mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / xfs / xfs_inode.c
CommitLineData
0b61f8a4 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
3e57ecf6 3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
7b718769 4 * All Rights Reserved.
1da177e4 5 */
f0e28280 6#include <linux/iversion.h>
40ebd81d 7
1da177e4 8#include "xfs.h"
a844f451 9#include "xfs_fs.h"
70a9883c 10#include "xfs_shared.h"
239880ef
DC
11#include "xfs_format.h"
12#include "xfs_log_format.h"
13#include "xfs_trans_resv.h"
1da177e4 14#include "xfs_sb.h"
1da177e4 15#include "xfs_mount.h"
3ab78df2 16#include "xfs_defer.h"
a4fbe6ab 17#include "xfs_inode.h"
c24b5dfa 18#include "xfs_dir2.h"
c24b5dfa 19#include "xfs_attr.h"
239880ef
DC
20#include "xfs_trans_space.h"
21#include "xfs_trans.h"
1da177e4 22#include "xfs_buf_item.h"
a844f451 23#include "xfs_inode_item.h"
a844f451
NS
24#include "xfs_ialloc.h"
25#include "xfs_bmap.h"
68988114 26#include "xfs_bmap_util.h"
e9e899a2 27#include "xfs_errortag.h"
1da177e4 28#include "xfs_error.h"
1da177e4 29#include "xfs_quota.h"
2a82b8be 30#include "xfs_filestream.h"
0b1b213f 31#include "xfs_trace.h"
33479e05 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_symlink.h"
239880ef
DC
34#include "xfs_trans_priv.h"
35#include "xfs_log.h"
a4fbe6ab 36#include "xfs_bmap_btree.h"
aa8968f2 37#include "xfs_reflink.h"
1da177e4 38
1da177e4 39kmem_zone_t *xfs_inode_zone;
1da177e4
LT
40
41/*
8f04c47a 42 * Used in xfs_itruncate_extents(). This is the maximum number of extents
1da177e4
LT
43 * freed from a file in a single transaction.
44 */
45#define XFS_ITRUNC_MAX_EXTENTS 2
46
54d7b5c1
DC
47STATIC int xfs_iflush_int(struct xfs_inode *, struct xfs_buf *);
48STATIC int xfs_iunlink(struct xfs_trans *, struct xfs_inode *);
49STATIC int xfs_iunlink_remove(struct xfs_trans *, struct xfs_inode *);
ab297431 50
2a0ec1d9
DC
51/*
52 * helper function to extract extent size hint from inode
53 */
54xfs_extlen_t
55xfs_get_extsz_hint(
56 struct xfs_inode *ip)
57{
58 if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
59 return ip->i_d.di_extsize;
60 if (XFS_IS_REALTIME_INODE(ip))
61 return ip->i_mount->m_sb.sb_rextsize;
62 return 0;
63}
64
f7ca3522
DW
65/*
66 * Helper function to extract CoW extent size hint from inode.
67 * Between the extent size hint and the CoW extent size hint, we
e153aa79
DW
68 * return the greater of the two. If the value is zero (automatic),
69 * use the default size.
f7ca3522
DW
70 */
71xfs_extlen_t
72xfs_get_cowextsz_hint(
73 struct xfs_inode *ip)
74{
75 xfs_extlen_t a, b;
76
77 a = 0;
78 if (ip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
79 a = ip->i_d.di_cowextsize;
80 b = xfs_get_extsz_hint(ip);
81
e153aa79
DW
82 a = max(a, b);
83 if (a == 0)
84 return XFS_DEFAULT_COWEXTSZ_HINT;
85 return a;
f7ca3522
DW
86}
87
fa96acad 88/*
efa70be1
CH
89 * These two are wrapper routines around the xfs_ilock() routine used to
90 * centralize some grungy code. They are used in places that wish to lock the
91 * inode solely for reading the extents. The reason these places can't just
92 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
93 * bringing in of the extents from disk for a file in b-tree format. If the
94 * inode is in b-tree format, then we need to lock the inode exclusively until
95 * the extents are read in. Locking it exclusively all the time would limit
96 * our parallelism unnecessarily, though. What we do instead is check to see
97 * if the extents have been read in yet, and only lock the inode exclusively
98 * if they have not.
fa96acad 99 *
efa70be1 100 * The functions return a value which should be given to the corresponding
01f4f327 101 * xfs_iunlock() call.
fa96acad
DC
102 */
103uint
309ecac8
CH
104xfs_ilock_data_map_shared(
105 struct xfs_inode *ip)
fa96acad 106{
309ecac8 107 uint lock_mode = XFS_ILOCK_SHARED;
fa96acad 108
309ecac8
CH
109 if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
110 (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
fa96acad 111 lock_mode = XFS_ILOCK_EXCL;
fa96acad 112 xfs_ilock(ip, lock_mode);
fa96acad
DC
113 return lock_mode;
114}
115
efa70be1
CH
116uint
117xfs_ilock_attr_map_shared(
118 struct xfs_inode *ip)
fa96acad 119{
efa70be1
CH
120 uint lock_mode = XFS_ILOCK_SHARED;
121
122 if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
123 (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
124 lock_mode = XFS_ILOCK_EXCL;
125 xfs_ilock(ip, lock_mode);
126 return lock_mode;
fa96acad
DC
127}
128
129/*
65523218
CH
130 * In addition to i_rwsem in the VFS inode, the xfs inode contains 2
131 * multi-reader locks: i_mmap_lock and the i_lock. This routine allows
132 * various combinations of the locks to be obtained.
fa96acad 133 *
653c60b6
DC
134 * The 3 locks should always be ordered so that the IO lock is obtained first,
135 * the mmap lock second and the ilock last in order to prevent deadlock.
fa96acad 136 *
653c60b6
DC
137 * Basic locking order:
138 *
65523218 139 * i_rwsem -> i_mmap_lock -> page_lock -> i_ilock
653c60b6
DC
140 *
141 * mmap_sem locking order:
142 *
65523218 143 * i_rwsem -> page lock -> mmap_sem
653c60b6
DC
144 * mmap_sem -> i_mmap_lock -> page_lock
145 *
146 * The difference in mmap_sem locking order mean that we cannot hold the
147 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
148 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
149 * in get_user_pages() to map the user pages into the kernel address space for
65523218 150 * direct IO. Similarly the i_rwsem cannot be taken inside a page fault because
653c60b6
DC
151 * page faults already hold the mmap_sem.
152 *
153 * Hence to serialise fully against both syscall and mmap based IO, we need to
65523218 154 * take both the i_rwsem and the i_mmap_lock. These locks should *only* be both
653c60b6
DC
155 * taken in places where we need to invalidate the page cache in a race
156 * free manner (e.g. truncate, hole punch and other extent manipulation
157 * functions).
fa96acad
DC
158 */
159void
160xfs_ilock(
161 xfs_inode_t *ip,
162 uint lock_flags)
163{
164 trace_xfs_ilock(ip, lock_flags, _RET_IP_);
165
166 /*
167 * You can't set both SHARED and EXCL for the same lock,
168 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
169 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
170 */
171 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
172 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
173 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
174 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
175 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
176 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 177 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad 178
65523218
CH
179 if (lock_flags & XFS_IOLOCK_EXCL) {
180 down_write_nested(&VFS_I(ip)->i_rwsem,
181 XFS_IOLOCK_DEP(lock_flags));
182 } else if (lock_flags & XFS_IOLOCK_SHARED) {
183 down_read_nested(&VFS_I(ip)->i_rwsem,
184 XFS_IOLOCK_DEP(lock_flags));
185 }
fa96acad 186
653c60b6
DC
187 if (lock_flags & XFS_MMAPLOCK_EXCL)
188 mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
189 else if (lock_flags & XFS_MMAPLOCK_SHARED)
190 mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
191
fa96acad
DC
192 if (lock_flags & XFS_ILOCK_EXCL)
193 mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
194 else if (lock_flags & XFS_ILOCK_SHARED)
195 mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
196}
197
198/*
199 * This is just like xfs_ilock(), except that the caller
200 * is guaranteed not to sleep. It returns 1 if it gets
201 * the requested locks and 0 otherwise. If the IO lock is
202 * obtained but the inode lock cannot be, then the IO lock
203 * is dropped before returning.
204 *
205 * ip -- the inode being locked
206 * lock_flags -- this parameter indicates the inode's locks to be
207 * to be locked. See the comment for xfs_ilock() for a list
208 * of valid values.
209 */
210int
211xfs_ilock_nowait(
212 xfs_inode_t *ip,
213 uint lock_flags)
214{
215 trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
216
217 /*
218 * You can't set both SHARED and EXCL for the same lock,
219 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
220 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
221 */
222 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
223 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
224 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
225 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
226 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
227 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 228 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
229
230 if (lock_flags & XFS_IOLOCK_EXCL) {
65523218 231 if (!down_write_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
232 goto out;
233 } else if (lock_flags & XFS_IOLOCK_SHARED) {
65523218 234 if (!down_read_trylock(&VFS_I(ip)->i_rwsem))
fa96acad
DC
235 goto out;
236 }
653c60b6
DC
237
238 if (lock_flags & XFS_MMAPLOCK_EXCL) {
239 if (!mrtryupdate(&ip->i_mmaplock))
240 goto out_undo_iolock;
241 } else if (lock_flags & XFS_MMAPLOCK_SHARED) {
242 if (!mrtryaccess(&ip->i_mmaplock))
243 goto out_undo_iolock;
244 }
245
fa96acad
DC
246 if (lock_flags & XFS_ILOCK_EXCL) {
247 if (!mrtryupdate(&ip->i_lock))
653c60b6 248 goto out_undo_mmaplock;
fa96acad
DC
249 } else if (lock_flags & XFS_ILOCK_SHARED) {
250 if (!mrtryaccess(&ip->i_lock))
653c60b6 251 goto out_undo_mmaplock;
fa96acad
DC
252 }
253 return 1;
254
653c60b6
DC
255out_undo_mmaplock:
256 if (lock_flags & XFS_MMAPLOCK_EXCL)
257 mrunlock_excl(&ip->i_mmaplock);
258 else if (lock_flags & XFS_MMAPLOCK_SHARED)
259 mrunlock_shared(&ip->i_mmaplock);
260out_undo_iolock:
fa96acad 261 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 262 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 263 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 264 up_read(&VFS_I(ip)->i_rwsem);
653c60b6 265out:
fa96acad
DC
266 return 0;
267}
268
269/*
270 * xfs_iunlock() is used to drop the inode locks acquired with
271 * xfs_ilock() and xfs_ilock_nowait(). The caller must pass
272 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
273 * that we know which locks to drop.
274 *
275 * ip -- the inode being unlocked
276 * lock_flags -- this parameter indicates the inode's locks to be
277 * to be unlocked. See the comment for xfs_ilock() for a list
278 * of valid values for this parameter.
279 *
280 */
281void
282xfs_iunlock(
283 xfs_inode_t *ip,
284 uint lock_flags)
285{
286 /*
287 * You can't set both SHARED and EXCL for the same lock,
288 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
289 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
290 */
291 ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
292 (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
653c60b6
DC
293 ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
294 (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
fa96acad
DC
295 ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
296 (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
0952c818 297 ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_SUBCLASS_MASK)) == 0);
fa96acad
DC
298 ASSERT(lock_flags != 0);
299
300 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 301 up_write(&VFS_I(ip)->i_rwsem);
fa96acad 302 else if (lock_flags & XFS_IOLOCK_SHARED)
65523218 303 up_read(&VFS_I(ip)->i_rwsem);
fa96acad 304
653c60b6
DC
305 if (lock_flags & XFS_MMAPLOCK_EXCL)
306 mrunlock_excl(&ip->i_mmaplock);
307 else if (lock_flags & XFS_MMAPLOCK_SHARED)
308 mrunlock_shared(&ip->i_mmaplock);
309
fa96acad
DC
310 if (lock_flags & XFS_ILOCK_EXCL)
311 mrunlock_excl(&ip->i_lock);
312 else if (lock_flags & XFS_ILOCK_SHARED)
313 mrunlock_shared(&ip->i_lock);
314
315 trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
316}
317
318/*
319 * give up write locks. the i/o lock cannot be held nested
320 * if it is being demoted.
321 */
322void
323xfs_ilock_demote(
324 xfs_inode_t *ip,
325 uint lock_flags)
326{
653c60b6
DC
327 ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
328 ASSERT((lock_flags &
329 ~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
fa96acad
DC
330
331 if (lock_flags & XFS_ILOCK_EXCL)
332 mrdemote(&ip->i_lock);
653c60b6
DC
333 if (lock_flags & XFS_MMAPLOCK_EXCL)
334 mrdemote(&ip->i_mmaplock);
fa96acad 335 if (lock_flags & XFS_IOLOCK_EXCL)
65523218 336 downgrade_write(&VFS_I(ip)->i_rwsem);
fa96acad
DC
337
338 trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
339}
340
742ae1e3 341#if defined(DEBUG) || defined(XFS_WARN)
fa96acad
DC
342int
343xfs_isilocked(
344 xfs_inode_t *ip,
345 uint lock_flags)
346{
347 if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
348 if (!(lock_flags & XFS_ILOCK_SHARED))
349 return !!ip->i_lock.mr_writer;
350 return rwsem_is_locked(&ip->i_lock.mr_lock);
351 }
352
653c60b6
DC
353 if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
354 if (!(lock_flags & XFS_MMAPLOCK_SHARED))
355 return !!ip->i_mmaplock.mr_writer;
356 return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
357 }
358
fa96acad
DC
359 if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
360 if (!(lock_flags & XFS_IOLOCK_SHARED))
65523218
CH
361 return !debug_locks ||
362 lockdep_is_held_type(&VFS_I(ip)->i_rwsem, 0);
363 return rwsem_is_locked(&VFS_I(ip)->i_rwsem);
fa96acad
DC
364 }
365
366 ASSERT(0);
367 return 0;
368}
369#endif
370
b6a9947e
DC
371/*
372 * xfs_lockdep_subclass_ok() is only used in an ASSERT, so is only called when
373 * DEBUG or XFS_WARN is set. And MAX_LOCKDEP_SUBCLASSES is then only defined
374 * when CONFIG_LOCKDEP is set. Hence the complex define below to avoid build
375 * errors and warnings.
376 */
377#if (defined(DEBUG) || defined(XFS_WARN)) && defined(CONFIG_LOCKDEP)
3403ccc0
DC
378static bool
379xfs_lockdep_subclass_ok(
380 int subclass)
381{
382 return subclass < MAX_LOCKDEP_SUBCLASSES;
383}
384#else
385#define xfs_lockdep_subclass_ok(subclass) (true)
386#endif
387
c24b5dfa 388/*
653c60b6 389 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
0952c818
DC
390 * value. This can be called for any type of inode lock combination, including
391 * parent locking. Care must be taken to ensure we don't overrun the subclass
392 * storage fields in the class mask we build.
c24b5dfa
DC
393 */
394static inline int
395xfs_lock_inumorder(int lock_mode, int subclass)
396{
0952c818
DC
397 int class = 0;
398
399 ASSERT(!(lock_mode & (XFS_ILOCK_PARENT | XFS_ILOCK_RTBITMAP |
400 XFS_ILOCK_RTSUM)));
3403ccc0 401 ASSERT(xfs_lockdep_subclass_ok(subclass));
0952c818 402
653c60b6 403 if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
0952c818 404 ASSERT(subclass <= XFS_IOLOCK_MAX_SUBCLASS);
0952c818 405 class += subclass << XFS_IOLOCK_SHIFT;
653c60b6
DC
406 }
407
408 if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
0952c818
DC
409 ASSERT(subclass <= XFS_MMAPLOCK_MAX_SUBCLASS);
410 class += subclass << XFS_MMAPLOCK_SHIFT;
653c60b6
DC
411 }
412
0952c818
DC
413 if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)) {
414 ASSERT(subclass <= XFS_ILOCK_MAX_SUBCLASS);
415 class += subclass << XFS_ILOCK_SHIFT;
416 }
c24b5dfa 417
0952c818 418 return (lock_mode & ~XFS_LOCK_SUBCLASS_MASK) | class;
c24b5dfa
DC
419}
420
421/*
95afcf5c
DC
422 * The following routine will lock n inodes in exclusive mode. We assume the
423 * caller calls us with the inodes in i_ino order.
c24b5dfa 424 *
95afcf5c
DC
425 * We need to detect deadlock where an inode that we lock is in the AIL and we
426 * start waiting for another inode that is locked by a thread in a long running
427 * transaction (such as truncate). This can result in deadlock since the long
428 * running trans might need to wait for the inode we just locked in order to
429 * push the tail and free space in the log.
0952c818
DC
430 *
431 * xfs_lock_inodes() can only be used to lock one type of lock at a time -
432 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
433 * lock more than one at a time, lockdep will report false positives saying we
434 * have violated locking orders.
c24b5dfa 435 */
0d5a75e9 436static void
c24b5dfa 437xfs_lock_inodes(
efe2330f
CH
438 struct xfs_inode **ips,
439 int inodes,
440 uint lock_mode)
c24b5dfa 441{
efe2330f
CH
442 int attempts = 0, i, j, try_lock;
443 struct xfs_log_item *lp;
c24b5dfa 444
0952c818
DC
445 /*
446 * Currently supports between 2 and 5 inodes with exclusive locking. We
447 * support an arbitrary depth of locking here, but absolute limits on
448 * inodes depend on the the type of locking and the limits placed by
449 * lockdep annotations in xfs_lock_inumorder. These are all checked by
450 * the asserts.
451 */
95afcf5c 452 ASSERT(ips && inodes >= 2 && inodes <= 5);
0952c818
DC
453 ASSERT(lock_mode & (XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL |
454 XFS_ILOCK_EXCL));
455 ASSERT(!(lock_mode & (XFS_IOLOCK_SHARED | XFS_MMAPLOCK_SHARED |
456 XFS_ILOCK_SHARED)));
0952c818
DC
457 ASSERT(!(lock_mode & XFS_MMAPLOCK_EXCL) ||
458 inodes <= XFS_MMAPLOCK_MAX_SUBCLASS + 1);
459 ASSERT(!(lock_mode & XFS_ILOCK_EXCL) ||
460 inodes <= XFS_ILOCK_MAX_SUBCLASS + 1);
461
462 if (lock_mode & XFS_IOLOCK_EXCL) {
463 ASSERT(!(lock_mode & (XFS_MMAPLOCK_EXCL | XFS_ILOCK_EXCL)));
464 } else if (lock_mode & XFS_MMAPLOCK_EXCL)
465 ASSERT(!(lock_mode & XFS_ILOCK_EXCL));
c24b5dfa
DC
466
467 try_lock = 0;
468 i = 0;
c24b5dfa
DC
469again:
470 for (; i < inodes; i++) {
471 ASSERT(ips[i]);
472
95afcf5c 473 if (i && (ips[i] == ips[i - 1])) /* Already locked */
c24b5dfa
DC
474 continue;
475
476 /*
95afcf5c
DC
477 * If try_lock is not set yet, make sure all locked inodes are
478 * not in the AIL. If any are, set try_lock to be used later.
c24b5dfa 479 */
c24b5dfa
DC
480 if (!try_lock) {
481 for (j = (i - 1); j >= 0 && !try_lock; j--) {
b3b14aac 482 lp = &ips[j]->i_itemp->ili_item;
22525c17 483 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags))
c24b5dfa 484 try_lock++;
c24b5dfa
DC
485 }
486 }
487
488 /*
489 * If any of the previous locks we have locked is in the AIL,
490 * we must TRY to get the second and subsequent locks. If
491 * we can't get any, we must release all we have
492 * and try again.
