xfs: use ->b_state to fix buffer I/O accounting release race
[linux-2.6-block.git] / fs / xfs / xfs_icache.c
CommitLineData
fe4fa4b8
DC
1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
6ca1c906 20#include "xfs_format.h"
239880ef
DC
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
fe4fa4b8 23#include "xfs_sb.h"
fe4fa4b8 24#include "xfs_mount.h"
fe4fa4b8 25#include "xfs_inode.h"
fe4fa4b8 26#include "xfs_error.h"
239880ef
DC
27#include "xfs_trans.h"
28#include "xfs_trans_priv.h"
fe4fa4b8 29#include "xfs_inode_item.h"
7d095257 30#include "xfs_quota.h"
0b1b213f 31#include "xfs_trace.h"
6d8b79cf 32#include "xfs_icache.h"
c24b5dfa 33#include "xfs_bmap_util.h"
dc06f398
BF
34#include "xfs_dquot_item.h"
35#include "xfs_dquot.h"
83104d44 36#include "xfs_reflink.h"
fe4fa4b8 37
a167b17e
DC
38#include <linux/kthread.h>
39#include <linux/freezer.h>
40
33479e05
DC
41/*
42 * Allocate and initialise an xfs_inode.
43 */
638f4416 44struct xfs_inode *
33479e05
DC
45xfs_inode_alloc(
46 struct xfs_mount *mp,
47 xfs_ino_t ino)
48{
49 struct xfs_inode *ip;
50
51 /*
52 * if this didn't occur in transactions, we could use
53 * KM_MAYFAIL and return NULL here on ENOMEM. Set the
54 * code up to do this anyway.
55 */
56 ip = kmem_zone_alloc(xfs_inode_zone, KM_SLEEP);
57 if (!ip)
58 return NULL;
59 if (inode_init_always(mp->m_super, VFS_I(ip))) {
60 kmem_zone_free(xfs_inode_zone, ip);
61 return NULL;
62 }
63
c19b3b05
DC
64 /* VFS doesn't initialise i_mode! */
65 VFS_I(ip)->i_mode = 0;
66
ff6d6af2 67 XFS_STATS_INC(mp, vn_active);
33479e05
DC
68 ASSERT(atomic_read(&ip->i_pincount) == 0);
69 ASSERT(!spin_is_locked(&ip->i_flags_lock));
70 ASSERT(!xfs_isiflocked(ip));
71 ASSERT(ip->i_ino == 0);
72
33479e05
DC
73 /* initialise the xfs inode */
74 ip->i_ino = ino;
75 ip->i_mount = mp;
76 memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
77 ip->i_afp = NULL;
3993baeb
DW
78 ip->i_cowfp = NULL;
79 ip->i_cnextents = 0;
80 ip->i_cformat = XFS_DINODE_FMT_EXTENTS;
33479e05
DC
81 memset(&ip->i_df, 0, sizeof(xfs_ifork_t));
82 ip->i_flags = 0;
83 ip->i_delayed_blks = 0;
f8d55aa0 84 memset(&ip->i_d, 0, sizeof(ip->i_d));
33479e05
DC
85
86 return ip;
87}
88
89STATIC void
90xfs_inode_free_callback(
91 struct rcu_head *head)
92{
93 struct inode *inode = container_of(head, struct inode, i_rcu);
94 struct xfs_inode *ip = XFS_I(inode);
95
c19b3b05 96 switch (VFS_I(ip)->i_mode & S_IFMT) {
33479e05
DC
97 case S_IFREG:
98 case S_IFDIR:
99 case S_IFLNK:
100 xfs_idestroy_fork(ip, XFS_DATA_FORK);
101 break;
102 }
103
104 if (ip->i_afp)
105 xfs_idestroy_fork(ip, XFS_ATTR_FORK);
3993baeb
DW
106 if (ip->i_cowfp)
107 xfs_idestroy_fork(ip, XFS_COW_FORK);
33479e05
DC
108
109 if (ip->i_itemp) {
110 ASSERT(!(ip->i_itemp->ili_item.li_flags & XFS_LI_IN_AIL));
111 xfs_inode_item_destroy(ip);
112 ip->i_itemp = NULL;
113 }
114
1f2dcfe8
DC
115 kmem_zone_free(xfs_inode_zone, ip);
116}
117
8a17d7dd
DC
118static void
119__xfs_inode_free(
120 struct xfs_inode *ip)
121{
122 /* asserts to verify all state is correct here */
123 ASSERT(atomic_read(&ip->i_pincount) == 0);
8a17d7dd
DC
124 XFS_STATS_DEC(ip->i_mount, vn_active);
125
126 call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
127}
128
1f2dcfe8
DC
129void
130xfs_inode_free(
131 struct xfs_inode *ip)
132{
98efe8af
BF
133 ASSERT(!xfs_isiflocked(ip));
134
33479e05
DC
135 /*
136 * Because we use RCU freeing we need to ensure the inode always
137 * appears to be reclaimed with an invalid inode number when in the
138 * free state. The ip->i_flags_lock provides the barrier against lookup
139 * races.
140 */
141 spin_lock(&ip->i_flags_lock);
142 ip->i_flags = XFS_IRECLAIM;
143 ip->i_ino = 0;
144 spin_unlock(&ip->i_flags_lock);
145
8a17d7dd 146 __xfs_inode_free(ip);
33479e05
DC
147}
148
ad438c40
DC
149/*
150 * Queue a new inode reclaim pass if there are reclaimable inodes and there
151 * isn't a reclaim pass already in progress. By default it runs every 5s based
152 * on the xfs periodic sync default of 30s. Perhaps this should have it's own
153 * tunable, but that can be done if this method proves to be ineffective or too
154 * aggressive.
155 */
156static void
157xfs_reclaim_work_queue(
158 struct xfs_mount *mp)
159{
160
161 rcu_read_lock();
162 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
163 queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
164 msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
165 }
166 rcu_read_unlock();
167}
168
169/*
170 * This is a fast pass over the inode cache to try to get reclaim moving on as
171 * many inodes as possible in a short period of time. It kicks itself every few
172 * seconds, as well as being kicked by the inode cache shrinker when memory
173 * goes low. It scans as quickly as possible avoiding locked inodes or those
174 * already being flushed, and once done schedules a future pass.
175 */
176void
177xfs_reclaim_worker(
178 struct work_struct *work)
179{
180 struct xfs_mount *mp = container_of(to_delayed_work(work),
181 struct xfs_mount, m_reclaim_work);
182
183 xfs_reclaim_inodes(mp, SYNC_TRYLOCK);
184 xfs_reclaim_work_queue(mp);
185}
186
187static void
188xfs_perag_set_reclaim_tag(
189 struct xfs_perag *pag)
190{
191 struct xfs_mount *mp = pag->pag_mount;
192
193 ASSERT(spin_is_locked(&pag->pag_ici_lock));
194 if (pag->pag_ici_reclaimable++)
195 return;
196
197 /* propagate the reclaim tag up into the perag radix tree */
198 spin_lock(&mp->m_perag_lock);
199 radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
200 XFS_ICI_RECLAIM_TAG);
201 spin_unlock(&mp->m_perag_lock);
202
203 /* schedule periodic background inode reclaim */
204 xfs_reclaim_work_queue(mp);
205
206 trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
207}
208
209static void
210xfs_perag_clear_reclaim_tag(
211 struct xfs_perag *pag)
212{
213 struct xfs_mount *mp = pag->pag_mount;
214
215 ASSERT(spin_is_locked(&pag->pag_ici_lock));
216 if (--pag->pag_ici_reclaimable)
217 return;
218
219 /* clear the reclaim tag from the perag radix tree */
220 spin_lock(&mp->m_perag_lock);
221 radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
222 XFS_ICI_RECLAIM_TAG);
223 spin_unlock(&mp->m_perag_lock);
224 trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
225}
226
227
228/*
229 * We set the inode flag atomically with the radix tree tag.
