for a data copy from src to dest, making sure to
3763 * abide vfs locking order (lowest pointer value goes first) and breaking the
3764 * layout leases before proceeding. The loop is needed because we cannot call
3765 * the blocking break_layout() with the iolocks held, and therefore have to
3766 * back out both locks.
3767 */
3768static int
3769xfs_iolock_two_inodes_and_break_layout(
3770 struct inode *src,
3771 struct inode *dest)
3772{
3773 int error;
3774
3775 if (src > dest)
3776 swap(src, dest);
3777
3778retry:
3779 /* Wait to break both inodes' layouts before we start locking. */
3780 error = break_layout(src, true);
3781 if (error)
3782 return error;
3783 if (src != dest) {
3784 error = break_layout(dest, true);
3785 if (error)
3786 return error;
3787 }
3788
3789 /* Lock one inode and make sure nobody got in and leased it. */
3790 inode_lock(src);
3791 error = break_layout(src, false);
3792 if (error) {
3793 inode_unlock(src);
3794 if (error == -EWOULDBLOCK)
3795 goto retry;
3796 return error;
3797 }
3798
3799 if (src == dest)
3800 return 0;
3801
3802 /* Lock the other inode and make sure nobody got in and leased it. */
3803 inode_lock_nested(dest, I_MUTEX_NONDIR2);
3804 error = break_layout(dest, false);
3805 if (error) {
3806 inode_unlock(src);
3807 inode_unlock(dest);
3808 if (error == -EWOULDBLOCK)
3809 goto retry;
3810 return error;
3811 }
3812
3813 return 0;
3814}
3815
3816/*
3817 * Lock two inodes so that userspace cannot initiate I/O via file syscalls or
3818 * mmap activity.
3819 */
3820int
3821xfs_ilock2_io_mmap(
3822 struct xfs_inode *ip1,
3823 struct xfs_inode *ip2)
3824{
3825 int ret;
3826
3827 ret = xfs_iolock_two_inodes_and_break_layout(VFS_I(ip1), VFS_I(ip2));
3828 if (ret)
3829 return ret;
d2c292d8
JK
3830 filemap_invalidate_lock_two(VFS_I(ip1)->i_mapping,
3831 VFS_I(ip2)->i_mapping);
e2aaee9c
DW
3832 return 0;
3833}
3834
3835/* Unlock both inodes to allow IO and mmap activity. */
3836void
3837xfs_iunlock2_io_mmap(
3838 struct xfs_inode *ip1,
3839 struct xfs_inode *ip2)
3840{
d2c292d8
JK
3841 filemap_invalidate_unlock_two(VFS_I(ip1)->i_mapping,
3842 VFS_I(ip2)->i_mapping);
e2aaee9c 3843 inode_unlock(VFS_I(ip2));
d2c292d8 3844 if (ip1 != ip2)
e2aaee9c
DW
3845 inode_unlock(VFS_I(ip1));
3846}