493 */
95afcf5c
DC
494 if (!try_lock) {
495 xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
496 continue;
497 }
498
499 /* try_lock means we have an inode locked that is in the AIL. */
500 ASSERT(i != 0);
501 if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
502 continue;
c24b5dfa 503
95afcf5c
DC
504 /*
505 * Unlock all previous guys and try again. xfs_iunlock will try
506 * to push the tail if the inode is in the AIL.
507 */
508 attempts++;
509 for (j = i - 1; j >= 0; j--) {
c24b5dfa 510 /*
95afcf5c
DC
511 * Check to see if we've already unlocked this one. Not
512 * the first one going back, and the inode ptr is the
513 * same.
c24b5dfa 514 */
95afcf5c
DC
515 if (j != (i - 1) && ips[j] == ips[j + 1])
516 continue;
c24b5dfa 517
95afcf5c
DC
518 xfs_iunlock(ips[j], lock_mode);
519 }
c24b5dfa 520
95afcf5c
DC
521 if ((attempts % 5) == 0) {
522 delay(1); /* Don't just spin the CPU */
c24b5dfa 523 }
95afcf5c
DC
524 i = 0;
525 try_lock = 0;
526 goto again;
c24b5dfa 527 }
c24b5dfa
DC
528}
529
530/*
653c60b6 531 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
7c2d238a
DW
532 * the mmaplock or the ilock, but not more than one type at a time. If we lock
533 * more than one at a time, lockdep will report false positives saying we have
534 * violated locking orders. The iolock must be double-locked separately since
535 * we use i_rwsem for that. We now support taking one lock EXCL and the other
536 * SHARED.
c24b5dfa
DC
537 */
538void
539xfs_lock_two_inodes(
7c2d238a
DW
540 struct xfs_inode *ip0,
541 uint ip0_mode,
542 struct xfs_inode *ip1,
543 uint ip1_mode)
c24b5dfa 544{
7c2d238a
DW
545 struct xfs_inode *temp;
546 uint mode_temp;
c24b5dfa 547 int attempts = 0;
efe2330f 548 struct xfs_log_item *lp;
c24b5dfa 549
7c2d238a
DW
550 ASSERT(hweight32(ip0_mode) == 1);
551 ASSERT(hweight32(ip1_mode) == 1);
552 ASSERT(!(ip0_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
553 ASSERT(!(ip1_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)));
554 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
555 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
556 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
557 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
558 ASSERT(!(ip1_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
559 !(ip0_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
560 ASSERT(!(ip0_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) ||
561 !(ip1_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
653c60b6 562
c24b5dfa
DC
563 ASSERT(ip0->i_ino != ip1->i_ino);
564
565 if (ip0->i_ino > ip1->i_ino) {
566 temp = ip0;
567 ip0 = ip1;
568 ip1 = temp;
7c2d238a
DW
569 mode_temp = ip0_mode;
570 ip0_mode = ip1_mode;
571 ip1_mode = mode_temp;
c24b5dfa
DC
572 }
573
574 again:
7c2d238a 575 xfs_ilock(ip0, xfs_lock_inumorder(ip0_mode, 0));
c24b5dfa
DC
576
577 /*
578 * If the first lock we have locked is in the AIL, we must TRY to get
579 * the second lock. If we can't get it, we must release the first one
580 * and try again.
581 */
b3b14aac 582 lp = &ip0->i_itemp->ili_item;
22525c17 583 if (lp && test_bit(XFS_LI_IN_AIL, &lp->li_flags)) {
7c2d238a
DW
584 if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(ip1_mode, 1))) {
585 xfs_iunlock(ip0, ip0_mode);
c24b5dfa
DC
586 if ((++attempts % 5) == 0)
587 delay(1); /* Don't just spin the CPU */
588 goto again;
589 }
590 } else {
7c2d238a 591 xfs_ilock(ip1, xfs_lock_inumorder(ip1_mode, 1));
c24b5dfa
DC
592 }
593}
594
fa96acad
DC
595void
596__xfs_iflock(
597 struct xfs_inode *ip)
598{
599 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
600 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
601
602 do {
21417136 603 prepare_to_wait_exclusive(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
fa96acad
DC
604 if (xfs_isiflocked(ip))
605 io_schedule();
606 } while (!xfs_iflock_nowait(ip));
607
21417136 608 finish_wait(wq, &wait.wq_entry);
fa96acad
DC
609}
610
1da177e4
LT
611STATIC uint
612_xfs_dic2xflags(
c8ce540d 613 uint16_t di_flags,
58f88ca2
DC
614 uint64_t di_flags2,
615 bool has_attr)
1da177e4
LT
616{
617 uint flags = 0;
618
619 if (di_flags & XFS_DIFLAG_ANY) {
620 if (di_flags & XFS_DIFLAG_REALTIME)
e7b89481 621 flags |= FS_XFLAG_REALTIME;
1da177e4 622 if (di_flags & XFS_DIFLAG_PREALLOC)
e7b89481 623 flags |= FS_XFLAG_PREALLOC;
1da177e4 624 if (di_flags & XFS_DIFLAG_IMMUTABLE)
e7b89481 625 flags |= FS_XFLAG_IMMUTABLE;
1da177e4 626 if (di_flags & XFS_DIFLAG_APPEND)
e7b89481 627 flags |= FS_XFLAG_APPEND;
1da177e4 628 if (di_flags & XFS_DIFLAG_SYNC)
e7b89481 629 flags |= FS_XFLAG_SYNC;
1da177e4 630 if (di_flags & XFS_DIFLAG_NOATIME)
e7b89481 631 flags |= FS_XFLAG_NOATIME;
1da177e4 632 if (di_flags & XFS_DIFLAG_NODUMP)
e7b89481 633 flags |= FS_XFLAG_NODUMP;
1da177e4 634 if (di_flags & XFS_DIFLAG_RTINHERIT)
e7b89481 635 flags |= FS_XFLAG_RTINHERIT;
1da177e4 636 if (di_flags & XFS_DIFLAG_PROJINHERIT)
e7b89481 637 flags |= FS_XFLAG_PROJINHERIT;
1da177e4 638 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
e7b89481 639 flags |= FS_XFLAG_NOSYMLINKS;
dd9f438e 640 if (di_flags & XFS_DIFLAG_EXTSIZE)
e7b89481 641 flags |= FS_XFLAG_EXTSIZE;
dd9f438e 642 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
e7b89481 643 flags |= FS_XFLAG_EXTSZINHERIT;
d3446eac 644 if (di_flags & XFS_DIFLAG_NODEFRAG)
e7b89481 645 flags |= FS_XFLAG_NODEFRAG;
2a82b8be 646 if (di_flags & XFS_DIFLAG_FILESTREAM)
e7b89481 647 flags |= FS_XFLAG_FILESTREAM;
1da177e4
LT
648 }
649
58f88ca2
DC
650 if (di_flags2 & XFS_DIFLAG2_ANY) {
651 if (di_flags2 & XFS_DIFLAG2_DAX)
652 flags |= FS_XFLAG_DAX;
f7ca3522
DW
653 if (di_flags2 & XFS_DIFLAG2_COWEXTSIZE)
654 flags |= FS_XFLAG_COWEXTSIZE;
58f88ca2
DC
655 }
656
657 if (has_attr)
658 flags |= FS_XFLAG_HASATTR;
659
1da177e4
LT
660 return flags;
661}
662
663uint
664xfs_ip2xflags(
58f88ca2 665 struct xfs_inode *ip)
1da177e4 666{
58f88ca2 667 struct xfs_icdinode *dic = &ip->i_d;
1da177e4 668
58f88ca2 669 return _xfs_dic2xflags(dic->di_flags, dic->di_flags2, XFS_IFORK_Q(ip));
1da177e4
LT
670}
671
c24b5dfa
DC
672/*
673 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
674 * is allowed, otherwise it has to be an exact match. If a CI match is found,
675 * ci_name->name will point to a the actual name (caller must free) or
676 * will be set to NULL if an exact match is found.
677 */
678int
679xfs_lookup(
680 xfs_inode_t *dp,
681 struct xfs_name *name,
682 xfs_inode_t **ipp,
683 struct xfs_name *ci_name)
684{
685 xfs_ino_t inum;
686 int error;
c24b5dfa
DC
687
688 trace_xfs_lookup(dp, name);
689
690 if (XFS_FORCED_SHUTDOWN(dp->i_mount))
2451337d 691 return -EIO;
c24b5dfa 692
c24b5dfa 693 error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
c24b5dfa 694 if (error)
dbad7c99 695 goto out_unlock;
c24b5dfa
DC
696
697 error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
698 if (error)
699 goto out_free_name;
700
701 return 0;
702
703out_free_name:
704 if (ci_name)
705 kmem_free(ci_name->name);
dbad7c99 706out_unlock:
c24b5dfa
DC
707 *ipp = NULL;
708 return error;
709}
710
1da177e4
LT
711/*
712 * Allocate an inode on disk and return a copy of its in-core version.
713 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
714 * appropriately within the inode. The uid and gid for the inode are
715 * set according to the contents of the given cred structure.
716 *
717 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
cd856db6
CM
718 * has a free inode available, call xfs_iget() to obtain the in-core
719 * version of the allocated inode. Finally, fill in the inode and
720 * log its initial contents. In this case, ialloc_context would be
721 * set to NULL.
1da177e4 722 *
cd856db6
CM
723 * If xfs_dialloc() does not have an available inode, it will replenish
724 * its supply by doing an allocation. Since we can only do one
725 * allocation within a transaction without deadlocks, we must commit
726 * the current transaction before returning the inode itself.
727 * In this case, therefore, we will set ialloc_context and return.
1da177e4
LT
728 * The caller should then commit the current transaction, start a new
729 * transaction, and call xfs_ialloc() again to actually get the inode.
730 *
731 * To ensure that some other process does not grab the inode that
732 * was allocated during the first call to xfs_ialloc(), this routine
733 * also returns the [locked] bp pointing to the head of the freelist
734 * as ialloc_context. The caller should hold this buffer across
735 * the commit and pass it back into this routine on the second call.
b11f94d5
DC
736 *
737 * If we are allocating quota inodes, we do not have a parent inode
738 * to attach to or associate with (i.e. pip == NULL) because they
739 * are not linked into the directory structure - they are attached
740 * directly to the superblock - and so have no parent.
1da177e4 741 */
0d5a75e9 742static int
1da177e4
LT
743xfs_ialloc(
744 xfs_trans_t *tp,
745 xfs_inode_t *pip,
576b1d67 746 umode_t mode,
31b084ae 747 xfs_nlink_t nlink,
66f36464 748 dev_t rdev,
6743099c 749 prid_t prid,
1da177e4 750 xfs_buf_t **ialloc_context,
1da177e4
LT
751 xfs_inode_t **ipp)
752{
93848a99 753 struct xfs_mount *mp = tp->t_mountp;
1da177e4
LT
754 xfs_ino_t ino;
755 xfs_inode_t *ip;
1da177e4
LT
756 uint flags;
757 int error;
95582b00 758 struct timespec64 tv;
3987848c 759 struct inode *inode;
1da177e4
LT
760
761 /*
762 * Call the space management code to pick
763 * the on-disk inode to be allocated.
764 */
f59cf5c2 765 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode,
08358906 766 ialloc_context, &ino);
bf904248 767 if (error)
1da177e4 768 return error;
08358906 769 if (*ialloc_context || ino == NULLFSINO) {
1da177e4
LT
770 *ipp = NULL;
771 return 0;
772 }
773 ASSERT(*ialloc_context == NULL);
774
8b26984d
DC
775 /*
776 * Protect against obviously corrupt allocation btree records. Later
777 * xfs_iget checks will catch re-allocation of other active in-memory
778 * and on-disk inodes. If we don't catch reallocating the parent inode
779 * here we will deadlock in xfs_iget() so we have to do these checks
780 * first.
781 */
782 if ((pip && ino == pip->i_ino) || !xfs_verify_dir_ino(mp, ino)) {
783 xfs_alert(mp, "Allocated a known in-use inode 0x%llx!", ino);
784 return -EFSCORRUPTED;
785 }
786
1da177e4
LT
787 /*
788 * Get the in-core inode with the lock held exclusively.
789 * This is because we're setting fields here we need
790 * to prevent others from looking at until we're done.
791 */
93848a99 792 error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
ec3ba85f 793 XFS_ILOCK_EXCL, &ip);
bf904248 794 if (error)
1da177e4 795 return error;
1da177e4 796 ASSERT(ip != NULL);
3987848c 797 inode = VFS_I(ip);
1da177e4 798
263997a6
DC
799 /*
800 * We always convert v1 inodes to v2 now - we only support filesystems
801 * with >= v2 inode capability, so there is no reason for ever leaving
802 * an inode in v1 format.
803 */
804 if (ip->i_d.di_version == 1)
805 ip->i_d.di_version = 2;
806
c19b3b05 807 inode->i_mode = mode;
54d7b5c1 808 set_nlink(inode, nlink);
7aab1b28
DE
809 ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
810 ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
66f36464 811 inode->i_rdev = rdev;
6743099c 812 xfs_set_projid(ip, prid);
1da177e4 813
bd186aa9 814 if (pip && XFS_INHERIT_GID(pip)) {
1da177e4 815 ip->i_d.di_gid = pip->i_d.di_gid;
c19b3b05
DC
816 if ((VFS_I(pip)->i_mode & S_ISGID) && S_ISDIR(mode))
817 inode->i_mode |= S_ISGID;
1da177e4
LT
818 }
819
820 /*
821 * If the group ID of the new file does not match the effective group
822 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
823 * (and only if the irix_sgid_inherit compatibility variable is set).
824 */
825 if ((irix_sgid_inherit) &&
c19b3b05
DC
826 (inode->i_mode & S_ISGID) &&
827 (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid))))
828 inode->i_mode &= ~S_ISGID;
1da177e4
LT
829
830 ip->i_d.di_size = 0;
831 ip->i_d.di_nextents = 0;
832 ASSERT(ip->i_d.di_nblocks == 0);
dff35fd4 833
c2050a45 834 tv = current_time(inode);
3987848c
DC
835 inode->i_mtime = tv;
836 inode->i_atime = tv;
837 inode->i_ctime = tv;
dff35fd4 838
1da177e4
LT
839 ip->i_d.di_extsize = 0;
840 ip->i_d.di_dmevmask = 0;
841 ip->i_d.di_dmstate = 0;
842 ip->i_d.di_flags = 0;
93848a99
CH
843
844 if (ip->i_d.di_version == 3) {
f0e28280 845 inode_set_iversion(inode, 1);
93848a99 846 ip->i_d.di_flags2 = 0;
f7ca3522 847 ip->i_d.di_cowextsize = 0;
c8ce540d
DW
848 ip->i_d.di_crtime.t_sec = (int32_t)tv.tv_sec;
849 ip->i_d.di_crtime.t_nsec = (int32_t)tv.tv_nsec;
93848a99
CH
850 }
851
852
1da177e4
LT
853 flags = XFS_ILOG_CORE;
854 switch (mode & S_IFMT) {
855 case S_IFIFO:
856 case S_IFCHR:
857 case S_IFBLK:
858 case S_IFSOCK:
859 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1da177e4
LT
860 ip->i_df.if_flags = 0;
861 flags |= XFS_ILOG_DEV;
862 break;
863 case S_IFREG:
864 case S_IFDIR:
b11f94d5 865 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
58f88ca2 866 uint di_flags = 0;
365ca83d 867
abbede1b 868 if (S_ISDIR(mode)) {
365ca83d
NS
869 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
870 di_flags |= XFS_DIFLAG_RTINHERIT;
dd9f438e
NS
871 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
872 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
873 ip->i_d.di_extsize = pip->i_d.di_extsize;
874 }
9336e3a7
DC
875 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
876 di_flags |= XFS_DIFLAG_PROJINHERIT;
abbede1b 877 } else if (S_ISREG(mode)) {
613d7043 878 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
365ca83d 879 di_flags |= XFS_DIFLAG_REALTIME;
dd9f438e
NS
880 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
881 di_flags |= XFS_DIFLAG_EXTSIZE;
882 ip->i_d.di_extsize = pip->i_d.di_extsize;
883 }
1da177e4
LT
884 }
885 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
886 xfs_inherit_noatime)
365ca83d 887 di_flags |= XFS_DIFLAG_NOATIME;
1da177e4
LT
888 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
889 xfs_inherit_nodump)
365ca83d 890 di_flags |= XFS_DIFLAG_NODUMP;
1da177e4
LT
891 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
892 xfs_inherit_sync)
365ca83d 893 di_flags |= XFS_DIFLAG_SYNC;
1da177e4
LT
894 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
895 xfs_inherit_nosymlinks)
365ca83d 896 di_flags |= XFS_DIFLAG_NOSYMLINKS;
d3446eac
BN
897 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
898 xfs_inherit_nodefrag)
899 di_flags |= XFS_DIFLAG_NODEFRAG;
2a82b8be
DC
900 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
901 di_flags |= XFS_DIFLAG_FILESTREAM;
58f88ca2 902
365ca83d 903 ip->i_d.di_flags |= di_flags;
1da177e4 904 }
f7ca3522
DW
905 if (pip &&
906 (pip->i_d.di_flags2 & XFS_DIFLAG2_ANY) &&
907 pip->i_d.di_version == 3 &&
908 ip->i_d.di_version == 3) {
56bdf855
LC
909 uint64_t di_flags2 = 0;
910
f7ca3522 911 if (pip->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) {
56bdf855 912 di_flags2 |= XFS_DIFLAG2_COWEXTSIZE;
f7ca3522
DW
913 ip->i_d.di_cowextsize = pip->i_d.di_cowextsize;
914 }
56bdf855
LC
915 if (pip->i_d.di_flags2 & XFS_DIFLAG2_DAX)
916 di_flags2 |= XFS_DIFLAG2_DAX;
917
918 ip->i_d.di_flags2 |= di_flags2;
f7ca3522 919 }
1da177e4
LT
920 /* FALLTHROUGH */
921 case S_IFLNK:
922 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
923 ip->i_df.if_flags = XFS_IFEXTENTS;
fcacbc3f 924 ip->i_df.if_bytes = 0;
6bdcf26a 925 ip->i_df.if_u1.if_root = NULL;
1da177e4
LT
926 break;
927 default:
928 ASSERT(0);
929 }
930 /*
931 * Attribute fork settings for new inode.
932 */
933 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
934 ip->i_d.di_anextents = 0;
935
936 /*
937 * Log the new values stuffed into the inode.
938 */
ddc3415a 939 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
1da177e4
LT
940 xfs_trans_log_inode(tp, ip, flags);
941
58c90473 942 /* now that we have an i_mode we can setup the inode structure */
41be8bed 943 xfs_setup_inode(ip);
1da177e4
LT
944
945 *ipp = ip;
946 return 0;
947}
948
e546cb79
DC
949/*
950 * Allocates a new inode from disk and return a pointer to the
951 * incore copy. This routine will internally commit the current
952 * transaction and allocate a new one if the Space Manager needed
953 * to do an allocation to replenish the inode free-list.
954 *
955 * This routine is designed to be called from xfs_create and
956 * xfs_create_dir.