230 * Once we get tag lookups on the radix tree, this inode flag
231 * can go away.
232 */
233void
234xfs_inode_set_reclaim_tag(
235 struct xfs_inode *ip)
236{
237 struct xfs_mount *mp = ip->i_mount;
238 struct xfs_perag *pag;
239
240 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
241 spin_lock(&pag->pag_ici_lock);
242 spin_lock(&ip->i_flags_lock);
243
244 radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
245 XFS_ICI_RECLAIM_TAG);
246 xfs_perag_set_reclaim_tag(pag);
247 __xfs_iflags_set(ip, XFS_IRECLAIMABLE);
248
249 spin_unlock(&ip->i_flags_lock);
250 spin_unlock(&pag->pag_ici_lock);
251 xfs_perag_put(pag);
252}
253
254STATIC void
255xfs_inode_clear_reclaim_tag(
256 struct xfs_perag *pag,
257 xfs_ino_t ino)
258{
259 radix_tree_tag_clear(&pag->pag_ici_root,
260 XFS_INO_TO_AGINO(pag->pag_mount, ino),
261 XFS_ICI_RECLAIM_TAG);
262 xfs_perag_clear_reclaim_tag(pag);
263}
264
ae2c4ac2
BF
265static void
266xfs_inew_wait(
267 struct xfs_inode *ip)
268{
269 wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
270 DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
271
272 do {
273 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
274 if (!xfs_iflags_test(ip, XFS_INEW))
275 break;
276 schedule();
277 } while (true);
278 finish_wait(wq, &wait.wait);
279}
280
50997470
DC
281/*
282 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
283 * part of the structure. This is made more complex by the fact we store
284 * information about the on-disk values in the VFS inode and so we can't just
83e06f21 285 * overwrite the values unconditionally. Hence we save the parameters we
50997470 286 * need to retain across reinitialisation, and rewrite them into the VFS inode
83e06f21 287 * after reinitialisation even if it fails.
50997470
DC
288 */
289static int
290xfs_reinit_inode(
291 struct xfs_mount *mp,
292 struct inode *inode)
293{
294 int error;
54d7b5c1 295 uint32_t nlink = inode->i_nlink;
9e9a2674 296 uint32_t generation = inode->i_generation;
83e06f21 297 uint64_t version = inode->i_version;
c19b3b05 298 umode_t mode = inode->i_mode;
50997470
DC
299
300 error = inode_init_always(mp->m_super, inode);
301
54d7b5c1 302 set_nlink(inode, nlink);
9e9a2674 303 inode->i_generation = generation;
83e06f21 304 inode->i_version = version;
c19b3b05 305 inode->i_mode = mode;
50997470
DC
306 return error;
307}
308
33479e05
DC
309/*
310 * Check the validity of the inode we just found it the cache
311 */
312static int
313xfs_iget_cache_hit(
314 struct xfs_perag *pag,
315 struct xfs_inode *ip,
316 xfs_ino_t ino,
317 int flags,
318 int lock_flags) __releases(RCU)
319{
320 struct inode *inode = VFS_I(ip);
321 struct xfs_mount *mp = ip->i_mount;
322 int error;
323
324 /*
325 * check for re-use of an inode within an RCU grace period due to the
326 * radix tree nodes not being updated yet. We monitor for this by
327 * setting the inode number to zero before freeing the inode structure.
328 * If the inode has been reallocated and set up, then the inode number
329 * will not match, so check for that, too.
330 */
331 spin_lock(&ip->i_flags_lock);
332 if (ip->i_ino != ino) {
333 trace_xfs_iget_skip(ip);
ff6d6af2 334 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 335 error = -EAGAIN;
33479e05
DC
336 goto out_error;
337 }
338
339
340 /*
341 * If we are racing with another cache hit that is currently
342 * instantiating this inode or currently recycling it out of
343 * reclaimabe state, wait for the initialisation to complete
344 * before continuing.
345 *
346 * XXX(hch): eventually we should do something equivalent to
347 * wait_on_inode to wait for these flags to be cleared
348 * instead of polling for it.
349 */
350 if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
351 trace_xfs_iget_skip(ip);
ff6d6af2 352 XFS_STATS_INC(mp, xs_ig_frecycle);
2451337d 353 error = -EAGAIN;
33479e05
DC
354 goto out_error;
355 }
356
357 /*
358 * If lookup is racing with unlink return an error immediately.
359 */
c19b3b05 360 if (VFS_I(ip)->i_mode == 0 && !(flags & XFS_IGET_CREATE)) {
2451337d 361 error = -ENOENT;
33479e05
DC
362 goto out_error;
363 }
364
365 /*
366 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
367 * Need to carefully get it back into useable state.
368 */
369 if (ip->i_flags & XFS_IRECLAIMABLE) {
370 trace_xfs_iget_reclaim(ip);
371
372 /*
373 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
374 * from stomping over us while we recycle the inode. We can't
375 * clear the radix tree reclaimable tag yet as it requires
376 * pag_ici_lock to be held exclusive.
377 */
378 ip->i_flags |= XFS_IRECLAIM;
379
380 spin_unlock(&ip->i_flags_lock);
381 rcu_read_unlock();
382
50997470 383 error = xfs_reinit_inode(mp, inode);
33479e05 384 if (error) {
756baca2 385 bool wake;
33479e05
DC
386 /*
387 * Re-initializing the inode failed, and we are in deep
388 * trouble. Try to re-add it to the reclaim list.
389 */
390 rcu_read_lock();
391 spin_lock(&ip->i_flags_lock);
756baca2 392 wake = !!__xfs_iflags_test(ip, XFS_INEW);
33479e05 393 ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
756baca2
BF
394 if (wake)
395 wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
33479e05
DC
396 ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
397 trace_xfs_iget_reclaim_fail(ip);
398 goto out_error;
399 }
400
401 spin_lock(&pag->pag_ici_lock);
402 spin_lock(&ip->i_flags_lock);
403
404 /*
405 * Clear the per-lifetime state in the inode as we are now
406 * effectively a new inode and need to return to the initial
407 * state before reuse occurs.
408 */
409 ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
410 ip->i_flags |= XFS_INEW;
545c0889 411 xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
33479e05
DC
412 inode->i_state = I_NEW;
413
65523218
CH
414 ASSERT(!rwsem_is_locked(&inode->i_rwsem));
415 init_rwsem(&inode->i_rwsem);
33479e05
DC
416
417 spin_unlock(&ip->i_flags_lock);
418 spin_unlock(&pag->pag_ici_lock);
419 } else {
420 /* If the VFS inode is being torn down, pause and try again. */
421 if (!igrab(inode)) {
422 trace_xfs_iget_skip(ip);
2451337d 423 error = -EAGAIN;
33479e05
DC
424 goto out_error;
425 }
426
427 /* We've got a live one. */
428 spin_unlock(&ip->i_flags_lock);
429 rcu_read_unlock();
430 trace_xfs_iget_hit(ip);
431 }
432
433 if (lock_flags != 0)
434 xfs_ilock(ip, lock_flags);
435
436 xfs_iflags_clear(ip, XFS_ISTALE | XFS_IDONTCACHE);
ff6d6af2 437 XFS_STATS_INC(mp, xs_ig_found);
33479e05
DC
438
439 return 0;
440
441out_error:
442 spin_unlock(&ip->i_flags_lock);
443 rcu_read_unlock();
444 return error;
445}
446
447
448static int
449xfs_iget_cache_miss(
450 struct xfs_mount *mp,
451 struct xfs_perag *pag,
452 xfs_trans_t *tp,
453 xfs_ino_t ino,
454 struct xfs_inode **ipp,
455 int flags,
456 int lock_flags)
457{
458 struct xfs_inode *ip;
459 int error;
460 xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
461 int iflags;
462
463 ip = xfs_inode_alloc(mp, ino);
464 if (!ip)
2451337d 465 return -ENOMEM;
33479e05
DC
466
467 error = xfs_iread(mp, tp, ip, flags);
468 if (error)
469 goto out_destroy;
470
471 trace_xfs_iget_miss(ip);
472
c19b3b05 473 if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
2451337d 474 error = -ENOENT;
33479e05
DC
475 goto out_destroy;
476 }
477
478 /*
479 * Preload the radix tree so we can insert safely under the
480 * write spinlock. Note that we cannot sleep inside the preload
481 * region. Since we can be called from transaction context, don't
482 * recurse into the file system.
483 */
484 if (radix_tree_preload(GFP_NOFS)) {
2451337d 485 error = -EAGAIN;
33479e05
DC
486 goto out_destroy;
487 }
488
489 /*
490 * Because the inode hasn't been added to the radix-tree yet it can't
491 * be found by another thread, so we can do the non-sleeping lock here.
492 */
493 if (lock_flags) {
494 if (!xfs_ilock_nowait(ip, lock_flags))
495 BUG();
496 }
497
498 /*
499 * These values must be set before inserting the inode into the radix
500 * tree as the moment it is inserted a concurrent lookup (allowed by the
501 * RCU locking mechanism) can find it and that lookup must see that this
502 * is an inode currently under construction (i.e. that XFS_INEW is set).
503 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
504 * memory barrier that ensures this detection works correctly at lookup
505 * time.
506 */
507 iflags = XFS_INEW;
508 if (flags & XFS_IGET_DONTCACHE)
509 iflags |= XFS_IDONTCACHE;
113a5683
CS
510 ip->i_udquot = NULL;
511 ip->i_gdquot = NULL;
92f8ff73 512 ip->i_pdquot = NULL;
33479e05
DC
513 xfs_iflags_set(ip, iflags);
514
515 /* insert the new inode */
516 spin_lock(&pag->pag_ici_lock);
517 error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
518 if (unlikely(error)) {
519 WARN_ON(error != -EEXIST);
ff6d6af2 520 XFS_STATS_INC(mp, xs_ig_dup);
2451337d 521 error = -EAGAIN;
33479e05
DC
522 goto out_preload_end;
523 }
524 spin_unlock(&pag->pag_ici_lock);
525 radix_tree_preload_end();
526
527 *ipp = ip;
528 return 0;
529
530out_preload_end:
531 spin_unlock(&pag->pag_ici_lock);
532 radix_tree_preload_end();
533 if (lock_flags)
534 xfs_iunlock(ip, lock_flags);
535out_destroy:
536 __destroy_inode(VFS_I(ip));
537 xfs_inode_free(ip);
538 return error;
539}
540
541/*
542 * Look up an inode by number in the given file system.
543 * The inode is looked up in the cache held in each AG.
544 * If the inode is found in the cache, initialise the vfs inode
545 * if necessary.
546 *
547 * If it is not in core, read it in from the file system's device,
548 * add it to the cache and initialise the vfs inode.
549 *
550 * The inode is locked according to the value of the lock_flags parameter.
551 * This flag parameter indicates how and if the inode's IO lock and inode lock
552 * should be taken.
553 *
554 * mp -- the mount point structure for the current file system. It points
555 * to the inode hash table.
556 * tp -- a pointer to the current transaction if there is one. This is
557 * simply passed through to the xfs_iread() call.
558 * ino -- the number of the inode desired. This is the unique identifier
559 * within the file system for the inode being requested.
560 * lock_flags -- flags indicating how to lock the inode. See the comment
561 * for xfs_ilock() for a list of valid values.
562 */
563int
564xfs_iget(
565 xfs_mount_t *mp,
566 xfs_trans_t *tp,
567 xfs_ino_t ino,
568 uint flags,
569 uint lock_flags,
570 xfs_inode_t **ipp)
571{
572 xfs_inode_t *ip;
573 int error;
574 xfs_perag_t *pag;
575 xfs_agino_t agino;
576
577 /*
578 * xfs_reclaim_inode() uses the ILOCK to ensure an inode
579 * doesn't get freed while it's being referenced during a
580 * radix tree traversal here. It assumes this function
581 * aqcuires only the ILOCK (and therefore it has no need to
582 * involve the IOLOCK in this synchronization).
583 */
584 ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
585
586 /* reject inode numbers outside existing AGs */
587 if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
2451337d 588 return -EINVAL;
33479e05 589
ff6d6af2 590 XFS_STATS_INC(mp, xs_ig_attempts);
8774cf8b 591
33479e05
DC
592 /* get the perag structure and ensure that it's inode capable */
593 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
594 agino = XFS_INO_TO_AGINO(mp, ino);
595
596again:
597 error = 0;
598 rcu_read_lock();
599 ip = radix_tree_lookup(&pag->pag_ici_root, agino);
600
601 if (ip) {
602 error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
603 if (error)
604 goto out_error_or_again;
605 } else {
606 rcu_read_unlock();
ff6d6af2 607 XFS_STATS_INC(mp, xs_ig_missed);
33479e05
DC
608
609 error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
610 flags, lock_flags);
611 if (error)
612 goto out_error_or_again;
613 }
614 xfs_perag_put(pag);
615
616 *ipp = ip;
617
618 /*
58c90473 619 * If we have a real type for an on-disk inode, we can setup the inode
33479e05
DC
620 * now. If it's a new inode being created, xfs_ialloc will handle it.
621 */
c19b3b05 622 if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
58c90473 623 xfs_setup_existing_inode(ip);
33479e05
DC
624 return 0;
625
626out_error_or_again:
2451337d 627 if (error == -EAGAIN) {
33479e05
DC
628 delay(1);
629 goto again;
630 }
631 xfs_perag_put(pag);
632 return error;
633}
634
78ae5256
DC
635/*
636 * The inode lookup is done in batches to keep the amount of lock traffic and
637 * radix tree lookups to a minimum. The batch size is a trade off between
638 * lookup reduction and stack usage. This is in the reclaim path, so we can't
639 * be too greedy.
640 */
641#define XFS_LOOKUP_BATCH 32
642
e13de955
DC
643STATIC int
644xfs_inode_ag_walk_grab(
ae2c4ac2
BF
645 struct xfs_inode *ip,
646 int flags)
e13de955
DC
647{
648 struct inode *inode = VFS_I(ip);
ae2c4ac2 649 bool newinos = !!(flags & XFS_AGITER_INEW_WAIT);
e13de955 650
1a3e8f3d
DC
651 ASSERT(rcu_read_lock_held());
652
653 /*
654 * check for stale RCU freed inode
655 *
656 * If the inode has been reallocated, it doesn't matter if it's not in
657 * the AG we are walking - we are walking for writeback, so if it
658 * passes all the "valid inode" checks and is dirty, then we'll write
659 * it back anyway. If it has been reallocated and still being
660 * initialised, the XFS_INEW check below will catch it.