957 *
958 */
959int
960xfs_dir_ialloc(
961 xfs_trans_t **tpp, /* input: current transaction;
962 output: may be a new transaction. */
963 xfs_inode_t *dp, /* directory within whose allocate
964 the inode. */
965 umode_t mode,
966 xfs_nlink_t nlink,
66f36464 967 dev_t rdev,
e546cb79 968 prid_t prid, /* project id */
c959025e 969 xfs_inode_t **ipp) /* pointer to inode; it will be
e546cb79 970 locked. */
e546cb79
DC
971{
972 xfs_trans_t *tp;
e546cb79
DC
973 xfs_inode_t *ip;
974 xfs_buf_t *ialloc_context = NULL;
975 int code;
e546cb79
DC
976 void *dqinfo;
977 uint tflags;
978
979 tp = *tpp;
980 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
981
982 /*
983 * xfs_ialloc will return a pointer to an incore inode if
984 * the Space Manager has an available inode on the free
985 * list. Otherwise, it will do an allocation and replenish
986 * the freelist. Since we can only do one allocation per
987 * transaction without deadlocks, we will need to commit the
988 * current transaction and start a new one. We will then
989 * need to call xfs_ialloc again to get the inode.
990 *
991 * If xfs_ialloc did an allocation to replenish the freelist,
992 * it returns the bp containing the head of the freelist as
993 * ialloc_context. We will hold a lock on it across the
994 * transaction commit so that no other process can steal
995 * the inode(s) that we've just allocated.
996 */
f59cf5c2
CH
997 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, &ialloc_context,
998 &ip);
e546cb79
DC
999
1000 /*
1001 * Return an error if we were unable to allocate a new inode.
1002 * This should only happen if we run out of space on disk or
1003 * encounter a disk error.
1004 */
1005 if (code) {
1006 *ipp = NULL;
1007 return code;
1008 }
1009 if (!ialloc_context && !ip) {
1010 *ipp = NULL;
2451337d 1011 return -ENOSPC;
e546cb79
DC
1012 }
1013
1014 /*
1015 * If the AGI buffer is non-NULL, then we were unable to get an
1016 * inode in one operation. We need to commit the current
1017 * transaction and call xfs_ialloc() again. It is guaranteed
1018 * to succeed the second time.
1019 */
1020 if (ialloc_context) {
1021 /*
1022 * Normally, xfs_trans_commit releases all the locks.
1023 * We call bhold to hang on to the ialloc_context across
1024 * the commit. Holding this buffer prevents any other
1025 * processes from doing any allocations in this
1026 * allocation group.
1027 */
1028 xfs_trans_bhold(tp, ialloc_context);
e546cb79
DC
1029
1030 /*
1031 * We want the quota changes to be associated with the next
1032 * transaction, NOT this one. So, detach the dqinfo from this
1033 * and attach it to the next transaction.
1034 */
1035 dqinfo = NULL;
1036 tflags = 0;
1037 if (tp->t_dqinfo) {
1038 dqinfo = (void *)tp->t_dqinfo;
1039 tp->t_dqinfo = NULL;
1040 tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
1041 tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
1042 }
1043
411350df 1044 code = xfs_trans_roll(&tp);
3d3c8b52 1045
e546cb79
DC
1046 /*
1047 * Re-attach the quota info that we detached from prev trx.
1048 */
1049 if (dqinfo) {
1050 tp->t_dqinfo = dqinfo;
1051 tp->t_flags |= tflags;
1052 }
1053
1054 if (code) {
1055 xfs_buf_relse(ialloc_context);
2e6db6c4 1056 *tpp = tp;
e546cb79
DC
1057 *ipp = NULL;
1058 return code;
1059 }
1060 xfs_trans_bjoin(tp, ialloc_context);
1061
1062 /*
1063 * Call ialloc again. Since we've locked out all
1064 * other allocations in this allocation group,
1065 * this call should always succeed.
1066 */
1067 code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
f59cf5c2 1068 &ialloc_context, &ip);
e546cb79
DC
1069
1070 /*
1071 * If we get an error at this point, return to the caller
1072 * so that the current transaction can be aborted.
1073 */
1074 if (code) {
1075 *tpp = tp;
1076 *ipp = NULL;
1077 return code;
1078 }
1079 ASSERT(!ialloc_context && ip);
1080
e546cb79
DC
1081 }
1082
1083 *ipp = ip;
1084 *tpp = tp;
1085
1086 return 0;
1087}
1088
1089/*
54d7b5c1
DC
1090 * Decrement the link count on an inode & log the change. If this causes the
1091 * link count to go to zero, move the inode to AGI unlinked list so that it can
1092 * be freed when the last active reference goes away via xfs_inactive().
e546cb79 1093 */
0d5a75e9 1094static int /* error */
e546cb79
DC
1095xfs_droplink(
1096 xfs_trans_t *tp,
1097 xfs_inode_t *ip)
1098{
e546cb79
DC
1099 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1100
e546cb79
DC
1101 drop_nlink(VFS_I(ip));
1102 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1103
54d7b5c1
DC
1104 if (VFS_I(ip)->i_nlink)
1105 return 0;
1106
1107 return xfs_iunlink(tp, ip);
e546cb79
DC
1108}
1109
e546cb79
DC
1110/*
1111 * Increment the link count on an inode & log the change.
1112 */
91083269 1113static void
e546cb79
DC
1114xfs_bumplink(
1115 xfs_trans_t *tp,
1116 xfs_inode_t *ip)
1117{
1118 xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1119
263997a6 1120 ASSERT(ip->i_d.di_version > 1);
e546cb79 1121 inc_nlink(VFS_I(ip));
e546cb79 1122 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
e546cb79
DC
1123}
1124
c24b5dfa
DC
1125int
1126xfs_create(
1127 xfs_inode_t *dp,
1128 struct xfs_name *name,
1129 umode_t mode,
66f36464 1130 dev_t rdev,
c24b5dfa
DC
1131 xfs_inode_t **ipp)
1132{
1133 int is_dir = S_ISDIR(mode);
1134 struct xfs_mount *mp = dp->i_mount;
1135 struct xfs_inode *ip = NULL;
1136 struct xfs_trans *tp = NULL;
1137 int error;
c24b5dfa 1138 bool unlock_dp_on_error = false;
c24b5dfa
DC
1139 prid_t prid;
1140 struct xfs_dquot *udqp = NULL;
1141 struct xfs_dquot *gdqp = NULL;
1142 struct xfs_dquot *pdqp = NULL;
062647a8 1143 struct xfs_trans_res *tres;
c24b5dfa 1144 uint resblks;
c24b5dfa
DC
1145
1146 trace_xfs_create(dp, name);
1147
1148 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1149 return -EIO;
c24b5dfa 1150
163467d3 1151 prid = xfs_get_initial_prid(dp);
c24b5dfa
DC
1152
1153 /*
1154 * Make sure that we have allocated dquot(s) on disk.
1155 */
7aab1b28
DE
1156 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1157 xfs_kgid_to_gid(current_fsgid()), prid,
c24b5dfa
DC
1158 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1159 &udqp, &gdqp, &pdqp);
1160 if (error)
1161 return error;
1162
1163 if (is_dir) {
c24b5dfa 1164 resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
062647a8 1165 tres = &M_RES(mp)->tr_mkdir;
c24b5dfa
DC
1166 } else {
1167 resblks = XFS_CREATE_SPACE_RES(mp, name->len);
062647a8 1168 tres = &M_RES(mp)->tr_create;
c24b5dfa
DC
1169 }
1170
c24b5dfa
DC
1171 /*
1172 * Initially assume that the file does not exist and
1173 * reserve the resources for that case. If that is not
1174 * the case we'll drop the one we have and get a more
1175 * appropriate transaction later.
1176 */
253f4911 1177 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
2451337d 1178 if (error == -ENOSPC) {
c24b5dfa
DC
1179 /* flush outstanding delalloc blocks and retry */
1180 xfs_flush_inodes(mp);
253f4911 1181 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
c24b5dfa 1182 }
4906e215 1183 if (error)
253f4911 1184 goto out_release_inode;
c24b5dfa 1185
65523218 1186 xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
c24b5dfa
DC
1187 unlock_dp_on_error = true;
1188
c24b5dfa
DC
1189 /*
1190 * Reserve disk quota and the inode.
1191 */
1192 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1193 pdqp, resblks, 1, 0);
1194 if (error)
1195 goto out_trans_cancel;
1196
c24b5dfa
DC
1197 /*
1198 * A newly created regular or special file just has one directory
1199 * entry pointing to them, but a directory also the "." entry
1200 * pointing to itself.
1201 */
c959025e 1202 error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev, prid, &ip);
d6077aa3 1203 if (error)
4906e215 1204 goto out_trans_cancel;
c24b5dfa
DC
1205
1206 /*
1207 * Now we join the directory inode to the transaction. We do not do it
1208 * earlier because xfs_dir_ialloc might commit the previous transaction
1209 * (and release all the locks). An error from here on will result in
1210 * the transaction cancel unlocking dp so don't do it explicitly in the
1211 * error path.
1212 */
65523218 1213 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1214 unlock_dp_on_error = false;
1215
381eee69 1216 error = xfs_dir_createname(tp, dp, name, ip->i_ino,
c9cfdb38 1217 resblks ?
c24b5dfa
DC
1218 resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1219 if (error) {
2451337d 1220 ASSERT(error != -ENOSPC);
4906e215 1221 goto out_trans_cancel;
c24b5dfa
DC
1222 }
1223 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1224 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1225
1226 if (is_dir) {
1227 error = xfs_dir_init(tp, ip, dp);
1228 if (error)
c8eac49e 1229 goto out_trans_cancel;
c24b5dfa 1230
91083269 1231 xfs_bumplink(tp, dp);
c24b5dfa
DC
1232 }
1233
1234 /*
1235 * If this is a synchronous mount, make sure that the
1236 * create transaction goes to disk before returning to
1237 * the user.
1238 */
1239 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1240 xfs_trans_set_sync(tp);
1241
1242 /*
1243 * Attach the dquot(s) to the inodes and modify them incore.
1244 * These ids of the inode couldn't have changed since the new
1245 * inode has been locked ever since it was created.
1246 */
1247 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1248
70393313 1249 error = xfs_trans_commit(tp);
c24b5dfa
DC
1250 if (error)
1251 goto out_release_inode;
1252
1253 xfs_qm_dqrele(udqp);
1254 xfs_qm_dqrele(gdqp);
1255 xfs_qm_dqrele(pdqp);
1256
1257 *ipp = ip;
1258 return 0;
1259
c24b5dfa 1260 out_trans_cancel:
4906e215 1261 xfs_trans_cancel(tp);
c24b5dfa
DC
1262 out_release_inode:
1263 /*
58c90473
DC
1264 * Wait until after the current transaction is aborted to finish the
1265 * setup of the inode and release the inode. This prevents recursive
1266 * transactions and deadlocks from xfs_inactive.
c24b5dfa 1267 */
58c90473
DC
1268 if (ip) {
1269 xfs_finish_inode_setup(ip);
44a8736b 1270 xfs_irele(ip);
58c90473 1271 }
c24b5dfa
DC
1272
1273 xfs_qm_dqrele(udqp);
1274 xfs_qm_dqrele(gdqp);
1275 xfs_qm_dqrele(pdqp);
1276
1277 if (unlock_dp_on_error)
65523218 1278 xfs_iunlock(dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1279 return error;
1280}
1281
99b6436b
ZYW
1282int
1283xfs_create_tmpfile(
1284 struct xfs_inode *dp,
330033d6
BF
1285 umode_t mode,
1286 struct xfs_inode **ipp)
99b6436b
ZYW
1287{
1288 struct xfs_mount *mp = dp->i_mount;
1289 struct xfs_inode *ip = NULL;
1290 struct xfs_trans *tp = NULL;
1291 int error;
99b6436b
ZYW
1292 prid_t prid;
1293 struct xfs_dquot *udqp = NULL;
1294 struct xfs_dquot *gdqp = NULL;
1295 struct xfs_dquot *pdqp = NULL;
1296 struct xfs_trans_res *tres;
1297 uint resblks;
1298
1299 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1300 return -EIO;
99b6436b
ZYW
1301
1302 prid = xfs_get_initial_prid(dp);
1303
1304 /*
1305 * Make sure that we have allocated dquot(s) on disk.
1306 */
1307 error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1308 xfs_kgid_to_gid(current_fsgid()), prid,
1309 XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1310 &udqp, &gdqp, &pdqp);
1311 if (error)
1312 return error;
1313
1314 resblks = XFS_IALLOC_SPACE_RES(mp);
99b6436b 1315 tres = &M_RES(mp)->tr_create_tmpfile;
253f4911
CH
1316
1317 error = xfs_trans_alloc(mp, tres, resblks, 0, 0, &tp);
4906e215 1318 if (error)
253f4911 1319 goto out_release_inode;
99b6436b
ZYW
1320
1321 error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1322 pdqp, resblks, 1, 0);
1323 if (error)
1324 goto out_trans_cancel;
1325
c4a6bf7f 1326 error = xfs_dir_ialloc(&tp, dp, mode, 0, 0, prid, &ip);
d6077aa3 1327 if (error)
4906e215 1328 goto out_trans_cancel;
99b6436b
ZYW
1329
1330 if (mp->m_flags & XFS_MOUNT_WSYNC)
1331 xfs_trans_set_sync(tp);
1332
1333 /*
1334 * Attach the dquot(s) to the inodes and modify them incore.
1335 * These ids of the inode couldn't have changed since the new
1336 * inode has been locked ever since it was created.
1337 */
1338 xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1339
99b6436b
ZYW
1340 error = xfs_iunlink(tp, ip);
1341 if (error)
4906e215 1342 goto out_trans_cancel;
99b6436b 1343
70393313 1344 error = xfs_trans_commit(tp);
99b6436b
ZYW
1345 if (error)
1346 goto out_release_inode;
1347
1348 xfs_qm_dqrele(udqp);
1349 xfs_qm_dqrele(gdqp);
1350 xfs_qm_dqrele(pdqp);
1351
330033d6 1352 *ipp = ip;
99b6436b
ZYW
1353 return 0;
1354
99b6436b 1355 out_trans_cancel:
4906e215 1356 xfs_trans_cancel(tp);
99b6436b
ZYW
1357 out_release_inode:
1358 /*
58c90473
DC
1359 * Wait until after the current transaction is aborted to finish the
1360 * setup of the inode and release the inode. This prevents recursive
1361 * transactions and deadlocks from xfs_inactive.
99b6436b 1362 */
58c90473
DC
1363 if (ip) {
1364 xfs_finish_inode_setup(ip);
44a8736b 1365 xfs_irele(ip);
58c90473 1366 }
99b6436b
ZYW
1367
1368 xfs_qm_dqrele(udqp);
1369 xfs_qm_dqrele(gdqp);
1370 xfs_qm_dqrele(pdqp);
1371
1372 return error;
1373}
1374
c24b5dfa
DC
1375int
1376xfs_link(
1377 xfs_inode_t *tdp,
1378 xfs_inode_t *sip,
1379 struct xfs_name *target_name)
1380{
1381 xfs_mount_t *mp = tdp->i_mount;
1382 xfs_trans_t *tp;
1383 int error;
c24b5dfa
DC
1384 int resblks;
1385
1386 trace_xfs_link(tdp, target_name);
1387
c19b3b05 1388 ASSERT(!S_ISDIR(VFS_I(sip)->i_mode));
c24b5dfa
DC
1389
1390 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 1391 return -EIO;
c24b5dfa 1392
c14cfcca 1393 error = xfs_qm_dqattach(sip);
c24b5dfa
DC
1394 if (error)
1395 goto std_return;
1396
c14cfcca 1397 error = xfs_qm_dqattach(tdp);
c24b5dfa
DC
1398 if (error)
1399 goto std_return;
1400
c24b5dfa 1401 resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
253f4911 1402 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, resblks, 0, 0, &tp);
2451337d 1403 if (error == -ENOSPC) {
c24b5dfa 1404 resblks = 0;
253f4911 1405 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_link, 0, 0, 0, &tp);
c24b5dfa 1406 }
4906e215 1407 if (error)
253f4911 1408 goto std_return;
c24b5dfa 1409
7c2d238a 1410 xfs_lock_two_inodes(sip, XFS_ILOCK_EXCL, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1411
1412 xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
65523218 1413 xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
c24b5dfa
DC
1414
1415 /*
1416 * If we are using project inheritance, we only allow hard link
1417 * creation in our tree when the project IDs are the same; else
1418 * the tree quota mechanism could be circumvented.
1419 */
1420 if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1421 (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
2451337d 1422 error = -EXDEV;
c24b5dfa
DC
1423 goto error_return;
1424 }
1425
94f3cad5
ES
1426 if (!resblks) {
1427 error = xfs_dir_canenter(tp, tdp, target_name);
1428 if (error)
1429 goto error_return;
1430 }
c24b5dfa 1431
54d7b5c1
DC
1432 /*
1433 * Handle initial link state of O_TMPFILE inode
1434 */
1435 if (VFS_I(sip)->i_nlink == 0) {
ab297431
ZYW
1436 error = xfs_iunlink_remove(tp, sip);
1437 if (error)
4906e215 1438 goto error_return;
ab297431
ZYW
1439 }
1440
c24b5dfa 1441 error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
381eee69 1442 resblks);
c24b5dfa 1443 if (error)
4906e215 1444 goto error_return;
c24b5dfa
DC
1445 xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1446 xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1447
91083269 1448 xfs_bumplink(tp, sip);
c24b5dfa
DC
1449
1450 /*
1451 * If this is a synchronous mount, make sure that the
1452 * link transaction goes to disk before returning to
1453 * the user.
1454 */
f6106efa 1455 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
c24b5dfa 1456 xfs_trans_set_sync(tp);
c24b5dfa 1457
70393313 1458 return xfs_trans_commit(tp);
c24b5dfa 1459
c24b5dfa 1460 error_return:
4906e215 1461 xfs_trans_cancel(tp);
c24b5dfa
DC
1462 std_return:
1463 return error;
1464}
1465
363e59ba
DW
1466/* Clear the reflink flag and the cowblocks tag if possible. */
1467static void
1468xfs_itruncate_clear_reflink_flags(
1469 struct xfs_inode *ip)
1470{
1471 struct xfs_ifork *dfork;
1472 struct xfs_ifork *cfork;
1473
1474 if (!xfs_is_reflink_inode(ip))
1475 return;
1476 dfork = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
1477 cfork = XFS_IFORK_PTR(ip, XFS_COW_FORK);
1478 if (dfork->if_bytes == 0 && cfork->if_bytes == 0)
1479 ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
1480 if (cfork->if_bytes == 0)
1481 xfs_inode_clear_cowblocks_tag(ip);
1482}
1483
1da177e4 1484/*
8f04c47a
CH
1485 * Free up the underlying blocks past new_size. The new size must be smaller
1486 * than the current size. This routine can be used both for the attribute and
1487 * data fork, and does not modify the inode size, which is left to the caller.
1da177e4 1488 *
f6485057
DC
1489 * The transaction passed to this routine must have made a permanent log
1490 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1491 * given transaction and start new ones, so make sure everything involved in
1492 * the transaction is tidy before calling here. Some transaction will be
1493 * returned to the caller to be committed. The incoming transaction must
1494 * already include the inode, and both inode locks must be held exclusively.
1495 * The inode must also be "held" within the transaction. On return the inode
1496 * will be "held" within the returned transaction. This routine does NOT
1497 * require any disk space to be reserved for it within the transaction.