661 */
662 spin_lock(&ip->i_flags_lock);
663 if (!ip->i_ino)
664 goto out_unlock_noent;
665
666 /* avoid new or reclaimable inodes. Leave for reclaim code to flush */
ae2c4ac2
BF
667 if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
668 __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
1a3e8f3d
DC
669 goto out_unlock_noent;
670 spin_unlock(&ip->i_flags_lock);
671
e13de955
DC
672 /* nothing to sync during shutdown */
673 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
2451337d 674 return -EFSCORRUPTED;
e13de955 675
e13de955
DC
676 /* If we can't grab the inode, it must on it's way to reclaim. */
677 if (!igrab(inode))
2451337d 678 return -ENOENT;
e13de955 679
e13de955
DC
680 /* inode is valid */
681 return 0;
1a3e8f3d
DC
682
683out_unlock_noent:
684 spin_unlock(&ip->i_flags_lock);
2451337d 685 return -ENOENT;
e13de955
DC
686}
687
75f3cb13
DC
688STATIC int
689xfs_inode_ag_walk(
690 struct xfs_mount *mp,
5017e97d 691 struct xfs_perag *pag,
e0094008 692 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
693 void *args),
694 int flags,
695 void *args,
ae2c4ac2
BF
696 int tag,
697 int iter_flags)
75f3cb13 698{
75f3cb13
DC
699 uint32_t first_index;
700 int last_error = 0;
701 int skipped;
65d0f205 702 int done;
78ae5256 703 int nr_found;
75f3cb13
DC
704
705restart:
65d0f205 706 done = 0;
75f3cb13
DC
707 skipped = 0;
708 first_index = 0;
78ae5256 709 nr_found = 0;
75f3cb13 710 do {
78ae5256 711 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
75f3cb13 712 int error = 0;
78ae5256 713 int i;
75f3cb13 714
1a3e8f3d 715 rcu_read_lock();
a454f742
BF
716
717 if (tag == -1)
718 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
78ae5256
DC
719 (void **)batch, first_index,
720 XFS_LOOKUP_BATCH);
a454f742
BF
721 else
722 nr_found = radix_tree_gang_lookup_tag(
723 &pag->pag_ici_root,
724 (void **) batch, first_index,
725 XFS_LOOKUP_BATCH, tag);
726
65d0f205 727 if (!nr_found) {
1a3e8f3d 728 rcu_read_unlock();
75f3cb13 729 break;
c8e20be0 730 }
75f3cb13 731
65d0f205 732 /*
78ae5256
DC
733 * Grab the inodes before we drop the lock. if we found
734 * nothing, nr == 0 and the loop will be skipped.
65d0f205 735 */
78ae5256
DC
736 for (i = 0; i < nr_found; i++) {
737 struct xfs_inode *ip = batch[i];
738
ae2c4ac2 739 if (done || xfs_inode_ag_walk_grab(ip, iter_flags))
78ae5256
DC
740 batch[i] = NULL;
741
742 /*
1a3e8f3d
DC
743 * Update the index for the next lookup. Catch
744 * overflows into the next AG range which can occur if
745 * we have inodes in the last block of the AG and we
746 * are currently pointing to the last inode.
747 *
748 * Because we may see inodes that are from the wrong AG
749 * due to RCU freeing and reallocation, only update the
750 * index if it lies in this AG. It was a race that lead
751 * us to see this inode, so another lookup from the
752 * same index will not find it again.
78ae5256 753 */
1a3e8f3d
DC
754 if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
755 continue;
78ae5256
DC
756 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
757 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
758 done = 1;
e13de955 759 }
78ae5256
DC
760
761 /* unlock now we've grabbed the inodes. */
1a3e8f3d 762 rcu_read_unlock();
e13de955 763
78ae5256
DC
764 for (i = 0; i < nr_found; i++) {
765 if (!batch[i])
766 continue;
ae2c4ac2
BF
767 if ((iter_flags & XFS_AGITER_INEW_WAIT) &&
768 xfs_iflags_test(batch[i], XFS_INEW))
769 xfs_inew_wait(batch[i]);
e0094008 770 error = execute(batch[i], flags, args);
78ae5256 771 IRELE(batch[i]);
2451337d 772 if (error == -EAGAIN) {
78ae5256
DC
773 skipped++;
774 continue;
775 }
2451337d 776 if (error && last_error != -EFSCORRUPTED)
78ae5256 777 last_error = error;
75f3cb13 778 }
c8e20be0
DC
779
780 /* bail out if the filesystem is corrupted. */
2451337d 781 if (error == -EFSCORRUPTED)
75f3cb13
DC
782 break;
783
8daaa831
DC
784 cond_resched();
785
78ae5256 786 } while (nr_found && !done);
75f3cb13
DC
787
788 if (skipped) {
789 delay(1);
790 goto restart;
791 }
75f3cb13
DC
792 return last_error;
793}
794
579b62fa
BF
795/*
796 * Background scanning to trim post-EOF preallocated space. This is queued
b9fe5052 797 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
579b62fa 798 */
fa5a4f57 799void
579b62fa
BF
800xfs_queue_eofblocks(
801 struct xfs_mount *mp)
802{
803 rcu_read_lock();
804 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
805 queue_delayed_work(mp->m_eofblocks_workqueue,
806 &mp->m_eofblocks_work,
807 msecs_to_jiffies(xfs_eofb_secs * 1000));
808 rcu_read_unlock();
809}
810
811void
812xfs_eofblocks_worker(
813 struct work_struct *work)
814{
815 struct xfs_mount *mp = container_of(to_delayed_work(work),
816 struct xfs_mount, m_eofblocks_work);
817 xfs_icache_free_eofblocks(mp, NULL);
818 xfs_queue_eofblocks(mp);
819}
820
83104d44
DW
821/*
822 * Background scanning to trim preallocated CoW space. This is queued
823 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
824 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
825 */
826STATIC void
827xfs_queue_cowblocks(
828 struct xfs_mount *mp)
829{
830 rcu_read_lock();
831 if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
832 queue_delayed_work(mp->m_eofblocks_workqueue,
833 &mp->m_cowblocks_work,
834 msecs_to_jiffies(xfs_cowb_secs * 1000));
835 rcu_read_unlock();
836}
837
838void
839xfs_cowblocks_worker(
840 struct work_struct *work)
841{
842 struct xfs_mount *mp = container_of(to_delayed_work(work),
843 struct xfs_mount, m_cowblocks_work);
844 xfs_icache_free_cowblocks(mp, NULL);
845 xfs_queue_cowblocks(mp);
846}
847
fe588ed3 848int
ae2c4ac2 849xfs_inode_ag_iterator_flags(
75f3cb13 850 struct xfs_mount *mp,
e0094008 851 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
852 void *args),
853 int flags,
ae2c4ac2
BF
854 void *args,
855 int iter_flags)
75f3cb13 856{
16fd5367 857 struct xfs_perag *pag;
75f3cb13
DC
858 int error = 0;
859 int last_error = 0;
860 xfs_agnumber_t ag;
861
16fd5367 862 ag = 0;
65d0f205
DC
863 while ((pag = xfs_perag_get(mp, ag))) {
864 ag = pag->pag_agno + 1;
ae2c4ac2
BF
865 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, -1,
866 iter_flags);
a454f742
BF
867 xfs_perag_put(pag);
868 if (error) {
869 last_error = error;
2451337d 870 if (error == -EFSCORRUPTED)
a454f742
BF
871 break;
872 }
873 }
b474c7ae 874 return last_error;
a454f742
BF
875}
876
ae2c4ac2
BF
877int
878xfs_inode_ag_iterator(
879 struct xfs_mount *mp,
880 int (*execute)(struct xfs_inode *ip, int flags,
881 void *args),
882 int flags,
883 void *args)
884{
885 return xfs_inode_ag_iterator_flags(mp, execute, flags, args, 0);
886}
887
a454f742
BF
888int
889xfs_inode_ag_iterator_tag(
890 struct xfs_mount *mp,
e0094008 891 int (*execute)(struct xfs_inode *ip, int flags,
a454f742
BF
892 void *args),
893 int flags,
894 void *args,
895 int tag)
896{
897 struct xfs_perag *pag;
898 int error = 0;
899 int last_error = 0;
900 xfs_agnumber_t ag;
901
902 ag = 0;
903 while ((pag = xfs_perag_get_tag(mp, ag, tag))) {
904 ag = pag->pag_agno + 1;
ae2c4ac2
BF
905 error = xfs_inode_ag_walk(mp, pag, execute, flags, args, tag,
906 0);
5017e97d 907 xfs_perag_put(pag);
75f3cb13
DC
908 if (error) {
909 last_error = error;
2451337d 910 if (error == -EFSCORRUPTED)
75f3cb13
DC
911 break;
912 }
913 }
b474c7ae 914 return last_error;
75f3cb13
DC
915}
916
e3a20c0b
DC
917/*
918 * Grab the inode for reclaim exclusively.
919 * Return 0 if we grabbed it, non-zero otherwise.
920 */
921STATIC int
922xfs_reclaim_inode_grab(
923 struct xfs_inode *ip,
924 int flags)
925{
1a3e8f3d
DC
926 ASSERT(rcu_read_lock_held());
927
928 /* quick check for stale RCU freed inode */
929 if (!ip->i_ino)
930 return 1;
e3a20c0b
DC
931
932 /*
474fce06
CH
933 * If we are asked for non-blocking operation, do unlocked checks to
934 * see if the inode already is being flushed or in reclaim to avoid
935 * lock traffic.
e3a20c0b
DC
936 */
937 if ((flags & SYNC_TRYLOCK) &&
474fce06 938 __xfs_iflags_test(ip, XFS_IFLOCK | XFS_IRECLAIM))
e3a20c0b 939 return 1;
e3a20c0b
DC
940
941 /*
942 * The radix tree lock here protects a thread in xfs_iget from racing
943 * with us starting reclaim on the inode. Once we have the
944 * XFS_IRECLAIM flag set it will not touch us.
1a3e8f3d
DC
945 *
946 * Due to RCU lookup, we may find inodes that have been freed and only
947 * have XFS_IRECLAIM set. Indeed, we may see reallocated inodes that
948 * aren't candidates for reclaim at all, so we must check the
949 * XFS_IRECLAIMABLE is set first before proceeding to reclaim.
e3a20c0b
DC
950 */
951 spin_lock(&ip->i_flags_lock);
1a3e8f3d
DC
952 if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
953 __xfs_iflags_test(ip, XFS_IRECLAIM)) {
954 /* not a reclaim candidate. */
e3a20c0b
DC
955 spin_unlock(&ip->i_flags_lock);
956 return 1;
957 }
958 __xfs_iflags_set(ip, XFS_IRECLAIM);
959 spin_unlock(&ip->i_flags_lock);
960 return 0;
961}
962
777df5af 963/*
8a48088f
CH
964 * Inodes in different states need to be treated differently. The following
965 * table lists the inode states and the reclaim actions necessary:
777df5af
DC
966 *
967 * inode state iflush ret required action
968 * --------------- ---------- ---------------
969 * bad - reclaim
970 * shutdown EIO unpin and reclaim
971 * clean, unpinned 0 reclaim
972 * stale, unpinned 0 reclaim
c854363e
DC
973 * clean, pinned(*) 0 requeue
974 * stale, pinned EAGAIN requeue
8a48088f
CH
975 * dirty, async - requeue
976 * dirty, sync 0 reclaim
777df5af
DC
977 *
978 * (*) dgc: I don't think the clean, pinned state is possible but it gets
979 * handled anyway given the order of checks implemented.
980 *
c854363e
DC
981 * Also, because we get the flush lock first, we know that any inode that has
982 * been flushed delwri has had the flush completed by the time we check that
8a48088f 983 * the inode is clean.
c854363e 984 *
8a48088f
CH
985 * Note that because the inode is flushed delayed write by AIL pushing, the
986 * flush lock may already be held here and waiting on it can result in very
987 * long latencies. Hence for sync reclaims, where we wait on the flush lock,
988 * the caller should push the AIL first before trying to reclaim inodes to
989 * minimise the amount of time spent waiting. For background relaim, we only
990 * bother to reclaim clean inodes anyway.
c854363e 991 *
777df5af
DC
992 * Hence the order of actions after gaining the locks should be:
993 * bad => reclaim
994 * shutdown => unpin and reclaim
8a48088f 995 * pinned, async => requeue
c854363e 996 * pinned, sync => unpin
777df5af
DC
997 * stale => reclaim
998 * clean => reclaim
8a48088f 999 * dirty, async => requeue
c854363e 1000 * dirty, sync => flush, wait and reclaim
777df5af 1001 */
75f3cb13 1002STATIC int
c8e20be0 1003xfs_reclaim_inode(
75f3cb13
DC
1004 struct xfs_inode *ip,
1005 struct xfs_perag *pag,
c8e20be0 1006 int sync_mode)
fce08f2f 1007{
4c46819a 1008 struct xfs_buf *bp = NULL;
8a17d7dd 1009 xfs_ino_t ino = ip->i_ino; /* for radix_tree_delete */
4c46819a 1010 int error;
777df5af 1011
1bfd8d04
DC
1012restart:
1013 error = 0;
c8e20be0 1014 xfs_ilock(ip, XFS_ILOCK_EXCL);
c854363e
DC
1015 if (!xfs_iflock_nowait(ip)) {
1016 if (!(sync_mode & SYNC_WAIT))
1017 goto out;
1018 xfs_iflock(ip);
1019 }
7a3be02b 1020
777df5af
DC
1021 if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1022 xfs_iunpin_wait(ip);
98efe8af 1023 /* xfs_iflush_abort() drops the flush lock */
04913fdd 1024 xfs_iflush_abort(ip, false);
777df5af
DC
1025 goto reclaim;
1026 }
c854363e 1027 if (xfs_ipincount(ip)) {
8a48088f
CH
1028 if (!(sync_mode & SYNC_WAIT))
1029 goto out_ifunlock;
777df5af 1030 xfs_iunpin_wait(ip);
c854363e 1031 }
98efe8af
BF
1032 if (xfs_iflags_test(ip, XFS_ISTALE) || xfs_inode_clean(ip)) {
1033 xfs_ifunlock(ip);
777df5af 1034 goto reclaim;
98efe8af 1035 }
777df5af 1036
8a48088f
CH
1037 /*
1038 * Never flush out dirty data during non-blocking reclaim, as it would
1039 * just contend with AIL pushing trying to do the same job.
1040 */
1041 if (!(sync_mode & SYNC_WAIT))
1042 goto out_ifunlock;
1043
1bfd8d04
DC
1044 /*
1045 * Now we have an inode that needs flushing.
1046 *
4c46819a 1047 * Note that xfs_iflush will never block on the inode buffer lock, as
1bfd8d04 1048 * xfs_ifree_cluster() can lock the inode buffer before it locks the
4c46819a 1049 * ip->i_lock, and we are doing the exact opposite here. As a result,
475ee413
CH
1050 * doing a blocking xfs_imap_to_bp() to get the cluster buffer would
1051 * result in an ABBA deadlock with xfs_ifree_cluster().
1bfd8d04
DC
1052 *
1053 * As xfs_ifree_cluser() must gather all inodes that are active in the
1054 * cache to mark them stale, if we hit this case we don't actually want
1055 * to do IO here - we want the inode marked stale so we can simply
4c46819a
CH
1056 * reclaim it. Hence if we get an EAGAIN error here, just unlock the
1057 * inode, back off and try again. Hopefully the next pass through will
1058 * see the stale flag set on the inode.
1bfd8d04 1059 */
4c46819a 1060 error = xfs_iflush(ip, &bp);
2451337d 1061 if (error == -EAGAIN) {
8a48088f
CH
1062 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1063 /* backoff longer than in xfs_ifree_cluster */
1064 delay(2);
1065 goto restart;
c854363e 1066 }
c854363e 1067
4c46819a
CH
1068 if (!error) {
1069 error = xfs_bwrite(bp);
1070 xfs_buf_relse(bp);
1071 }
1072
777df5af 1073reclaim:
98efe8af
BF
1074 ASSERT(!xfs_isiflocked(ip));
1075
8a17d7dd
DC
1076 /*
1077 * Because we use RCU freeing we need to ensure the inode always appears
1078 * to be reclaimed with an invalid inode number when in the free state.