1da177e4 1498 *
f6485057
DC
1499 * If we get an error, we must return with the inode locked and linked into the
1500 * current transaction. This keeps things simple for the higher level code,
1501 * because it always knows that the inode is locked and held in the transaction
1502 * that returns to it whether errors occur or not. We don't mark the inode
1503 * dirty on error so that transactions can be easily aborted if possible.
1da177e4
LT
1504 */
1505int
4e529339 1506xfs_itruncate_extents_flags(
8f04c47a
CH
1507 struct xfs_trans **tpp,
1508 struct xfs_inode *ip,
1509 int whichfork,
13b86fc3 1510 xfs_fsize_t new_size,
4e529339 1511 int flags)
1da177e4 1512{
8f04c47a
CH
1513 struct xfs_mount *mp = ip->i_mount;
1514 struct xfs_trans *tp = *tpp;
8f04c47a
CH
1515 xfs_fileoff_t first_unmap_block;
1516 xfs_fileoff_t last_block;
1517 xfs_filblks_t unmap_len;
8f04c47a
CH
1518 int error = 0;
1519 int done = 0;
1da177e4 1520
0b56185b
CH
1521 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1522 ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1523 xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ce7ae151 1524 ASSERT(new_size <= XFS_ISIZE(ip));
8f04c47a 1525 ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1da177e4 1526 ASSERT(ip->i_itemp != NULL);
898621d5 1527 ASSERT(ip->i_itemp->ili_lock_flags == 0);
8f04c47a 1528 ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1da177e4 1529
673e8e59
CH
1530 trace_xfs_itruncate_extents_start(ip, new_size);
1531
4e529339 1532 flags |= xfs_bmapi_aflag(whichfork);
13b86fc3 1533
1da177e4
LT
1534 /*
1535 * Since it is possible for space to become allocated beyond
1536 * the end of the file (in a crash where the space is allocated
1537 * but the inode size is not yet updated), simply remove any
1538 * blocks which show up between the new EOF and the maximum
1539 * possible file size. If the first block to be removed is
1540 * beyond the maximum file size (ie it is the same as last_block),
1541 * then there is nothing to do.
1542 */
8f04c47a 1543 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
32972383 1544 last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
8f04c47a
CH
1545 if (first_unmap_block == last_block)
1546 return 0;
1547
1548 ASSERT(first_unmap_block < last_block);
1549 unmap_len = last_block - first_unmap_block + 1;
1da177e4 1550 while (!done) {
02dff7bf 1551 ASSERT(tp->t_firstblock == NULLFSBLOCK);
13b86fc3 1552 error = xfs_bunmapi(tp, ip, first_unmap_block, unmap_len, flags,
2af52842 1553 XFS_ITRUNC_MAX_EXTENTS, &done);
8f04c47a 1554 if (error)
d5a2e289 1555 goto out;
1da177e4
LT
1556
1557 /*
1558 * Duplicate the transaction that has the permanent
1559 * reservation and commit the old transaction.
1560 */
9e28a242 1561 error = xfs_defer_finish(&tp);
8f04c47a 1562 if (error)
9b1f4e98 1563 goto out;
1da177e4 1564
411350df 1565 error = xfs_trans_roll_inode(&tp, ip);
f6485057 1566 if (error)
8f04c47a 1567 goto out;
1da177e4 1568 }
8f04c47a 1569
4919d42a
DW
1570 if (whichfork == XFS_DATA_FORK) {
1571 /* Remove all pending CoW reservations. */
1572 error = xfs_reflink_cancel_cow_blocks(ip, &tp,
1573 first_unmap_block, last_block, true);
1574 if (error)
1575 goto out;
aa8968f2 1576
4919d42a
DW
1577 xfs_itruncate_clear_reflink_flags(ip);
1578 }
aa8968f2 1579
673e8e59
CH
1580 /*
1581 * Always re-log the inode so that our permanent transaction can keep
1582 * on rolling it forward in the log.
1583 */
1584 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1585
1586 trace_xfs_itruncate_extents_end(ip, new_size);
1587
8f04c47a
CH
1588out:
1589 *tpp = tp;
1590 return error;
8f04c47a
CH
1591}
1592
c24b5dfa
DC
1593int
1594xfs_release(
1595 xfs_inode_t *ip)
1596{
1597 xfs_mount_t *mp = ip->i_mount;
1598 int error;
1599
c19b3b05 1600 if (!S_ISREG(VFS_I(ip)->i_mode) || (VFS_I(ip)->i_mode == 0))
c24b5dfa
DC
1601 return 0;
1602
1603 /* If this is a read-only mount, don't do this (would generate I/O) */
1604 if (mp->m_flags & XFS_MOUNT_RDONLY)
1605 return 0;
1606
1607 if (!XFS_FORCED_SHUTDOWN(mp)) {
1608 int truncated;
1609
c24b5dfa
DC
1610 /*
1611 * If we previously truncated this file and removed old data
1612 * in the process, we want to initiate "early" writeout on
1613 * the last close. This is an attempt to combat the notorious
1614 * NULL files problem which is particularly noticeable from a
1615 * truncate down, buffered (re-)write (delalloc), followed by
1616 * a crash. What we are effectively doing here is
1617 * significantly reducing the time window where we'd otherwise
1618 * be exposed to that problem.
1619 */
1620 truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1621 if (truncated) {
1622 xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
eac152b4 1623 if (ip->i_delayed_blks > 0) {
2451337d 1624 error = filemap_flush(VFS_I(ip)->i_mapping);
c24b5dfa
DC
1625 if (error)
1626 return error;
1627 }
1628 }
1629 }
1630
54d7b5c1 1631 if (VFS_I(ip)->i_nlink == 0)
c24b5dfa
DC
1632 return 0;
1633
1634 if (xfs_can_free_eofblocks(ip, false)) {
1635
a36b9261
BF
1636 /*
1637 * Check if the inode is being opened, written and closed
1638 * frequently and we have delayed allocation blocks outstanding
1639 * (e.g. streaming writes from the NFS server), truncating the
1640 * blocks past EOF will cause fragmentation to occur.
1641 *
1642 * In this case don't do the truncation, but we have to be
1643 * careful how we detect this case. Blocks beyond EOF show up as
1644 * i_delayed_blks even when the inode is clean, so we need to
1645 * truncate them away first before checking for a dirty release.
1646 * Hence on the first dirty close we will still remove the
1647 * speculative allocation, but after that we will leave it in
1648 * place.
1649 */
1650 if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1651 return 0;
c24b5dfa
DC
1652 /*
1653 * If we can't get the iolock just skip truncating the blocks
1654 * past EOF because we could deadlock with the mmap_sem
a36b9261 1655 * otherwise. We'll get another chance to drop them once the
c24b5dfa
DC
1656 * last reference to the inode is dropped, so we'll never leak
1657 * blocks permanently.
c24b5dfa 1658 */
a36b9261
BF
1659 if (xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1660 error = xfs_free_eofblocks(ip);
1661 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1662 if (error)
1663 return error;
1664 }
c24b5dfa
DC
1665
1666 /* delalloc blocks after truncation means it really is dirty */
1667 if (ip->i_delayed_blks)
1668 xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1669 }
1670 return 0;
1671}
1672
f7be2d7f
BF
1673/*
1674 * xfs_inactive_truncate
1675 *
1676 * Called to perform a truncate when an inode becomes unlinked.
1677 */
1678STATIC int
1679xfs_inactive_truncate(
1680 struct xfs_inode *ip)
1681{
1682 struct xfs_mount *mp = ip->i_mount;
1683 struct xfs_trans *tp;
1684 int error;
1685
253f4911 1686 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
f7be2d7f
BF
1687 if (error) {
1688 ASSERT(XFS_FORCED_SHUTDOWN(mp));
f7be2d7f
BF
1689 return error;
1690 }
f7be2d7f
BF
1691 xfs_ilock(ip, XFS_ILOCK_EXCL);
1692 xfs_trans_ijoin(tp, ip, 0);
1693
1694 /*
1695 * Log the inode size first to prevent stale data exposure in the event
1696 * of a system crash before the truncate completes. See the related
69bca807 1697 * comment in xfs_vn_setattr_size() for details.
f7be2d7f
BF
1698 */
1699 ip->i_d.di_size = 0;
1700 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1701
1702 error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1703 if (error)
1704 goto error_trans_cancel;
1705
1706 ASSERT(ip->i_d.di_nextents == 0);
1707
70393313 1708 error = xfs_trans_commit(tp);
f7be2d7f
BF
1709 if (error)
1710 goto error_unlock;
1711
1712 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1713 return 0;
1714
1715error_trans_cancel:
4906e215 1716 xfs_trans_cancel(tp);
f7be2d7f
BF
1717error_unlock:
1718 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1719 return error;
1720}
1721
88877d2b
BF
1722/*
1723 * xfs_inactive_ifree()
1724 *
1725 * Perform the inode free when an inode is unlinked.
1726 */
1727STATIC int
1728xfs_inactive_ifree(
1729 struct xfs_inode *ip)
1730{
88877d2b
BF
1731 struct xfs_mount *mp = ip->i_mount;
1732 struct xfs_trans *tp;
1733 int error;
1734
9d43b180 1735 /*
76d771b4
CH
1736 * We try to use a per-AG reservation for any block needed by the finobt
1737 * tree, but as the finobt feature predates the per-AG reservation
1738 * support a degraded file system might not have enough space for the
1739 * reservation at mount time. In that case try to dip into the reserved
1740 * pool and pray.
9d43b180
BF
1741 *
1742 * Send a warning if the reservation does happen to fail, as the inode
1743 * now remains allocated and sits on the unlinked list until the fs is
1744 * repaired.
1745 */
e1f6ca11 1746 if (unlikely(mp->m_finobt_nores)) {
76d771b4
CH
1747 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree,
1748 XFS_IFREE_SPACE_RES(mp), 0, XFS_TRANS_RESERVE,
1749 &tp);
1750 } else {
1751 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_ifree, 0, 0, 0, &tp);
1752 }
88877d2b 1753 if (error) {
2451337d 1754 if (error == -ENOSPC) {
9d43b180
BF
1755 xfs_warn_ratelimited(mp,
1756 "Failed to remove inode(s) from unlinked list. "
1757 "Please free space, unmount and run xfs_repair.");
1758 } else {
1759 ASSERT(XFS_FORCED_SHUTDOWN(mp));
1760 }
88877d2b
BF
1761 return error;
1762 }
1763
1764 xfs_ilock(ip, XFS_ILOCK_EXCL);
1765 xfs_trans_ijoin(tp, ip, 0);
1766
0e0417f3 1767 error = xfs_ifree(tp, ip);
88877d2b
BF
1768 if (error) {
1769 /*
1770 * If we fail to free the inode, shut down. The cancel
1771 * might do that, we need to make sure. Otherwise the
1772 * inode might be lost for a long time or forever.
1773 */
1774 if (!XFS_FORCED_SHUTDOWN(mp)) {
1775 xfs_notice(mp, "%s: xfs_ifree returned error %d",
1776 __func__, error);
1777 xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1778 }
4906e215 1779 xfs_trans_cancel(tp);
88877d2b
BF
1780 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1781 return error;
1782 }
1783
1784 /*
1785 * Credit the quota account(s). The inode is gone.
1786 */
1787 xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1788
1789 /*
d4a97a04
BF
1790 * Just ignore errors at this point. There is nothing we can do except
1791 * to try to keep going. Make sure it's not a silent error.
88877d2b 1792 */
70393313 1793 error = xfs_trans_commit(tp);
88877d2b
BF
1794 if (error)
1795 xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1796 __func__, error);
1797
1798 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1799 return 0;
1800}
1801
c24b5dfa
DC
1802/*
1803 * xfs_inactive
1804 *
1805 * This is called when the vnode reference count for the vnode
1806 * goes to zero. If the file has been unlinked, then it must
1807 * now be truncated. Also, we clear all of the read-ahead state
1808 * kept for the inode here since the file is now closed.
1809 */
74564fb4 1810void
c24b5dfa
DC
1811xfs_inactive(
1812 xfs_inode_t *ip)
1813{
3d3c8b52 1814 struct xfs_mount *mp;
3d3c8b52
JL
1815 int error;
1816 int truncate = 0;
c24b5dfa
DC
1817
1818 /*
1819 * If the inode is already free, then there can be nothing
1820 * to clean up here.
1821 */
c19b3b05 1822 if (VFS_I(ip)->i_mode == 0) {
c24b5dfa 1823 ASSERT(ip->i_df.if_broot_bytes == 0);
74564fb4 1824 return;
c24b5dfa
DC
1825 }
1826
1827 mp = ip->i_mount;
17c12bcd 1828 ASSERT(!xfs_iflags_test(ip, XFS_IRECOVERY));
c24b5dfa 1829
c24b5dfa
DC
1830 /* If this is a read-only mount, don't do this (would generate I/O) */
1831 if (mp->m_flags & XFS_MOUNT_RDONLY)
74564fb4 1832 return;
c24b5dfa 1833
6231848c 1834 /* Try to clean out the cow blocks if there are any. */
51d62690 1835 if (xfs_inode_has_cow_data(ip))
6231848c
DW
1836 xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, true);
1837
54d7b5c1 1838 if (VFS_I(ip)->i_nlink != 0) {
c24b5dfa
DC
1839 /*
1840 * force is true because we are evicting an inode from the
1841 * cache. Post-eof blocks must be freed, lest we end up with
1842 * broken free space accounting.
3b4683c2
BF
1843 *
1844 * Note: don't bother with iolock here since lockdep complains
1845 * about acquiring it in reclaim context. We have the only
1846 * reference to the inode at this point anyways.
c24b5dfa 1847 */
3b4683c2 1848 if (xfs_can_free_eofblocks(ip, true))
a36b9261 1849 xfs_free_eofblocks(ip);
74564fb4
BF
1850
1851 return;
c24b5dfa
DC
1852 }
1853
c19b3b05 1854 if (S_ISREG(VFS_I(ip)->i_mode) &&
c24b5dfa
DC
1855 (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1856 ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1857 truncate = 1;
1858
c14cfcca 1859 error = xfs_qm_dqattach(ip);
c24b5dfa 1860 if (error)
74564fb4 1861 return;
c24b5dfa 1862
c19b3b05 1863 if (S_ISLNK(VFS_I(ip)->i_mode))
36b21dde 1864 error = xfs_inactive_symlink(ip);
f7be2d7f
BF
1865 else if (truncate)
1866 error = xfs_inactive_truncate(ip);
1867 if (error)
74564fb4 1868 return;
c24b5dfa
DC
1869
1870 /*
1871 * If there are attributes associated with the file then blow them away
1872 * now. The code calls a routine that recursively deconstructs the
6dfe5a04 1873 * attribute fork. If also blows away the in-core attribute fork.
c24b5dfa 1874 */
6dfe5a04 1875 if (XFS_IFORK_Q(ip)) {
c24b5dfa
DC
1876 error = xfs_attr_inactive(ip);
1877 if (error)
74564fb4 1878 return;
c24b5dfa
DC
1879 }
1880
6dfe5a04 1881 ASSERT(!ip->i_afp);
c24b5dfa 1882 ASSERT(ip->i_d.di_anextents == 0);
6dfe5a04 1883 ASSERT(ip->i_d.di_forkoff == 0);
c24b5dfa
DC
1884
1885 /*
1886 * Free the inode.
1887 */
88877d2b
BF
1888 error = xfs_inactive_ifree(ip);
1889 if (error)
74564fb4 1890 return;
c24b5dfa
DC
1891
1892 /*
1893 * Release the dquots held by inode, if any.
1894 */
1895 xfs_qm_dqdetach(ip);
c24b5dfa
DC
1896}
1897
9b247179
DW
1898/*
1899 * In-Core Unlinked List Lookups
1900 * =============================
1901 *
1902 * Every inode is supposed to be reachable from some other piece of metadata
1903 * with the exception of the root directory. Inodes with a connection to a
1904 * file descriptor but not linked from anywhere in the on-disk directory tree
1905 * are collectively known as unlinked inodes, though the filesystem itself
1906 * maintains links to these inodes so that on-disk metadata are consistent.
1907 *
1908 * XFS implements a per-AG on-disk hash table of unlinked inodes. The AGI
1909 * header contains a number of buckets that point to an inode, and each inode
1910 * record has a pointer to the next inode in the hash chain. This
1911 * singly-linked list causes scaling problems in the iunlink remove function
1912 * because we must walk that list to find the inode that points to the inode
1913 * being removed from the unlinked hash bucket list.
1914 *
1915 * What if we modelled the unlinked list as a collection of records capturing
1916 * "X.next_unlinked = Y" relations? If we indexed those records on Y, we'd
1917 * have a fast way to look up unlinked list predecessors, which avoids the
1918 * slow list walk. That's exactly what we do here (in-core) with a per-AG
1919 * rhashtable.
1920 *
1921 * Because this is a backref cache, we ignore operational failures since the
1922 * iunlink code can fall back to the slow bucket walk. The only errors that
1923 * should bubble out are for obviously incorrect situations.
1924 *
1925 * All users of the backref cache MUST hold the AGI buffer lock to serialize
1926 * access or have otherwise provided for concurrency control.
1927 */
1928
1929/* Capture a "X.next_unlinked = Y" relationship. */
1930struct xfs_iunlink {
1931 struct rhash_head iu_rhash_head;
1932 xfs_agino_t iu_agino; /* X */
1933 xfs_agino_t iu_next_unlinked; /* Y */
1934};
1935
1936/* Unlinked list predecessor lookup hashtable construction */
1937static int
1938xfs_iunlink_obj_cmpfn(
1939 struct rhashtable_compare_arg *arg,
1940 const void *obj)
1941{
1942 const xfs_agino_t *key = arg->key;
1943 const struct xfs_iunlink *iu = obj;
1944
1945 if (iu->iu_next_unlinked != *key)
1946 return 1;
1947 return 0;
1948}
1949
1950static const struct rhashtable_params xfs_iunlink_hash_params = {
1951 .min_size = XFS_AGI_UNLINKED_BUCKETS,
1952 .key_len = sizeof(xfs_agino_t),
1953 .key_offset = offsetof(struct xfs_iunlink,
1954 iu_next_unlinked),
1955 .head_offset = offsetof(struct xfs_iunlink, iu_rhash_head),
1956 .automatic_shrinking = true,
1957 .obj_cmpfn = xfs_iunlink_obj_cmpfn,
1958};
1959
1960/*
1961 * Return X, where X.next_unlinked == @agino. Returns NULLAGINO if no such
1962 * relation is found.
1963 */
1964static xfs_agino_t
1965xfs_iunlink_lookup_backref(
1966 struct xfs_perag *pag,
1967 xfs_agino_t agino)
1968{
1969 struct xfs_iunlink *iu;
1970
1971 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
1972 xfs_iunlink_hash_params);
1973 return iu ? iu->iu_agino : NULLAGINO;
1974}
1975
1976/*
1977 * Take ownership of an iunlink cache entry and insert it into the hash table.
1978 * If successful, the entry will be owned by the cache; if not, it is freed.
1979 * Either way, the caller does not own @iu after this call.
1980 */
1981static int
1982xfs_iunlink_insert_backref(
1983 struct xfs_perag *pag,
1984 struct xfs_iunlink *iu)
1985{
1986 int error;
1987
1988 error = rhashtable_insert_fast(&pag->pagi_unlinked_hash,
1989 &iu->iu_rhash_head, xfs_iunlink_hash_params);
1990 /*
1991 * Fail loudly if there already was an entry because that's a sign of
1992 * corruption of in-memory data. Also fail loudly if we see an error
1993 * code we didn't anticipate from the rhashtable code. Currently we
1994 * only anticipate ENOMEM.
1995 */
1996 if (error) {
1997 WARN(error != -ENOMEM, "iunlink cache insert error %d", error);
1998 kmem_free(iu);
1999 }
2000 /*
2001 * Absorb any runtime errors that aren't a result of corruption because
2002 * this is a cache and we can always fall back to bucket list scanning.
2003 */
2004 if (error != 0 && error != -EEXIST)
2005 error = 0;
2006 return error;
2007}
2008
2009/* Remember that @prev_agino.next_unlinked = @this_agino. */
2010static int
2011xfs_iunlink_add_backref(
2012 struct xfs_perag *pag,
2013 xfs_agino_t prev_agino,
2014 xfs_agino_t this_agino)
2015{
2016 struct xfs_iunlink *iu;
2017
2018 if (XFS_TEST_ERROR(false, pag->pag_mount, XFS_ERRTAG_IUNLINK_FALLBACK))
2019 return 0;
2020
707e0dda 2021 iu = kmem_zalloc(sizeof(*iu), KM_NOFS);
9b247179
DW
2022 iu->iu_agino = prev_agino;
2023 iu->iu_next_unlinked = this_agino;
2024
2025 return xfs_iunlink_insert_backref(pag, iu);
2026}
2027
2028/*
2029 * Replace X.next_unlinked = @agino with X.next_unlinked = @next_unlinked.
2030 * If @next_unlinked is NULLAGINO, we drop the backref and exit. If there
2031 * wasn't any such entry then we don't bother.
2032 */
2033static int
2034xfs_iunlink_change_backref(
2035 struct xfs_perag *pag,
2036 xfs_agino_t agino,
2037 xfs_agino_t next_unlinked)
2038{
2039 struct xfs_iunlink *iu;
2040 int error;
2041
2042 /* Look up the old entry; if there wasn't one then exit. */
2043 iu = rhashtable_lookup_fast(&pag->pagi_unlinked_hash, &agino,
2044 xfs_iunlink_hash_params);
2045 if (!iu)
2046 return 0;
2047
2048 /*
2049 * Remove the entry. This shouldn't ever return an error, but if we
2050 * couldn't remove the old entry we don't want to add it again to the
2051 * hash table, and if the entry disappeared on us then someone's
2052 * violated the locking rules and we need to fail loudly. Either way
2053 * we cannot remove the inode because internal state is or would have
2054 * been corrupt.
2055 */
2056 error = rhashtable_remove_fast(&pag->pagi_unlinked_hash,
2057 &iu->iu_rhash_head, xfs_iunlink_hash_params);
2058 if (error)
2059 return error;
2060
2061 /* If there is no new next entry just free our item and return. */
2062 if (next_unlinked == NULLAGINO) {
2063 kmem_free(iu);
2064 return 0;
2065 }
2066
2067 /* Update the entry and re-add it to the hash table. */
2068 iu->iu_next_unlinked = next_unlinked;
2069 return xfs_iunlink_insert_backref(pag, iu);
2070}
2071
2072/* Set up the in-core predecessor structures. */
2073int
2074xfs_iunlink_init(
2075 struct xfs_perag *pag)
2076{
2077 return rhashtable_init(&pag->pagi_unlinked_hash,
2078 &xfs_iunlink_hash_params);
2079}
2080
2081/* Free the in-core predecessor structures. */
2082static void
2083xfs_iunlink_free_item(
2084 void *ptr,
2085 void *arg)
2086{
2087 struct xfs_iunlink *iu = ptr;
2088 bool *freed_anything = arg;
2089
2090 *freed_anything = true;
2091 kmem_free(iu);
2092}
2093
2094void
2095xfs_iunlink_destroy(
2096 struct xfs_perag *pag)
2097{
2098 bool freed_anything = false;
2099
2100 rhashtable_free_and_destroy(&pag->pagi_unlinked_hash,
2101 xfs_iunlink_free_item, &freed_anything);
2102
2103 ASSERT(freed_anything == false || XFS_FORCED_SHUTDOWN(pag->pag_mount));
2104}
2105
9a4a5118
DW
2106/*
2107 * Point the AGI unlinked bucket at an inode and log the results. The caller
2108 * is responsible for validating the old value.
2109 */
2110STATIC int
2111xfs_iunlink_update_bucket(
2112 struct xfs_trans *tp,
2113 xfs_agnumber_t agno,
2114 struct xfs_buf *agibp,
2115 unsigned int bucket_index,
2116 xfs_agino_t new_agino)
2117{
2118 struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp);
2119 xfs_agino_t old_value;
2120 int offset;
2121
2122 ASSERT(xfs_verify_agino_or_null(tp->t_mountp, agno, new_agino));
2123
2124 old_value = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2125 trace_xfs_iunlink_update_bucket(tp->t_mountp, agno, bucket_index,
2126 old_value, new_agino);
2127
2128 /*
2129 * We should never find the head of the list already set to the value
2130 * passed in because either we're adding or removing ourselves from the
2131 * head of the list.
2132 */
2133 if (old_value == new_agino)
2134 return -EFSCORRUPTED;
2135
2136 agi->agi_unlinked[bucket_index] = cpu_to_be32(new_agino);
2137 offset = offsetof(struct xfs_agi, agi_unlinked) +
2138 (sizeof(xfs_agino_t) * bucket_index);
2139 xfs_trans_log_buf(tp, agibp, offset, offset + sizeof(xfs_agino_t) - 1);
2140 return 0;
2141}
2142
f2fc16a3
DW
2143/* Set an on-disk inode's next_unlinked pointer. */
2144STATIC void
2145xfs_iunlink_update_dinode(
2146 struct xfs_trans *tp,
2147 xfs_agnumber_t agno,
2148 xfs_agino_t agino,
2149 struct xfs_buf *ibp,
2150 struct xfs_dinode *dip,
2151 struct xfs_imap *imap,
2152 xfs_agino_t next_agino)
2153{
2154 struct xfs_mount *mp = tp->t_mountp;
2155 int offset;
2156
2157 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2158
2159 trace_xfs_iunlink_update_dinode(mp, agno, agino,
2160 be32_to_cpu(dip->di_next_unlinked), next_agino);
2161
2162 dip->di_next_unlinked = cpu_to_be32(next_agino);
2163 offset = imap->im_boffset +
2164 offsetof(struct xfs_dinode, di_next_unlinked);
2165
2166 /* need to recalc the inode CRC if appropriate */
2167 xfs_dinode_calc_crc(mp, dip);
2168 xfs_trans_inode_buf(tp, ibp);
2169 xfs_trans_log_buf(tp, ibp, offset, offset + sizeof(xfs_agino_t) - 1);
2170 xfs_inobp_check(mp, ibp);
2171}
2172
2173/* Set an in-core inode's unlinked pointer and return the old value. */
2174STATIC int
2175xfs_iunlink_update_inode(
2176 struct xfs_trans *tp,
2177 struct xfs_inode *ip,
2178 xfs_agnumber_t agno,
2179 xfs_agino_t next_agino,
2180 xfs_agino_t *old_next_agino)
2181{
2182 struct xfs_mount *mp = tp->t_mountp;
2183 struct xfs_dinode *dip;
2184 struct xfs_buf *ibp;
2185 xfs_agino_t old_value;
2186 int error;
2187
2188 ASSERT(xfs_verify_agino_or_null(mp, agno, next_agino));
2189
2190 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp, 0, 0);
2191 if (error)
2192 return error;
2193
2194 /* Make sure the old pointer isn't garbage. */
2195 old_value = be32_to_cpu(dip->di_next_unlinked);
2196 if (!xfs_verify_agino_or_null(mp, agno, old_value)) {
2197 error = -EFSCORRUPTED;
2198 goto out;
2199 }
2200
2201 /*
2202 * Since we're updating a linked list, we should never find that the
2203 * current pointer is the same as the new value, unless we're
2204 * terminating the list.
2205 */
2206 *old_next_agino = old_value;
2207 if (old_value == next_agino) {
2208 if (next_agino != NULLAGINO)
2209 error = -EFSCORRUPTED;
2210 goto out;
2211 }
2212
2213 /* Ok, update the new pointer. */
2214 xfs_iunlink_update_dinode(tp, agno, XFS_INO_TO_AGINO(mp, ip->i_ino),
2215 ibp, dip, &ip->i_imap, next_agino);
2216 return 0;
2217out:
2218 xfs_trans_brelse(tp, ibp);
2219 return error;
2220}
2221
1da177e4 2222/*
c4a6bf7f
DW
2223 * This is called when the inode's link count has gone to 0 or we are creating
2224 * a tmpfile via O_TMPFILE. The inode @ip must have nlink == 0.
54d7b5c1
DC
2225 *
2226 * We place the on-disk inode on a list in the AGI. It will be pulled from this
2227 * list when the inode is freed.
1da177e4 2228 */
54d7b5c1 2229STATIC int
1da177e4 2230xfs_iunlink(
5837f625
DW
2231 struct xfs_trans *tp,
2232 struct xfs_inode *ip)
1da177e4 2233{
5837f625
DW
2234 struct xfs_mount *mp = tp->t_mountp;
2235 struct xfs_agi *agi;
5837f625 2236 struct xfs_buf *agibp;
86bfd375 2237 xfs_agino_t next_agino;
5837f625
DW
2238 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2239 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2240 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2241 int error;
1da177e4 2242
c4a6bf7f 2243 ASSERT(VFS_I(ip)->i_nlink == 0);
c19b3b05 2244 ASSERT(VFS_I(ip)->i_mode != 0);
4664c66c 2245 trace_xfs_iunlink(ip);
1da177e4 2246
5837f625
DW
2247 /* Get the agi buffer first. It ensures lock ordering on the list. */
2248 error = xfs_read_agi(mp, tp, agno, &agibp);
859d7182 2249 if (error)
1da177e4 2250 return error;
1da177e4 2251 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2252
1da177e4 2253 /*
86bfd375
DW
2254 * Get the index into the agi hash table for the list this inode will
2255 * go on. Make sure the pointer isn't garbage and that this inode
2256 * isn't already on the list.
1da177e4 2257 */
86bfd375
DW
2258 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2259 if (next_agino == agino ||
2260 !xfs_verify_agino_or_null(mp, agno, next_agino))
2261 return -EFSCORRUPTED;
1da177e4 2262
86bfd375 2263 if (next_agino != NULLAGINO) {
9b247179
DW
2264 struct xfs_perag *pag;
2265 xfs_agino_t old_agino;
f2fc16a3 2266
1da177e4 2267 /*
f2fc16a3
DW
2268 * There is already another inode in the bucket, so point this
2269 * inode to the current head of the list.
1da177e4 2270 */
f2fc16a3
DW
2271 error = xfs_iunlink_update_inode(tp, ip, agno, next_agino,
2272 &old_agino);
c319b58b
VA
2273 if (error)
2274 return error;
f2fc16a3 2275 ASSERT(old_agino == NULLAGINO);
9b247179
DW
2276
2277 /*
2278 * agino has been unlinked, add a backref from the next inode
2279 * back to agino.
2280 */
2281 pag = xfs_perag_get(mp, agno);
2282 error = xfs_iunlink_add_backref(pag, agino, next_agino);
2283 xfs_perag_put(pag);
2284 if (error)
2285 return error;
1da177e4
LT
2286 }
2287
9a4a5118
DW
2288 /* Point the head of the list to point to this inode. */
2289 return xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index, agino);
1da177e4
LT
2290}
2291
23ffa52c
DW
2292/* Return the imap, dinode pointer, and buffer for an inode. */
2293STATIC int
2294xfs_iunlink_map_ino(
2295 struct xfs_trans *tp,
2296 xfs_agnumber_t agno,
2297 xfs_agino_t agino,
2298 struct xfs_imap *imap,
2299 struct xfs_dinode **dipp,
2300 struct xfs_buf **bpp)
2301{
2302 struct xfs_mount *mp = tp->t_mountp;
2303 int error;
2304
2305 imap->im_blkno = 0;
2306 error = xfs_imap(mp, tp, XFS_AGINO_TO_INO(mp, agno, agino), imap, 0);
2307 if (error) {
2308 xfs_warn(mp, "%s: xfs_imap returned error %d.",
2309 __func__, error);
2310 return error;
2311 }
2312
2313 error = xfs_imap_to_bp(mp, tp, imap, dipp, bpp, 0, 0);
2314 if (error) {
2315 xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2316 __func__, error);
2317 return error;
2318 }
2319
2320 return 0;
2321}
2322
2323/*
2324 * Walk the unlinked chain from @head_agino until we find the inode that
2325 * points to @target_agino. Return the inode number, map, dinode pointer,
2326 * and inode cluster buffer of that inode as @agino, @imap, @dipp, and @bpp.
2327 *
2328 * @tp, @pag, @head_agino, and @target_agino are input parameters.
2329 * @agino, @imap, @dipp, and @bpp are all output parameters.
2330 *
2331 * Do not call this function if @target_agino is the head of the list.
2332 */
2333STATIC int
2334xfs_iunlink_map_prev(
2335 struct xfs_trans *tp,
2336 xfs_agnumber_t agno,
2337 xfs_agino_t head_agino,
2338 xfs_agino_t target_agino,
2339 xfs_agino_t *agino,
2340 struct xfs_imap *imap,
2341 struct xfs_dinode **dipp,
9b247179
DW
2342 struct xfs_buf **bpp,
2343 struct xfs_perag *pag)
23ffa52c
DW
2344{
2345 struct xfs_mount *mp = tp->t_mountp;
2346 xfs_agino_t next_agino;
2347 int error;
2348
2349 ASSERT(head_agino != target_agino);
2350 *bpp = NULL;
2351
9b247179
DW
2352 /* See if our backref cache can find it faster. */
2353 *agino = xfs_iunlink_lookup_backref(pag, target_agino);
2354 if (*agino != NULLAGINO) {
2355 error = xfs_iunlink_map_ino(tp, agno, *agino, imap, dipp, bpp);
2356 if (error)
2357 return error;
2358
2359 if (be32_to_cpu((*dipp)->di_next_unlinked) == target_agino)
2360 return 0;
2361
2362 /*
2363 * If we get here the cache contents were corrupt, so drop the
2364 * buffer and fall back to walking the bucket list.
2365 */
2366 xfs_trans_brelse(tp, *bpp);
2367 *bpp = NULL;
2368 WARN_ON_ONCE(1);
2369 }
2370
2371 trace_xfs_iunlink_map_prev_fallback(mp, agno);
2372
2373 /* Otherwise, walk the entire bucket until we find it. */
23ffa52c
DW
2374 next_agino = head_agino;
2375 while (next_agino != target_agino) {
2376 xfs_agino_t unlinked_agino;
2377
2378 if (*bpp)
2379 xfs_trans_brelse(tp, *bpp);
2380
2381 *agino = next_agino;
2382 error = xfs_iunlink_map_ino(tp, agno, next_agino, imap, dipp,
2383 bpp);
2384 if (error)
2385 return error;
2386
2387 unlinked_agino = be32_to_cpu((*dipp)->di_next_unlinked);
2388 /*
2389 * Make sure this pointer is valid and isn't an obvious
2390 * infinite loop.
2391 */
2392 if (!xfs_verify_agino(mp, agno, unlinked_agino) ||
2393 next_agino == unlinked_agino) {
2394 XFS_CORRUPTION_ERROR(__func__,
2395 XFS_ERRLEVEL_LOW, mp,
2396 *dipp, sizeof(**dipp));
2397 error = -EFSCORRUPTED;
2398 return error;
2399 }
2400 next_agino = unlinked_agino;
2401 }
2402
2403 return 0;
2404}
2405
1da177e4
LT
2406/*
2407 * Pull the on-disk inode from the AGI unlinked list.
2408 */
2409STATIC int
2410xfs_iunlink_remove(
5837f625
DW
2411 struct xfs_trans *tp,
2412 struct xfs_inode *ip)
1da177e4 2413{
5837f625
DW
2414 struct xfs_mount *mp = tp->t_mountp;
2415 struct xfs_agi *agi;
5837f625 2416 struct xfs_buf *agibp;
5837f625
DW
2417 struct xfs_buf *last_ibp;
2418 struct xfs_dinode *last_dip = NULL;
9b247179 2419 struct xfs_perag *pag = NULL;
5837f625
DW
2420 xfs_agnumber_t agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2421 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2422 xfs_agino_t next_agino;
b1d2a068 2423 xfs_agino_t head_agino;
5837f625 2424 short bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
5837f625 2425 int error;
1da177e4 2426
4664c66c
DW
2427 trace_xfs_iunlink_remove(ip);
2428
5837f625 2429 /* Get the agi buffer first. It ensures lock ordering on the list. */
5e1be0fb
CH
2430 error = xfs_read_agi(mp, tp, agno, &agibp);
2431 if (error)
1da177e4 2432 return error;
1da177e4 2433 agi = XFS_BUF_TO_AGI(agibp);
5e1be0fb 2434
1da177e4 2435 /*
86bfd375
DW
2436 * Get the index into the agi hash table for the list this inode will
2437 * go on. Make sure the head pointer isn't garbage.
1da177e4 2438 */
b1d2a068
DW
2439 head_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2440 if (!xfs_verify_agino(mp, agno, head_agino)) {
d2e73665
DW
2441 XFS_CORRUPTION_ERROR(__func__, XFS_ERRLEVEL_LOW, mp,
2442 agi, sizeof(*agi));
2443 return -EFSCORRUPTED;
2444 }
1da177e4 2445
b1d2a068
DW
2446 /*
2447 * Set our inode's next_unlinked pointer to NULL and then return
2448 * the old pointer value so that we can update whatever was previous
2449 * to us in the list to point to whatever was next in the list.
2450 */
2451 error = xfs_iunlink_update_inode(tp, ip, agno, NULLAGINO, &next_agino);
2452 if (error)
2453 return error;
9a4a5118 2454
9b247179
DW
2455 /*
2456 * If there was a backref pointing from the next inode back to this
2457 * one, remove it because we've removed this inode from the list.
2458 *
2459 * Later, if this inode was in the middle of the list we'll update
2460 * this inode's backref to point from the next inode.
2461 */
2462 if (next_agino != NULLAGINO) {
2463 pag = xfs_perag_get(mp, agno);
2464 error = xfs_iunlink_change_backref(pag, next_agino,
2465 NULLAGINO);
2466 if (error)
2467 goto out;
2468 }
2469
b1d2a068 2470 if (head_agino == agino) {
9a4a5118
DW
2471 /* Point the head of the list to the next unlinked inode. */
2472 error = xfs_iunlink_update_bucket(tp, agno, agibp, bucket_index,
2473 next_agino);
2474 if (error)
9b247179 2475 goto out;
1da177e4 2476 } else {
f2fc16a3
DW
2477 struct xfs_imap imap;
2478 xfs_agino_t prev_agino;
2479
9b247179
DW
2480 if (!pag)
2481 pag = xfs_perag_get(mp, agno);
2482
23ffa52c 2483 /* We need to search the list for the inode being freed. */
b1d2a068 2484 error = xfs_iunlink_map_prev(tp, agno, head_agino, agino,
9b247179
DW
2485 &prev_agino, &imap, &last_dip, &last_ibp,
2486 pag);
23ffa52c 2487 if (error)
9b247179 2488 goto out;
475ee413 2489
f2fc16a3
DW
2490 /* Point the previous inode on the list to the next inode. */
2491 xfs_iunlink_update_dinode(tp, agno, prev_agino, last_ibp,
2492 last_dip, &imap, next_agino);
9b247179
DW
2493
2494 /*
2495 * Now we deal with the backref for this inode. If this inode
2496 * pointed at a real inode, change the backref that pointed to
2497 * us to point to our old next. If this inode was the end of
2498 * the list, delete the backref that pointed to us. Note that
2499 * change_backref takes care of deleting the backref if
2500 * next_agino is NULLAGINO.