98efe8af
BF
1079 * We do this as early as possible under the ILOCK so that
1080 * xfs_iflush_cluster() can be guaranteed to detect races with us here.
1081 * By doing this, we guarantee that once xfs_iflush_cluster has locked
1082 * XFS_ILOCK that it will see either a valid, flushable inode that will
1083 * serialise correctly, or it will see a clean (and invalid) inode that
1084 * it can skip.
8a17d7dd
DC
1085 */
1086 spin_lock(&ip->i_flags_lock);
1087 ip->i_flags = XFS_IRECLAIM;
1088 ip->i_ino = 0;
1089 spin_unlock(&ip->i_flags_lock);
1090
c8e20be0 1091 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1092
ff6d6af2 1093 XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
2f11feab
DC
1094 /*
1095 * Remove the inode from the per-AG radix tree.
1096 *
1097 * Because radix_tree_delete won't complain even if the item was never
1098 * added to the tree assert that it's been there before to catch
1099 * problems with the inode life time early on.
1100 */
1a427ab0 1101 spin_lock(&pag->pag_ici_lock);
2f11feab 1102 if (!radix_tree_delete(&pag->pag_ici_root,
8a17d7dd 1103 XFS_INO_TO_AGINO(ip->i_mount, ino)))
2f11feab 1104 ASSERT(0);
545c0889 1105 xfs_perag_clear_reclaim_tag(pag);
1a427ab0 1106 spin_unlock(&pag->pag_ici_lock);
2f11feab
DC
1107
1108 /*
1109 * Here we do an (almost) spurious inode lock in order to coordinate
1110 * with inode cache radix tree lookups. This is because the lookup
1111 * can reference the inodes in the cache without taking references.
1112 *
1113 * We make that OK here by ensuring that we wait until the inode is
ad637a10 1114 * unlocked after the lookup before we go ahead and free it.
2f11feab 1115 */
ad637a10 1116 xfs_ilock(ip, XFS_ILOCK_EXCL);
2f11feab 1117 xfs_qm_dqdetach(ip);
ad637a10 1118 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2f11feab 1119
8a17d7dd 1120 __xfs_inode_free(ip);
ad637a10 1121 return error;
8a48088f
CH
1122
1123out_ifunlock:
1124 xfs_ifunlock(ip);
1125out:
1126 xfs_iflags_clear(ip, XFS_IRECLAIM);
1127 xfs_iunlock(ip, XFS_ILOCK_EXCL);
1128 /*
2451337d 1129 * We could return -EAGAIN here to make reclaim rescan the inode tree in
8a48088f 1130 * a short while. However, this just burns CPU time scanning the tree
5889608d
DC
1131 * waiting for IO to complete and the reclaim work never goes back to
1132 * the idle state. Instead, return 0 to let the next scheduled
1133 * background reclaim attempt to reclaim the inode again.
8a48088f
CH
1134 */
1135 return 0;
7a3be02b
DC
1136}
1137
65d0f205
DC
1138/*
1139 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1140 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1141 * then a shut down during filesystem unmount reclaim walk leak all the
1142 * unreclaimed inodes.
1143 */
33479e05 1144STATIC int
65d0f205
DC
1145xfs_reclaim_inodes_ag(
1146 struct xfs_mount *mp,
1147 int flags,
1148 int *nr_to_scan)
1149{
1150 struct xfs_perag *pag;
1151 int error = 0;
1152 int last_error = 0;
1153 xfs_agnumber_t ag;
69b491c2
DC
1154 int trylock = flags & SYNC_TRYLOCK;
1155 int skipped;
65d0f205 1156
69b491c2 1157restart:
65d0f205 1158 ag = 0;
69b491c2 1159 skipped = 0;
65d0f205
DC
1160 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1161 unsigned long first_index = 0;
1162 int done = 0;
e3a20c0b 1163 int nr_found = 0;
65d0f205
DC
1164
1165 ag = pag->pag_agno + 1;
1166
69b491c2
DC
1167 if (trylock) {
1168 if (!mutex_trylock(&pag->pag_ici_reclaim_lock)) {
1169 skipped++;
f83282a8 1170 xfs_perag_put(pag);
69b491c2
DC
1171 continue;
1172 }
1173 first_index = pag->pag_ici_reclaim_cursor;
1174 } else
1175 mutex_lock(&pag->pag_ici_reclaim_lock);
1176
65d0f205 1177 do {
e3a20c0b
DC
1178 struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1179 int i;
65d0f205 1180
1a3e8f3d 1181 rcu_read_lock();
e3a20c0b
DC
1182 nr_found = radix_tree_gang_lookup_tag(
1183 &pag->pag_ici_root,
1184 (void **)batch, first_index,
1185 XFS_LOOKUP_BATCH,
65d0f205
DC
1186 XFS_ICI_RECLAIM_TAG);
1187 if (!nr_found) {
b2232219 1188 done = 1;
1a3e8f3d 1189 rcu_read_unlock();
65d0f205
DC
1190 break;
1191 }
1192
1193 /*
e3a20c0b
DC
1194 * Grab the inodes before we drop the lock. if we found
1195 * nothing, nr == 0 and the loop will be skipped.
65d0f205 1196 */
e3a20c0b
DC
1197 for (i = 0; i < nr_found; i++) {
1198 struct xfs_inode *ip = batch[i];
1199
1200 if (done || xfs_reclaim_inode_grab(ip, flags))
1201 batch[i] = NULL;
1202
1203 /*
1204 * Update the index for the next lookup. Catch
1205 * overflows into the next AG range which can
1206 * occur if we have inodes in the last block of
1207 * the AG and we are currently pointing to the
1208 * last inode.
1a3e8f3d
DC
1209 *
1210 * Because we may see inodes that are from the
1211 * wrong AG due to RCU freeing and
1212 * reallocation, only update the index if it
1213 * lies in this AG. It was a race that lead us
1214 * to see this inode, so another lookup from
1215 * the same index will not find it again.
e3a20c0b 1216 */
1a3e8f3d
DC
1217 if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1218 pag->pag_agno)
1219 continue;
e3a20c0b
DC
1220 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1221 if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1222 done = 1;
1223 }
65d0f205 1224
e3a20c0b 1225 /* unlock now we've grabbed the inodes. */
1a3e8f3d 1226 rcu_read_unlock();
e3a20c0b
DC
1227
1228 for (i = 0; i < nr_found; i++) {
1229 if (!batch[i])
1230 continue;
1231 error = xfs_reclaim_inode(batch[i], pag, flags);
2451337d 1232 if (error && last_error != -EFSCORRUPTED)
e3a20c0b
DC
1233 last_error = error;
1234 }
1235
1236 *nr_to_scan -= XFS_LOOKUP_BATCH;
65d0f205 1237
8daaa831
DC
1238 cond_resched();
1239
e3a20c0b 1240 } while (nr_found && !done && *nr_to_scan > 0);
65d0f205 1241
69b491c2
DC
1242 if (trylock && !done)
1243 pag->pag_ici_reclaim_cursor = first_index;
1244 else
1245 pag->pag_ici_reclaim_cursor = 0;
1246 mutex_unlock(&pag->pag_ici_reclaim_lock);
65d0f205
DC
1247 xfs_perag_put(pag);
1248 }
69b491c2
DC
1249
1250 /*
1251 * if we skipped any AG, and we still have scan count remaining, do
1252 * another pass this time using blocking reclaim semantics (i.e
1253 * waiting on the reclaim locks and ignoring the reclaim cursors). This
1254 * ensure that when we get more reclaimers than AGs we block rather
1255 * than spin trying to execute reclaim.