2501 */
2502 error = xfs_iunlink_change_backref(pag, agino, next_agino);
2503 if (error)
2504 goto out;
1da177e4 2505 }
9b247179
DW
2506
2507out:
2508 if (pag)
2509 xfs_perag_put(pag);
2510 return error;
1da177e4
LT
2511}
2512
5b3eed75 2513/*
0b8182db 2514 * A big issue when freeing the inode cluster is that we _cannot_ skip any
5b3eed75
DC
2515 * inodes that are in memory - they all must be marked stale and attached to
2516 * the cluster buffer.
2517 */
2a30f36d 2518STATIC int
1da177e4 2519xfs_ifree_cluster(
09b56604
BF
2520 xfs_inode_t *free_ip,
2521 xfs_trans_t *tp,
2522 struct xfs_icluster *xic)
1da177e4
LT
2523{
2524 xfs_mount_t *mp = free_ip->i_mount;
1da177e4 2525 int nbufs;
5b257b4a 2526 int i, j;
3cdaa189 2527 int ioffset;
1da177e4
LT
2528 xfs_daddr_t blkno;
2529 xfs_buf_t *bp;
5b257b4a 2530 xfs_inode_t *ip;
1da177e4 2531 xfs_inode_log_item_t *iip;
643c8c05 2532 struct xfs_log_item *lip;
5017e97d 2533 struct xfs_perag *pag;
ef325959 2534 struct xfs_ino_geometry *igeo = M_IGEO(mp);
09b56604 2535 xfs_ino_t inum;
1da177e4 2536
09b56604 2537 inum = xic->first_ino;
5017e97d 2538 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
ef325959 2539 nbufs = igeo->ialloc_blks / igeo->blocks_per_cluster;
1da177e4 2540
ef325959 2541 for (j = 0; j < nbufs; j++, inum += igeo->inodes_per_cluster) {
09b56604
BF
2542 /*
2543 * The allocation bitmap tells us which inodes of the chunk were
2544 * physically allocated. Skip the cluster if an inode falls into
2545 * a sparse region.
2546 */
3cdaa189
BF
2547 ioffset = inum - xic->first_ino;
2548 if ((xic->alloc & XFS_INOBT_MASK(ioffset)) == 0) {
ef325959 2549 ASSERT(ioffset % igeo->inodes_per_cluster == 0);
09b56604
BF
2550 continue;
2551 }
2552
1da177e4
LT
2553 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2554 XFS_INO_TO_AGBNO(mp, inum));
2555
5b257b4a
DC
2556 /*
2557 * We obtain and lock the backing buffer first in the process
2558 * here, as we have to ensure that any dirty inode that we
2559 * can't get the flush lock on is attached to the buffer.
2560 * If we scan the in-memory inodes first, then buffer IO can
2561 * complete before we get a lock on it, and hence we may fail
2562 * to mark all the active inodes on the buffer stale.
2563 */
2564 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
ef325959 2565 mp->m_bsize * igeo->blocks_per_cluster,
b6aff29f 2566 XBF_UNMAPPED);
5b257b4a 2567
2a30f36d 2568 if (!bp)
2451337d 2569 return -ENOMEM;
b0f539de
DC
2570
2571 /*
2572 * This buffer may not have been correctly initialised as we
2573 * didn't read it from disk. That's not important because we are
2574 * only using to mark the buffer as stale in the log, and to
2575 * attach stale cached inodes on it. That means it will never be
2576 * dispatched for IO. If it is, we want to know about it, and we
2577 * want it to fail. We can acheive this by adding a write
2578 * verifier to the buffer.
2579 */
8c4ce794 2580 bp->b_ops = &xfs_inode_buf_ops;
b0f539de 2581
5b257b4a
DC
2582 /*
2583 * Walk the inodes already attached to the buffer and mark them
2584 * stale. These will all have the flush locks held, so an
5b3eed75
DC
2585 * in-memory inode walk can't lock them. By marking them all
2586 * stale first, we will not attempt to lock them in the loop
2587 * below as the XFS_ISTALE flag will be set.
5b257b4a 2588 */
643c8c05 2589 list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
5b257b4a
DC
2590 if (lip->li_type == XFS_LI_INODE) {
2591 iip = (xfs_inode_log_item_t *)lip;
2592 ASSERT(iip->ili_logged == 1);
ca30b2a7 2593 lip->li_cb = xfs_istale_done;
5b257b4a
DC
2594 xfs_trans_ail_copy_lsn(mp->m_ail,
2595 &iip->ili_flush_lsn,
2596 &iip->ili_item.li_lsn);
2597 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
5b257b4a 2598 }
5b257b4a 2599 }
1da177e4 2600
5b3eed75 2601
1da177e4 2602 /*
5b257b4a
DC
2603 * For each inode in memory attempt to add it to the inode
2604 * buffer and set it up for being staled on buffer IO
2605 * completion. This is safe as we've locked out tail pushing
2606 * and flushing by locking the buffer.
1da177e4 2607 *
5b257b4a
DC
2608 * We have already marked every inode that was part of a
2609 * transaction stale above, which means there is no point in
2610 * even trying to lock them.
1da177e4 2611 */
ef325959 2612 for (i = 0; i < igeo->inodes_per_cluster; i++) {
5b3eed75 2613retry:
1a3e8f3d 2614 rcu_read_lock();
da353b0d
DC
2615 ip = radix_tree_lookup(&pag->pag_ici_root,
2616 XFS_INO_TO_AGINO(mp, (inum + i)));
1da177e4 2617
1a3e8f3d
DC
2618 /* Inode not in memory, nothing to do */
2619 if (!ip) {
2620 rcu_read_unlock();
1da177e4
LT
2621 continue;
2622 }
2623
1a3e8f3d
DC
2624 /*
2625 * because this is an RCU protected lookup, we could
2626 * find a recently freed or even reallocated inode
2627 * during the lookup. We need to check under the
2628 * i_flags_lock for a valid inode here. Skip it if it
2629 * is not valid, the wrong inode or stale.
2630 */
2631 spin_lock(&ip->i_flags_lock);
2632 if (ip->i_ino != inum + i ||
2633 __xfs_iflags_test(ip, XFS_ISTALE)) {
2634 spin_unlock(&ip->i_flags_lock);
2635 rcu_read_unlock();
2636 continue;
2637 }
2638 spin_unlock(&ip->i_flags_lock);
2639
5b3eed75
DC
2640 /*
2641 * Don't try to lock/unlock the current inode, but we
2642 * _cannot_ skip the other inodes that we did not find
2643 * in the list attached to the buffer and are not
2644 * already marked stale. If we can't lock it, back off
2645 * and retry.
2646 */
f2e9ad21
OS
2647 if (ip != free_ip) {
2648 if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2649 rcu_read_unlock();
2650 delay(1);
2651 goto retry;
2652 }
2653
2654 /*
2655 * Check the inode number again in case we're
2656 * racing with freeing in xfs_reclaim_inode().
2657 * See the comments in that function for more
2658 * information as to why the initial check is
2659 * not sufficient.
2660 */
2661 if (ip->i_ino != inum + i) {
2662 xfs_iunlock(ip, XFS_ILOCK_EXCL);
962cc1ad 2663 rcu_read_unlock();
f2e9ad21
OS
2664 continue;
2665 }
1da177e4 2666 }
1a3e8f3d 2667 rcu_read_unlock();
1da177e4 2668
5b3eed75 2669 xfs_iflock(ip);
5b257b4a 2670 xfs_iflags_set(ip, XFS_ISTALE);
1da177e4 2671
5b3eed75
DC
2672 /*
2673 * we don't need to attach clean inodes or those only
2674 * with unlogged changes (which we throw away, anyway).
2675 */
1da177e4 2676 iip = ip->i_itemp;
5b3eed75 2677 if (!iip || xfs_inode_clean(ip)) {
5b257b4a 2678 ASSERT(ip != free_ip);
1da177e4
LT
2679 xfs_ifunlock(ip);
2680 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2681 continue;
2682 }
2683
f5d8d5c4
CH
2684 iip->ili_last_fields = iip->ili_fields;
2685 iip->ili_fields = 0;
fc0561ce 2686 iip->ili_fsync_fields = 0;
1da177e4 2687 iip->ili_logged = 1;
7b2e2a31
DC
2688 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2689 &iip->ili_item.li_lsn);
1da177e4 2690
ca30b2a7
CH
2691 xfs_buf_attach_iodone(bp, xfs_istale_done,
2692 &iip->ili_item);
5b257b4a
DC
2693
2694 if (ip != free_ip)
1da177e4 2695 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1da177e4
LT
2696 }
2697
5b3eed75 2698 xfs_trans_stale_inode_buf(tp, bp);
1da177e4
LT
2699 xfs_trans_binval(tp, bp);
2700 }
2701
5017e97d 2702 xfs_perag_put(pag);
2a30f36d 2703 return 0;
1da177e4
LT
2704}
2705
98c4f78d
DW
2706/*
2707 * Free any local-format buffers sitting around before we reset to
2708 * extents format.
2709 */
2710static inline void
2711xfs_ifree_local_data(
2712 struct xfs_inode *ip,
2713 int whichfork)
2714{
2715 struct xfs_ifork *ifp;
2716
2717 if (XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_LOCAL)
2718 return;
2719
2720 ifp = XFS_IFORK_PTR(ip, whichfork);
2721 xfs_idata_realloc(ip, -ifp->if_bytes, whichfork);
2722}
2723
1da177e4
LT
2724/*
2725 * This is called to return an inode to the inode free list.
2726 * The inode should already be truncated to 0 length and have
2727 * no pages associated with it. This routine also assumes that
2728 * the inode is already a part of the transaction.
2729 *
2730 * The on-disk copy of the inode will have been added to the list
2731 * of unlinked inodes in the AGI. We need to remove the inode from
2732 * that list atomically with respect to freeing it here.
2733 */
2734int
2735xfs_ifree(
0e0417f3
BF
2736 struct xfs_trans *tp,
2737 struct xfs_inode *ip)
1da177e4
LT
2738{
2739 int error;
09b56604 2740 struct xfs_icluster xic = { 0 };
1da177e4 2741
579aa9ca 2742 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
54d7b5c1 2743 ASSERT(VFS_I(ip)->i_nlink == 0);
1da177e4
LT
2744 ASSERT(ip->i_d.di_nextents == 0);
2745 ASSERT(ip->i_d.di_anextents == 0);
c19b3b05 2746 ASSERT(ip->i_d.di_size == 0 || !S_ISREG(VFS_I(ip)->i_mode));
1da177e4
LT
2747 ASSERT(ip->i_d.di_nblocks == 0);
2748
2749 /*
2750 * Pull the on-disk inode from the AGI unlinked list.
2751 */
2752 error = xfs_iunlink_remove(tp, ip);
1baaed8f 2753 if (error)
1da177e4 2754 return error;
1da177e4 2755
0e0417f3 2756 error = xfs_difree(tp, ip->i_ino, &xic);
1baaed8f 2757 if (error)
1da177e4 2758 return error;
1baaed8f 2759
98c4f78d
DW
2760 xfs_ifree_local_data(ip, XFS_DATA_FORK);
2761 xfs_ifree_local_data(ip, XFS_ATTR_FORK);
2762
c19b3b05 2763 VFS_I(ip)->i_mode = 0; /* mark incore inode as free */
1da177e4 2764 ip->i_d.di_flags = 0;
beaae8cd 2765 ip->i_d.di_flags2 = 0;
1da177e4
LT
2766 ip->i_d.di_dmevmask = 0;
2767 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
1da177e4
LT
2768 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2769 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
dc1baa71
ES
2770
2771 /* Don't attempt to replay owner changes for a deleted inode */
2772 ip->i_itemp->ili_fields &= ~(XFS_ILOG_AOWNER|XFS_ILOG_DOWNER);
2773
1da177e4
LT
2774 /*
2775 * Bump the generation count so no one will be confused
2776 * by reincarnations of this inode.
2777 */
9e9a2674 2778 VFS_I(ip)->i_generation++;
1da177e4
LT
2779 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2780
09b56604
BF
2781 if (xic.deleted)
2782 error = xfs_ifree_cluster(ip, tp, &xic);
1da177e4 2783
2a30f36d 2784 return error;
1da177e4
LT
2785}
2786
1da177e4 2787/*
60ec6783
CH
2788 * This is called to unpin an inode. The caller must have the inode locked
2789 * in at least shared mode so that the buffer cannot be subsequently pinned
2790 * once someone is waiting for it to be unpinned.
1da177e4 2791 */
60ec6783 2792static void
f392e631 2793xfs_iunpin(
60ec6783 2794 struct xfs_inode *ip)
1da177e4 2795{
579aa9ca 2796 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
1da177e4 2797
4aaf15d1
DC
2798 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2799
a3f74ffb 2800 /* Give the log a push to start the unpinning I/O */
656de4ff 2801 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0, NULL);
a14a348b 2802
a3f74ffb 2803}
1da177e4 2804
f392e631
CH
2805static void
2806__xfs_iunpin_wait(
2807 struct xfs_inode *ip)
2808{
2809 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2810 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2811
2812 xfs_iunpin(ip);
2813
2814 do {
21417136 2815 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
f392e631
CH
2816 if (xfs_ipincount(ip))
2817 io_schedule();
2818 } while (xfs_ipincount(ip));
21417136 2819 finish_wait(wq, &wait.wq_entry);
f392e631
CH
2820}
2821
777df5af 2822void
a3f74ffb 2823xfs_iunpin_wait(
60ec6783 2824 struct xfs_inode *ip)
a3f74ffb 2825{
f392e631
CH
2826 if (xfs_ipincount(ip))
2827 __xfs_iunpin_wait(ip);
1da177e4
LT
2828}
2829
27320369
DC
2830/*
2831 * Removing an inode from the namespace involves removing the directory entry
2832 * and dropping the link count on the inode. Removing the directory entry can
2833 * result in locking an AGF (directory blocks were freed) and removing a link
2834 * count can result in placing the inode on an unlinked list which results in
2835 * locking an AGI.
2836 *
2837 * The big problem here is that we have an ordering constraint on AGF and AGI
2838 * locking - inode allocation locks the AGI, then can allocate a new extent for
2839 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2840 * removes the inode from the unlinked list, requiring that we lock the AGI
2841 * first, and then freeing the inode can result in an inode chunk being freed
2842 * and hence freeing disk space requiring that we lock an AGF.
2843 *
2844 * Hence the ordering that is imposed by other parts of the code is AGI before
2845 * AGF. This means we cannot remove the directory entry before we drop the inode
2846 * reference count and put it on the unlinked list as this results in a lock
2847 * order of AGF then AGI, and this can deadlock against inode allocation and
2848 * freeing. Therefore we must drop the link counts before we remove the
2849 * directory entry.
2850 *
2851 * This is still safe from a transactional point of view - it is not until we
310a75a3 2852 * get to xfs_defer_finish() that we have the possibility of multiple
27320369
DC
2853 * transactions in this operation. Hence as long as we remove the directory
2854 * entry and drop the link count in the first transaction of the remove
2855 * operation, there are no transactional constraints on the ordering here.
2856 */
c24b5dfa
DC
2857int
2858xfs_remove(
2859 xfs_inode_t *dp,
2860 struct xfs_name *name,
2861 xfs_inode_t *ip)
2862{
2863 xfs_mount_t *mp = dp->i_mount;
2864 xfs_trans_t *tp = NULL;
c19b3b05 2865 int is_dir = S_ISDIR(VFS_I(ip)->i_mode);
c24b5dfa 2866 int error = 0;
c24b5dfa 2867 uint resblks;
c24b5dfa
DC
2868
2869 trace_xfs_remove(dp, name);
2870
2871 if (XFS_FORCED_SHUTDOWN(mp))
2451337d 2872 return -EIO;
c24b5dfa 2873
c14cfcca 2874 error = xfs_qm_dqattach(dp);
c24b5dfa
DC
2875 if (error)
2876 goto std_return;
2877
c14cfcca 2878 error = xfs_qm_dqattach(ip);
c24b5dfa
DC
2879 if (error)
2880 goto std_return;
2881
c24b5dfa
DC
2882 /*
2883 * We try to get the real space reservation first,
2884 * allowing for directory btree deletion(s) implying
2885 * possible bmap insert(s). If we can't get the space
2886 * reservation then we use 0 instead, and avoid the bmap
2887 * btree insert(s) in the directory code by, if the bmap
2888 * insert tries to happen, instead trimming the LAST
2889 * block from the directory.
2890 */
2891 resblks = XFS_REMOVE_SPACE_RES(mp);
253f4911 2892 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, resblks, 0, 0, &tp);
2451337d 2893 if (error == -ENOSPC) {
c24b5dfa 2894 resblks = 0;
253f4911
CH
2895 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_remove, 0, 0, 0,
2896 &tp);
c24b5dfa
DC
2897 }
2898 if (error) {
2451337d 2899 ASSERT(error != -ENOSPC);
253f4911 2900 goto std_return;
c24b5dfa
DC
2901 }
2902
7c2d238a 2903 xfs_lock_two_inodes(dp, XFS_ILOCK_EXCL, ip, XFS_ILOCK_EXCL);
c24b5dfa 2904
65523218 2905 xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
c24b5dfa
DC
2906 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2907
2908 /*
2909 * If we're removing a directory perform some additional validation.
2910 */
2911 if (is_dir) {
54d7b5c1
DC
2912 ASSERT(VFS_I(ip)->i_nlink >= 2);
2913 if (VFS_I(ip)->i_nlink != 2) {
2451337d 2914 error = -ENOTEMPTY;
c24b5dfa
DC
2915 goto out_trans_cancel;
2916 }
2917 if (!xfs_dir_isempty(ip)) {
2451337d 2918 error = -ENOTEMPTY;
c24b5dfa
DC
2919 goto out_trans_cancel;
2920 }
c24b5dfa 2921
27320369 2922 /* Drop the link from ip's "..". */
c24b5dfa
DC
2923 error = xfs_droplink(tp, dp);
2924 if (error)
27320369 2925 goto out_trans_cancel;
c24b5dfa 2926
27320369 2927 /* Drop the "." link from ip to self. */
c24b5dfa
DC
2928 error = xfs_droplink(tp, ip);
2929 if (error)
27320369 2930 goto out_trans_cancel;
c24b5dfa
DC
2931 } else {
2932 /*
2933 * When removing a non-directory we need to log the parent
2934 * inode here. For a directory this is done implicitly
2935 * by the xfs_droplink call for the ".." entry.
2936 */
2937 xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2938 }
27320369 2939 xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
c24b5dfa 2940
27320369 2941 /* Drop the link from dp to ip. */
c24b5dfa
DC
2942 error = xfs_droplink(tp, ip);
2943 if (error)
27320369 2944 goto out_trans_cancel;
c24b5dfa 2945
381eee69 2946 error = xfs_dir_removename(tp, dp, name, ip->i_ino, resblks);
27320369 2947 if (error) {
2451337d 2948 ASSERT(error != -ENOENT);
c8eac49e 2949 goto out_trans_cancel;
27320369
DC
2950 }
2951
c24b5dfa
DC
2952 /*
2953 * If this is a synchronous mount, make sure that the
2954 * remove transaction goes to disk before returning to
2955 * the user.