1256 */
8daaa831 1257 if (skipped && (flags & SYNC_WAIT) && *nr_to_scan > 0) {
69b491c2
DC
1258 trylock = 0;
1259 goto restart;
1260 }
b474c7ae 1261 return last_error;
65d0f205
DC
1262}
1263
7a3be02b
DC
1264int
1265xfs_reclaim_inodes(
1266 xfs_mount_t *mp,
7a3be02b
DC
1267 int mode)
1268{
65d0f205
DC
1269 int nr_to_scan = INT_MAX;
1270
1271 return xfs_reclaim_inodes_ag(mp, mode, &nr_to_scan);
9bf729c0
DC
1272}
1273
1274/*
8daaa831 1275 * Scan a certain number of inodes for reclaim.
a7b339f1
DC
1276 *
1277 * When called we make sure that there is a background (fast) inode reclaim in
8daaa831 1278 * progress, while we will throttle the speed of reclaim via doing synchronous
a7b339f1
DC
1279 * reclaim of inodes. That means if we come across dirty inodes, we wait for
1280 * them to be cleaned, which we hope will not be very long due to the
1281 * background walker having already kicked the IO off on those dirty inodes.
9bf729c0 1282 */
0a234c6d 1283long
8daaa831
DC
1284xfs_reclaim_inodes_nr(
1285 struct xfs_mount *mp,
1286 int nr_to_scan)
9bf729c0 1287{
8daaa831 1288 /* kick background reclaimer and push the AIL */
5889608d 1289 xfs_reclaim_work_queue(mp);
8daaa831 1290 xfs_ail_push_all(mp->m_ail);
a7b339f1 1291
0a234c6d 1292 return xfs_reclaim_inodes_ag(mp, SYNC_TRYLOCK | SYNC_WAIT, &nr_to_scan);
8daaa831 1293}
9bf729c0 1294
8daaa831
DC
1295/*
1296 * Return the number of reclaimable inodes in the filesystem for
1297 * the shrinker to determine how much to reclaim.
1298 */
1299int
1300xfs_reclaim_inodes_count(
1301 struct xfs_mount *mp)
1302{
1303 struct xfs_perag *pag;
1304 xfs_agnumber_t ag = 0;
1305 int reclaimable = 0;
9bf729c0 1306
65d0f205
DC
1307 while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1308 ag = pag->pag_agno + 1;
70e60ce7
DC
1309 reclaimable += pag->pag_ici_reclaimable;
1310 xfs_perag_put(pag);
9bf729c0 1311 }
9bf729c0
DC
1312 return reclaimable;
1313}
1314
3e3f9f58
BF
1315STATIC int
1316xfs_inode_match_id(
1317 struct xfs_inode *ip,
1318 struct xfs_eofblocks *eofb)
1319{
b9fe5052
DE
1320 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1321 !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1b556048 1322 return 0;
3e3f9f58 1323
b9fe5052
DE
1324 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1325 !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1b556048
BF
1326 return 0;
1327
b9fe5052 1328 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1b556048
BF
1329 xfs_get_projid(ip) != eofb->eof_prid)
1330 return 0;
1331
1332 return 1;
3e3f9f58
BF
1333}
1334
f4526397
BF
1335/*
1336 * A union-based inode filtering algorithm. Process the inode if any of the
1337 * criteria match. This is for global/internal scans only.
1338 */
1339STATIC int
1340xfs_inode_match_id_union(
1341 struct xfs_inode *ip,
1342 struct xfs_eofblocks *eofb)
1343{
1344 if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1345 uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1346 return 1;
1347
1348 if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1349 gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1350 return 1;
1351
1352 if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1353 xfs_get_projid(ip) == eofb->eof_prid)
1354 return 1;
1355
1356 return 0;
1357}
1358
41176a68
BF
1359STATIC int
1360xfs_inode_free_eofblocks(
1361 struct xfs_inode *ip,
41176a68
BF
1362 int flags,
1363 void *args)
1364{
a36b9261 1365 int ret = 0;
3e3f9f58 1366 struct xfs_eofblocks *eofb = args;
f4526397 1367 int match;
5400da7d 1368
41176a68
BF
1369 if (!xfs_can_free_eofblocks(ip, false)) {
1370 /* inode could be preallocated or append-only */
1371 trace_xfs_inode_free_eofblocks_invalid(ip);
1372 xfs_inode_clear_eofblocks_tag(ip);
1373 return 0;
1374 }
1375
1376 /*
1377 * If the mapping is dirty the operation can block and wait for some
1378 * time. Unless we are waiting, skip it.
1379 */
1380 if (!(flags & SYNC_WAIT) &&
1381 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1382 return 0;
1383
00ca79a0 1384 if (eofb) {
f4526397
BF
1385 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1386 match = xfs_inode_match_id_union(ip, eofb);
1387 else
1388 match = xfs_inode_match_id(ip, eofb);
1389 if (!match)
00ca79a0
BF
1390 return 0;
1391
1392 /* skip the inode if the file size is too small */
1393 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1394 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1395 return 0;
1396 }
3e3f9f58 1397
a36b9261
BF
1398 /*
1399 * If the caller is waiting, return -EAGAIN to keep the background
1400 * scanner moving and revisit the inode in a subsequent pass.
1401 */
c3155097 1402 if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
a36b9261
BF
1403 if (flags & SYNC_WAIT)
1404 ret = -EAGAIN;
1405 return ret;
1406 }
1407 ret = xfs_free_eofblocks(ip);
c3155097 1408 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
41176a68
BF
1409
1410 return ret;
1411}
1412
83104d44
DW
1413static int
1414__xfs_icache_free_eofblocks(
41176a68 1415 struct xfs_mount *mp,
83104d44
DW
1416 struct xfs_eofblocks *eofb,
1417 int (*execute)(struct xfs_inode *ip, int flags,
1418 void *args),
1419 int tag)
41176a68 1420{
8ca149de
BF
1421 int flags = SYNC_TRYLOCK;
1422
1423 if (eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC))
1424 flags = SYNC_WAIT;
1425
83104d44
DW
1426 return xfs_inode_ag_iterator_tag(mp, execute, flags,
1427 eofb, tag);
1428}
1429
1430int
1431xfs_icache_free_eofblocks(
1432 struct xfs_mount *mp,
1433 struct xfs_eofblocks *eofb)
1434{
1435 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_eofblocks,
1436 XFS_ICI_EOFBLOCKS_TAG);
41176a68
BF
1437}
1438
dc06f398
BF
1439/*
1440 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1441 * multiple quotas, we don't know exactly which quota caused an allocation
1442 * failure. We make a best effort by including each quota under low free space
1443 * conditions (less than 1% free space) in the scan.
1444 */
83104d44
DW
1445static int
1446__xfs_inode_free_quota_eofblocks(
1447 struct xfs_inode *ip,
1448 int (*execute)(struct xfs_mount *mp,
1449 struct xfs_eofblocks *eofb))
dc06f398
BF
1450{
1451 int scan = 0;
1452 struct xfs_eofblocks eofb = {0};
1453 struct xfs_dquot *dq;
1454
dc06f398 1455 /*
c3155097 1456 * Run a sync scan to increase effectiveness and use the union filter to
dc06f398
BF
1457 * cover all applicable quotas in a single scan.