2956 */
2957 if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2958 xfs_trans_set_sync(tp);
2959
70393313 2960 error = xfs_trans_commit(tp);
c24b5dfa
DC
2961 if (error)
2962 goto std_return;
2963
2cd2ef6a 2964 if (is_dir && xfs_inode_is_filestream(ip))
c24b5dfa
DC
2965 xfs_filestream_deassociate(ip);
2966
2967 return 0;
2968
c24b5dfa 2969 out_trans_cancel:
4906e215 2970 xfs_trans_cancel(tp);
c24b5dfa
DC
2971 std_return:
2972 return error;
2973}
2974
f6bba201
DC
2975/*
2976 * Enter all inodes for a rename transaction into a sorted array.
2977 */
95afcf5c 2978#define __XFS_SORT_INODES 5
f6bba201
DC
2979STATIC void
2980xfs_sort_for_rename(
95afcf5c
DC
2981 struct xfs_inode *dp1, /* in: old (source) directory inode */
2982 struct xfs_inode *dp2, /* in: new (target) directory inode */
2983 struct xfs_inode *ip1, /* in: inode of old entry */
2984 struct xfs_inode *ip2, /* in: inode of new entry */
2985 struct xfs_inode *wip, /* in: whiteout inode */
2986 struct xfs_inode **i_tab,/* out: sorted array of inodes */
2987 int *num_inodes) /* in/out: inodes in array */
f6bba201 2988{
f6bba201
DC
2989 int i, j;
2990
95afcf5c
DC
2991 ASSERT(*num_inodes == __XFS_SORT_INODES);
2992 memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2993
f6bba201
DC
2994 /*
2995 * i_tab contains a list of pointers to inodes. We initialize
2996 * the table here & we'll sort it. We will then use it to
2997 * order the acquisition of the inode locks.
2998 *
2999 * Note that the table may contain duplicates. e.g., dp1 == dp2.
3000 */
95afcf5c
DC
3001 i = 0;
3002 i_tab[i++] = dp1;
3003 i_tab[i++] = dp2;
3004 i_tab[i++] = ip1;
3005 if (ip2)
3006 i_tab[i++] = ip2;
3007 if (wip)
3008 i_tab[i++] = wip;
3009 *num_inodes = i;
f6bba201
DC
3010
3011 /*
3012 * Sort the elements via bubble sort. (Remember, there are at
95afcf5c 3013 * most 5 elements to sort, so this is adequate.)
f6bba201
DC
3014 */
3015 for (i = 0; i < *num_inodes; i++) {
3016 for (j = 1; j < *num_inodes; j++) {
3017 if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
95afcf5c 3018 struct xfs_inode *temp = i_tab[j];
f6bba201
DC
3019 i_tab[j] = i_tab[j-1];
3020 i_tab[j-1] = temp;
3021 }
3022 }
3023 }
3024}
3025
310606b0
DC
3026static int
3027xfs_finish_rename(
c9cfdb38 3028 struct xfs_trans *tp)
310606b0 3029{
310606b0
DC
3030 /*
3031 * If this is a synchronous mount, make sure that the rename transaction
3032 * goes to disk before returning to the user.
3033 */
3034 if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
3035 xfs_trans_set_sync(tp);
3036
70393313 3037 return xfs_trans_commit(tp);
310606b0
DC
3038}
3039
d31a1825
CM
3040/*
3041 * xfs_cross_rename()
3042 *
3043 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
3044 */
3045STATIC int
3046xfs_cross_rename(
3047 struct xfs_trans *tp,
3048 struct xfs_inode *dp1,
3049 struct xfs_name *name1,
3050 struct xfs_inode *ip1,
3051 struct xfs_inode *dp2,
3052 struct xfs_name *name2,
3053 struct xfs_inode *ip2,
d31a1825
CM
3054 int spaceres)
3055{
3056 int error = 0;
3057 int ip1_flags = 0;
3058 int ip2_flags = 0;
3059 int dp2_flags = 0;
3060
3061 /* Swap inode number for dirent in first parent */
381eee69 3062 error = xfs_dir_replace(tp, dp1, name1, ip2->i_ino, spaceres);
d31a1825 3063 if (error)
eeacd321 3064 goto out_trans_abort;
d31a1825
CM
3065
3066 /* Swap inode number for dirent in second parent */
381eee69 3067 error = xfs_dir_replace(tp, dp2, name2, ip1->i_ino, spaceres);
d31a1825 3068 if (error)
eeacd321 3069 goto out_trans_abort;
d31a1825
CM
3070
3071 /*
3072 * If we're renaming one or more directories across different parents,
3073 * update the respective ".." entries (and link counts) to match the new
3074 * parents.
3075 */
3076 if (dp1 != dp2) {
3077 dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3078
c19b3b05 3079 if (S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825 3080 error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
381eee69 3081 dp1->i_ino, spaceres);
d31a1825 3082 if (error)
eeacd321 3083 goto out_trans_abort;
d31a1825
CM
3084
3085 /* transfer ip2 ".." reference to dp1 */
c19b3b05 3086 if (!S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825
CM
3087 error = xfs_droplink(tp, dp2);
3088 if (error)
eeacd321 3089 goto out_trans_abort;
91083269 3090 xfs_bumplink(tp, dp1);
d31a1825
CM
3091 }
3092
3093 /*
3094 * Although ip1 isn't changed here, userspace needs
3095 * to be warned about the change, so that applications
3096 * relying on it (like backup ones), will properly
3097 * notify the change
3098 */
3099 ip1_flags |= XFS_ICHGTIME_CHG;
3100 ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3101 }
3102
c19b3b05 3103 if (S_ISDIR(VFS_I(ip1)->i_mode)) {
d31a1825 3104 error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
381eee69 3105 dp2->i_ino, spaceres);
d31a1825 3106 if (error)
eeacd321 3107 goto out_trans_abort;
d31a1825
CM
3108
3109 /* transfer ip1 ".." reference to dp2 */
c19b3b05 3110 if (!S_ISDIR(VFS_I(ip2)->i_mode)) {
d31a1825
CM
3111 error = xfs_droplink(tp, dp1);
3112 if (error)
eeacd321 3113 goto out_trans_abort;
91083269 3114 xfs_bumplink(tp, dp2);
d31a1825
CM
3115 }
3116
3117 /*
3118 * Although ip2 isn't changed here, userspace needs
3119 * to be warned about the change, so that applications
3120 * relying on it (like backup ones), will properly
3121 * notify the change
3122 */
3123 ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
3124 ip2_flags |= XFS_ICHGTIME_CHG;
3125 }
3126 }
3127
3128 if (ip1_flags) {
3129 xfs_trans_ichgtime(tp, ip1, ip1_flags);
3130 xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
3131 }
3132 if (ip2_flags) {
3133 xfs_trans_ichgtime(tp, ip2, ip2_flags);
3134 xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
3135 }
3136 if (dp2_flags) {
3137 xfs_trans_ichgtime(tp, dp2, dp2_flags);
3138 xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
3139 }
3140 xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3141 xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
c9cfdb38 3142 return xfs_finish_rename(tp);
eeacd321
DC
3143
3144out_trans_abort:
4906e215 3145 xfs_trans_cancel(tp);
d31a1825
CM
3146 return error;
3147}
3148
7dcf5c3e
DC
3149/*
3150 * xfs_rename_alloc_whiteout()
3151 *
3152 * Return a referenced, unlinked, unlocked inode that that can be used as a
3153 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
3154 * crash between allocating the inode and linking it into the rename transaction
3155 * recovery will free the inode and we won't leak it.
3156 */
3157static int
3158xfs_rename_alloc_whiteout(
3159 struct xfs_inode *dp,
3160 struct xfs_inode **wip)
3161{
3162 struct xfs_inode *tmpfile;
3163 int error;
3164
a1f69417 3165 error = xfs_create_tmpfile(dp, S_IFCHR | WHITEOUT_MODE, &tmpfile);
7dcf5c3e
DC
3166 if (error)
3167 return error;
3168
22419ac9
BF
3169 /*
3170 * Prepare the tmpfile inode as if it were created through the VFS.
c4a6bf7f
DW
3171 * Complete the inode setup and flag it as linkable. nlink is already
3172 * zero, so we can skip the drop_nlink.
22419ac9 3173 */
2b3d1d41 3174 xfs_setup_iops(tmpfile);
7dcf5c3e
DC
3175 xfs_finish_inode_setup(tmpfile);
3176 VFS_I(tmpfile)->i_state |= I_LINKABLE;
3177
3178 *wip = tmpfile;
3179 return 0;
3180}
3181
f6bba201
DC
3182/*
3183 * xfs_rename
3184 */
3185int
3186xfs_rename(
7dcf5c3e
DC
3187 struct xfs_inode *src_dp,
3188 struct xfs_name *src_name,
3189 struct xfs_inode *src_ip,
3190 struct xfs_inode *target_dp,
3191 struct xfs_name *target_name,
3192 struct xfs_inode *target_ip,
3193 unsigned int flags)
f6bba201 3194{
7dcf5c3e
DC
3195 struct xfs_mount *mp = src_dp->i_mount;
3196 struct xfs_trans *tp;
7dcf5c3e
DC
3197 struct xfs_inode *wip = NULL; /* whiteout inode */
3198 struct xfs_inode *inodes[__XFS_SORT_INODES];
3199 int num_inodes = __XFS_SORT_INODES;
2b93681f 3200 bool new_parent = (src_dp != target_dp);
c19b3b05 3201 bool src_is_directory = S_ISDIR(VFS_I(src_ip)->i_mode);
7dcf5c3e
DC
3202 int spaceres;
3203 int error;
f6bba201
DC
3204
3205 trace_xfs_rename(src_dp, target_dp, src_name, target_name);
3206
eeacd321
DC
3207 if ((flags & RENAME_EXCHANGE) && !target_ip)
3208 return -EINVAL;
3209
7dcf5c3e
DC
3210 /*
3211 * If we are doing a whiteout operation, allocate the whiteout inode
3212 * we will be placing at the target and ensure the type is set
3213 * appropriately.
3214 */
3215 if (flags & RENAME_WHITEOUT) {
3216 ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
3217 error = xfs_rename_alloc_whiteout(target_dp, &wip);
3218 if (error)
3219 return error;
3220
3221 /* setup target dirent info as whiteout */
3222 src_name->type = XFS_DIR3_FT_CHRDEV;
3223 }
f6bba201 3224
7dcf5c3e 3225 xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
f6bba201
DC
3226 inodes, &num_inodes);
3227
f6bba201 3228 spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
253f4911 3229 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, spaceres, 0, 0, &tp);
2451337d 3230 if (error == -ENOSPC) {
f6bba201 3231 spaceres = 0;
253f4911
CH
3232 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_rename, 0, 0, 0,
3233 &tp);
f6bba201 3234 }
445883e8 3235 if (error)
253f4911 3236 goto out_release_wip;
f6bba201
DC
3237
3238 /*
3239 * Attach the dquots to the inodes
3240 */
3241 error = xfs_qm_vop_rename_dqattach(inodes);
445883e8
DC
3242 if (error)
3243 goto out_trans_cancel;
f6bba201
DC
3244
3245 /*
3246 * Lock all the participating inodes. Depending upon whether
3247 * the target_name exists in the target directory, and
3248 * whether the target directory is the same as the source
3249 * directory, we can lock from 2 to 4 inodes.
3250 */
3251 xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
3252
3253 /*
3254 * Join all the inodes to the transaction. From this point on,
3255 * we can rely on either trans_commit or trans_cancel to unlock
3256 * them.
3257 */
65523218 3258 xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
f6bba201 3259 if (new_parent)
65523218 3260 xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
f6bba201
DC
3261 xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
3262 if (target_ip)
3263 xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
7dcf5c3e
DC
3264 if (wip)
3265 xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
f6bba201
DC
3266
3267 /*
3268 * If we are using project inheritance, we only allow renames
3269 * into our tree when the project IDs are the same; else the
3270 * tree quota mechanism would be circumvented.
3271 */
3272 if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
3273 (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2451337d 3274 error = -EXDEV;
445883e8 3275 goto out_trans_cancel;
f6bba201
DC
3276 }
3277
eeacd321
DC
3278 /* RENAME_EXCHANGE is unique from here on. */
3279 if (flags & RENAME_EXCHANGE)
3280 return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3281 target_dp, target_name, target_ip,
f16dea54 3282 spaceres);
d31a1825 3283
f6bba201 3284 /*
bc56ad8c 3285 * Check for expected errors before we dirty the transaction
3286 * so we can return an error without a transaction abort.
f6bba201
DC
3287 */
3288 if (target_ip == NULL) {
3289 /*
3290 * If there's no space reservation, check the entry will
3291 * fit before actually inserting it.
3292 */
94f3cad5
ES
3293 if (!spaceres) {
3294 error = xfs_dir_canenter(tp, target_dp, target_name);
3295 if (error)
445883e8 3296 goto out_trans_cancel;
94f3cad5 3297 }
bc56ad8c 3298 } else {
3299 /*
3300 * If target exists and it's a directory, check that whether
3301 * it can be destroyed.
3302 */
3303 if (S_ISDIR(VFS_I(target_ip)->i_mode) &&
3304 (!xfs_dir_isempty(target_ip) ||
3305 (VFS_I(target_ip)->i_nlink > 2))) {
3306 error = -EEXIST;
3307 goto out_trans_cancel;
3308 }
3309 }
3310
3311 /*
3312 * Directory entry creation below may acquire the AGF. Remove
3313 * the whiteout from the unlinked list first to preserve correct
3314 * AGI/AGF locking order. This dirties the transaction so failures
3315 * after this point will abort and log recovery will clean up the
3316 * mess.
3317 *
3318 * For whiteouts, we need to bump the link count on the whiteout
3319 * inode. After this point, we have a real link, clear the tmpfile
3320 * state flag from the inode so it doesn't accidentally get misused
3321 * in future.
3322 */
3323 if (wip) {
3324 ASSERT(VFS_I(wip)->i_nlink == 0);
3325 error = xfs_iunlink_remove(tp, wip);
3326 if (error)
3327 goto out_trans_cancel;
3328
3329 xfs_bumplink(tp, wip);
3330 xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3331 VFS_I(wip)->i_state &= ~I_LINKABLE;
3332 }
3333
3334 /*
3335 * Set up the target.
3336 */
3337 if (target_ip == NULL) {
f6bba201
DC
3338 /*
3339 * If target does not exist and the rename crosses
3340 * directories, adjust the target directory link count
3341 * to account for the ".." reference from the new entry.
3342 */
3343 error = xfs_dir_createname(tp, target_dp, target_name,
381eee69 3344 src_ip->i_ino, spaceres);
f6bba201 3345 if (error)
c8eac49e 3346 goto out_trans_cancel;
f6bba201
DC
3347
3348 xfs_trans_ichgtime(tp, target_dp,
3349 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3350
3351 if (new_parent && src_is_directory) {
91083269 3352 xfs_bumplink(tp, target_dp);
f6bba201
DC
3353 }
3354 } else { /* target_ip != NULL */
f6bba201
DC
3355 /*
3356 * Link the source inode under the target name.
3357 * If the source inode is a directory and we are moving
3358 * it across directories, its ".." entry will be
3359 * inconsistent until we replace that down below.
3360 *
3361 * In case there is already an entry with the same
3362 * name at the destination directory, remove it first.
3363 */
3364 error = xfs_dir_replace(tp, target_dp, target_name,
381eee69 3365 src_ip->i_ino, spaceres);
f6bba201 3366 if (error)
c8eac49e 3367 goto out_trans_cancel;
f6bba201
DC
3368
3369 xfs_trans_ichgtime(tp, target_dp,
3370 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3371
3372 /*
3373 * Decrement the link count on the target since the target
3374 * dir no longer points to it.
3375 */
3376 error = xfs_droplink(tp, target_ip);
3377 if (error)
c8eac49e 3378 goto out_trans_cancel;
f6bba201
DC
3379
3380 if (src_is_directory) {
3381 /*
3382 * Drop the link from the old "." entry.
3383 */
3384 error = xfs_droplink(tp, target_ip);
3385 if (error)
c8eac49e 3386 goto out_trans_cancel;
f6bba201
DC
3387 }
3388 } /* target_ip != NULL */
3389
3390 /*
3391 * Remove the source.
3392 */
3393 if (new_parent && src_is_directory) {
3394 /*
3395 * Rewrite the ".." entry to point to the new
3396 * directory.
3397 */
3398 error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
381eee69 3399 target_dp->i_ino, spaceres);
2451337d 3400 ASSERT(error != -EEXIST);
f6bba201 3401 if (error)
c8eac49e 3402 goto out_trans_cancel;
f6bba201
DC
3403 }
3404
3405 /*
3406 * We always want to hit the ctime on the source inode.
3407 *
3408 * This isn't strictly required by the standards since the source
3409 * inode isn't really being changed, but old unix file systems did
3410 * it and some incremental backup programs won't work without it.
3411 */
3412 xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3413 xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3414
3415 /*
3416 * Adjust the link count on src_dp. This is necessary when
3417 * renaming a directory, either within one parent when
3418 * the target existed, or across two parent directories.
3419 */
3420 if (src_is_directory && (new_parent || target_ip != NULL)) {
3421
3422 /*
3423 * Decrement link count on src_directory since the
3424 * entry that's moved no longer points to it.
3425 */
3426 error = xfs_droplink(tp, src_dp);
3427 if (error)
c8eac49e 3428 goto out_trans_cancel;
f6bba201
DC
3429 }
3430
7dcf5c3e
DC
3431 /*
3432 * For whiteouts, we only need to update the source dirent with the
3433 * inode number of the whiteout inode rather than removing it
3434 * altogether.
3435 */
3436 if (wip) {
3437 error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
381eee69 3438 spaceres);
7dcf5c3e
DC
3439 } else
3440 error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
381eee69 3441 spaceres);
f6bba201 3442 if (error)
c8eac49e 3443 goto out_trans_cancel;
f6bba201 3444
f6bba201
DC
3445 xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3446 xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3447 if (new_parent)
3448 xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
f6bba201 3449
c9cfdb38 3450 error = xfs_finish_rename(tp);
7dcf5c3e 3451 if (wip)
44a8736b 3452 xfs_irele(wip);
7dcf5c3e 3453 return error;
f6bba201 3454
445883e8 3455out_trans_cancel:
4906e215 3456 xfs_trans_cancel(tp);
253f4911 3457out_release_wip:
7dcf5c3e 3458 if (wip)
44a8736b 3459 xfs_irele(wip);
f6bba201
DC
3460 return error;
3461}
3462
5c4d97d0
DC
3463STATIC int
3464xfs_iflush_cluster(
19429363
DC
3465 struct xfs_inode *ip,
3466 struct xfs_buf *bp)
1da177e4 3467{
19429363 3468 struct xfs_mount *mp = ip->i_mount;
5c4d97d0
DC
3469 struct xfs_perag *pag;
3470 unsigned long first_index, mask;
19429363
DC
3471 int cilist_size;
3472 struct xfs_inode **cilist;
3473 struct xfs_inode *cip;
ef325959 3474 struct xfs_ino_geometry *igeo = M_IGEO(mp);
5c4d97d0
DC
3475 int nr_found;
3476 int clcount = 0;
1da177e4 3477 int i;
1da177e4 3478
5c4d97d0 3479 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1da177e4 3480
4b4d98cc 3481 cilist_size = igeo->inodes_per_cluster * sizeof(struct xfs_inode *);
19429363
DC
3482 cilist = kmem_alloc(cilist_size, KM_MAYFAIL|KM_NOFS);
3483 if (!cilist)
5c4d97d0 3484 goto out_put;
1da177e4 3485
4b4d98cc 3486 mask = ~(igeo->inodes_per_cluster - 1);
5c4d97d0
DC
3487 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3488 rcu_read_lock();
3489 /* really need a gang lookup range call here */
19429363 3490 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)cilist,
4b4d98cc 3491 first_index, igeo->inodes_per_cluster);
5c4d97d0
DC
3492 if (nr_found == 0)
3493 goto out_free;
3494
3495 for (i = 0; i < nr_found; i++) {
19429363
DC
3496 cip = cilist[i];
3497 if (cip == ip)
bad55843 3498 continue;
1a3e8f3d
DC
3499
3500 /*
3501 * because this is an RCU protected lookup, we could find a
3502 * recently freed or even reallocated inode during the lookup.