1458 */
dc06f398
BF
1459 eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1460
1461 if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1462 dq = xfs_inode_dquot(ip, XFS_DQ_USER);
1463 if (dq && xfs_dquot_lowsp(dq)) {
1464 eofb.eof_uid = VFS_I(ip)->i_uid;
1465 eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1466 scan = 1;
1467 }
1468 }
1469
1470 if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1471 dq = xfs_inode_dquot(ip, XFS_DQ_GROUP);
1472 if (dq && xfs_dquot_lowsp(dq)) {
1473 eofb.eof_gid = VFS_I(ip)->i_gid;
1474 eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1475 scan = 1;
1476 }
1477 }
1478
1479 if (scan)
83104d44 1480 execute(ip->i_mount, &eofb);
dc06f398
BF
1481
1482 return scan;
1483}
1484
83104d44
DW
1485int
1486xfs_inode_free_quota_eofblocks(
1487 struct xfs_inode *ip)
1488{
1489 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1490}
1491
1492static void
1493__xfs_inode_set_eofblocks_tag(
1494 xfs_inode_t *ip,
1495 void (*execute)(struct xfs_mount *mp),
1496 void (*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1497 int error, unsigned long caller_ip),
1498 int tag)
27b52867
BF
1499{
1500 struct xfs_mount *mp = ip->i_mount;
1501 struct xfs_perag *pag;
1502 int tagged;
1503
85a6e764
CH
1504 /*
1505 * Don't bother locking the AG and looking up in the radix trees
1506 * if we already know that we have the tag set.
1507 */
1508 if (ip->i_flags & XFS_IEOFBLOCKS)
1509 return;
1510 spin_lock(&ip->i_flags_lock);
1511 ip->i_flags |= XFS_IEOFBLOCKS;
1512 spin_unlock(&ip->i_flags_lock);
1513
27b52867
BF
1514 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1515 spin_lock(&pag->pag_ici_lock);
27b52867 1516
83104d44 1517 tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
27b52867 1518 radix_tree_tag_set(&pag->pag_ici_root,
83104d44 1519 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
27b52867
BF
1520 if (!tagged) {
1521 /* propagate the eofblocks tag up into the perag radix tree */
1522 spin_lock(&ip->i_mount->m_perag_lock);
1523 radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1524 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1525 tag);
27b52867 1526 spin_unlock(&ip->i_mount->m_perag_lock);
579b62fa
BF
1527
1528 /* kick off background trimming */
83104d44 1529 execute(ip->i_mount);
27b52867 1530
83104d44 1531 set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1532 }
1533
1534 spin_unlock(&pag->pag_ici_lock);
1535 xfs_perag_put(pag);
1536}
1537
1538void
83104d44 1539xfs_inode_set_eofblocks_tag(
27b52867 1540 xfs_inode_t *ip)
83104d44
DW
1541{
1542 trace_xfs_inode_set_eofblocks_tag(ip);
1543 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_eofblocks,
1544 trace_xfs_perag_set_eofblocks,
1545 XFS_ICI_EOFBLOCKS_TAG);
1546}
1547
1548static void
1549__xfs_inode_clear_eofblocks_tag(
1550 xfs_inode_t *ip,
1551 void (*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1552 int error, unsigned long caller_ip),
1553 int tag)
27b52867
BF
1554{
1555 struct xfs_mount *mp = ip->i_mount;
1556 struct xfs_perag *pag;
1557
85a6e764
CH
1558 spin_lock(&ip->i_flags_lock);
1559 ip->i_flags &= ~XFS_IEOFBLOCKS;
1560 spin_unlock(&ip->i_flags_lock);
1561
27b52867
BF
1562 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1563 spin_lock(&pag->pag_ici_lock);
27b52867
BF
1564
1565 radix_tree_tag_clear(&pag->pag_ici_root,
83104d44
DW
1566 XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1567 if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
27b52867
BF
1568 /* clear the eofblocks tag from the perag radix tree */
1569 spin_lock(&ip->i_mount->m_perag_lock);
1570 radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1571 XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
83104d44 1572 tag);
27b52867 1573 spin_unlock(&ip->i_mount->m_perag_lock);
83104d44 1574 clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
27b52867
BF
1575 }
1576
1577 spin_unlock(&pag->pag_ici_lock);
1578 xfs_perag_put(pag);
1579}
1580
83104d44
DW
1581void
1582xfs_inode_clear_eofblocks_tag(
1583 xfs_inode_t *ip)
1584{
1585 trace_xfs_inode_clear_eofblocks_tag(ip);
1586 return __xfs_inode_clear_eofblocks_tag(ip,
1587 trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1588}
1589
1590/*
1591 * Automatic CoW Reservation Freeing
1592 *
1593 * These functions automatically garbage collect leftover CoW reservations
1594 * that were made on behalf of a cowextsize hint when we start to run out
1595 * of quota or when the reservations sit around for too long. If the file
1596 * has dirty pages or is undergoing writeback, its CoW reservations will
1597 * be retained.
1598 *
1599 * The actual garbage collection piggybacks off the same code that runs
1600 * the speculative EOF preallocation garbage collector.
1601 */
1602STATIC int
1603xfs_inode_free_cowblocks(
1604 struct xfs_inode *ip,
1605 int flags,
1606 void *args)
1607{
1608 int ret;
1609 struct xfs_eofblocks *eofb = args;
83104d44 1610 int match;
39937234 1611 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, XFS_COW_FORK);
83104d44 1612
39937234
BF
1613 /*
1614 * Just clear the tag if we have an empty cow fork or none at all. It's
1615 * possible the inode was fully unshared since it was originally tagged.
1616 */
1617 if (!xfs_is_reflink_inode(ip) || !ifp->if_bytes) {
83104d44
DW
1618 trace_xfs_inode_free_cowblocks_invalid(ip);
1619 xfs_inode_clear_cowblocks_tag(ip);
1620 return 0;
1621 }
1622
1623 /*
1624 * If the mapping is dirty or under writeback we cannot touch the
1625 * CoW fork. Leave it alone if we're in the midst of a directio.
1626 */
a1b7a4de
CH
1627 if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1628 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
83104d44
DW
1629 mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1630 atomic_read(&VFS_I(ip)->i_dio_count))
1631 return 0;
1632
1633 if (eofb) {
1634 if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1635 match = xfs_inode_match_id_union(ip, eofb);
1636 else
1637 match = xfs_inode_match_id(ip, eofb);
1638 if (!match)
1639 return 0;
1640
1641 /* skip the inode if the file size is too small */
1642 if (eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE &&
1643 XFS_ISIZE(ip) < eofb->eof_min_file_size)
1644 return 0;
83104d44
DW
1645 }
1646
1647 /* Free the CoW blocks */
c3155097
BF
1648 xfs_ilock(ip, XFS_IOLOCK_EXCL);
1649 xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
83104d44 1650
3802a345 1651 ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
83104d44 1652
c3155097
BF
1653 xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1654 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
83104d44
DW
1655
1656 return ret;
1657}
1658
1659int
1660xfs_icache_free_cowblocks(
1661 struct xfs_mount *mp,
1662 struct xfs_eofblocks *eofb)
1663{
1664 return __xfs_icache_free_eofblocks(mp, eofb, xfs_inode_free_cowblocks,
1665 XFS_ICI_COWBLOCKS_TAG);
1666}
1667
1668int
1669xfs_inode_free_quota_cowblocks(
1670 struct xfs_inode *ip)
1671{
1672 return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1673}
1674
1675void
1676xfs_inode_set_cowblocks_tag(
1677 xfs_inode_t *ip)
1678{
7b7381f0 1679 trace_xfs_inode_set_cowblocks_tag(ip);
83104d44 1680 return __xfs_inode_set_eofblocks_tag(ip, xfs_queue_cowblocks,
7b7381f0 1681 trace_xfs_perag_set_cowblocks,
83104d44
DW
1682 XFS_ICI_COWBLOCKS_TAG);
1683}
1684
1685void
1686xfs_inode_clear_cowblocks_tag(
1687 xfs_inode_t *ip)
1688{
7b7381f0 1689 trace_xfs_inode_clear_cowblocks_tag(ip);
83104d44 1690 return __xfs_inode_clear_eofblocks_tag(ip,
7b7381f0 1691 trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
83104d44 1692}