3503 * We need to check under the i_flags_lock for a valid inode
3504 * here. Skip it if it is not valid or the wrong inode.
3505 */
19429363
DC
3506 spin_lock(&cip->i_flags_lock);
3507 if (!cip->i_ino ||
3508 __xfs_iflags_test(cip, XFS_ISTALE)) {
3509 spin_unlock(&cip->i_flags_lock);
1a3e8f3d
DC
3510 continue;
3511 }
5a90e53e
DC
3512
3513 /*
3514 * Once we fall off the end of the cluster, no point checking
3515 * any more inodes in the list because they will also all be
3516 * outside the cluster.
3517 */
19429363
DC
3518 if ((XFS_INO_TO_AGINO(mp, cip->i_ino) & mask) != first_index) {
3519 spin_unlock(&cip->i_flags_lock);
5a90e53e
DC
3520 break;
3521 }
19429363 3522 spin_unlock(&cip->i_flags_lock);
1a3e8f3d 3523
bad55843
DC
3524 /*
3525 * Do an un-protected check to see if the inode is dirty and
3526 * is a candidate for flushing. These checks will be repeated
3527 * later after the appropriate locks are acquired.
3528 */
19429363 3529 if (xfs_inode_clean(cip) && xfs_ipincount(cip) == 0)
bad55843 3530 continue;
bad55843
DC
3531
3532 /*
3533 * Try to get locks. If any are unavailable or it is pinned,
3534 * then this inode cannot be flushed and is skipped.
3535 */
3536
19429363 3537 if (!xfs_ilock_nowait(cip, XFS_ILOCK_SHARED))
bad55843 3538 continue;
19429363
DC
3539 if (!xfs_iflock_nowait(cip)) {
3540 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3541 continue;
3542 }
19429363
DC
3543 if (xfs_ipincount(cip)) {
3544 xfs_ifunlock(cip);
3545 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3546 continue;
3547 }
3548
8a17d7dd
DC
3549
3550 /*
3551 * Check the inode number again, just to be certain we are not
3552 * racing with freeing in xfs_reclaim_inode(). See the comments
3553 * in that function for more information as to why the initial
3554 * check is not sufficient.
3555 */
19429363
DC
3556 if (!cip->i_ino) {
3557 xfs_ifunlock(cip);
3558 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3559 continue;
3560 }
3561
3562 /*
3563 * arriving here means that this inode can be flushed. First
3564 * re-check that it's dirty before flushing.
3565 */
19429363 3566 if (!xfs_inode_clean(cip)) {
33540408 3567 int error;
19429363 3568 error = xfs_iflush_int(cip, bp);
bad55843 3569 if (error) {
19429363 3570 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3571 goto cluster_corrupt_out;
3572 }
3573 clcount++;
3574 } else {
19429363 3575 xfs_ifunlock(cip);
bad55843 3576 }
19429363 3577 xfs_iunlock(cip, XFS_ILOCK_SHARED);
bad55843
DC
3578 }
3579
3580 if (clcount) {
ff6d6af2
BD
3581 XFS_STATS_INC(mp, xs_icluster_flushcnt);
3582 XFS_STATS_ADD(mp, xs_icluster_flushinode, clcount);
bad55843
DC
3583 }
3584
3585out_free:
1a3e8f3d 3586 rcu_read_unlock();
19429363 3587 kmem_free(cilist);
44b56e0a
DC
3588out_put:
3589 xfs_perag_put(pag);
bad55843
DC
3590 return 0;
3591
3592
3593cluster_corrupt_out:
3594 /*
3595 * Corruption detected in the clustering loop. Invalidate the
3596 * inode buffer and shut down the filesystem.
3597 */
1a3e8f3d 3598 rcu_read_unlock();
bad55843 3599
bad55843 3600 /*
e53946db
DC
3601 * We'll always have an inode attached to the buffer for completion
3602 * process by the time we are called from xfs_iflush(). Hence we have
3603 * always need to do IO completion processing to abort the inodes
3604 * attached to the buffer. handle them just like the shutdown case in
3605 * xfs_buf_submit().
bad55843 3606 */
e53946db 3607 ASSERT(bp->b_iodone);
22fedd80 3608 bp->b_flags |= XBF_ASYNC;
e53946db
DC
3609 bp->b_flags &= ~XBF_DONE;
3610 xfs_buf_stale(bp);
3611 xfs_buf_ioerror(bp, -EIO);
3612 xfs_buf_ioend(bp);
3613
22fedd80
BF
3614 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3615
e53946db 3616 /* abort the corrupt inode, as it was not attached to the buffer */
19429363
DC
3617 xfs_iflush_abort(cip, false);
3618 kmem_free(cilist);
44b56e0a 3619 xfs_perag_put(pag);
2451337d 3620 return -EFSCORRUPTED;
bad55843
DC
3621}
3622
1da177e4 3623/*
4c46819a
CH
3624 * Flush dirty inode metadata into the backing buffer.
3625 *
3626 * The caller must have the inode lock and the inode flush lock held. The
3627 * inode lock will still be held upon return to the caller, and the inode
3628 * flush lock will be released after the inode has reached the disk.
3629 *
3630 * The caller must write out the buffer returned in *bpp and release it.
1da177e4
LT
3631 */
3632int
3633xfs_iflush(
4c46819a
CH
3634 struct xfs_inode *ip,
3635 struct xfs_buf **bpp)
1da177e4 3636{
4c46819a 3637 struct xfs_mount *mp = ip->i_mount;
b1438f47 3638 struct xfs_buf *bp = NULL;
4c46819a 3639 struct xfs_dinode *dip;
1da177e4 3640 int error;
1da177e4 3641
ff6d6af2 3642 XFS_STATS_INC(mp, xs_iflush_count);
1da177e4 3643
579aa9ca 3644 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3645 ASSERT(xfs_isiflocked(ip));
1da177e4 3646 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3647 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
1da177e4 3648
4c46819a 3649 *bpp = NULL;
1da177e4 3650
1da177e4
LT
3651 xfs_iunpin_wait(ip);
3652
4b6a4688
DC
3653 /*
3654 * For stale inodes we cannot rely on the backing buffer remaining
3655 * stale in cache for the remaining life of the stale inode and so
475ee413 3656 * xfs_imap_to_bp() below may give us a buffer that no longer contains
4b6a4688
DC
3657 * inodes below. We have to check this after ensuring the inode is
3658 * unpinned so that it is safe to reclaim the stale inode after the
3659 * flush call.
3660 */
3661 if (xfs_iflags_test(ip, XFS_ISTALE)) {
3662 xfs_ifunlock(ip);
3663 return 0;
3664 }
3665
1da177e4
LT
3666 /*
3667 * This may have been unpinned because the filesystem is shutting
3668 * down forcibly. If that's the case we must not write this inode
32ce90a4
CH
3669 * to disk, because the log record didn't make it to disk.
3670 *
3671 * We also have to remove the log item from the AIL in this case,
3672 * as we wait for an empty AIL as part of the unmount process.
1da177e4
LT
3673 */
3674 if (XFS_FORCED_SHUTDOWN(mp)) {
2451337d 3675 error = -EIO;
32ce90a4 3676 goto abort_out;
1da177e4
LT
3677 }
3678
a3f74ffb 3679 /*
b1438f47
DC
3680 * Get the buffer containing the on-disk inode. We are doing a try-lock
3681 * operation here, so we may get an EAGAIN error. In that case, we
3682 * simply want to return with the inode still dirty.
3683 *
3684 * If we get any other error, we effectively have a corruption situation
3685 * and we cannot flush the inode, so we treat it the same as failing
3686 * xfs_iflush_int().
a3f74ffb 3687 */
475ee413
CH
3688 error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3689 0);
b1438f47 3690 if (error == -EAGAIN) {
a3f74ffb
DC
3691 xfs_ifunlock(ip);
3692 return error;
3693 }
b1438f47
DC
3694 if (error)
3695 goto corrupt_out;
a3f74ffb 3696
1da177e4
LT
3697 /*
3698 * First flush out the inode that xfs_iflush was called with.
3699 */
3700 error = xfs_iflush_int(ip, bp);
bad55843 3701 if (error)
1da177e4 3702 goto corrupt_out;
1da177e4 3703
a3f74ffb
DC
3704 /*
3705 * If the buffer is pinned then push on the log now so we won't
3706 * get stuck waiting in the write for too long.
3707 */
811e64c7 3708 if (xfs_buf_ispinned(bp))
a14a348b 3709 xfs_log_force(mp, 0);
a3f74ffb 3710
1da177e4 3711 /*
e53946db
DC
3712 * inode clustering: try to gather other inodes into this write
3713 *
3714 * Note: Any error during clustering will result in the filesystem
3715 * being shut down and completion callbacks run on the cluster buffer.
3716 * As we have already flushed and attached this inode to the buffer,
3717 * it has already been aborted and released by xfs_iflush_cluster() and
3718 * so we have no further error handling to do here.
1da177e4 3719 */
bad55843
DC
3720 error = xfs_iflush_cluster(ip, bp);
3721 if (error)
e53946db 3722 return error;
1da177e4 3723
4c46819a
CH
3724 *bpp = bp;
3725 return 0;
1da177e4
LT
3726
3727corrupt_out:
b1438f47
DC
3728 if (bp)
3729 xfs_buf_relse(bp);
7d04a335 3730 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
32ce90a4 3731abort_out:
e53946db 3732 /* abort the corrupt inode, as it was not attached to the buffer */
04913fdd 3733 xfs_iflush_abort(ip, false);
32ce90a4 3734 return error;
1da177e4
LT
3735}
3736
9cfb9b47
DW
3737/*
3738 * If there are inline format data / attr forks attached to this inode,
3739 * make sure they're not corrupt.
3740 */
3741bool
3742xfs_inode_verify_forks(
3743 struct xfs_inode *ip)
3744{
22431bf3 3745 struct xfs_ifork *ifp;
9cfb9b47
DW
3746 xfs_failaddr_t fa;
3747
3748 fa = xfs_ifork_verify_data(ip, &xfs_default_ifork_ops);
3749 if (fa) {
22431bf3
DW
3750 ifp = XFS_IFORK_PTR(ip, XFS_DATA_FORK);
3751 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "data fork",
3752 ifp->if_u1.if_data, ifp->if_bytes, fa);
9cfb9b47
DW
3753 return false;
3754 }
3755
3756 fa = xfs_ifork_verify_attr(ip, &xfs_default_ifork_ops);
3757 if (fa) {
22431bf3
DW
3758 ifp = XFS_IFORK_PTR(ip, XFS_ATTR_FORK);
3759 xfs_inode_verifier_error(ip, -EFSCORRUPTED, "attr fork",
3760 ifp ? ifp->if_u1.if_data : NULL,
3761 ifp ? ifp->if_bytes : 0, fa);
9cfb9b47
DW
3762 return false;
3763 }
3764 return true;
3765}
3766
1da177e4
LT
3767STATIC int
3768xfs_iflush_int(
93848a99
CH
3769 struct xfs_inode *ip,
3770 struct xfs_buf *bp)
1da177e4 3771{
93848a99
CH
3772 struct xfs_inode_log_item *iip = ip->i_itemp;
3773 struct xfs_dinode *dip;
3774 struct xfs_mount *mp = ip->i_mount;
1da177e4 3775
579aa9ca 3776 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
474fce06 3777 ASSERT(xfs_isiflocked(ip));
1da177e4 3778 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
8096b1eb 3779 ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
93848a99 3780 ASSERT(iip != NULL && iip->ili_fields != 0);
263997a6 3781 ASSERT(ip->i_d.di_version > 1);
1da177e4 3782
1da177e4 3783 /* set *dip = inode's place in the buffer */
88ee2df7 3784 dip = xfs_buf_offset(bp, ip->i_imap.im_boffset);
1da177e4 3785
69ef921b 3786 if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
9e24cfd0 3787 mp, XFS_ERRTAG_IFLUSH_1)) {
6a19d939 3788 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3789 "%s: Bad inode %Lu magic number 0x%x, ptr "PTR_FMT,
6a19d939 3790 __func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
1da177e4
LT
3791 goto corrupt_out;
3792 }
c19b3b05 3793 if (S_ISREG(VFS_I(ip)->i_mode)) {
1da177e4
LT
3794 if (XFS_TEST_ERROR(
3795 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3796 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
9e24cfd0 3797 mp, XFS_ERRTAG_IFLUSH_3)) {
6a19d939 3798 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3799 "%s: Bad regular inode %Lu, ptr "PTR_FMT,
6a19d939 3800 __func__, ip->i_ino, ip);
1da177e4
LT
3801 goto corrupt_out;
3802 }
c19b3b05 3803 } else if (S_ISDIR(VFS_I(ip)->i_mode)) {
1da177e4
LT
3804 if (XFS_TEST_ERROR(
3805 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3806 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3807 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
9e24cfd0 3808 mp, XFS_ERRTAG_IFLUSH_4)) {
6a19d939 3809 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3810 "%s: Bad directory inode %Lu, ptr "PTR_FMT,
6a19d939 3811 __func__, ip->i_ino, ip);
1da177e4
LT
3812 goto corrupt_out;
3813 }
3814 }
3815 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
9e24cfd0 3816 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5)) {
6a19d939
DC
3817 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3818 "%s: detected corrupt incore inode %Lu, "
c9690043 3819 "total extents = %d, nblocks = %Ld, ptr "PTR_FMT,
6a19d939 3820 __func__, ip->i_ino,
1da177e4 3821 ip->i_d.di_nextents + ip->i_d.di_anextents,
6a19d939 3822 ip->i_d.di_nblocks, ip);
1da177e4
LT
3823 goto corrupt_out;
3824 }
3825 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
9e24cfd0 3826 mp, XFS_ERRTAG_IFLUSH_6)) {
6a19d939 3827 xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
c9690043 3828 "%s: bad inode %Lu, forkoff 0x%x, ptr "PTR_FMT,
6a19d939 3829 __func__, ip->i_ino, ip->i_d.di_forkoff, ip);
1da177e4
LT
3830 goto corrupt_out;
3831 }
e60896d8 3832
1da177e4 3833 /*
263997a6 3834 * Inode item log recovery for v2 inodes are dependent on the
e60896d8
DC
3835 * di_flushiter count for correct sequencing. We bump the flush
3836 * iteration count so we can detect flushes which postdate a log record
3837 * during recovery. This is redundant as we now log every change and
3838 * hence this can't happen but we need to still do it to ensure
3839 * backwards compatibility with old kernels that predate logging all
3840 * inode changes.
1da177e4 3841 */
e60896d8
DC
3842 if (ip->i_d.di_version < 3)
3843 ip->i_d.di_flushiter++;
1da177e4 3844
9cfb9b47
DW
3845 /* Check the inline fork data before we write out. */
3846 if (!xfs_inode_verify_forks(ip))
005c5db8
DW
3847 goto corrupt_out;
3848
1da177e4 3849 /*
3987848c
DC
3850 * Copy the dirty parts of the inode into the on-disk inode. We always
3851 * copy out the core of the inode, because if the inode is dirty at all
3852 * the core must be.
1da177e4 3853 */
93f958f9 3854 xfs_inode_to_disk(ip, dip, iip->ili_item.li_lsn);
1da177e4
LT
3855
3856 /* Wrap, we never let the log put out DI_MAX_FLUSH */
3857 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3858 ip->i_d.di_flushiter = 0;
3859
005c5db8
DW
3860 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3861 if (XFS_IFORK_Q(ip))
3862 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
1da177e4
LT
3863 xfs_inobp_check(mp, bp);
3864
3865 /*
f5d8d5c4
CH
3866 * We've recorded everything logged in the inode, so we'd like to clear
3867 * the ili_fields bits so we don't log and flush things unnecessarily.
3868 * However, we can't stop logging all this information until the data
3869 * we've copied into the disk buffer is written to disk. If we did we
3870 * might overwrite the copy of the inode in the log with all the data
3871 * after re-logging only part of it, and in the face of a crash we
3872 * wouldn't have all the data we need to recover.
1da177e4 3873 *
f5d8d5c4
CH
3874 * What we do is move the bits to the ili_last_fields field. When
3875 * logging the inode, these bits are moved back to the ili_fields field.
3876 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3877 * know that the information those bits represent is permanently on
3878 * disk. As long as the flush completes before the inode is logged
3879 * again, then both ili_fields and ili_last_fields will be cleared.
1da177e4 3880 *
f5d8d5c4
CH
3881 * We can play with the ili_fields bits here, because the inode lock
3882 * must be held exclusively in order to set bits there and the flush
3883 * lock protects the ili_last_fields bits. Set ili_logged so the flush
3884 * done routine can tell whether or not to look in the AIL. Also, store
3885 * the current LSN of the inode so that we can tell whether the item has
3886 * moved in the AIL from xfs_iflush_done(). In order to read the lsn we
3887 * need the AIL lock, because it is a 64 bit value that cannot be read
3888 * atomically.
1da177e4 3889 */
93848a99
CH
3890 iip->ili_last_fields = iip->ili_fields;
3891 iip->ili_fields = 0;
fc0561ce 3892 iip->ili_fsync_fields = 0;
93848a99 3893 iip->ili_logged = 1;
1da177e4 3894
93848a99
CH
3895 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3896 &iip->ili_item.li_lsn);
1da177e4 3897
93848a99
CH
3898 /*
3899 * Attach the function xfs_iflush_done to the inode's
3900 * buffer. This will remove the inode from the AIL
3901 * and unlock the inode's flush lock when the inode is
3902 * completely written to disk.
3903 */
3904 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
1da177e4 3905
93848a99
CH
3906 /* generate the checksum. */
3907 xfs_dinode_calc_crc(mp, dip);
1da177e4 3908
643c8c05 3909 ASSERT(!list_empty(&bp->b_li_list));
93848a99 3910 ASSERT(bp->b_iodone != NULL);
1da177e4
LT
3911 return 0;
3912
3913corrupt_out:
2451337d 3914 return -EFSCORRUPTED;
1da177e4 3915}
44a8736b
DW
3916
3917/* Release an inode. */
3918void
3919xfs_irele(
3920 struct xfs_inode *ip)
3921{
3922 trace_xfs_irele(ip, _RET_IP_);
3923 iput(VFS_I(ip));
3924}